Science.gov

Sample records for path integrals physically

  1. Path-integral approach to 't Hooft's derivation of quantum physics from classical physics

    SciTech Connect

    Blasone, Massimo; Jizba, Petr; Kleinert, Hagen

    2005-05-15

    We present a path-integral formulation of 't Hooft's derivation of quantum physics from classical physics. The crucial ingredient of this formulation is Gozzi et al.'s supersymmetric path integral of classical mechanics. We quantize explicitly two simple classical systems: the planar mathematical pendulum and the Roessler dynamical system.

  2. The universal path integral

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Dreyer, Olaf

    2016-02-01

    Path integrals calculate probabilities by summing over classical configurations of variables such as fields, assigning each configuration a phase equal to the action of that configuration. This paper defines a universal path integral, which sums over all computable structures. This path integral contains as sub-integrals all possible computable path integrals, including those of field theory, the standard model of elementary particles, discrete models of quantum gravity, string theory, etc. The universal path integral possesses a well-defined measure that guarantees its finiteness. The probabilities for events corresponding to sub-integrals can be calculated using the method of decoherent histories. The universal path integral supports a quantum theory of the universe in which the world that we see around us arises out of the interference between all computable structures.

  3. Thermoalgebras and path integral

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2009-09-01

    Using a representation for Lie groups closely associated with thermal problems, we derive the algebraic rules of the real-time formalism for thermal quantum field theories, the so-called thermo-field dynamics (TFD), including the tilde conjugation rules for interacting fields. These thermo-group representations provide a unified view of different approaches for finite-temperature quantum fields in terms of a symmetry group. On these grounds, a path integral formalism is constructed, using Bogoliubov transformations, for bosons, fermions and non-abelian gauge fields. The generalization of the results for quantum fields in (S1)d×R topology is addressed.

  4. Path Integrals and Supersolids

    NASA Astrophysics Data System (ADS)

    Ceperley, D. M.

    2008-11-01

    Recent experiments by Kim and Chan on solid 4He have been interpreted as discovery of a supersolid phase of matter. Arguments based on wavefunctions have shown that such a phase exists, but do not necessarily apply to solid 4He. Imaginary time path integrals, implemented using Monte Carlo methods, provide a definitive answer; a clean system of solid 4He should be a normal quantum solid, not one with superfluid properties. The Kim-Chan phenomena must be due to defects introduced when the solid is formed.

  5. Path Integral Simulations of Graphene

    NASA Astrophysics Data System (ADS)

    Yousif, Hosam

    2007-10-01

    Some properties of graphene are explored using a path integral approach. The path integral method allows us to simulate relatively large systems using monte carlo techniques and extract thermodynamic quantities. We simulate the effects of screening a large external charge potential, as well as conductivity and charge distributions in graphene sheets.

  6. Path-integral derivation of the complex ABCD Huygens integral

    SciTech Connect

    Wright, E.M.; Garrison, J.C.

    1987-09-01

    The Huygens integral, or Green's function, for paraxial beam propagation in a generalized lenslike medium is derived as a Feynman path integral involving a summation over real rays. This formulation provides a physically intuitive understanding of the structure of the Green's function. The path integral is evaluated by introducing in a consistent manner the notion of complex rays, and the familiar result for the Huygens integral in terms of the complex ABCD matrix of the medium is obtained.

  7. Scattering theory with path integrals

    SciTech Connect

    Rosenfelder, R.

    2014-03-15

    Starting from well-known expressions for the T-matrix and its derivative in standard nonrelativistic potential scattering, I rederive recent path-integral formulations due to Efimov and Barbashov et al. Some new relations follow immediately.

  8. Fermionic path integrals and local anomalies

    NASA Astrophysics Data System (ADS)

    Roepstorff, G.

    2003-05-01

    No doubt, the subject of path integrals proved to be an immensely fruitful human, i.e. Feynman's idea. No wonder it is more timely than ever. Some even claim that it is the most daring, innovative and revolutionary idea since the days of Heisenberg and Bohr. It is thus likely to generate enthusiasm, if not addiction among physicists who seek simplicity together with perfection. Professor Devreese's long-lasting interest in, if not passion on the subject stems from his firm conviction that, beyond being the tool of choice, path integration provides the key to all quantum phenomena, be it in solid state, atomic, molecular or particle physics as evidenced by the impressive list of publications at the address http://lib.ua.ac.be/AB/a867.html. In this note, I review a pitfall of fermionic path integrals and a way to get around it in situations relevant to the Standard Model of particle physics.

  9. Path Integrals on Ultrametric Spaces.

    NASA Astrophysics Data System (ADS)

    Blair, Alan

    A framework for the study of path integrals on adelic spaces is developed, and it is shown that a family of path space measures on the localizations of an algebraic number field may, under certain conditions, be combined to form a global path space measure on its adele ring. An operator on the field of p-adic numbers analogous to the harmonic oscillator operator is then analyzed, and used to construct an Ornstein-Uhlenbeck type process on the adele ring of the rationals. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  10. Path integral for inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Prokopec, Tomislav; Rigopoulos, Gerasimos

    2010-07-01

    The quantum theory of cosmological perturbations in single-field inflation is formulated in terms of a path integral. Starting from a canonical formulation, we show how the free propagators can be obtained from the well-known gauge-invariant quadratic action for scalar and tensor perturbations, and determine the interactions to arbitrary order. This approach does not require the explicit solution of the energy and momentum constraints, a novel feature which simplifies the determination of the interaction vertices. The constraints and the necessary imposition of gauge conditions is reflected in the appearance of various commuting and anticommuting auxiliary fields in the action. These auxiliary fields are not propagating physical degrees of freedom but need to be included in internal lines and loops in a diagrammatic expansion. To illustrate the formalism we discuss the tree-level three-point and four-point functions of the inflaton perturbations, reproducing the results already obtained by the methods used in the current literature. Loop calculations are left for future work.

  11. Squeezed states and path integrals

    NASA Technical Reports Server (NTRS)

    Daubechies, Ingrid; Klauder, John R.

    1992-01-01

    The continuous-time regularization scheme for defining phase-space path integrals is briefly reviewed as a method to define a quantization procedure that is completely covariant under all smooth canonical coordinate transformations. As an illustration of this method, a limited set of transformations is discussed that have an image in the set of the usual squeezed states. It is noteworthy that even this limited set of transformations offers new possibilities for stationary phase approximations to quantum mechanical propagators.

  12. Polymer quantum mechanics some examples using path integrals

    SciTech Connect

    Parra, Lorena; Vergara, J. David

    2014-01-14

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems.

  13. Path integral method for DNA denaturation

    NASA Astrophysics Data System (ADS)

    Zoli, Marco

    2009-04-01

    The statistical physics of homogeneous DNA is investigated by the imaginary time path integral formalism. The base pair stretchings are described by an ensemble of paths selected through a macroscopic constraint, the fulfillment of the second law of thermodynamics. The number of paths contributing to the partition function strongly increases around and above a specific temperature Tc∗ , whereas the fraction of unbound base pairs grows continuously around and above Tc∗ . The latter is identified with the denaturation temperature. Thus, the separation of the two complementary strands appears as a highly cooperative phenomenon displaying a smooth crossover versus T . The thermodynamical properties have been computed in a large temperature range by varying the size of the path ensemble at the lower bound of the range. No significant physical dependence on the system size has been envisaged. The entropy grows continuously versus T while the specific heat displays a remarkable peak at Tc∗ . The location of the peak versus T varies with the stiffness of the anharmonic stacking interaction along the strand. The presented results suggest that denaturation in homogeneous DNA has the features of a second-order phase transition. The method accounts for the cooperative behavior of a very large number of degrees of freedom while the computation time is kept within a reasonable limit.

  14. Integrated assignment and path planning

    NASA Astrophysics Data System (ADS)

    Murphey, Robert A.

    2005-11-01

    A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact

  15. Integral representation of the edge diffracted waves along the ray path of the transition region.

    PubMed

    Umul, Yusuf Z

    2008-09-01

    The expression of the edge diffracted fields, in terms of the Fresnel integral, is transformed into a path integral. The obtained integral considers the integration of the incident field along the ray path of the transition region. The similarities of the path integral with Kirchhoff's theory of diffraction and the modified theory of physical optics are examined. PMID:18758538

  16. Two-path plasmonic interferometer with integrated detector

    DOEpatents

    Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory

    2016-03-29

    An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.

  17. Simulating biochemical physics with computers: 1. Enzyme catalysis by phosphotriesterase and phosphodiesterase; 2. Integration-free path-integral method for quantum-statistical calculations

    NASA Astrophysics Data System (ADS)

    Wong, Kin-Yiu

    We have simulated two enzymatic reactions with molecular dynamics (MD) and combined quantum mechanical/molecular mechanical (QM/MM) techniques. One reaction is the hydrolysis of the insecticide paraoxon catalyzed by phosphotriesterase (PTE). PTE is a bioremediation candidate for environments contaminated by toxic nerve gases (e.g., sarin) or pesticides. Based on the potential of mean force (PMF) and the structural changes of the active site during the catalysis, we propose a revised reaction mechanism for PTE. Another reaction is the hydrolysis of the second-messenger cyclic adenosine 3'-5'-monophosphate (cAMP) catalyzed by phosphodiesterase (PDE). Cyclicnucleotide PDE is a vital protein in signal-transduction pathways and thus a popular target for inhibition by drugs (e.g., ViagraRTM). A two-dimensional (2-D) free-energy profile has been generated showing that the catalysis by PDE proceeds in a two-step SN2-type mechanism. Furthermore, to characterize a chemical reaction mechanism in experiment, a direct probe is measuring kinetic isotope effects (KIEs). KIEs primarily arise from internuclear quantum-statistical effects, e.g., quantum tunneling and quantization of vibration. To systematically incorporate the quantum-statistical effects during MD simulations, we have developed an automated integration-free path-integral (AIF-PI) method based on Kleinert's variational perturbation theory for the centroid density of Feynman's path integral. Using this analytic method, we have performed ab initio pathintegral calculations to study the origin of KIEs on several series of proton-transfer reactions from carboxylic acids to aryl substituted alpha-methoxystyrenes in water. In addition, we also demonstrate that the AIF-PI method can be used to systematically compute the exact value of zero-point energy (beyond the harmonic approximation) by simply minimizing the centroid effective potential.

  18. Selecta from a Life-Long Obsession with Path Integrals

    SciTech Connect

    Klauder, John R.

    2008-06-18

    The definition and interpretation of canonical, phase space path integrals has evolved over many years to achieve a form that now admits a correct and rigorous formulation, which is also covariant under canonical coordinate transformations. Such formulations involve coherent state representations, which, in their modern version, were originally introduced as an alternative tool to construct phase space path integrals. Moreover, coherent state representations lead to physical interpretations that are more natural than those afforded by more traditional representations. Suitable continuous time regularization procedures lead to a covariant phase space path integral formulation that greatly clarifies the vague phrase that canonical quantization requires Cartesian coordinates.

  19. Local-time representation of path integrals

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x -dependent local-time profiles. The latter quantify the time that the sample paths x (t ) in the Feynman path integral spend in the vicinity of an arbitrary point x . Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed.

  20. Numerical evaluation of Feynman path integrals

    NASA Astrophysics Data System (ADS)

    Baird, William Hugh

    1999-11-01

    The notion of path integration developed by Feynman, while an incredibly successful method of solving quantum mechanical problems, leads to frequently intractable integrations over an infinite number of paths. Two methods now exist which sidestep this difficulty by defining "densities" of actions which give the relative number of paths found at different values of the action. These densities are sampled by computer generation of paths and the propagators are found to a high degree of accuracy for the case of a particle on the infinite half line and in a finite square well in one dimension. The problem of propagation within a two dimensional radial well is also addressed as the precursor to the problem of a particle in a stadium (quantum billiard).

  1. ADÈLIC Path Space Integrals

    NASA Astrophysics Data System (ADS)

    Blair, Alan D.

    A framework for the study of path integrals on adèlic spaces is developed, and it is shown that a family of path space measures on the localizations of an algebraic number field may, under certain conditions, be combined to form a global path space measure on its adèle ring. An operator on the field of p-adic numbers analogous to the harmonic oscillator operator is then analyzed, and used to construct an Ornstein-Uhlenbeck type process on the adèle ring of the rationals.

  2. Quantum state of wormholes and path integral

    SciTech Connect

    Garay, L.J. )

    1991-08-15

    The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.

  3. Which coordinate system for modelling path integration?

    PubMed

    Vickerstaff, Robert J; Cheung, Allen

    2010-03-21

    Path integration is a navigation strategy widely observed in nature where an animal maintains a running estimate, called the home vector, of its location during an excursion. Evidence suggests it is both ancient and ubiquitous in nature, and has been studied for over a century. In that time, canonical and neural network models have flourished, based on a wide range of assumptions, justifications and supporting data. Despite the importance of the phenomenon, consensus and unifying principles appear lacking. A fundamental issue is the neural representation of space needed for biological path integration. This paper presents a scheme to classify path integration systems on the basis of the way the home vector records and updates the spatial relationship between the animal and its home location. Four extended classes of coordinate systems are used to unify and review both canonical and neural network models of path integration, from the arthropod and mammalian literature. This scheme demonstrates analytical equivalence between models which may otherwise appear unrelated, and distinguishes between models which may superficially appear similar. A thorough analysis is carried out of the equational forms of important facets of path integration including updating, steering, searching and systematic errors, using each of the four coordinate systems. The type of available directional cue, namely allothetic or idiothetic, is also considered. It is shown that on balance, the class of home vectors which includes the geocentric Cartesian coordinate system, appears to be the most robust for biological systems. A key conclusion is that deducing computational structure from behavioural data alone will be difficult or impossible, at least in the absence of an analysis of random errors. Consequently it is likely that further theoretical insights into path integration will require an in-depth study of the effect of noise on the four classes of home vectors. PMID:19962387

  4. Optical tomography with discretized path integral.

    PubMed

    Yuan, Bingzhi; Tamaki, Toru; Kushida, Takahiro; Mukaigawa, Yasuhiro; Kubo, Hiroyuki; Raytchev, Bisser; Kaneda, Kazufumi

    2015-07-01

    We present a framework for optical tomography based on a path integral. Instead of directly solving the radiative transport equations, which have been widely used in optical tomography, we use a path integral that has been developed for rendering participating media based on the volume rendering equation in computer graphics. For a discretized two-dimensional layered grid, we develop an algorithm to estimate the extinction coefficients of each voxel with an interior point method. Numerical simulation results are shown to demonstrate that the proposed method works well. PMID:26839903

  5. Hidden Topological Angles in Path Integrals

    NASA Astrophysics Data System (ADS)

    Behtash, Alireza; Sulejmanpasic, Tin; Schäfer, Thomas; Ünsal, Mithat

    2015-07-01

    We demonstrate the existence of hidden topological angles (HTAs) in a large class of quantum field theories and quantum mechanical systems. HTAs are distinct from theta parameters in the Lagrangian. They arise as invariant angles associated with saddle points of the complexified path integral and their descent manifolds (Lefschetz thimbles). Physical effects of HTAs become most transparent upon analytic continuation in nf to a noninteger number of flavors, reducing in the integer nf limit to a Z2 valued phase difference between dominant saddles. In N =1 super Yang-Mills theory we demonstrate the microscopic mechanism for the vanishing of the gluon condensate. The same effect leads to an anomalously small condensate in a QCD-like S U (N ) gauge theory with fermions in the two-index representation. The basic phenomenon is that, contrary to folklore, the gluon condensate can receive both positive and negative contributions in a semiclassical expansion. In quantum mechanics, a HTA leads to a difference in semiclassical expansion of integer and half-integer spin particles.

