Science.gov

Sample records for passive smap mission

  1. Soil moisture active/passive (SMAP) mission concept

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active/Passive (SMAP) Mission is one of the first satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. ...

  2. The Soil Moisture Active and Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen f...

  3. Preparing for NASA's Soil Moisture Active Passive (SMAP) mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active/Passive (SMAP) Mission is one of the first satellites being developed by NASA in response to the National Research Council’s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. ...

  4. The Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Nijoku, Eni G.; ONeill, Peggy E.; Kellogg, Kent H.; Crow, Wade T.; Edelstein, Wendy N.; Entin, Jared K.; Goodman, Shawn D.; Jackson, Thomas J.; Johnson, Joel; Kimball, John; Piepmeier, Jeffrey R.; Koster, Randal D.; McDonald, Kyle C.; Moghaddam, Mahta; Moran, Susan; Reichle, Rolf; Shi, J. C.; Spencer, Michael W.; Thurman, Samuel W.; Tsang, Leung; VanZyl, Jakob

    2009-01-01

    The Soil Moisture Active and Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council s Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy and carbon transfers between land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP soil moisture and freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept would utilize an L-band radar and radiometer. These instruments will share a rotating 6-meter mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. The SMAP instruments provide direct measurements of surface conditions. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and estimates of land surface-atmosphere exchanges of water, energy and carbon. SMAP is scheduled for a 2014 launch date

  5. The NASA Soil Moisture Active Passive (SMAP) Mission: Overview

    NASA Technical Reports Server (NTRS)

    O'Neill, Peggy; Entekhabi, Dara; Njoku, Eni; Kellogg, Kent

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council?s Decadal Survey [1]. Its mission design consists of L-band radiometer and radar instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every 2-3 days. The combined active/passive microwave soil moisture product will have a spatial resolution of 10 km and a mean latency of 24 hours. In addition, the SMAP surface observations will be combined with advanced modeling and data assimilation to provide deeper root zone soil moisture and net ecosystem exchange of carbon. SMAP is expected to launch in the late 2014 - early 2015 time frame.

  6. The Soil Moisture Active/Passive Mission (SMAP)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active/Passive (SMAP) mission will deliver global views of soil moisture content and its freeze/thaw state that are critical terrestrial water cycle state variables. Polarized measurements obtained with a shared antenna L-band radar and radiometer system will allow accurate estima...

  7. Fostering Application Opportunites for the NASA Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Moran, M. Susan; O'Neill, Peggy E.; Entekhabi, Dara; Njoku, Eni G.; Kellogg, Kent H.

    2010-01-01

    The NASA Soil Moisture Active Passive (SMAP) Mission will provide global observations of soil moisture and freeze/thaw state from space. We outline how priority applications contributed to the SMAP mission measurement requirements and how the SMAP mission plans to foster applications and applied science.

  8. Preparing for NASA's Soil Moisture Active Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Jackson, T.; Entekhabi, D.; Njoku, E.; O'Neill, P.; Entin, J.

    2009-04-01

    Soil Moisture Active/Passive (SMAP) Mission is one of the first satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the moisture present at Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow better estimates of water and energy transfers between Earth's surface and atmosphere, which are primary driving factors for weather and climate. Soil moisture measurements are also of great importance in assessing flooding potential and as input to flood prediction models. Conversely, observations of widespread low soil moisture levels can provide early warning of drought conditions, reduced water supply and crop loss. SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP freeze/thaw timing observations will also reduce a major uncertainty in quantifying the global carbon balance and will help resolve the problem of the missing carbon sink. The SMAP mission concept would utilize L-band radar and radiometry. These instruments will share a rotating 6-meter mesh antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. Soil moisture products at 3, 10 and 40 km resolutions will be derived. These will both complement and extend the records of the ESA SMOS mission and offer an order of magnitude improvement in spatial resolution. SMAP is currently in Phase A and scheduled for a 2013 launch. The science teams will be focusing on algorithm development and validation over the next few years. These efforts will be described.

  9. NASA's Soil Moisture Active and Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; Brown, Molly; Savinell, Chris; Entin, Jared; Ianson, Eric

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  10. NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Earth Science Decadal Survey [1]. SMAP s measurement objectives are high-resolution global measurements of near-surface soil moisture and its freeze-thaw state. These measurements would allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP s planned observations can help mitigate these natural hazards, resulting in potentially great economic and societal benefits. SMAP measurements would also yield high resolution spatial and temporal mapping of the frozen or thawed condition of the surface soil and vegetation. Observations of soil moisture and freeze/thaw timing over the boreal latitudes will contribute to reducing a major uncertainty in quantifying the global carbon balance and help resolve an apparent missing carbon sink over land. The SMAP mission would utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna (see Figure 1) [2]. The radar and radiometer instruments would be carried onboard a 3-axis stabilized spacecraft in a 680 km polar orbit with an 8-day repeating ground track. The instruments are planned to provide high-resolution and high-accuracy global maps of soil moisture at 10 km resolution and freeze/thaw at 3 km resolution, every two to three days (see Table 1 for a list of science data products). The mission is adopting a number of approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). These approaches are being incorporated into the radiometer and radar flight hardware and

  11. The NASA Soil Moisture Active Passive (SMAP) Mission Formulation

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni; ONeill, Peggy; Kellogg, Kent; Entin, Jared

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier projects recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission is in formulation phase and it is scheduled for launch in 2014. The SMAP mission is designed to produce high-resolution and accurate global mapping of soil moisture and its freeze/thaw state using an instrument architecture that incorporates an L-band (1.26 GHz) radar and an L-band (1.41 GHz) radiometer. The simultaneous radar and radiometer measurements will be combined to derive global soil moisture mapping at 9 [km] resolution with a 2 to 3 days revisit and 0.04 [cm3 cm-3] (1 sigma) soil water content accuracy. The radar measurements also allow the binary detection of surface freeze/thaw state. The project science goals address in water, energy and carbon cycle science as well as provide improved capabilities in natural hazards applications.

  12. NASA’s Soil Moisture Active Passive (SMAP) mission and opportunities for applications users

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of four first-tier missions recommended by the National Research Council's Committee on Earth Science and Applications from Space. Set to launch in 2014, SMAP soil moisture and freeze/thaw measurements will have an accuracy, resolution, and glob...

  13. FOSTERING APPLICATIONS OPPORTUNITIES FOR THE NASA SOIL MOISTURE ACTIVE PASSIVE (SMAP) MISSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council’s (NRC’s) Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. SMAP will ma...

  14. The soil moisture active passive experiments (SMAPEx): Towards soil moisture retrieval from the SMAP mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) mission, scheduled for launch in 2014, will carry the first combined L-band radar and radiometer system with the objective of mapping near surface soil moisture and freeze/thaw state globally at near-daily time step (2-3 days). SMAP will provide three soil ...

  15. The soil moisture active passive (SMAP) mission and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  16. Land Data Assimilation Activities in Preparation of the NASA Soil Moisture Active Passive (SMAP) Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2013, the NASA Soil Moisture Active/Passive mission represents a generational advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiome...

  17. Land Data Assimilation Activities in Preparation of the NASA Soil Moisture Active Passive (SMAP)Mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2013, the NASA Soil Moisture Active/Passive mission represents a significant advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiomet...

  18. The Soil Moisture Active/Passive (SMAP) Mission Radar: A Novel Conically Scanning SAR

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Chan, Samuel; Veilleux, Louise; Wheeler, Kevin

    2009-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC "decadal survey" to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive chan-nels, an instrument architecture that uses a large rotating reflector is employed. The active radar will further utilize SAR processing in order to obtain the sub-footprint resolution necessary for the geophysical retrievals. The SMAP radar has a unique geometry where the antenna footprint is continuously rotated about nadir in a conical fashion, as opposed to the more common side-looking SAR design. In additional to the unconventional scan geometry, the SMAP radar must address the effects of Faraday rotation and radio frequency interference (RFI), both consequences of the L-Band frequency of operation.

  19. The Soil Moisture Active and Passive (SMAP) Mission: Improving Science Application Tools and Research

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Brown, M. E.; Moran, S. M.

    2011-12-01

    NASA depends on the science community to identify and prioritize leading-edge scientific questions and the observations required to answer them. The Soil Moisture Active and Passive (SMAP) Mission has been identified as a priority for NASA's Science Mission Directorate through the most recent decadal survey. Following launch in 2014, SMAP will deliver global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial hydrologic and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer that share a deployable mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at spatial scales. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and freeze/thaw state with a 2-3 day revisit frequency and 1-2 day revisit in boreal latitudes. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit frequency. SMAP data are valuable for both scientific research and practical applications. SMAP has the potential to drive a diverse range of novel research in drought and flood guidance, agricultural productivity estimation, weather forecasting, climate prediction, human health risk analysis and defense systems. The accuracy, resolution, and global coverage of SMAP soil moisture and freeze/thaw measurements will provide new information for many science and applications disciplines. A SMAP Applications Team will explore ways to measure interaction and integration of SMAP data with the Emergency Management User community of Maryland in order to produce quantitative metrics related to long-term projects, milestone completion, and movement of SMAP products into routine operations for emergency response.

  20. The NASA Soil Moisture Active Passive (SMAP) Mission Status and Early Results

    NASA Astrophysics Data System (ADS)

    Entekhabi, Dara; Yueh, Simon; O'Neill, Peggy E.; Wood, Eric F.; Njoku, Eni G.; Entin, Jared K.; Kellogg, Kent H.

    2015-04-01

    The NASA Soil Moisture Active Passive (SMAP) mission is launched in early 2015. The objective of SMAP is to produce global estimates of surface soil moisture at 9 km resolution every 2-3 days. It will also provide the freeze/thaw state of land surface north of 45° N at better than 3 km resolution every two days. The mission science data products are derived from the L-band radar and radiometer on board the SMAP spacecraft. The radar and radiometer share a rotating 6-meter mesh reflector antenna. The instruments operate on-board the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle across the wide 1000-km swath. The radiometer includes several capabilities based on characteristics of data over time, frequency band, and polarization to detect anthropogenic Radio-Frequency Interference (RFI). This presentation includes: 1) the status of SMAP mission related to radar and radiometer performance, 2) report on detected RFI environment, 3) calibration activities, and 4) preliminary assessment of soil moisture retrieval, freeze/thaw detection and model value-added (root-zone soil moisture and Net Ecosystem Exchange) algorithms.

  1. The NASA Soil Moisture Active Passive (SMAP) Mission - Science and Data Product Development Status

    NASA Technical Reports Server (NTRS)

    Nloku, E.; Entekhabi, D.; O'Neill, P.

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has the objective of frequent, global mapping of near-surface soil moisture and its freeze-thaw state. The SMAP measurement system utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate on a spacecraft in a 685 km polar orbit with 6am/6pm nodal crossings, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments will yield global maps of soil moisture and freeze/thaw state at 10 km and 3 km resolutions, respectively, every two to three days. The 10-km soil moisture product will be generated using a combined radar and radiometer retrieval algorithm. SMAP will also provide a radiometer-only soil moisture product at 40-km spatial resolution and a radar-only soil moisture product at 3-km resolution. The relative accuracies of these products will vary regionally and will depend on surface characteristics such as vegetation water content, vegetation type, surface roughness, and landscape heterogeneity. The SMAP soil moisture and freeze/thaw measurements will enable significantly improved estimates of the fluxes of water, energy and carbon between the land and atmosphere. Soil moisture and freeze/thaw controls of these fluxes are key factors in the performance of models used for weather and climate predictions and for quantifYing the global carbon balance. Soil moisture measurements are also of importance in modeling and predicting extreme events such as floods and droughts. The algorithms and data products for SMAP are being developed in the SMAP Science Data System (SDS) Testbed. In the Testbed algorithms are developed and evaluated using simulated SMAP observations as well as observational data from current airborne and spaceborne L-band sensors including data from the SMOS and Aquarius missions. We report here on the development status

  2. The NASA Soil Moisture Active Passive (SMAP) Mission Status and Early Results

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Yueh, S. H.; O'Neill, P. E.; Entin, J. K.; Njoku, E. G.; Kellogg, K.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31, 2015. SMAP provides high-resolution, frequent revisit global mapping of soil moisture and freeze/thaw state based on coincident L-band radiometer and L-band radar measurements. The primary science goal of SMAP is to provide new perspectives on how the three fundamental cycles of the Earth system, the water, energy and carbon cycles, are linked together over land. Soil moisture is the key variable that links the three cycles and makes their co-variations synchronous in time. Soil moisture products with varying resolution and coverage are produced from the radiometer alone, radar alone, radiometer-radar combination and data assimilation. In this session the status of the SMAP observatory and early results based on the science data products will be included. The science data acquisition began in May 2015 following several weeks of observatory and instrument commissioning. An intense calibration and validation period followed. Preliminary science products on instrument measurements, soil moisture, landscape frozen or thawed status, and net ecosystem exchange are available at publicly-accessible data archives. The presentation will include early and summary results on the validation of these products. The instrument measurements can also be used to map sea-ice coverage, ocean surface winds and sea surface salinity. Examples of these global retrievals are also presented.

  3. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  4. Monte Carlo Analysis of the Commissioning Phase Maneuvers of the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.

  5. In situ validation of the soil moisture active passive (SMAP) satellite mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SMAP is a new NASA mission proposed for 2014 that would provide a number of soil moisture and freeze/thaw products. The soil moisture products span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data from th...

  6. In situ validation issues in the soil moisture active passive (SMAP) satellite mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    SMAP is a new NASA mission scheduled for 2014 that will provide a number of soil moisture and freeze/thaw products. The soil moisture products will span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data fr...

  7. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2009-01-01

    The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.

  8. Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon (L4_C) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Glassy, Joe; Kimball, John S.; Jones, Lucas; Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project.

  9. The Soil Moisture Active Passive (SMAP) applications activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP mea...

  10. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Joshua S.; Sanders, Antonio L.

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014.[double dagger] The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass ground operations can still reduce mission cost through smaller staffing of operators and limited work hours. The challenge, then, for the SMAP GDS engineering team is to formulate an automated operations strategy--and corresponding system architecture--to minimize operator intervention during operations, while balancing the development cost associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS--NASA's AMMOS Mission Data Processing and Control System (AMPCS)--provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  11. Cost-Effective Telemetry and Command Ground Systems Automation Strategy for the Soil Moisture Active Passive (SMAP) Mission

    NASA Technical Reports Server (NTRS)

    Choi, Josh; Sanders, Antonio

    2012-01-01

    Soil Moisture Active Passive (SMAP) is an Earth-orbiting, remote-sensing NASA mission slated for launch in 2014. The ground data system (GDS) being developed for SMAP is composed of many heterogeneous subsystems, ranging from those that support planning and sequencing to those used for real-time operations, and even further to those that enable science data exchange. A full end-to-end automation of the GDS may result in cost savings during mission operations, but it would require a significant upfront investment to develop such a comprehensive automation. As demonstrated by the Jason-1 and Wide-field Infrared Survey Explorer (WISE) missions, a measure of "lights-out" automation for routine, orbital pass, ground operations can still reduce mission costs through smaller staffing of operators and limiting their working hours. The challenge, then, for the SMAP GDS engineering team, is to formulate an automated operations strategy--and corresponding system architecture -- to minimize operator intervention during routine operations, while balancing the development costs associated with the scope and complexity of automation. This paper discusses the automated operations approach being developed for the SMAP GDS. The focus is on automating the activities involved in routine passes, which limits the scope to real-time operations. A key subsystem of the SMAP GDS -- NASA's AMMOS Mission Data Processing and Control System (AMPCS) -- provides a set of capabilities that enable such automation. Also discussed are the lights-out pass automations of the Jason-1 and WISE missions and how they informed the automation strategy for SMAP. The paper aims to provide insights into what is necessary in automating the GDS operations for Earth satellite missions.

  12. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  13. In Situ Validation of the Soil Moisture Active Passive (SMAP) Satellite Mission

    NASA Technical Reports Server (NTRS)

    Jackson, T.; Cosh, M.; Crow, W.; Colliander, A.; Walker, J.

    2011-01-01

    SMAP is a new NASA mission proposed for 2014 that would provide a number of soil moisture and freeze/thaw products. The soil moisture products span spatial resolutions from 3 to 40 km. In situ soil moisture observations will be one of the key elements of the validation program for SMAP. Data from the currently available set of soil moisture observing sites and networks need improvement if they are to be useful. Problems include a lack of standardization of instrumentation and installation and the disparity in spatial scale between the point-scale in situ data (a few centimeters) and the coarser satellite products. SMAP has initiated activities to resolve these issues for some of the existing resources. The other challenge to soil moisture validation is the need to expand the number of sites and their geographic distribution. SMAP is attempting to increase the number of sites and their value in validation through collaboration. The issues and solutions involving in situ validation being investigated will be described along with recent results from SMAP validation projects.

  14. NASA Soil Moisture Active Passive (SMAP) Applications

    NASA Astrophysics Data System (ADS)

    Orr, Barron; Moran, M. Susan; Escobar, Vanessa; Brown, Molly E.

    2014-05-01

    The launch of the NASA Soil Moisture Active Passive (SMAP) mission in 2014 will provide global soil moisture and freeze-thaw measurements at moderate resolution (9 km) with latency as short as 24 hours. The resolution, latency and global coverage of SMAP products will enable new applications in the fields of weather, climate, drought, flood, agricultural production, human health and national security. To prepare for launch, the SMAP mission has engaged more than 25 Early Adopters. Early Adopters are users who have a need for SMAP-like soil moisture or freeze-thaw data, and who agreed to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. In turn, the SMAP mission agreed to provide Early Adopters with simulated SMAP data products and pre-launch calibration and validation data from SMAP field campaigns, modeling, and synergistic studies. The applied research underway by Early Adopters has provided fundamental knowledge of how SMAP data products can be scaled and integrated into users' policy, business and management activities to improve decision-making efforts. This presentation will cover SMAP applications including weather and climate forecasting, vehicle mobility estimation, quantification of greenhouse gas emissions, management of urban potable water supply, and prediction of crop yield. The presentation will end with a discussion of potential international applications with focus on the ESA/CEOS TIGER Initiative entitled "looking for water in Africa", the United Nations (UN) Convention to Combat Desertification (UNCCD) which carries a specific mandate focused on Africa, the UN Framework Convention on Climate Change (UNFCCC) which lists soil moisture as an Essential Climate Variable (ECV), and the UN Food and Agriculture Organization (FAO) which reported a food and nutrition crisis in the Sahel.

  15. Pre-Launch Phase 1 Calibration and Validation Rehearsal of Geophysical Data Products of Soil Moisture Active Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Dunbar, R.; Das, N. N.; Kim, S.; Reichle, R. H.; De Lannoy, G. J.; Liu, Q.; Kimball, J. S.; Yi, Y.; Cosh, M. H.; Bindlish, R.; Crow, W. T.; Dang, L.; Yueh, S. H.; Njoku, E. G.

    2013-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The instruments will operate onboard the SMAP spacecraft in a 685-km Sun-synchronous near-polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of active and passive L-band observations of the mission will enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. SMAP measurements will enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. The SMAP science data product suite of geophysical parameters will include estimates of surface (top 5 cm) and root-zone (down to 1-m depth) soil moisture, net ecosystem exchange, and classification of the frozen/non-frozen state of the landscape. The primary validation reference of the data products will be ground-based measurements. Other remote sensing and model-based products will be used as additional resources. The post-launch timeline of the mission requires that the geophysical data products are validated (with respect to the mission requirements) within 12 months after a 3-month in-orbit check-out phase. SMAP is taking several preparatory steps in order to meet this schedule. One of the main steps consists of running a rehearsal to exercise calibration and validation procedures planned for the Cal/Val Phase. The rehearsal is divided into two stages. Phase 1, which was conducted in June-August 2013, focused on validation methodologies for the geophysical data products. Phase 2, which will be conducted in May-June 2014, includes operational aspects including a fully functioning SMAP Science Data System. (Note that the rehearsals do not include an airborne field

  16. Assessment of the SMAP level 2 passive soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on Jan 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every 2–3 days using an L-band (active) radar and an L-band (passive) radiometer. SMAP provides ...

  17. Development of SMAP Mission Cal/Val Activities

    NASA Technical Reports Server (NTRS)

    Colliander, A.; Jackson, T.; Kimball, J.; Cosh, M.; Spencer, M.; Entekhabi, D.; Njoku, E.; ONeill, P.

    2010-01-01

    The Soil Moisture Active Passive (SMAP) mission is a NASA directed mission to map global land surface soil moisture and freeze-thaw state. Instrument and mission details are shown. The key SMAP soil moisture product is provided at 10 km resolution with 0.04cubic cm/cubic cm accuracy. The freeze/thaw product is provided at 3 km resolution and 80% frozen-thawed classification accuracy. The full list of SMAP data products is shown.

  18. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  19. Assessment of Soil Moisture Data Requirements by the Potential SMAP Data User Community: Review of SMAP Mission User Community

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa M.

    2013-01-01

    NASA's Soil Moisture Active and Passive (SMAP) mission is planned for launch in October 2014 and will provide global measurements of soil moisture and freeze thaw state. The project is driven by both basic research and applied science goals. Understanding how application driven end-users will apply SMAP data, prior to the satellite's launch, is an important goal of NASA's applied science program and SMAP mission success. Because SMAP data are unique, there are no direct proxy data sets that can be used in research and operational studies to determine how the data will interact with existing processes. The objective of this study is to solicit data requirements, accuracy needs, and current understanding of the SMAP mission from the potential user community. This study showed that the data to be provided by the SMAP mission did substantially meet the user community needs. Although there was a broad distribution of requirements stated, the SMAP mission fit within these requirements.

  20. Advances in downscaling soil moisture for use in drought and flood assessments: Implications for data from the Soil Moisture Active and Passive (SMAP) Mission

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Fang, B.; Narayan, U.

    2015-12-01

    Hydrological hazards, namely droughts and floods are dependent on the deficit and excess of soil moisture. With the launch of the Soil Moisture Active and Passive Mission (SMAP) in January 2015 we will have twice a day global observations of soil moisture. However the spatial resolution of soil moisture retrieved from the SMAP radiometer is 10s of km and the SMAP radar will provide backscatter observations 100m-1km. High spatial resolution of soil moisture helps to monitor floods and droughts in a spatially distributed fashion. The current focus is finding the best way to obtain high spatial resolution soil moisture using the radar and radiometer observations. In this presentation we will deal with downscaling by couple of methods - (a) Use of the thermal inertia relation between soil moisture and surface temperature modulated by vegetation (b) Relationship between soil moisture and evaporation (c) Change detection using high spatial resolution active radar data.

  1. The soil moisture active/passive (SMAP) mission: How we got here and what it will provide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development o...

  2. The NASA Soil Moisture Active Passive (SMAP) Mission Level 4 Carbon Product calibration and validation using eddy covariance observations across North America, Australia and Finland

    NASA Astrophysics Data System (ADS)

    Stavros, E. N.; Kimball, J. S.; Jones, L. A.; Colliander, A.; Glassy, J. M.; Reichle, R. H.; Schimel, D.; Baldocchi, D. D.; Beringer, J.; Cleverly, J. R.; Desai, A. R.; Euskirchen, E. S.; Hutley, L. B.; Isaac, P. R.; Law, B. E.; Macfarlane, C.; Oechel, W. C.; Prober, S. M.; Jouni, P.; Scott, R. L.; Wheater, H. S.; Zona, D.

    2015-12-01

    The NASA SMAP (Soil Moisture Active Passive) mission was successfully launched January 31st 2015, inaugurating global operational low frequency (L-band) microwave observations of land surface soil moisture and freeze-thaw dynamics with 3-day mean temporal fidelity. The novelty of SMAP is in the high quality of the geophysical observations, global monitoring of dynamic landscape freeze-thaw (FT) and soil moisture (SM) conditions, and the model-enhanced estimation of root zone soil moisture (0-100 cm) and terrestrial carbon fluxes (constrained by environmental controls). The SMAP Level 4 Carbon Product (L4_C) uses lower-level geophysical data to constrain estimates of terrestrial net CO2 exchange and addresses a key science objective of the SMAP mission, which is to understand processes that link the terrestrial water, energy and carbon cycles, particularly in boreal landscapes. Here we present the L4_C calibration and validation infrastructure, which uses eddy covariance tower flux observations. A metric of L4_C product success is to estimate NEE in northern (≥45°N) boreal and arctic biomes to within 30 gCm-2yr-1 or ~1.6 gCm-2 d-1 RMSE, similar to the level of uncertainty for tower observations. We present initial L4_C product comparisons against independent observations from a global network of 33 in situ tower sites, 8 of which are considered primary sites in the high latitudes (≥45°N). Although only primary sites are used to determine product success, all sites are integrated into diagnostic plots to evaluate land cover heterogeneity between local tower footprints and overlying L4_C grid cells, algorithm handling and data quality, thus providing a framework for evaluating environmental constraints on ecosystem productivity and respiration. In addition to mission success, we examine the added value of including FT and SM to constrain terrestrial carbon flux estimates.

  3. NASA's Soil Moisture Active Passive (SMAP) Observatory

    NASA Technical Reports Server (NTRS)

    Kellogg, Kent; Thurman, Sam; Edelstein, Wendy; Spencer, Michael; Chen, Gun-Shing; Underwood, Mark; Njoku, Eni; Goodman, Shawn; Jai, Benhan

    2013-01-01

    The SMAP mission will produce high-resolution and accurate global maps of soil moisture and its freeze/thaw state using data from a non-imaging synthetic aperture radar and a radiometer, both operating at L-band.

  4. A Pre-launch Analysis of NASA's SMAP Mission Data

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Brown, M. E.

    2012-12-01

    Product applications have become an integral part of converting the data collected into actionable knowledge that can be used to inform policy. Successfully bridging scientific research with operational decision making in different application areas requires looking into thematic user requirements and data requirements. NASA's Soil Moisture Active/Passive mission (SMAP) has an applications program that actively seeks to integrate the data prior to launch into a broad range of environmental monitoring and decision making systems from drought and flood guidance to disease risk assessment and national security SMAP is a a combined active/passive microwave instrument, which will be launched into a near-polar orbit in late 2014. It aims to produce a series of soil moisture products and soil freeze/thaw products with an accuracy of +/- 10%, a nominal resolution of between 3 and 40km, and latency between 12 hours and 7 days. These measurements will be used to enhance the understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The driving success of the SMAP applications program is joining mission scientists to thematic end users and leveraging the knowledge base of soil moisture data applications, increase the speed SMAP data product ingestion into critical processes and research, improving societal benefits to science. Because SMAP has not yet launched, the mission is using test algorithms to determine how the data will interact with existing processes. The objective of this profession review is to solicit data requirements, accuracy needs and current understanding of the SMAP mission from the user community and then feed that back into mission product development. Thus, understanding how users will apply SMAP data, prior to the satellite's launch, is an important component of SMAP Applied Sciences and one of NASA's measures for mission success. This paper presents an analysis of

  5. The Soil Moisture Active Passive (SMAP) Applications Activity

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Moran, Susan; Escobar, Vanessa; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission is one of the first-tier satellite missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space. The SMAP mission 1 is under development by NASA and is scheduled for launch late in 2014. The SMAP measurements will allow global and high-resolution mapping of soil moisture and its freeze/thaw state at resolutions from 3-40 km. These measurements will have high value for a wide range of environmental applications that underpin many weather-related decisions including drought and flood guidance, agricultural productivity estimation, weather forecasting, climate predictions, and human health risk. In 2007, NASA was tasked by The National Academies to ensure that emerging scientific knowledge is actively applied to obtain societal benefits by broadening community participation and improving means for use of information. SMAP is one of the first missions to come out of this new charge, and its Applications Plan forms the basis for ensuring its commitment to its users. The purpose of this paper is to outline the methods and approaches of the SMAP applications activity, which is designed to increase and sustain the interaction between users and scientists involved in mission development.

  6. Spacecraft Environmental Testing SMAP (Soil, Moisture, Active, Passive)

    NASA Technical Reports Server (NTRS)

    Fields, Keith

    2014-01-01

    Testing a complete full up spacecraft to verify it will survive the environment, in which it will be exposed to during its mission, is a formidable task in itself. However, the ''test like you fly'' philosophy sometimes gets compromised because of cost, design and or time. This paper describes the thermal-vacuum and mass properties testing of the Soil Moisture Active Passive (SMAP) earth orbiting satellite. SMAP will provide global observations of soil moisture and freeze/thaw state (the hydrosphere state). SMAP hydrosphere state measurements will be used to enhance understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of weather and climate prediction models. It will explain the problems encountered, and the solutions developed, which minimized the risk typically associated with such an arduous process. Also discussed, the future of testing on expensive long lead-time spacecraft. Will we ever reach the ''build and shoot" scenario with minimal or no verification testing?

  7. SMAP Mission Applications; Post Launch Research and the Early Adopter Program Socioeconomic Impact Analyses

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission, launched January 31, 2015, has grown an Early Adopter (EA) community since 2010. Over the next two years, the mission Applications Team will conduct socioeconomic impact analyses on thematic EA research in an effort to demonstrate the value of SMAP products in societally relevant, decision support applications. The SMAP mission provides global observations of the Earth's surface soil moisture, providing high accuracy, resolution and continuous global coverage. The SMAP Applications Team will document and evaluate the use of SMAP science products in applications related to weather forecasting, drought, agriculture productivity, floods, human health and national security. SMAP EA research in applied science cases such as sea ice and sea surface winds will also be evaluated. SMAP EAs provide a thematically scaled perspective on the use and impact of SMAP data. This analysis will demonstrate how the investments in pre-launch applications and early adopter efforts contributed to the mission value, product impact and fueled new research that contributes to the use of mission products, thereby enhancing mission success. This paper presents a set of Early Adopter case studies that show how EAs plan to use SMAP science products to enhance decision support systems, and about how the SMAP data stream affects these users. Detailed tracking of this comprehensive set of case studies will enable quantification and monetization of the benefits of an application by the end of the first two years after launch.

  8. Early results of the soil moisture active passive Marena Oklahoma in situ sensor testbed (SMAP-MOISST)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is an upcoming NASA mission to monitor surface soil mositure. Key to the success of this mission is the calibration and validation of the resulting product. As part of the calibration and validation program for SMAP, an ambitious intercomparison stud...

  9. Pre-Launch phase 2 rehearsal of the calibration and validation of soil moisture active passive (SMAP) geophysical data products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in early November 2014. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer measurements sharing a rotating 6-meter mesh reflector antenna...

  10. Soil Moisture Active Passive (SMAP) Data and Services at the NASA DAACs

    NASA Astrophysics Data System (ADS)

    Leon, A.; Allen, A. R.; Leslie, S. R.

    2014-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission will provide a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The SMAP instrument includes both a radiometer and a synthetic aperture radar (SAR) operating at the L-band (1.20-1.41 GHz) and will provide global coverage at the equator every 3 days. The SMAP mission will play a critical role in understanding the Earth's water and energy cycles, improving weather and climate forecasting, and developing disaster prediction and monitoring services. The NASA Distributed Active Archive Centers (DAACs) at the Alaska Satellite Facility (ASF) and the National Snow and Ice Data Center (NSIDC) will jointly distribute and support SMAP data products. The DAACs will draw upon their unique expertise - ASF with SAR data and NSIDC with cryospheric and remotely-sensed soil moisture data- as well as their shared technologies to provide synergistic data access and support for SMAP products. In an effort to educate and broaden the SMAP user community, we will present an overview of the SMAP data products as well as when they will be available at the DAACs. NASA DAACs play an integral role in enabling data discovery and usage through the value-adding services they provide. Through this presentation, we will also discuss the tools and services at the ASF and NSIDC DAACs and gain further insight into how the DAACs can enable the user community to seamlessly and effectively utilize SMAP data in their research and applications.

  11. Comparison of airborne passive and active L-band System (PALS) brightness temperature measurements to SMOS observations during the SMAP validation experiment 2012 (SMAPVEX12)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of SMAP (Soil Moisture Active Passive) Validation Experiment 2012 (SMAPVEX12) campaign was to collect data for the pre-launch development and validation of SMAP soil moisture algorithms. SMAP is a National Aeronautics and Space Administration’s (NASA) satellite mission designed for the m...

  12. The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.

    2010-01-01

    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement

  13. Soil Moisture Active Passive (SMAP) Data and Services at the NASA NSIDC DAAC

    NASA Astrophysics Data System (ADS)

    Leon, A.; Booker, L.; Leslie, S. R.; Khalsa, S. J. S.; LeFevre, K.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission, launched on 31 January 2015, provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The SMAP instrument includes both a radiometer and a synthetic aperture radar (SAR) operating at the L-band (1.20-1.41 GHz) and provides global coverage at the equator every 3 days. The SMAP mission will play a critical role in understanding the Earth's water and energy cycles, improving weather and climate forecasting, and developing disaster prediction and monitoring services. The NASA Distributed Active Archive Centers (DAACs) at the National Snow and Ice Data Center (NSIDC) and the Alaska Satellite Facility (ASF) are jointly distributing and supporting SMAP data products. The DAACs draw upon their unique expertise - NSIDC with cryospheric and remotely-sensed soil moisture data and ASF with SAR data - as well as their shared technologies to provide synergistic data access and support for SMAP products. NSIDC DAAC provides distribution and support of the SMAP Level-1 radiometer products, the Level-2 through Level-4 soil moisture products, the Level-3 freeze/thaw product, and the Level-4 carbon net ecosystem exchange product. By leveraging NASA Earth Science Data and Information System (ESDIS) data systems, NSIDC DAAC provide data discovery, access, and visualization services for SMAP that are common across all NASA Earth science data archived at the DAACs. NSIDC DAAC also provides custom services aimed at meeting the unique needs of their SMAP user communities. This presentation strives to educate and expand the SMAP user community as well as engage with current and potential users for areas of opportunity in the support and services that NSIDC DAAC provides.

  14. Soil Moisture Active Passive (SMAP) Data and Services at the NASA NSIDC DAAC

    NASA Astrophysics Data System (ADS)

    Leon, Amanda; Jodha Singh Khalsa, Siri; Leslie, Shannon

    2016-04-01

    The NASA Soil Moisture Active Passive (SMAP) mission, launched on 31 January 2015, provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The SMAP instrument includes both a radiometer and a synthetic aperture radar (SAR) operating at the L-band (1.20-1.41 GHz) and provides global coverage at the equator every 3 days. The SMAP mission will play a critical role in understanding the Earth's water and energy cycles, improving weather and climate forecasting, and developing disaster prediction and monitoring services. The NASA Distributed Active Archive Centers (DAACs) at the National Snow and Ice Data Center (NSIDC) and the Alaska Satellite Facility (ASF) are jointly distributing and supporting SMAP data products. The DAACs draw upon their unique expertise - NSIDC with cryospheric and remotely-sensed soil moisture data and ASF with SAR data - as well as their shared technologies to provide synergistic data access and support for SMAP products. NSIDC DAAC provides distribution and support of the SMAP Level-1 radiometer products, the Level-2 through Level-4 soil moisture products, the Level-3 freeze/thaw product, and the Level-4 carbon net ecosystem exchange product. By leveraging NASA Earth Science Data and Information System (ESDIS) data systems, NSIDC DAAC provide data discovery, access, and visualization services for SMAP that are common across all NASA Earth science data archived at the DAACs. NSIDC DAAC also provides custom services aimed at meeting the unique needs of their SMAP user communities. This presentation strives to educate and expand the SMAP user community as well as engage with current and potential users for areas of opportunity in the support and services that NSIDC DAAC provides.

  15. An Overview of Production and Validation of the SMAP Passive Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Chan, S.; O'Neill, P.; Njoku, E.; Jackson, T.; Bindlish, R.

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission is an L-band mission scheduled for launch in Jan. 2015. The SMAP instruments consist of a radar and a radiometer to obtain complementary information from space for soil moisture and freeze/thaw state research and applications. By utilizing novel designs in antenna construction, retrieval algorithms, and acquisition hardware, SMAP provides a capability for global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. This improvement in hydrosphere state measurement is expected to advance our understanding of the processes that link the terrestrial water, energy and carbon cycles, improve our capability in flood prediction and drought monitoring, and enhance our skills in weather and climate forecast. For swath-based soil moisture measurement, SMAP generates three operational geophysical data products: (1) the radiometer-only soil moisture product (L2_SM_P) posted at 36-kilometer resolution, (2) the radar-only soil moisture product (L2_SM_A) posted at 3-kilometers resolution, and (3) the radar-radiometer combined soil moisture product (L2_SM_AP) posted at 9-kilometers resolution. Each product draws on the strengths of the underlying sensor(s) and plays a unique role in hydroclimatological and hydrometeorological applications. A full suite of SMAP data products is given in Table 1.

  16. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    NASA Astrophysics Data System (ADS)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  17. Scanning L-Band Active Passive (SLAP) - Recent Results from an Airborne Simulator for SMAP

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2015-01-01

    Scanning L-band Active Passive (SLAP) is a recently-developed NASA airborne instrument specially tailored to simulate the new Soil Moisture Active Passive (SMAP) satellite instrument suite. SLAP conducted its first test flights in December, 2013 and participated in its first science campaign-the IPHEX ground validation campaign of the GPM mission-in May, 2014. This paper will present results from additional test flights and science observations scheduled for 2015.

  18. Role of Field Experiments in the Soil Moisture Active Passive (SMAP) Satellite Project

    NASA Astrophysics Data System (ADS)

    Jackson, T. J.; Kimball, J.; Njoku, E.

    2008-12-01

    The Soil Moisture Active Passive (SMAP) satellite is currently under development with an anticipated launch in 2013. Both mission development and validation activities will require multiple scale observations of soil moisture and freeze-thaw. The multiple scale variability of soil moisture and the disparity of spatial scales of ground based and satellite measurements have always presented a challenge to providing the data necessary these purposes. Well designed field experiments incorporating a combination of in situ sensors, intensive point sampling, and tower and aircraft instruments have proven useful in providing the necessary information. Over the course of the SMAP mission there will be numerous activities that require field experiments. These can be grouped as those that improve the soil moisture and freeze-thaw algorithms and products and those that demonstrate that the science requirements of the mission have been met. In order to accomplish the validation goals a number of resources related to field experiments must be established as soon as possible; verified in situ soil moisture networks and scaling of sparse networks, validation archive/website, and development of a combined aircraft-based radar/radiometer system capable of mapping brightness temperature and backscatter with characteristics close to the SMAP products. Field experiments (SMAP Validation Experiments-SMAPVEX) that address mission specific algorithm issues and/or applications are being developed that will consider the timeline of mission needs and the availability of potential resources worldwide. The first experiment, SMAPVEX08, was conducted in fall 2008 and focused on several specific soil moisture issues. Future pre-launch experiments would address other key algorithm issues and seek cooperation with other validation programs, such as the Soil Moisture Ocean Salinity (SMOS) satellite and broader campaigns involving the water, energy, and carbon cycles. Post launch campaigns would

  19. Landscape freeze/thaw retrievals from soil moisture active passive (SMAP) L-band radar measurements

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Derksen, C.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission produces a daily landscape freeze/thaw product (L3_FT_A) which provides categorical (frozen, thawed, or [inverse] transitional) classification of the surface state (for land areas north of 45°N) derived from ascending and descending orbits of SMAP high-resolution L-band radar measurements. The FT retrievals are output to 3 km resolution polar and global grids with temporal revisit of 2 days or better north of ~55°N and 3 days or better north of 45°N. The algorithm classifies the land surface freeze/thaw state based on the time series of L-band radar backscatter compared to frozen and thawed reference states. This presentation will describe pre-launch L3_FT_A algorithm implementation and evaluation using NASA/SAC-D Aquarius L-band radar data, and provide an update on the current status of the SMAP L3_FT_A product. In advance of SMAP measurements, the L3_FT_A algorithm was configured and evaluated using Aquarius measurements. While the temporal (weekly) and spatial (~100 km) resolution is much coarser than SMAP, Aquarius provides L-band radar measurements at an incidence angle (normalized to 40 degrees) which is close to SMAP. Evaluation of FT retrievals derived using both Aquarius freeze/thaw references and backscatter time series as inputs identified good agreement during the fall freeze-up period with FT flag agreement (Aquarius versus in situ) exceeding the 80% SMAP mission requirement when summarized on a monthly basis. Disagreement was greater during the spring thaw transition due in part to uncertainty in characterizing the surface state from in situ measurements and backscatter sensitivity to the onset of snow melt, independent of the soil temperature beneath the snowpack. Initial challenges for SMAP derived FT retrievals include the scale difference between the Aquarius references (~100 km) and the SMAP measurements (3 km) which is particularly problematic in areas of complex topography and/or mixed

  20. Soil Moisture Active/Passive (SMAP) Forward Brightness Temperature Simulator

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Peipmeier, Jeffrey; Kim, Edward

    2012-01-01

    The SMAP is one of four first-tier missions recommended by the US National Research Council's Committee on Earth Science and Applications from Space (Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Space Studies Board, National Academies Press, 2007) [1]. It is to measure the global soil moisture and freeze/thaw from space. One of the spaceborne instruments is an L-band radiometer with a shared single feedhorn and parabolic mesh reflector. While the radiometer measures the emission over a footprint of interest, unwanted emissions are also received by the antenna through the antenna sidelobes from the cosmic background and other error sources such as the Sun, the Moon and the galaxy. Their effects need to be considered accurately, and the analysis of the overall performance of the radiometer requires end-to-end performance simulation from Earth emission to antenna brightness temperature, such as the global simulation of L-band brightness temperature simulation over land and sea [2]. To assist with the SMAP radiometer level 1B algorithm development, the SMAP forward brightness temperature simulator is developed by adapting the Aquarius simulator [2] with necessary modifications. This poster presents the current status of the SMAP forward brightness simulator s development including incorporating the land microwave emission model and its input datasets, and a simplified atmospheric radiative transfer model. The latest simulation results are also presented to demonstrate the ability of supporting the SMAP L1B algorithm development.