  6. Hidden Topological Angles in Path Integrals.

    PubMed

    Behtash, Alireza; Sulejmanpasic, Tin; Schäfer, Thomas; Ünsal, Mithat

    2015-07-24

    We demonstrate the existence of hidden topological angles (HTAs) in a large class of quantum field theories and quantum mechanical systems. HTAs are distinct from theta parameters in the Lagrangian. They arise as invariant angles associated with saddle points of the complexified path integral and their descent manifolds (Lefschetz thimbles). Physical effects of HTAs become most transparent upon analytic continuation in n_{f} to a noninteger number of flavors, reducing in the integer n_{f} limit to a Z_{2} valued phase difference between dominant saddles. In N=1 super Yang-Mills theory we demonstrate the microscopic mechanism for the vanishing of the gluon condensate. The same effect leads to an anomalously small condensate in a QCD-like SU(N) gauge theory with fermions in the two-index representation. The basic phenomenon is that, contrary to folklore, the gluon condensate can receive both positive and negative contributions in a semiclassical expansion. In quantum mechanics, a HTA leads to a difference in semiclassical expansion of integer and half-integer spin particles. PMID:26252675

  7. Local-time representation of path integrals.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2015-12-01

    We derive a local-time path-integral representation for a generic one-dimensional time-independent system. In particular, we show how to rephrase the matrix elements of the Bloch density matrix as a path integral over x-dependent local-time profiles. The latter quantify the time that the sample paths x(t) in the Feynman path integral spend in the vicinity of an arbitrary point x. Generalization of the local-time representation that includes arbitrary functionals of the local time is also provided. We argue that the results obtained represent a powerful alternative to the traditional Feynman-Kac formula, particularly in the high- and low-temperature regimes. To illustrate this point, we apply our local-time representation to analyze the asymptotic behavior of the Bloch density matrix at low temperatures. Further salient issues, such as connections with the Sturm-Liouville theory and the Rayleigh-Ritz variational principle, are also discussed. PMID:26764662

  8. A taxonomy of integral reaction path analysis

    SciTech Connect

    Grcar, Joseph F.; Day, Marcus S.; Bell, John B.

    2004-12-23

    W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.

  9. How to (path-) integrate by differentiating

    NASA Astrophysics Data System (ADS)

    Kempf, Achim; Jackson, David M.; Morales, Alejandro H.

    2015-07-01

    Path integrals are at the heart of quantum field theory. In spite of their covariance and seeming simplicity, they are hard to define and evaluate. In contrast, functional differentiation, as it is used, for example, in variational problems, is relatively straightforward. This has motivated the development of new techniques that allow one to express functional integration in terms of functional differentiation. In fact, the new techniques allow one to express integrals in general through differentiation. These techniques therefore add to the general toolbox for integration and for integral transforms such as the Fourier and Laplace transforms. Here, we review some of these results, we give simpler proofs and we add new results, for example, on expressing the Laplace transform and its inverse in terms of derivatives, results that may be of use in quantum field theory, e.g., in the context of heat traces.

  10. Path integral learning of multidimensional movement trajectories

    NASA Astrophysics Data System (ADS)

    André, João; Santos, Cristina; Costa, Lino

    2013-10-01

    This paper explores the use of Path Integral Methods, particularly several variants of the recent Path Integral Policy Improvement (PI2) algorithm in multidimensional movement parametrized policy learning. We rely on Dynamic Movement Primitives (DMPs) to codify discrete and rhythmic trajectories, and apply the PI2-CMA and PIBB methods in the learning of optimal policy parameters, according to different cost functions that inherently encode movement objectives. Additionally we merge both of these variants and propose the PIBB-CMA algorithm, comparing all of them with the vanilla version of PI2. From the obtained results we conclude that PIBB-CMA surpasses all other methods in terms of convergence speed and iterative final cost, which leads to an increased interest in its application to more complex robotic problems.

  11. Quantitative Molecular Thermochemistry Based on Path Integrals

    SciTech Connect

    Glaesemann, K R; Fried, L E

    2005-03-14

    The calculation of thermochemical data requires accurate molecular energies and heat capacities. Traditional methods rely upon the standard harmonic normal mode analysis to calculate the vibrational and rotational contributions. We utilize path integral Monte Carlo (PIMC) for going beyond the harmonic analysis, to calculate the vibrational and rotational contributions to ab initio energies. This is an application and extension of a method previously developed in our group.

  12. Fractional Levy motion through path integrals

    SciTech Connect

    Calvo, Ivan; Sanchez, Raul; Carreras, Benjamin A

    2009-01-01

    Fractional Levy motion (fLm) is the natural generalization of fractional Brownian motion in the context of self-similar stochastic processes and stable probability distributions. In this paper we give an explicit derivation of the propagator of fLm by using path integral methods. The propagators of Brownian motion and fractional Brownian motion are recovered as particular cases. The fractional diffusion equation corresponding to fLm is also obtained.

  13. Path Integration: Effect of Curved Path Complexity and Sensory System on Blindfolded Walking

    PubMed Central

    Koutakis, Panagiotis; Mukherjee, Mukul; Vallabhajosula, Srikant; Blanke, Daniel J.; Stergiou, Nicholas

    2012-01-01

    Path integration refers to the ability to integrate continuous information of the direction and distance travelled by the system relative to the origin. Previous studies have investigated path integration through blindfolded walking along simple paths such as straight line and triangles. However, limited knowledge exists regarding the role of path complexity in path integration. Moreover, little is known about how information from different sensory input systems (like vision and proprioception) contributes to accurate path integration. The purpose of the current study was to investigate how sensory information and curved path complexity affect path integration. Forty blindfolded participants had to accurately reproduce a curved path and return to the origin. They were divided into four groups that differed in the curved path, circle (simple) or figure-eight (complex), and received either visual (previously seen) or proprioceptive (previously guided) information about the path before they reproduced it. The dependent variables used were average trajectory error, walking speed, and distance travelled. The results indicated that (a) both groups that walked on a circular path and both groups that received visual information produced greater accuracy in reproducing the path. Moreover, the performance of the group that received proprioceptive information and later walked on a figure-eight path was less accurate than their corresponding circular group. The groups that had the visual information also walked faster compared to the group that had proprioceptive information. Results of the current study highlight the roles of different sensory inputs while performing blindfolded walking for path integration. PMID:22840893

  14. BOOK REVIEW: Path Integrals in Field Theory: An Introduction

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    2004-06-01

    In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed

  15. Flexible integration of path-planning capabilities

    NASA Astrophysics Data System (ADS)

    Stobie, Iain C.; Tambe, Milind; Rosenbloom, Paul S.

    1993-05-01

    Robots pursuing complex goals must plan paths according to several criteria of quality, including shortness, safety, speed and planning time. Many sources and kinds of knowledge, such as maps, procedures and perception, may be available or required. Both the quality criteria and sources of knowledge may vary widely over time, and in general they will interact. One approach to address this problem is to express all criteria and goals numerically in a single weighted graph, and then to search this graph to determine a path. Since this is problematic with symbolic or uncertain data and interacting criteria, we propose that what is needed instead is an integration of many kinds of planning capabilities. We describe a hybrid approach to integration, based on experiments with building simulated mobile robots using Soar, an integrated problem-solving and learning system. For flexibility, we have implemented a combination of internal planning, reactive capabilities and specialized tools. We illustrate how these components can complement each other's limitations and produce plans which integrate geometric and task knowledge.

  16. Path collapse in Feynman formula. Stable path integral formula from local time reparametrization invariant amplitude

    NASA Astrophysics Data System (ADS)

    Kleinert, H.

    1989-06-01

    The Feynman formula, which expresses the time displacement amplitude > x b | exp (-t Ȟ) | x a< in terms of a path integral Π 1N (∫ dn) Π 1N+1 ( {∫ dp n}/{2π}) exp{Σ 1N [ ip n(x n-x n-1) - ɛH (p n, x n)]} with large N, does not exist for systems with Coulomb {-1}/{r} potential and gives incorrect threshold behaviours near centrifugal {1}/{r 2} or angular {1}/{sin2θ } barriers. We discuss the physical origin of this failure and propose an alternative well-defined path integral formula based on a family of amplitudes that is invariant under arbitrary local time reparametrizations. The time slicing with finite N breaks this invariance. For appropriate choices of the reparametrization function the fluctuations are stabilized and the new formula is applicable to all the above systems.

  17. QED spectra in the path integral formalism

    NASA Astrophysics Data System (ADS)

    Simonov, Yu. A.

    2014-07-01

    Relativistic Hamiltonians, derived from the path integrals, are known to provide a simple and useful formalism for hadron spectroscopy in QCD. The accuracy of this approach is tested using the QED systems, and the calculated spectrum is shown to reproduce exactly that of the Dirac hydrogen atom, while the Breit-Fermi nonrelativistic expansion is obtained using Foldy-Wouthuizen transformation. The calculated positronium spectrum, including spin-dependent terms, coincides with the standard QED perturbation theory to the considered order O(α4).

  18. Path integral quantization of generalized quantum electrodynamics

    SciTech Connect

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2011-02-15

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the Hamiltonian structure of the system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an explicit calculation of one-loop approximations of all Green's functions and a discussion about the obtained results are presented.

  19. Piloting and path integration within and across boundaries.

    PubMed

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision. For participants who learned the objects in the large room, the testing position and the learning position were in the same room so that participants did not cross boundaries before testing; for participants who learned the objects in the small room, the testing position and the learning position were in 2 different rooms so that participants crossed boundaries before testing. Participants who learned the objects in the large room, during testing, either saw cues indicating the targets' locations (piloting group) or not (path integration group). Participants who learned the objects in the small room, during testing did not see any cues correctly indicating the targets' locations. The results showed that pointing accuracy was higher for those who learned the objects in the large room and in the piloting group than for those who learned the objects in the small room. However, this cross-boundary cost did not occur when we contrasted participants who learned objects in the large room and in the path integration group with participants who learned in a small room. These results suggested that navigation that relies on path integration only is not sensitive to boundary crossing, although navigation that relies on piloting is less efficient across boundaries than within boundaries. PMID:24933698

  20. Path Integral Monte Carlo Methods for Fermions

    NASA Astrophysics Data System (ADS)

    Ethan, Ethan; Dubois, Jonathan; Ceperley, David

    2014-03-01

    In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.

  1. Building a cognitive map by assembling multiple path integration systems.

    PubMed

    Wang, Ranxiao Frances

    2016-06-01

    Path integration and cognitive mapping are two of the most important mechanisms for navigation. Path integration is a primitive navigation system which computes a homing vector based on an animal's self-motion estimation, while cognitive map is an advanced spatial representation containing richer spatial information about the environment that is persistent and can be used to guide flexible navigation to multiple locations. Most theories of navigation conceptualize them as two distinctive, independent mechanisms, although the path integration system may provide useful information for the integration of cognitive maps. This paper demonstrates a fundamentally different scenario, where a cognitive map is constructed in three simple steps by assembling multiple path integrators and extending their basic features. The fact that a collection of path integration systems can be turned into a cognitive map suggests the possibility that cognitive maps may have evolved directly from the path integration system. PMID:26442503

  2. Complexified Path Integrals, Exact Saddles, and Supersymmetry.

    PubMed

    Behtash, Alireza; Dunne, Gerald V; Schäfer, Thomas; Sulejmanpasic, Tin; Ünsal, Mithat

    2016-01-01

    In the context of two illustrative examples from supersymmetric quantum mechanics we show that the semiclassical analysis of the path integral requires complexification of the configuration space and action, and the inclusion of complex saddle points, even when the parameters in the action are real. We find new exact complex saddles, and show that without their contribution the semiclassical expansion is in conflict with basic properties such as the positive semidefiniteness of the spectrum, as well as constraints of supersymmetry. Generic saddles are not only complex, but also possibly multivalued and even singular. This is in contrast to instanton solutions, which are real, smooth, and single valued. The multivaluedness of the action can be interpreted as a hidden topological angle, quantized in units of π in supersymmetric theories. The general ideas also apply to nonsupersymmetric theories. PMID:26799010

  3. On the Feynman Path Integral for Nonrelativistic Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Ichinose, Wataru

    The Feynman path integral for regularized nonrelativistic quantum electrodynamics is studied rigorously. We begin with the Lagrangian function of the corresponding classical mechanics and construct the Feynman path integral. In the present paper, the electromagnetic potentials are assumed to be periodic with respect to a large box and quantized through their Fourier coefficients with large wave numbers cut off. Firstly, the Feynman path integral with respect to paths on the space of particles and vector potentials is defined rigorously by means of broken line paths under the constraints. Secondly, the Feynman path integral with respect to paths on the space of particles and electromagnetic potentials is also defined rigorously by means of broken line paths and piecewise constant paths without the constraints. This Feynman path integral is stated heuristically in Feynman and Hibbs' book. Thirdly, the vacuum and the state of photons of given momenta and polarizations are expressed concretely as functions of variables consisting of the Fourier coefficients of vector potentials. It is also proved rigorously in terms of distribution theory that the Coulomb potentials between charged particles naturally appear in the above Feynman path integral approach. This shows that the photons give rise to the Coulomb force.

  4. Investigation of the spinfoam path integral with quantum cuboid intertwiners

    NASA Astrophysics Data System (ADS)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-05-01

    In this work, we investigate the 4d path integral for Euclidean quantum gravity on a hypercubic lattice, as given by the spinfoam model by Engle, Pereira, Rovelli, Livine, Freidel and Krasnov. To tackle the problem, we restrict to a set of quantum geometries that reflects the large amount of lattice symmetries. In particular, the sum over intertwiners is restricted to quantum cuboids, i.e. coherent intertwiners which describe a cuboidal geometry in the large-j limit. Using asymptotic expressions for the vertex amplitude, we find several interesting properties of the state sum. First of all, the value of coupling constants in the amplitude functions determines whether geometric or nongeometric configurations dominate the path integral. Secondly, there is a critical value of the coupling constant α , which separates two phases. In both phases, the diffeomorphism symmetry appears to be broken. In one, the dominant contribution comes from highly irregular, in the other from highly regular configurations, both describing flat Euclidean space with small quantum fluctuations around them, viewed in different coordinate systems. On the critical point diffeomorphism symmetry is nearly restored, however. Thirdly, we use the state sum to compute the physical norm of kinematical states, i.e. their norm in the physical Hilbert space. We find that states which describe boundary geometry with high torsion have an exponentially suppressed physical norm. We argue that this allows one to exclude them from the state sum in calculations.

  5. Path-integral simulation of solids.

    PubMed

    Herrero, C P; Ramírez, R

    2014-06-11

    The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity. PMID:24810944

  6. Mining Relational Paths in Integrated Biomedical Data

    PubMed Central

    He, Bing; Tang, Jie; Ding, Ying; Wang, Huijun; Sun, Yuyin; Shin, Jae Hong; Chen, Bin; Moorthy, Ganesh; Qiu, Judy; Desai, Pankaj; Wild, David J.

    2011-01-01

    Much life science and biology research requires an understanding of complex relationships between biological entities (genes, compounds, pathways, diseases, and so on). There is a wealth of data on such relationships in publicly available datasets and publications, but these sources are overlapped and distributed so that finding pertinent relational data is increasingly difficult. Whilst most public datasets have associated tools for searching, there is a lack of searching methods that can cross data sources and that in particular search not only based on the biological entities themselves but also on the relationships between them. In this paper, we demonstrate how graph-theoretic algorithms for mining relational paths can be used together with a previous integrative data resource we developed called Chem2Bio2RDF to extract new biological insights about the relationships between such entities. In particular, we use these methods to investigate the genetic basis of side-effects of thiazolinedione drugs, and in particular make a hypothesis for the recently discovered cardiac side-effects of Rosiglitazone (Avandia) and a prediction for Pioglitazone which is backed up by recent clinical studies. PMID:22162991

  7. Yang-Mills Theory and Fermionic Path Integrals

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    The Yang-Mills gauge field theory, which was proposed 60 years ago, is extremely successful in describing the basic interactions of fundamental particles. The Yang-Mills theory in the course of its developments also stimulated many important field theoretical machinery. In my talk I discuss the path integral techniques, in particular, the fermionic path integrals which were developed together with the successful applications of quantized Yang-Mills field theory. I start with the Faddeev-Popov path integral formula with emphasis on the treatment of fermionic ghosts as an application of Grassmann numbers. I then discuss the ordinary fermionic path integrals and the general treatment of quantum anomalies. The contents of this talk are mostly pedagogical except for a recent analysis of path integral bosonization.