  1. Soil Moisture Active Passive (SMAP) Microwave Radiometer Radio-Frequency Interference (RFI) Mitigation: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Johnson, Joel T.; Aksoy, Mustafa; Bringer, Alexandra

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission, launched in January 2015, provides global measurements of soil moisture using a microwave radiometer. SMAPs radiometer passband lies within the passive frequency allocation. However, both unauthorized in-band transmitters as well as out-of-band emissions from transmitters operating at frequencies adjacent to this allocated spectrum have been documented as sources of radio frequency interference (RFI) to the L-band radiometers on SMOS and Aquarius. The spectral environment consists of high RFI levels as well as significant occurrences of low level RFI equivalent to 0.1 to 10 K. The SMAP ground processor reports the antenna temperature both before and after RFI mitigation is applied. The difference between these quantities represents the detected RFI level. The presentation will review the SMAP RFI detection and mitigation procedure and discuss early on-orbit RFI measurements from the SMAP radiometer. Assessments of global RFI properties and source types will be provided, as well as the implications of these results for SMAP soil moisture measurements.

  2. L-band active/passive time series measurements over a growing season usign the COMRAD ground-based SMAP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scheduled to launch in October 2014, NASA’s Soil Moisture Active Passive (SMAP) mission will provide high-resolution global mapping of soil moisture and freeze/thaw state every 2-3 days. These new measurements of the hydrological condition of the Earth’s surface will build on data from European Spa...

  3. Investigating Baseline, Alternative and Copula-based Algorithm for combining Airborne Active and Passive Microwave Observations in the SMAP Context

    NASA Astrophysics Data System (ADS)

    Montzka, C.; Lorenz, C.; Jagdhuber, T.; Laux, P.; Hajnsek, I.; Kunstmann, H.; Entekhabi, D.; Vereecken, H.

    2015-12-01

    The objective of the NASA Soil Moisture Active & Passive (SMAP) mission is to provide global measurements of soil moisture and freeze/thaw states. SMAP integrates L-band radar and radiometer instruments as a single observation system combining the respective strengths of active and passive remote sensing for enhanced soil moisture mapping. Airborne instruments will be a key part of the SMAP validation program. Here, we present an airborne campaign in the Rur catchment, Germany, in which the passive L-band system Polarimetric L-band Multi-beam Radiometer (PLMR2) and the active L-band system F-SAR of DLR were flown simultaneously on the same platform on six dates in 2013. The flights covered the full heterogeneity of the area under investigation, i.e. all types of land cover and experimental monitoring sites with in situ sensors. Here, we used the obtained data sets as a test-bed for the analysis of three active-passive fusion techniques: A) The SMAP baseline algorithm: Disaggregation of passive microwave brightness temperature by active microwave backscatter and subsequent inversion to soil moisture, B), the SMAP alternative algorithm: Estimation of soil moisture by passive sensor data and subsequent disaggregation by active sensor backscatter and C) Copula-based combination of active and passive microwave data. For method C empirical Copulas were generated and theoretical Copulas fitted both on the level of the raw products brightness temperature and backscatter as well as two soil moisture products. Results indicate that the regression parameters for method A and B are dependent on the radar vegetation index (RVI). Similarly, for method C the best performance was gained by generating separate Copulas for individual land use classes. For more in-depth analyses longer time series are necessary as can obtained by airborne campaigns, therefore, the methods will be applied to SMAP data.

  4. Utilization of Ancillary Data Sets for Conceptual SMAP Mission Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Podest, E.

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond [1]. Scheduled to launch late in 2014, the proposed SMAP mission would provide high resolution and frequent revisit global mapping of soil moisture and freeze/thaw state, utilizing enhanced Radio Frequency Interference (RFI) mitigation approaches to collect new measurements of the hydrological condition of the Earth's surface. The SMAP instrument design incorporates an L-band radar (3 km) and an L band radiometer (40 km) sharing a single 6-meter rotating mesh antenna to provide measurements of soil moisture and landscape freeze/thaw state [2]. These observations would (1) improve our understanding of linkages between the Earth's water, energy, and carbon cycles, (2) benefit many application areas including numerical weather and climate prediction, flood and drought monitoring, agricultural productivity, human health, and national security, (3) help to address priority questions on climate change, and (4) potentially provide continuity with brightness temperature and soil moisture measurements from ESA's SMOS (Soil Moisture Ocean Salinity) and NASA's Aquarius missions. In the planned SMAP mission prelaunch time frame, baseline algorithms are being developed for generating (1) soil moisture products both from radiometer measurements on a 36 km grid and from combined radar/radiometer measurements on a 9 km grid, and (2) freeze/thaw products from radar measurements on a 3 km grid. These retrieval algorithms need a variety of global ancillary data, both static and dynamic, to run the retrieval models, constrain the retrievals, and provide flags for indicating retrieval quality. The choice of which ancillary dataset to use for a particular SMAP product would be based on a number of factors

  5. A Science Data System Approach for the SMAP Mission

    NASA Technical Reports Server (NTRS)

    Woollard, David; Kwoun, Oh-ig; Bicknell, Tom; West, Richard; Leung, Kon

    2009-01-01

    Though Science Data System (SDS) development has not traditionally been part of the mission concept phase, lessons learned and study of past Earth science missions indicate that SDS functionality can greatly benefit algorithm developers in all mission phases. We have proposed a SDS approach for the SMAP Mission that incorporates early support for an algorithm testbed, allowing scientists to develop codes and seamlessly integrate them into the operational SDS. This approach will greatly reduce both the costs and risks involved in algorithm transitioning and SDS development.

  6. Scanning L-Band Active Passive (SLAP)—FLIGHT Results from a New Airborne Simulator for Smap

    NASA Astrophysics Data System (ADS)

    Kim, E. J.; Faulkner, T.; Wu, A.; Patel, H.

    2014-12-01

    1. Introduction and BackgroundThis paper introduces a new NASA airborne instrument, the Scanning L-band Active Passive (SLAP), which is specially tailored to simulate SMAP. 2. Description of SLAPSLAP has both passive (radiometer) and active (radar) microwave L-band imaging capabilities. The radiometer observes at 1.4 GHz using duplicate front end hardware from the SMAP satellite radiometer. It also includes a duplicate of the digital backend development unit for SMAP, thus the novel Radio Frequency Interference (RFI) detection and mitigation features and algorithms for SMAP are duplicated with very high fidelity in SLAP. The digital backend provides 4-Stokes polarization capability. The real-aperture radar operates in the 1215-1300 MHz band with quad-pol capability. Radar and radiometer share one antenna via diplexers that are spare units from the Aquarius satellite instrument. 3. Flight ResultsSLAP's initial flights were conducted in Dec 2013 over the eastern shore of Maryland and successfully demonstrated radiometer imaging over 2 full SMAP 36x36 km grid cells at 1km resolution within 3 hrs, easily meeting the SMAP post-launch cal/val airborne mapping requirements. A second flight on the same day also demonstrated SLAP's quick-turn abilities and high-resolution/wide-swath capabilities with 200m resolution across a 1500m swath from 2000 ft AGL. Additional flights were conducted as part of the GPM iPHEX campaign in May, 2014. 4. ConclusionThis paper presents flight data and imagery, as well as details of the radiometer and radar performance and calibration. The paper will also describe the mission performance achievable on the King Air and other platforms.

  7. Overview of the NASA soil moisture active/passive mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) Mission is currently in design Phase C and scheduled for launch in October 2014. Its mission concept is based on combined L-band radar and radiometry measurements obtained from a shared, rotating 6-meter antennae. These measurements will be used to retrie...

  8. Physics-based Multi-resolution Radar-Radiometer Soil Moisture Estimation within the SMAP Mission Framework

    NASA Astrophysics Data System (ADS)

    Akbar, R.; Moghaddam, M.

    2014-12-01

    To further develop our understanding of global carbon and water cycles and to support the NASA Soil Moisture Active-Passive (SMAP) mission efforts have been made to develop joint and combined radar and radiometer soil moisture estimation algorithms. Taking advantage of the complimentary sensitivities of radar backscatter and brightness temperature to soil moisture and vegetation has the potential to greatly improve global soil moisture estimates. With the advent of SMAP, not only combing radar and radiometer information is of interest, combing multi-resolution data becomes critical. The work presented here will discuss methods to estimate soil moisture within the SMAP framework via a global optimization technique. Fine resolution radar backscatter measurements (3 km for SMAP) are combined with coarse resolution radiometer data (36 km for SMAP) in a joint cost function. Brightness temperature disaggregation and soil moisture estimation are then performed at the radar resolution. Furthermore, to capture the underlying physics of emission and scattering within the cost function, physics-based forward models which link emission and scattering from first principles are employed. The resulting effect is the ability to define a parameter kernel shared between emission and scattering models. Preliminary investigation yields improved soil moisture estimation when radar and radiometer information are used jointly. Furthermore, over a wide range of soil moisture (0.04 - 0.4 cm3/cm3) and vegetation (0- 5 kg/m2) physics based joint estimation yields the least retrieval errors.

  9. Initial validation of the Soil Moisture Active Passive mission using USDA-ARS watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) Mission was launched in January 2015 to measure global surface soil moisture. The calibration and validation program of SMAP relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The U...

  10. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh

  11. Implementation of Active Thermal Control (ATC) for the Soil Moisture Active and Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Kwack, Eug; French, Richard; Dawson, Douglas; Hoffman, Pamela

    2014-01-01

    NASA's Earth Observing Soil Moisture Active and Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 kilometer near-polar, sun-synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its three year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 revolutions per minute, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within three days. In order to make the necessary precise surface emission measurements from space, the electronics and hardware associated with the radiometer must meet tight short-term (instantaneous and orbital) and long-term (monthly and mission) thermal stabilities. Maintaining these tight thermal stabilities is quite challenging because the sensitive electronics are located on a fast spinning platform that can either be in full sunlight or total eclipse, thus exposing them to a highly transient environment. A passive design approach was first adopted early in the design cycle as a low-cost solution. With careful thermal design efforts to cocoon and protect all sensitive components, all stability requirements were met passively. Active thermal control (ATC) was later added after the instrument Preliminary Design Review (PDR) to mitigate the threat of undetected gain glitches, not for thermal-stability reasons. Gain glitches are common problems with radiometers during missions, and one simple way to avoid gain glitches is to use the in-flight set point programmability that ATC

  12. SMAP Science Data System

    NASA Astrophysics Data System (ADS)

    Cuddy, D.; Gluck, S.; Hua, H.; Weiss, B.; Wong, C.; Kwoun, O.; Cruz, J.

    2012-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission will retrieve global surface soil moisture and freeze/thaw state based on measurements acquired by remote sensing instruments that fly on an Earth orbiting satellite. The SMAP observatory will launch no earlier than October 2014 into a near-polar, sun-synchronous orbit. The SMAP instrument suite includes a radiometer and a synthetic aperture radar. This paper will describe the Science Data System (SDS) that will process the SMAP raw data into higher-level products. SMAP data products will provide calibrated radar backscatter and radiometer brightness temperatures, derived geophysical parameters in the form of soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that will process the incoming raw data from the instruments, incorporate spacecraft and instrument engineering data, and use both dynamic and static ancillary products from the scientific community. The SDS will use the Object Oriented Data Technology (OODT) from Apache Software Foundation to control the 13 standard data product processors and additional 15 preprocessors. The standard data products will appear in Hierarchical Data Format-5 (HDF5) format. The products will contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) will host and distribute SMAP Radar data, while the National Snow and Ice Data Center (NSIDC) will host and distribute all other SMAP products.

  13. The SMAP Cal/Val plan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMAP (Soil Moisture Active Passive, launch in 2014) satellite mission will include global measurements of soil moisture at 40 km, 10 km and 3 km resolutions with a 3-day revisit time. The goal accuracy for these products is 0.04 m3/m3. Over the past three years the SMAP project has developed a ...

  14. The Soil Moisture Active Passive (SMAP): Radar Measurements at High Latitudes and of Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, a focus will be places on the radar design and associated data products at high latitudes. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used, among other things, to produce a surface freeze/thaw state data product.

  15. The Soil Moisture Active Passive (SMAP) Radar: Measurements at High Latitudes and of Surface Freeze/Thaw State

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Dunbar, Scott; Chen, Curtis

    2013-01-01

    The Soil Moisture Active/Passive (SMAP) mission is scheduled for a late 2014 launch date. The mission will use both active radar and passive radiometer instruments at L-Band in order to achieve the science objectives of measuring soil moisture and land surface freeze-thaw state. To achieve requirements for a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. In this paper, focus will be placed on the radar design. The radar will employ synthetic-aperture processing to achieve a "moderate" resolution dual-pol product over a 1000 km swath. Because the radar is operating continuously, very frequent temporal coverage will be achieved at high latitudes. This data will be used to produce a surface freeze/thaw state data product.

  16. Soil Moisture Active Passive (SMAP) Calibration and Validation Plan and Current Activities

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.; Cosh, M.; Bindlish, R.; Crow, W.; Colliander, A.; Njoku, E.; McDonald, K.; Kimball, J.; Belair, S.; Walker, J.; Entekhabi, P.; O'Neill, P.

    2010-01-01

    The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-launch validation infrastructure and continues through the mission life. However, the major focus is on a relatively short Cal/Val period following launch. The general approach and elements of the SMAP Cal/Val plan will be described and along with details on several ongoing or recent field experiments designed to address both near- and long-term Cal/Val.

  17. Soil moisture active passive (SMAP) satellite status and cal/val activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in November 2014. This satellite is the culmination of basic research and applications development over the past thirty years. During most of this period, research and development ...

  18. The soil moisture active passive validation experiment 2012 (SMAPVEX12): pre-launch calibration and validation of the SMAP satellite

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in November 2014. In order to develop robust soil moisture retrieval algorithms that fully exploit the unique capabilities of SMAP, algorithm developers had identified a nee...

  19. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  20. Global High Resolution Mapping and Assimilation of Soil Moisture Observations for the SMAP Radar and Radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2015. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, SMAP high-resolution so...

  1. Soil Moisture Active Passive (SMAP) Calibration and validation plan and current activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary objective of the SMAP calibration and validation (Cal/Val) program is demonstrating that the science requirements (product accuracy and bias) have been met over the mission life. This begins during pre-launch with activities that contribute to high quality products and establishing post-...

  2. PALS (Passive Active L-band System) Radiometer-Based Soil Moisture Retrieval for the SMAP Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Bindlish, R.; O'Neill, P. E.; Chazanoff, S. L.; McNairn, H.; Bullock, P.; Powers, J.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2014-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission is scheduled for launch in early January 2015. For pre-launch soil moisture algorithm development and validation, the SMAP project and NASA coordinated a SMAP Validation Experiment 2012 (SMAPVEX12) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June 7-July 19, 2012. Coincident active and passive airborne L-band data were acquired using the Passive Active L-band System (PALS) on 17 days during the experiment. Simultaneously with the PALS measurements, soil moisture ground truth data were collected manually. The vegetation and surface roughness were sampled on non-flight days. The SMAP mission will produce surface (top 5 cm) soil moisture products a) using a combination of its L-band radiometer and SAR (Synthetic Aperture Radar) measurements, b) using the radiometer measurement only, and c) using the SAR measurements only. The SMAPVEX12 data are being utilized for the development and testing of the algorithms applied for generating these soil moisture products. This talk will focus on presenting results of retrieving surface soil moisture using the PALS radiometer. The issues that this retrieval faces are very similar to those faced by the global algorithm using the SMAP radiometer. However, the different spatial resolution of the two observations has to be accounted for in the analysis. The PALS 3 dB footprint in the experiment was on the order of 1 km, whereas the SMAP radiometer has a footprint of about 40 km. In this talk forward modeled brightness temperature over the manually sampled fields and the retrieved soil moisture over the entire experiment domain are presented and discussed. In order to provide a retrieval product similar to that of the SMAP passive algorithm, various ancillary information had to be obtained for the SMAPVEX12 domain. In many cases there are multiple options on how to choose and reprocess these data

  3. SMAP Science Data System Architecture

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2014-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission will retrieve global surface soil moisture and freeze/thaw state based on measurements acquired by remote sensing instruments that fly on an Earth orbiting satellite. The SMAP observatory will launch no earlier than January 8, 2015 into a near-polar, sun-synchronous orbit for a three-year mission. The SMAP instrument suite includes a L-band radiometer and a L-band synthetic aperture radar. This paper will describe the architecture of the Science Data System (SDS) that processes the SMAP raw data into higher-level products. All of the SMAP products appear in the Hierarchical Data Format-5 (HDF5) format. Metadata that conform to the ISO 19115 standard accompany each product. SMAP products range from raw data (Level 0) through parsed and organized telemetry (Level 1A), calibrated signals (Level 1B/1C), retrieved geophysical values (Level 2), daily composite maps (Level 3), to analysis and modeling data (Level 4). This paper will describe an architecture that automates the challenge of delivering multiple products with large data volumes within a few hours to a few days of instrument acquisition. Additional challenges include handling data for a diverse user community as well as rapid data visualization. SMAP faces the additional complexity that the archive and access to the SMAP data processes through two NASA Data Active Archive Centers (DAAC): The Alaska Satellite Facility (ASF) hosts and distributes SMAP Radar data, while the National Snow and Ice Data Center (NSIDC) hosts and distributes all other SMAP products.

  4. Generating large-scale estimates from sparse, in-situ networks: multi-scale soil moisture modeling at ARS watersheds for NASA’s soil moisture active passive (SMAP) calibration/validation mission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA’s SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networ...

  5. Calibration and validation of the soil moisture active passive mission with USDA-ARS experimental watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is a new NASA mission scheduled for 2014 that will provide a number of soil moisture and freeze/thaw products. The soil moisture products will span spatial resolutions from 3 to 36 km. Key to the validation and calibration of the satellite products are...

  6. SMAP Science Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2014-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission will retrieve global surface soil moisture and freeze/thaw state based on measurements acquired by remote sensing instruments that fly on an Earth orbiting satellite. The SMAP observatory will launch no earlier than January 8, 2015 into a near-polar, sun-synchronous orbit. The SMAP instrument suite includes a radiometer and synthetic aperture radar. This paper will describe the Science Data System (SDS) that will process the SMAP raw data into higher-level products. SMAP data products will provide calibrated radar backscatter and radiometer brightness temperatures, derived geophysical parameters in the form of soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that will process the incoming raw data from the instruments, incorporate spacecraft and instrument engineering data, and use both dynamic and static ancillary products from the scientific community. The SDS will produce 14 standard data product processors. This paper will discuss the standard data products, their format, metadata, quality assessment products, as well as the planned release dates for the products both Beta and Validated quality. The standard data products will appear in Hierarchical Data Format-5 (HDF5) format. The products will contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) will host and distribute SMAP Radar data, while the National Snow and Ice Data Center (NSIDC) will host and distribute all other SMAP products.

  7. SMAP validation experiment 2012 (SMAPVEX12): Overview and outlook

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas, while extending those that have developed as a result of its predecessors. Validation of the suite of SMAP soil moisture and freeze/thaw products is a mi...

  8. Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey; Mohammed, Priscilla; De Amici, Giovanni; Kim, Edward; Peng, Jinzheng; Ruf, Christopher; Hanna, Maher; Yueh, Simon; Entekhabi, Dara

    2016-01-01

    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm.

  9. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds wh...

  10. Global Evaporation Estimates from SMAP Passive Microwave Soil Moisture Retrievals Using Conditional Sampling.

    NASA Astrophysics Data System (ADS)

    Vreugdenhil, M.; Entekhabi, D.; Konings, A. G.; Salvucci, G.; Hogan, P.

    2015-12-01

    Evaporation links the water, energy and carbon cycles over land yet even its climatology on global scale is not observed. Tower-based flux measurements are sparse and do not cover diverse biomes and climates. In the last decades, many strategies to derive evaporation based on remote sensing measurements have been developed. However, these methods are dependent on a variety of assumptions and auxiliary data, making them more prone to error propagation. A more data-driven method was developed by Salvucci (2001), who found that under statistical stationary conditions the expected change in soil moisture storage is zero when conditioned to a certain storage for a certain time interval. Consequently, using the water balance, precipitation conditionally averaged to the soil moisture storage is equal to the total loss: evaporation and drainage. Using only soil moisture and precipitation data as model inputs reduces the sources of uncertainty. In this presentation we provide the first estimates of global evaporation from NASA's Soil Moisture Active Passive mission by applying the conditional sampling method to passive microwave soil moisture time series and in situ precipitation data. The obtained evaporation estimates show a good correspondence to measured evaporation from eddy correlation towers over selected field sites. Subsequently, a simple approach is developed to directly estimate evaporation from SMAP soil moisture data. This approach enables the investigation of dynamics in evaporation during the dry-down after storms. The timing of the transition between the different stages of evaporation is assessed for different climates especially the transition from stage 1 to stage 2 evaporation; atmosphere limited evaporation to soil limited evaporation respectively. Investigations into the dynamics of unstressed evaporation and transpiration and the transition from stage 1 to stage 2 evaporation increases our understanding of water stress and soil desiccation. It also

  11. SMAP Algorithms & Cal/Val Workshop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) mission is one of four Decadal Survey missions recommended by the U.S. National Research Council for launch in the early part of the next decade ("Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond," NRC, Committ...

  12. Retrieval of Sea Surface Salinity and Wind from The NASA Soil Moisture Active Passive Mission Data

    NASA Astrophysics Data System (ADS)

    Yueh, S. H.; Fore, A.; Tang, W.; Hayashi, A.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission, the first Earth Science Decadal Survey mission, was launched January 31, 2015 to provide high-resolution, frequent-revisit global mapping of soil moisture. SMAP has two instruments, a polarimetric radiometer and a multi-polarization synthetic aperture radar. Both instruments operate at L-band frequencies (~ 1GHz) and share a single 6-m rotating mesh antenna, producing a fixed incidence angle conical scan at 40⁰ across a 1000-km swath and a 2-3 day global revisit. The SMAP SSS and ocean surface wind retrieval algorithm developed at the Jet Propulsion Laboratory leverages the QuikSCAT and Aquarius algorithms to account for the two-look geometry (fore and aft looks from the conical scan) and dual-polarization observations for simultaneous retrieval of SSS and wind speed. The retrieval algorithm has been applied to more than three months of SMAP radiometer data. Comparison with the European Center for Medium-Range Weather Forecasting (ECMWF) wind speed suggests that the SMAP wind speed reaches an accuracy of about 0.7 ms-1. The preliminary assessment of the SMAP SSS products gridded at 50 km spatial resolution and weekly intervals is promising. The spatial patterns of the SSS agree well with climatological distributions, but exhibit several unique spatial and temporal features. The temporal evolutions of freshwater plumes from several major rivers, such as the Amazon, Niger, Congo, Ganges, and Mississippi, are all consistent with the timing of rainy and dry seasons, indicated in the SMAP's soil moisture products. Rigorous accuracy assessment will be performed by comparison with in situ SSS data from buoys and ARGO floats. The SMAP evaluation products will be released to the public prior to November 2015.

  13. Evaluation of sea surface salinity retrieval from SMAP

    NASA Astrophysics Data System (ADS)

    Lee, Tong; Meissner, Thomas; Wentz, Frank; Lagerloef, Gary

    2016-04-01

    NASA's Soil Moisture Active Passive (SMAP) satellite, launched on January 29, 2015, has been delivering measurements since April 2015. Although SMAP's primary mission objective is to measure soil moisture, its L-band radiometer-radar design that is similar to Aquarius (NASA's ocean salinity measuring satellite that ended its operation in June 2015) provides a potential mean to continue Aquarius' legacy. SMAP's radiometer, designed for land applications, has less precision than its Aquarius counterpart. However, the spatial resolution of SMAP's measurements is better than that of Aquarius by several times. SMAP's radar, which would have provided wind measurements needed to correct for surface roughness effect on SSS retrieval, stopped functioning in July 2015. Despite this, the Aquarius team has used the Aquarius experience to retrieve SSS from SMAP's radiometer measurements using auxiliary wind measurements. This presentation evaluates the fidelity of the SMAP SSS in depicting various oceanographic features from open oceans to coastal regions. A quantitative comparison between SMAP SSS and in-situ Argo float measurements and between SMAP and satellite SSS from Aquarius and SMOS during their overlapping periods will be presented. The evaluation demonstrates the very encouraging SSS retrieval from SMAP, which provides temporal continuity of SSS measurements beyond Aquarius.

  14. Improving government decision making in response to floods using soil moisture observations from Soil Moisture Active Passive (SMAP) data

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.; Schumann, G.; Torak, L. J.

    2014-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission, due to launch January 2015, will provide global observations of the Earth's surface soil moisture, providing high accuracy, resolution and continuous global coverage. This paper seeks to show how SMAP data can be used in flood applications to improve flood warning/planning operations for the Upper Mississippi River basin. The Mississippi River ranks as the fourth longest and tenth largest river in the world and is noted as one of the most altered rivers in the United States. The Mississippi River has a very long track record of flood events, with the 2011 event being a unique event due to large volumes of snow melt and heavy spring rain in the Upper Mississippi basin. Understanding and modeling these processes and combining them with relevant satellite observations such as soil moisture conditions could help alleviate some of the risk to flooding by identifying when infiltration to soils is cut off causing excessive runoff. The objective of the analysis is to improve our understanding of how satellite-derived soil moisture will impact basin scaled/multi state decision processes linked to emergency planning and preparedness, such as FEMA FloodSMART. Using the snow hydrology model SNOW-17 (NWS) coupled to a large-scale two-dimensional floodplain inundation model LISFLOOD-FP, the study evaluates how different soil moisture states can be captured by satellites to enable a multi-state decision process focused on flood risk and planning. The study develops a scenario that applies historical soil moisture data from past events to monitor basin soil moisture conditions and yields a percent value of the saturation status. Scenario analysis is particularly important for decision makers such as emergency responders and insurers as their operations depend on their ability to gauge and appropriately assess risk. This analysis will enables insurers to develop mitigation strategies and contingency plans for such events.

  15. The Soil Moisture Active/Passive (SMAP) Freeze/Thaw Product: Providing a Crucial Linkage between Earth's Water and Carbon Cycles

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Kimball, J. S.; Kim, Y.

    2010-12-01

    Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth’s Northern Hemisphere, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. NASA’s Soil Moisture Active-Pasiive (SMAP) mission, currently planned for launch in 2014, will employ a combined radiometer and high-resolution radar to measure surface soil moisture and freeze/thaw state, thus providing new opportunities for scientific advances and societal benefits. Major science objectives of SMAP support the understanding of processes linking terrestrial water, energy and carbon cycles, the quantification of net carbon flux and the extension of capabilities for weather and climate prediction models. The SMAP suite of data products will include global maps of landscape freeze/thaw state derived from L-band radar at 1-3 km spatial resolution with a 2-day refresh rate for the high northern latitudes (i.e. latitudes above 50 degrees north). The algorithm employed in derivation of the freeze/thaw product employs a temporal change detection scheme to delineate freeze/thaw state changes associated with temporal variations in landscape microwave dielectric constant properties. Development of the algorithm follows from application of legacy data sets provided by satellite radars, both scatterometers and Synthetic Aperture Radars (SARs), and radiometers. This presentation reviews algorithm development, product derivation and validation, product applications and associated SMAP science objectives addressed through the derived freeze/thaw data products. We review efforts in which contemporary and legacy active and passive microwave remote sensing data sets have been applied in prototyping the freeze/thaw product and its applications. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana under

  16. The SMAP Science Data System Algorithm and Application Simulation Testbed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2015, the NASA Soil Moisture Active/Passive mission represents a significant advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiomet...

  17. The SMAP level 4 surface and root zone soil moisture data assimilation product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP) mission is scheduled for launch in January 2015 and will provide L-band radar and radiometer observations that are sensitive to surface soil moisture (in the top few centimeters of the soil column). For several of the key applications targeted by SMAP, ho...

  18. SMAP L2/L3 soil moisture algorithms and CAL/VAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMAP (Soil Moisture Active Passive, launch in 2014) satellite mission will include global measurements of soil moisture at 40 km, 10 km and 3 km resolutions with a 3-day revisit time. The goal accuracy for these products is 0.04 m3/m3. Over the past three years the SMAP project has developed a ...

  19. Evaluation of SMAP radiometer level 2 soil moisture algorithms using four years of SMOS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the SMAP (Soil Moisture Active Passive) mission include global measurements of soil moisture at three different spatial resolutions. SMAP will provide soil moisture with a 3-day revisit time at an accuracy of 0.04 m3/m3 The 36 km gridded soil moisture product (L2_SM_P) is primar...

  20. SMAP Data Assimilation at the GMAO

    NASA Technical Reports Server (NTRS)

    Reichle, R.; De Lannoy, G.; Liu, Q.; Ardizzone, J.

    2016-01-01

    The NASA Soil Moisture Active Passive (SMAP) mission has been providing L-band (1.4 GHz) passive microwave brightness temperature (Tb) observations since April 2015. These observations are sensitive to surface(0-5 cm) soil moisture. Several of the key applications targeted by SMAP, however, require knowledge of deeper-layer, root zone (0-100 cm) soil moisture, which is not directly measured by SMAP. The NASA Global Modeling and Assimilation Office (GMAO) contributes to SMAP by providing Level 4 data, including the Level 4 Surface and Root Zone Soil Moisture(L4_SM) product, which is based on the assimilation of SMAP Tb observations in the ensemble-based NASA GEOS-5 land surface data assimilation system. The L4_SM product offers global data every three hours at 9 km resolution, thereby interpolating and extrapolating the coarser- scale (40 km) SMAP observations in time and in space (both horizontally and vertically). Since October 31, 2015, beta-version L4_SM data have been available to the public from the National Snow and Ice Data Center for the period March 31, 2015, to near present, with a mean latency of approx. 2.5 days.

  1. SMAP Radar Processing and Calibration

    NASA Technical Reports Server (NTRS)

    West, R.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M.

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission is part of the NASA space-based Earth observation program, and consists of an L-band radar and radiometer scheduled for launch into sun synchronous orbit in late 2014. A joint effort of the Jet Propulsion Laboratory (JPL) and the Goddard Space Flight Center (GSFC), the SMAP mission draws heavily on the design and risk reduction heritage of the Hydrosphere State (Hydros) mission [1], [2]. The SMAP science and applications objectives are to: 1) understand processes that link the terrestrial water, energy and carbon cycles, 2) estimate global water and energy fluxes at the land surface, 3) quantify net carbon flux in boreal landscapes, 4) enhance weather and climate forecast skill, and 5) develop improved flood prediction and drought monitoring capability. To meet these science objectives, SMAP ground processing will combine the attributes of the radar and radiometer observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB (1 sigma) at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This paper will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation.

  2. Integrating SMOS in SMAP Cal/Val

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active Passive (SMAP, scheduled launch 2014) ESA Soil Moisture Ocean Salinity (SMOS, launched 2009) and satellite missions share two characteristics; both provide L-band brightness temperature and surface soil moisture at the same nominal spatial resolution and frequency. To d...

  3. Reducing Earth Topography Resolution for SMAP Mission Ground Tracks Using K-Means Clustering

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    The K-means clustering algorithm is used to reduce Earth topography resolution for the SMAP mission ground tracks. As SMAP propagates in orbit, knowledge of the radar antenna footprints on Earth is required for the antenna misalignment calibration. Each antenna footprint contains a latitude and longitude location pair on the Earth surface. There are 400 pairs in one data set for the calibration model. It is computationally expensive to calculate corresponding Earth elevation for these data pairs. Thus, the antenna footprint resolution is reduced. Similar topographical data pairs are grouped together with the K-means clustering algorithm. The resolution is reduced to the mean of each topographical cluster called the cluster centroid. The corresponding Earth elevation for each cluster centroid is assigned to the entire group. Results show that 400 data points are reduced to 60 while still maintaining algorithm performance and computational efficiency. In this work, sensitivity analysis is also performed to show a trade-off between algorithm performance versus computational efficiency as the number of cluster centroids and algorithm iterations are increased.

  4. SMAP Verification and Validation Project - Final Report

    NASA Technical Reports Server (NTRS)

    Murry, Michael

    2012-01-01

    In 2007, the National Research Council (NRC) released the Decadal Survey of Earth science. In the future decade, the survey identified 15 new space missions of significant scientific and application value for the National Aeronautics and Space Administration (NASA) to undertake. One of these missions was the Soil Moisture Active Passive (SMAP) mission that NASA assigned to the Jet Propulsion Laboratory (JPL) in 2008. The goal of SMAP1 is to provide global, high resolution mapping of soil moisture and its freeze/thaw states. The SMAP project recently passed its Critical Design Review and is proceeding with its fabrication and testing phase.Verification and Validation (V&V) is widely recognized as a critical component in system engineering and is vital to the success of any space mission. V&V is a process that is used to check that a system meets its design requirements and specifications in order to fulfill its intended purpose. Verification often refers to the question "Have we built the system right?" whereas Validation asks "Have we built the right system?" Currently the SMAP V&V team is verifying design requirements through inspection, demonstration, analysis, or testing. An example of the SMAP V&V process is the verification of the antenna pointing accuracy with mathematical models since it is not possible to provide the appropriate micro-gravity environment for testing the antenna on Earth before launch.

  5. The SMAP Dictionary Management System

    NASA Technical Reports Server (NTRS)

    Smith, Kevin A.; Swan, Christoper A.

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Dictionary Management System is a web-based tool to develop and store a mission dictionary. A mission dictionary defines the interface between a ground system and a spacecraft. In recent years, mission dictionaries have grown in size and scope, making it difficult for engineers across multiple disciplines to coordinate the dictionary development effort. The Dictionary Management Systemaddresses these issues by placing all dictionary information in one place, taking advantage of the efficiencies inherent in co-locating what were once disparate dictionary development efforts.

  6. SMAP Radar Data and Services at the ASF DAAC

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Dixon, I. R.; Wolf, V. G.

    2015-12-01

    In January 2015 NASA launched the Soil Moisture Active Passive (SMAP) spacecraft. SMAP's mission was to create high-resolution soil moisture and freeze-thaw products using the combination of an L-band polarimetric synthetic aperture radar (SAR) and an L-band radiometer. Two NASA Distributed Active Archive Centers (DAACs) were tasked with distribution of the SMAP data products. The Alaska Satellite Facility (ASF) DAAC was tasked to archive and distribute the SMAP radar products. In order to best support distribution of SMAP swath radar products and SMAP users, the ASF DAAC enhanced the DAAC data system in a number of ways that will be detailed in this presentation. SMAP radar data are unique for SAR in that they are provided as half-orbit swaths over 1000km wide. This presentation will focus on two primary areas of DAAC support for SMAP. First, the ASF data discovery client, Vertex, has been updated to better support SMAP SAR data. This included enhancements to the user interface to better support swath visualizations as well as increased search capability. Utilizing NASA's Common Metadata Repository (CMR), Vertex will allow users to download both the Level 1 SAR product as well as the higher-level products that it contributed to. In this way, the distributed nature of the data archives is better abstracted from the user experience and users have quick access to a greater variety of data. Beyond enabling data search, ASF DAAC is also supporting data utilization through the development of polar mosaics using the SAR data. SMAP is able to achieve nearly complete coverage of the Arctic north of 55 degrees every 24 hours. Based on the polarimetric SMAP data, Arctic mosaics are generated each day in geotiff format at a fixed grid spacing to allow for easy incorporation to existing workflows. Prototype ice motion products will also be shown that directly demonstrate the utility of these daily mosaics.

  7. Using SMOS obervations for science development of the SMAP level 4 surface and root zone soil moisture algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The NASA Soil Moisture Active and Passive (SMAP) mission is targeted for launch in October 2014. The soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Oc...

  8. A Prototype Land Information Sensor Web: Design, Implementation and Implication for the SMAP Mission

    NASA Astrophysics Data System (ADS)

    Su, H.; Houser, P.; Tian, Y.; Geiger, J. K.; Kumar, S. V.; Gates, L.

    2009-12-01

    developed and it is the very first sensor web framework developed especially for the land surface studies. Synthetic experiments based on the LISW-SOA and the virtual sensor web provide a controlled environment in which to examine the end-to-end performance of the prototype, the impact of various sensor web design trade-offs and the eventual value of sensor webs for a particular prediction or decision support. In this paper, the design, implementation of the LISW-SOA and the implication for the Soil Moisture Active and Passive (SMAP) mission is presented. Particular attention is focused on examining the relationship between the economic investment on a sensor web (space and air borne, ground based) and the accuracy of the model predicted soil moisture, which can be achieved by using such sensor observations. The Study of Virtual Land Information Sensor Web (LISW) is expected to provide some necessary a priori knowledge for designing and deploying the next generation Global Earth Observing System of systems (GEOSS).

  9. RFI Study for the SMAP Radar

    NASA Technical Reports Server (NTRS)

    Chan, Samuel; Spencer, Michael

    2009-01-01

    The Soil Moisture Active/Passive (SMAP) mission has the scientific objective of measuring both soil moisture and freeze/thaw state from space. The mission will make both active radar and passive radiometer measurements at L-Band in order to retrieve soil moisture. Some studies, how-ever, indicated that these measurements are susceptible to radio frequency interference (RFI) in several geographic locations. As SMAP is a global mission and its mission life is 3 years, it is crucial for SMAP to understand the RFI over the whole globe and its temporal behavior. There will be impacts to the instrument system design and ground data processing in order to mitigate RFI. In this paper, strategies and procedures for performing this RFI study will be presented, and some results utilizing the RFI observed in the ALOS PALSAR data are described. The nature of the ob-served RFI is characterized and suggests some bands are relative free of RFI. The SMAP radar system will use a 1 MHz bandwidth, which can be placed within these suggested "clear" frequencies. The ALOS PALSAR data covers 28 MHz within the 80 MHz allocated for active L-Band remote sensing. In addition, an initial analysis with UAVSAR data, which uses the entire 80 MHz allocation, indicates the relative severity of RFI over the whole band. An algorithm to remove RFI is suggested and its performance is shown for some data from ALOS PALSAR and UAVSAR.

  10. Radio-Frequency Interference (RFI) Mitigation for the Soil, Moisture Active/Passive (SMAP) Radiometer

    NASA Technical Reports Server (NTRS)

    Bradley, Damon; Brambora, Cliff; Wong, Mark Englin; Miles, Lynn; Durachka, David; Farmer, Brian; Mohammed, Priscilla; Piepmier, Jeff; Medeiros, Jim; Martin Neil; Garcia, Rafael

    2010-01-01

    The presence of anthropogenic RFI is expected to adversely impact soil moisture measurement by NASA s Soil Moisture Active Passive mission. The digital signal processing approach and preliminary design for detecting and mitigating this RFI is presented in this paper. This approach is largely based upon the work of Johnson and Ruf.

  11. Evaluation of SMAP Level 2 Soil Moisture Algorithms Using SMOS Data

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann; Shi, J. C.

    2011-01-01

    The objectives of the SMAP (Soil Moisture Active Passive) mission are global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolution, respectively. SMAP will provide soil moisture with a spatial resolution of 10 km with a 3-day revisit time at an accuracy of 0.04 m3/m3 [1]. In this paper we contribute to the development of the Level 2 soil moisture algorithm that is based on passive microwave observations by exploiting Soil Moisture Ocean Salinity (SMOS) satellite observations and products. SMOS brightness temperatures provide a global real-world, rather than simulated, test input for the SMAP radiometer-only soil moisture algorithm. Output of the potential SMAP algorithms will be compared to both in situ measurements and SMOS soil moisture products. The investigation will result in enhanced SMAP pre-launch algorithms for soil moisture.

  12. Soil Moisture Active Passive Validation Experiment 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08) was conducted to address specific issues identified by the SMAP satellite mission (launch 2013). SMAP is currently addressing issues related to the development and selection of retrieval algorithms as well as refining the mission de...

  13. The SMAP Level 4 surface and root-zone soil moisture product

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2015, the NASA Soil Moisture Active/Passive mission represents a generational advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiome...

  14. Automating the SMAP Ground Data System to Support Lights-Out Operations

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2014-01-01

    The Soil Moisture Active Passive (SMAP) Mission is a first tier mission in NASA's Earth Science Decadal Survey. SMAP will provide a global mapping of soil moisture and its freeze/thaw states. This mapping will be used to enhance the understanding of processes that link the terrestrial water, energy, and carbon cycles, and to enhance weather and forecast capabilities. NASA's Jet Propulsion Laboratory has been selected as the lead center for the development and operation of SMAP. The Jet Propulsion Laboratory (JPL) has an extensive history of successful deep space exploration. JPL missions have typically been large scale Class A missions with significant budget and staffing. SMAP represents a new area of JPL focus towards low cost Earth science missions. Success in this new area requires changes to the way that JPL has traditionally provided the Mission Operations System (MOS)/Ground Data System (GDS) functions. The operation of SMAP requires more routine operations activities and support for higher data rates and data volumes than have been achieved in the past. These activities must be addressed by a reduced operations team and support staff. To meet this challenge, the SMAP ground data system provides automation that will perform unattended operations, including automated commanding of the SMAP spacecraft.

  15. SMAP Validation and Accuracy Assessment of Soil Moisture Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and will begin its calibration and validation (Cal/Val) phase in May, 2015. This will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical produ...

  16. SMAP Radar Processing and Expected Performance

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.

    2011-12-01

    This presentation will describe the processing algorithms being developed for the Soil Moisture Active Passive (SMAP) radar data and the expected characteristics of the measured backscattering cross sections. The SMAP radar combines some unique features such as a conically scanned antenna with SAR processing of the data. The rapidly varying squint angle gives the measurements variable resolution and noise characteristics and poses a challenge to the processor to maintain accuracy around the wide (1000 km) swath. Rapid variation of Doppler around the scan leads to a time domain azimuth correlation algorithm, and variation of the Doppler geometry will likely require varying the processing bandwidth to manage ambiguity contamination errors. The basic accuracy requirement is 1-dB (one-sigma) in the backscatter measurements at a resolution of 3 km. The main error contributions come from speckle noise, calibration uncertainty, and radio frequency interference (RFI). Speckle noise is determined by system design parameters and details of the processing algorithms. The calibration of the backscatter measurements will be based on pre-launch characterization of the radar components which allow corrections for short term (~1 month) variations in performance. Longer term variations and biases will be removed using measurements of stable reference targets such as parts of the Amazon rain forest, and possibly the oceans and ice sheets. RFI survey measurements will be included to measure the extent of RFI around the world. The SMAP radar is designed to be able to hop the operating frequency within the 80 MHz allocated band to avoid the worst RFI emitters. Data processing will detect and discard further RFI contaminated measurements. This work is supported by the SMAP project at JPL - CalTech. The SMAP mission has not been formally approved by NASA. The decision to proceed with the mission will not occur until the completion of the National Environmental Policy Act (NEPA) process

  17. Assessing pre-launch application feasibility using the SMAP science data system algorithm and application simulation testbed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slated for launch in 2014, the NASA Soil Moisture Active/Passive mission represents a significant advance in our ability to globally observe time and space variations in surface soil moisture fields. The SMAP mission concept is based on the integrated use of L-band active radar and passive radiomet...

  18. RFI Mitigation and Detection for the SMAP Radar

    NASA Technical Reports Server (NTRS)

    Chan, Samuel; Fischman, Mark; Spencer, Michael

    2011-01-01

    The planned Soil Moisture Active Passive (SMAP) mission will use both active radar and passive radiometer instruments at L-Band to measure and monitor both soilmoisture and freeze/thaw state globally. The frequency band allocated for the SMAP radar is shared with the Global Navigation Satellite Systems and ground-basedradiolocation services. Signals from those users present significant sources of anthropogenic radio frequency interference (RFI) which contaminate the radarmeasurements. To mitigate RFI, the radar is designed with tunable operating frequency, which allows the center frequency to be tuned to avoid RFI. The filtering scheme in the receiver is configured to get a high level of RFI suppression. To meet the high accuracy measurement requirements, RFI detection and correction will be required during ground data processing. Some candidate algorithms have been evaluated, and they have been tested against simulated SMAP data derived from the PALSAR data.

  19. SMAP Instrument Mechanical System Engineering

    NASA Technical Reports Server (NTRS)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  20. Evaluation of the SMAP radiometer lever 2 pre-launch soil moisture algorithms using SMOS data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of the upcoming SMAP (Soil Moisture Active Passive) satellite mission include global measurements of soil moisture at 40 km, 10 km and 3 km resolutions with a 3-day revisit time at an accuracy of 0.04 m3/m3. The 40 km resolution soil moisture product is based primarily on the passiv...

  1. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS

  2. SMAP RADAR Processing and Calibration

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.; Chaubell, M. J.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) mission uses L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Model sensitivities translate the soil moisture accuracy to a radar backscatter accuracy of 1 dB at 3 km resolution and a brightness temperature accuracy of 1.3 K at 40 km resolution. This presentation will describe the level 1 radar processing and calibration challenges and the choices made so far for the algorithms and software implementation. To obtain the desired high spatial resolution the level 1 radar ground processor employs synthetic aperture radar (SAR) imaging techniques. Part of the challenge of the SMAP data processing comes from doing SAR imaging on a conically scanned system with rapidly varying squint angles. The radar echo energy will be divided into range/Doppler bins using time domain processing algorithms that can easily follow the varying squint angle. For SMAP, projected range resolution is about 250 meters, while azimuth resolution varies from 400 meters to 1.2 km. Radiometric calibration of the SMAP radar means measuring, characterizing, and where necessary correcting the gain and noise contributions from every part of the system from the antenna radiation pattern all the way to the ground processing algorithms. The SMAP antenna pattern will be computed using an accurate antenna model, and then validated post-launch using homogeneous external targets such as the Amazon rain forest to look for uncorrected gain variation. Noise subtraction is applied after image processing using measurements from a noise only channel. Variations of the internal electronics are tracked by a loopback measurement which will capture most of the time and temperature variations of the transmit power and receiver gain. Long-term variations of system performance due to component aging will be tracked and corrected using stable external reference

  3. SMAP Launch and Deployment Sequence

    NASA Video Gallery

    This video combines file footage of a Delta II rocket and computer animation to depict the launch and deployment of NASA's Soil Moisture Active Passive satellite. SMAP is scheduled to launch on Nov...

  4. The Use of Modeling for Flight Software Engineering on SMAP

    NASA Technical Reports Server (NTRS)

    Murray, Alexander; Jones, Chris G.; Reder, Leonard; Cheng, Shang-Wen

    2011-01-01

    The Soil Moisture Active Passive (SMAP) mission proposes to deploy an Earth-orbiting satellite with the goal of obtaining global maps of soil moisture content at regular intervals. Launch is currently planned in 2014. The spacecraft bus would be built at the Jet Propulsion Laboratory (JPL), incorporating both new avionics as well as hardware and software heritage from other JPL projects. [4] provides a comprehensive overview of the proposed mission

  5. Assimilation of Smos Observations to Generate a Prototype SMAP Level 4 Surface and Root-Zone Soil Moisture Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Crow, Wade T.; Koster, Randal D.; Kimball, John

    2012-01-01

    The Soil Moisture Active and Passive (SMAP; [1]) mission is being implemented by NASA for launch in October 2014. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high-resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. The Soil Moisture and Ocean Salinity (SMOS; [2]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. In this paper we describe our use of SMOS brightness temperature observations to generate a prototype of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product [5].

  6. SMOS SMAP synergisms

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Cabot, François; Leroux, Delphine; Richaume, Philippe; Wigneron, Jean-Pierre; Mahmoodi, Ali

    2014-05-01

    In early Aril 2014, the SMOS mission will have been in the air for almost 4 years and a half, and SMAP ready to start in November almost exactly 5 years after SMOS Since its launch, SMOS has given many opportunities for breaking new grounds. And with its active system, SMAP is bound also to cover new grounds Shortly after launch, first global maps of soil moisture ever measured from space were produced by SMOS. Since then, the achieved accuracy has continuously improved to match the requirements. The long term trends of surface moisture can now be closely linked to precipitation regime, and SMOS results have been successfully used in response to extreme events. On the other hand, ocean salinity results have also improved dramatically. Here again, some amazing results regarding river plumes or fresh water pools related to precipitation have been obtained. They have been compared and used in a synergistic way with Aquarius data (launched in June 2011). At last, new applications have been imagined in various fields such as of sea ice thickness, or hurricane winds. This presentation will give an extensive status of the mission, emphasizing the many lessons learned and demonstrating some outstanding results. Some perspectives on the mission and future missions will also be given with a particular focus with the synergisms with SMAP data and how we intend to build a seamless data record of soil moisture from SMOS to SMAP.

  7. Utilization of Ancillary Data Sets for SMAP Algorithm Development and Product Generation

    NASA Technical Reports Server (NTRS)

    ONeill, P.; Podest, E.; Njoku, E.

    2011-01-01

    Algorithms being developed for the Soil Moisture Active Passive (SMAP) mission require a variety of both static and ancillary data. The selection of the most appropriate source for each ancillary data parameter is driven by a number of considerations, including accuracy, latency, availability, and consistency across all SMAP products and with SMOS (Soil Moisture Ocean Salinity). It is anticipated that initial selection of all ancillary datasets, which are needed for ongoing algorithm development activities on the SMAP algorithm testbed at JPL, will be completed within the year. These datasets will be updated as new or improved sources become available, and all selections and changes will be documented for the benefit of the user community. Wise choices in ancillary data will help to enable SMAP to provide new global measurements of soil moisture and freeze/thaw state at the targeted accuracy necessary to tackle hydrologically-relevant societal issues.

  8. Building Synergy Between NASA DAACS: The ASF - NSIDC - SMAP Partnership

    NASA Astrophysics Data System (ADS)

    Weaver, R. L.; Labelle-Hamer, A. L.; Arko, S. A.; Nicoll, J.

    2011-12-01

    NASA's Earth Science Data and Information System (ESDIS) project has chosen two NASA Distributed Active Archive Centers (DAACs) to provide data management services for the Soil Moisture Active Passive (SMAP), a decadal survey mission. The Alaska Satellite Facility (ASF) and the National Snow and Ice Data Center (NSIDC) have been challenged by NASA to find synergistic, innovative, and affordable solutions to access, manage, and distribute the SMAP data products. The ESDIS Project manages the science systems of the Earth Observing System Data and Information System (EOSDIS), with the DAACs providing an integral part of EOSDIS. The DAACs have worked together to varying degrees since the inception of EOSDIS in the 1990s. A large part of this sustained cooperative spirit was created when the DAAC Alliance was formed. As EOSDIS grows and embraces space- and air-borne missions and the user community focuses on integrative data use in their science, the EOSDIS data system elements must work together to find synergistic solutions. SMAP products fall into disciplines that overlap between NSIDC and ASF. NSIDC will manage passive microwave data while ASF will manage L-band radar data. The two Data Centers intend to work towards an integrated user experience that exploits the two center's unique data and services experience and meet the goals of the SMAP science team. This paper will explore early ideas of ASF and NSIDC to accomplish this unified user experience in a system of systems between two DAACs.

  9. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, J.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission is planned to launch on Jan 8, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there will be a 3 month instrument checkout period, followed by 6 months of level 1 (L1) calibration and validation. In this presentation, we will discuss the plans and preparations for the calibration and validation of L1 radar data from SMAP. At the start of the L1 cal/val period, we will validate the operation of the instrument and of the ground processing using tools that look at readily identifiable surface features such as coast lines and corner reflectors. Geometric biases will be fit and removed. Radiometric cross-calibration with PALSAR and Aquarius will also be performed using target regions in the Amazon rain forest selected for their stability and uniformity. As the L1 cal/val period progresses, the performance of the automated short and long term calibration modules in ground processing will be tracked and verified using data from stable reference targets such as the wind corrected ocean and selected areas of rain forest that have shown good temporal stability. The performance of the radio frequency interference (RFI) removal algorithm will be validated by processing data with the algorithm turned on and off, and using different parameter settings. Additional information on the extent of RFI will be obtained from a special RFI survey conducted early in the L1 cal/val period. Radar transmissions are turned off during the RFI survey, and receive only data are collected over a variety of operating frequencies. The model based Faraday rotation corrections will also be checked during the L1 cal/val by comparing the model Faraday rotation with the measured Faraday rotation obtained by the SMAP Radiometer. This work is supported by the SMAP project at the Jet

  10. SMAP L2/L3 Soil moisture product validation with core validation sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission was launched by NASA in January, 2015 and entered its one year calibration and validation (cal/val) phase in May, 2015. This began with a focus on instrument measurements, brightness temperature and backscatter, and has now evolved to the geophysical p...

  11. The SMAP In Situ Soil Moisture Sensor Testbed: Comparing in situ sensors for satellite validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the most valuable tools in validating satellite based soil moisture estimates, such as those from the Soil Moisture Active Passive (SMAP) mission are large scale in situ networks. Global validation involves networks operated by many different organizations. Existing in situ soil moisture netw...

  12. Comparison of SMOS vegetation optical thickness data with the proposed SMAP algorithm

    NASA Astrophysics Data System (ADS)

    Patton, Jason Carl

    Soil moisture is important to agriculture, weather, and climate. Current soil moisture networks measure at single points, while large spatial averages are needed for some crop, weather, and climate models. Large spatial average soil moisture can be measured by microwave satellites. Two missions, the European Space Agency's Soil Moisture Ocean Salinity mission (SMOS) and NASA's Soil Moisture Active Passive mission (SMAP), can or will measure L-band microwave radiation, which can see through denser vegetation and deeper in to the soil than previous missions that used X-band or C-band measurements. Both SMOS and SMAP require knowledge of vegetation optical thickness (tau) to retrieve soil moisture. SMOS is able to measure tau directly through multi-angular measurements. SMAP, which will measure at a single incidence angle, requires an outside source of tau data. The current SMAP baseline algorithm will use a climatology of optical vegetation measurements, the normalized difference vegetation index (NDVI), to estimate tau. SMAP will convert the NDVI climatology to vegetation water content (VWC), then convert VWC to tau through the b parameter. This dissertation aimed to validate SMOS tau using county crop yield estimates in Iowa. SMOS tau was found to be noisy while still having a clear response to vegetation. Counties with higher yields had higher increases in tau; over growing seasons, so it appears that SMOS tau is valid during the growing season. However, SMOS tau had odd behavior outside of growing seasons which can be attributed to soil tillage and residue management. Next, this dissertation attempted to estimate values of the b parameter at the satellite scale using SMOS tau data, county crop yields, and allometric relationships, such as harvest index. A new allometric relationship was defined, thetagv,max, which is the ratio of maximum VWC to maximum dry biomass. While uncertainty in the estimated values of b was large, the values were close in magnitude to

  13. SMAP validation of soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite will be launched by the National Aeronautics and Space Administration in October 2014. SMAP will also incorporate a rigorous calibration and validation program that will support algorithm refinement and provide users with information on the accuracy ...

  14. Seasonal Parameterizations of the Tau-Omega Model Using the ComRAD Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Joseph, A.; Srivastava, P.; Cosh, M.; Lang, R.

    2014-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission is scheduled for launch in November 2014. In the prelaunch time frame, the SMAP team has focused on improving retrieval algorithms for the various SMAP baseline data products. The SMAP passive-only soil moisture product depends on accurate parameterization of the tau-omega model to achieve the required accuracy in soil moisture retrieval. During a field experiment (APEX12) conducted in the summer of 2012 under dry conditions in Maryland, the Combined Radar/Radiometer (ComRAD) truck-based SMAP simulator collected active/passive microwave time series data at the SMAP incident angle of 40 degrees over corn and soybeans throughout the crop growth cycle. A similar experiment was conducted only over corn in 2002 under normal moist conditions. Data from these two experiments will be analyzed and compared to evaluate how changes in vegetation conditions throughout the growing season in both a drought and normal year can affect parameterizations in the tau-omega model for more accurate soil moisture retrieval.

  15. Experimental High Resolution (3 km) SMAP Soil Moisture Data Fields With Uncertainty Estimates

    NASA Astrophysics Data System (ADS)

    Das, N. N.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31st, 2015. The objective of the mission is global mapping of surface soil moisture and landscape freeze/thaw state. SMAP utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP spacecraft is in a 685-km Sun-synchronous near-polar orbit, and viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width. Merging of the high-resolution active (radar) and coarse-resolution but high-sensitivity passive (radiometer) L-band observations enable an unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrievals. However, on July 7th, 2015, the SMAP radar encountered an anomaly and is currently inoperable. Efforts are being made to revive the SMAP radar. Due to the present status of the SMAP observatory, nearly ~2.5 months (from the end of In-Orbit-Check April 13th, 2015 to July 7th, 2015) of the SMAP Active Passive product will be available to public through the NASA DAAC at National Snow and Ice Data Center (NSIDC). The baseline L2_SM_AP product is retrieved soil moisture from the disaggregated/downscaled brightness temperature obtained by merging the coarse-resolution (~36 km) radiometer brightness temperature data and the high-resolution (~3 km) radar backscatter data. The baseline product is intermediate scale 9 km global soil moisture information. Experimentally, a much higher resolution global surface soil moisture data set is also produced at 3 km. This experimental product covering the 2.5 Spring/Summer months is the focus of this presentation. We specifically focus on the analysis of errors and reliability of this data set. The errors in disaggregated brightness temperatures and the retrived soil moisture estimates are discussed. In the presentation the accuracies of the SMAP L2-SM_AP soil moisture retrievals will be shown using summary comparisons with in

  16. Validation of the Soil Moisture Active Passive mission using USDA-ARS experimental watersheds

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Bindlish, R.; Colliander, A.; Kim, S.; Das, N. N.; Yueh, S. H.; Bosch, D. D.; Goodrich, D. C.; Prueger, J. H.; Starks, P. J.; Livingston, S.; Seyfried, M. S.; Coopersmith, E. J.

    2015-12-01

    The calibration and validation program of the Soil Moisture Active Passive mission (SMAP) relies upon an international cooperative of in situ networks to provide ground truth references across a variety of landscapes. The USDA Agricultural Research Service operates several experimental watersheds which contribute to the validation of SMAP soil moisture products. These watersheds consist of a network of in situ sensors that measure soil moisture at a variety of depths including the 5 cm depth, which is critical for satellite validation. Comparisons of the in situ network estimates to the satellite products are ongoing, but initial results have shown strong correlation between satellite estimates and in situ soil moisture measurements once scaling functions were applied. The scaling methodologies for the in situ networks are being reviewed and evaluated. Results from the Little Washita, Fort Cobb, St. Joseph's and Little River Experimental Watersheds show good agreement between the satellite products and in situ measurements. Walnut Gulch results show high accuracy, although with the caveat that these domains are semi-arid with a substantially lower dynamic range. The South Fork Watershed is examined more closely for its detailed scaling function development as well as an apparent bias between satellite and in situ values.

  17. Global High Resolution Mapping and Assimilation of Soil Moisture Observations from the SMAP Radar and Radiometer

    NASA Astrophysics Data System (ADS)

    Reichle, Rolf; Crow, Wade; Entekhabi, Dara; Kimball, John; Koster, Randal; Noku, Eni; O'Neill, Peggy

    2010-05-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2015. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, SMAP high-resolution soil moisture mapping has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we provide a brief overview of the SMAP science objectives, instruments, and data products, with a special focus on the Level 4 Surface and Root-Zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a wide swath (1000 km) using conical scanning at a constant incidence angle (40°). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar, however, is very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows blending the advantages of each instrument, enabling SMAP to provide global retrievals of surface soil moisture with a horizontal resolution of about 10 km and a refresh rate of 2 to 3 days. Additionally, a radar-based soil-vegetation freeze/thaw product in boreal latitudes will be provided at 3 km resolution with 1-2 day revisit. SMAP directly observes surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (~top 1 m of the soil column), which is not directly measured

  18. SMAP RADAR Calibration and Validation

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Chaubel, M. J.; Spencer, M.; Chan, S. F.; Chen, C. W.; Fore, A.

    2015-12-01

    The Soil Moisture Active Passive (SMAP) mission launched on Jan 31, 2015. The mission employs L-band radar and radiometer measurements to estimate soil moisture with 4% volumetric accuracy at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. Immediately following launch, there was a three month instrument checkout period, followed by six months of level 1 (L1) calibration and validation. In this presentation, we will discuss the calibration and validation activities and results for the L1 radar data. Early SMAP radar data were used to check commanded timing parameters, and to work out issues in the low- and high-resolution radar processors. From April 3-13 the radar collected receive only mode data to conduct a survey of RFI sources. Analysis of the RFI environment led to a preferred operating frequency. The RFI survey data were also used to validate noise subtraction and scaling operations in the radar processors. Normal radar operations resumed on April 13. All radar data were examined closely for image quality and calibration issues which led to improvements in the radar data products for the beta release at the end of July. Radar data were used to determine and correct for small biases in the reported spacecraft attitude. Geo-location was validated against coastline positions and the known positions of corner reflectors. Residual errors at the time of the beta release are about 350 m. Intra-swath biases in the high-resolution backscatter images are reduced to less than 0.3 dB for all polarizations. Radiometric cross-calibration with Aquarius was performed using areas of the Amazon rain forest. Cross-calibration was also examined using ocean data from the low-resolution processor and comparing with the Aquarius wind model function. Using all a-priori calibration constants provided good results with co-polarized measurements matching to better than 1 dB, and cross-polarized measurements matching to about 1 dB in the beta release. During the

  19. Some Issues in Validating Satellite-based Soil Moisture Retrievals with In Situ Observations and Their Impact on SMAP Validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite is scheduled for launch in the fall of 2014. As the first of NASA’s Decadal Survey missions, efforts are being made to implement both best practices and innovations, which include calibration and validation of the remote sensing products (Cal/Val). ...

  20. SMOS/SMAP synergy for SMAP level 2 soil moisture algorithm evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Moisture Active Passive (SMAP)satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the sup...

  1. SMAP Validation Experiment 2015 (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Cosh, M. H.; Misra, S.; Crow, W. T.; Chae, C. S.; Moghaddam, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.

    2015-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and freeze/thaw state. For soil moisture algorithm validation, the SMAP project and NASA coordinated SMAPVEX15 around the Walnut Gulch Experimental Watershed (WGEW) in Tombstone, Arizona on August 1-19, 2015. The main goals of SMAPVEX15 are to understand the effects and contribution of heterogeneity on the soil moisture retrievals, evaluate the impact of known RFI sources on retrieval, and analyze the brightness temperature product calibration and heterogeneity effects. Additionally, the campaign aims to contribute to the validation of GPM (Global Precipitation Mission) data products. The campaign will feature three airborne microwave instruments: PALS (Passive Active L-band System), UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) and AirMOSS (Airborne Microwave Observatory of Subcanopy and Subsurface). PALS has L-band radiometer and radar, and UAVSAR and AirMOSS have L- and P-band synthetic aperture radars, respectively. The PALS instrument will map the area on seven days coincident with SMAP overpasses; UAVSAR and AirMOSS on four days. WGEW was selected as the experiment site due to the rainfall patterns in August and existing dense networks of precipitation gages and soil moisture sensors. An additional temporary network of approximately 80 soil moisture stations was deployed in the region. Rainfall observations were supplemented with two X-band mobile scanning radars, approximately 25 tipping bucket rain gauges, three laser disdrometers, and three vertically-profiling K-band radars. Teams were on the field to take soil moisture samples for gravimetric soil moisture, bulk density and rock fraction determination as well as to measure surface roughness and vegetation water content. In this talk we will present preliminary results from the experiment including

  2. Near-Real-Time, Global Radar Data at the Alaska Satellite Facility DAAC from NASA's SMAP Satellite

    NASA Astrophysics Data System (ADS)

    Arko, S. A.; Allen, A. R.; Dixon, I. R.

    2014-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) is supporting NASA's SMAP (Soil Moisture Active Passive) satellite mission, which launches in January 2015. SMAP will measure global soil moisture and its freeze-thaw state every 3 days using an L-band synthetic aperture radar (SAR) and radiometer. ASF, along with the National Snow and Ice Data Center DAAC and NASA's Earth Science Data and Information System (ESDIS), is identifying and developing tools and technologies to facilitate use of global, near-real-time data by the SMAP user community. ASF will host the SMAP Level 1 radar data and make them available for download through ASF's data discovery interface, Vertex, and the ASF Application Programming Interface. Vertex allows a user to search, visualize and download SAR data, browse images and relevant metadata, and will offer the complete SMAP L1 radar archive to the public. The entire SMAP archive consisting of level 1-4 data can be accessed via Reverb, the NASA EOSDIS metadata and service discovery tool. In anticipation of the SMAP launch and data release, ASF has developed and released a new website (https://www.asf.alaska.edu/smap/) and a suite of web resources, including interactive media, technical information, a product guide, related publications, and tools for working with the HDF5 data format. The ASF SMAP team is exploring OPeNDAP and the Jet Propulsion Laboratory's Webification technologies for enhancing in-browser data visualization and analysis. These technologies, and tools developed with them, represent opportunities for exposing this valuable dataset to areas with limited bandwidth or understanding of radar data. This presentation will highlight the enabling technologies and techniques ASF is employing to bring these data to new scientific and applications users and respond to ever-changing user needs.

  3. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  4. The SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) Product

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf; Crow, Wade; Koster, Randal; Kimball, John

    2010-01-01

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2013 as one of four first-tier missions recommended by the U.S. National Research Council Committee on Earth Science and Applications from Space in 2007. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, the high resolution soil moisture mapping provided by SMAP has practical applications in weather and seasonal climate prediction, agriculture, human health, drought and flood decision support. In this paper we describe the assimilation of SMAP observations for the generation of the planned SMAP Level 4 Surface and Root-zone Soil Moisture (L4_SM) product. The SMAP mission makes simultaneous active (radar) and passive (radiometer) measurements in the 1.26-1.43 GHz range (L-band) from a sun-synchronous low-earth orbit. Measurements will be obtained across a 1000 km wide swath using conical scanning at a constant incidence angle (40 deg). The radar resolution varies from 1-3 km over the outer 70% of the swath to about 30 km near the center of the swath. The radiometer resolution is 40 km across the entire swath. The radiometer measurements will allow high-accuracy but coarse resolution (40 km) measurements. The radar measurements will add significantly higher resolution information. The radar is however very sensitive to surface roughness and vegetation structure. The combination of the two measurements allows optimal blending of the advantages of each instrument. SMAP directly observes only surface soil moisture (in the top 5 cm of the soil column). Several of the key applications targeted by SMAP, however, require knowledge of root zone soil moisture (approximately top 1 m of the soil column), which is not directly measured by SMAP. The foremost objective of the SMAP L4_SM product is to fill this gap and provide estimates of root zone soil moisture

  5. Spatial and Temporal Patterns of SMAP Brightness Temperatures for Use in Level 1 TB Characterization

    NASA Astrophysics Data System (ADS)

    Kim, E. J.

    2015-12-01

    1. IntroductionThe recent launch of NASA's Soil Moisture Active Passive (SMAP) mission [Entekhabi, et al] has opened the door to improved brightness temperature (TB) calibration of satellite L-band microwave radiometers, through the use of SMAP's lower noise performance and better immunity to man-made interference (vs. ESA's Soil Moisture Ocean Salinity (SMOS) mission [Kerr, et al]), better spatial resolution (vs. NASA's Aquarius sea surface salinity mission [Le Vine, et al]), and cleaner antenna pattern (vs. SMOS). All three radiometers use/used large homogeneous places on Earth's surface as calibration targets—parts of the ocean, Antarctica, and tropical forests. Despite the recent loss of Aquarius data, there is still hope for creating a longer-term L-band data set that spans the timeframe of all 3 missions. 2. Description of Analyses and Expected Results In this paper, we analyze SMAP brightness temperature data to quantify the spatial and temporal characteristics of external target areas in the oceans, Antarctica, forests, and other areas. Existing analyses have examined these targets in terms of averages, standard deviations, and other basic statistics (for Aquarius & SMOS as well). This paper will approach the problem from a signal processing perspective. Coupled with the use of SMAP's novel RFI-mitigated TBs, and the aforementioned lower noise and cleaner antenna pattern, it is expected that of the 3 L-band missions, SMAP should do the best job of characterizing such external targets. The resulting conclusions should be useful to extract the best possible TB calibration from all 3 missions, helping to inter-compare the TB from the 3 missions, and to eventually inter-calibrate the TBs into a single long-term dataset.

  6. Science Data System Contribution to Calibrating and Validating SMAP Data Products

    NASA Astrophysics Data System (ADS)

    Cuddy, D.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission retrieves global surface soil moisture and freeze/thaw state using measurements acquired by a radiometer and a synthetic aperture radar that fly on an Earth orbiting satellite. The SMAP observatory launched from Vandenberg Air Force Base on January 31, 2015 into a near-polar, sun-synchronous orbit. This paper describes the contribution of the SMAP Science Data System (SDS) to the calibration and on-going validation of the radar backscatter and radiometer brightness temperatures. The Science Data System designed, implemented and operated the software that generates data products that contain various geophysical parameters including soil moisture and freeze/thaw states, daily maps of these geophysical parameters, as well as modeled analyses of global soil moisture and carbon flux in Boreal regions. The SDS is a fully automated system that processes the incoming raw data from the instruments, incorporates spacecraft and instrument engineering data, and uses both dynamic and static ancillary products provided by the scientific community. The standard data products appear in Hierarchical Data Format-5 (HDF5) format. These products contain metadata that conform to the ISO 19115 standard. The Alaska Satellite Facility (ASF) hosts and distributes SMAP radar data products. The National Snow and Ice Data Center (NSIDC) hosts and distributes all of the other SMAP data products.

  7. SMAP L2/L3 Soil Moisture Product Validation using In Situ Based Core Validation Sites

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Jackson, T. J.; Chan, S.; Das, N. N.; Kim, S.; Dunbar, R. S.; Bindlish, R.; Dang, L. B.; Berg, A. A.; Rowlandson, T. L.; Caylor, K. K.; Cosh, M. H.; AlJassar, H. K.; Lopez-baeza, E.; Martínez-Fernández, J.; Gonzales-Zamora, A.; McNairn, H.; Pacheco, A. M.; Moghaddam, M.; Montzka, C.; Notarnicola, C.; Niedrist, G.; Pellarin, T.; Pulliainen, J.; Rautiainen, K.; Ramos, J.; Seyfried, M. S.; Su, Z.; Zeng, Y.; Van der Velde, R.; Temimi, M.; Thibeault, M.; Dorigo, W.; Vreugdenhil, M.; Walker, J.; Wu, X.; Caldwell, T. G.; Spencer, M.; O'Neill, P. E.; Entekhabi, D.; Yueh, S. H.; Njoku, E. G.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) Mission was launched in January 2015. The objective of the mission is global mapping of soil moisture and landscape freeze/thaw state. SMAP utilizes L-band radar and radiometer instruments sharing a rotating 6-meter mesh reflector antenna. Merging of active and passive L-band observations enables an unprecedented combination of accuracy, resolution, global coverage and revisit-time for soil moisture and freeze/thaw retrievals. The primary validation reference of the data products will be ground-based measurements. Well characterized sites with calibrated in situ measurements will be used to determine the quality of the data products; these sites are designated as core validation sites. The mission success criteria will be evaluated with respect to these core site comparisons. Other remote sensing and model-based products will be used as additional resources to expand the spatial and temporal scope of the evaluation. In an effort to ensure the geographic distribution and diversity of conditions of the core validation sites, SMAP has partnered with investigators across the globe. Because different SMAP Level 2 soil moisture products have different spatial scales, the suitability of the various sites for validation of the different products must be done for each site while considering several factors. The main factors are gravimetric calibration of the sensors within a site and determination of a spatial scaling function of the sensor measurements up to the SMAP resolution scales. The mission has been able to utilize the core site measurements since the launch of the satellite because the infrastructure for data transmission and processing was established well before the launch. The validated soil moisture products will be released by May 2016. In this presentation we will show the performance of the beta version of the soil moisture products (released by November 2015) and discuss the status of the validation process.

  8. Soil Moisture Active Passive Mission: Fault Management Design Analyses

    NASA Technical Reports Server (NTRS)

    Meakin, Peter; Weitl, Raquel

    2013-01-01

    As a general trend, the complexities of modern spacecraft are increasing to include more ambitious mission goals with tighter timing requirements and on-board autonomy. As a byproduct, the protective features that monitor the performance of these systems have also increased in scope and complexity. Given cost and schedule pressures, there is an increasing emphasis on understanding the behavior of the system at design time. Formal test-driven verification and validation (V&V) is rarely able to test the significant combinatorics of states, and often finds problems late in the development cycle forcing design changes that can be costly. This paper describes the approach the SMAP Fault Protection team has taken to address some of the above-mentioned issues.

  9. NASAs Soil Moisture Active Passive (SMAP) Mission and Opportunities For Applications Users

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Escobar, Vanessa; Moran, Susan; Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni G.; Doorn, Brad; Entin, Jared K.

    2013-01-01

    Water in the soil, both its amount (soil moisture) and its state (freeze/thaw), plays a key role in water and energy cycles, in weather and climate, and in the carbon cycle. Additionally, soil moisture touches upon human lives in a number of ways from the ravages of flooding to the needs for monitoring agricultural and hydrologic droughts. Because of their relevance to weather, climate, science, and society, accurate and timely measurements of soil moisture and freeze/thaw state with global coverage are critically important.

  10. Assimilation of soil moisture retrievals or brightness temperature observations from SMOS and SMAP into the GEOS-5 land surface model

    NASA Astrophysics Data System (ADS)

    De Lannoy, G. J. M.; Reichle, R. H.

    2015-12-01

    Two L-band microwave missions are currently collecting passive microwave observations and aiming at an improved estimation of soil moisture. The ESA Soil Moisture Ocean Salinity (SMOS) mission and the NASA Soil Moisture Active Passive (SMAP) mission both provide Level 1 brightness temperature products and derived Level 2 soil moisture retrieval products. The assimilation of these products into land surface models has potential to improve global estimates of soil moisture and other land surface variables. This presentation investigates the benefits and challenges of assimilating either retrievals or brightness temperature observations from either SMOS or SMAP into the Goddard Earth Observing System (GEOS-5) land surface model. It will be shown that the seasonal corrections introduced by retrieval assimilation are slightly different from those with brightness temperature assimilation as a result of the technical implementation of the assimilation scheme. Various resulting land surface variables will also be evaluated against the results from the operational SMAP Level 4 Soil Moisture (L4_SM) product, which assimilates SMAP brightness temperature data.

  11. SMAPVEX08: Soil Moisture Active Passive Validation Experiment 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of retrieval algorithms as well as refining the mission design and instruments. Some of these issues require resolution as soon as possible. Several forums had identified specific ...

  12. SMAP and SMOS soil moisture validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMOS and SMAP satellite missions each produce global soil moisture products using L-band radiometry. Both missions begin with the same fundamental equations in developing their soil moisture retrieval algorithm but implement it differently due to design differences of the instruments. SMOS with ...

  13. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  14. Integrating new satellite observations from SMAP and OCO-2 for analyzing terrestrial water and carbon connections

    NASA Astrophysics Data System (ADS)

    Kimball, J. S.; Stavros, N.; Schimel, D.

    2014-12-01

    The successful inauguration of both NASA OCO-2 (Orbiting Carbon Observatory 2) and SMAP (Soil Moisture Active Passive) missions, and continuing operations from other flagship Earth Observing systems (e.g. MODIS) provide new opportunities to improve understanding of global carbon and water cycle connections over land. Carbon and water cycles interact such that soil moisture and frozen temperatures constrain net ecosystem productivity and terrestrial sources and sinks for atmospheric CO2. OCO-2 and SMAP will have overlapping global observations beginning in 2015. The combined measurements from these sensors provide complimentary information linking top-down atmospheric CO2 measurements with bottom-up carbon fluxes and underlying environmental controls. SMAP will consist of a satellite L-band radar and radiometer suite designed for global monitoring of soil moisture and freeze-thaw dynamics. SMAP science objectives include improving understanding of processes linking terrestrial water, energy and carbon cycles, and quantifying the net carbon flux in boreal landscapes. SMAP products include model enhanced estimates of net ecosystem CO2 flux (NEE) and component carbon fluxes for productivity and respiration; targeted accuracy for NEE is defined at the level of tower (FLUXNET) eddy covariance measurement based CO2 fluxes. OCO-2 has similar carbon science objectives and complimentary observations to SMAP, including canopy fluorescence (SIF) and atmosphere total column CO2 concentrations (XCO2) derived with unprecedented sampling and precision. An initial framework for integrating and analyzing these data is presented in the context of planned post-launch field campaigns and community carbon model synthesis activities. Example research applications are presented using available satellite data prior to SMAP and OCO-2 operations. Activities include using SIF (a proxy for canopy photosynthesis) with MODIS FPAR and SMAP data to improve understanding of canopy structural and

  15. Early results of the Soil Moisture Active Passive Validation Experiment (SMAPVEX15)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In August of 2015, the Soil Moisture Active Passive Validation Experiment (SMAPVEX15) was conducted to provide a high resolution soil moisture dataset for the calibration/validation of the Soil Moisture Active Passive Mission (SMAP). The Upper San Pedro River Basin and the USDA-ARS Walnut Gulch LTAR...

  16. SMAP Cal/Val and sparse networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) satellite project is scheduled for launch in October 2014. Calibration and validation of its science products will occur in the period between 3 and 15 months of launch. In order to accomplish this task within the time frame, extensive preparations are require...

  17. The Soil Moisture Active Passive Marena Oklahoma In Situ Sensor Testbed (SMAP-MOISST): Design and initial results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In situ soil moisture monitoring networks are critical to the development of soil moisture remote sensing missions as well as agricultural and environmental management, weather forecasting and many other endeavors. These in situ networks are composed of a variety of sensors and installation practic...

  18. End-of-Mission Passivation: Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  19. Using Smos Passive Microwave Data to Develop Smap Freeze/thaw Algorithms Adapted for the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Kalantari, P.; Bernier, M.; McDonal, K. C.; Poulin, J.

    2015-12-01

    Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.

  20. SMAP Post-launch Field Campaign Planning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SMAP post-launch Cal/Val activities are intended both to assess the quality of the mission products and to support analyses that lead to their improvement. A suite of complementary methodologies will be employed that will result in a robust global assessment. Much of the work will occur in the C...

  1. Soil Moisture Active Passive Validation Experiment 2008 (SMAPVEX08)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as p...

  2. Soil Moisture Active Passive Satellite Status and Recent Validation Results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission was launched in January, 2015 and began its calibration and validation (cal/val) phase in May, 2015. Cal/Val will begin with a focus on instrument measurements, brightness temperature and backscatter, and evolve to the geophysical products that include...

  3. Evaluation of the Validated Soil Moisture Product from the SMAP Radiometer

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chan, S.; Colliander, A.; Dunbar, S.; Njoku, E.; Bindlish, R.; Chen, F.; Jackson, T.; Burgin, M.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; Cosh, M.; Caldwell, T.; Walker, J.; Wu, X.; Berg, A.; Rowlandson, T.; Pacheco, A.; McNairn, H.; Thibeault, M.; Martinez-Fernandez, J.; Gonzalez-Zamora, A.; Seyfried, M.; Bosch, D.; Starks, P.; Goodrich, D.; Prueger, J.; Palecki, M.; Small, E.; Zreda, M.; Calvet, J-C.; Crow, W.; Kerr, Y.

    2016-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission launched on January 31, 2015 into a sun-synchronous 6 am/6 pm orbit with an objective to produce global mapping of high-resolution soil moisture and freeze-thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The SMAP radiometer began acquiring routine science data on March 31, 2015 and continues to operate nominally. SMAP's radiometer-derived soil moisture product (L2_SM_P) provides soil moisture estimates posted on a 36 km fixed Earth grid using brightness temperature observations from descending (6 am) passes and ancillary data. A beta quality version of L2_SM_P was released to the public in September, 2015, with the fully validated L2_SM_P soil moisture data expected to be released in May, 2016. Additional improvements (including optimization of retrieval algorithm parameters and upscaling approaches) and methodology expansions (including increasing the number of core sites, model-based intercomparisons, and results from several intensive field campaigns) are anticipated in moving from accuracy assessment of the beta quality data to an evaluation of the fully validated L2_SM_P data product.

  4. Model-Based Verification and Validation of the SMAP Uplink Processes

    NASA Technical Reports Server (NTRS)

    Khan, M. Omair; Dubos, Gregory F.; Tirona, Joseph; Standley, Shaun

    2013-01-01

    This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V&V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process.Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based V&V development efforts.

  5. Soil Moisture Active Passive Mission L4_C Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima; Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2016-01-01

    The SMAP satellite was successfully launched January 31st 2015, and began acquiring Earth observation data following in-orbit sensor calibration. Global data products derived from the SMAP L-band microwave measurements include Level 1 calibrated and geolocated radiometric brightness temperatures, Level 23 surface soil moisture and freezethaw geophysical retrievals mapped to a fixed Earth grid, and model enhanced Level 4 data products for surface to root zone soil moisture and terrestrial carbon (CO2) fluxes. The post-launch SMAP mission CalVal Phase had two primary objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product pertaining to the validated release. The L4_C validated product release effectively replaces an earlier L4_C beta-product release (Kimball et al. 2015). The validated release described in this report incorporates a longer data record and benefits from algorithm and CalVal refinements acquired during the SMAP post-launch CalVal intensive period. The SMAP L4_C algorithms utilize a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily net ecosystem CO2 exchange (NEE) and component carbon fluxes for vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape freeze/thaw (FT) controls on GPP and respiration (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and

  6. Calibration Plans for the SMAP Radar

    NASA Astrophysics Data System (ADS)

    West, R. D.; Jaruwatanadilok, S.; Kwoun, O.

    2012-12-01

    This presentation will describe the calibration and validation plans for the Soil Moisture Active Passive (SMAP) radar. The SMAP radar will supply high resolution backscatter measurements using synthetic aperture (SAR) processing that will aid higher resolution soil moisture retrievals in combination with coincident passive radiometry measurements. Science requirements lead to a backscatter accuracy requirement of 1-dB (one-sigma) at a resolution of 3 km. The errors in backscatter come from speckle noise which can be averaged down in time and/or space, and from calibration errors. Calibration errors are expected due to uncertainties in measuring and modeling of internal performance parameters and external effects. Internal performance parameters include the antenna gain pattern, pointing knowledge, receiver gain, and transmit power. Variations in these are expected due to temperature variation and component aging. External effects include Faraday rotation, and radio frequency interference (RFI). Short term variations in instrument parameters will be tracked by internal calibration measurements that are expected to be stable on a time scale up to one month. Long term variations and biases will be removed using measurements of stable reference targets such as parts of the Amazon rain forest, the oceans and possibly the ice sheets. Faraday rotation effects will be modeled using GPS based total electron content measurements and a forward model of the SMAP radar. These data will be compared with Faraday rotation estimates obtained directly from the SMAP radiometer using the third stokes parameter. RFI will be detected with a threshold technique applied right before range compression. RFI contaminated data are removed and replaced by neighboring uncontaminated data. Discarding contaminated data degrades resolution and increases speckle noise, but avoids the larger errors associated with RFI. In this presentation, we will discuss the expected performance of these

  7. Achieving Lights-Out Operation of SMAP Using Ground Data System Automation

    NASA Technical Reports Server (NTRS)

    Sanders, Antonio

    2013-01-01

    The approach used in the SMAP ground data system to provide reliable, automated capabilities to conduct unattended operations has been presented. The impacts of automation on the ground data system architecture were discussed, including the three major automation patterns identified for SMAP and how these patterns address the operations use cases. The architecture and approaches used by SMAP will set the baseline for future JPL Earth Science missions.

  8. Planning for a Canadian Contribution to a Soil Moisture Mission

    NASA Astrophysics Data System (ADS)

    Bélair, Stéphane; Melo, Stella

    2009-12-01

    First Workshop on Canadian SMAP Applications and Cal-Val; Montreal, Quebec, Canada, 6-7 October 2009; The Soil Moisture Active and Passive (SMAP) mission will combine low-frequency microwave radiometer and high-resolution radar instruments to measure surface soil moisture and freeze-thaw state. This NASA mission, managed by the Jet Propulsion Laboratory, has the potential to enable a diverse range of applications including drought and flood guidance, agricultural productivity estimation and risk mitigation, weather forecasting, climate predictions, human health risk assessment and mitigation, and defense systems. Recognizing the potential relevance of SMAP's measurements for Canada, Environment Canada (EC) and the Canadian Space Agency (CSA) are joining efforts to develop Canadian participation in this mission. As part of this effort, the First Workshop on Canadian SMAP Applications and Cal-Val was held in Canada. The main objective of this workshop was to develop a consolidated plan for Canadian participation in the SMAP mission that would address the needs of different Canadian government departments and academia.

  9. Passive Thermal Control Challenges for Future Exploration Missions

    NASA Technical Reports Server (NTRS)

    Rickman, Steven L.

    2004-01-01

    This slide presentation reviews the importance of developing passive thermal control for the future exploration missions envisioned in President Bush's call for human exploration of the Moon and Mars. Included in the presentation is a review of the conditions that make the thermal control very challenging on the Moon and Mars. With the future miniaturization of electronics components, power density and the associated challenges of electronics heat dissipation will provide new challenges. There is a challenge for improvement in modeling and analysis of thermal control systems, and for improved facilities to support testing of thermal-vacuum systems.