  8. Yang-Mills theory and fermionic path integrals

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2016-01-01

    The Yang-Mills gauge field theory, which was proposed 60 years ago, is extremely successful in describing the basic interactions of fundamental particles. The Yang-Mills theory in the course of its developments also stimulated many important field theoretical machinery. In this brief review I discuss the path integral techniques, in particular, the fermionic path integrals which were developed together with the successful applications of quantized Yang-Mills field theory. I start with the Faddeev-Popov path integral formula with emphasis on the treatment of fermionic ghosts as an application of Grassmann numbers. I then discuss the ordinary fermionic path integrals and the general treatment of quantum anomalies. The contents of this review are mostly pedagogical except for a recent analysis of path integral bosonization.

  9. Inequivalent Quantizations and Holonomy Factor from the Path-Integral Approach

    NASA Astrophysics Data System (ADS)

    Tanimura, Shogo; Tsutsui, Izumi

    1997-08-01

    A path-integral quantization on a homogeneous spaceG/His proposed, based on the guiding principle "first lift toGand then project toG/H". It is then shown that this principle gives a simple procedure to obtain the inequivalent quantizations (superselection sectors), along with the holonomy factor (induced gauge field) found earlier by algebraic approaches. We also prove that the resulting matrix-valued path-integral is physically equivalent to the scalar-valued path-integral derived in the Dirac approach, and thereby we present a unified viewpoint to discuss the basic features of quantizing onG/Hobtained in various approaches so far.

  10. A note on the path integral representation for Majorana fermions

    NASA Astrophysics Data System (ADS)

    Greco, Andrés

    2016-04-01

    Majorana fermions are currently of huge interest in the context of nanoscience and condensed matter physics. Different to usual fermions, Majorana fermions have the property that the particle is its own anti-particle thus, they must be described by real fields. Mathematically, this property makes nontrivial the quantization of the problem due, for instance, to the absence of a Wick-like theorem. In view of the present interest on the subject, it is important to develop different theoretical approaches in order to study problems where Majorana fermions are involved. In this note we show that Majorana fermions can be studied in the context of field theories for constrained systems. Using the Faddeev-Jackiw formalism for quantum field theories with constraints, we derived the path integral representation for Majorana fermions. In order to show the validity of the path integral we apply it to an exactly solvable problem. This application also shows that it is rather simple to perform systematic calculations on the basis of the present framework.

  11. Spin in the worldline path integral in 2 + 1 dimensions

    SciTech Connect

    Fosco, C.D.; Sanchez-Guillen, J.; Vazquez, R.A.

    2008-02-15

    We present a constructive derivation of a worldline path integral for the effective action and the propagator of a Dirac field in 2 + 1 dimensions, in terms of spacetime and SU(2) paths. After studying some general properties of this representation, we show that the auxiliary gauge-group variable can be integrated, deriving a worldline action depending only on x({tau}), the spacetime paths. We then show that the functional integral automatically imposes the constraint x{sup .2}({tau})=1, while there is a spin action, which agrees with the one one should expect for a spin-1/2 field.

  12. Path Integral Quantization of the Chiral Schwinger Model in Bosonized Form

    NASA Astrophysics Data System (ADS)

    Bracken, Paul

    The development of the Wess-Zumino action or one-cycle is reviewed from the path integral approach. This is related to the occurrence of anomalies in the theory, and generally signifies a breakdown of gauge invariance. The Jackiw-Rajaraman version of the chiral Schwinger model is studied by means of path integrals. It is shown how the model can be made gauge invariant by using a Wess-Zumino term to write a gauge invariant Lagrangian. The model is considered only in bosonized form without any reference to fermions. The constraints are determined. These components are then used to write a path integral quantization for the bosonized form of the model. Some physical quantities and information, in particular, propagators are derived from the path integral.

  13. Sensory feedback in a bump attractor model of path integration.

    PubMed

    Poll, Daniel B; Nguyen, Khanh; Kilpatrick, Zachary P

    2016-04-01

    Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal's current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal's knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541-4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error. PMID:26754972

  14. Path Integrals and Exotic Options:. Methods and Numerical Results

    NASA Astrophysics Data System (ADS)

    Bormetti, G.; Montagna, G.; Moreni, N.; Nicrosini, O.

    2005-09-01

    In the framework of Black-Scholes-Merton model of financial derivatives, a path integral approach to option pricing is presented. A general formula to price path dependent options on multidimensional and correlated underlying assets is obtained and implemented by means of various flexible and efficient algorithms. As an example, we detail the case of Asian call options. The numerical results are compared with those obtained with other procedures used in quantitative finance and found to be in good agreement. In particular, when pricing at the money (ATM) and out of the money (OTM) options, path integral exhibits competitive performances.

  15. A Path-Analysis Model of Secondary Physics Enrollments

    ERIC Educational Resources Information Center

    Bryant, Lee T.; Doran, Rodney L.

    1977-01-01

    Develops a path-analysis model of critical variables affecting student enrollment in secondary school physics. A test of the model utilizing state provided data of physics enrollment in New York State resulted in the rejection of the model; however, significant critical variable results were obtained. (SL)

  16. Quantum Calisthenics: Gaussians, The Path Integral and Guided Numerical Approximations

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2009-02-12

    It is apparent to anyone who thinks about it that, to a large degree, the basic concepts of Newtonian physics are quite intuitive, but quantum mechanics is not. My purpose in this talk is to introduce you to a new, much more intuitive way to understand how quantum mechanics works. I begin with an incredibly easy way to derive the time evolution of a Gaussian wave-packet for the case free and harmonic motion without any need to know the eigenstates of the Hamiltonian. This discussion is completely analytic and I will later use it to relate the solution for the behavior of the Gaussian packet to the Feynman path-integral and stationary phase approximation. It will be clear that using the information about the evolution of the Gaussian in this way goes far beyond what the stationary phase approximation tells us. Next, I introduce the concept of the bucket brigade approach to dealing with problems that cannot be handled totally analytically. This approach combines the intuition obtained in the initial discussion, as well as the intuition obtained from the path-integral, with simple numerical tools. My goal is to show that, for any specific process, there is a simple Hilbert space interpretation of the stationary phase approximation. I will then argue that, from the point of view of numerical approximations, the trajectory obtained from my generalization of the stationary phase approximation specifies that subspace of the full Hilbert space that is needed to compute the time evolution of the particular state under the full Hamiltonian. The prescription I will give is totally non-perturbative and we will see, by the grace of Maple animations computed for the case of the anharmonic oscillator Hamiltonian, that this approach allows surprisingly accurate computations to be performed with very little work. I think of this approach to the path-integral as defining what I call a guided numerical approximation scheme. After the discussion of the anharmonic oscillator I will

  17. Canonical formulation and path integral for local vacuum energy sequestering

    NASA Astrophysics Data System (ADS)

    Bufalo, R.; KlusoÅ, J.; Oksanen, M.

    2016-08-01

    We establish the Hamiltonian analysis and the canonical path integral for a local formulation of vacuum energy sequestering. In particular, by considering the state of the Universe as a superposition of vacuum states corresponding to different values of the cosmological and gravitational constants, the path integral is extended to include integrations over the cosmological and gravitational constants. The result is an extension of the Ng-van Dam form of the path integral of unimodular gravity. It is argued to imply a relation between the fraction of the most likely values of the gravitational and cosmological constants and the average values of the energy density and pressure of matter over spacetime. Finally, we construct and analyze a Becchi-Rouet-Stora-Tyutin-exact formulation of the theory, which can be considered as a topological field theory.

  18. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function. PMID:26801023

  19. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies

    NASA Astrophysics Data System (ADS)

    Mielke, Steven L.; Truhlar, Donald G.

    2016-01-01

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  20. A path integral approach to fractional quantum Hall effect

    SciTech Connect

    Kvale, M.N.

    1989-01-01

    In this paper the author reformulates and further develops the cooperative-ring-exchange (CRE) theory of the fractional quantum Hall effect. Initially, a classical two-dimensional electron gas is considered and a guiding-center approximation is made for strong magnetic fields. The resulting Lagrangian is quantized via path integration and the integral is evaluated using the semiclassical approximation. By considering the CRE processes and a time discretization procedure, the 2DEG is mapped to two different lattice models that bracket the behavior of the system. Analysis of the behavior of the system shows an underlying modular symmetry and allows one to made some new experimental predictions. By interpreting the CRE processes as a loop-space formulation of a lattice gauge field theory, a Landau-Ginzburg action is derived that contains most of the important physics associated with the FQHE and chose ground state can be identified with the Laughlin wave function. Finally, the Laughlin wave function is derived directly from the partition function in the FQHE regime.

  1. Path Integrals, BRST Identities, and Regularization Schemes in Nonstandard Gauges

    NASA Astrophysics Data System (ADS)

    Ren, Hai-cang

    2000-07-01

    The path integral of a gauge theory is studied in Coulomb-like gauges. The Christ-Lee terms of operator ordering are reproduced within the path integration framework. In the presence of fermions, a new operator term, in addition to that of Christ and Lee, is discovered. Such terms are found to be instrumental in restoring the invariance of the effective Lagrangian under a field-dependent gauge transformation, which underlies the BRST symmetry. A unitary regularization scheme which maintains manifest BRST symmetry and is free from energy divergences is proposed for a nonabelian gauge field.

  2. Action with Acceleration i: Euclidean Hamiltonian and Path Integral

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2013-10-01

    An action having an acceleration term in addition to the usual velocity term is analyzed. The quantum mechanical system is directly defined for Euclidean time using the path integral. The Euclidean Hamiltonian is shown to yield the acceleration Lagrangian and the path integral with the correct boundary conditions. Due to the acceleration term, the state space depends on both position and velocity — and hence the Euclidean Hamiltonian depends on two degrees of freedom. The Hamiltonian for the acceleration system is non-Hermitian and can be mapped to a Hermitian Hamiltonian using a similarity transformation; the matrix elements of the similarity transformation are explicitly evaluated.

  3. Looping probabilities of elastic chains: a path integral approach.

    PubMed

    Cotta-Ramusino, Ludovica; Maddocks, John H

    2010-11-01

    We consider an elastic chain at thermodynamic equilibrium with a heat bath, and derive an approximation to the probability density function, or pdf, governing the relative location and orientation of the two ends of the chain. Our motivation is to exploit continuum mechanics models for the computation of DNA looping probabilities, but here we focus on explaining the novel analytical aspects in the derivation of our approximation formula. Accordingly, and for simplicity, the current presentation is limited to the illustrative case of planar configurations. A path integral formalism is adopted, and, in the standard way, the first approximation to the looping pdf is obtained from a minimal energy configuration satisfying prescribed end conditions. Then we compute an additional factor in the pdf which encompasses the contributions of quadratic fluctuations about the minimum energy configuration along with a simultaneous evaluation of the partition function. The original aspects of our analysis are twofold. First, the quadratic Lagrangian describing the fluctuations has cross-terms that are linear in first derivatives. This, seemingly small, deviation from the structure of standard path integral examples complicates the necessary analysis significantly. Nevertheless, after a nonlinear change of variable of Riccati type, we show that the correction factor to the pdf can still be evaluated in terms of the solution to an initial value problem for the linear system of Jacobi ordinary differential equations associated with the second variation. The second novel aspect of our analysis is that we show that the Hamiltonian form of these linear Jacobi equations still provides the appropriate correction term in the inextensible, unshearable limit that is commonly adopted in polymer physics models of, e.g. DNA. Prior analyses of the inextensible case have had to introduce nonlinear and nonlocal integral constraints to express conditions on the relative displacement of the end

  4. Integrating Physical Education, Math, and Physics

    ERIC Educational Resources Information Center

    Hatch, Greg M.; Smith, Darla R.

    2004-01-01

    The primary goal of education is to help students gain the knowledge and skills necessary to solve the problems that occur in real-life situations. One of the most touted methods for achieving this goal is through curriculum integration. Physical education students can benefit from an integrated curriculum. NASPE's (National Association tar Sport…

  5. Transport path optimization algorithm based on fuzzy integrated weights

    NASA Astrophysics Data System (ADS)

    Hou, Yuan-Da; Xu, Xiao-Hao

    2014-11-01

    Natural disasters cause significant damage to roads, making route selection a complicated logistical problem. To overcome this complexity, we present a method of using a trapezoidal fuzzy number to select the optimal transport path. Using the given trapezoidal fuzzy edge coefficients, we calculate a fuzzy integrated matrix, and incorporate the fuzzy multi-weights into fuzzy integrated weights. The optimal path is determined by taking two sets of vertices and transforming undiscovered vertices into discoverable ones. Our experimental results show that the model is highly accurate, and requires only a few measurement data to confirm the optimal path. The model provides an effective, feasible, and convenient method to obtain weights for different road sections, and can be applied to road planning in intelligent transportation systems.

  6. Path Integral Understanding in the Context of the Electromagnetic Theory

    NASA Astrophysics Data System (ADS)

    Gonzalez, Maria D.

    2006-12-01

    Introductory electromagnetic courses at the University of Juarez are in general identified by the use of a traditional instruction. The path integral is a fundamental mathematical knowledge to understand the properties of conservative fields such that the electric field. Many students in these courses do not develop the necessary scientific skills and mathematical formalism to understand the fact that the potential difference does not depend on the path followed from one point to another one inside an electric field. It is fundamental to probe the student understanding difficulties to apply the concept of path integral in an electromagnetic context. The use of the software CABRI could become an important didactic choice during the development of the potential difference concept. It was necessary the recollection of data related to the student procedural difficulties in the use of the designed CABRI activities. Sponsor: member Sergio Flores

  7. The functional measure for the in-in path integral

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2015-05-01

    The in-in path integral of a scalar field propagating in a fixed background is formulated in a suitable function space. The free kinetic operator, whose inverse gives the propagators of the in-in perturbation theory, becomes essentially self adjoint after imposing appropriate boundary conditions. An explicit spectral representation is given for the scalar in the flat space, and the standard propagators are rederived using this representation. In this way the subtle boundary path integral over the field configurations at the return time is handled straightforwardly. It turns out that not only the values of the forward (+) and the backward (-) evolving fields but also their time derivatives must be matched at the return time, which is mainly overlooked in the literature. This formulation also determines the field configurations that are included in the path integral uniquely. We show that some of the recently suggested instanton-like solutions corresponding to the stationary phases of the cosmological in-in path integrals can be rigorously identified as limits of sequences in the function space.

  8. Path Integral for Dirac oscillator with generalized uncertainty principle

    SciTech Connect

    Benzair, H.; Boudjedaa, T.; Merad, M.

    2012-12-15

    The propagator for Dirac oscillator in (1+1) dimension, with deformed commutation relation of the Heisenberg principle, is calculated using path integral in quadri-momentum representation. As the mass is related to momentum, we then adapt the space-time transformation method to evaluate quantum corrections and this latter is dependent from the point discretization interval.

  9. Quantum tunneling splittings from path-integral molecular dynamics.

    PubMed

    Mátyus, Edit; Wales, David J; Althorpe, Stuart C

    2016-03-21

    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations. PMID:27004863

  10. Piloting and Path Integration within and across Boundaries

    ERIC Educational Resources Information Center

    Mou, Weimin; Wang, Lin

    2015-01-01

    Three experiments investigated whether navigation is less efficient across boundaries than within boundaries. In an immersive virtual environment, participants learned objects' locations in a large room or a small room. Participants then pointed to the objects' original locations after physically walking a circuitous path without vision.…

  11. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational

  12. Computational Physics as a Path for Physics Education

    NASA Astrophysics Data System (ADS)

    Landau, Rubin H.

    2008-04-01

    Evidence and arguments will be presented that modifications in the undergraduate physics curriculum are necessary to maintain the long-term relevance of physics. Suggested will a balance of analytic, experimental, computational, and communication skills, that in many cases will require an increased inclusion of computation and its associated skill set into the undergraduate physics curriculum. The general arguments will be followed by a detailed enumeration of suggested subjects and student learning outcomes, many of which have already been adopted or advocated by the computational science community, and which permit high performance computing and communication. Several alternative models for how these computational topics can be incorporated into the undergraduate curriculum will be discussed. This includes enhanced topics in the standard existing courses, as well as stand-alone courses. Applications and demonstrations will be presented throughout the talk, as well as prototype video-based materials and electronic books.