  10. Technical Report Series on Global Modeling and Data Assimilation. Volume 40; Soil Moisture Active Passive (SMAP) Project Assessment Report for the Beta-Release L4_SM Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Colliander, Andreas; Conaty, Austin; Jackson, Thomas; Kimball, John

    2015-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public beta release scheduled for 30 October 2015. The primary objective of the beta release is to allow users to familiarize themselves with the data product before the validated product becomes available. The beta release also allows users to conduct their own assessment of the data and to provide feedback to the L4_SM science data product team. The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta release of the data. The validation against

  11. Pre-launch Research to Integrate NASA SMAP Soil Moisture and Freeze/Thaw State Products in Applications

    NASA Astrophysics Data System (ADS)

    Moran, S. M.; Bilair, S.; Isaksen, L.; de Rosnay, P.; Zhan, X.; Ghedira, H.; Yang, Z.; Mueller, R.; Ines, A. M.; Zebiak, S. E.; Champagne, C.; Brown, M.; Escobar, V.; Weiss, B.

    2011-12-01

    The SMAP Mission is currently planned for launch in late 2014 to provide global measurements of soil moisture and freeze/thaw state. For mission planning, a Testbed Facility is in place to test software that will be used to automatically generate the science data products once SMAP is in orbit. Early distribution of a subset of these testbed data products and calibration/validation data sets to SMAP "Early Adopters" has enabled pre-launch applications research. Early Adopters are those groups who have a direct need for SMAP-like soil moisture or freeze/thaw data, and who are planning to apply their own resources to demonstrate the utility of SMAP data for their particular system or model. A set of 7 SMAP Early Adopters were selected in March 2011, with applications including weather forecasts, food security and mapping dust emissions [http://smap.jpl.nasa.gov/files/smap2/adopter1.pdf]. Research projects will be completed with quantitative metrics prior to the launch of SMAP. The feedback from these projects is providing a fundamental understanding of how SMAP data products can be scaled and integrated into hydrologic applications to improve decision-making. A second round of selections for SMAP Early Adopters is planned for February 2012.

  12. Dual stage passive vibration isolation for optical interferometer missions

    NASA Astrophysics Data System (ADS)

    Bronowicki, Allen J.; MacDonald, Rhonda; Gürsel, Yekta; Goullioud, Renaud; Neville, Timothy; Platus, David L.

    2003-02-01

    Future space-based optical instruments such as the Space Interferometer Mission have vibration-induced error allocations at the levels of a few nano-meters and milli-arc-seconds. A dual stage passive isolation approach has been proposed using isolation first at the vibration-inducing reaction wheels, and a second isolation layer between the bus portion of the space vehicle (the backpack) and the optical payload. The development of the backpack isolator is described, with unit transmissibility results for individual isolator struts. The dual stage isolation approach is demonstrated on a dynamically feature-rich, 7-meter structural testbed (STB3). A new passive suspension that mitigates ground vibrations above 0.4 Hz has been integrated into the testbed. A series of OPD performance predictions have been made using measured transfer functions. These indicate that the 5-nm dynamic OPD allocation is within reach using the dual isolator approach. Demonstrating these low response levels in a noisy air environment has proven to be difficult. We are sequentially executing a plan to mitigate acoustic transmission between backpack and flight structure, as well as developing techniques to mitigate effects of background acoustic noise.

  13. Soil Moisture Active Passive Mission L4_SM Data Product Assessment (Version 2 Validated Release)

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf Helmut; De Lannoy, Gabrielle J. M.; Liu, Qing; Ardizzone, Joseph V.; Chen, Fan; Colliander, Andreas; Conaty, Austin; Crow, Wade; Jackson, Thomas; Kimball, John; Koster, Randal D.; Smith, E. Brent

    2016-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public Version 2 validated release scheduled for 29 April 2016. The assessment of the Version 2 L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to up-scaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the wide geographic range of the sparse network sites, and the global assessment of the assimilation diagnostics, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 2 validation and supports the validated release of the data. An analysis of the time average surface and root zone soil moisture shows that the global pattern of arid and humid regions are captured by the L4_SM estimates. Results from the

  14. Utilization of Airborne and in Situ Data Obtained in SGP99, SMEX02, CLASIC and SMAPVEX08 Field Campaigns for SMAP Soil Moisture Algorithm Development and Validation

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Chan, Steven; Yueh, Simon; Cosh, Michael; Bindlish, Rajat; Jackson, Tom; Njoku, Eni

    2010-01-01

    Field experiment data sets that include coincident remote sensing measurements and in situ sampling will be valuable in the development and validation of the soil moisture algorithms of the NASA's future SMAP (Soil Moisture Active and Passive) mission. This paper presents an overview of the field experiment data collected from SGP99, SMEX02, CLASIC and SMAPVEX08 campaigns. Common in these campaigns were observations of the airborne PALS (Passive and Active L- and S-band) instrument, which was developed to acquire radar and radiometer measurements at low frequencies. The combined set of the PALS measurements and ground truth obtained from all these campaigns was under study. The investigation shows that the data set contains a range of soil moisture values collected under a limited number of conditions. The quality of both PALS and ground truth data meets the needs of the SMAP algorithm development and validation. The data set has already made significant impact on the science behind SMAP mission. The areas where complementing of the data would be most beneficial are also discussed.

  15. Advanced Passive Microwave Radiometer Technology for GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Im, Eastwood; Kummerow, Christian; Principe, Caleb; Ruf, Christoper; Wilheit, Thomas; Starr, David (Technical Monitor)

    2002-01-01

    An interferometer-type passive microwave radiometer based on MMIC receiver technology and a thinned array antenna design is being developed under the Instrument Incubator Program (TIP) on a project entitled the Lightweight Rainfall Radiometer (LRR). The prototype single channel aircraft instrument will be ready for first testing in 2nd quarter 2003, for deployment on the NASA DC-8 aircraft and in a ground configuration manner; this version measures at 10.7 GHz in a crosstrack imaging mode. The design for a two (2) frequency preliminary space flight model at 19 and 35 GHz (also in crosstrack imaging mode) has also been completed, in which the design features would enable it to fly in a bore-sighted configuration with a new dual-frequency space radar (DPR) under development at the Communications Research Laboratory (CRL) in Tokyo, Japan. The DPR will be flown as one of two primary instruments on the Global Precipitation Measurement (GPM) mission's core satellite in the 2007 time frame. The dual frequency space flight design of the ERR matches the APR frequencies and will be proposed as an ancillary instrument on the GPM core satellite to advance space-based precipitation measurement by enabling better microphysical characterization and coincident volume data gathering for exercising combined algorithm techniques which make use of both radar backscatter and radiometer attenuation information to constrain rainrate solutions within a physical algorithm context. This talk will discuss the design features, performance capabilities, applications plans, and conical/polarametric imaging possibilities for the LRR, as well as a brief summary of the project status and schedule.

  16. A synergisitic Neural Network Soil Moisture Retrieval Algorithm for SMAP

    NASA Astrophysics Data System (ADS)

    Kolassa, J.; Reichle, R. H.; Gentine, P.; Prigent, C.; Aires, F.; Fang, B.

    2015-12-01

    A Neural Network (NN)-based algorithm is developed to retrieve surface soil moisture from Soil Moisture Active/Passive (SMAP) microwave observations. This statistical approach serves as an alternative to the official Radiative Transfer (RT) based SMAP retrieval algorithm, since it avoids an explicit formulation of the RT processes as well as the use of often uncertain or unavailable a priori knowledge for additional surface parameters. The NN algorithm is calibrated on observations from the SMAP radiometer and radar as well as surface soil moisture fields from the MERRA-2 reanalysis. To highlight different physical aspects of the satellite signals and to maximize the soil moisture information, different preprocessing techniques of the SMAP data are investigated. These include an analysis of radiometer polarization and diurnal indices to isolate the surface temperature contribution, as well as the radar co- and cross-polarized channels to account for vegetation effects. A major difference with respect to the official retrieval is the increased importance given to the information provided by the SMAP radar or other active sensors, utilizing not only the relative spatial structures, but also the absolute soil moisture information provided. The NN methodology combines multiple sensor observations in a data fusion approach and is thus able to fully exploit the complementarity of the information provided by the different instruments. The algorithm is used to compute global estimates of surface soil moisture and evaluated against retrieved soil moisture from SMOS as well as in situ observations from the International Soil Moisture Network (ISMN). The calibration on MERRA-2 data means that the NN retrieval algorithm functions as the model operator in a data assimilation framework yielding soil moisture estimates that are very compatible with the model. This could facilitate the assimilation of SMAP observations into land surface and numerical weather prediction models.

  17. Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data

    NASA Astrophysics Data System (ADS)

    El Sharif, H. A.; Wang, J.; Georgakakos, A. P.; Bras, R. L.

    2013-12-01

    Agricultural models, such as Decision Support System for Agrotechnology Transfer - Cropping Systems Model (DSSAT-CSM) (Tsuji, et al., 1994), have been developed to predict the yield of various crops at field and regional scales. The model simulations of crop yields provide essential information for water resources management. One key input of the agricultural models is soil moisture. So far there are no observed soil moisture data covering the entire US with adequate time (daily) and space (1 km or less) resolutions preferred for model simulation of crop yields. Spatially and temporally downscaled data from the upcoming Soil Moisture Active Passive (SMAP) mission can fill this data gap through the generation of fine resolution soil moisture maps that can be incorporated into DSSAT-CSM model. This study will explore the impact downscaled remotely-sensed soil moisture data can have on agricultural model forecasts of agricultural yield and irrigation demand using synthetically generated data sets exhibiting statistical characteristics (uncertainty) similar to the upcoming SMAP products. It is expected that incorporating this data into agricultural model will prove especially useful for cases in which soil water conductivity characteristics and/or precipitation amount at a specific site of interest are not fully known; furthermore, a proposed Bayesian analysis is expected to generate a soil moisture sequence that reduces the uncertainty in modeled yield and irrigation demand compared to using downscaled remotely-sensed soil moisture or precipitation data alone. References Tsuji, G., Uehara, G., and Balas, S. (1994). DSSAT V3, University of Hawaii, Honolulu.

  18. A change detection algorithm for retrieving high resolution soil moisture from SMAP radar and radiometer observations

    NASA Astrophysics Data System (ADS)

    Piles, M.; Entekhabi, D.; Camps, A.

    2009-09-01

    Soil moisture is a critical hydrological variable that links the terrestrial water, energy and carbon cycles. Global and regional observations of soil moisture are needed to estimate the water and energy fluxes at the land surface, to quantify the net carbon flux in boreal landscapes, to enhance weather and climate forecast skill and to develop improved flood prediction and drought monitoring capability. Active and Passive L-band microwave remote sensing provide a unique ability to monitor global soil moisture over land surfaces with an acceptable spatial resolution and temporal frequency [1]. Radars are capable of a very high spatial resolution (~ 3km) but, since radar backscatter is hightly influenced by surface roughness, vegetation canopy structure and water content, they have a low sensitivity to soil moisture, and the algorithms developed for retrieval of soil moisture from radar backscattering are only valid in low-vegetation water content conditions [3]. In contrast, the spatial resolution of radiometers is typically low (~ 40km), they have a high sensitivity to soil moisture, and the retrieval of soil moisture from radiometers is well established [4]. To overcome the individual limitations of active and passive approaches, the Soil Moisture Active and Passive (SMAP) mission of the NASA, scheduled for launch in the 2010-2013 time frame, is combining these two technologies [2]. The SMAP mission payload consists on an approximately 40-km L-band microwave radiometer measuring hh and vv brightness temperatures and a 3-km L-band synthetic aperture radar sensing backscatter cross-sections at hh, vv and hv polarizations. It will provide global scale land surface soil moisture observations with a three day revisit time and its key derived products are: soil moisture at 40-km for hydroclimatology, obtained from the radiometer measurements; soil moisture at 10-km resolution for hydrometeorology obtained by combining the radar and radiometer measurements in a joint

  19. Technical Report Series on Global Modeling and Data Assimilation. Volume 42; Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L4_C Beta-Release Data Product

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2015-01-01

    During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.

  20. Early results of the Soil Moisture Active Passive Validation Experiment (SMAPVEX15)

    NASA Astrophysics Data System (ADS)

    Cosh, M. H.; Jackson, T. J.; Colliander, A.; Goodrich, D. C.; Holifield Collins, C.; McKee, L.; Kim, S.; Yueh, S. H.

    2015-12-01

    In August of 2015, the Soil Moisture Active Passive Validation Experiment (SMAPVEX15) was conducted to provide a high resolution soil moisture dataset for the calibration/validation of the Soil Moisture Active Passive Mission (SMAP). The Upper San Pedro River Basin and the USDA-ARS Walnut Gulch LTAR Watershed provides the infrastructure for the experiment with its extensive soil moisture and soil temperature network. A total of seven aircraft flights are planned for the Passive Active L-Band Scanning instrument (PALS) to provide a high resolution soil moisture map for a variety of soil moisture conditions across the domain. Extensive surface roughness, vegetation and soil rock fraction mapping was conducted to provide a ground truth estimate of the many ancillary datasets used in the SMAP soil moisture algorithms. A review of the methodologies employed in the experiment, as well as initial findings will be discussed.

  1. Validation of SMAP Radar Vegetation Data Cubes from Agricultural Field Measurements

    NASA Astrophysics Data System (ADS)

    Tsang, L.; Xu, X.; Liao, T.; Kim, S.; Njoku, E. G.

    2012-12-01

    The NASA Soil Moisture Active/Passive (SMAP) Mission will be launched in October 2014. The objective of the SMAP mission is to provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. In the active algorithm, the retrieval is performed based on the backscattering data cube, which are characterized by two surface parameters, which are soil moisture and soil surface rms height, and one vegetation parameter, the vegetation water content. We have developed a physical-based forward scattering model to generate the data cube for agricultural fields. To represent the agricultural crops, we include a layer of cylinders and disks on top of the rough surface. The scattering cross section of the vegetation layer and its interaction with the underground soil surface were calculated by the distorted Born approximation, which give explicitly three scattering mechanisms. A) The direct volume scattering B) The double bounce effect as, and C) The double bouncing effects. The direct volume scattering is calculated by using the Body of Revolution code. The double bounce effects, exhibited by the interaction of rough surface with the vegetation layer is considered by modifying the rough surface reflectivity using the coherent wave as computed by Numerical solution of Maxwell equations of 3 Dimensional simulations (NMM3D) of bare soil scattering. The rough surface scattering of the soil was calculated by NMM3D. We have compared the physical scattering models with field measurements. In the field campaign, the measurements were made on soil moisture, rough surface rms heights and vegetation water content as well as geometric parameters of vegetation. The three main crops lands are grassland, cornfield and soybean fields. The corresponding data cubes are validated using SGP99, SMEX02

  2. SMAP's Radar OBP Algorithm Development

    NASA Technical Reports Server (NTRS)

    Le, Charles; Spencer, Michael W.; Veilleux, Louise; Chan, Samuel; He, Yutao; Zheng, Jason; Nguyen, Kayla

    2009-01-01

    An approach for algorithm specifications and development is described for SMAP's radar onboard processor with multi-stage demodulation and decimation bandpass digital filter. Point target simulation is used to verify and validate the filter design with the usual radar performance parameters. Preliminary FPGA implementation is also discussed.

  3. The SoilSCAPE Network Multiscale In-situ Soil Moisture Measurements: Innovations in Network Design and Approaches to Upscaling in Support of SMAP

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Clewley, D.; Silva, A.; Akbar, R.

    2014-12-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture at 3, 9, and 36 km scales through the use of radar and radiometer data. To validate SMAP products, in-situ sensors are required. Typically, validation plans consist of several sensors installed nearly uniformly in the scene. To upscale the soil moisture estimates to the scales of SMAP products requires a large number of sensors, distributed throughout the instrument footprint. Even for the higher resolution SMAP products (3 km) there are often insufficient sensors available within a resolution cell. The Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) project provides a new adaptive validation strategy, including upscaled estimates of soil moisture. By utilizing smarter network technology and optimized sensor placement, more representative measurements of soil moisture are obtained, at a range of spatial scales with lower costs than traditional networks. A large network was established around the Tonzi Ranch site in central California. The network design comprises multiple sites, each with a 10-30 node cluster taking measurements from up to 4 sensors installed at different depths. The nodes wirelessly communicate to a Local Coordinator, which collects data and transmits to a server (http://soilscape.usc.edu). Each node can communicate with the Coordinator up to a distance of 400m. Each station supports up to 60 nodes. Currently 111 nodes have been installed over 6 sites. The SoilSCAPE nonuniform placement of sensors requires novel upscaling methods. Previous studies have used regression, which works well when the measurement is well correlated with other variables. However, soil moisture dependence on various variables could be complex and nonlinear. To account for such complexities, we use the Random Forests algorithm, which is capable of modeling complex non-linear system and can handle continuous and categorical data. The algorithm has not previously been applied to

  4. Radio Frequency Interference Mitigation for the Planned SMAP Radar and Radiometer

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Chan, Samuel; Belz, Eric; Piepmeier, Jeffrey; Mohammed, Priscilla; Kim, Edward; Johnson, Joel T.

    2011-01-01

    NASA's planned SMAP mission will utilize a radar operating in a band centered on 1.26 GHz and a co-observing radiometer operating at 1.41 GHz to measure surface soil moisture. Both the radar and radiometer sub-systems are susceptible to radio frequency interference (RFI). Any significant impact of such interference requires mitigation in order to avoid degradation in the SMAP science products. Studies of RFT detection and mitigation methods for both the radar and radiometer are continuing in order to assess the risk to mission products and to refine the performance achieved.

  5. Soil moisture sensor intercomparisons at the SMAP marena in situ testbed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In May 2010, a soil moisture sensor intercomparison study was begun in Marena, Oklahoma. This effort is designed to serve as a foundation for incorporating diverse soil moisture networks into the Soil Moisture Active Passive (SMAP) Calibration and Validation program. Various soil moisture sensors, w...

  6. Upscaling sparse, irregularly spaced in situ soil moisture measurements for calibration and validation of SMAP soil moisture products

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Clewley, D.; Moghaddam, M.; Akbar, R.; Silva, A. R. D.

    2015-12-01

    There is a large difference in the footprints over which remote sensing instruments, such as the Soil Moisture Active Passive (SMAP) mission, retrieve soil moisture and that of in situ networks. Therefore a method for upscaling in situ measurements is required before they can be used to validate remote sensing instruments. The upscaling problem is made more difficult when measurements are sparse and irregularly spaced within the footprint. To address these needs, we have developed a method for producing upscaled estimates of soil moisture based on a network of in situ soil moisture measurements and airborne P-band SAR data, and utilizing a Random Forests-based regression algorithm. Sites within the SoilSCAPE network, for which the technique was developed, typically contains sensors at ~30 locations, with each location sampled at multiple depths. Measurements are taken at 20 minute intervals and averaged over a selectable time interval, thereby supporting near-real time generation of soil moisture maps. The collected measurements are automatically uploaded to a central database from which they can be accessed for use in the regression algorithm. Our regression-based approach works well with irregularly-spaced sensors by incorporating a set of data layers that correlate well with soil moisture. The layers include thematic land cover, elevation, slope, aspect, flow accumulation, clay fraction, air temperature, precipitation, and P-Band HH, VV, and HV backscatter. Values from these data layers are extracted for each sensor location and applied to train the Random Forests algorithm. The decision trees generated are then applied to estimate soil moisture at a 100 m spacing throughout the network region, after which the evenly-spaced values are averaged to accord with the 3-, 9-, and 36-km SMAP measurement grids. The resulting set of near-real time soil moisture estimates suitable for SMAP calibration and validation is placed online for use by the SMAP Cal/Val team

  7. Data Assimilation of SMAP Observations and the Impact on Weather Forecasts and Heat Stress

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Blankenship, Clay; Crosson, William; White, Khristopher

    2014-01-01

    SPoRT produces real-time LIS soil moisture products for situational awareness and local numerical weather prediction over CONUS, Mesoamerica, and East Africa ?Currently interact/collaborate with operational partners on evaluation of soil moisture products ?Drought/fire ?Extreme heat ?Convective initiation ?Flood and water borne diseases ?Initial efforts to assimilate L2 soil moisture observations from SMOS (as a precursor for SMAP) have been successful ?Active/passive blended product from SMAP will be assimilated similarly and higher spatial resolution should improve on local-scale processes

  8. Passive Aerogravity Assisted Trajectories for a Mars Atmospheric Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Sklyanskiy, Evgeniy; You, Tung-Han; Cheatwood, Neil; Dwyer Cianciolo, Alicia; Bowes, Angela

    2011-01-01

    A number of studies have demonstrated that aerodynamic lift during a planetary low-altitude atmospheric flyby can increase the V(sub infinity) bending angle and the total delta V achievable from gravity assist. Aero-Gravity Assist (AGA) trajectories of this type require a significantly high spacecraft L/D (lift-to-drag) ratio and a fairly robust closed-loop guidance algorithm capable of providing a desired control authority for level, nearly constant-altitude atmospheric flight. The AGA concept has been described in some previous publications as one of the techniques for Mars and Venus atmospheric sample return mission design strategies. Recent analysis has demonstrated that passive, ballistic (zero-lift) aeropass trajectories could equally satisfy potential future sample return mission objectives and provide quite robust and simple alternatives to a complex guided AGA lifting trajectory design.

  9. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury. PMID:15813276

  10. Airborne active and passive L-band measurements using PALS instrument in SMAPVEX12 soil moisture field campaign

    NASA Astrophysics Data System (ADS)

    Colliander, Andreas; Yueh, Simon; Chazanoff, Seth; Dinardo, Steven; O'Dwyer, Ian; Jackson, Thomas; McNairn, Heather; Bullock, Paul; Wiseman, Grant; Berg, Aaron; Magagi, Ramata; Njoku, Eni

    2012-10-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in late 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada, and other Canadian and US institutions in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of a data record that features long time-series with varying soil moisture and vegetation conditions over an aerial domain of multiple parallel flight lines. The coincident active and passive L-band data was acquired with the PALS (Passive Active L-band System) instrument. The measurements were conducted over the experiment domain every 2-3 days on average, over a period of 43 days. The preliminary calibration of the brightness temperatures obtained in the campaign has been performed. Daily lake calibrations were used to adjust the radiometer calibration parameters, and the obtained measurements were compared against the raw in situ soil moisture measurements. The evaluation shows that this preliminary calibration of the data produces already a consistent brightness temperature record over the campaign duration, and only secondary adjustments and cleaning of the data is need before the data can be applied to the development and validation of SMAP algorithms.

  11. Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Song, Hongting; Tan, Lei; Li, Yinan; Li, Hao

    2014-11-01

    Soil moisture is a key component in the hydrologic cycle and climate system. It is an important input parameter for many hydrologic and meteorological models. NASA'S upcoming Soil Moisture Active Passive (SMAP) mission, to be launched in October 2014, will address this need by utilizing passive and active microwave measurements at L-band, which will penetrate moderately dense canopies. In preparation for the SMAP mission, the Soil Moisture Validation Experiment 2012 (SMAPVEX12) was conducted from 6 June to 17 July 2012 in the Carment-Elm Creek area in Manitoba, Canada. Over a period of six weeks diverse land cover types ranging from agriculture over pasture and grassland to forested sites were re-visited several times a week. The Passive/Active L-band Sensor (PALS) provides radiometer products, vertically and horizontally polarized brightness temperatures, and radar products. Over the past two decades, successful estimation of soil moisture has been accomplished using passive and active L-band data. However, remaining uncertainties related to surface roughness and the absorption, scattering, and emission by vegetation must be resolved before soil moisture retrieval algorithms can be applied with known and acceptable accuracy using satellite observations. This work focuses on analyzing the Passive/Active L-band Sensor observations of sites covered during SMAPVEX12, investigating the observed data, parameterizing vegetation covered surface model, modeling inversion algorithm and analyzing observed soil moisture changes over the time period of six weeks. The data and analysis results from this study are aimed at increasing the accuracy and range of validity of SMAP soil moisture retrievals via enhancing the accuracy for soil moisture retrieval.

  12. SMAP/SMOS Soil moisture brightness temperature virtual observations to study data assimilation scheme

    NASA Astrophysics Data System (ADS)

    Saavedra, P.; Simmer, C.

    2015-12-01

    A multidisciplinary research unit has been established in order to develop a data assimilation framework for coupled subsurface-land surface-atmosphere systems (SLASs), i.e. the coupled suit of models TerrSysMP comprised by ParFlow (subsurface), Community Land Model (CLM, surface), and COSMO (atmosphere). It aims to test how different kinds of observations may improve system state estimations with a focus on inter-compartmental fluxes of matter and heat energy. To that goal a simulated virtual reality (VR) catchment is being generated as a tool to test data assimilation schemes for SLAS. The virtual reality overcomes the problem of data scarcity for the different components as subsurface, soil and atmosphere in the real world and provides the full system state as a basis for the evaluation of the effectiveness of data assimilation strategies. The first version of the VR uses TerrSysMP - reduced to COSMO and CLM - to generate virtual observations such as satellite measurements, radar observations and meteorological station data. Currently VR simulations are available for a region encompassing the Neckar catchment located in south-west Germany with 1.1km horizontal resolution for the time period from 2007 to 2013. This contribution focuses on the evaluation of satellite observations of the microwave emission at L-band as observed by the current satellite missions SMAP and SMOS. By adjusting the Community Microwave Emission Model (CMEM) as a forward operator for the VR framework, a first set of virtual passive microwave observations is generated. SMAP and SMOS observations are simulated taking into account orbit characteristics, revisit times, and angular viewing geometries. The virtual observations will be statistically compared with available real observations to evaluate the degree of reality in terms of mean values and dynamic ranges. These comparisons will hint to systematic differences between TerrSysMP and reality, which need to be addressed by appropriate bias

  13. Advances in Assimilation of Satellite-Based Passive Microwave Observations for Soil-Moisture Estimation

    NASA Technical Reports Server (NTRS)

    De Lannoy, Gabrielle J. M.; Pauwels, Valentijn; Reichle, Rolf H.; Draper, Clara; Koster, Randy; Liu, Qing

    2012-01-01

    Satellite-based microwave measurements have long shown potential to provide global information about soil moisture. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS, [1]) mission as well as the future National Aeronautics and Space Administration (NASA) Soil Moisture Active and Passive (SMAP, [2]) mission measure passive microwave emission at L-band frequencies, at a relatively coarse (40 km) spatial resolution. In addition, SMAP will measure active microwave signals at a higher spatial resolution (3 km). These new L-band missions have a greater sensing depth (of -5cm) compared with past and present C- and X-band microwave sensors. ESA currently also disseminates retrievals of SMOS surface soil moisture that are derived from SMOS brightness temperature observations and ancillary data. In this research, we address two major challenges with the assimilation of recent/future satellite-based microwave measurements: (i) assimilation of soil moisture retrievals versus brightness temperatures for surface and root-zone soil moisture estimation and (ii) scale-mismatches between satellite observations, models and in situ validation data.

  14. Shielding from the Cosmic Radiation for Interplanetary Missions: Active and Passive Methods

    NASA Astrophysics Data System (ADS)

    Spillantini, P.; Topical Team Of ESA On Radiation Shielding

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is highly problematic, because of the high-energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of magnetic fields to deflect the charged particles from the spacecraft target. A shielding system based on superconducting magnetic lenses could effectively shield a spacecraft from solar particle events, at least for the portion of energetic particles roughly collinear with the direction of the solar magnetic field. To address these issues, the European Space Agency (ESA) established a Topical Team in 2003 including several European experts in the field of space radiation shielding and superconducting magnets. The Topical Team identified a number of open research questions to be addressed, including development and testing of novel shielding materials, studies on the angular distributions of energetic solar particles, and cooling systems for magnetic lenses in space. A detailed report to ESA will be published within the Fall of the 2004. A summary of the Topical Team conclusions and recommendations will be discussed in this paper. (Work supported by ESA Opportunities for Research in Life Sciences grant # ESA-RA-LS-01-PREP/TT-007).

  15. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  16. A Dual-Polarized, Dual-Frequency, Corrugated Feed Horn for SMAP

    NASA Technical Reports Server (NTRS)

    Focardi, Paolo; Brown, Paula R.

    2012-01-01

    SMAP will be the first Earth science mission to use a deployable 6m mesh reflector for both radar and radiometric measurements from low Earth orbit. The instrument antenna will spin at about 14 rpm, making the design of both reflector and feed more challenging. While the performance requirements imposed by the radar instrument are relatively benign, those pertinent to the radiometer are more difficult to meet. Extreme care was necessary in designing the feed, especially from a performance stability perspective. Thermal variations due to the spacecraft going in and out of eclipse during orbit and direct solar radiation into the horn are just two of the challenges faced during the design phase. In this paper, the basic concepts behind the design of SMAP's feed will be discussed. Each component of the feed will be analyzed in detail with particular emphasis on its impact on major RF requirements. Overall performance of the feed will also be discussed.

  17. Comparison of SMOS and SMAP Soil Moisture Retrieval Approaches Using Tower-based Radiometer Data over a Vineyard Field

    NASA Technical Reports Server (NTRS)

    Miernecki, Maciej; Wigneron, Jean-Pierre; Lopez-Baeza, Ernesto; Kerr, Yann; DeJeu, Richard; DeLannoy, Gabielle J. M.; Jackson, Tom J.; O'Neill, Peggy E.; Shwank, Mike; Moran, Roberto Fernandez; Bircher, Simone; Laurence, Heather; Mialon, Arnaud; Bitar, Ahmad Al; Richaume, Philippe

    2014-01-01

    The objective of this study was to compare several approaches to soil moisture (SM) retrieval using L-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30-60). Based on a three year data set (2010-2012), several SM retrieval approaches developed for spaceborne missions including AMSR-E (Advanced Microwave Scanning Radiometer for EOS), SMAP (Soil Moisture Active Passive) and SMOS were compared. The approaches include: the Single Channel Algorithm (SCA) for horizontal (SCA-H) and vertical (SCA-V) polarizations, the Dual Channel Algorithm (DCA), the Land Parameter Retrieval Model (LPRM) and two simplified approaches based on statistical regressions (referred to as 'Mattar' and 'Saleh'). Time series of vegetation indices required for three of the algorithms (SCA-H, SCA-V and Mattar) were obtained from MODIS observations. The SM retrievals were evaluated against reference SM values estimated from a multiangular 2-Parameter inversion approach. The results obtained with the current base line algorithms developed for SMAP (SCA-H and -V) are in very good agreement with the reference SM data set derived from the multi-angular observations (R2 around 0.90, RMSE varying between 0.035 and 0.056 m3m3 for several retrieval configurations). This result showed that, provided the relationship between vegetation optical depth and a remotely-sensed vegetation index can be calibrated, the SCA algorithms can provide results very close to those obtained from multi-angular observations in this study area. The approaches based on statistical regressions provided similar results and the

  18. SoilSCAPE in-Situ Observations of Soil Moisture for SMAP Validation: Pushing the Envelopes of Spatial Coverage and Energy Efficiency in Sparse Wireless Sensor Networks (Invited)

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A.; Clewley, D.; Akbar, R.; Entekhabi, D.

    2013-12-01

    Soil Moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) is a wireless in-situ sensor network technology, developed under the support of NASA ESTO/AIST program, for multi-scale validation of soil moisture retrievals from the Soil Moisture Active and Passive (SMAP) mission. The SMAP sensor suite is expected to produce soil moisture retrievals at 3 km scale from the radar instrument, at 36 km from the radiometer, and at 10 km from the combination of the two sensors. To validate the retrieved soil moisture maps at any of these scales, it is necessary to perform in-situ observations at multiple scales (ten, hundreds, and thousands of meters), representative of the true spatial variability of soil moisture fields. The most recent SoilSCAPE network, deployed in the California central valley, has been designed, built, and deployed to accomplish this goal, and is expected to become a core validation site for SMAP. The network consists of up to 150 sensor nodes, each comprised of 3-4 soil moisture sensors at various depths, deployed over a spatial extent of 36 km by 36 km. The network contains multiple sub-networks, each having up to 30 nodes, whose location is selected in part based on maximizing the land cover diversity within the 36 km cell. The network has achieved unprecedented energy efficiency, longevity, and spatial coverage using custom-designed hardware and software protocols. The network architecture utilizes a nested strategy, where a number of end devices (EDs) communicate to a local coordinator (LC) using our recently developed hardware with ultra-efficient circuitry and best-effort-timeslot allocation communication protocol. The LCs in turn communicates with the base station (BS) via text messages and a new compression scheme. The hardware and software technologies required to implement this latest deployment of the SoilSCAPE network will be presented in this paper, and several data sets resulting from the measurements will be shown. The data are

  19. Cloud and radiation mission with active and passive sensing from the space station

    SciTech Connect

    Spinhirne, James D.

    1999-01-22

    A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude, available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.

  20. Dynamic Modeling of the SMAP Rotating Flexible Antenna

    NASA Technical Reports Server (NTRS)

    Nayeri, Reza D.

    2012-01-01

    Dynamic model development in ADAMS for the SMAP project is explained: The main objective of the dynamic models are for pointing error assessment, and the control/stability margin requirement verifications

  1. Vegetation stress from soil moisture and chlorophyll fluorescence: synergy between SMAP and FLEX approaches

    NASA Astrophysics Data System (ADS)

    Moreno, Jose; Moran, Susan

    2014-05-01

    Vegetation stress detection continues being a focal objective for remote sensing techniques. It has implications not only for practical applications such as irrigation optimization or precision agriculture, but also for global climate models, providing data to better link water and carbon exchanges between the surface and the atmospheric and improved parameterization of the role of terrestrial vegetation in the coupling of water and carbon cycles. Traditional approaches to map vegetation stress using remote sensing techniques have been based on measurements of soil moisture status, canopy (radiometric) temperature and, to a lesser extent, canopy water content, but new techniques such as the dynamics of vegetation fluorescence emission, are also now available. Within the context of the preparatory activities for the SMAP and FLEX missions, a number of initiatives have been put in place to combine modelling activities and field experiments in order to look for alternative and more efficient ways of detecting vegetation stress, with emphasis on synergistic remote sensing approaches. The potential of solar-induced vegetation fluorescence as an early indicator of stress has been widely demonstrated, for different type of stress conditions: light amount (excess illumination) and conditions (direct/diffuse), temperature extremes (low and high), soil water availability (soil moisture), soil nutrients (nitrogen), atmospheric water vapour and atmospheric CO2 concentration. The effects caused by different stress conditions are sometimes difficult to be decoupled, also because different causes are often combined, but in general they then to change the overall fluorescence emission (modulating amplitude) or changing the relative contributions of photosystems PSI and PSII or the relative fluorescence re-absorption effects caused by modifications in the structure of pigment bed responsible for light absorption, in particular for acclimation for persistent stress conditions. While

  2. New Combined L-band Active/Passive Soil Moisture Retrieval Algorithm Optimized for Argentine Plains

    NASA Astrophysics Data System (ADS)

    Bruscantini, C. A.; Grings, F. M.; Salvia, M.; Ferrazzoli, P.; Karszenbaum, H.

    2015-12-01

    The ability of L-band passive microwave satellite observations to provide soil moisture (mv) measurements is well known. Despite its high sensitivity to near-surface mv, radiometric technology suffers from having a relatively low spatial resolution. Conversely active microwave observations, although their finer resolution, are difficult to be interpreted for mv content due to the confounding effects of vegetation and roughness. There have been and there are strong motivations for the realization of satellite missions that carry passive and active microwave instruments on board. This has also led to important contributions in algorithm development. In this line of work, NASA-CONAE SAC-D/Aquarius mission had on board an L band radiometer and scatterometer. This was followed by the launch of NASA SMAP mission (Soil Moisture Active Passive), as well as several airborne campaigns that provide active and passive measurements. Within this frame, a new combined active/passive mv retrieval algorithm is proposed by deriving an analytical expression of brightness temperature and radar backscattering relation using explicit semi-empirical models. Simple models (i.e. that can be easily inverted and have relatively low amount of ancillary parameters) were selected: ω-τ model (Jackson et al., 1982, Water Resources Research) and radar-only model (Narvekar et al., 2015, IEEE Transactions on Geoscience and Remote Sensing). A major challenge involves coupling the active and passive models to be consistent with observations. Coupling equations can be derived using theoretical active/passive high-order radiative transfer models, such as 3D Numerical Method of Maxwell equations (Zhou et al., 2004, IEEE Transactions on Geoscience and Remote Sensing) and Tor Vergata (Ferrazzoli et al., 1995,Remote Sensing of Environment) models. In this context, different coupling equations can be optimized for different land covers using theoretical forward models with specific parametrization for each

  3. Developments in passive shielding for human explorations missions: the ROSSINI study

    NASA Astrophysics Data System (ADS)

    Giraudo, Martina; Lobascio, Cesare

    The aim of the “ROSSINI” (RadiatiOn Shielding by ISRU and INnovative materIals for EVA, vehicles and habitats) project, funded by the European Space Agency, is to investigate shielding materials to be used in deep space and planetary exploration. Simulants of materials that can be found on Moon and Mars planetary surfaces (e.g., regolith) and innovative materials rich in Hydrogen have been selected and tested with high energy (2.5 GeV) protons and 1 GeV/n Fe-56 ions (taken as representative of the whole GCR spectrum). Dose reduction, Bragg peak and neutron yield have been calculated on a subset of the irradiated targets. Geant4 Monte Carlo simulations through Geant4 Radiation Analysis for Space (GRAS) tools have been performed and compared to the obtained experimental data, to benchmark the computer codes. A simplified inflatable habitat for exploration missions has been defined choosing the innovative materials evaluated in the ROSSINI study. Monte Carlo simulations are ongoing (the project is to be concluded in early spring 2014) with the codes investigated, to compare the dose reduction resulting inside the simplified habitat with different shielding solutions.

  4. Sensitivity of Active and Passive Microwave Observations to Soil Moisture during Growing Corn

    NASA Astrophysics Data System (ADS)

    Judge, J.; Monsivais-Huertero, A.; Liu, P.; De Roo, R. D.; England, A. W.; Nagarajan, K.

    2011-12-01

    Soil moisture (SM) in the root zone is a key factor governing water and energy fluxes at the land surface and its accurate knowledge is critical to predictions of weather and near-term climate, nutrient cycles, crop-yield, and ecosystem productivity. Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The two satellite-based missions dedicated to soil moisture estimation include, the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the planned NASA Soil Moisture Active/Passive (SMAP) [4] mission. The SMAP mission will include active and passive sensors at L-band to provide global observations of SM, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture estimates through data assimilation into land surface models (LSMs). Both the active (radar) and passive (radiometer) microwave sensors measure radiation quantities that are functions of soil dielectric constant and exhibit similar sensitivities to SM. In addition to the SM sensitivity, radar backscatter is highly sensitive to roughness of soil surface and scattering within the vegetation. These effects may produce a much larger dynamic range in backscatter than that produced due to SM changes alone. In this study, we discuss the field observations of active and passive signatures of growing corn at L-band from several seasons during the tenth Microwave, Water and Energy Balance Experiment (MicroWEX-10) conducted in North Central Florida, and to understand the sensitivity of these signatures to soil moisture under dynamic vegetation conditions. The MicroWEXs are a series of season-long field experiments conducted during the growing seasons of sweet corn, cotton, and energy cane over the past six years (for example, [22]). The corn was planted on July 5 and harvested on September 23, 2011 during MicroWEX-10. The size of the field was 0.04 km2 and the soils

  5. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  6. Potential of bias correction for downscaling passive microwave and soil moisture data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave satellites such as SMOS (Soil Moisture and Ocean Salinity) or SMAP (Soil Moisture Active Passive) observe brightness temperature (TB) and retrieve soil moisture at a spatial resolution greater than most hydrological processes. Bias correction is proposed as a simple method to disag...

  7. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve soil moisture from the Earth’s surface. Low frequency observations have the most sensitivity to soil moisture, therefore the modern Soil Moisture and Ocean Salinity (SMOS) and future Soil Moisture Active and Passive (SMAP) ...

  8. Information System Life-Cycle And Documentation Standards (SMAP DIDS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Although not computer program, SMAP DIDS written to provide systematic, NASA-wide structure for documenting information system development projects. Each DID (data item description) outlines document required for top-quality software development. When combined with management, assurance, and life cycle standards, Standards protect all parties who participate in design and operation of new information system.

  9. Evaluation of Radar Vegetation Indices for Vegetation Water Content Estimation Using Data from a Ground-Based SMAP Simulator

    NASA Technical Reports Server (NTRS)

    Srivastava, Prashant K.; O'Neill, Peggy; Cosh, Michael; Lang, Roger; Joseph, Alicia

    2015-01-01

    Vegetation water content (VWC) is an important component of microwave soil moisture retrieval algorithms. This paper aims to estimate VWC using L band active and passive radar/radiometer datasets obtained from a NASA ground-based Soil Moisture Active Passive (SMAP) simulator known as ComRAD (Combined Radar/Radiometer). Several approaches to derive vegetation information from radar and radiometer data such as HH, HV, VV, Microwave Polarization Difference Index (MPDI), HH/VV ratio, HV/(HH+VV), HV/(HH+HV+VV) and Radar Vegetation Index (RVI) are tested for VWC estimation through a generalized linear model (GLM). The overall analysis indicates that HV radar backscattering could be used for VWC content estimation with highest performance followed by HH, VV, MPDI, RVI, and other ratios.

  10. Using SMAP data to improve drought early warning over the US Great Plains

    NASA Astrophysics Data System (ADS)

    Fu, R.; Fernando, N.; Tang, W.

    2015-12-01

    A drought prone region such as the Great Plains of the United States (US GP) requires credible and actionable drought early warning. Such information cannot simply be extracted from available climate forecasts because of their large uncertainties at regional scales, and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA North American Multi-Model Ensemble experiment (NMME) are much more reliable for winter and spring than for the summer season for the US GP. To mitigate the weaknesses of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies, as the scientific basis for a statistical drought early warning system. This system uses percentile soil moisture anomalies in spring as a key input to provide a probabilistic summer drought early warning. The latter outperforms the dynamic prediction over the US Southern Plains and has been used by the Texas state water agency to support state drought preparedness. A main source of uncertainty for this drought early warning system is the soil moisture input obtained from the NOAA Climate Forecasting System (CFS). We are testing use of the beta version of NASA Soil Moisture Active Passive (SMAP) soil moisture data, along with the Soil Moisture and Ocean Salinity (SMOS), and the long-term Essential Climate Variable Soil Moisture (ECV-SM) soil moisture data, to reduce this uncertainty. Preliminary results based on ECV-SM suggests satellite based soil moisture data could improve early warning of rainfall anomalies over the western US GP with less dense vegetation. The skill degrades over the eastern US GP where denser vegetation is found. We evaluate our SMAP-based drought early warning for 2015 summer against observations.