  13. Tackling higher derivative ghosts with the Euclidean path integral

    SciTech Connect

    Fontanini, Michele; Trodden, Mark

    2011-05-15

    An alternative to the effective field theory approach to treat ghosts in higher derivative theories is to attempt to integrate them out via the Euclidean path integral formalism. It has been suggested that this method could provide a consistent framework within which we might tolerate the ghost degrees of freedom that plague, among other theories, the higher derivative gravity models that have been proposed to explain cosmic acceleration. We consider the extension of this idea to treating a class of terms with order six derivatives, and find that for a general term the Euclidean path integral approach works in the most trivial background, Minkowski. Moreover we see that even in de Sitter background, despite some difficulties, it is possible to define a probability distribution for tensorial perturbations of the metric.

  14. Amplitudes for spacetime regions and the quantum Zeno effect: pitfalls of standard path integral constructions

    NASA Astrophysics Data System (ADS)

    Halliwell, J. J.; Yearsley, J. M.

    2013-06-01

    Path integrals appear to offer natural and intuitively appealing methods for defining quantum-mechanical amplitudes for questions involving spacetime regions. For example, the amplitude for entering a spatial region during a given time interval is typically defined by summing over all paths between given initial and final points but restricting them to pass through the region at any time. We argue that there is, however, under very general conditions, a significant complication in such constructions. This is the fact that the concrete implementation of the restrictions on paths over an interval of time corresponds, in an operator language, to sharp monitoring at every moment of time in the given time interval. Such processes suffer from the quantum Zeno effect - the continual monitoring of a quantum system in a Hilbert subspace prevents its state from leaving that subspace. As a consequence, path integral amplitudes defined in this seemingly obvious way have physically and intuitively unreasonable properties and in particular, no sensible classical limit. In this paper we describe this frequently-occurring but little-appreciated phenomenon in some detail, showing clearly the connection with the quantum Zeno effect. We then show that it may be avoided by implementing the restriction on paths in the path integral in a "softer" way. The resulting amplitudes then involve a new coarse graining parameter, which may be taken to be a timescale epsilon, describing the softening of the restrictions on the paths. We argue that the complications arising from the Zeno effect are then negligible as long as epsilon >> 1/E, where E is the energy scale of the incoming state. Our criticisms of path integral constructions largely apply to approaches to quantum theory such as the decoherent histories approach or quantum measure theory, which do not specifically involve measurements. We address some criticisms of our approach by Sokolovksi, concerning the relevance of our results to

  15. Path integration and perturbation theory with complex Euclidean actions

    NASA Astrophysics Data System (ADS)

    Alexanian, Garnik; MacKenzie, R.; Paranjape, M. B.; Ruel, Jonathan

    2008-05-01

    The Euclidean path integral quite often involves an action that is not completely real, i.e. a complex action. This occurs when the Minkowski action contains t-odd CP-violating terms. This usually consists of topological terms, such as the Chern-Simons term in odd dimensions, the Wess-Zumino term, the θ term or Chern character in 4-dimensional gauge theories, or other topological densities. Analytic continuation to Euclidean time yields an imaginary term in the Euclidean action. It also occurs when the action contains fermions, the fermion path integral being in general a sum over positive and negative real numbers. Negative numbers correspond to the exponential of iπ and hence indicate the presence of an imaginary term in the action. In the presence of imaginary terms in the Euclidean action, the usual method of perturbative quantization can fail. Here the action is expanded about its critical points, the quadratic part serving to define the Gaussian free theory and the higher order terms defining the perturbative interactions. For a complex action, the critical points are generically obtained at complex field configurations. Hence the contour of path integration does not pass through the critical points and the perturbative paradigm cannot be directly implemented. The contour of path integration has to be deformed to pass through the complex critical point using a generalized method of steepest descent, in order to do so. Typically, this procedure is not followed. Rather, only the real part of the Euclidean action is considered, and its critical points are used to define the perturbation theory, a procedure that can lead to incorrect results. In this article we present a simple example to illustrate this point. The example consists of N scalar fields in 0+1 dimensions interacting with a U(1) gauge field in the presence of a Chern-Simons term. In this example the path integral can be done exactly, the procedure of deformation of the contour of path integration

  16. Path integral Liouville dynamics for thermal equilibrium systems

    NASA Astrophysics Data System (ADS)

    Liu, Jian

    2014-06-01

    We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.

  17. Path integral Liouville dynamics for thermal equilibrium systems

    SciTech Connect

    Liu, Jian

    2014-06-14

    We show a new imaginary time path integral based method—path integral Liouville dynamics (PILD), which can be derived from the equilibrium Liouville dynamics [J. Liu and W. H. Miller, J. Chem. Phys. 134, 104101 (2011)] in the Wigner phase space. Numerical tests of PILD with the simple (white noise) Langevin thermostat have been made for two strongly anharmonic model problems. Since implementation of PILD does not request any specific form of the potential energy surface, the results suggest that PILD offers a potentially useful approach for general condensed phase molecular systems to have the two important properties: conserves the quantum canonical distribution and recovers exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits.

  18. A path integral approach to the Langevin equation

    NASA Astrophysics Data System (ADS)

    Das, Ashok K.; Panda, Sudhakar; Santos, J. R. L.

    2015-02-01

    We study the Langevin equation with both a white noise and a colored noise. We construct the Lagrangian as well as the Hamiltonian for the generalized Langevin equation which leads naturally to a path integral description from first principles. This derivation clarifies the meaning of the additional fields introduced by Martin, Siggia and Rose in their functional formalism. We show that the transition amplitude, in this case, is the generating functional for correlation functions. We work out explicitly the correlation functions for the Markovian process of the Brownian motion of a free particle as well as for that of the non-Markovian process of the Brownian motion of a harmonic oscillator (Uhlenbeck-Ornstein model). The path integral description also leads to a simple derivation of the Fokker-Planck equation for the generalized Langevin equation.

  19. Path integral pricing of outside barrier Asian options

    NASA Astrophysics Data System (ADS)

    Cassagnes, Aurelien; Chen, Yu; Ohashi, Hirotada

    2014-01-01

    Using the path-integral framework to cast the pricing problem of the outside barrier Asian option into a Wiener functional integral form, we show that, after the introduction of a law-equivalent process and transformation of the new system, the deviation from the Monte Carlo price is seen to be widely reduced. Bypassing the path-partitioning step, we show that our results behave nicely with respect to increasing correlation. After putting forward empirical evidence of this improvement, we extend the scope to a double knock-out outside barrier, and derive there an original formula. In the latter setting, we propose a simple scheme to reduce the relative error due to a nearby knock-out barrier.

  20. Spin foam models for quantum gravity from lattice path integrals

    SciTech Connect

    Bonzom, Valentin

    2009-09-15

    Spin foam models for quantum gravity are derived from lattice path integrals. The setting involves variables from both lattice BF theory and Regge calculus. The action consists in a Regge action, which depends on areas, dihedral angles and includes the Immirzi parameter. In addition, a measure is inserted to ensure a consistent gluing of simplices, so that the amplitude is dominated by configurations that satisfy the parallel transport relations. We explicitly compute the path integral as a sum over spin foams for a generic measure. The Freidel-Krasnov and Engle-Pereira-Rovelli models correspond to a special choice of gluing. In this case, the equations of motion describe genuine geometries, where the constraints of area-angle Regge calculus are satisfied. Furthermore, the Immirzi parameter drops out of the on-shell action, and stationarity with respect to area variations requires spacetime geometry to be flat.

  1. Gauge Invariance of Parametrized Systems and Path Integral Quantization

    NASA Astrophysics Data System (ADS)

    de Cicco, Hernán; Simeone, Claudio

    Gauge invariance of systems whose Hamilton-Jacobi equation is separable is improved by adding surface terms to the action functional. The general form of these terms is given for some complete solutions of the Hamilton-Jacobi equation. The procedure is applied to the relativistic particle and toy universes, which are quantized by imposing canonical gauge conditions in the path integral; in the case of empty models, we first quantize the parametrized system called "ideal clock," and then we examine the possibility of obtaining the amplitude for the minisuperspaces by matching them with the ideal clock. The relation existing between the geometrical properties of the constraint surface and the variables identifying the quantum states in the path integral is discussed.

  2. Path integral quantization of the relativistic Hopfield model

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2016-03-01

    The path-integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quantum matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path-integral formalism. In particular, we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time-ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.

  3. Integrating Physically Handicapped Pupils.

    ERIC Educational Resources Information Center

    Hodgson, Ann

    1984-01-01

    Intended for regular class teachers working with mainstreamed physically handicapped pupils, the article offers guidelines regarding school organization, conditions directly affecting the pupil, and classroom considerations. A brief review of the major conditions (such as allergies, cerebral palsy, and muscular dystrophy) is presented. (CL)

  4. Theory of extreme correlations using canonical Fermions and path integrals

    NASA Astrophysics Data System (ADS)

    Shastry, B. Sriram

    2014-04-01

    The t-J model is studied using a novel and rigorous mapping of the Gutzwiller projected electrons, in terms of canonical electrons. The mapping has considerable similarity to the Dyson-Maleev transformation relating spin operators to canonical Bosons. This representation gives rise to a non Hermitian quantum theory, characterized by minimal redundancies. A path integral representation of the canonical theory is given. Using it, the salient results of the extremely correlated Fermi liquid (ECFL) theory, including the previously found Schwinger equations of motion, are easily rederived. Further, a transparent physical interpretation of the previously introduced auxiliary Greens function and the ‘caparison factor’, is obtained. The low energy electron spectral function in this theory, with a strong intrinsic asymmetry, is summarized in terms of a few expansion coefficients. These include an important emergent energy scale Δ0 that shrinks to zero on approaching the insulating state, thereby making it difficult to access the underlying very low energy Fermi liquid behavior. The scaled low frequency ECFL spectral function, related simply to the Fano line shape, has a peculiar energy dependence unlike that of a Lorentzian. The resulting energy dispersion obtained by maximization is a hybrid of a massive and a massless Dirac spectrum EQ∗˜γ Q-√{Γ02+Q2}, where the vanishing of Q, a momentum type variable, locates the kink minimum. Therefore the quasiparticle velocity interpolates between (γ∓1) over a width Γ0 on the two sides of Q=0, implying a kink there that strongly resembles a prominent low energy feature seen in angle resolved photoemission spectra (ARPES) of cuprate materials. We also propose novel ways of analyzing the ARPES data to isolate the predicted asymmetry between particle and hole excitations.

  5. Path integral Monte Carlo on a lattice: extended states.

    PubMed

    O'Callaghan, Mark; Miller, Bruce N

    2014-04-01

    The equilibrium properties of a single quantum particle (qp) interacting with a classical gas for a wide range of temperatures that explore the system's behavior in the classical as well as in the quantum regime is investigated. Both the qp and atoms are restricted to the sites of a one-dimensional lattice. A path integral formalism is developed within the context of the canonical ensemble in which the qp is represented by a closed, variable-step random walk on the lattice. Monte Carlo methods are employed to determine the system's properties. For the case of a free particle, analytical expressions for the energy, its fluctuations, and the qp-qp correlation function are derived and compared with the Monte Carlo simulations. To test the usefulness of the path integral formalism, the Metropolis algorithm is employed to determine the equilibrium properties of the qp for a periodic interaction potential, forcing the qp to occupy extended states. We consider a striped potential in one dimension, where every other lattice site is occupied by an atom with potential ε, and every other lattice site is empty. This potential serves as a stress test for the path integral formalism because of its rapid site-to-site variation. An analytical solution was determined in this case by utilizing Bloch's theorem due to the periodicity of the potential. Comparisons of the potential energy, the total energy, the energy fluctuations, and the correlation function are made between the results of the Monte Carlo simulations and the analytical calculations. PMID:24827210

  6. Path integral approach to the quantum fidelity amplitude

    PubMed Central

    2016-01-01

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called ‘dephasing representation,’ circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973

  7. Path integral approach to the quantum fidelity amplitude.

    PubMed

    Vaníček, Jiří; Cohen, Doron

    2016-06-13

    The Loschmidt echo is a measure of quantum irreversibility and is determined by the fidelity amplitude of an imperfect time-reversal protocol. Fidelity amplitude plays an important role both in the foundations of quantum mechanics and in its applications, such as time-resolved electronic spectroscopy. We derive an exact path integral formula for the fidelity amplitude and use it to obtain a series of increasingly accurate semiclassical approximations by truncating an exact expansion of the path integral exponent. While the zeroth-order expansion results in a remarkably simple, yet non-trivial approximation for the fidelity amplitude, the first-order expansion yields an alternative derivation of the so-called 'dephasing representation,' circumventing the use of a semiclassical propagator as in the original derivation. We also obtain an approximate expression for fidelity based on the second-order expansion, which resolves several shortcomings of the dephasing representation. The rigorous derivation from the path integral permits the identification of sufficient conditions under which various approximations obtained become exact. PMID:27140973

  8. Integrable Systems on Flag Manifold and Coherent State Path-Integral

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Ho; Oh, Phillial

    We construct integrable models on flag manifold by using the symplectic structure explicitly given in the Bruhat coordinatization of flag manifold. They are noncommutative integrable and some of the conserved quantities are given by the Casimir invariants. We quantize the systems using the coherent state path-integral technique and find the exact expression for the propagator for some special cases.

  9. A review of path-independent integrals in elastic-plastic fracture mechanics, task 4

    NASA Technical Reports Server (NTRS)

    Kim, K. S.

    1985-01-01

    The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  10. Physical Layer Security Using Two-Path Successive Relaying

    PubMed Central

    Liau, Qian Yu; Leow, Chee Yen; Ding, Zhiguo

    2016-01-01

    Relaying is one of the useful techniques to enhance wireless physical-layer security. Existing literature shows that employing full-duplex relay instead of conventional half-duplex relay improves secrecy capacity and secrecy outage probability, but this is at the price of sophisticated implementation. As an alternative, two-path successive relaying has been proposed to emulate operation of full-duplex relay by scheduling a pair of half-duplex relays to assist the source transmission alternately. However, the performance of two-path successive relaying in secrecy communication remains unexplored. This paper proposes a secrecy two-path successive relaying protocol for a scenario with one source, one destination and two half-duplex relays. The relays operate alternately in a time division mode to forward messages continuously from source to destination in the presence of an eavesdropper. Analytical results reveal that the use of two half-duplex relays in the proposed scheme contributes towards a quadratically lower probability of interception compared to full-duplex relaying. Numerical simulations show that the proposed protocol achieves the ergodic achievable secrecy rate of full-duplex relaying while delivering the lowest probability of interception and secrecy outage probability compared to the existing half duplex relaying, full duplex relaying and full duplex jamming schemes. PMID:27294924

  11. Physical Layer Security Using Two-Path Successive Relaying.

    PubMed

    Liau, Qian Yu; Leow, Chee Yen; Ding, Zhiguo

    2016-01-01

    Relaying is one of the useful techniques to enhance wireless physical-layer security. Existing literature shows that employing full-duplex relay instead of conventional half-duplex relay improves secrecy capacity and secrecy outage probability, but this is at the price of sophisticated implementation. As an alternative, two-path successive relaying has been proposed to emulate operation of full-duplex relay by scheduling a pair of half-duplex relays to assist the source transmission alternately. However, the performance of two-path successive relaying in secrecy communication remains unexplored. This paper proposes a secrecy two-path successive relaying protocol for a scenario with one source, one destination and two half-duplex relays. The relays operate alternately in a time division mode to forward messages continuously from source to destination in the presence of an eavesdropper. Analytical results reveal that the use of two half-duplex relays in the proposed scheme contributes towards a quadratically lower probability of interception compared to full-duplex relaying. Numerical simulations show that the proposed protocol achieves the ergodic achievable secrecy rate of full-duplex relaying while delivering the lowest probability of interception and secrecy outage probability compared to the existing half duplex relaying, full duplex relaying and full duplex jamming schemes. PMID:27294924

  12. Physics Integration KErnels (PIKE)

    Energy Science and Technology Software Center (ESTSC)

    2014-07-31

    Pike is a software library for coupling and solving multiphysics applications. It provides basic interfaces and utilities for performing code-to-code coupling. It provides simple “black-box” Picard iteration methods for solving the coupled system of equations including Jacobi and Gauss-Seidel solvers. Pike was developed originally to couple neutronics and thermal fluids codes to simulate a light water nuclear reactor for the Consortium for Simulation of Light-water Reactors (CASL) DOE Energy Innovation Hub. The Pike library containsmore » no physics and just provides interfaces and utilities for coupling codes. It will be released open source under a BSD license as part of the Trilinos solver framework (trilinos.org) which is also BSD. This code provides capabilities similar to other open source multiphysics coupling libraries such as LIME, AMP, and MOOSE.« less

  13. Physics Integration KErnels (PIKE)

    SciTech Connect

    Pawlowski, Roger

    2014-07-31

    Pike is a software library for coupling and solving multiphysics applications. It provides basic interfaces and utilities for performing code-to-code coupling. It provides simple “black-box” Picard iteration methods for solving the coupled system of equations including Jacobi and Gauss-Seidel solvers. Pike was developed originally to couple neutronics and thermal fluids codes to simulate a light water nuclear reactor for the Consortium for Simulation of Light-water Reactors (CASL) DOE Energy Innovation Hub. The Pike library contains no physics and just provides interfaces and utilities for coupling codes. It will be released open source under a BSD license as part of the Trilinos solver framework (trilinos.org) which is also BSD. This code provides capabilities similar to other open source multiphysics coupling libraries such as LIME, AMP, and MOOSE.

  14. Highly optimized fourth-order short-time approximation for path integrals.

    PubMed

    Predescu, Cristian

    2006-01-19

    We derive a fourth-order short-time approximation for use in imaginary-time path-integral simulations. The short-time approximation converges for all continuous and bounded-from-below potentials, attains quartic order of convergence for sufficiently smooth potentials, and utilizes statistically independent random variables for its construction. These properties recommend the approximation as a natural replacement of the trapezoidal Trotter-Suzuki approximation for physical systems with continuous distributions. PMID:16471584

  15. Direct path integral estimators for isotope fractionation ratios

    SciTech Connect

    Cheng, Bingqing; Ceriotti, Michele

    2014-12-28

    Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.

  16. Neural dynamics for landmark orientation and angular path integration.

    PubMed

    Seelig, Johannes D; Jayaraman, Vivek

    2015-05-14

    Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed Drosophila melanogaster walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body, a toroidal structure in the centre of the fly brain. The neural population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity, a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors, network structures that have been proposed to support the function of navigational brain circuits. PMID:25971509

  17. Neural dynamics for landmark orientation and angular path integration

    PubMed Central

    Seelig, Johannes D.; Jayaraman, Vivek

    2015-01-01

    Summary Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits. PMID:25971509

  18. Stochastic path integral approach to continuous quadrature measurement of a single fluorescing qubit

    NASA Astrophysics Data System (ADS)

    Jordan, Andrew N.; Chantasri, Areeya; Huard, Benjamin

    I will present a theory of continuous quantum measurement for a superconducting qubit undergoing fluorescent energy relaxation. The fluorescence of the qubit is detected via a phase-preserving heterodyne measurement, giving the cavity mode quadrature signals as two continuous qubit readout results. By using the stochastic path integral approach to the measurement physics, we obtain the most likely fluorescence paths between chosen boundary conditions on the state, and compute approximate correlation functions between all stochastic variables via diagrammatic perturbation theory. Of particular interest are most-likely paths describing increasing energy during the florescence. Comparison to Monte Carlo numerical simulation and experiment will be discussed. This work was supported by US Army Research Office Grants No. W911NF-09-0-01417 and No. W911NF-15-1-0496, by NSF Grant DMR-1506081, by John Templeton Foundation Grant ID 58558, and by the DPSTT Project Thailand.

  19. Path-integral approach to the Wigner-Kirkwood expansion.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2014-01-01

    We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed. PMID:24580200

  20. Quantum corrections from a path integral over reparametrizations

    SciTech Connect

    Makeenko, Yuri; Olesen, Poul

    2010-08-15

    We study the path integral over reparametrizations that has been proposed as an ansatz for the Wilson loops in the large-N QCD and reproduces the area law in the classical limit of large loops. We show that a semiclassical expansion for a rectangular loop captures the Luescher term associated with d=26 dimensions and propose a modification of the ansatz that reproduces the Luescher term in other dimensions, which is observed in lattice QCD. We repeat the calculation for an outstretched ellipse advocating the emergence of an analog of the Luescher term and verify this result by a direct computation of the determinant of the Laplace operator and the conformal anomaly.

  1. Path-integral approach to the Wigner-Kirkwood expansion

    NASA Astrophysics Data System (ADS)

    Jizba, Petr; Zatloukal, Václav

    2014-01-01

    We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.

  2. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  3. Regularized path integrals and anomalies: U(1) chiral gauge theory

    NASA Astrophysics Data System (ADS)

    Kopper, Christoph; Lévêque, Benjamin

    2012-02-01

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Müller, V. F., "Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations," Rev. Math. Phys. 21, 781 (2009)], 10.1142/S0129055X0900375X. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  4. Path integral Monte Carlo on a lattice. II. Bound states.

    PubMed

    O'Callaghan, Mark; Miller, Bruce N

    2016-07-01

    The equilibrium properties of a single quantum particle (qp) interacting with a classical gas for a wide range of temperatures that explore the system's behavior in the classical as well as in the quantum regime is investigated. Both the qp and the atoms are restricted to sites on a one-dimensional lattice. A path integral formalism developed within the context of the canonical ensemble is utilized, where the qp is represented by a closed, variable-step random walk on the lattice. Monte Carlo methods are employed to determine the system's properties. To test the usefulness of the path integral formalism, the Metropolis algorithm is employed to determine the equilibrium properties of the qp in the context of a square well potential, forcing the qp to occupy bound states. We consider a one-dimensional square well potential where all atoms on the lattice are occupied with one atom with an on-site potential except for a contiguous set of sites of various lengths centered at the middle of the lattice. Comparison of the potential energy, the energy fluctuations, and the correlation function are made between the results of the Monte Carlo simulations and the numerical calculations. PMID:27575090

  5. NLOS UV channel modeling using numerical integration and an approximate closed-form path loss model

    NASA Astrophysics Data System (ADS)

    Gupta, Ankit; Noshad, Mohammad; Brandt-Pearce, Maïté

    2012-10-01

    In this paper we propose a simulation method using numerical integration, and develop a closed-form link loss model for physical layer channel characterization for non-line of sight (NLOS) ultraviolet (UV) communication systems. The impulse response of the channel is calculated by assuming both uniform and Gaussian profiles for transmitted beams and different geometries. The results are compared with previously published results. The accuracy of the integration approach is compared to the Monte Carlo simulation. Then the path loss using the simulation method and the suggested closed-form expression are presented for different link geometries. The accuracies are evaluated and compared to the results obtained using other methods.

  6. Integrating the physically handicapped child.

    PubMed

    Bleck, E E

    1979-03-01

    This paper will serve several purposes: (1) to provide information on the incidence of physically handicapped children (exclusive of the blind and deaf) who are likely to be integrated into schools for normal non-physically impaired children, (2) to describe briefly the major handicapping conditions and their educational implications, (3) to comment on why integration has come about and why it promises to enrich the lives of normal children, (4) to suggest how physicians, physical therapists, and occupational therapists might help to make schools programs successful, (5) to comment briefly on financial implications of this program and to suggest ways in which the complexity of the medical management might be simplified, (6) to provide factual knowledge about the handicapped child and his potential to teachers who are already on the firing line to "improve" the academic achievement of the alleged normal child. PMID:155177

  7. Potential theory, path integrals and the Laplacian of the indicator

    NASA Astrophysics Data System (ADS)

    Lange, Rutger-Jan

    2012-11-01

    This paper links the field of potential theory — i.e. the Dirichlet and Neumann problems for the heat and Laplace equation — to that of the Feynman path integral, by postulating the following seemingly ill-defined potential: V(x):=∓ {{σ^2}}/2nabla_x^2{1_{{xin D}}} where the volatility is the reciprocal of the mass (i.e. m = 1/ σ 2) and ħ = 1. The Laplacian of the indicator can be interpreted using the theory of distributions: it is the d-dimensional analogue of the Dirac δ'-function, which can formally be defined as partial_x^2{1_{x>0 }} . We show, first, that the path integral's perturbation series (or Born series) matches the classical single and double boundary layer series of potential theory, thereby connecting two hitherto unrelated fields. Second, we show that the perturbation series is valid for all domains D that allow Green's theorem (i.e. with a finite number of corners, edges and cusps), thereby expanding the classical applicability of boundary layers. Third, we show that the minus (plus) in the potential holds for the Dirichlet (Neumann) boundary condition; showing for the first time a particularly close connection between these two classical problems. Fourth, we demonstrate that the perturbation series of the path integral converges as follows:

    mode of convergence absorbed propagator reflected propagator convex domain alternating monotone
  8. PhytoPath: an integrative resource for plant pathogen genomics.

    PubMed

    Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D; Staines, Daniel M; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian

    2016-01-01

    PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. PMID:26476449

  9. PhytoPath: an integrative resource for plant pathogen genomics

    PubMed Central

    Pedro, Helder; Maheswari, Uma; Urban, Martin; Irvine, Alistair George; Cuzick, Alayne; McDowall, Mark D.; Staines, Daniel M.; Kulesha, Eugene; Hammond-Kosack, Kim Elizabeth; Kersey, Paul Julian

    2016-01-01

    PhytoPath (www.phytopathdb.org) is a resource for genomic and phenotypic data from plant pathogen species, that integrates phenotypic data for genes from PHI-base, an expertly curated catalog of genes with experimentally verified pathogenicity, with the Ensembl tools for data visualization and analysis. The resource is focused on fungi, protists (oomycetes) and bacterial plant pathogens that have genomes that have been sequenced and annotated. Genes with associated PHI-base data can be easily identified across all plant pathogen species using a BioMart-based query tool and visualized in their genomic context on the Ensembl genome browser. The PhytoPath resource contains data for 135 genomic sequences from 87 plant pathogen species, and 1364 genes curated for their role in pathogenicity and as targets for chemical intervention. Support for community annotation of gene models is provided using the WebApollo online gene editor, and we are working with interested communities to improve reference annotation for selected species. PMID:26476449

  10. Spinor path integral Quantum Monte Carlo for fermions

    NASA Astrophysics Data System (ADS)

    Shin, Daejin; Yousif, Hosam; Shumway, John

    2007-03-01

    We have developed a continuous-space path integral method for spin 1/2 fermions with fixed-phase approximation. The internal spin degrees of freedom of each particle is represented by four extra dimensions. This effectively maps each spinor onto two of the excited states of a four dimensional harmonic oscillator. The phases that appear in the problem can be treated within the fixed-phase approximation. This mapping preserves rotational invariance and allows us to treat spin interactions and fermionic exchange on equal footing, which may lead to new theoretical insights. The technique is illustrated for a few simple models, including a spin in a magnetic field and interacting electrons in a quantum dot in a magnetic field at finite temperature. We will discuss possible extensions of the method to molecules and solids using variational and diffusion Quantum Monte Carlo.

  11. Hippocampal “Time Cells”: Time versus Path Integration

    PubMed Central

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  12. Path integral approach to electron scattering in classical electromagnetic potential

    NASA Astrophysics Data System (ADS)

    Chuang, Xu; Feng, Feng; Ying-Jun, Li

    2016-05-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374360, 11405266, and 11505285) and the National Basic Research Program of China (Grant No. 2013CBA01504).

  13. Quantum-classical interactions through the path integral

    NASA Astrophysics Data System (ADS)

    Metaxas, Dimitrios

    2007-03-01

    I consider the case of two interacting scalar fields, ϕ and ψ, and use the path integral formalism in order to treat the first classically and the second quantum-mechanically. I derive the Feynman rules and the resulting equation of motion for the classical field which should be an improvement of the usual semiclassical procedure. As an application I use this method in order to enforce Gauss’s law as a classical equation in a non-Abelian gauge theory. I argue that the theory is renormalizable and equivalent to the usual Yang-Mills theory as far as the gauge field terms are concerned. There are additional terms in the effective action that depend on the Lagrange multiplier field λ that is used to enforce the constraint. These terms and their relation to the confining properties of the theory are discussed.

  14. 77 FR 39735 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... the sale within the United States after importation of certain integrated circuit packages provided... integrated circuit packages provided with multiple heat-conducting paths and products containing same...

  15. Seismic Imaging, One-Way Wave Equations, Pseudodifferential Operators, Path Integrals, and all that Jazz

    NASA Astrophysics Data System (ADS)

    Artoun, Ojenie; David-Rus, Diana; Emmett, Matthew; Fishman, Lou; Fital, Sandra; Hogan, Chad; Lim, Jisun; Lushi, Enkeleida; Marinov, Vesselin

    2006-05-01

    In this report we summarize an extension of Fourier analysis for the solution of the wave equation with a non-constant coefficient corresponding to an inhomogeneous medium. The underlying physics of the problem is exploited to link pseudodifferential operators and phase space path integrals to obtain a marching algorithm that incorporates the backward scattering into the evolution of the wave. This allows us to successfully apply single-sweep, one-way marching methods in inherently two-way environments, which was not achieved before through other methods for this problem.

  16. An introduction to stochastic control theory, path integrals and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Kappen, Hilbert J.

    2007-02-01

    Control theory is a mathematical description of how to act optimally to gain future rewards. In this paper I give an introduction to deterministic and stochastic control theory and I give an overview of the possible application of control theory to the modeling of animal behavior and learning. I discuss a class of non-linear stochastic control problems that can be efficiently solved using a path integral or by MC sampling. In this control formalism the central concept of cost-to-go becomes a free energy and methods and concepts from statistical physics can be readily applied.

  17. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting... multiple heat-conducting paths and products containing same. The complaint names as respondents...

  18. Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Kun; Wang, Erkwang

    2010-09-01

    We developed a general framework to quantify three key ingredients for dynamics of nonequilibrium systems through path integrals in length space. First, we identify dominant kinetic paths as the ones with optimal weights, leading to effective reduction of dimensionality or degrees of freedom from exponential to polynomial so large systems can be treated. Second, we uncover the underlying nonequilibrium potential landscapes from the explorations of the state space through kinetic paths. We apply our framework to a specific example of nonequilibrium network system: lambda phage genetic switch. Two distinct basins of attractions emerge. The dominant kinetic paths from one basin to another are irreversible and do not follow the usual steepest descent or gradient path along the landscape. It reflects the fact that the dynamics of nonequilibrium systems is not just determined by potential gradient but also the residual curl flux force, suggesting experiments to test theoretical predictions. Third, we have calculated dynamic transition time scales from one basin to another critical for stability of the system through instantons. Theoretical predictions are in good agreements with wild type and mutant experiments. We further uncover the correlations between the kinetic transition time scales and the underlying landscape topography: the barrier heights along the dominant paths. We found that both the dominant paths and the landscape are relatively robust against the influences of external environmental perturbations and the system tends to dissipate less with less fluctuations. Our general framework can be applied to other nonequilibrium systems.

  19. Resurgence theory, ghost-instantons, and analytic continuation of path integrals

    NASA Astrophysics Data System (ADS)

    Basar, Gökçe; Dunne, Gerald V.; Ünsal, Mithat

    2013-10-01

    A general quantum mechanical or quantum field theoretical system in the path integral formulation has both real and complex saddles (instantons and ghost-instantons). Resurgent asymptotic analysis implies that both types of saddles contribute to physical observables, even if the complex saddles are not on the integration path i.e., the associated Stokes multipliers are zero. We show explicitly that instanton-anti-instanton and ghost-anti-ghost saddles both affect the expansion around the perturbative vacuum. We study a self-dual model in which the analytic continuation of the partition function to negative values of coupling constant gives a pathological exponential growth, but a homotopically independent combination of integration cycles (Lefschetz thimbles) results in a sensible theory. These two choices of the integration cycles are tied with a quantum phase transition. The general set of ideas in our construction may provide new insights into non-perturbative QFT, string theory, quantum gravity, and the theory of quantum phase transitions.