  11. TMS reveals a direct influence of spinal projections from human SMAp on precise force production.

    PubMed

    Entakli, Jonathan; Bonnard, Mireille; Chen, Sophie; Berton, Eric; De Graaf, Jozina B

    2014-01-01

    The corticospinal (CS) system plays an important role in fine motor control, especially in precision grip tasks. Although the primary motor cortex (M1) is the main source of the CS projections, other projections have been found, especially from the supplementary motor area proper (SMAp). To study the characteristics of these CS projections from SMAp, we compared muscle responses of an intrinsic hand muscle (FDI) evoked by stimulation of human M1 and SMAp during an isometric static low-force control task. Subjects were instructed to maintain a small cursor on a target force curve by applying a pressure with their right precision grip on a force sensor. Neuronavigated transcranial magnetic stimulation was used to stimulate either left M1 or left SMAp with equal induced electric field values at the defined cortical targets. The results show that the SMAp stimulation evokes reproducible muscle responses with similar latencies and amplitudes as M1 stimulation, and with a clear and significant shorter silent period. These results suggest that (i) CS projections from human SMAp are as rapid and efficient as those from M1, (ii) CS projections from SMAp are directly involved in control of the excitability of spinal motoneurons and (iii) SMAp has a different intracortical inhibitory circuitry. We conclude that human SMAp and M1 both have direct influence on force production during fine manual motor tasks. PMID:24164635

  12. Common Spacecraft Bus for Earth Science Decadal Survey Missions

    NASA Astrophysics Data System (ADS)

    Cook, T.; Klaus, K.; Elsperman, M. S.

    2010-12-01

    Our study assessed the overall technical and programmatic viability of a Common Spacecraft Bus (CSB) approach that could satify the requirements of multiple Earth Science Decadal Mission programs resulting in cost and schedule savings over individual programs. Our approach developed a Common Payload Interface (CPIF) concept based on assessment of TIER I mission requirements to enable flexibility to the payloads while maintaining maximum commonality in the bus design. Satellite missions in Tier 1 of the Decadal Survey are missions with a launch period beginning in 2014. Four missions are planned and will measure climate change by examining solar and earth radiation, soil moisture and freeze/thaw cycles, ice sheet height differences, surface and ice sheet deformation from natural hazards, and vegetation structure (SMAP, ICESat-2, CLARREO, and DESDynI). Our study goals and objectives were: Develop a Common Spacecraft Bus (CSB) that incorporates the defined CPIF that can be configured to meet the individual Tier I mission specific requirements with minimal impacts or changes; Develop a efficient Assembly, Integration and Test (AI&T) flow and program schedule that can accommodate multiple Observatory level spacecraft processing and provide the flexibility to respond to program changes and other schedule perturbations; Develop a ROM cost for the CSB program approach, based on the reference design and schedules; Evaluate the CSB capability to host payloads of opportunity on the Tier I spacecraft; Evaluate the CSB capability to host the Tier II missions and what changes are required from the Tier I CSB We concluded: CSB approach for Tier I missions is feasible with very good synergy; Program Execution and AI&T approaches can be defined to take maximum advantage of CSB program approach and meet required launch readiness dates; ROM cost analysis indicates that a CSB approach is viable and offers substantial savings over separate procurements The Common Spacecraft Bus

  13. Soil Moisture Retrieval from Active/Passive Microwave Observation Synergy Using a Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Kolassa, J.; Gentine, P.; Aires, F.; Prigent, C.

    2014-12-01

    In November 2014 NASA will launch the Soil Moisture Active/Passive (SMAP) mission carrying an L-band radiometer and radar sensor to observe surface soil moisture globally. This new type of instrument requires the development of innovative retrieval algorithms that are able to account for the different surface contributions to the satellite signal and at the same time can optimally exploit the synergy of active and passive microwave data. In this study, a neural network (NN) based retrieval algorithm has been developed using the example of active microwave observations from ASCAT and passive microwave observations from AMSR-E. In a first step, different preprocessing techniques, aiming to highlight the various contributions to the satellite signal, have been investigated. It was found that in particular for the passive microwave observations, the use of multiple frequencies and preprocessing steps could help the retrieval to disentangle the effects of soil moisture, vegetation and surface temperature. A spectral analysis investigated the temporal patterns in the satellite observations and thus assessed which soil moisture temporal variations could realistically be retrieved. The preprocessed data was then used in a NN based retrieval to estimate daily volumetric surface soil moisture at the global scale for the period 2002-2013. It could be shown that the synergy of data from the two sensors yielded a significant improvement of the retrieval performance demonstrating the benefit of multi-sensor approaches as proposed for SMAP. A comparison with a more traditional retrieval product merging approach furthermore showed that the NN technique is better able to exploit the complementarity of information provided by active and passive sensors. The soil moisture retrieval product was evaluated in the spatial, temporal and frequency domain against retrieved soil moisture from WACMOS and SMOS, modeled fields from ERA-interim/Land and in situ observations from the

  14. Airborne Active and Passive L-Band Observations in Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12)

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Yueh, S. H.; Chazanoff, S.; Jackson, T. J.; McNairn, H.; Bullock, P.; Wiseman, G.; Berg, A. A.; Magagi, R.; Njoku, E. G.

    2012-12-01

    NASA's (National Aeronautics and Space Administration) Soil Moisture Active Passive (SMAP) Mission is scheduled for launch in October 2014. The objective of the mission is global mapping of soil moisture and freeze/thaw state. Merging of active and passive L-band observations of the mission will enable unprecedented combination of accuracy, resolution, coverage and revisit-time for soil moisture and freeze/thaw state retrieval. For pre-launch algorithm development and validation the SMAP project and NASA coordinated a field campaign named as SMAPVEX12 (Soil Moisture Active Passive Validation Experiment 2012) together with Agriculture and Agri-Food Canada in the vicinity of Winnipeg, Canada in June-July, 2012. The main objective of SMAPVEX12 was acquisition of data record that features long-time series with varying soil moisture and vegetation conditions (for testing the application of time-series approach) over aerial domain of multiple parallel lines (for spatial disaggregation studies). The coincident active and passive L-band data were acquired using the Passive Active L-band System (PALS), which is an airborne radiometer and radar developed for testing L-band retrieval algorithms. For SMAPVEX12 PALS was installed on a Twin Otter aircraft. The flight plan included flights at two altitudes. The higher altitude was used to map the whole experiment domain and the lower altitude was used to obtain measurements over a specific set of field sites. The spatial resolution (and swath) of the radar and radiometer from low altitude was about 600 m and from high altitude about 1500 m. The PALS acquisitions were complemented with high resolution (~10 m) L-band SAR measurements carried out by UAVSAR instrument on-board G-III aircraft. The campaign ran from June 7 until July 19. The PALS instrument conducted 17 brightness temperature and backscatter measurement flights and the UAVSAR conducted 14 backscatter measurement flights. The airborne data acquisition was supported by

  15. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  16. Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over Valencia Anchor Station by Using Downscaling Technique

    NASA Astrophysics Data System (ADS)

    Ansari Amoli, Abdolreza; Lopez-Baeza, Ernesto; Mahmoudi, Ali; Mahmoodi, Ali

    2016-07-01

    Synergistic Use of SMOS Measurements with SMAP Derived and In-situ Data over the Valencia Anchor Station by Using a Downscaling Technique Ansari Amoli, A.(1),Mahmoodi, A.(2) and Lopez-Baeza, E.(3) (1) Department of Earth Physics and Thermodynamics, University of Valencia, Spain (2) Centre d'Etudes Spatiales de la BIOsphère (CESBIO), France (3) Department of Earth Physics and Thermodynamics, University of Valencia, Spain Soil moisture products from active sensors are not operationally available. Passive remote sensors return more accurate estimates, but their resolution is much coarser. One solution to overcome this problem is the synergy between radar and radiometric data by using disaggregation (downscaling) techniques. Few studies have been conducted to merge high resolution radar and coarse resolution radiometer measurements in order to obtain an intermediate resolution product. In this paper we present an algorithm using combined available SMAP (Soil Moisture Active and Passive) radar and SMOS (Soil Moisture and Ocean Salinity) radiometer measurements to estimate surface soil moisture over the Valencia Anchor Station (VAS), Valencia, Spain. The goal is to combine the respective attributes of the radar and radiometer observations to estimate soil moisture at a resolution of 3 km. The algorithm disaggregates the coarse resolution SMOS (15 km) radiometer brightness temperature product based on the spatial variation of the high resolution SMAP (3 km) radar backscatter. The disaggregation of the radiometer brightness temperature uses the radar backscatter spatial patterns within the radiometer footprint that are inferred from the radar measurements. For this reason the radar measurements within the radiometer footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and radiometer measurements.

  17. Data Management System Reuse for Visualization of JPL's SMAP Project

    NASA Astrophysics Data System (ADS)

    Alarcon, C.; Huang, T.; Roberts, J. T.; Rodriguez, J. D.; Quach, N. T.; De Cesare, C.; Hall, J. R.

    2015-12-01

    The Imagery Exchange (TIE) is a scalable and efficient imagery data management system that powers the WMS web server OnEarth. Designed and developed at the Jet Propulsion Laboratory (JPL), TIE's primary purpose was to power the NASA's Global Imagery Browse Services (GIBS), a system that provides full resolution imagery from a broad set of Earth science disciplines to the public. The SMAP project at JPL had just about all of its requirements met with GIBS but required very project-specific behavior and automation for the Cal-Val phase of the project. Thanks to the extendable design of TIE (already an extension of JPL's Horizon framework) and Amazon's GovCloud services, we were able to meet the needs of the project without any rewrite of the system while significantly expanding the capabilities of an already robust system through well modularized feature additions. In this presentation, we will talk about the efforts made to re-use the already developed data system TIE for SMAP with minimal turn around. Leveraging cloud resources and standard interfaces, we were able to satisfy new project requirements in a very short amount of time.

  18. Detecting soil moisture pulses and associated vegetation response in a southern Arizona watershed using SMAP and MODIS

    NASA Astrophysics Data System (ADS)

    Barnes, M.; Moran, M. S.; Scott, R. L.

    2015-12-01

    In arid and semiarid ecosystems, rainfall pulses and associated vegetation responses play a crucial role in ecosystem and hydrologic functioning. While rainfall pulses are generally correlated with increased photosynthetic activity, the effect of these rainfall pulses in the context of persistent drought is unclear. Rainfall events during drought can lead to an overall reduction in primary productivity due to reduced soil infiltration and increased erosion. To assess the effective rainfall available for initiating biological processes, measurements of soil moisture are necessary. Rainfall pulses in drylands are generally localized in time and space making them difficult to detect remotely. Our objective was to determine whether space-based observations of soil moisture have the necessary spatial and temporal resolution to detect soil moisture pulses resulting from rain events in the Walnut Gulch Experimental Watershed (WGEW) in southern Arizona. Using pre-beta-release soil moisture observations from the newly launched NASA Soil Moisture Active Passive (SMAP) observatory, we examined the effects of rainfall pulses on soil moisture over the Walnut Gulch Experimental Watershed from April to July 2015. To assess whether soil moisture pulses were associated with increased vegetation production, we monitored increases in vegetation greenness using the NASA MODIS Enhanced Vegetation Index (EVI) following increases in soil moisture. Regional-scale results were supported with local-scale in situ measurements of soil moisture, vegetation greenness from phenocams, precipitation and Net Ecosystem Exchange (NEE) associated with two eddy covariance flux towers at WGEW. In conclusion, SMAP observations have the potential to detect large rainfall pulses at the 9 km resolution, and the associated soil moisture pulses can result in increased EVI at the watershed scale. These results contribute to our understanding of the ecosystem and hydrologic functioning of dryland ecosystems.

  19. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  20. Spatiotemporal analysis of soil moisture in using active and passive remotely sensed data and ground observations

    NASA Astrophysics Data System (ADS)

    Li, H.; Fang, B.; Lakshmi, V.

    2015-12-01

    Abstract: Soil moisture plays a vital role in ecosystem, biological processes, climate, weather and agriculture. The Soil Moisture Active Passive (SMAP) improves data by combining the advantages and avoiding the limitation of passive microwave remote sensing (low resolution), and active microwave (challenge of soil moisture retrieval). This study will advance the knowledge of the application of soil moisture by using the Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12) data as well as data collected at Walnut Gulch Arizona in August 2015 during SMAPVEX15. Specifically, we will analyze the 5m radar data from Unmanned Airborne Vehicle Synthetic Aperture Radar (UAVSAR) to study spatial variability within the PALS radiometer pixel. SMAPVEX12/15 and SMAP data will also be analyzed to evaluate disaggregation algorithms. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and regulations for protecting land resources and improving environmental conditions. Keywords: soil moisture, Remote Sensing (RS), spatial statistic

  1. GLAS HDF5: Aligning ICESat 1 Release 33 Data with Future Missions

    NASA Astrophysics Data System (ADS)

    Webster, D. D.; Fowler, D. K.; Khalsa, S. S.; Lee, J. E.; Dimarzio, J. P.; Hancock, D.

    2012-12-01

    NASA has undertaken the creation of ICESat/GLAS Release 33 data in the Hieratical Data Format 5 (HDF5) encoding. This conversion makes the Release 33 data available in the same format as several future NASA missions, including ICESat 2 and Soil Moisture Active Passive (SMAP). The plan is that this will make ICESat 1 Release 33 data more accessible to a broader user community. Each GLA product (1-15) will have a corresponding HDF5 product, with the related parameters in each product arranged in groups. Attributes are added to each parameter making the products self-documenting. The waveform data will be "uncompressed" by carrying relative time of sample values. Because of the importance of having consistent and adequately defined metadata across products and missions, the ICESat team made efforts to have these HDF products follow CF metadata conventions at the granule and parameter levels. The products have also been made NetCDF-4 friendly. Conversion of ICESat/GLAS Release 33 data to HDF5 format is expected to be completed during the Fall of 2012. GLAS Release 33 data in HDF5 format will be available at NSIDC.

  2. Vegetation effects on airborne passive microwave response to soil moisture: A case study for the Rur catchment, Germany

    NASA Astrophysics Data System (ADS)

    Hasan, Sayeh; Montzka, Carsten; Bogena, Heye; Rüdiger, Chris; Ali, Muhammad; Verrecken, Harry

    2013-04-01

    Soil water content stored in the upper soil layer, is a key determinant of a large number of applications, including numerical weather prediction, flood forecasting, agricultural drought assessment, water resources management, greenhouse gas accounting and civil protection. Passive microwave sensors implemented on airborne and spaceborne platforms have been shown to provide useful retrievals of near-surface soil moisture variations at regional and global scales. Polarimetric L-band Multibeam Radiometer (PLMR2) of the Forschungszentrum Jülich was flown in line with the F-SAR sensor from the German Aerospace Center (DLR) in the TERENO (Terrestrial Environmental Observatories) Rur site, Germany to prepare for the calibration and validation of the NASA Soil Moisture Active and Passive (SMAP) satellite mission. Brightness temperature observed by the PLMR2 was mapped at three different altitudes (1200m 1000m and 700m). The L-band Microwave Emission of the Biosphere (L-MEB) model was used to retrieve surface soil moisture (SSM) from the PLMR2 brightness temperature measurements. Leaf Area Index (LAI) was estimated from multispectral RapidEye imagery of the same day with 5m resolution. Different approaches were analyzed for transferring the LAI into vegetation opacity. Comparison of SSM to ground measurement at different test sites within the TERENO observatory shows that most of the captured soil moisture values are in good agreement with ground measurements.

  3. Scanning L Band Active Passive Validation Experiment 2013

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; Kim, E. J.; Faulkner, T.; Patel, H.; Cosh, M. H.

    2014-12-01

    SLAP (Scanning L-band Active Passive) comprises of a fully polarimetric L-band radiometer and fully polarimetric L-band radar with a shared antenna. SLAP is designed to be compatible with several aircrafts; specifically, C-23, Twin Otter, P-3, and C-130. SLAP is designed for simplicity, accuracy, & reliability. It leverages, as much as possible, existing instruments, hardware, and software in order to minimize cost, time, and risk.The SLAP airborne/ground campaign is designed to conduct flight testing and ground truth for the airborne instrument. The campaign took place the third week of December 2013 in Eastern Shore, MD. SLAP contributes to the NASA's core mission because of its ability to serve as an airborne simulator for the SMAP (Soil Moisture Active Passive) satellite mission, one of NASA's flagship missions scheduled to launch in January 2015. A 3-day aircraft validation campaign was conducted where the new SLAP instrument flew three separate days over the proposed sampling region. The study area is a mixed agriculture and forest site located about 1 hour east of Washington, DC on the Eastern Shore (of the Chesapeake Bay). This region is located on the Delmarva Peninsula. The advantages of the selected site are: (1) Site was used before in previous field campaign (SMAPVEX08) (2) ARS HRSL has some established sampling sites within region (3) Dynamic variation in land cover (4) Variety of plant structures and densities. The goal of this campaign was to fly the instrument over the proposed site before a rain event, then have 2 other flights after the rain event to capture a dry down. In conjunction with the aircraft, there was in-situ ground sampling. Ground observations were collected concurrent with aircraft flights. These included soil moisture, soil temperature, surface temperature, surface roughness and vegetation parameters. Forest sites were monitored with small temporary networks of in situ sensors installed prior to the first flight. Soil moisture was

  4. Development of a High Resolution Passive Microwave 3U Cubesat for High Resolution Temperature Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Gasiewski, A. J.; Sanders, B. T.; Gallaher, D. W.; Periasamy, L.; Alvarenga, G.; Weaver, R.; Scambos, T. A.

    2014-12-01

    PolarCube is a 3U CubeSat based on the CU ALL-STAR bus hosting an eight-channel passive microwave scanning spectrometer operating at the 118.7503 GHz (1-) O2 resonance. The anticipated launch date is in late 2015. It is being designed to operate for 12 months on orbit to provide global 118-GHz spectral imagery of the Earth over a full seasonal cycle. The mission will focus on the study of Arctic vertical temperature structure and its relation to sea ice coverage, but include the secondary goals of assessing the potential for convective cloud mass detection and cloud top altitude measurement and hurricane warm core sounding. The principles used by PolarCube for sounding and cloud measurement have been well established in number of peer-reviewed papers, although measurements using the 118 GHz oxygen line over the dry polar regions (unaffected by water vapor) have never been demonstrated from space. The PolarCube channels are selected to probe clear-air emission over vertical levels from the surface to the lower stratosphere. Operational spaceborne microwave soundings have available for decades but using lower frequencies (50-57 GHz) and from higher altitudes. While the JPSS ATMS sensor provides global coverage at ~32 km resolution PolarCube will improve on this resolution by a factor of two (~16 km), thus facilitating a key science goal of mapping sea ice concentration and extent while obtaining temperature profile data. Additionally, we seek to correlate freeze-thaw line data from the NASA SMAP mission with atmospheric temperature structure to help understand the relationship between clouds, temperature, and surface energy fluxes during seasonal transitions. PolarCube will also provide the first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey.

  5. Enhancements and Evolution of the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn

    2008-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM has proven extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, mission scientists, instrument scientists and program managers alike appreciate the contributions that RTMM makes to their flight projects. We have received numerous plaudits from a wide variety of scientists who used RTMM during recent field campaigns including the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) missions, the 2007-2008 NOAA-NASA Aerosonde Hurricane flights and the 2008 Soil Moisture Active-Passive Validation Experiment (SMAP-VEX). Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated for altitude, latitude, longitude, flight leg distance, cumulative distance, flight leg time, cumulative time, and

  6. Early results of the SMAP In Situ Sensor Testbed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2010, an ambitious soil moisture sensor intercomparison study was begun in Marena, Oklahoma. This effort is designed to serve as a foundation for incorporating diverse soil moisture networks into the Soil Moisture Active Passive Calibration and Validation program Using technology which is curr...

  7. Assimilation of Synchronous and Asynchronous Active/Passive Microwave Observations at Different Spatial Scales for Improved Soil Moisture and Crop Growth

    NASA Astrophysics Data System (ADS)

    Judge, J.; Liu, P. W.; Monsivais-Huertero, A.; Steele-Dunne, S. C.; Bongiovanni, T. E.; Bindlish, R.; Jackson, T. J.

    2014-12-01

    Assimilation of active and passive (AP) microwave observations at L-band in the crop simulation models is able to improve estimates of soil moisture (SM) and crop growth in the models. These observations provide complementary information for dynamic heterogeneous landscapes. Active observations are more sensitive to soil surface roughness and vegetation structure, while passive observations are more sensitive to SM. These observations may be available at different spatial and temporal resolutions from different satellite platforms. For example, the present ESA Soil Moisture Ocean Salinity (SMOS) mission provides passive observations at 1.41 GHz at 25 km every 2-3 days, while the NASA/CONAE Aquarius mission provides L-band AP observations at spatial resolution of 150 km with a repeat coverage of 7 days for global SM products. The planned NASA Soil Moisture Active Passive mission (SMAP) will provide AP observations at 1.26 and 1.41 GHz at the spatial resolutions of 3 and 30 km, respectively, with a repeat coverage of 2-3 days, starting early 2015. The goal of this study is to develop an Ensemble Kalman Filter-based methodology that assimilates synchronously and asynchronously available backscattering coefficients (σ0) and brightness temperatures (TB) at different spatial scales from SMOS and Aquarius. The Decision Support System for Agrotechnology Transfer (DSSAT) that contains a suite of crop simulation models will be linked to microwave emission and scattering models (DSSAT-A-P) for the assimilation. The methodology will be implemented in the rain fed agricultural region of the Brazilian La Plata Basin in South America, where soybean is the primary crop. The augmented state vector will include both model states and parameters related to soil and vegetation during the growing season. The methodology will be evaluated using a synthetic experiment and also using observations from SMOS and Aquarius. In preliminary results with synthetic experiment, using asynchronous

  8. Using SMOS observations in the development of the SMAP level 4 surface and root-zone soil moisture project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture and Ocean Salinity (SMOS; [1]) mission was launched by ESA in November 2009 and has since been observing L-band (1.4 GHz) upwelling passive microwaves. Along with these brightness temperature observations, ESA also disseminates retrievals of surface soil moisture that are derived ...

  9. Uncertainty in SMAP Soil Moisture Measurements Caused by Dew

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is an important reservoir of the hydrologic cycle that regulates the exchange of moisture and energy between the land surface the atmosphere. Two satellite missions will soon make the first global measurements of soil moisture at the optimal microwave wavelength within L-band: ESA's So...

  10. Feasibility of inter-comparing airborne and spaceborne obsevations of radar backscattering coefficients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive (SMAP) mission will provide global soil moisture products that will facilitate new science and application areas. The SMAP mission, scheduled for launch in November 2014, will offer synthetic aperture radar (SAR) measurements of backscattering coefficients for the re...

  11. Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C. III; Mikhaylov, Rebecca; Ramesham, Rajeshuni; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg

    2013-01-01

    Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through

  12. Robust Platinum Resistor Thermometer (PRT) Sensors and Reliable Bonding for Space Missions

    NASA Technical Reports Server (NTRS)

    Cucullu, Gordy C., III; Mikhaylov, Rebecca; Rajeshuni, Ramesham; Petkov, Mihail; Hills, David; Uribe, Jose; Okuno, James; De Los Santos, Greg

    2013-01-01

    Platinum resistance thermometers (PRTs) provide accurate temperature measurements over a wide temperature range and are used extensively on space missions due to their simplicity and linearity. A standard on spacecraft, PRTs are used to provide precision temperature control and vehicle health assessment. This paper reviews the extensive reliability testing of platinum resistor thermometer sensors (PRTs) and bonding methods used on the Mars Science Laboratory (MSL) mission and for the upcoming Soil Moisture Active Passive (SMAP) mission. During the Mars Exploration Rover (MER) mission, several key, JPL-packaged PRTs failed on those rovers prior to and within 1-Sol of landing due to thermally induced stresses. Similar failures can be traced back to other JPL missions dating back thirty years. As a result, MSL sought out a PRT more forgiving to the packaging configurations used at JPL, and extensively tested the Honeywell HRTS-5760-B-U-0-12 sensor to successfully demonstrate suitable robustness to thermal cycling. Specifically, this PRT was cycled 2,000 times, simulating three Martian winters and summers. The PRTs were bonded to six substrate materials (Aluminum 7050, treated Magnesium AZ231-B, Stainless Steel 304, Albemet, Titanium 6AL4V, and G-10), using four different aerospace adhesives--two epoxies and two silicones--that conformed to MSL's low out-gassing requirements. An additional epoxy was tested in a shorter environmental cycling test, when the need for a different temperature range adhesive was necessary for mobility and actuator hardware late in the fabrication process. All of this testing, along with electrostatic discharge (ESD) and destructive part analyses, demonstrate that this PRT is highly robust, and not subject to the failure of PRTs on previous missions. While there were two PRTs that failed during fabrication, to date there have been no in-flight PRT failures on MSL, including those on the Curiosity rover. Since MSL, the sensor has gone through

  13. Reliability of Sn/Pb and lead-free (SnAgCu) solders of surface mounted miniaturized passive components for extreme temperature (-185°C to +125°C) space missions

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2011-02-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability for future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185°C to +125°C) covers military specifications (-55°C to +100°C), extreme cold Martian (-120°C to +115°C), asteroid Nereus (-180°C to +25°C) and JUNO (-150°C to +120°C) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185°C to +125°C) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  14. Reliability of Sn/Pb and Lead-Free (SnAgCu) Solders of Surface Mounted Miniaturized Passive Components for Extreme Temperature (-185 C to +125 C) Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2011-01-01

    Surface mount electronic package test boards have been assembled using tin/lead (Sn/Pb) and lead-free (Pb-free or SnAgCu or SAC305) solders. The soldered surface mount packages include ball grid arrays (BGA), flat packs, various sizes of passive chip components, etc. They have been optically inspected after assembly and subsequently subjected to extreme temperature thermal cycling to assess their reliability or future deep space, long-term, extreme temperature environmental missions. In this study, the employed temperature range (-185oC to +125oC) covers military specifications (-55oC to +100oC), extreme old Martian (-120oC to +115oC), asteroid Nereus (-180oC to +25oC) and JUNO (-150oC to +120oC) environments. The boards were inspected at room temperature and at various intervals as a function of extreme temperature thermal cycling and bake duration. Electrical resistance measurements made at room temperature are reported and the tests to date have shown some change in resistance as a function of extreme temperature thermal cycling and some showed increase in resistance. However, the change in interconnect resistance becomes more noticeable with increasing number of thermal cycles. Further research work will be carried out to understand the reliability of packages under extreme temperature applications (-185oC to +125oC) via continuously monitoring the daisy chain resistance for BGA, Flat-packs, lead less chip packages, etc. This paper will describe the experimental reliability results of miniaturized passive components (01005, 0201, 0402, 0603, 0805, and 1206) assembled using surface mounting processes with tin-lead and lead-free solder alloys under extreme temperature environments.

  15. On the identification of representative in situ soil moisture monitoring stations for the validation of SMAP soil moisture products in Australia

    NASA Astrophysics Data System (ADS)

    Yee, Mei Sun; Walker, Jeffrey P.; Monerris, Alessandra; Rüdiger, Christoph; Jackson, Thomas J.

    2016-06-01

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in situ monitoring stations. Therefore, a standard methodology for selecting the most representative stations for the purpose of validating satellites and land surface models is essential. Based on temporal stability and geostatistical studies using long-term soil moisture records, intensive ground measurements and airborne soil moisture products, this study investigates the representativeness of soil moisture monitoring stations within the Yanco study area for the validation of NASA's Soil Moisture Active Passive (SMAP) products at 3 km for radar, 9 km for radar-radiometer and 36 km for radiometer pixels. This resulted in the identification of a number of representative stations according to the different scales. Although the temporal stability method was found to be suitable for identifying representative stations, stations based on the mean relative difference (MRD) were not necessarily the most representative of the areal average. Moreover, those identified from standard deviation of the relative difference (SDRD) may be dry-biased. It was also found that in the presence of heterogeneous land use, stations should be weighted based on proportions of agricultural land. Airborne soil moisture products were also shown to provide useful a priori information for identifying representative locations. Finally, recommendations are made regarding the design of future networks for satellite validation, and specifically the most representative stations for the Yanco area.

  16. Ground Validated Freeze/Thaw Timings Using Multifrequency Active and Passive Satellite Observations: A Comparison of Retrieval Methodologies

    NASA Astrophysics Data System (ADS)

    Steiner, N.; McDonald, K. C.; Schroeder, R.; Azarderakhsh, M.

    2012-12-01

    The freeze/thaw state of the Earth's land surface has a considerable influence on the terrestrial water, energy and carbon cycles. Microwave frequency satellite observations are often used to the determine the landcover freeze/thaw state because of a high temporal repeat time and global coverage. Methodologies have been developed to detect changes in active and passive microwave-frequency measurements that occur during the transition from the frozen to thawed state. We evaluate the performance of several of these methodologies including: absolute-value thresholding, convolution-based change detection and running window methods. This validation effort is part of the preparations for the global freeze/thaw product derived from the Soil Moisture Active Passive (SMAP) mission. Freeze/thaw records produced from each method and sensor are evaluated for the period, 2000-2012, at locations containing detailed in-situ observations from ground station networks. Additionally, at several sites we illustrate in detail the microwave response during freeze/thaw transitions for all frequencies and polarizations using in-situ measurements of snow depth, soil temperature and vegetative indices. Channels and polarizations for each sensor are evaluated independently in order to illustrate useful approaches and combinations for future data fusion projects or combined active and passive freeze/thaw algorithms. Passive microwave observations used in this study are from the Special Sensor Microwave Imager (SSM/I) including the 19, 22 37 and 88 GHz channels, and span the entire measurement period. The active microwave components are temporally staggered and include the 13.4 GHz QuikSCAT scatterometer aboard SeaWinds from 1999-2009 and the Advanced Scatterometer (ASCAT) at 5.255 GHz onboard the European Organization for the Exploitation of Meteorological Satellite from 2009 onward. More focused attention will be given to the period of scatterometer overlap. For a consistent scatterometer

  17. PALS Observations during the SMAPVEX08 Experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. A series of aircraft-based flights (SMAP Validation Experiment 2008-SMAPVEX08) was conducted on the Eastern Shore of Maryland and Delaware ov...

  18. Passive Earth Entry Vehicle Energy Absorbing Systems

    NASA Astrophysics Data System (ADS)

    Kellas, S.; Maddock, R. W.

    2014-06-01

    A critical element of a passive EEV performance is the energy absorbing system required to attenuate the dynamic landing loads. Two design approaches are described and the pros and cons based on particular mission requirements are discussed.

  19. Does serotonin-modulating anticonsolidation protein (SMAP) influence the choice of turning direction in carps, Cyprinus carpio, in a T-maze?

    PubMed

    Garina, D V; Nepomnyashchikh, V A; Mekhtiev, A A

    2016-08-01

    Serotonin-modulating anticonsolidation protein (SMAP) can impair the formation of memory traces in mammals and fish. We have studied the influence of SMAP on behavioral lateralization of juvenile carps Cyprinus carpio in a T-maze without food reinforcement in three experimental groups (n = 8 each): (1) negative control (intact animals); (2) experimental group (fish injected ICV with SMAP; 2 μl, 1.2 mg ml(-1)) and (3) active control group (fish injected ICV with inactivated SMAP). The behavioral lateralization of carps was observed on the 1st, 2nd, 3rd and 6th days after the injections. In each observation session, a fish was placed five times in a start chamber of the T-maze. The direction of the turn upon leaving the start chamber, as well as the latency from the opening of start chamber flap to the fish's turn was registered. The number of right turns (of all five turns observed during the session) was a criterion of lateralization. It was found that carps have no inherent preference for turning left or right. The SMAP injection did not influence the choice of turning direction, but increases latency values insignificantly. The results are important for the correct interpretation and clarification of data reporting the role of SMAP in training and formation of spatial memory of fish in a maze. PMID:26874505

  20. Can SMAP radar observations be used to determine vegetation moisture status and root zone soil moisture?

    NASA Astrophysics Data System (ADS)

    Steele-Dunne, S. C.; Friesen, J.; van de Giesen, N.

    2010-12-01

    Recently, large differences in backscatter between the ascending (evening) and descending (morning) tracks of the wind scatterometer onboard the ERS-1 and ERS-2 satellites have been identified in times and locations of vegetation water stress. This suggests that vegetation might be considered as a source of information rather than a barrier to soil moisture retrieval. The goal here is to develop a quantitative relationship between the magnitude of the diurnal variation in backscatter and the vegetation water status. In turn, this will lead to information on the availability of water in the root zone. Diurnal variation in the backscatter response of vegetation was identified as early as the 1970s and was first observed from space in Seasat-1 scatterometer data in 1982. Subsequent field and laboratory experiments, primarily those of Ulaby and McDonald, have demonstrated that the variation is largely driven by changes in the dielectric properties of vegetation, which in turn depend on vegetation moisture content, sap chemistry and temperature. The magnitude of the diurnal variation in dielectric constant varies considerably within the vegetation itself. Furthermore, the contribution of individual vegetation components to backscatter depends on polarization and frequency. A combination of microwave theory and a numerical study will be used to argue that the morning and evening passes of the L-band radar on the SMAP satellite could be combined to yield information on vegetation water stress and root zone soil moisture. An innovative data assimilation strategy will be presented that could be used to merge the SMAP radar observations with a microwave backscatter model and a resistance-capacitance model to estimate vegetation moisture status and infer root zone soil moisture.

  1. Orion Passive Thermal Control Overview

    NASA Technical Reports Server (NTRS)

    Miller, Stephen W.

    2007-01-01

    An viewgraph presentation of Orion's passive thermal control system is shown. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; 3) Module Descriptions and Images; 4) Orion PTCS Overview; 5) Requirements/Interfaces; 6) Design Reference Missions; 7) Natural Environments; 8) Thermal Models; 9) Challenges/Issues; and 10) Testing

  2. Early conclusions of the soil moisture active passive Marena Oklahoma in situ sensor testbed (SMAP-Moisst)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring soil moisture state has been increasing in importance as climate patterns become more unpredictable. Remote sensing technologies have been developed and are approaching operational use, however, there is still a need to monitor soil moisture via in situ networks to maintain satellite vali...

  3. Application of triple collocation for the ground-based validation of soil moisture active/passive (SMAP) soil moisture products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The contrast in horizontal spatial support between ground-based soil moisture observations and satellite-derived soil moisture estimates represents a long-standing challenge for the validation of satellite soil moisture data products [Crow et al., 2014]. This challenge can be alleviated by limiting ...

  4. Targeted antimicrobial activity of a specific IgG-SMAP28 conjugate against Porphyromonas gingivalis in a mixed culture.

    PubMed

    Franzman, Michael R; Burnell, Kindra K; Dehkordi-Vakil, Farideh H; Guthmiller, Janet M; Dawson, Deborah V; Brogden, Kim A

    2009-01-01

    Antimicrobial peptides coupled to a ligand, receptor or antibody for a specific pathogenic bacteria could be used to develop narrow-spectrum pharmaceuticals with 'targeted' antimicrobial activity void of adverse reactions often associated with the use of broad-spectrum antibiotics. To assess the feasibility of this approach, in this study sheep myeloid antimicrobial peptide (SMAP) 28 was linked to affinity- and protein G-purified rabbit immunoglobulin G (IgG) antibodies specific to the outer surface of Porphyromonas gingivalis strain 381. The selective activity of the P. gingivalis IgG-SMAP28 conjugate was then assessed by adding it to an artificially generated microbial community containing P. gingivalis, Aggregatibacter actinomycetemcomitans and Peptostreptococcus micros. The specificity of the P. gingivalis IgG-SMAP28 conjugate in this mixed culture was concentration-dependent. The conjugate at 50 microg protein/mL lacked specificity and killed P. gingivalis, A. actinomycetemcomitans and P. micros. The conjugate at 20 microg protein/mL was more specific and killed P. gingivalis. This is an initial step to develop a selective antimicrobial agent that can eliminate a specific periodontal pathogen, such as P. gingivalis, from patients with periodontal disease without harming the normal commensal flora. PMID:18778918

  5. How Does Dew Affect L-band Backscatter? Analysis of PALS Data at the Iowa Validation Site and Implications for SMAP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    NASA's Soil Moisture Active Passive satellite mission will use both an L-band radiometer and radar to produce global-scale measurements of soil moisture. L-band backscatter is also sensitive to the water content of vegetation. We found that a moderate dew increased the L-band backscatter of a soybea...

  6. Passive Accelerometer

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.; Baugher, Charles; Alexander, Iwan

    1992-01-01

    Motion of ball in liquid indicates acceleration. Passive accelerometer measures small accelerations along cylindrical axis. Principle of operation based on Stokes' law. Provides accurate measurements of small quasi-steady accelerations. Additional advantage, automatically integrates out unwanted higher-frequency components of acceleration.

  7. Aquarius Active-Passive RFI Environment at L-Band

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  8. [The mission].

    PubMed

    Ruiz Moreno, J; Blanch Mon, A

    2000-01-01

    After having made a historical review of the concept of mission statement, of evaluating its importance (See Part I), of describing the bases to create a mission statement from a strategic perspective and of analyzing the advantages of this concept, probably more important as a business policy (See Parts I and II), the authors proceed to analyze the mission statement in health organizations. Due to the fact that a mission statement is lacking in the majority of health organizations, the strategy of health organizations are not exactly favored; as a consequence, neither are its competitive advantage nor the development of its essential competencies. After presenting a series of mission statements corresponding to Anglo-Saxon health organizations, the authors highlight two mission statements corresponding to our social context. The article finishes by suggesting an adequate sequence for developing a mission statement in those health organizations having a strategic sense. PMID:10983153

  9. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and

  10. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  11. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  12. Passive Microwave Remote Sensing for Land Applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land applications, in particular soil moisture retrieval, have been hampered by the lack of low frequency passive microwave observations and the coarse spatial resolution of existing sensors. The next decade could see several improved operational and exploratory missions using new technologies as w...

  13. Passive solar technology

    SciTech Connect

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  14. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  15. Passive/Active Microwave Soil Moisture Disaggregation Using SMAPVEX12 Data

    NASA Astrophysics Data System (ADS)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.; Colliander, A.

    2015-12-01

    The SMAPVEX12 experiment was conducted during June-July 2012 in Manitoba, Canada with the goal of collecting remote sensing data and ground measurements for the development and testing of soil moisture retrieval algorithms under different vegetation and soil conditions for the SMAP (Soil Moisture Active Passive) satellite launched in January 2015. The aircraft based soil moisture data provided by the passive/active microwave sensor PALS (Passive and Active L and S band System) has a nominal spatial resolution of 1500 m. In this study, a change detection algorithm is used for disaggregation of coarse passive microwave soil moisture retrievals with radar backscatter coefficients obtained with the higher spatial resolution UAVSAR (Unmanned Air Vehicle Synthetic Aperture Radar). The accuracy of the disaggregated change in soil moisture was evaluated using ground based soil moisture measurements. Results show that the disaggregation products are well correlated to in situ measurements. Based on the R2, the highest resolution disaggregated product at 5 m exhibits soil moisture heterogeneity that reflects the distribution of the crops. The difference of spatial standard deviation between the disaggregated and in situ soil moisture ranges from <0.001-0.131 m3/m3 also proves the spatial capability of the change detection algorithm at 5 m scale.

  16. ESA's Soil Moisture and Ocean Salinity Mission - An overview on the mission's performance and scientific results

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Susanne

    2014-05-01

    , responding to the requirements of the science community in particular in the area of hydrology, climate, land use and ship routing, namely a frozen soil indicator, data products for freeze/thaw periods, sea ice thickness and vegetation water content. 3. Provide an update on the overall validation approach and recent activities: SMOS data products are continuously improved and approach the scientific mission objectives. Validation activities are essential to ensure high data quality. ESA in collaboration with national agencies and institutions maintains a frame for validation activities such as reference sites, ground based observations as well as campaigns. The paper will provide an update on recent activities, such as the activities at DOME-C. 4. Summarise the collaboration with other space-borne L-band sensors, such as NASA's Aquarius and SMAP missions.

  17. Fundamental studies of passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed point defects models'' (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  18. GPM Mission Overview

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. Relative to current global rainfall products, GPM data products will be characterized by: (1) more accurate instantaneous precipitation measurements (especially for light rain and cold-season solid/snow precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers that include operational humidity sounders over land, (3) inter-calibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori cloud hydrometeor database derived from GPM Core sensor measurements. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 degree non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of dedicated and operational passive microwave sensors. The Core Observatory will carry a KulKa-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The combined use ofDPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction

  19. Fundamental studies on passivity and passivity breakdown

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.

    1993-06-01

    Using photoelectrochemical impedance and admittance spectroscopies, a fundamental and quantitative understanding of the mechanisms for the growth and breakdown of passive films on metal and alloy surfaces in contact with aqueous environments is being developed. A point defect model has been extended to explain the breakdown of passive films, leading to pitting and crack growth and thus development of damage due to localized corrosion.

  20. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  1. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  2. Passive storage technologies

    NASA Astrophysics Data System (ADS)

    Kittel, P.

    1984-04-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  3. Passive storage technologies

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1984-01-01

    Advances in storage technology and how passive techniques could be applied to the storage of propellants at the space station are described. The devices considered are passive orbital disconnect struts, cooled shield optimization, liftweight shields and catalytic converters.

  4. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  5. Passive navigation using image irradiance tracking

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Sridhar, B.

    1989-01-01

    Rotorcraft operating at low altitudes require navigational schemes for locating the terrain and obstacles. Due to the covert nature of missions to be accomplished, a passive navigation scheme is desirable. This paper describes the development of a passive navigation scheme combining image sequences from a vehicle mounted camera with vehicle motion variables. Geometric properties of perspective projection together with an image irradiance tracking scheme at each pixel are used to determine the range to various objects within the field-of-view. Derivation of the numerical algorithm and simulation results are given. Other applications of the proposed approach include navigation for autonomous planetary rovers and telerobots.