  20. Converged Nuclear Quantum Statistics from Semi-Classical Path Integrals

    NASA Astrophysics Data System (ADS)

    Poltavskyi, Igor; Tkatchenko, Alexandre

    2015-03-01

    The quantum nature of nuclear motions plays a vital role in the structure, stability, and thermodynamics of molecular systems. The standard approach to take nuclear quantum effects (NQE) into account is the Feynman-Kac imaginary-time path-integral molecular dynamics (PIMD). Conventional PIMD simulations require exceedingly large number of classical subsystems (beads) to accurately capture NQE, resulting in considerable computational cost even at room temperature due to the rather high internal vibrational frequencies of many molecules of interest. We propose a novel parameter-free form for the PI partition function and estimators to calculate converged thermodynamic averages. Our approach requires the same ingredients as the conventional PIMD simulations, but decreases the number of required beads by roughly an order of magnitude. This greatly extends the applicability of ab initio PIMD for realistic molecular systems. The developed method has been applied to study the thermodynamics of N2, H2O, CO2, and C6H6 molecules. For all of the considered systems at room temperature, 4 to 8 beads are enough to recover the NQE contribution to the total energy within 2% of the fully converged quantum result.

    1. Quantum Thermal Bath for Path Integral Molecular Dynamics Simulation.

      PubMed

      Brieuc, Fabien; Dammak, Hichem; Hayoun, Marc

      2016-03-01

      The quantum thermal bath (QTB) method has been recently developed to account for the quantum nature of the nuclei by using standard molecular dynamics (MD) simulation. QTB-MD is an efficient but approximate method when dealing with strongly anharmonic systems, while path integral molecular dynamics (PIMD) gives exact results but in a huge amount of computation time. The QTB and PIMD methods have been combined in order to improve the PIMD convergence or correct the failures of the QTB-MD technique. Therefore, a new power spectral density of the random force within the QTB has been developed. A modified centroid-virial estimator of the kinetic energy, especially adapted to QTB-PIMD, has also been proposed. The method is applied to selected systems: a one-dimensional double-well system, a ferroelectric phase transition, and the position distribution of an hydrogen atom in a fuel cell material. The advantage of the QTB-PIMD method is its ability to give exact results with a more reasonable computation time for strongly anharmonic systems. PMID:26799437

    2. Nearest neighbor interaction in the Path Integral Renormalization Group method

      NASA Astrophysics Data System (ADS)

      de Silva, Wasanthi; Clay, R. Torsten

      2014-03-01

      The Path Integral Renormalization Group (PIRG) method is an efficient numerical algorithm for studying ground state properties of strongly correlated electron systems. The many-body ground state wave function is approximated by an optimized linear combination of Slater determinants which satisfies the variational principle. A major advantage of PIRG is that is does not suffer the Fermion sign problem of quantum Monte Carlo. Results are exact in the noninteracting limit and can be enhanced using space and spin symmetries. Many observables can be calculated using Wick's theorem. PIRG has been used predominantly for the Hubbard model with a single on-site Coulomb interaction U. We describe an extension of PIRG to the extended Hubbard model (EHM) including U and a nearest-neighbor interaction V. The EHM is particularly important in models of charge-transfer solids (organic superconductors) and at 1/4-filling drives a charge-ordered state. The presence of lattice frustration also makes studying these systems difficult. We test the method with comparisons to small clusters and long one dimensional chains, and show preliminary results for a coupled-chain model for the (TMTTF)2X materials. This work was supported by DOE grant DE-FG02-06ER46315.

    3. Path integral duality modified propagators in spacetimes with constant curvature

      SciTech Connect

      Kothawala, Dawood; Padmanabhan, T.; Sriramkumar, L.; Shankaranarayanan, S.

      2009-08-15

      The hypothesis of path integral duality provides a prescription to evaluate the propagator of a free, quantum scalar field in a given classical background, taking into account the existence of a fundamental length, say, the Planck length L{sub P} in a locally Lorentz invariant manner. We use this prescription to evaluate the duality modified propagators in spacetimes with constant curvature (exactly in the case of one spacetime, and in the Gaussian approximation for another two), and show that (i) the modified propagators are ultraviolet finite, (ii) the modifications are nonperturbative in L{sub P}, and (iii) L{sub P} seems to behave like a 'zero point length' of spacetime intervals such that <{sigma}{sup 2}(x,x{sup '})>=[{sigma}{sup 2}(x,x{sup '})+O(1)L{sub P}{sup 2}], where {sigma}(x,x{sup '}) is the geodesic distance between the two spacetime points x and x{sup '}, and the angular brackets denote (a suitable) average over the quantum gravitational fluctuations. We briefly discuss the implications of our results.

    4. Path integral regularization of pure Yang-Mills theory

      SciTech Connect

      Jacquot, J. L.

      2009-07-15

      In enlarging the field content of pure Yang-Mills theory to a cutoff dependent matrix valued complex scalar field, we construct a vectorial operator, which is by definition invariant with respect to the gauge transformation of the Yang-Mills field and with respect to a Stueckelberg type gauge transformation of the scalar field. This invariant operator converges to the original Yang-Mills field as the cutoff goes to infinity. With the help of cutoff functions, we construct with this invariant a regularized action for the pure Yang-Mills theory. In order to be able to define both the gauge and scalar fields kinetic terms, other invariant terms are added to the action. Since the scalar fields flat measure is invariant under the Stueckelberg type gauge transformation, we obtain a regularized gauge-invariant path integral for pure Yang-Mills theory that is mathematically well defined. Moreover, the regularized Ward-Takahashi identities describing the dynamics of the gauge fields are exactly the same as the formal Ward-Takahashi identities of the unregularized theory.

    5. Path integral approach to two-dimensional QCD in the light-front frame

      NASA Astrophysics Data System (ADS)

      Gaete, P.; Gamboa, J.; Schmidt, I.

      1994-05-01

      Two-dimensional quantum chromodynamics in the light-front frame is studied following Hamiltonian methods. The theory is quantized using the path integral formalism and an effective theory similar to the Nambu-Jona-Lasinio model is obtained. Confinement in two dimensions is derived by analyzing directly the constraints in the path integral.

    6. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

      SciTech Connect

      Sinitskiy, Anton V.; Voth, Gregory A.

      2015-09-07

      Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

    7. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

      PubMed

      Sinitskiy, Anton V; Voth, Gregory A

      2015-09-01

      Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments. PMID:26342356

    8. An Abelian Model of Gravity and Canonical Quantization by Means of Path Integrals

      NASA Astrophysics Data System (ADS)

      Bracken, Paul

      An Abelian model of gravity is introduced and its constraint structure is obtained. The main task is to show that the model with constraints can be canonically quantized by means of the canonical path integral formalism using the Faddeev-Popov approach. It is shown how the path integral can be simplified by carrying out the integrals over those variables for which the integrals can be computed.

    9. Navigational path integration by cortical neurons: origins in higher-order direction selectivity

      PubMed Central

      Page, William K.; Sato, Nobuya; Froehler, Michael T.; Vaughn, William

      2015-01-01

      Navigation relies on the neural processing of sensory cues about observer self-movement and spatial location. Neurons in macaque dorsal medial superior temporal cortex (MSTd) respond to visual and vestibular self-movement cues, potentially contributing to navigation and orientation. We moved monkeys on circular paths around a room while recording the activity of MSTd neurons. MSTd neurons show a variety of sensitivities to the monkey's heading direction, circular path through the room, and place in the room. Changing visual cues alters the relative prevalence of those response properties. Disrupting the continuity of self-movement paths through the environment disrupts path selectivity in a manner linked to the time course of single neuron responses. We hypothesize that sensory cues interact with the spatial and temporal integrative properties of MSTd neurons to derive path selectivity for navigational path integration supporting spatial orientation. PMID:25589586

    10. Stochastic path integrals and geometric theory of mesoscopic stochastic pumps and reversible ratchets.

      NASA Astrophysics Data System (ADS)

      Nemenman, Ilya

      2008-03-01

      A variety of stochastic systems, from enzyme kinetics to epidemiology, exhibit pump-like behaviors, where adiabatic changes of parameters result in a nonzero directed current through the system. Using the stochastic path integral technique from mesoscopic physics, we have been able to relate these and similar phenomena to geometric effects in mesoscopic stochastic kinetics and construct their unifying theory. In the talk, this methodology will be demonstrated on three examples: (1) an adiabatic pump effect in the evolution of a Michaelis-Menten enzyme, treated as a classical two-state stochastic system; (2) a reversible ratchet; and (3) a related novel phenomenon in a previously unexplored domain, namely the SIS epidemiological model. In all of these examples, pump-like currents follow from very similar geometric phase contributions to the effective action in the stochastic path integral representation of the moment generating functional, and our construction provides the universal technique for identification, prediction, and calculation of these currents in an arbitrary mesoscopic stochastic framework.

    11. Canonical quantization, path integral representations, and pseudoclassical description of massive Weyl neutrinos in external backgrounds

      NASA Astrophysics Data System (ADS)

      Dvornikov, Maxim; Gitman, D. M.

      2013-01-01

      We study massive 1/2-spin particles in various external backgrounds, keeping in mind applications to neutrino physics. We are mainly interested in massive Majorana (Weyl) fields. However, massive neutral Dirac particles are also considered. We formulate classical Lagrangian theory of the massive Weyl field in terms of Grassmann-odd two-component spinors. Then, we construct the Hamiltonian formulation of such a theory, which turns out to be a theory with second-class constraints. Using this formulation, we canonically quantize the massive free Weyl field. We derive propagators of the Weyl field and relate them to the propagator of a massive Dirac particle. We also study the massive Weyl particles propagating in the background mater. We find the path integral representation for the propagator of such a field, as well as the corresponding pseudoclassical particle action. The massless limit of the Weyl field interacting with the matter is considered and compared with results of other works. Finally, the path integral representation for the propagator of the neutral massive Dirac particle with an anomalous magnetic moment moving in the background matter and external electromagnetic field, as well as the corresponding pseudoclassical particle action, are constructed.

    12. Physics as an Integrative Theme in Oceanography.

      ERIC Educational Resources Information Center

      Myers, Richard L.

      1990-01-01

      The teaching of physics as an integral part of an undergraduate oceanography course is described. A general outline of oceanography and the corresponding physics topics is given. The objectives, organization, and difficulties of such a course are discussed. (CW)

    13. Path Integral Solution for the Coulomb Potential in a Curved Space of Constant Positive Curvature

      NASA Astrophysics Data System (ADS)

      Aggoun, L.; Bounouioua, N.; Benamira, F.; Guechi, L.

      2016-05-01

      A new path integral treatment of a hydrogen-like atom in a uniformly curved space with a constant positive curvature is presented. By converting the radial path integral into a path integral for the modified Pöschl-Teller potential with the help of the space-time transformation technique, the radial Green's function is expressed in closed form, from which the energy spectrum and the corresponding normalized wave functions of the bound states are extracted. In the limit of vanishing curvature, the Green's function, the energy spectra and the correctly normalized wave functions of bound and scattering states for a standard hydrogen-like atom are found.

    14. Alternative Career Paths in Physical Education: Sport Management. ERIC Digest.

      ERIC Educational Resources Information Center

      Stier, William F., Jr.

      Prior to the late 1960s, physical education professional preparation programs in the United States were principally concerned with preparing coaches of sport and teachers of physical education. However, in recent decades, the field has spawned a number of alternative career tracks of which none has proven to be more viable than sport management.…

    15. Tracking the Career Paths of Physics Teachers in Texas

      ERIC Educational Resources Information Center

      Mount, Jennifer; Marshall, Jill; Fuller, Edward

      2013-01-01

      In Texas, and some other states, there is a documented shortage of physics teachers, in terms of both number and qualifications. The shortage in Texas is due as much to teachers leaving the field (attrition) as to a lack of teachers entering. There are efforts under way to prepare more and better-qualified physics teachers who will stay in the…

    16. PathCase-SB: integrating data sources and providing tools for systems biology research

      PubMed Central

      2012-01-01

      Background Integration of metabolic pathways resources and metabolic network models, and deploying new tools on the integrated platform can help perform more effective and more efficient systems biology research on understanding the regulation of metabolic networks. Therefore, the tasks of (a) integrating under a single database environment regulatory metabolic networks and existing models, and (b) building tools to help with modeling and analysis are desirable and intellectually challenging computational tasks. Results PathCase Systems Biology (PathCase-SB) is built and released. This paper describes PathCase-SB user interfaces developed to date. The current PathCase-SB system provides a database-enabled framework and web-based computational tools towards facilitating the development of kinetic models for biological systems. PathCase-SB aims to integrate systems biology models data and metabolic network data of selected biological data sources on the web (currently, BioModels Database and KEGG, respectively), and to provide more powerful and/or new capabilities via the new web-based integrative framework. Conclusions Each of the current four PathCase-SB interfaces, namely, Browser, Visualization, Querying, and Simulation interfaces, have expanded and new capabilities as compared with the original data sources. PathCase-SB is already available on the web and being used by researchers across the globe. PMID:22697505

    17. Deciphering the hippocampal polyglot: the hippocampus as a path integration system.

      PubMed

      McNaughton, B L; Barnes, C A; Gerrard, J L; Gothard, K; Jung, M W; Knierim, J J; Kudrimoti, H; Qin, Y; Skaggs, W E; Suster, M; Weaver, K L

      1996-01-01

      Hippocampal 'place' cells and the head-direction cells of the dorsal presubiculum and related neocortical and thalamic areas appear to be part of a preconfigured network that generates an abstract internal representation of two-dimensional space whose metric is self-motion. It appears that viewpoint-specific visual information (e.g. landmarks) becomes secondarily bound to this structure by associative learning. These associations between landmarks and the preconfigured path integrator serve to set the origin for path integration and to correct for cumulative error. In the absence of familiar landmarks, or in darkness without a prior spatial reference, the system appears to adopt an initial reference for path integration independently of external cues. A hypothesis of how the path integration system may operate at the neuronal level is proposed. PMID:8576689

    18. A brief view of known landmarks reorientates path integration in hamsters

      NASA Astrophysics Data System (ADS)

      Etienne, A. S.; Boulens, V.; Maurer, R.; Rowe, T.; Siegrist, C.

      In darkness, hamsters commute between their nest and a feeding site through path integration only, and therefore show cumulative errors in the return direction to the nest. We examined whether a brief presentation of familiar room cues could reset the path integrator. The hamsters could see the room cues either during, or at the end of, the outward journey to the food place, in a conflict situation where motion cues and visual information were set at variance. In both conditions, the animals used mainly visual information to return home. Thus, hamsters can determine their azimuth, and possibly their location, through a visual fix, and can reset their path integrator through the fix. This allows them to update their position during further locomotion in the dark and thus to compute a correct homing vector with respect to a visually induced reference frame. Taking episodic positional fixes may greatly enhance the functional value of path integration.

    19. Path Integral Calculation of GREEN’S Function for SCHRÖDINGER Equation in Unitary Gauge

      NASA Astrophysics Data System (ADS)

      Rozansky, L.

      Green’s function of Schrödinger equation is represented as a time-reparametrization invariant path integral. Unitary gauge fixing enables us to get the WKB preexponential factor without calculating determinants of operators containing derivatives.

    20. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat.

      PubMed

      Liu, Jian; Li, Dezhang; Liu, Xinzijian

      2016-07-14

      We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used. PMID:27421393

    1. A simple and accurate algorithm for path integral molecular dynamics with the Langevin thermostat

      NASA Astrophysics Data System (ADS)

      Liu, Jian; Li, Dezhang; Liu, Xinzijian

      2016-07-01

      We introduce a novel simple algorithm for thermostatting path integral molecular dynamics (PIMD) with the Langevin equation. The staging transformation of path integral beads is employed for demonstration. The optimum friction coefficients for the staging modes in the free particle limit are used for all systems. In comparison to the path integral Langevin equation thermostat, the new algorithm exploits a different order of splitting for the phase space propagator associated to the Langevin equation. While the error analysis is made for both algorithms, they are also employed in the PIMD simulations of three realistic systems (the H2O molecule, liquid para-hydrogen, and liquid water) for comparison. It is shown that the new thermostat increases the time interval of PIMD by a factor of 4-6 or more for achieving the same accuracy. In addition, the supplementary material shows the error analysis made for the algorithms when the normal-mode transformation of path integral beads is used.

    2. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields

      NASA Astrophysics Data System (ADS)

      Démery, Vincent; Dean, David S.

      2011-07-01

      We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results.

    3. Four dimensional quantum gravity: The covariant path integral and quantization of the conformal factor

      SciTech Connect

      Mottola, E.

      1993-01-01

      After first reviewing the issue of vacuum energy (the cosmological constant problem) in the Einstein theory, the covariant path integral for gravity in four dimensions is constructed. The problem of vacuum energy requires determining the correct ground state of the quantum theory of gravity, and as such is an infrared problem, arising prior to and independently of the physics of the Planck scale. It is addressed in these lectures by studying the infrared fixed point of the low energy effective action of the conformal factor generated by the quantum trace anomaly in four dimensions. The infrared fixed point of this effective theory describes a conformally invariant phase of gravity with a vanishing effective cosmological term.

    4. Four dimensional quantum gravity: The covariant path integral and quantization of the conformal factor

      SciTech Connect

      Mottola, E.

      1993-03-01

      After first reviewing the issue of vacuum energy (the cosmological constant problem) in the Einstein theory, the covariant path integral for gravity in four dimensions is constructed. The problem of vacuum energy requires determining the correct ground state of the quantum theory of gravity, and as such is an infrared problem, arising prior to and independently of the physics of the Planck scale. It is addressed in these lectures by studying the infrared fixed point of the low energy effective action of the conformal factor generated by the quantum trace anomaly in four dimensions. The infrared fixed point of this effective theory describes a conformally invariant phase of gravity with a vanishing effective cosmological term.

    5. Equivalence of the Path Integral for Fermions in Cartesian and Spherical Coordinates

      NASA Astrophysics Data System (ADS)

      Briggs, Andrew; Camblong, Horacio E.; Ordóñez, Carlos R.

      2013-06-01

      The path integral calculation for the free energy of a spin-1/2 Dirac-fermion gas is performed in spherical polar coordinates for a flat space-time geometry. Its equivalence with the Cartesian-coordinate representation is explicitly established. This evaluation involves a relevant limiting case of the fermionic path integral in a Schwarzschild background, whose near-horizon limit has been shown to be related to black hole thermodynamics.

    6. FUNdamental Integrative Training (FIT) for Physical Education

      ERIC Educational Resources Information Center

      Bukowsky, Michael; Faigenbaum, Avery D.; Myer, Gregory D.

      2014-01-01

      There is a growing need for physical education teachers to integrate different types of fitness activities into their lessons in order to provide opportunities for all students to learn and practice a variety of movement skills that will enhance their physical fitness and support free-time physical activity. An increased focus on age-appropriate…

    7. In Franklin's Path: Establishing Physics at the University of Pennsylvania

      NASA Astrophysics Data System (ADS)

      Halpern, Paul

      2008-04-01

      In 1751 Benjamin Franklin established the Academy of Philadelphia, the precursor of the University of Pennsylvania. Among its curricular mandates he envisioned included ``Natural and Mechanic History,'' using a popular text he suggested by No"el Antoine Pluche that encompassed optics and celestial dynamics among its subjects. This talk will trace the history of physics research and education at Penn from its establishment, to the appointment of the first designated physics professor, George Frederic Barker, in 1873, to the opening of the Randall Morgan Laboratory in 1901 under the directorship of Arthur Goodspeed, and finally to the inauguration of the David Rittenhouse Laboratory in 1954 under the university leadership of Gaylord Harnwell.

    8. How Do They Get Here?: Paths into Physics Education Research

      ERIC Educational Resources Information Center

      Barthelemy, Ramon S.; Henderson, Charles; Grunert, Megan L.

      2013-01-01

      Physics education research (PER) is a relatively new and rapidly growing area of Ph.D. specialization. To sustain the field of PER, a steady pipeline of talented scholars needs to be developed and supported. One aspect of building this pipeline is understanding how students come to graduate and postdoctoral work in PER and what their career goals…

    9. The path dependency theory: analytical framework to study institutional integration. The case of France

      PubMed Central

      Trouvé, Hélène; Couturier, Yves; Etheridge, Francis; Saint-Jean, Olivier; Somme, Dominique

      2010-01-01

      Background The literature on integration indicates the need for an enhanced theorization of institutional integration. This article proposes path dependence as an analytical framework to study the systems in which integration takes place. Purpose PRISMA proposes a model for integrating health and social care services for older adults. This model was initially tested in Quebec. The PRISMA France study gave us an opportunity to analyze institutional integration in France. Methods A qualitative approach was used. Analyses were based on semi-structured interviews with actors of all levels of decision-making, observations of advisory board meetings, and administrative documents. Results Our analyses revealed the complexity and fragmentation of institutional integration. The path dependency theory, which analyzes the change capacity of institutions by taking into account their historic structures, allows analysis of this situation. The path dependency to the Bismarckian system and the incomplete reforms of gerontological policies generate the coexistence and juxtaposition of institutional systems. In such a context, no institution has sufficient ability to determine gerontology policy and build institutional integration by itself. Conclusion Using path dependence as an analytical framework helps to understand the reasons why institutional integration is critical to organizational and clinical integration, and the complex construction of institutional integration in France. PMID:20689740

    10. Physically Important Integrals Without Calculus

      ERIC Educational Resources Information Center

      Reif, F.; Larkin, Jill H.

      1976-01-01

      Develops a geometric solution to be used with spatial integrals needed for finding electric and magnetic fields. The method is used in the calculation of the electric fields due to a uniformly charged plane, line and sphere. (CP)

    11. Tracking the Career Paths of Physics Teachers in Texas

      NASA Astrophysics Data System (ADS)

      Mount, Jennifer; Marshall, Jill; Fuller, Edward

      2013-10-01

      In Texas, and some other states, there is a documented shortage of physics teachers, in terms of both number and qualifications. The shortage in Texas is due as much to teachers leaving the field (attrition) as to a lack of teachers entering. There are efforts under way to prepare more and better-qualified physics teachers who will stay in the field longer,2 but increasing the overall supply and retention will not necessarily address localized teacher shortages. To investigate this issue, we obtained a database cataloging every teacher who taught science in Texas public schools from 2003 to 2008, indicating the school where they taught during each of those years, the subjects they taught, and their route to certification. This allowed us to track not only teachers entering and leaving the public school system, but also migration between schools within the system. We found that migration poses a much bigger problem than attrition for some schools. We also found patterns in the movement of physics teachers in Texas that we would not necessarily have predicted and that varied substantially depending on certification.

    12. Variational path integral molecular dynamics and hybrid Monte Carlo algorithms using a fourth order propagator with applications to molecular systems.

      PubMed

      Kamibayashi, Yuki; Miura, Shinichi

      2016-08-21

      In the present study, variational path integral molecular dynamics and associated hybrid Monte Carlo (HMC) methods have been developed on the basis of a fourth order approximation of a density operator. To reveal various parameter dependence of physical quantities, we analytically solve one dimensional harmonic oscillators by the variational path integral; as a byproduct, we obtain the analytical expression of the discretized density matrix using the fourth order approximation for the oscillators. Then, we apply our methods to realistic systems like a water molecule and a para-hydrogen cluster. In the HMC, we adopt two level description to avoid the time consuming Hessian evaluation. For the systems examined in this paper, the HMC method is found to be about three times more efficient than the molecular dynamics method if appropriate HMC parameters are adopted; the advantage of the HMC method is suggested to be more evident for systems described by many body interaction. PMID:27544094

    13. Hamiltonian, Path Integral and BRST Formulations of the Vector Schwinger Model with a Photon Mass Term with Faddeevian Regularization

      NASA Astrophysics Data System (ADS)

      Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James P.

      2016-01-01

      Recently (in a series of papers) we have studied the vector Schwinger model with a photon mass term describing one-space one-time dimensional electrodynamics with mass-less fermions in the so-called standard regularization. In the present work, we study this model in the Faddeevian regularization (FR). This theory in the FR is seen to be gauge-non-invariant (GNI). We study the Hamiltonian and path integral quantization of this GNI theory. We then construct a gauge-invariant (GI) theory corresponding to this GNI theory using the Stueckelberg mechanism and recover the physical content of the original GNI theory from the newly constructed GI theory under some special gauge-choice. Further, we study the Hamiltonian, path integral and Becchi-Rouet-Stora and Tyutin formulations of the newly constructed GI theory under appropriate gauge-fixing conditions.

    14. Path-Integration Computation of the Transport Properties of Polymers Nanoparticles and Complex Biological Structures

      NASA Astrophysics Data System (ADS)

      Douglas, Jack

      2014-03-01

      One of the things that puzzled me when I was a PhD student working under Karl Freed was the curious unity between the theoretical descriptions of excluded volume interactions in polymers, the hydrodynamic properties of polymers in solution, and the critical properties of fluid mixtures, gases and diverse other materials (magnets, superfluids,etc.) when these problems were formally expressed in terms of Wiener path integration and the interactions treated through a combination of epsilon expansion and renormalization group (RG) theory. It seemed that only the interaction labels changed from one problem to the other. What do these problems have in common? Essential clues to these interrelations became apparent when Karl Freed, myself and Shi-Qing Wang together began to study polymers interacting with hyper-surfaces of continuously variable dimension where the Feynman perturbation expansions could be performed through infinite order so that we could really understand what the RG theory was doing. It is evidently simply a particular method for resuming perturbation theory, and former ambiguities no longer existed. An integral equation extension of this type of exact calculation to ``surfaces'' of arbitrary fixed shape finally revealed the central mathematical object that links these diverse physical models- the capacity of polymer chains, whose value vanishes at the critical dimension of 4 and whose magnitude is linked to the friction coefficient of polymer chains, the virial coefficient of polymers and the 4-point function of the phi-4 field theory,...Once this central object was recognized, it then became possible solve diverse problems in material science through the calculation of capacity, and related ``virials'' properties, through Monte Carlo sampling of random walk paths. The essential ideas of this computational method are discussed and some applications given to non-trivial problems: nanotubes treated as either rigid rods or ensembles worm-like chains having

    15. Automatic Tool Path Generation for Robot Integrated Surface Sculpturing System

      NASA Astrophysics Data System (ADS)

      Zhu, Jiang; Suzuki, Ryo; Tanaka, Tomohisa; Saito, Yoshio

      In this paper, a surface sculpturing system based on 8-axis robot is proposed, the CAD/CAM software and tool path generation algorithm for this sculpturing system are presented. The 8-axis robot is composed of a 6-axis manipulator and a 2-axis worktable, it carves block of polystyrene foams by heated cutting tools. Multi-DOF (Degree of Freedom) robot benefits from the faster fashion than traditional RP (Rapid Prototyping) methods and more flexibility than CNC machining. With its flexibility driven from an 8-axis configuration, as well as efficient custom-developed software for rough cutting and finish cutting, this surface sculpturing system can carve sculptured surface accurately and efficiently.

    16. Bias in Human Path Integration Is Predicted by Properties of Grid Cells.

      PubMed

      Chen, Xiaoli; He, Qiliang; Kelly, Jonathan W; Fiete, Ila R; McNamara, Timothy P

      2015-06-29

      Accurate wayfinding is essential to the survival of many animal species and requires the ability to maintain spatial orientation during locomotion. One of the ways that humans and other animals stay spatially oriented is through path integration, which operates by integrating self-motion cues over time, providing information about total displacement from a starting point. The neural substrate of path integration in mammals may exist in grid cells, which are found in dorsomedial entorhinal cortex and presubiculum and parasubiculum in rats. Grid cells have also been found in mice, bats, and monkeys, and signatures of grid cell activity have been observed in humans. We demonstrate that distance estimation by humans during path integration is sensitive to geometric deformations of a familiar environment and show that patterns of path integration error are predicted qualitatively by a model in which locations in the environment are represented in the brain as phases of arrays of grid cells with unique periods and decoded by the inverse mapping from phases to locations. The periods of these grid networks are assumed to expand and contract in response to expansions and contractions of a familiar environment. Biases in distance estimation occur when the periods of the encoding and decoding grids differ. Our findings explicate the way in which grid cells could function in human path integration. PMID:26073138

    17. How do they get here?: Paths into physics education research

      NASA Astrophysics Data System (ADS)

      Barthelemy, Ramón S.; Henderson, Charles; Grunert, Megan L.

      2013-12-01

      Physics education research (PER) is a relatively new and rapidly growing area of Ph.D. specialization. To sustain the field of PER, a steady pipeline of talented scholars needs to be developed and supported. One aspect of building this pipeline is understanding how students come to graduate and postdoctoral work in PER and what their career goals are. This paper presents the first study on the experiences and career pathways of students in PER. Data were collected through open-ended interviews with 13 graduate students and postdoctoral scholars in PER. Results show that many of these PER graduate students and postdoctoral scholars were not aware of PER as undergraduates. PER graduate students that were aware of PER as undergraduates chose to study PER as they were applying to graduate schools. The graduate school experiences of the interviewees were overwhelmingly positive, with participants reporting a positive climate that was facilitated by communicative and productive relationships with their advisors. However, some participants reported concerns about the acceptance of PER within some departments, including open hostility towards the field. The majority of participants were interested in pursuing a career as a university faculty member, with more participants preferring a position at a research-intensive university. These results suggest that a further large-scale study of graduate students in PER may be able to highlight the field as being a leader in student mentoring and community development while collecting important demographic information that could show PER to have more gender diversity than other subfields of physics.

    18. A path-integral Langevin equation treatment of low-temperature doped helium clusters

      NASA Astrophysics Data System (ADS)

      Ing, Christopher; Hinsen, Konrad; Yang, Jing; Zeng, Toby; Li, Hui; Roy, Pierre-Nicholas

      2012-06-01

      We present an implementation of path integral molecular dynamics for sampling low temperature properties of doped helium clusters using Langevin dynamics. The robustness of the path integral Langevin equation and white-noise Langevin equation [M. Ceriotti, M. Parrinello, T. E. Markland, and D. E. Manolopoulos, J. Chem. Phys. 133, 124104 (2010)], 10.1063/1.3489925 sampling methods are considered for those weakly bound systems with comparison to path integral Monte Carlo (PIMC) in terms of efficiency and accuracy. Using these techniques, convergence studies are performed to confirm the systematic error reduction introduced by increasing the number of discretization steps of the path integral. We comment on the structural and energetic evolution of HeN-CO2 clusters from N = 1 to 20. To quantify the importance of both rotations and exchange in our simulations, we present a chemical potential and calculated band origin shifts as a function of cluster size utilizing PIMC sampling that includes these effects. This work also serves to showcase the implementation of path integral simulation techniques within the molecular modelling toolkit [K. Hinsen, J. Comp. Chem. 21, 79 (2000)], 10.1002/(SICI)1096-987X(20000130)21:2<79::AID-JCC1>3.0.CO;2-B, an open-source molecular simulation package.

    19. Path Integrals, Fourier Transforms, and Feynman's Operational Calculus

      SciTech Connect

      Ahn, Byung Moo; Johnson, G. W.

      1998-03-15

      The disentangling process is the key to Feynman's operational calculus for noncommuting operators. The main result of his heuristic calculations deals with disentangling an exponential factor. We use the Wiener and Feynman integrals to make this disentangling (or time-ordering) mathematically rigorous in the case where the analytic functions from earlier work are replaced by Fourier transforms of complex-valued measures.

    20. Path integral approach to Asian options in the Black-Scholes model

      NASA Astrophysics Data System (ADS)

      Devreese, J. P. A.; Lemmens, D.; Tempere, J.

      2010-02-01

      We derive a closed-form solution for the price of an average strike as well as an average price geometric Asian option, by making use of the path integral formulation. Our results are compared to a numerical Monte Carlo simulation. We also develop a pricing formula for an Asian option with a barrier on a control process, combining the method of images with a partitioning of the set of paths according to the average along the path. This formula is exact when the correlation is zero, and is approximate when the correlation increases.