  6. Interlanguage Passive Construction

    ERIC Educational Resources Information Center

    Simargool, Nirada

    2008-01-01

    Because the appearance of the passive construction varies cross linguistically, differences exist in the interlanguage (IL) passives attempted by learners of English. One such difference is the widely studied IL pseudo passive, as in "*new cars must keep inside" produced by Chinese speakers. The belief that this is a reflection of L1 language…

  7. Evaluation of the SMAP model-simulated snow internal physical properties at Sapporo, Japan from 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Niwano, Masashi; Aoki, Teruo; Kuchiki, Katsuyuki; Matoba, Sumito; Kodama, Yuji; Tanikawa, Tomonori

    2016-04-01

    Temporal evolution of snow internal physical properties such as grain size, density, temperature, and water content are controlled by changes in meteorological conditions. On the other hand, in a snow covered area, surface atmospheric conditions are modulated in response to variations of snow albedo, which is affected by (optically equivalent) snow grain size as well as mass concentration of snow impurities such as black carbon and dust. Therefore, it is necessary for snowpack models incorporated in climate models to simulate realistic snow internal physical properties to perform accurate future climate prediction especially in the cryosphere. In this study, we evaluated snow internal physical properties at Sapporo (43° 05'N, 141° 21'E, 15 m a.s.l.), Japan from 2005 to 2015 simulated with a 1-D multilayered physical snowpack model SMAP (Snow Metamorphism and Albedo Process). The model was driven by quality controlled 30-min averaged data for air temperature, relative humidity, wind speed, surface pressure, snow depth, downward and upward shortwave radiant flux, downward longwave radiant flux, and ground surface soil heat flux. Simulation results were compared against the data obtained from snow pit works performed twice a week at Sapporo. First of all, the model-simulated column integrated SWE (snow water equivalent) were compared against in-situ measurements (273 data were available during the 10 winters). The results show that the model tends to underestimate SWE (mean error; ME was -19 mm); however, root mean square error (RMSE) was 34 mm, and these scores are better than those for simulations driven by not snow depth but precipitation (ME was less than -25 mm and RMSE was more than 40 mm). It suggests that the correction technique for precipitation measurements considering catch efficiency of a rain gauge is still insufficient. Next, the model-simulated profiles for snow density and snow temperature were compared against in-situ measurements. For this purpose

  8. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  9. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  10. NASA's Standards Process Support for New Missions

    NASA Astrophysics Data System (ADS)

    Ullman, R.; Enloe, Y.

    2011-12-01

    NASA's Standards Process Group (SPG) facilitates the approval of proposed standards that have proven implementation and operational benefit for use in NASA's Earth science data systems. There are benefits to the NASA Earth science community for having a repository of endorsed Earth science data systems standards that have been successfully implemented and used within the NASA environment. NASA's Earth science data providers can rely on these endorsed standards to achieve interoperability. The SPG is working with NASA's Decadal Survey Missions (e.g. SMAP, ICESat-2, ..) to facilitate the use of NASA's endorsed standards in these future mission data systems. The Standards Process Group is designing a notional reference architecture that together with an as-built architecture documentation can assist missions in identifying where and what kinds of standards they need to develop their mission data systems. We will discuss an overview of the reference architecture and discuss how to use the reference architecture in evolving data systems and identifying standards that are needed. We will discuss real examples of the different types of candidate standards that have been proposed and endorsed (i.e. OPeNDAP's Data Access Protocol, Open Geospatial Consortium's Web Map Server, the Hierarchical Data Format, Global Change Master Directory's Directory Interchange Format, NetCDF Classic, CF Metadata). We will discuss real examples of the different types of best practices and implementation experiences that have been documented and endorsed as Technical Notes (i.e. Interoperability between OGC CS/W and WCS Protocols, Lessons Learned Regarding WCS Server Design and Implementation, Mapping HDF5 to DAP2, Creating File Format Guidelines - The Aura Experience, ECHO Metadata) But are there any benefits to communities who propose the RFCs for consideration as a NASA Earth science data systems standard? We have seen that the Standards Process encourages consensus within a community during

  11. Enhancing agricultural forecasting using SMOS surface soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  12. Enhancing begetation productivity forecasting using remotely-sensed surface soil moisture retrievals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the onset of data availability from the ESA Soil Moisture and Ocean Salinity (SMOS) mission (Kerr and Levine, 2008) and the expected 2015 launch of the NASA Soil Moisture Active and Passive (SMAP) mission (Entekhabi et al., 2010), the next five years should see a significant expansion in our ab...

  13. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  14. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  15. Inter-comparison of soil moisture sensors from the soil moisture active passive marena Oklahoma in situ sensor testbed (SMAP-MOISST)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of in situ soil moisture network protocols and instrumentation led to the development of a testbed for comparing in situ soil moisture sensors. Located in Marena, Oklahoma on the Oklahoma State University Range Research Station, the testbed consists of four base stations. Each station ...

  16. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  17. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  18. Passive solar construction handbook

    SciTech Connect

    Levy, E.; Evans, D.; Gardstein, C.

    1981-08-01

    Many of the basic elements of passive solar design are reviewed. The unique design constraints presented in passive homes are introduced and many of the salient issues influencing design decisions are described briefly. Passive solar construction is described for each passive system type: direct gain, thermal storage wall, attached sunspace, thermal storage roof, and convective loop. For each system type, important design and construction issues are discussed and case studies illustrating designed and built examples of the system type are presented. Construction details are given and construction and thermal performance information is given for the materials used in collector components, storage components, and control components. Included are glazing materials, framing systems, caulking and sealants, concrete masonry, concrete, brick, shading, reflectors, and insulators. The Load Collector Ratio method for estimating passive system performance is appended, and other analysis methods are briefly summarized. (LEW)

  19. The SMOS mission. Project status and next steps

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Waldteufel, P.; Cabot, F.; Font, J.; Hahne, A.; Mecklenburg, S.

    2009-04-01

    It is now well understood that soil moisture and sea surface salinity are required to improve meteorological and climatic predictions. These two quantities are not yet available globally and with an adequate temporal sampling. So as to cover this data gap, it has been recognized that, provided it is possible to accommodate a suitable antenna on board a satellite, L Band radiometry was most probably the most promising way to fulfill this gap . It is within this framework that the European Space Agency (ESA)'s selected the second Earth Explorer Opportunity Mission, namely the Soil Moisture and Ocean Salinity (SMOS) mission. SMOS is currently ready to be launched and is scheduled for launch in 2009, slightly before Aquarius and SMAP. The SMOS mission is ESA's second Earth Explorer Opportunity mission it is a joint program lead by the European Space Agency (ESA) with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent. Consequently, the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil over land, and, after some surface roughness and temperature corrections, spatio temporal aggregation, to the sea surface salinity over oceans. SMOS will achieve an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) seeking to meet soil moisture science objectives. This is possible by using a non-rotating thinned 8 m diameter antenna. The imaging capability of such antenna is implemented by aperture synthesis, the same technique of radio-astronomy. Such innovative concept has required a significant effort in the development of calibration techniques. It provides multiangular

  20. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  1. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  2. Immunizations: Active vs. Passive

    MedlinePlus

    ... they’ve been exposed. For example, the passive rabies immunization (rabies immune globulin) is commonly used after a certain ... of your pediatrician. There may be variations in treatment that your pediatrician may recommend based on individual ...

  3. Hood River Passive House

    SciTech Connect

    Hales, D.

    2013-03-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

  4. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  5. Passive navigation using image irradiance tracking

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Rotorcraft operating at low altitudes require navigational schemes for detecting terrain and obstacles. Due to the nature of the missions to be accomplished and available power onboard, a passive navigation scheme is desirable in this situation. The development of a passive navigation scheme using optical image sequences and vehicle motion variables from an onboard inertial navigation scheme is described. This approach combines the geometric properties of perspective projection and a feedback irradiance tracking scheme at each pixel in the image to determine the range to various objects within the field-of-view. Derivation of the numerical algorithm and simulation results are given. Due to the feedback nature of the implementation, the computational scheme is robust. Other applications of the proposed approach include navigation for autonomous planetary rovers and telerobots.

  6. Integration of Passive Components for Spacecraft Avionics

    NASA Technical Reports Server (NTRS)

    Brandon, E. J.; Wesseling, E.; White, V.; Lieneweg, U.; Mojarradi, M.; Ulrich, R.; Wasef, M.; Mantooth, A.

    2001-01-01

    The NASA roadmap outlining future deep space missions to Europa and other outer planetary destinations calls for continued reductions in the mass and volume of the spacecraft avionics. Spacecraft power electronics, including the power switches and converters, remain difficult to miniaturize due to the need for large numbers of discrete passive components such as resistors, capacitors, inductors and transformers. As part of the System-on-a-chip program at the Center for Integrated Space Microsystems and at the University of Arkansas, we are working to develop integrated or embedded passive components geared specifically for use in power management and distribution (PMAD) in future avionics over the next five to ten years. This will not only enable a scaling down of the power subsystems, but will make possible new architectures such as "distributed" PMAD. Additional information is contained in the original extended abstract.

  7. Reliability Evaluation of Passive Systems Through Functional Reliability Assessment

    SciTech Connect

    Burgazzi, Luciano

    2003-11-15

    A methodology, to quantify the reliability of passive safety systems, proposed for use in advanced reactor design, is developed. Passive systems are identified as systems that do not need any external input or energy to operate and rely only upon natural physical laws (e.g., gravity, natural circulation, heat conduction, internally stored energy, etc.) and/or intelligent use of the energy inherently available in the system (e.g., chemical reaction, decay heat, etc.). The reliability of a passive system refers to the ability of the system to carry out the required function under the prevailing condition when required: The passive system may fail its mission, in addition to the classical mechanical failure of its components, for deviation from the expected behavior, due to physical phenomena or to different boundary and initial conditions. The present research activity is finalized at the reliability estimation of passive B systems (i.e., implementing moving working fluids, see IAEA); the selected system is a loop operating in natural circulation including a heat source and a heat sink.The functional reliability concept, defined as the probability to perform the required mission, is introduced, and the R-S (Resistance-Stress) model taken from fracture mechanics is adopted. R and S are coined as expressions of functional Requirement and system State. Water mass flow circulating through the system is accounted as a parameter defining the passive system performance, and probability distribution functions (pdf's) are assigned to both R and S quantities; thus, the mission of the passive system defines which parameter values are considered a failure by comparing the corresponding pdfs according to a defined safety criteria. The methodology, its application, and results of the analysis are presented and discussed.

  8. GPM Constellation Reconfiguration and Mission Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission that uses combined active and passive remote sensing techniques to improve global precipitation measurements derived from dedicated and operational passive microwave sensors. GPM is a science mission with integrated applications goals to (1) advance the knowledge of precipitation physics and the global water cycle variability, and (2) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation and innovative application methods. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional domestic and international partners in satellite constellation buildup and ground validation activities. The GPM concept is centered on employing a dualfrequency precipitation radar and a microwave radiometer with high-frequency capabilities on a core satellite to serve as a physics observatory and calibration standard to provide a consistent framework for unifying precipitation measurements from a heterogeneous constellation of passive microwave sensors. Building on the siccess of TRMM, GPM extends combined radadradiometer precipitation measurements into the mid and high latitudes, with new science foci on improved capabilities for light-rain and snowfall measurements, as well as more accurate precipitation retrievals over land. With recent studies indicating that AMSU-B rainfall estimates are comparable in quality to those derived from conically-scanning radiometers over land, it is envisioned that cross-track microwave sounders with high-frequency channels on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS), NPOESS Preparatory Project (NPP), NOAA-N', and MetOp satellites can play a significant role in augmenting conically-scanning microwave radiometers to achieve better

  9. Mir Mission Chronicle

    NASA Technical Reports Server (NTRS)

    McDonald, Sue

    1998-01-01

    Dockings, module additions, configuration changes, crew changes, and major mission events are tracked for Mir missions 17 through 21 (November 1994 through August 1996). The international aspects of these missions are presented, comprising joint missions with ESA and NASA, including three U.S. Space Shuttle dockings. New Mir modules described are Spektr, the Docking Module, and Priroda.

  10. Space physics missions handbook

    NASA Technical Reports Server (NTRS)

    Cooper, Robert A. (Compiler); Burks, David H. (Compiler); Hayne, Julie A. (Editor)

    1991-01-01

    The purpose of this handbook is to provide background data on current, approved, and planned missions, including a summary of the recommended candidate future missions. Topics include the space physics mission plan, operational spacecraft, and details of such approved missions as the Tethered Satellite System, the Solar and Heliospheric Observatory, and the Atmospheric Laboratory for Applications and Science.

  11. Missions and Moral Judgement.

    ERIC Educational Resources Information Center

    Bushnell, Amy Turner

    2000-01-01

    Addresses the history of Spanish-American missions, discussing the view of missions in church history, their role in the Spanish conquest, and the role and ideas of Herbert E. Bolton. Focuses on differences among Spanish borderlands missions, paying particular attention to the Florida missions. (CMK)

  12. Wireless passive radiation sensor

    SciTech Connect

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  13. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, R. Wayne; Moore, Arlene; Rogers, John

    1999-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA's) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  14. Predicting Mission Success in Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Saunders, Mark; Richie, Wayne; Rogers, John; Moore, Arlene

    1992-01-01

    In our global society with its increasing international competition and tighter financial resources, governments, commercial entities and other organizations are becoming critically aware of the need to ensure that space missions can be achieved on time and within budget. This has become particularly true for the National Aeronautics and Space Administration's (NASA) Office of Space Science (OSS) which has developed their Discovery and Explorer programs to meet this need. As technologies advance, space missions are becoming smaller and more capable than their predecessors. The ability to predict the mission success of these small satellite missions is critical to the continued achievement of NASA science mission objectives. The NASA Office of Space Science, in cooperation with the NASA Langley Research Center, has implemented a process to predict the likely success of missions proposed to its Discovery and Explorer Programs. This process is becoming the basis for predicting mission success in many other NASA programs as well. This paper describes the process, methodology, tools and synthesis techniques used to predict mission success for this class of mission.

  15. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  16. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  17. Connecting NASA science and engineering with earth science applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  18. Regional and temporal patterns of soil moisture during CLASIC using the TMI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active Passive Mission (SMAP) is currently addressing issues related to the development and selection of soil moisture retrieval algorithms. Several forums have identified a number of specific questions that require supporting field experiments. Addressing these issues as soon as ...

  19. Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An important component of satellite-based soil moisture algorithm development and validation is the comparison of coincident remote sensing and in situ observations that are typically provided by intensive field campaigns. The planned NASA Soil Moisture Active Passive (SMAP) mission has unique requi...

  20. The 1988-89 Soviet PHOBOS mission

    NASA Astrophysics Data System (ADS)

    Head, James W., III

    The Phobos mission is reviewed, including its objectives, program, and primary experiments. The spacecraft configuration is presented and the importance of studying the Martian satellites is outlined. The mission objectives for studying the Martian surface, atmosphere, magnetosphere, the sun, and the interplanetary medium are discussed. Experiments from the mission include X-ray solar radiation studies, a cosmic plasma scanning analyzer, active and passive analysis of the Martian surface and atmosphere and the surface of Phobos, and two Phobos landers. Orbiter-based Phobos experiments include a remote-laser mass spectrometric analysis of soil composition, the remote mass analysis of secondary ions, studies of the thermal physics and reflection properties of the Phobos surface, and radar, survey, and mapping studies. Also, the two Phobos landers, the long-term automated lander and the Phobos hopper, are described.

  1. Some Activities of MISSE 6 Mission

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.

    2009-01-01

    The objective of the Materials International Space Station Experiment (MISSE) is to study the performance of novel materials when subjected to the synergistic effects of the harsh space environment for several months. In this paper, a few laser and optical elements from NASA Langley Research Center (LaRC) that have been flown on MISSE 6 mission will be discussed. These items were characterized and packed inside a ruggedized Passive Experiment Container (PEC) that resembles a suitcase. The PEC was tested for survivability due to launch conditions. Subsequently, the MISSE 6 PEC was transported by the STS-123 mission to International Space Station (ISS) on March 11, 2008. The astronauts successfully attached the PEC to external handrails and opened the PEC for long term exposure to the space environment. The plan is to retrieve the MISSE 6 PEC by STS-128 mission in August 2009.

  2. Passive Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1983-01-01

    Magnetic bearing for limited rotation devices requires no feedback control system to sense and correct shaft position. Passive Magnetic Torsion Bearing requires no power supply and has no rubbing parts. Torsion wire restrains against axial instability. Magnetic flux geometry chosen to assure lateral stability with radial restoring force that maintains alignment.

  3. Hood River Passive House

    SciTech Connect

    Hales, D.

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  4. Hood River Passive House

    SciTech Connect

    Hales, David

    2014-01-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

  5. Image Mission Attitude Support Experiences

    NASA Technical Reports Server (NTRS)

    Ottenstein, N.; Challa, M.; Home, A.; Harman, R.; Burley, R.

    2001-01-01

    The spin-stabilized Imager for Magnetopause to Aurora Global Exploration (IMAGE) is the National Aeronautics and Space Administration's (NASA's) first Medium-class Explorer Mission (MIDEX). IMAGE was launched into a highly elliptical polar orbit on March 25, 2000 from Vandenberg Air Force Base, California, aboard a Boeing Delta II 7326 launch vehicle. This paper presents some of the observations of the flight dynamics analyses during the launch and in-orbit checkout period through May 18, 2000. Three new algorithms - one algebraic and two differential correction - for computing the parameters of the coning motion of a spacecraft are described and evaluated using in-flight data from the autonomous star tracker (AST) on IMAGE. Other attitude aspects highlighted include support for active damping consequent upon the failure of the passive nutation damper, performance evaluation of the AST, evaluation of the Sun sensor and magnetometer using AST data, and magnetometer calibration.

  6. Potential Mission Scenarios Post Asteroid Crewed Mission

    NASA Technical Reports Server (NTRS)

    Lopez, Pedro, Jr.; McDonald, Mark A.

    2015-01-01

    A deep-space mission has been proposed to identify and redirect an asteroid to a distant retrograde orbit around the moon, and explore it by sending a crew using the Space Launch System and the Orion spacecraft. The Asteroid Redirect Crewed Mission (ARCM), which represents the third segment of the Asteroid Redirect Mission (ARM), could be performed on EM-3 or EM-4 depending on asteroid return date. Recent NASA studies have raised questions on how we could progress from current Human Space Flight (HSF) efforts to longer term human exploration of Mars. This paper will describe the benefits of execution of the ARM as the initial stepping stone towards Mars exploration, and how the capabilities required to send humans to Mars could be built upon those developed for the asteroid mission. A series of potential interim missions aimed at developing such capabilities will be described, and the feasibility of such mission manifest will be discussed. Options for the asteroid crewed mission will also be addressed, including crew size and mission duration.

  7. MSL DAN Passive Data and Interpretations

    NASA Astrophysics Data System (ADS)

    Tate, C. G.; Moersch, J.; Jun, I.; Ming, D. W.; Mitrofanov, I. G.; Litvak, M. L.; Behar, A.; Boynton, W. V.; Drake, D.; Lisov, D.; Mischna, M. A.; Hardgrove, C. J.; Milliken, R.; Sanin, A. B.; Starr, R. D.; Martín-Torres, J.; Zorzano, M. P.; Fedosov, F.; Golovin, D.; Harshman, K.; Kozyrev, A.; Malakhov, A. V.; Mokrousov, M.; Nikiforov, S.; Varenikov, A.

    2014-12-01

    In its passive mode of operation, The Mars Science Laboratory Dynamic Albedo of Neutrons experiment (DAN) detects low energy neutrons that are produced by two different sources on Mars. Neutrons are produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) and by interactions of high energy galactic cosmic rays (GCR) within the atmosphere and regolith. As these neutrons propagate through the subsurface, their energies can be moderated by interactions with hydrogen nuclei. More hydrogen leads to greater moderation (thermalization) of the neutron population energies. The presence of high thermal neutron absorbing elements within the regolith also complicates the spectrum of the returning neutron population, as shown by Hardgrove et al. DAN measures the thermal and epithermal neutron populations leaking from the surface to infer the amount of water equivalent hydrogen (WEH) in the shallow regolith. Extensive modeling is performed using a Monte Carlo approach (MCNPX) to analyze DAN passive measurements at fixed locations and along rover traverse segments. DAN passive WEH estimates along Curiosity's traverse will be presented along with an analysis of trends in the data and a description of correlations between these results and the geologic characteristics of the surfaces traversed.

  8. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  9. Soviet Mission Control Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This photo is an overall view of the Mission Control Center in Korolev, Russia during the Expedition Seven mission. The Expedition Seven crew launched aboard a Soyez spacecraft on April 26, 2003. Photo credit: NASA/Bill Ingalls

  10. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  11. Editing the Mission.

    ERIC Educational Resources Information Center

    Walsh, Sharon; Fogg, Piper

    2002-01-01

    Discusses the decision by Columbia University's new president to reevaluate the mission of its journalism school before naming a new dean, in order to explore how the journalism school fits into the mission of a research university. (EV)

  12. Soil organic carbon as a factor in passive microwave retrievals of soil water content over agricultural croplands

    NASA Astrophysics Data System (ADS)

    Manns, Hida R.; Berg, Aaron A.; Colliander, Andreas

    2015-09-01

    Remote sensing has the potential to deliver global soil water content (SWC) on vast scales with frequent revisit times for progress in the fields of climate, weather forecasting, agriculture and hydrology. Although surface roughness, vegetation and soil texture have been established as sources of variability in passive microwave interpretation, soil organic carbon (SOC) has not typically been considered as a factor that affects SWC estimation during field sampling campaigns. SOC was observed along with soil texture and bulk density during the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12), the Soil Moisture Active Passive (SMAP) satellite algorithm development field sampling campaign held June 6 to July 19 in Southern Manitoba, Canada. Aerial measurements from the PALS (Passive Active L-band System) instrument were recorded over agricultural fields and forest areas from aircraft while SWC was measured simultaneously on the ground with resistance probes on 17 sampling dates. Additionally, fields were sampled for surface roughness, vegetation growth and water content, soil and vegetation temperature and soil physical characteristics. A soil core was collected on each field each sampling time to assess bulk density, soil particle size and SOC. SOC accounted for more variability in the anomalies between PALS and ground sampled SWC than sand, clay or bulk density, although all soil variables explained significant variability. With analysis by partial least squares multiple regression over 11 sampling dates and 39 fields where both ground and PALS data were well represented, only SOC contributed significantly to the regression of SWC beyond the variance all soil variables had in common. The significance of SOC in the relative SWC anomalies was highest in very wet and very dry conditions and in loam soil over all sampling dates, while bulk density was more significant in sand soils. This analysis suggests SOC is a simple variable that incorporates

  13. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  14. Passivated niobium cavities

    DOEpatents

    Myneni, Ganapati Rao; Hjorvarsson, Bjorgvin; Ciovati, Gianluigi

    2006-12-19

    A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.

  15. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  16. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  17. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  18. Threads of Mission Success

    NASA Technical Reports Server (NTRS)

    Gavin, Thomas R.

    2006-01-01

    This viewgraph presentation reviews the many parts of the JPL mission planning process that the project manager has to work with. Some of them are: NASA & JPL's institutional requirements, the mission systems design requirements, the science interactions, the technical interactions, financial requirements, verification and validation, safety and mission assurance, and independent assessment, review and reporting.

  19. Mission objectives and trajectories

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The present state of the knowledge of asteroids was assessed to identify mission and target priorities for planning asteroidal flights in the 1980's and beyond. Mission objectives, mission analysis, trajectory studies, and cost analysis are discussed. A bibliography of reports and technical memoranda is included.

  20. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  1. Mission operations management

    NASA Technical Reports Server (NTRS)

    Rocco, David A.

    1994-01-01

    Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.

  2. Computer graphics aid mission operations. [NASA missions

    NASA Technical Reports Server (NTRS)

    Jeletic, James F.

    1990-01-01

    The application of computer graphics techniques in NASA space missions is reviewed. Telemetric monitoring of the Space Shuttle and its components is discussed, noting the use of computer graphics for real-time visualization problems in the retrieval and repair of the Solar Maximum Mission. The use of the world map display for determining a spacecraft's location above the earth and the problem of verifying the relative position and orientation of spacecraft to celestial bodies are examined. The Flight Dynamics/STS Three-dimensional Monitoring System and the Trajectroy Computations and Orbital Products System world map display are described, emphasizing Space Shuttle applications. Also, consideration is given to the development of monitoring systems such as the Shuttle Payloads Mission Monitoring System and the Attitude Heads-Up Display and the use of the NASA-Goddard Two-dimensional Graphics Monitoring System during Shuttle missions and to support the Hubble Space Telescope.

  3. Applications Explorer Missions (AEM): Mission planners handbook

    NASA Technical Reports Server (NTRS)

    Smith, S. R. (Editor)

    1974-01-01

    The Applications Explorer Missions (AEM) Program is a planned series of space applications missions whose purpose is to perform various tasks that require a low cost, quick reaction, small spacecraft in a dedicated orbit. The Heat Capacity Mapping Mission (HCMM) is the first mission of this series. The spacecraft described in this document was conceived to support a variety of applications instruments and the HCMM instrument in particular. The maximum use of commonality has been achieved. That is, all of the subsystems employed are taken directly or modified from other programs such as IUE, IMP, RAE, and Nimbus. The result is a small versatile spacecraft. The purpose of this document, the AEM Mission Planners Handbook (AEM/MPH) is to describe the spacecraft and its capabilities in general and the HCMM in particular. This document will also serve as a guide for potential users as to the capabilities of the AEM spacecraft and its achievable orbits. It should enable each potential user to determine the suitability of the AEM concept to his mission.

  4. High LET, passive space radiation dosimetry and spectrometry

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Keegan, R. P.; Frigo, L. A.; Sanner, D.; Rowe, V.

    1995-01-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation.

  5. A Passive Earth-Entry Capsule for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Kellas, Sotiris

    1999-01-01

    A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.

  6. A Passive Earth-Entry Capsule for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Mitcheltree, R. A.; Kellas, S.; Dorsey, J. T.; Desai, P. N.; Martin, C. J.

    1998-01-01

    A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45 degree half-angle forebody with an ablative heatshield. The primary structure is a spherical composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the testing and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.

  7. High LET, passive space radiation dosimetry and spectrometry

    SciTech Connect

    Benton, E.V.; Frank, A.L.; Benton, E.R.; Keegan, R.P.; Frigo, L.A.; Sanner, D.; Rowe, V.

    1995-03-01

    The development of high linear energy transfer (LET), passive radiation dosimetry and spectrometry is needed for the purpose of accurate determination of equivalent doses and assessment of health risks to astronauts on long duration missions. Progress in the following research areas is summerized: intercomparisons of cosmic ray equivalent dose and LET spectra measurements between STS missions and between astronauts; increases LET spectra measurement accuracy with ATAS; space radiation measurements for intercomparisons of passive (PNTD, TLD, TRND, Emulsion) and active (TEPC, RME-111) dosimeters; interaction of cosmic ray particles with nuclei in matter; radiation measurements after long duration space exposures; ground based dosimeter calibrations; neutron detector calibrations; radiation measurements on Soviet/Russian spacecraft; space radiation measurements under thin shielding; and space radiation. Separate abstracts were prepared for articles from this report.

  8. Current Development of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects, particularly those based on use of passive microwave radiometer measurements, have paved the way for a more advanced global precipitation mission. The new mission is motivated by a number of scientific questions that TRMM research has posed over a range of space-time scales and within a variety of scientific disciplines that are becoming more integrated into earth system science modeling. Added to this success is the realization that satellite rainfall datasets are now a foremost tool in understanding global climate variability out to decadal scales and beyond. This progress has motivated a comprehensive global measuring strategy -- leading to the "Global Precipitation Mission" (GPM). GPM is planning to expand the scope of rainfall measurement through use of a satellite constellation. The intent is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction & prediction of fresh water resources, the global carbon budget, and biogeochemical cycles. This talk overviews the status and scientific agenda of this mission currently planned for launch in the 2007-2008 time frame. The GPM notional design involves a 10-member satellite constellation, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band radar (DFPR) and a TMI-like radiometer. The other nine members of the constellation will be considered daughters of the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range -- likely to include a combination of lightweight satellites and co-existing operational/experimental satellites carrying passive microwave radiometers (i.e., 2 DMSP/SSMISs, GCOM-B1/AMSR-J, & Megha Tropiques/MADRAS). The goal behind the constellation is to achieve no worse than

  9. Azimuthal Signature of Coincidental Brightness Temperature and Normalized Radar Cross-Section Obtained Using Airborne PALS Instrument

    NASA Technical Reports Server (NTRS)

    Colliander, Andreas; Kim, Seungbum; Yueh, Simon; Cosh, Mike; Jackson, Tom; Njoku, Eni

    2010-01-01

    Coincidental airborne brightness temperature (TB) and normalized radar-cross section (NRCS) measurements were carried out with the PALS (Passive and Active L- and S-band) instrument in the SMAPVEX08 (SMAP Validation Experiment 2008) field campaign. This paper describes results obtained from a set of flights which measured a field in 45(sup o) steps over the azimuth angle. The field contained mature soy beans with distinct row structure. The measurement shows that both TB and NRCS experience modulation effects over the azimuth as expected based on the theory. The result is useful in development and validation of land surface parameter forward models and retrieval algorithms, such as the soil moisture algorithm for NASA's SMAP (Soil Moisture Active and Passive) mission. Although the footprint of the SMAP will not be sensitive to the small resolution scale effects as the one presented in this paper, it is nevertheless important to understand the effects at smaller scale.

  10. Approach to rapid mission design and planning. [earth orbit missions

    NASA Technical Reports Server (NTRS)

    Green, W. G.; Matthys, V. J.

    1973-01-01

    Methods and techniques are described for implementation in automated computer systems to assess parametric data, capabilities, requirements and constraints for planning earth orbit missions. Mission planning and design procedures are defined using two types of typical missions as examples. These missions were the high energy Astronomical Observatory Satellite missions, and Small Applications Technology Satellite missions.

  11. Fundamental studies of passivity and passivity breakdown. Final report

    SciTech Connect

    Macdonald, D.D.; Urquidi-Macdonald, M.; Song, H.; Biaggio-Rocha, S.; Searson, P.

    1991-11-01

    This report summarizes the findings of our fundamental research program on passivity and passivity breakdown. During the past three and one half years in this program (including the three year incrementally-funded grant prior to the present grant), we developed and experimentally tested various physical models for the growth and breakdown of passive films on metal surfaces. These models belong to a general class termed ``point defects models`` (PDMs), in which the growth and breakdown of passive films are described in terms of the movement of anion and cation vacancies.

  12. Passive propellant system

    NASA Technical Reports Server (NTRS)

    Hess, D. A.; Regnier, W. W.; Jacobs, V. L. (Inventor)

    1979-01-01

    A passive propellant acquisition and feed system is disclosed which acquires and feeds gas-free propellant in low or zero-g environments during orbital maneuvers and retains this propellant under high axially directed acceleration such as may be experienced during launch of a space vehicle and orbit-to-orbit transfer is described. The propellant system includes a dual compartment propellant tank with independent surface tension acquisition channels in each compartment to provide gas-free flow of pressurized liquid propellant from one compartment to the other in one direction only.

  13. Passive Immunization Against Poliomyelitis

    PubMed Central

    Rinaldo, Charles R.

    2005-01-01

    Poliomyelitis has gone from being one of the worst scourges of the 20th century to nearing eradication in the 21st. This success is well known to be attributable to the Salk inactivated and Sabin attenuated poliovirus vaccines. However, before introduction of these vaccines, William McDowall Hammon of the University of Pittsburgh Graduate School of Public Health led the first major breakthrough in prevention of the disease by using passive immunization in one of the earliest double-blind, placebo-controlled clinical trials. This study provided the first evidence that antibodies to poliovirus could prevent the disease in humans. PMID:15855454

  14. Water Cycling &the GPM Mission

    NASA Astrophysics Data System (ADS)

    Smith, E. A.

    2003-04-01

    The GPM mission is currently planned for start in the late'07 - early'08 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe - continuously. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrates to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly ASI in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and domestic scientific agencies

  15. Parallel Processing Systems for Passive Ranging During Helicopter Flight

    NASA Technical Reports Server (NTRS)

    Sridhar, Bavavar; Suorsa, Raymond E.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    The complexity of rotorcraft missions involving operations close to the ground result in high pilot workload. In order to allow a pilot time to perform mission-oriented tasks, sensor-aiding and automation of some of the guidance and control functions are highly desirable. Images from an electro-optical sensor provide a covert way of detecting objects in the flight path of a low-flying helicopter. Passive ranging consists of processing a sequence of images using techniques based on optical low computation and recursive estimation. The passive ranging algorithm has to extract obstacle information from imagery at rates varying from five to thirty or more frames per second depending on the helicopter speed. We have implemented and tested the passive ranging algorithm off-line using helicopter-collected images. However, the real-time data and computation requirements of the algorithm are beyond the capability of any off-the-shelf microprocessor or digital signal processor. This paper describes the computational requirements of the algorithm and uses parallel processing technology to meet these requirements. Various issues in the selection of a parallel processing architecture are discussed and four different computer architectures are evaluated regarding their suitability to process the algorithm in real-time. Based on this evaluation, we conclude that real-time passive ranging is a realistic goal and can be achieved with a short time.

  16. Manned Mars mission accommodation: Sprint mission

    NASA Technical Reports Server (NTRS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-01-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.

  17. Manned Mars mission accommodation: Sprint mission

    NASA Astrophysics Data System (ADS)

    Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.

    1988-04-01

    The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hanger, and a heavy lift launch vehicle to support the large launch requirements.

  18. Seismometer readings studied in Mission Control Center

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lammlein, also with Columbia.

  19. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  20. Manned Mars mission

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Terrapin Technologies proposes a Manned Mars Mission design study. The purpose of the Manned Mars Mission is to transport ten people and a habitat with all required support systems and supplies from low Earth orbit (LEO) to the surface of Mars and, after an expedition of three months to return the personnel safely to LEO. The proposed hardware design is based on systems and components of demonstrated high capability and reliability. The mission design builds on past mission experience but incorporates innovative design approaches to achieve mission priorities. These priorities, in decreasing order of importance, are safety, reliability, minimum personnel transfer time, minimum weight, and minimum cost. The design demonstrates the feasibility and flexibility of a waverider transfer module. Information is given on how the plan meets the mission requirements.

  1. End of Mission Considerations

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2013-01-01

    While a great deal of effort goes into planning and executing successful mission operations, it is also important to consider the End of the Mission during the planning, design, and operations phases of any mission. Spacecraft and launch vehicles must be disposed of properly in order to limit the generation of orbital debris, and better preserve the orbital environment for all future missions. Figure 30-1 shows a 1990's projected growth of debris with and without the use of responsible disposal techniques. This requires early selection of a responsible disposal scenario, so that the necessary capabilities can be incorporated into the hardware designs. The mission operations must then be conducted in such a way as to preserve, and then actually perform, the planned, appropriate end of mission disposal.

  2. Passive field reflectance measurements

    NASA Astrophysics Data System (ADS)

    Weber, Christian; Schinca, Daniel C.; Tocho, Jorge O.; Videla, Fabian

    2008-10-01

    The results of reflectance measurements performed with a three-band passive radiometer with independent channels for solar irradiance reference are presented. Comparative operation between the traditional method that uses downward-looking field and reference white panel measurements and the new approach involving duplicated downward- and upward-looking spectral channels (each latter one with its own diffuser) is analyzed. The results indicate that the latter method performs in very good agreement with the standard method and is more suitable for passive sensors under rapidly changing atmospheric conditions (such as clouds, dust, mist, smog and other scatterers), since a more reliable synchronous recording of reference and incident light is achieved. Besides, having separate channels for the reference and the signal allows a better balancing of gains in the amplifiers for each spectral channel. We show the results obtained in the determination of the normalized difference vegetation index (NDVI) corresponding to the period 2004-2007 field experiments concerning weed detection in soybean stubbles and fertilizer level assessment in wheat. The method may be used to refine sensor-based nitrogen fertilizer rate recommendations and to determine suitable zones for herbicide applications.

  3. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  4. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  5. Mechanical passive logic module

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay; Caulfield, H. John

    2015-02-01

    Nothing from nothing gives simple simile, but something from nothing is an interesting and challenging task. Adolf Lohmann once proposed 'do nothing machine' in optics, which only copies input to output. Passive logic module (PALM) is a special type of 'do nothing machine' which can converts inputs into one of 16 possible binary outputs. This logic module is not like the conventional irreversible one. It is a simple type of reversible Turing machine. In this manuscript we discussed and demonstrated PALM using mechanical movement of plane mirrors. Also we discussed the theoretical model of micro electro mechanical system (MEMS) based PALM in this manuscript. It may have several valuable properties such as passive operation (no need for nonlinear elements as other logic device require) and modular logic (one device implementing any Boolean logic function with simple internal changes). The result is obtained from the demonstration by only looking up the output. No calculation is required to get the result. Not only that, PALM is a simple type of the famous 'billiard ball machine', which also discussed in this manuscript.

  6. Volcanic passive margins

    NASA Astrophysics Data System (ADS)

    Geoffroy, Laurent

    2005-12-01

    Compared to non-volcanic ones, volcanic passive margins mark continental break-up over a hotter mantle, probably subject to small-scale convection. They present distinctive genetic and structural features. High-rate extension of the lithosphere is associated with catastrophic mantle melting responsible for the accretion of a thick igneous crust. Distinctive structural features of volcanic margins are syn-magmatic and continentward-dipping crustal faults accommodating the seaward flexure of the igneous crust. Volcanic margins present along-axis a magmatic and tectonic segmentation with wavelength similar to adjacent slow-spreading ridges. Their 3D organisation suggests a connection between loci of mantle melting at depths and zones of strain concentration within the lithosphere. Break-up would start and propagate from localized thermally-softened lithospheric zones. These 'soft points' could be localized over small-scale convection cells found at the bottom of the lithosphere, where adiabatic mantle melting would specifically occur. The particular structure of the brittle crust at volcanic passive margins could be interpreted by active and sudden oceanward flow of both the unstable hot mantle and the ductile part of the lithosphere during the break-up stage. To cite this article: L. Geoffroy, C. R. Geoscience 337 (2005).

  7. Passive-solar construction handbook

    SciTech Connect

    Levy, E.; Evans, D.; Gardstein, C.

    1981-02-01

    Many of the basic elements of passive solar design are reviewed. Passive solar construction is covered according to system type, each system type discussion including a general discussion of the important design and construction issues which apply to the particular system and case studies illustrating designed and built examples of the system type. The three basic types of passive solar systems discussed are direct gain, thermal storage wall, and attached sunspace. Thermal performance and construction information is presented for typical materials used in passive solar collector components, storage components, and control components. Appended are an overview of analysis methods and a technique for estimating performance. (LEW)

  8. 2001 Mars Odyssey Mission

    NASA Technical Reports Server (NTRS)

    Varghese, Philip

    2008-01-01

    This viewgraph presentation reviews the 2001 Mars Odyssey Mission. The contents include: 1) Mission Overview; 2) Current Scope of Work: 3) Facilities; 4) Critical Role of DSN; 5) Relay as Mission Supplement; 6) Current Mars Telecom Infrastructure; 7) PHX EDL Comm Overview; 8) EDL Geometry (Entry through Landing); 9) Phoenix Support; 10) Preparations for Phoenix; 11) EDL Support Timeline; 12) One Year Rolling Schedule; 13) E3 Rationale; and 14) Spacecraft Status.

  9. Lunar Missions and Datasets

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2009-01-01

    There are two slide presentations contained in this document. The first reviews the lunar missions from Surveyor, Galileo, Clementine, the Lunar Prospector, to upcoming lunar missions, Lunar Reconnaissance Orbiter (LRO), Lunar Crater Observation & Sensing Satellite (LCROSS), Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS), Gravity Recovery and Interior Laboratory (GRAIL), Lunar Atmosphere, Dust and Environment Explorer (LADEE), ILN and a possible Robotic sample return mission. The information that the missions about the moon is reviewed. The second set of slides reviews the lunar meteorites, and the importance of lunar meteorites to adding to our understanding of the moon.

  10. STEREO Mission Design Implementation

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.; Dunham, David W.; Sharer, Peter J.; Hunt, Jack W.; Ray, J. Courtney; Shapiro, Hongxing S.; Ossing, Daniel A.; Eichstedt, John E.

    2007-01-01

    STEREO (Solar-TErrestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA) Science Mission Directorate Sun-Earth Connection theme. This paper describes the successful implementation (lunar swingby targeting) of the mission following the first phasing orbit to deployment into the heliocentric mission orbits following the two lunar swingbys. The STEREO Project had to make some interesting trajectory decisions in order to exploit opportunities to image a bright comet and an unusual lunar transit across the Sun.

  11. SEI reference mission

    NASA Technical Reports Server (NTRS)

    Weary, Dwayne

    1992-01-01

    Information is given in viewgraph form on the Space Exploration Initiative (SEI). The goal of the reference mission is to expand the human presence to the moon and Mars in order to enhance our understanding of the universe, to seek terrestrial benefits from this exploration, and to establish the beginnings of a sustainable spacefaring civilization. Topics covered here include a phased definition of initial programmatic milestones and follow-on capabilities, near-term mission strategy, a lunar mission timeline, and a Mars mission timeline.

  12. Juno Mission Simulation

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard J.

    2008-01-01

    The Juno spacecraft is planned to launch in August of 2012 and would arrive at Jupiter four years later. The spacecraft would spend more than one year orbiting the planet and investigating the existence of an ice-rock core; determining the amount of global water and ammonia present in the atmosphere, studying convection and deep- wind profiles in the atmosphere; investigating the origin of the Jovian magnetic field, and exploring the polar magnetosphere. Juno mission management is responsible for mission and navigation design, mission operation planning, and ground-data-system development. In order to ensure successful mission management from initial checkout to final de-orbit, it is critical to share a common vision of the entire mission operation phases with the rest of the project teams. Two major challenges are 1) how to develop a shared vision that can be appreciated by all of the project teams of diverse disciplines and expertise, and 2) how to continuously evolve a shared vision as the project lifecycle progresses from formulation phase to operation phase. The Juno mission simulation team addresses these challenges by developing agile and progressive mission models, operation simulations, and real-time visualization products. This paper presents mission simulation visualization network (MSVN) technology that has enabled a comprehensive mission simulation suite (MSVN-Juno) for the Juno project.

  13. Mission: PHH2O

    NASA Technical Reports Server (NTRS)

    Adams, D.; Bays, J.; Kronschnabl, G.; Mccutchon, J.; Minier, E.; Rush, P.

    1989-01-01

    The purpose of this project was to design a mission and a spacecraft capable of retrieving 120,000 kg of water from Phobos, a martian moon. There were no restrictions on the types of propulsion or power systems used. The duration of the mission was not defined, but a factor influencing the length of the mission was the statement that it would be cyclic in nature and the spacecraft could be manned or unmanned. The only assumptions provided were that a pumping and refueling station existed on Phobos and that a base existed on the Moon. The technology used for this mission was to be of the year 2007 and beyond.

  14. FFTF Plant transition mission analysis report

    SciTech Connect

    Lund, D.P.

    1995-05-25

    FFTF (Fast Flux Test Facility) is a 400-MW(t) sodium-cooled, fast flux test reactor at Hanford, designed to test fuels and materials for advanced nuclear power plants; it has no capability for generating electric power. Since a long-term mission could not be found for FFTF, it was placed in standby, and a recommendation was made that it be shut down. Purpose of the FFTF Transition Project is to prepare it for Decontamination and Decommissioning; this will be accomplished by establishing a passively safe and environmentally secure configuration, that can be preserved for several decades. This report presents the results of the mission analysis, which is required by Hanford systems engineering procedures.

  15. Passive microwave precipitation mapping and retrieval simulation

    NASA Technical Reports Server (NTRS)

    Skofronick, G. M.; Gasiewski, A. J.

    1992-01-01

    A numerical simulation of the satellite-based multispectral passive microwave mapping and precipitation retrieval process is described. The simulation contains three major components: (1) the forward radiative transfer calculation; (2) the sensor observation simulation; and (3) the precipitation retrieval algorithm. Secondary components include a Karhunen-Loeve transformation module and antenna pattern deconvolution module. The simulation facilitates the investigation of candidate precipitation retrieval algorithms using sub-Nyquist brightness temperature imagery, and the comparison of the relative merits of proposed radiometric systems such as the EOS multispectral imaging microwave radiometer (MIMR), the tropical rainfall measurement mission (TRMM) microwave imager (TRMM TMI), and the geosynchronous satellite sensors. A procedure for retrieving rain rates using a statistical iterative approach is outlined.

  16. Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles

    NASA Technical Reports Server (NTRS)

    Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.

    2016-01-01

    The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.

  17. Mission requirements: Second Skylab mission SL-3

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Complete SL-3 mission objectives and requirements, as revised 1 February 1972 (Rev. 6), are presented. Detailed test objectives are also given on the medical experiments, Apollo Telescope Mount experiments, Earth Resources Experiment Package, and corollary experiments and environmental microbiology experiments.

  18. Commentary on "Capturing the Evasive Passive"

    ERIC Educational Resources Information Center

    Lillo-Martin, Diane; Snyder, William

    2009-01-01

    Passives has been the focus of much research in language acquisition since the 1970s. It has been clear from this research that young children seldom produce passives spontaneously, particularly "long" or "full" passives with a by-phrase; and they usually perform poorly on experimental tests of the comprehension of passives, especially passives of…

  19. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  20. Passive magnetic bearing system

    DOEpatents

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  1. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  2. Passive Ball Capture Joint

    NASA Technical Reports Server (NTRS)

    Cloyd, Richard A. (Inventor); Bryan, Thomas C. (Inventor)

    2003-01-01

    A passive ball capture joint has a sleeve with a plurality of bores distributed about a circumference thereof and formed therethrough at an acute angle relative to the sleeve's longitudinal axis. A spring-loaded retainer is slidingly fitted in each bore and is biased such that, if allowed, will extend at least partially into the sleeve to retain a ball therein. A ring, rotatably mounted about the bores, has an interior wall defining a plurality of shaped races that bear against the spring-loaded retainers. A mechanized rotational force producer is coupled to the ring. The ring can be rotated from a first position (that presses the retainers into the sleeve to lock the ball in place) to a second position (that allows the retainers to springback out of the sleeve to release the ball).

  3. Passive containment cooling system

    DOEpatents

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  4. A Study of Radio Frequency Interference in the Space-to- Earth Exploration Allocation at L-Band

    NASA Technical Reports Server (NTRS)

    Belz, J. Eric; Huneycutt, Bryan L.; Michael W., Spence

    2011-01-01

    We report on ongoing studies of the anthropogenic radio frequency interference (RFI) in the Lband allocation for space-to-Earth exploration.1,2 The studies are being conducted for the radar instrument on the proposed Soil Moisture Active/Passive (SMAP) mission. A review of the allocated emitters is presented, followed by analysis based on space-borne and airborne data collected from the PALSAR sensor and the UAVSAR sensor. We use these data to model the pulsed RFI environment for SMAP and to demonstrate that the baseline plans for RFI mitigation are technically sound.

  5. Mission Medical Information System

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Joe, John C.; Follansbee, Nicole M.

    2008-01-01

    This viewgraph presentation gives an overview of the Mission Medical Information System (MMIS). The topics include: 1) What is MMIS?; 2) MMIS Goals; 3) Terrestrial Health Information Technology Vision; 4) NASA Health Information Technology Needs; 5) Mission Medical Information System Components; 6) Electronic Medical Record; 7) Longitudinal Study of Astronaut Health (LSAH); 8) Methods; and 9) Data Submission Agreement (example).

  6. Comet rendezvous mission study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1971-01-01

    Four periodic comets with perihelia between 1980 and 1986 (Encke, d'Arrest, Kipff, and Halley) are used as candidates for the comet rendezvous mission study. All these comet apparitions are especially favorable for rendezvous missions, because of early earth-based comet recovery, good opportunities to view their activity from earth, and reasonable launch vehicle and trajectory requirements for nominal payloads.

  7. NASA Mission: The Universe

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This booklet is mainly a recruitment tool for the various NASA Centers. This well illustrated booklet briefly describes NASA's mission and career opportunities on the NASA team. NASA field installations and their missions are briefly noted. NASA's four chief program offices are briefly described. They are: (1) Aeronautics, Exploration, and Space Technology; (2) Space Flight; (3) Space Operations; and (4) Space Science and Applications.

  8. The Pioneer Venus Missions.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Mountain View, CA. Ames Research Center.

    This document provides detailed information on the atmosphere and weather of Venus. This pamphlet describes the technological hardware including the probes that enter the Venusian atmosphere, the orbiter and the launch vehicle. Information is provided in lay terms on the mission profile, including details of events from launch to mission end. The…

  9. STS-51 Mission Overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Robert Castle, Lead Flight Director, gives an overview of the STS-51 Discovery mission, including details on the Space Shuttle, the payloads (ACTS-TOS, ORFEUS-SPAS, etc.), the crew, mission objectives, and the spacewalks to be performed. Simulations of the ACT-TS deployment and the ORPFEUS-SPAS operations are shown.

  10. The Community College Mission.

    ERIC Educational Resources Information Center

    Vaughan, George B.

    1988-01-01

    Argues that the community college's mission has been and will be constant with respect to its social role to educate; its responsiveness to community needs; its focus on teaching; its open access philosophy; and its commitment to a comprehensive curriculum. Examines social tensions affecting the mission. (DMM)

  11. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  12. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  13. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W.

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  14. STS-69 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Designed by the mission crew members, the patch for STS-69 symbolizes the multifaceted nature of the flight's mission. The primary payload, the Wake Shield Facility (WSF), is represented in the center by the astronaut emblem against a flat disk. The astronaut emblem also signifies the importance of human beings in space exploration, reflected by the planned space walk to practice for International Space Station (ISS) activities and to evaluate space suit design modifications. The two stylized Space Shuttles highlight the ascent and entry phases of the mission. Along with the two spiral plumes, the stylized Space Shuttles symbolize a NASA first, the deployment and recovery on the same mission of two spacecraft (both the Wake Shield Facility and the Spartan). The constellations Canis Major and Canis Minor represent the astronomy objectives of the Spartan and International Extreme Ultraviolet Hitchhiker (IEH) payload. The two constellations also symbolize the talents and dedication of the support personnel who make Space Shuttle missions possible.

  15. Mars Surface Mission Workshop

    NASA Technical Reports Server (NTRS)

    Duke, M. B. (Editor)

    1997-01-01

    A workshop was held at the Lunar and Planetary Institute on September 4-5, 1997, to address the surface elements of the Mars Reference Mission now being reviewed by NASA. The workshop considered the current reference mission and addressed the types of activities that would be expected for science and resource exploration and facilities operations. A set of activities was defined that can be used to construct "vignettes" of the surface mission. These vignettes can form the basis for describing the importance of the surface mission, for illustrating aspects of the surface mission, and for allowing others to extend and revise these initial ideas. The topic is rich with opportunities for additional conceptualization. It is recommended that NASA consider supporting university design teams to conduct further analysis of the possibilities.

  16. Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Cutts, James; Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  17. Outer Planet Flagship Missions

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.; Cutts, J. A.

    2008-05-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEM and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn and Europa/Jupiter Missions. We provide the background, organization and schedule that are presently envisaged for these two mission studies.

  18. Outer Planets Flagship Mission

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J. P.; Cutts, J. A.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  19. Kepler Mission Design

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Lissauer, J.; Mayer, David; Voss, Janice; Basri, Gibor; Gould, Alan; Brown, Timothy; Cockran, William; Caldwell, Douglas

    2005-01-01

    The Kepler Mission is in the development phase with launch planned for 2007. The mission goal first off is to reliably detect a significant number of Earth-size planets in the habitable zone of solar-like stars. The mission design allows for exploring the diversity of planetary sizes, orbital periods, stellar spectral types, etc. In this paper we describe the technical approach taken for the mission design; describing the flight and ground system, the detection methodology, the photometer design and capabilities, and the way the data are taken and processed. (For Stellar Classification program. Finally the detection capability in terms of planet size and orbit are presented as a function of mission duration and stellar type.

  20. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  1. Antireflection/Passivation Step For Silicon Cell

    NASA Technical Reports Server (NTRS)

    Crotty, Gerald T.; Kachare, Akaram H.; Daud, Taher

    1988-01-01

    New process excludes usual silicon oxide passivation. Changes in principal electrical parameters during two kinds of processing suggest antireflection treatment almost as effective as oxide treatment in passivating cells. Does so without disadvantages of SiOx passivation.

  2. The SMOS mission. Project status and next steps

    NASA Astrophysics Data System (ADS)

    Kerr, Y.; Waldteufel, P.; Cabot, F.; Font, J.; Hahne, A.; Mecklenburg, S.

    2009-04-01

    It is now well understood that soil moisture and sea surface salinity are required to improve meteorological and climatic predictions. These two quantities are not yet available globally and with an adequate temporal sampling. So as to cover this data gap, it has been recognized that, provided it is possible to accommodate a suitable antenna on board a satellite, L Band radiometry was most probably the most promising way to fulfill this gap . It is within this framework that the European Space Agency (ESA)'s selected the second Earth Explorer Opportunity Mission, namely the Soil Moisture and Ocean Salinity (SMOS) mission. SMOS is currently ready to be launched and is scheduled for launch in 2009, slightly before Aquarius and SMAP. The SMOS mission is ESA's second Earth Explorer Opportunity mission it is a joint program lead by the European Space Agency (ESA) with the Centre National d'Etudes Spatiales (CNES) in France and the Centro para el Desarrollo Teccnologico Industrial (CDTI) in Spain. SMOS carries a single payload, an L band 2D interferometric radiometer in the 1400-1427 MHz h protected band. This wavelength penetrates well through the vegetation and the atmosphere is almost transparent. Consequently, the instrument probes the Earth surface emissivity. Surface emissivity can then be related to the moisture content in the first few centimeters of soil over land, and, after some surface roughness and temperature corrections, spatio temporal aggregation, to the sea surface salinity over oceans. SMOS will achieve an unprecedented spatial resolution of 50 km at L-band maximum (43 km on average) seeking to meet soil moisture science objectives. This is possible by using a non-rotating thinned 8 m diameter antenna. The imaging capability of such antenna is implemented by aperture synthesis, the same technique of radio-astronomy. Such innovative concept has required a significant effort in the development of calibration techniques. It provides multiangular

  3. Carbon Dioxide Removal via Passive Thermal Approaches

    NASA Technical Reports Server (NTRS)

    Lawson, Michael; Hanford, Anthony; Conger, Bruce; Anderson, Molly

    2011-01-01

    A paper describes a regenerable approach to separate carbon dioxide from other cabin gases by means of cooling until the carbon dioxide forms carbon dioxide ice on the walls of the physical device. Currently, NASA space vehicles remove carbon dioxide by reaction with lithium hydroxide (LiOH) or by adsorption to an amine, a zeolite, or other sorbent. Use of lithium hydroxide, though reliable and well-understood, requires significant mass for all but the shortest missions in the form of lithium hydroxide pellets, because the reaction of carbon dioxide with lithium hydroxide is essentially irreversible. This approach is regenerable, uses less power than other historical approaches, and it is almost entirely passive, so it is more economical to operate and potentially maintenance- free for long-duration missions. In carbon dioxide removal mode, this approach passes a bone-dry stream of crew cabin atmospheric gas through a metal channel in thermal contact with a radiator. The radiator is pointed to reject thermal loads only to space. Within the channel, the working stream is cooled to the sublimation temperature of carbon dioxide at the prevailing cabin pressure, leading to formation of carbon dioxide ice on the channel walls. After a prescribed time or accumulation of carbon dioxide ice, for regeneration of the device, the channel is closed off from the crew cabin and the carbon dioxide ice is sublimed and either vented to the environment or accumulated for recovery of oxygen in a fully regenerative life support system.

  4. Lessons Learned in Thermal Coatings from the DSCOVR Mission

    NASA Technical Reports Server (NTRS)

    Abraham, Nithin S.

    2015-01-01

    Finding solutions to thermal coating issues on the Deep Space Climate Observatory (DSCOVR) mission was a very challenging and unique endeavor. As a passive thermal control system, coatings provide the desired thermal, optical, and electrical charging properties, while surviving a harsh space environment. DSCOVR mission hardware was repurposed from the late 1990s satellite known as Triana. As a satellite that was shelved for over a decade, the coating surfaces consequently degraded with age, and became fairly outdated. Although the mission successfully launched in February 2015, there were unfamiliar observations and unanticipated issues with the coating surfaces during the revival phases of the project. For example, the thermal coatings on DSCOVR experienced particulate contamination and resistivity requirement problems, among other issues. While finding solutions to these issues, valuable lessons were learned in thermal coatings that may provide great insight to future spaceflight missions in similar situations.

  5. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  6. NASA Earth science missions

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Volz, Stephen M.

    2013-10-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its space missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. Through partnerships with national and international agencies, NASA enables the application of this understanding. The ESD's Flight Program provides the spacebased observing systems and supporting ground segment infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth system science research and modeling activities. The Flight Program currently has 15 operating Earth observing space missions, including the recently launched Landsat-8/Landsat Data Continuity Mission (LDCM). The ESD has 16 more missions planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key data sets needed for climate science and applications, and small-sized competitively selected orbital missions and instrument missions of opportunity utilizing rideshares that are part of the Earth Venture (EV) Program. The recently selected Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation and the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument are examples. In addition, the International Space Station (ISS) is being increasingly used to host NASA Earth observing science instruments. An overview of plans

  7. Recce mission planning

    NASA Astrophysics Data System (ADS)

    York, Andrew M.

    2000-11-01

    The ever increasing sophistication of reconnaissance sensors reinforces the importance of timely, accurate, and equally sophisticated mission planning capabilities. Precision targeting and zero-tolerance for collateral damage and civilian casualties, stress the need for accuracy and timeliness. Recent events have highlighted the need for improvement in current planning procedures and systems. Annotating printed maps takes time and does not allow flexibility for rapid changes required in today's conflicts. We must give aircrew the ability to accurately navigate their aircraft to an area of interest, correctly position the sensor to obtain the required sensor coverage, adapt missions as required, and ensure mission success. The growth in automated mission planning system capability and the expansion of those systems to include dedicated and integrated reconnaissance modules, helps to overcome current limitations. Mission planning systems, coupled with extensive integrated visualization capabilities, allow aircrew to not only plan accurately and quickly, but know precisely when they will locate the target and visualize what the sensor will see during its operation. This paper will provide a broad overview of the current capabilities and describe how automated mission planning and visualization systems can improve and enhance the reconnaissance planning process and contribute to mission success. Think about the ultimate objective of the reconnaissance mission as we consider areas that technology can offer improvement. As we briefly review the fundamentals, remember where and how TAC RECCE systems will be used. Try to put yourself in the mindset of those who are on the front lines, working long hours at increasingly demanding tasks, trying to become familiar with new operating areas and equipment, while striving to minimize risk and optimize mission success. Technical advancements that can reduce the TAC RECCE timeline, simplify operations and instill Warfighter

  8. The Cassini Extended Mission

    NASA Astrophysics Data System (ADS)

    Seal, David A.; Buffington, Brent B.

    Based on the overwhelming success of the Cassini/Huygens 4-year tour of Saturn from July 2004 to June 2008, NASA Headquarters approved at least two years of extended mission for continued study of the target-rich Saturnian system. After a rigorous phase of science objective definition and trajectory design and analysis, the Cassini project initiated an efficient, scientifically intense and operationally challenging mission phase, including 60 orbits around Saturn, 26 close Titan flybys, and 10 close icy satellite flybys — including seven more flybys of Enceladus. At the conclusion of the 2-year extended mission, substantial operating margins should be present with some fascinating options for further extensions

  9. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  10. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  11. Passive-solar greenhouse

    SciTech Connect

    Not Available

    1982-01-01

    Our project objective was to design, construct, and operate a commercialized (16' x 50') passive, solar greenhouse. The structure was originally intended as a vegetable forcing facility to produce vegetable crops in the off-season. Building and size constraints and economic considerations convinced us to use the greenhouse for producing bedding plants and vegetable starts in the spring, high value vegetables (tomatoes, cucumbers) in the fall and forced bulbs in the winter. This crop sequence allows us to use the greenhouse all year without additional heat as the crops are adopted to the temperature regime of the greenhouse during each particular season. In our first season, the greenhouse performed beautifully. The lowest temperature recorded was 38/sup 0/F after 4 cold, cloudy days in February. The production of bedding plants has allowed us to diversify our products and the early transplants we produced were a great asset to our vegetable farming operation. Although construction cost (4.57 sq. ft.) is higher than that of a conventional polyethylene-covered, quonset-type greenhouse (approx. $1.92 sq. ft.), our annual operating cost is cheaper than that of a conventional greenhouse (0.49 cents sq. ft. versus 0.67 cents sq. ft.) due to a longer usable lifetime of the structure and the elimination of heating costs. Our structure has been toured by interested individuals, school and farm groups. We plan to publicize the structure and its advantages by promoting more visits to the site.

  12. Passive blast pressure sensor

    DOEpatents

    King, Michael J.; Sanchez, Roberto J.; Moss, William C.

    2013-03-19

    A passive blast pressure sensor for detecting blast overpressures of at least a predetermined minimum threshold pressure. The blast pressure sensor includes a piston-cylinder arrangement with one end of the piston having a detection surface exposed to a blast event monitored medium through one end of the cylinder and the other end of the piston having a striker surface positioned to impact a contact stress sensitive film that is positioned against a strike surface of a rigid body, such as a backing plate. The contact stress sensitive film is of a type which changes color in response to at least a predetermined minimum contact stress which is defined as a product of the predetermined minimum threshold pressure and an amplification factor of the piston. In this manner, a color change in the film arising from impact of the piston accelerated by a blast event provides visual indication that a blast overpressure encountered from the blast event was not less than the predetermined minimum threshold pressure.

  13. Exobiology and Future Mars Missions

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P. (Editor); Davis, Wanda, L. (Editor)

    1989-01-01

    Scientific questions associated with exobiology on Mars were considered and how these questions should be addressed on future Mars missions was determined. The mission that provided a focus for discussions was the Mars Rover/Sample Return Mission.

  14. Apollo 15 mission report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A detailed discussion is presented of the Apollo 15 mission, which conducted exploration of the moon over longer periods, greater ranges, and with more instruments of scientific data acquisition than previous missions. The topics include trajectory, lunar surface science, inflight science and photography, command and service module performance, lunar module performance, lunar surface operational equipment, pilot's report, biomedical evaluation, mission support performance, assessment of mission objectives, launch phase summary, anomaly summary, and vehicle and equipment descriptions. The capability of transporting larger payloads and extending time on the moon were demonstrated. The ground-controlled TV camera allowed greater real-time participation by earth-bound personnel. The crew operated more as scientists and relied more on ground support team for systems monitoring. The modified pressure garment and portable life support system provided better mobility and extended EVA time. The lunar roving vehicle and the lunar communications relay unit were also demonstrated.

  15. EUVE Outsourced Extended Mission

    NASA Astrophysics Data System (ADS)

    Malina, R. F.; Biroscak, D.; Herz, A.; Christian, D.; Kaier, K.; Kaplan, G. C.; Lilly, S.; Quinn, T.; Stroozas, B.; Tucker, T.

    1996-05-01

    NASA has accepted an unsolicited proposal by the Center for EUV Atrophysics (CEA) at the University of California at Berkeley to manage spacecraft operations for the Extreme Ultraviolet Explorer (EUVE) extended mission. The proposal can serve as a model for university, government, and industry collaborations to respond to NASA's stated strategic goal to outsource all routine operations of scientific satellites to academia and industry. CEA has taken a conservative, low-cost approach to outsourcing that continues observatory operations, maintains the science return, and preserves the EUVE science archive. The Outsourced Extended Mission reduces yearly EUVE program costs, which may allow for a further extension of the science mission. This poster discusses the outsourced EUVE mission, its operations concept, NASA institutional support, and the roles and responsibilities of the government, university, and industry.

  16. Mission X Introduction

    NASA Video Gallery

    Expedition 26 Flight Engineer Cady Coleman delivers a message to student teams participating in the Mission X: Train Like An Astronaut international education and fitness challenge. To learn more, ...

  17. Students on Hayabusa Mission

    NASA Video Gallery

    Three Massachusetts high school students began their summer with a journey halfway around the world to participate in a NASA airborne mission to image the Japanese Hayabusa spacecraft's fiery retur...

  18. The Spacelab J mission

    NASA Technical Reports Server (NTRS)

    Cremin, J. W.; Leslie, F. W.

    1990-01-01

    This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.

  19. Cassini's Solstice Mission

    NASA Technical Reports Server (NTRS)

    Seal, David; Mitchell, Robert

    2010-01-01

    With the recent approval of NASA's flagship Cassini mission for seven more years of continued operations, dozens more Titan, Enceladus and other icy moon flybys await, as well as many occultations and multiple close passages to Saturn. Seasonal change is the principal scientific theme as Cassini extends its survey of the target-rich system over one full half-season, from just after northern winter solstice at arrival back in 2004, to northern summer solstice at the end of mission in 2017. The new seven-year mission extension requires careful propellant management as well as streamlined operations strategies with smaller spacecraft, sequencing and science teams. Cassini's never-before-envisioned end of mission scenario also includes nearly two dozen high-inclination orbits which pass between the rings and the planet allowing thrilling and unique science opportunities before entry into Saturn's atmosphere.

  20. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  1. Mission critical technology development

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy

    1991-01-01

    Mission critical technology development is presented in the form of the viewgraphs. The following subject areas are covered: organization/philosophy overview; fault management technology; and introduction to optical processing.

  2. Technology Demonstration Missions

    NASA Video Gallery

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  3. NASA Hurricane Mission - GRIP

    NASA Video Gallery

    This is an overview of NASA's hurricane research campaign called Genesis and Rapid Intensification Processes (GRIP). The six-week mission was conducted in coordination with NOAA and the National Sc...

  4. Giotto mission support

    NASA Technical Reports Server (NTRS)

    Stelzried, C.; Howe, T.

    1986-01-01

    Deep Space Network (DSN) support of the Giotto mission to Comet Halley is summarized. The support is described beginning with the prelaunch testing and continues through the post comet encounter period.

  5. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This viewgraph presentation reviews the Mars Exploration Rover Mission. The design of the Rover along with the Athena science payload is also described. Photographs of the Gusev Crater and Meridiani rocks are also shown.

  6. STS-83 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  7. Space Mission Operations Concept

    NASA Technical Reports Server (NTRS)

    Squibb, Gael F.

    1996-01-01

    This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.

  8. Mission Control Roses

    NASA Video Gallery

    The 110th bouquet of roses arrived in Mission Control on Saturday, July 9, 2011. They were sent as quietly as they have been for more than 23 years by a family near Dallas, Texas. For 110 shuttle m...

  9. The IRIS Mission Timeline

    NASA Video Gallery

    This animation shows the timeline of activities for the IRIS mission. Following launch, during the initial orbits, the spacecraft “detumbles”, opens the solar arrays, acquires the sun and com...

  10. LEO and GEO missions

    NASA Technical Reports Server (NTRS)

    Mercanti, Enrico

    1987-01-01

    The occurrence of the Challenger disaster in early 1986 caused a severe reevaluation of the space program. Plans already established had to be drastically revised and new plans had to be made. NASA created the Space Leadership Planning Group (SLPG) to formulate space mission plans covering a 50 year period based on Agency goals and objectives responsive to the National Commission on Space recommendations. An interim view of the status of SLPG plans for low altitude and geosynchronous missions is presented.

  11. Galileo Mission Science Briefing

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first of two tapes of the Galileo Mission Science press briefing is presented. The panel is moderated by George Diller from the Kennedy Space Center (KSC) Public Affairs Office. The participants are John Conway, the director of Payload and operations at Kennedy; Donald E. Williams, Commander of STS-43, the shuttle mission which will launch the Galileo mission; John Casani, the Deputy Assistant Director of Flight Projects at the Jet Propulsion Lab (JPL); Dick Spehalski, Galileo Project Manager at JPL; and Terrence Johnson, Galileo Project Scientist at JPL. The briefing begins with an announcement of the arrival of the Galileo Orbiter at KSC. The required steps prior to the launch are discussed. The mission trajectory and gravity assists from planetary and solar flybys are reviewed. Detailed designs of the orbiter are shown. The distance that Galileo will travel from the sun precludes the use of solar energy for heat. Therefore Radioisotope heater units are used to keep the equipment at operational temperature. A video of the arrival of the spacecraft at KSC and final tests and preparations is shown. Some of the many science goals of the mission are reviewed. Another video showing an overview of the Galileo mission is presented. During the question and answer period, the issue of the use of plutonium on the mission is broached, which engenders a review of the testing methods used to ensure the safety of the capsules containing the hazardous substance. This video has actual shots of the orbiter, as it is undergoing the final preparations and tests for the mission.

  12. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  13. STEREO Mission Design

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Guzman, Jose J.; Sharer, Peter J.; Friessen, Henry D.

    2007-01-01

    STEREO (Solar-TErestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA). STEREO is the first mission to utilize phasing loops and multiple lunar flybys to alter the trajectories of more than one satellite. This paper describes the launch computation methodology, the launch constraints, and the resulting nine launch windows that were prepared for STEREO. More details are provided for the window in late October 2006 that was actually used.

  14. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  15. Apollo mission experience

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1972-01-01

    Dosimetric implications for manned space flight are evaluated by analyzing the radiation field behind the heavy shielding of a manned space vehicle on a near-earth orbital mission and how it compares with actual exposure levels recorded on Apollo missions. Emphasis shifts from flux densities and energy spectra to incident radiation and absorbed doses and dose equivalents as they are recorded within the ship at locations close to crew members.

  16. Apollo 17 mission report

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Operational and engineering aspects of the Apollo 17 mission are outlined. The vehicle configuration was similar to those of Apollo 15 and 16. There were significant differences in the science payload for Apollo 17 and spacecraft hardware differences and experiment equipment are described. The mission achieved a landing in the Taurus-Littrow region of the moon and returned samples of the pre-Imbrium highlands and young craters.

  17. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Cooper, J. F.; Mahaffy, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; Acuna, M.; Allen, M.; Bjoraker, G.; Brasunas, J.; Farrell, W.; Burchell, M. J.; Burger, M.; Chin, G.; Coates, A. J.; Farrell, W.; Flasar, M.; Gerlach, B.; Gorevan, S.; Hartle, R. E.; Im, Eastwood; Jennings, D.; Johnson, R. E.

    2007-01-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. One could also use aerobraking to put spacecraft into orbit around Saturn first for an Enceladus phase of the mission and then later use aerocapture to put spacecraft into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG approx. 1000 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan's atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  18. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  19. Missions to Venus

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Baines, K. H.; Basilevsky, A. T.; Chassefiere, E.; Chin, G.; Crisp, D.; Esposito, L. W.; Lebreton, J.-P.; Lellouch, E.; Moroz, V. I.; Nagy, A. F.; Owen, T. C.; Oyama, K.-I.; Russell, C. T.; Taylor, F. W.; Young, R. E.

    2002-10-01

    Venus has always been a fascinating objective for planetary studies. At the beginning of the space era Venus became one of the first targets for spacecraft missions. Our neighbour in the solar system and, in size, the twin sister of Earth, Venus was expected to be very similar to our planet. However, the first phase of Venus spacecraft exploration in 1962-1992 by the family of Soviet Venera and Vega spacecraft and US Mariner, Pioneer Venus, and Magellan missions discovered an entirely different, exotic world hidden behind a curtain of dense clouds. These studies gave us a basic knowledge of the conditions on the planet, but generated many more questions concerning the atmospheric composition, chemistry, structure, dynamics, surface-atmosphere interactions, atmospheric and geological evolution, and the plasma environment. Despite all of this exploration by more than 20 spacecraft, the "morning star" still remains a mysterious world. But for more than a decade Venus has been a "forgotten" planet with no new missions featuring in the plans of the world space agencies. Now we are witnessing the revival of interest in this planet: the Venus Orbiter mission is approved in Japan, Venus Express - a European orbiter mission - has successfully passed the selection procedure in ESA, and several Venus Discovery proposals are knocking at the doors of NASA. The paper presents an exciting story of Venus spacecraft exploration, summarizes open scientific problems, and builds a bridge to the future missions.

  20. Future Titan Missions

    NASA Astrophysics Data System (ADS)

    Waite, J. H.; Coustenis, A.; Lorenz, R.; Lunine, J.; Stofan, E.

    2012-04-01

    New discoveries about Titan from the Cassini-Huygens mission have led to a broad range of mission class studies for future missions, ranging from NASA Discovery class to International Flagship class. Three consistent science themes emerge and serve as a framework for discussing the various mission concepts: Goal A: Explore Titan, an Earth-Like System - How does Titan function as a system? How are the similarities and differences with Earth, and other solar system bodies, a result of the interplay of the geology, hydrology, meteorology, and aeronomy present in the Titan system?; Goal B: Examine Titan’s Organic Inventory—A Path to Prebiological Molecules - What is the complexity of Titan’s organic chemistry in the atmosphere, within its lakes, on its surface, and in its putative subsurface water ocean and how does this inventory differ from known abiotic organic material in meteorites and therefore contribute to our understanding of the origin of life in the Solar System?; and Goal C: Explore Enceladus and Saturn’s magnetosphere—clues to Titan’s origin and evolution - What is the exchange of energy and material with the Saturn magnetosphere and solar wind? What is the source of geysers on Enceladus? Does complex chemistry occur in the geyser source? Within this scientific framework the presentation will overview the Titan Explorer, Titan AND Enceladus Mission, Titan Saturn System Mission, Titan Mare Explorer, and Titan Submersible. Future timelines and plans will be discussed.

  1. The Voyager Interstellar Mission.

    PubMed

    Rudd, R P; Hall, J C; Spradlin, G L

    1997-01-01

    The Voyager Interstellar Mission began on January 1, 1990, with the primary objective being to characterize the interplanetary medium beyond Neptune and to search for the transition region between the interplanetary medium and the interstellar medium. At the start of this mission, the two Voyager spacecraft had already been in flight for over twelve years, having successfully returned a wealth of scientific information about the planetary systems of Jupiter, Saturn, Uranus, and Neptune, and the interplanetary medium between Earth and Neptune. The two spacecraft have the potential to continue returning science data until around the year 2020. With this extended operating lifetime, there is a high likelihood of one of the two spacecraft penetrating the termination shock and possibly the heliopause boundary, and entering interstellar space before that time. This paper describes the Voyager Interstellar Mission--the mission objectives, the spacecraft and science payload, the mission operations system used to support operations, and the mission operations strategy being used to maximize science data return even in the event of certain potential spacecraft subsystem failures. The implementation of automated analysis tools to offset and enable reduced flight team staffing levels is also discussed. PMID:11540770

  2. Passive Solar Is Common Sense.

    ERIC Educational Resources Information Center

    Robison, Rita

    1979-01-01

    A checklist of concepts concerning passive solar energy techniques. Many can be applied immediately to existing buildings, while others should be brought into the initial planning of buildings. (Author/MLF)

  3. Orion Passive Thermal: Control Overview

    NASA Technical Reports Server (NTRS)

    Alvarez-Hermandez, Angel; Miller, Stephen W.

    2009-01-01

    A general overview of the NASA Orion Passive Thermal Control System (PTCS) is presented. The topics include: 1) Orion in CxP Hierarchy; 2) General Orion Description/Orientation; and 3) Orion PTCS Overview.

  4. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning, and

  5. Lunar Prospector Extended Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-01-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  6. Lunar Prospector Extended Mission

    NASA Astrophysics Data System (ADS)

    Folta, David; Beckman, Mark; Lozier, David; Galal, Ken

    1999-05-01

    The National Aeronautics and Space Administration (NASA) selected Lunar Prospector (LP) as one of the discovery missions to conduct solar system exploration science investigations. The mission is NASA's first lunar voyage to investigate key science objectives since Apollo and was launched in January 1998. In keeping with discovery program requirements to reduce total mission cost and utilize new technology, Lunar Prospector's mission design and control focused on the use of innovative and proven trajectory analysis programs. As part of this effort, the Ames Research Center and the Goddard Space Flight Center have become partners in the Lunar Prospector trajectory team to provide the trajectory analysis, maneuver planning, orbit determination support, and product generation. At the end of 1998, Lunar Prospector completed its one-year primary mission at 100 km altitude above the lunar surface. On December 19, 1998, Lunar Prospector entered the extended mission phase. Initially the mission orbit was lowered from 100 km to a mean altitude of 40 km. The altitude of Lunar Prospector varied between 25 and 55 km above the mean lunar geode due to lunar potential effects. After one month, the lunar potential model was updated based upon the new tracking data at 40 km. On January 29, 1999, the altitude was lowered again to a mean altitude of 30 km. This altitude varies between 12 and 48 km above the mean lunar geode. Since the minimum altitude is very close to the mean geode, various approaches were employed to get accurate lunar surface elevation including Clementine altimetry and line of sight analysis. Based upon the best available terrain maps, Lunar Prospector will reach altitudes of 8 km above lunar mountains in the southern polar and far side regions. This extended mission phase of six months will enable LP to obtain science data up to 3 orders of magnitude better than at the mission orbit. This paper details the trajectory design and orbit determination planning and

  7. Passive vapor extraction feasibility study

    SciTech Connect

    Rohay, V.J.

    1994-06-30

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft{sup 3}/min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft{sup 3}/min air flow rates, passive vapor extraction is more cost effective below 100 ppm.

  8. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  9. Alternative to Nitric Acid for Passivation of Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L.; Kolody, Mark; Curran, Jerry

    2013-01-01

    Corrosion is an extensive problem that affects the Department of Defense (DoD) and National Aeronautics and Space Administration (NASA). The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. The DoD and NASA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and reduced operational cost. DoD and NASA agreed to collaborate to validate citric acid as an acceptable passivating agent for stainless steel. This paper details our investigation of prior work developing the citric acid passivation process, development of the test plan, optimization of the process for specific stainless steel alloys, ongoing and planned testing to elucidate the process' resistance to corrosion in comparison to nitric acid, and preliminary results.

  10. STS-70 mission highlights

    NASA Astrophysics Data System (ADS)

    1995-09-01

    The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.

  11. An Explorer-Class Astrobiology Mission

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Greene, Thomas; Allamandola, Louis; Arno, Roger; Bregman, Jesse; Cox, Sylvia; Davis, Paul K.; Gonzales, Andrew; Haas, Michael; Hanel, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    In this paper we describe a potential new Explorer-class space mission, the AstroBiology Explorer (ABE), consisting of a relatively modest dedicated space observatory having a 50 cm aperture primary mirror which is passively cooled to T less than 65 K, resides in a low-background orbit (heliocentric orbit at 1 AU, Earth drift-away), and is equipped with a suite of three moderate order (m approx. 10) dispersive spectrographs equipped with first-order cross-dispersers in an "echellette" configuration and large format (1024xl024 pixel) near- and mid-IR detector arrays cooled by a modest amount of cryogen. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The observational program of this mission would make fundamental scientific progress in each of the key areas of the cosmic history of molecular carbon, the distribution and chemistry of organic compounds in the diffuse and dense interstellar media, and the evolution of ices and organic matter in young planetary systems. ABE could make fundamental progress in all of these areas by conducting an approximately one year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5-20 micrometers spectral range at spectral resolutions of R greater than or equal to 1000 of approximately 1000 galaxies, stars, planetary nebulae, and young star planetary systems.

  12. NASA's Spitzer Space Telescope's operational mission experience

    NASA Astrophysics Data System (ADS)

    Wilson, Robert K.; Scott, Charles P.

    2006-06-01

    Spitzer Space Telescope, the fourth and final of NASA's Great Observatories, and the cornerstone to NASA's Origins Program, launched on 25 August 2003 into an Earth-trailing solar orbit to acquire infrared observations from space. Spitzer has an 85cm diameter beryllium telescope, which operates near absolute zero utilizing a liquid helium cryostat for cooling the telescope. The helium cryostat though designed for a 2.5 year lifetime, through creative usage now has an expected lifetime of 5.5 years. Spitzer has completed its in-orbit checkout/science verification phases and the first two years of nominal operations becoming the first mission to execute astronomical observations from a solar orbit. Spitzer was designed to probe and explore the universe in the infrared utilizing three state of the art detector arrays providing imaging, photometry, and spectroscopy over the 3-160 micron wavelength range. Spitzer is achieving major advances in the study of astrophysical phenomena across the expanses of our universe. Many technology areas critical to future infrared missions have been successfully demonstrated by Spitzer. These demonstrated technologies include lightweight cryogenic optics, sensitive detector arrays, and a high performance thermal system, combining radiation both passive and active cryogenic cooling of the telescope in space following its warm launch. This paper provides an overview of the Spitzer mission, telescope, cryostat, instruments, spacecraft, its orbit, operations and project management approach and related lessons learned.

  13. Precipitating cloud vertical structure derived from passive microwave radiometry

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian D.; Liberti, Gian L.

    1990-01-01

    A procedure for the retrieval of cloud vertical structure from passive microwave radiometry is demonstrated by using passive microwave radiometry observations made during the Tropical Rainfall Measuring Mission. The procedure uses a set of cloud radiative models, with each model consisting of five vertical layers, specifying a distinct cloud vertical structure in terms of the near-surface parameters. The retrieval procedure is separated into two tasks (1) retrieving a set of geophysical parameters for each cloud radiative model and (2) finding which of the cloud radiative models and its associated retrieved parameters best fit the observed geophysical conditions. It is shown that this retrieval technique can detect differences and similarities between precipitating systems.

  14. Passive sky angle mapping for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Grabowski, Robert; Weatherly, Richard; Bolling, Robert; Ring, Keven

    2012-06-01

    We utilize a hemispherical camera to develop a passive mapping algorithm that exploits visibility to the sky. We use this visibility to derive a measure of occupancy to build a wide area volumetric map. This process produces a 3D representation of the environment derived solely from video. The resolution of this map is further refined by active motion of the vehicle. Because this method visually exploits the energy of the sky, its effective range is potentially much higher than an active energy sensor. That is, all the space between the sensor and the far horizon can be effectively cleared. Moreover, since this approach is completely passive (it does not emit energy) it is ideal for missions that require stealth. We present initial results from testing this concept on an autonomous vehicle circumnavigating a series of outdoor buildings.

  15. Microgravity Passive Phase Separator

    NASA Technical Reports Server (NTRS)

    Paragano, Matthew; Indoe, William; Darmetko, Jeffrey

    2012-01-01

    A new invention disclosure discusses a structure and process for separating gas from liquids in microgravity. The Microgravity Passive Phase Separator consists of two concentric, pleated, woven stainless- steel screens (25-micrometer nominal pore) with an axial inlet, and an annular outlet between both screens (see figure). Water enters at one end of the center screen at high velocity, eventually passing through the inner screen and out through the annular exit. As gas is introduced into the flow stream, the drag force exerted on the bubble pushes it downstream until flow stagnation or until it reaches an equilibrium point between the surface tension holding bubble to the screen and the drag force. Gas bubbles of a given size will form a front that is moved further down the length of the inner screen with increasing velocity. As more bubbles are added, the front location will remain fixed, but additional bubbles will move to the end of the unit, eventually coming to rest in the large cavity between the unit housing and the outer screen (storage area). Owing to the small size of the pores and the hydrophilic nature of the screen material, gas does not pass through the screen and is retained within the unit for emptying during ground processing. If debris is picked up on the screen, the area closest to the inlet will become clogged, so high-velocity flow will persist farther down the length of the center screen, pushing the bubble front further from the inlet of the inner screen. It is desired to keep the velocity high enough so that, for any bubble size, an area of clean screen exists between the bubbles and the debris. The primary benefits of this innovation are the lack of any need for additional power, strip gas, or location for venting the separated gas. As the unit contains no membrane, the transport fluid will not be lost due to evaporation in the process of gas separation. Separation is performed with relatively low pressure drop based on the large surface

  16. STS-90 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  17. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  18. Rosetta Mission Status update

    NASA Astrophysics Data System (ADS)

    Taylor, Matthew

    2015-04-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to ex-amine its environment insitu and its evolution in the inner solar system. The lander Philae is the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, Rosetta successfully rendezvoused with the comet. Following an intense period of map-ping and characterisation, a landing site for Philae was selected and on 12 November 2014, Philae was suc-cessfully deployed. This presentation will provide a brief overview of the mission up to date and where we stand in main science phase, which began with Philae's separation. It will also provide a look forward. IT is given on behalf of ALL Rosetta mission science, in-strument and operations teams.

  19. Rosetta Mission Status Update

    NASA Astrophysics Data System (ADS)

    Taylor, M. G.; Altobelli, N.; Alexander, C. J.; Schwehm, G. H.; Jansen, F.; Küppers, M.; O'Rourke, L.; Barthelemy, M.; Geiger, B.; Grieger, B.; Moissl, R.; Vallat, C.

    2014-12-01

    The Rosetta Mission is the third cornerstone mission the ESA programme Horizon 2000. The aim of the mission is to map the comet 67-P/Churyumov-Gerasimenko by remote sensing, to examine its environment insitu and its evolution in the inner solar system. The lander Philae will be the first device to land on a comet and perform in-situ science on the surface. Nearly 10 years after launch in 2004, on 20th January 2014 at 10:00 UTC the spacecraft woke up from hibernation. Following successful instrument commissioning, at the time of writing the spacecraft is about to rendez-vous with the comet. The rest of 2014 will involve careful mapping and characterisation of the nucleus and its environs, for science and to identify a landing site for the lander Philae in November. This presentation will provide a brief overview of the mission up to date and where we stand in early part of the escort phase of the mission which runs until end of 2015.

  20. The Euclid Mission

    NASA Astrophysics Data System (ADS)

    Racca, Giuseppe; Laureijs, Rene

    Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) designed to investigate the nature of dark energy, dark matter and gravity by observing their signatures on the geometry of the Universe and on the formation of large structures over cosmological timescales. Euclid is optimised for two primary cosmological probes: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for a launch date in the first half of 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. The ground segment is broken down into three elements: the Mission Operations, the Science Operations under the responsibility of ESA and the Science Data Centres belonging to the Euclid Consortium. We will describe the overall mission, the mission elements architecture and the current project status.

  1. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  2. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  3. The Hydrosphere State Mission (HYDROS) Soil Moisture and Freeze/Thaw Exploratory Mission

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Njoku, E. G.; Houser, P. R.

    2003-12-01

    The Hydrosphere State Mission (HYDROS) is a pathfinder mission in the NASA's Earth System Pathfinder Program (ESSP). The objective of the mission is to provide exploratory measurements that constitute the first global scale measurement of Earth's soil moisture and land surface freeze/thaw conditions. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances weather and climate prediction and in mapping processes that link the water, energy and carbon cycles. The proposed HYDROS instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations). The radar and the radiometer share the aperture of a 6-meter antenna pointing at 35° with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angel scan swath of 1000 km. The large swath provides a global coverage of the Earth in 2 to 3 days with a temporal sampling less than 2 days at latitude above 50N. The radar measurements allow the retrieval of soil moisture at high resolution (3 to 10 km). The radiometer measurements allow retrieval of soil moisture in diverse (non-forested) landscapes with a resolution of 40 km. The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced quality soil moisture estimates.

  4. Early lunar rover mission studies

    NASA Technical Reports Server (NTRS)

    Gillespie, Vernon P.

    1993-01-01

    Results of lunar mission studies aimed at developing mission goals and high level requirements are reported. A mission concept to meet the mission requirements was developed and the design of mission hardware was to follow. Mission concepts not only included operations analysis and plans but also fabrication and test planning, quality control measures, and project organization. The design of mission concepts and hardware identified issues that are not easily resolved. Although none of the issues identified appear to be unresolvable, many will be difficult to resolve within Space Exploration Initiative constraints. These issues discussed which appear to have the potential for negative project impact are rover mobility, power, imaging, telemanagment, and remote control.

  5. STS-95 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-95 patch, designed by the crew, is intended to reflect the scientific, engineering, and historic elements of the mission. The Space Shuttle Discovery is shown rising over the sunlit Earth limb, representing the global benefits of the mission science and the solar science objectives of the Spartan Satellite. The bold number '7' signifies the seven members of Discovery's crew and also represents a historical link to the original seven Mercury astronauts. The STS-95 crew member John Glenn's first orbital flight is represented by the Friendship 7 capsule. The rocket plumes symbolize the three major fields of science represented by the mission payloads: microgravity material science, medical research for humans on Earth and in space, and astronomy.

  6. Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Adler, M.

    2004-01-01

    Two rovers with a sophisticated geological payload have been operating on the surface of Mars since January of 2004. Future missions and their related technology developments will benefit from the lessons learned during these surface operations. The planning cycle was dictated by the communications opportunities and the times of day that the rovers could operate, and the team and tools were tuned to optimize the mission return for that cycle time. The ability to traverse and to approach and perform in situ investigations on targets was limited in speed by the same cycle time, due to required human involvement in the related planning and risk decisions. In addition traverse was limited by the speed of the on-board terrain and hazard assessment, and in situ operations were limited by a lack of autonomy. Different planning cycles and levels of autonomy should be considered for future surface missions, which will result in different approaches to science decision making.

  7. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2009-01-01

    LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.

  8. STS-55 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The official insignia of the STS-55 mission displays the Space Shuttle Columbia over an Earth-sky background. Depicted beneath the orbiter are the American and German flags flying together, representing the partnership of this laboratory mission. The two blue stars in the border bearing the crewmembers' names signify each of the backup (alternate) payload specialists -- Gerhard Thiele and Renate Brummer. The stars in the sky stand for each of the children of the crewmembers in symbolic representation of the space program's legacy to future generations. The rainbow symbolizes the hope for a brighter tomorrow because of the knowledge and technologies gained from this mission's multifaceted experiments. Each crewmember contributed to the design of the insignia.

  9. Athena Mission Status

    NASA Astrophysics Data System (ADS)

    Lumb, D.

    2016-07-01

    Athena has been selected by ESA for its second large mission opportunity of the Cosmic Visions programme, to address the theme of the Hot and Energetic Universe. Following the submission of a proposal from the community, the technical and programmatic aspects of the mission design were reviewed in ESA's Concurrent Design Facility. The proposed concept was deemed to betechnically feasible, but with potential constraints from cost and schedule. Two parallel industry study contracts have been conducted to explore these conclusions more thoroughly, with the key aim of providing consolidated inputs to a Mission Consolidation Review that was conducted in April-May 2016. This MCR has recommended a baseline design, which allows the agency to solicit proposals for a community provided payload. Key design aspects arising from the studies are described, and the new reference design is summarised.

  10. The PROBA-3 Mission

    NASA Astrophysics Data System (ADS)

    Zhukov, Andrei

    2016-07-01

    PROBA-3 is the next ESA mission in the PROBA line of small technology demonstration satellites. The main goal of PROBA-3 is in-orbit demonstration of formation flying techniques and technologies. The mission will consist of two spacecraft together forming a giant (150 m long) coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). The bigger spacecraft will host the telescope, and the smaller spacecraft will carry the external occulter of the coronagraph. ASPIICS heralds the next generation of solar coronagraphs that will use formation flying to observe the inner corona in eclipse-like conditions for extended periods of time. The occulter spacecraft will also host the secondary payload, DARA (Davos Absolute RAdiometer), that will measure the total solar irradiance. PROBA-3 is planned to be launched in 2019. The scientific objectives of PROBA-3 will be discussed in the context of other future solar and heliospheric space missions.

  11. STS-89 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the STS-89 crew insignia, the link between the United States and Russia is symbolically represented by the Space Shuttle Endeavour and Russia's Mir Space Station orbiting above the Bering Strait between Siberia and Alaska. The success of the joint United States-Russian missions is depicted by the Space Shuttle and Mir colored by the rising sun in the background. A shadowed representation of the International Space Station (ISS) rising with the sun represents the future program for which the Shuttle-Mir missions are prototypes. The inside rim of the insignia describes the outline of the number eight representing STS-89 as the eighth Shuttle/Mir docking mission. The nine stars represent the nine joint missions to be flown of the program and when combined with the number eight in the rim, reflect the mission number. The nine stars also symbolize the children of the crew members who will be the future beneficiaries of the joint development work of the space programs of the two countries. Along the rim are the crew members' names with David A. Wolf's name on the left and Andrew S. W. Thomas' name on the right, the returning and upgoing cosmonaut guest researcher crew members. In between and at the bottom is the name of Salizan S. Sharipov, payload specialist representing Russian Space Agency (RSA), in Cyrillic alphabet. The other crew members are Terrence W. Wilcutt, commander; Joe F. Edwards, Jr., pilot; and mission specialists Michael P. Anderson, Bonnie J. Dunbar, and James F. Reilly. The red, white and blue of the rim reflect the colors of the American and Russian flags which are also represented in the rim on either side of the joined spacecraft.

  12. The ALEXIS mission recovery

    SciTech Connect

    Bloch, J.; Armstrong, T.; Dingler, B.; Enemark, D.; Holden, D.; Little, C.; Munson, C.; Priedhorsky, B.; Roussel-Dupre, D.; Smith, B.; Warner, R.; Dill, B.; Huffman, G.; McLoughlin, F.; Mills, R.; Miller, R.

    1994-03-01

    The authors report the recovery of the ALEXIS small satellite mission. ALEXIS is a 113-kg satellite that carries an ultrasoft x-ray telescope array and a high-speed VHF receiver/digitizer (BLACKBEARD), supported by a miniature spacecraft bus. It was launched by a Pegasus booster on 1993 April 25, but a solar paddle was damaged during powered flight. Initial attempts to contact ALEXIS were unsuccessful. The satellite finally responded in June, and was soon brought under control. Because the magnetometer had failed, the rescue required the development of new attitude control-techniques. The telemetry system has performed nominally. They discuss the procedures used to recover the ALEXIS mission.

  13. Mission Critical Networking

    SciTech Connect

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

    2010-06-01

    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  14. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  15. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  16. STS-52 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-52 insignia, designed by the mission's crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  17. Magellan: mission summary.

    PubMed

    Saunders, R S; Pettengill, G H

    1991-04-12

    The Magellan radar mapping mission is in the process of producing a global, high-resolution image and altimetry data set of Venus. Despite initial communications problems, few data gaps have occurred. Analysis of Magellan data is in the initial stages. The radar system data are of high quality, and the planned performance is being achieved in terms of spatial resolution and geometric and radiometric accuracy. Image performance exceeds expectations, and the image quality and mosaickability are extremely good. Future plans for the mission include obtaining gravity data, filling gaps in the initial map, and conducting special studies with the radar. PMID:17769269

  18. Passive solar design: final evaluation, the Passive Studio

    SciTech Connect

    Bremer, Duncan S.; Rose, Stuart

    1980-08-01

    The further evaluation of the workshops in passive design for practicing architects and engineers through delayed interviews with a sample of the participants is reported with particular emphasis on the extent to which the participants have practiced passive design in the three-four months since attending. Also discussed is an unsuccessful attempt to conduct a lower-cost version of the program outside of normal office hours. Finally, the follow-on programs and improvements that the interviews indicated are needed are identified. (MHR)

  19. Titan Orbiter with Aerorover Mission (TOAM)

    NASA Astrophysics Data System (ADS)

    Sittler, Edward C.; Cooper, J. F.; Mahaffey, P.; Esper, J.; Fairbrother, D.; Farley, R.; Pitman, J.; Kojiro, D. R.; TOAM Team

    2006-12-01

    We propose to develop a new mission to Titan called Titan Orbiter with Aerorover Mission (TOAM). This mission is motivated by the recent discoveries of Titan, its atmosphere and its surface by the Huygens Probe, and a combination of in situ, remote sensing and radar mapping measurements of Titan by the Cassini orbiter. Titan is a body for which Astrobiology (i.e., prebiotic chemistry) will be the primary science goal of any future missions to it. TOAM is planned to use an orbiter and balloon technology (i.e., aerorover). Aerobraking will be used to put payload into orbit around Titan. The Aerorover will probably use a hot air balloon concept using the waste heat from the MMRTG 500 watts. Orbiter support for the Aerorover is unique to our approach for Titan. Our strategy to use an orbiter is contrary to some studies using just a single probe with balloon. Autonomous operation and navigation of the Aerorover around Titan will be required, which will include descent near to the surface to collect surface samples for analysis (i.e., touch and go technique). The orbiter can provide both relay station and GPS roles for the Aerorover. The Aerorover will have all the instruments needed to sample Titan’s atmosphere, surface, possible methane lakes-rivers, use multi-spectral imagers for surface reconnaissance; to take close up surface images; take core samples and deploy seismometers during landing phase. Both active and passive broadband remote sensing techniques will be used for surface topography, winds and composition measurements.

  20. ULTOR passive pose and position engine for spacecraft relative navigation

    NASA Astrophysics Data System (ADS)

    Hannah, S. Joel

    2008-04-01

    The ULTOR® Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR® P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR® P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR® P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR® P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  1. Passivated ambipolar black phosphorus transistors.

    PubMed

    Yue, Dewu; Lee, Daeyeong; Jang, Young Dae; Choi, Min Sup; Nam, Hye Jin; Jung, Duk-Young; Yoo, Won Jong

    2016-07-01

    We report the first air-passivated ambipolar BP transistor formed by applying benzyl viologen, which serves as a surface charge transfer donor for BP flakes. The passivated BP devices exhibit excellent stability under both an ambient atmosphere and vacuum; their transistor performance is maintained semi-permanently. Unlike their intrinsic p-type properties, passivated BP devices present advantageous ambipolar properties with much higher electron mobility up to ∼83 cm(2) V(-1) s(-1) from 2-terminal measurement at 300 K, compared to other reported studies on n-type BP transistors. On the basis of the n-type doping effect that originated from benzyl viologen, we also systematically investigated the BP thickness dependence of our devices on electrical properties, in which we found the best electron transport performance to be attained when an ∼10 nm thick BP flake was used. PMID:27283027

  2. STS-80 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This mission patch for mission STS-80 depicts the Space Shuttle Columbia and the two research satellites its crew deployed into the blue field of space. The uppermost satellite is the Orbiting Retrievable Far and Extreme Ultraviolet Spectrograph-Shuttle Pallet Satellite (ORFEUS-SPAS), a telescope aimed at unraveling the life cycles of stars and understanding the gases that drift between them. The lower satellite is the Wake Shield Facility (WSF), flying for the third time. It will use the vacuum of space to create advanced semiconductors for the nation's electronics industry. ORFEUS and WSF are joined by the symbol of the Astronaut Corps, representing the human contribution to scientific progress in space. The two bright blue stars represent the mission's Extravehicular Activities (EVA), final rehearsals for techniques and tools to be used in assembly of the International Space Station (ISS). Surrounding Columbia is a constellation of 16 stars, one for each day of the mission, representing the stellar talents of the ground and flight teams that share the goal of expanding knowledge through a permanent human presence in space.

  3. Framing Your Mission

    ERIC Educational Resources Information Center

    Jarrell, Andrea

    2009-01-01

    St. Paul's School in New Hampshire, the Orchard School in Indiana, Chestnut Hill Academy in Pennsylvania, and Dana Hall School in Massachusetts are like most independent schools--they have qualities that are distinctive and extraordinary. Line up their mission statements, however, and the schools sound almost interchangeable. They're all on a…

  4. Series of JASMINE missions

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2011-02-01

    We are planning three space astrometry missions as a series of JASMINE missions; Nano-JASMINE, Small-JASMINE and (Medium-sized)JASMINE. JASMINE is an abbreviation of Japan Astrometry Satellite Mission of INfrared Exploration. The JASMINE mission will measure in an infrared band annual parallaxes, positions on the celestial sphere, and proper motions of many stars in the bulge of the Milky Way (the Galaxy) with high accuracies. A target launch date is the first half of the 2020s. Before the launch of JASMINE, we are planning Nano-JASMINE and Small-JASMINE. Nano-JASMINE uses a very small nano-satellite and it is determined to be launched in 2011. Small-JASMINE is a downsized version of the JASMINE satellite, which observes toward restricted small regions of the Galactic bulge. A target launch date is around 2016. A completely new "map" of the Galactic bulge given by Small-JASMINE and JASMINE will bring us many exciting scientific results.

  5. Visual Navigation - SARE Mission

    NASA Technical Reports Server (NTRS)

    Alonso, Roberto; Kuba, Jose; Caruso, Daniel

    2007-01-01

    The SARE Earth Observing and Technological Mission is part of the Argentinean Space Agency (CONAE - Comision Nacional de Actividades Espaciales) Small and Technological Payloads Program. The Argentinean National Space Program requires from the SARE program mission to test in a real environment of several units, assemblies and components to reduce the risk of using these equipments in more expensive Space Missions. The objective is to make use those components with an acceptable maturity in design or development, but without any heritage at space. From the application point of view, this mission offers new products in the Earth Observation data market which are listed in the present paper. One of the technological payload on board of the SARE satellite is the sensor Ground Tracker. It computes the satellite attitude and orbit in real time (goal) and/or by ground processing. For the first operating mode a dedicated computer and mass memory are necessary to be part of the mentioned sensor. For the second operational mode the hardware and software are much simpler.

  6. Inspiration is "Mission Critical"

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W.; DeVore, E.; Lebofsky, L.

    2014-07-01

    In spring 2013, the President's budget proposal restructured the nation's approach to STEM education, eliminating ˜$50M of NASA Science Mission Directorate (SMD) funding with the intent of transferring it to the Dept. of Education, National Science Foundation, and Smithsonian Institution. As a result, Education and Public Outreach (EPO) would no longer be a NASA mission requirement and funds that had already been competed, awarded, and productively utilized were lost. Since 1994, partnerships of scientists, engineers, and education specialists were required to create innovative approaches to EPO, providing a direct source of inspiration for today's youth that may now be lost. Although seldom discussed or evaluated, "inspiration" is the beginning of lasting education. For decades, NASA's crewed and robotic missions have motivated students of all ages and have demonstrated a high degree of leverage in society. Through personal experiences we discuss (1) the importance of inspiration in education, (2) how NASA plays a vital role in STEM education, (3) examples of high-leverage educational materials showing why NASA should continue embedding EPO specialists within mission teams, and (4) how we can document the role of inspiration. We believe that personal histories are an important means of assessing the success of EPO. We hope this discussion will lead other people to document similar stories of educational success and perhaps to undertake longitudinal studies of the impact of inspiration.

  7. Interpreting the Mission.

    ERIC Educational Resources Information Center

    Yarrington, Roger

    1980-01-01

    Underscores the importance of increasing public understanding and support of the community college mission in the 1980s. Suggests increased public relations efforts, community forums, the use of television advertisements, and efforts to gain the support of state legislators and officials. (AYC)

  8. Mission Statement Impossible

    ERIC Educational Resources Information Center

    Douglas, Lawrence; George, Alexander

    2008-01-01

    Mission statements are "in" these days. So it was only a matter of time before the authors' own institution was called upon to define itself. What could be easier? The people charged to draft the statement, the faculty, were simply being asked to describe their own doings. The authors discover that with a diverse range of opinions it was not easy…

  9. Spacelab D-1 mission

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.

    1990-01-01

    The Spacelab D-1 (Deutchland Eins) Mission is discussed from the points of view of safety, materials handling, and toxic materials; the laboratory and equipment used; and some of the different philosophies utilized on this flight. How to enhance scientific return at the same time as being safe was examined.

  10. EOS Aura Mission Status

    NASA Technical Reports Server (NTRS)

    Guit, William J.

    2015-01-01

    This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.

  11. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  12. Mission and Assets Database

    NASA Technical Reports Server (NTRS)

    Baldwin, John; Zendejas, Silvino; Gutheinz, Sandy; Borden, Chester; Wang, Yeou-Fang

    2009-01-01

    Mission and Assets Database (MADB) Version 1.0 is an SQL database system with a Web user interface to centralize information. The database stores flight project support resource requirements, view periods, antenna information, schedule, and forecast results for use in mid-range and long-term planning of Deep Space Network (DSN) assets.

  13. The Pioneer Missions

    NASA Technical Reports Server (NTRS)

    Lasher, Larry E.; Hogan, Robert (Technical Monitor)

    1999-01-01

    This article describes the major achievements of the Pioneer Missions and gives information about mission objectives, spacecraft, and launches of the Pioneers. Pioneer was the United States' longest running space program. The Pioneer Missions began forty years ago. Pioneer 1 was launched shortly after Sputnik startled the world in 1957 as Earth's first artificial satellite at the start of the space age. The Pioneer Missions can be broken down into four distinct groups: Pioneer (PN's) 1 through 5, which comprise the first group - the "First Pioneers" - were launched from 1958 through 1960. These Pioneers made the first thrusts into space toward the Moon and into interplanetary orbit. The next group - the "Interplanetary Pioneers" - consists of PN's 6 through 9, with the initial launch being in 1965 (through 1968); this group explored inward and outward from Earth's orbit and travel in a heliocentric orbit around the Sun just as the Earth. The Pioneer group consisting of 10 and 11 - the "Outer Solar System Pioneers" - blazed a trail through the asteroid belt and was the first to explore Jupiter, Saturn and the outer Solar System and is seeking the borders of the heliosphere and will ultimately journey to the distant stars. The final group of Pioneer 12 and 13 the "Planetary Pioneers" - traveled to Earth's mysterious twin, Venus, to study this planet.

  14. The ATLAS-1 mission

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.

    1994-01-01

    Atmospheric Laboratory for Applications and Science (ATLAS)-1 was launched on March 24, 1992, carrying an international payload of 14 investigations, and conducted a successful series of experiments and observations over the subsequent 9 days. The objectives included: measuring the solar irradiance at high precision; remote sensing of the composition of the stratosphere, mesosphere, and thermosphere using techniques for wavelengths from 300 A to 5 mm; and inducing auroras by means of 1.2 amp electron beams. A subset of these instruments will subsequently be flown in a series of shuttle missions at roughly 1-year intervals over an 11-year solar cycle. The frequent recalibration opportunities afforded by such a program allows the transfer of calibrations to longer duration orbiting observatories. The ATLAS-1 mission occurred at the same time as the Upper Atmosphere Research Satellite (UARS), TIROS-N, and ERB satellites were in operation, and correlative measurements were conducted with these. In all, the mission was most successful in achieving its objectives and a unique and important database was acquired, with many scientific firsts accomplished. This paper provides the mission overview for the series of papers that follow.

  15. Mission Operations Assurance

    NASA Technical Reports Server (NTRS)

    Faris, Grant

    2012-01-01

    Integrate the mission operations assurance function into the flight team providing: (1) value added support in identifying, mitigating, and communicating the project's risks and, (2) being an essential member of the team during the test activities, training exercises and critical flight operations.

  16. The Phoenix Mars Mission

    NASA Technical Reports Server (NTRS)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  17. The Lobster Mission

    NASA Technical Reports Server (NTRS)

    Barthelmy, Scott

    2011-01-01

    I will give an overview of the Goddard Lobster mission: the science goals, the two instruments, the overall instruments designs, with particular attention to the wide-field x-ray instrument (WFI) using the lobster-eye-like micro-channel optics.

  18. Mission Simulation Toolkit

    NASA Technical Reports Server (NTRS)

    Pisaich, Gregory; Flueckiger, Lorenzo; Neukom, Christian; Wagner, Mike; Buchanan, Eric; Plice, Laura

    2007-01-01

    The Mission Simulation Toolkit (MST) is a flexible software system for autonomy research. It was developed as part of the Mission Simulation Facility (MSF) project that was started in 2001 to facilitate the development of autonomous planetary robotic missions. Autonomy is a key enabling factor for robotic exploration. There has been a large gap between autonomy software (at the research level), and software that is ready for insertion into near-term space missions. The MST bridges this gap by providing a simulation framework and a suite of tools for supporting research and maturation of autonomy. MST uses a distributed framework based on the High Level Architecture (HLA) standard. A key feature of the MST framework is the ability to plug in new models to replace existing ones with the same services. This enables significant simulation flexibility, particularly the mixing and control of fidelity level. In addition, the MST provides automatic code generation from robot interfaces defined with the Unified Modeling Language (UML), methods for maintaining synchronization across distributed simulation systems, XML-based robot description, and an environment server. Finally, the MSF supports a number of third-party products including dynamic models and terrain databases. Although the communication objects and some of the simulation components that are provided with this toolkit are specifically designed for terrestrial surface rovers, the MST can be applied to any other domain, such as aerial, aquatic, or space.

  19. The Swift GRB Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Chincarini, Guido

    2004-01-01

    Swift is a MIDEX mission that is in development for launch in October 2004. It is a multiwavelength transient observatory for GRB astronomy. The goals of the mission are to determine the origin of GRBs and their afterglows and use bursts to probe the early Universe. A wide-field gamma-ray camera will detect mare than 100 GRBs per year to -3 times fainter than BATSE. Sensitive narrow-field X-ray and UV/optical telescopes will be pointed at the burst location in 20 to 75 sec by an autonomously controlled spacecraft. Far each burst, aresec positions will be determined and optical/UV/X-ray/gamma-say spectrophotometry performed. Measurements of redshift will be made for many burstes. The instrumentation is a combination of superb existing flight-spare hardware and design from XMM and Spectrum-X/JET-X contributed by collaborators in the UK and Italy and development of a coded-aperture camera with a large-area (approx. 0.5 square meter) CdZnTe detector array. Key components of the mission are vigorous follow-up and outreach programs to engage the astronomical community and public in Swift. The talk vi11 describe the mission statue and give a summary of plans for GRB operations. It is likely that Swift will have just been launched at the time of the conference.

  20. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  1. STS-51 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Designed by the crewmembers, the STS-51 crew patch honors all who have contributed to mission success. It symbolizes NASA's continuing quest to increase mankind's knowledge and use of space through this multi-faceted mission. The gold star represents the U.S. Advanced Communications Technology Satellite (ACTS) boosted by the Transfer Orbit Stage (TOS). The rays below the ACTTOS represent the innovative communication technologies to be tested by this experiment. The stylized Shuttle Pallet Satellite (SPAS) represents the German-sponsored ASTROSPAS mission. The constellation Orion below SPAS is representative of the types of stellar objects to be studied by its experimenters. The stars in Orion also commemorate the astronauts who have sacrificed their lives for the space program. The ascending spiral, symbolizing America's continuing commitment to leadership in space exploration and development, originates with the thousands of persons who ensure the success of each Shuttle flight. The five large white stars, representing the five crewmembers, along with the single gold star, fomm the mission's numerical designation.

  2. Revising the Institutional Mission.

    ERIC Educational Resources Information Center

    Dominick, Charles A.

    1990-01-01

    Revision of a college mission statement through a broadly participatory process can provide a new and sharpened sense of direction and priorities and a powerful mechanism for institutional change. Although institutional circumstances and processes may differ, the experience of Wittenberg University (Ohio) serves as an example of a model for…

  3. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  4. Apollo 16 mission report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  5. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  6. Exomars Mission Verification Approach

    NASA Astrophysics Data System (ADS)

    Cassi, Carlo; Gilardi, Franco; Bethge, Boris

    According to the long-term cooperation plan established by ESA and NASA in June 2009, the ExoMars project now consists of two missions: A first mission will be launched in 2016 under ESA lead, with the objectives to demonstrate the European capability to safely land a surface package on Mars, to perform Mars Atmosphere investigation, and to provide communi-cation capability for present and future ESA/NASA missions. For this mission ESA provides a spacecraft-composite, made up of an "Entry Descent & Landing Demonstrator Module (EDM)" and a Mars Orbiter Module (OM), NASA provides the Launch Vehicle and the scientific in-struments located on the Orbiter for Mars atmosphere characterisation. A second mission with it launch foreseen in 2018 is lead by NASA, who provides spacecraft and launcher, the EDL system, and a rover. ESA contributes the ExoMars Rover Module (RM) to provide surface mobility. It includes a drill system allowing drilling down to 2 meter, collecting samples and to investigate them for signs of past and present life with exobiological experiments, and to investigate the Mars water/geochemical environment, In this scenario Thales Alenia Space Italia as ESA Prime industrial contractor is in charge of the design, manufacturing, integration and verification of the ESA ExoMars modules, i.e.: the Spacecraft Composite (OM + EDM) for the 2016 mission, the RM for the 2018 mission and the Rover Operations Control Centre, which will be located at Altec-Turin (Italy). The verification process of the above products is quite complex and will include some pecu-liarities with limited or no heritage in Europe. Furthermore the verification approach has to be optimised to allow full verification despite significant schedule and budget constraints. The paper presents the verification philosophy tailored for the ExoMars mission in line with the above considerations, starting from the model philosophy, showing the verification activities flow and the sharing of tests

  7. Thermodynamic treatment of passive monitors

    SciTech Connect

    Posner, J.C.; Moore, G.

    1985-05-01

    Previous mathematical descriptions of sampling using passive monitors have used Fick's First Law of diffusion and the assumption that the concentration of adsorbate in the vapor phase above the sorbent is zero. This paper shows that by introducing a simplified expression for the equilibrium vapor pressure, behavior more nearly resembling that observed for passive monitors is predicted. The theory can also be applied to the case of loss of sample from a diffusive monitor. Experimental evidence is also provided which demonstrates that the theory adequately describes the observed results.

  8. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  9. The Demonstration and Science Experiments (DSX) Mission

    NASA Astrophysics Data System (ADS)

    McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.

    2015-12-01

    In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.

  10. The OCO-3 MIssion

    NASA Astrophysics Data System (ADS)

    Eldering, A.; Kaki, S.; Crisp, D.; Gunson, M. R.

    2013-12-01

    For the OCO-3 mission, NASA has approved a proposal to install the OCO-2 flight spare instrument on the International Space Station (ISS). The OCO-3 mission on ISS will have a key role in delivering sustained, global, scientifically-based, spaceborne measurements of atmospheric CO2 to monitor natural sources and sinks as part of NASA's proposed OCO-2/OCO-3/ASCENDS mission sequence and NASA's Climate Architecture. The OCO-3 mission will contribute to understanding of the terrestrial carbon cycle through enabling flux estimates at smaller spatial scales and through fluorescence measurements that will reduce the uncertainty in terrestrial carbon flux measurements and drive bottom-up land surface models through constraining GPP. The combined nominal missions of both OCO-2 and OCO-3 will likely span a complete El Niño Southern Oscillation (ENSO) cycle, a key indicator of ocean variability. In addition, OCO-3 may allow investigation of the high-frequency and wavenumber structures suggested by eddying ocean circulation and ecosystem dynamics models. Finally, significant growth of urban agglomerations is underway and projected to continue in the coming decades. With the city mode sampling of the OCO-3 instrument on ISS we can evaluate different sampling strategies aimed at studying anthropogenic sources and demonstrate elements of a Greenhouse Gas Information system, as well as providing a gap-filler for tracking trends in the fastest-changing anthropogenic signals during the coming decade. In this presentation, we will describe our science objectives, the overall approach of utilization of the ISS for OCO-3, and the unique features of XCO2 measurements from ISS.

  11. The Double Star mission

    NASA Astrophysics Data System (ADS)

    Liu, Z. X.; Escoubet, C. P.; Pu, Z.; Laakso, H.; Shi, J. K.; Shen, C.; Hapgood, M.

    2005-11-01

    The Double Star Programme (DSP) was first proposed by China in March, 1997 at the Fragrant Hill Workshop on Space Science, Beijing, organized by the Chinese Academy of Science. It is the first mission in collaboration between China and ESA. The mission is made of two spacecraft to investigate the magnetospheric global processes and their response to the interplanetary disturbances in conjunction with the Cluster mission. The first spacecraft, TC-1 (Tan Ce means "Explorer"), was launched on 29 December 2003, and the second one, TC-2, on 25 July 2004 on board two Chinese Long March 2C rockets. TC-1 was injected in an equatorial orbit of 570x79000 km altitude with a 28° inclination and TC-2 in a polar orbit of 560x38000 km altitude. The orbits have been designed to complement the Cluster mission by maximizing the time when both Cluster and Double Star are in the same scientific regions. The two missions allow simultaneous observations of the Earth magnetosphere from six points in space. To facilitate the comparison of data, half of the Double Star payload is made of spare or duplicates of the Cluster instruments; the other half is made of Chinese instruments. The science operations are coordinated by the Chinese DSP Scientific Operations Centre (DSOC) in Beijing and the European Payload Operations Service (EPOS) at RAL, UK. The spacecraft and ground segment operations are performed by the DSP Operations and Management Centre (DOMC) and DSOC in China, using three ground station, in Beijing, Shanghai and Villafranca.

  12. The Mothership Mission Architecture

    NASA Astrophysics Data System (ADS)

    Ernst, S. M.; DiCorcia, J. D.; Bonin, G.; Gump, D.; Lewis, J. S.; Foulds, C.; Faber, D.

    2015-12-01

    The Mothership is considered to be a dedicated deep space carrier spacecraft. It is currently being developed by Deep Space Industries (DSI) as a mission concept that enables a broad participation in the scientific exploration of small bodies - the Mothership mission architecture. A Mothership shall deliver third-party nano-sats, experiments and instruments to Near Earth Asteroids (NEOs), comets or moons. The Mothership service includes delivery of nano-sats, communication to Earth and visuals of the asteroid surface and surrounding area. The Mothership is designed to carry about 10 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accommodates the same volume as a traditional 3U CubeSat. To reduce cost, Mothership is designed as a secondary payload aboard launches to GTO. DSI is offering slots for nano-sats to individual customers. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing and carry out experiments in the proximity of or on the surface of an asteroid, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. While the overall Mothership mission will have a financial volume somewhere between a European Space Agencies' (ESA) S- and M-class mission for instance, it can be funded through a number of small and individual funding sources and programs, hence avoiding the processes associated with traditional space exploration missions. DSI has been able to identify a significant interest in the planetary science and nano-satellite communities.

  13. Long-Term Cryogenic Propellant Storage for the TOPS Mission

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Francis, John; Li, Xiaoyi; Purves, Lloyd; DeLee, Hudson; Riall, Sara; McGuinness, Dan; Willis, Dewey; Nixon, Conor; Devine Matt; Hedayat, Ali

    2015-01-01

    Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LOX) can dramatically enhance NASAs ability to explore the solar system because of their superior specific impulse (Isp) capability. Although these cryogenic propellants can be challenging to manage and store, they allow significant mass advantages over traditional hypergolic propulsion systems and are therefore technically enabling for many planetary science missions. New cryogenic storage techniques such as subcooling and the use of advanced insulation and low thermal conductivity support structures will allow for the long term storage and use of cryogenic propellants for solar system exploration and hence allow NASA to deliver more payloads to targets of interest, launch on smaller and less expensive launch vehicles, or both. Employing cryogenic propellants will allow NASA to perform missions to planetary destinations that would not be possible with the use of traditional hypergolic propellants. These new cryogenic storage technologies were implemented in a design study for the Titan Orbiter Polar Surveyor (TOPS) mission, with LH2 and LOX as propellants, and the resulting spacecraft design was able to achieve a 43 launch mass reduction over a TOPS mission, that utilized a conventional hypergolic propulsion system with mono-methyl hydrazine (MMH) and nitrogen tetroxide (NTO) propellants. This paper describes the cryogenic propellant storage design for the TOPS mission and demonstrates how these cryogenic propellants are stored passively for a decade-long Titan mission.

  14. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.

    2014-05-01

    Soil moisture is an important element for weather and climate prediction, hydrological sciences, and applications. Hence, measurements of this hydrologic variable are required to improve our understanding of hydrological processes, ecosystem functions, and the linkages between the Earth's water, energy, and carbon cycles (Srivastava et al. 2013). The retrieval of soil moisture depends not only on parameterizations in the retrieval algorithm but also on the soil dielectric mixing models used (Behari 2005). Although a number of soil dielectric mixing models have been developed, testing these models for soil moisture retrieval has still not been fully explored, especially with SMAP-like simulators. The main objective of this work focuses on testing different dielectric models for soil moisture retrieval using the Combined Radar/Radiometer (ComRAD) ground-based L-band simulator developed jointly by NASA/GSFC and George Washington University (O'Neill et al., 2006). The ComRAD system was deployed during a field experiment in 2012 in order to provide long active/passive measurements of two crops under controlled conditions during an entire growing season. L-band passive data were acquired at a look angle of 40 degree from nadir at both horizontal & vertical polarization. Currently, there are many dielectric models available for soil moisture retrieval; however, four dielectric models (Mironov, Dobson, Wang & Schmugge and Hallikainen) were tested here and found to be promising for soil moisture retrieval (some with higher performances). All the above-mentioned dielectric models were integrated with Single Channel Algorithms using H (SCA-H) and V (SCA-V) polarizations for the soil moisture retrievals. All the ground-based observations were collected from test site-United States Department of Agriculture (USDA) OPE3, located a few miles away from NASA GSFC. Ground truth data were collected using a theta probe and in situ sensors which were then used for validation. Analysis

  15. Nuclear Electric Propulsion mission operations.

    NASA Technical Reports Server (NTRS)

    Prickett, W. Z.; Spera, R. J.

    1972-01-01

    Mission operations are presented for comet rendezvous and outer planet exploration missions conducted by unmanned Nuclear Electric Propulsion (NEP) system employing in-core thermionic reactors for electric power generation. The selected reference mission are Comet Halley rendezvous and a Jupiter orbiter at 5.9 planet radii, the orbit of the moon Io. Mission operations and options are defined from spacecraft assembly through mission completion. Pre-launch operations and related GSE requirements are identified. Shuttle launch and subsequent injection to earth escape by the Centaur d-1T are discussed, as well as power plant startup and heliocentric mission phases.

  16. Mars mission concepts and opportunities

    NASA Technical Reports Server (NTRS)

    Young, Archie C.

    1986-01-01

    Trajectory and mission requirement data are presented for Earth Mars opposition and conjunction class roundtrip flyby and stopover mission opportunities available between 1997 and 2045. The opposition class flyby mission uses direct transfer trajectories to and on return from Mars. The opposition class stopover mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg in order to reduce the propulsion requirement associated with the opposition class mission. The conjunction class mission minimizes propulsion requirements by optimizing the stopover time at Mars.

  17. Defining Space Mission Architects for the Smaller Missions

    NASA Technical Reports Server (NTRS)

    Anderson, C.

    1999-01-01

    The definition of the Space Mission Architect (SMA) must be clear in both technical and human terms if we expect to train and/or to find people needed to architect the numbers of smaller missions expected in the future.

  18. Comparison of NOAA-CREST Soil Moisture Measurements with SMOS Products

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Forbes, A.

    2014-12-01

    In October 2014, the Soil Moisture Active and Passive mission (SMAP) will launch into a near-polar and sun- synchronous orbit. SMAP includes the first 3 KM resolution product, by both radar and radiometer sensors which will transmit useful information concentrating on the global measurements of soil moisture and freeze/thaw cycles. NOAA- CREST (National Oceanic and Atmospheric Administration- Cooperative Remote Sensing Science and Technology) deploys a series of in-situ devices into the soil, and an L-BAND Radiometer close to the site ground at the Cary Institute in Millbrook, NY. The site is important for future validation of SMAP mission. Comparing mathematical and ground based remote sensing of soil moisture is beneficial to ensure the accuracy of the measurements. The focus of this research is to analyze and compare soil moisture from ESA- SMOS (Europe Space Agency- Soil Moisture Ocean Salinity) mission and the Cary Institute's soil moisture measurements within the same time period, and location. In the interest of establishing superb authentication; comparing SMOS and ground measurements will justify the accuracy of the newly launch satellite. Discrepancies can be found between field point measurement and relatively large footprint of SMOS, which affects comparison and validation. Several techniques and statistical methods will provide a more meaningful comparison to analyze soil moisture data. The results of this project will help to provide a useful method to compare the NOAA-CREST soil moisture measurements and SMAP measurements. In conclusion, the SMAP advance technology will provide more accurate feedback for modeling numerical weather and climate models. Keywords: Soil Moisture, Precipitation, CREST-SMART, Cary Institute, In-situ, Remote Sensors Accurate Soil Moisture Data, Millbrook, N.Y., CATDS, Hydrology is the branch of science concerning properties of earth's water especially its movement in relation to land. SMOS MIRAS, SMAP, Sensors (Underground)

  19. GPS/GNSS reflectometry nanosatellite demonstration mission

    NASA Astrophysics Data System (ADS)

    Unwin, Martin J.; Liddle, J. Douglas; Jason, Susan J.

    2003-01-01

    Loss of life, injury and huge economic losses are incurred annually due to irregular and insufficient sea-state information. Figures indicate that, each year, the marine insurance industry pays out over $2 billion in claims for weather-related accidents, while bad weather causes one ship of over 500 t to sink somewhere on the globe every week. Accurate knowledge of local ocean conditions is therefore crucial in providing forecasts and early warnings of severe weather conditions. Space-borne systems, particularly satellites, provide the ideal platform for global monitoring of sea conditions via altimetric measurements. As an alternative to active altimetry, another concept is passively receiving reflected signals from the Global Positioning System (GPS) and other Global Navigation Satellite System (GNSS) satellites. This concept was first developed by Dr Manuel Martin-Neira at ESAESTEC. ESA's Passive Reflectometry and Interferometry System makes use of GPS/GNSS signals from satellites and their reflection off the ocean surface to derive oceanic properties such as surface height, significant wave height, wind speed and wind direction. Surrey Satellite Technology Ltd are proposing a nanosatellite demonstration mission to ascertain the feasibility of the GPS ocean reflectometry concept.

  20. Two-Stage Passive Vibration Isolator

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Gursel, Yekta; Neville, Timothy; Bronowicki, Allen J.; Platus, David; MacDonald, Rhonda

    2008-01-01

    The design and testing of a structural system were implemented to hold the optics of the planned Space Interferometry Mission (SIM) at positions and orientations characterized by vibrational translation and rotation errors of no more than a few nanometers or a few milliarcseconds, respectively. Much of the effort was devoted to a test bed for verifying the predicted behavior of a vibration- isolation structural subsystem working together with an active control system for positioning and orienting the SIM optics. There was considerable emphasis on the vibration-isolation subsystem, which was passive and comprised two stages. The main sources of vibration were six reaction wheels in an assembly denoted the "backpack." The first vibration-isolation stage consisted of hexapod isolator mounts - one for each reaction wheel - characterized by a natural vibration frequency of 10 Hz. The second stage was a set of three beams, disposed between the backpack and the structure that held the SIM optics, that were flexured such that they transmitted only bending loads, with a natural vibrational frequency and damping of about 5 Hz and 4 percent, respectively. Preliminary test results were presented and characterized as demonstrating the effectiveness of the two-stage vibration-isolation design.