    1. Integrated Learning with Physical Education and Music

      ERIC Educational Resources Information Center

      Humphries, Charlotte A.; Bidner, Sara; Edwards, Cheryl

      2011-01-01

      Integrated learning is well established in education, primarily in the classroom subjects. This article describes settings and ways for extending integrated instruction to physical education and music. Benefits of these connections include reinforcing content and better meeting the needs of students whose intelligences include the bodily…

    2. PathPPI: an integrated dataset of human pathways and protein-protein interactions.

      PubMed

      Tang, HaiLin; Zhong, Fan; Liu, Wei; He, FuChu; Xie, HongWei

      2015-06-01

      Integration of pathway and protein-protein interaction (PPI) data can provide more information that could lead to new biological insights. PPIs are usually represented by a simple binary model, whereas pathways are represented by more complicated models. We developed a series of rules for transforming protein interactions from pathway to binary model, and the protein interactions from seven pathway databases, including PID, BioCarta, Reactome, NetPath, INOH, SPIKE and KEGG, were transformed based on these rules. These pathway-derived binary protein interactions were integrated with PPIs from other five PPI databases including HPRD, IntAct, BioGRID, MINT and DIP, to develop integrated dataset (named PathPPI). More detailed interaction type and modification information on protein interactions can be preserved in PathPPI than other existing datasets. Comparison analysis results indicate that most of the interaction overlaps values (O AB) among these pathway databases were less than 5%, and these databases must be used conjunctively. The PathPPI data was provided at http://proteomeview.hupo.org.cn/PathPPI/PathPPI.html. PMID:25591449

    3. Computational Acoustics: Computational PDEs, Pseudodifferential Equations, Path Integrals, and All That Jazz

      NASA Astrophysics Data System (ADS)

      Fishman, Louis

      2000-11-01

      The role of mathematical modeling in the physical sciences will be briefly addressed. Examples will focus on computational acoustics, with applications to underwater sound propagation, electromagnetic modeling, optics, and seismic inversion. Direct and inverse wave propagation problems in both the time and frequency domains will be considered. Focusing on fixed-frequency (elliptic) wave propagation problems, the usual, two-way, partial differential equation formulation will be exactly reformulated, in a well-posed manner, as a one-way (marching) problem. This is advantageous for both direct and inverse considerations, as well as stochastic modeling problems. The reformulation will require the introduction of pseudodifferential operators and their accompanying phase space analysis (calculus), in addition to path integral representations for the fundamental solutions and their subsequent computational algorithms. Unlike the more traditional, purely numerical applications of, for example, finite-difference and finite-element methods, this approach, in effect, writes the exact, or, more generally, the asymptotically correct, answer as a functional integral and, subsequently, computes it directly. The overall computational philosophy is to combine analysis, asymptotics, and numerical methods to attack complicated, real-world problems. Exact and asymptotic analysis will stress the complementary nature of the direct and inverse formulations, as well as indicating the explicit structural connections between the time- and frequency-domain solutions.

    4. MPI CyberMotion Simulator: implementation of a novel motion simulator to investigate multisensory path integration in three dimensions.

      PubMed

      Barnett-Cowan, Michael; Meilinger, Tobias; Vidal, Manuel; Teufel, Harald; Bülthoff, Heinrich H

      2012-01-01

      Path integration is a process in which self-motion is integrated over time to obtain an estimate of one's current position relative to a starting point (1). Humans can do path integration based exclusively on visual (2-3), auditory (4), or inertial cues (5). However, with multiple cues present, inertial cues - particularly kinaesthetic - seem to dominate (6-7). In the absence of vision, humans tend to overestimate short distances (<5 m) and turning angles (<30°), but underestimate longer ones (5). Movement through physical space therefore does not seem to be accurately represented by the brain. Extensive work has been done on evaluating path integration in the horizontal plane, but little is known about vertical movement (see (3) for virtual movement from vision alone). One reason for this is that traditional motion simulators have a small range of motion restricted mainly to the horizontal plane. Here we take advantage of a motion simulator (8-9) with a large range of motion to assess whether path integration is similar between horizontal and vertical planes. The relative contributions of inertial and visual cues for path navigation were also assessed. 16 observers sat upright in a seat mounted to the flange of a modified KUKA anthropomorphic robot arm. Sensory information was manipulated by providing visual (optic flow, limited lifetime star field), vestibular-kinaesthetic (passive self motion with eyes closed), or visual and vestibular-kinaesthetic motion cues. Movement trajectories in the horizontal, sagittal and frontal planes consisted of two segment lengths (1st: 0.4 m, 2nd: 1 m; ±0.24 m/s(2) peak acceleration). The angle of the two segments was either 45° or 90°. Observers pointed back to their origin by moving an arrow that was superimposed on an avatar presented on the screen. Observers were more likely to underestimate angle size for movement in the horizontal plane compared to the vertical planes. In the frontal plane observers were more likely to

    5. Path-integral Monte Carlo study of asymmetric quantum quadrupolar rotors with fourth-order propagators

      NASA Astrophysics Data System (ADS)

      Park, Sungjin; Shin, Hyeondeok; Kwon, Yongkyung

      2012-08-01

      The recently-proposed fourth-order propagator based on the multi-product expansion has been applied to path-integral Monte Carlo calculations for asymmetric quantum quadruploar rotors fixed at face-centered cubic lattice sites. The rotors are observed to undergo an orientational orderdisorder phase transition at a low temperature when the electric quadrupole-quadrupole interaction is strong enough. At intermediate interaction strength, a further decrease of temperature after the first transition to the ordered phase results in a reentrant transition back to the disordered phase. The theoretical phase diagram of these asymmetric rotors determined by using fourth-order path-integral Monte Carlo calculations is found to be in good quantitative agreement with the experimental one for solid hydrogen deuteride. This leads us to conclude that the fourth-order propagator can be effectively implemented for an accurate path-integral Monte Carlo calculation of a quantum many-body system with rotational degrees of freedom.

    6. Path-integral method for the source apportionment of photochemical pollutants

      NASA Astrophysics Data System (ADS)

      Dunker, A. M.

      2015-06-01

      A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the

    7. Robust path integration in the entorhinal grid cell system with hippocampal feed-back.

      PubMed

      Samu, Dávid; Eros, Péter; Ujfalussy, Balázs; Kiss, Tamás

      2009-07-01

      Animals are able to update their knowledge about their current position solely by integrating the speed and the direction of their movement, which is known as path integration. Recent discoveries suggest that grid cells in the medial entorhinal cortex might perform some of the essential underlying computations of path integration. However, a major concern over path integration is that as the measurement of speed and direction is inaccurate, the representation of the position will become increasingly unreliable. In this paper, we study how allothetic inputs can be used to continually correct the accumulating error in the path integrator system. We set up the model of a mobile agent equipped with the entorhinal representation of idiothetic (grid cell) and allothetic (visual cells) information and simulated its place learning in a virtual environment. Due to competitive learning, a robust hippocampal place code emerges rapidly in the model. At the same time, the hippocampo-entorhinal feed-back connections are modified via Hebbian learning in order to allow hippocampal place cells to influence the attractor dynamics in the entorhinal cortex. We show that the continuous feed-back from the integrated hippocampal place representation is able to stabilize the grid cell code. PMID:19381679

    8. Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant

      NASA Astrophysics Data System (ADS)

      Metaxas, Dimitrios

      2009-12-01

      For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite bound on the graviton mass.

    9. Making the gravitational path integral more Lorentzian or Life beyond Liouville gravity

      NASA Astrophysics Data System (ADS)

      Loll, R.; Ambjørn, J.; Anagnostopoulos, K. N.

      2000-06-01

      In two space-time dimensions, there is a theory of Lorentzian quantum gravity which can be defined by a rigorous, non-perturbative path integral and is inequivalent to the well-known theory of (Euclidean) quantum Liouville gravity. It has a number of appealing features: i) its quantum geometry is non-fractal, ii) it remains consistent when coupled to matter, even beyond the c=1 barrier, iii) it is closer to canonical quantization approaches than previous path-integral formulations, and iv) its construction generalizes to higher dimensions.

    10. Path integral measure, constraints and ghosts for massive gravitons with a cosmological constant

      SciTech Connect

      Metaxas, Dimitrios

      2009-12-15

      For massive gravity in a de Sitter background one encounters problems of stability when the curvature is larger than the graviton mass. I analyze this situation from the path integral point of view and show that it is related to the conformal factor problem of Euclidean quantum (massless) gravity. When a constraint for massive gravity is incorporated and the proper treatment of the path integral measure is taken into account one finds that, for particular choices of the DeWitt metric on the space of metrics (in fact, the same choices as in the massless case), one obtains the opposite bound on the graviton mass.

    11. Cyber/Physical Security Vulnerability Assessment Integration

      SciTech Connect

      MacDonald, Douglas G.; Clements, Samuel L.; Patrick, Scott W.; Perkins, Casey J.; Muller, George; Lancaster, Mary J.; Hutton, William J.

      2013-02-28

      Securing high value and critical assets is one of the biggest challenges facing this nation and others around the world. In modern integrated systems, there are four potential modes of attack available to an adversary: • physical only attack, • cyber only attack, • physical-enabled cyber attack, • cyber-enabled physical attack. Blended attacks involve an adversary working in one domain to reduce system effectiveness in another domain. This enables the attacker to penetrate further into the overall layered defenses. Existing vulnerability assessment (VA) processes and software tools which predict facility vulnerabilities typically evaluate the physical and cyber domains separately. Vulnerabilities which result from the integration of cyber-physical control systems are not well characterized and are often overlooked by existing assessment approaches. In this paper, we modified modification of the timely detection methodology, used for decades in physical security VAs, to include cyber components. The Physical and Cyber Risk Analysis Tool (PACRAT) prototype illustrates an integrated vulnerability assessment that includes cyber-physical interdependencies. Information about facility layout, network topology, and emplaced safeguards is used to evaluate how well suited a facility is to detect, delay, and respond to attacks, to identify the pathways most vulnerable to attack, and to evaluate how often safeguards are compromised for a given threat or adversary type. We have tested the PACRAT prototype on critical infrastructure facilities and the results are promising. Future work includes extending the model to prescribe the recommended security improvements via an automated cost-benefit analysis.

    12. An integration of integrated information theory with fundamental physics

      PubMed Central

      Barrett, Adam B.

      2014-01-01

      To truly eliminate Cartesian ghosts from the science of consciousness, we must describe consciousness as an aspect of the physical. Integrated Information Theory states that consciousness arises from intrinsic information generated by dynamical systems; however existing formulations of this theory are not applicable to standard models of fundamental physical entities. Modern physics has shown that fields are fundamental entities, and in particular that the electromagnetic field is fundamental. Here I hypothesize that consciousness arises from information intrinsic to fundamental fields. This hypothesis unites fundamental physics with what we know empirically about the neuroscience underlying consciousness, and it bypasses the need to consider quantum effects. PMID:24550877

    13. Numerical evaluation of the Feynman integral-over-paths in real and imaginary-time

      NASA Astrophysics Data System (ADS)

      Register, L. F.; Stroscio, M. A.; Littlejohn, M. A.

      New techniques are described for Monte Carlo evaluation of the propagation of quantum mechanical systems in both real and imaginary-time using the Feynman integral-over-paths formulation of quantum mechanics. For imaginary-time calculations path translation is used to augment the technique of Lawande et. al. This simple-yet-powerful technique allows the equilibrium probability density to be accurately evaluated in the presence of multiple potential wells. It is shown that path translation permits the calculation of the unknown ground-state energy of one confining potential by comparison with the known ground-state energy of another. A double finite-square-well potential and a finite-square-well/parabolic-well pair are presented as examples. For real-time calculations, a weighted analytical averaging of the exponential in the classical action is performed over a region of paths. This "windowed action" has both real and imaginary components. The imaginary component yields an exponentially decaying probability for selecting paths, thereby providing a basis for the Monte Carlo evaluation of the real-time integral-over-paths. Examples of a wave-packet in a parabolic well and a wave-packet impinging upon a potential barrier are considered.

    14. Exact path integral for 3D quantum gravity. II.

      NASA Astrophysics Data System (ADS)

      Honda, Masazumi; Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji

      2016-03-01

      Continuing the work [Phys. Rev. Lett. 115, 161304 (2015)], we discuss various aspects of three-dimensional quantum gravity partition function in anti-de Sitter spacetime in the semiclassical limit. The partition function is holomorphic and is the one which we obtained by using the localization technique of Chern-Simons theory in Phys. Rev. Lett. 115, 161304 (2015). We obtain a good expression for it in the summation form over Virasoro characters for the vacuum and primaries. A key ingredient for that is an interpretation of boundary-localized fermion. We also check that the coefficients in the summation form over Virasoro characters of the partition function are positive integers and satisfy the Cardy formula. These give a physical interpretation that these coefficients represent the number of primary fields in the dual conformal field theory in the large k limit.

    15. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.

      PubMed

      Gao, J

      2016-01-01

      Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. PMID:27498645

    16. Singular Function Integration in Computational Physics

      NASA Astrophysics Data System (ADS)

      Hasbun, Javier

      2009-03-01

      In teaching computational methods in the undergraduate physics curriculum, standard integration approaches taught include the rectangular, trapezoidal, Simpson, Romberg, and others. Over time, these techniques have proven to be invaluable and students are encouraged to employ the most efficient method that is expected to perform best when applied to a given problem. However, some physics research applications require techniques that can handle singularities. While decreasing the step size in traditional approaches is an alternative, this may not always work and repetitive processes make this route even more inefficient. Here, I present two existing integration rules designed to handle singular integrals. I compare them to traditional rules as well as to the exact analytic results. I suggest that it is perhaps time to include such approaches in the undergraduate computational physics course.

    17. An algorithm to find minimum free-energy paths using umbrella integration

      NASA Astrophysics Data System (ADS)

      Bohner, Matthias U.; Kästner, Johannes

      2012-07-01

      The calculation of free-energy barriers by umbrella sampling and many other methods is hampered by the necessity for an a priori choice of the reaction coordinate along which to sample. We avoid this problem by providing a method to search for saddle points on the free-energy surface in many coordinates. The necessary gradients and Hessians of the free energy are obtained by multidimensional umbrella integration. We construct the minimum free-energy path by following the gradient down to minima on the free-energy surface. The change of free energy along the path is obtained by integrating out all coordinates orthogonal to the path. While we expect the method to be applicable to large systems, we test it on the alanine dipeptide in vacuum. The minima, transition states, and free-energy barriers agree well with those obtained previously with other methods.

    18. Integrative Families and Systems Treatment: A Middle Path toward Integrating Common and Specific Factors in Evidence-Based Family Therapy

      ERIC Educational Resources Information Center

      Fraser, J. Scott; Solovey, Andrew D.; Grove, David; Lee, Mo Yee; Greene, Gilbert J.

      2012-01-01

      A moderate common factors approach is proposed as a synthesis or middle path to integrate common and specific factors in evidence-based approaches to high-risk youth and families. The debate in family therapy between common and specific factors camps is reviewed and followed by suggestions from the literature for synthesis and creative flexibility…

    19. Singular path-independent energy integrals for elastic bodies with thin elastic inclusions

      NASA Astrophysics Data System (ADS)

      Shcherbakov, V. V.

      2016-06-01

      An equilibrium problem for a two-dimensional homogeneous linear elastic body containing a thin elastic inclusion and an interfacial crack is considered. The thin inclusion is modeled within the framework of Euler-Bernoulli beam theory. An explicit formula for the first derivative of the energy functional with respect to the crack perturbation along the interface is presented. It is shown that the formulas for the derivative associated with translation and self-similar expansion of the crack are represented as path-independent integrals along smooth contour surrounding one or both crack tips. These path-independent integrals consist of regular and singular terms and are analogs of the well-known Eshelby-Cherepanov-Rice J-integral and Knowles-Sternberg M-integral.

    20. Accelerated path integral methods for atomistic simulations at ultra-low temperatures

      NASA Astrophysics Data System (ADS)

      Uhl, Felix; Marx, Dominik; Ceriotti, Michele

      2016-08-01

      Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH5+. We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state.

    1. Accelerated path integral methods for atomistic simulations at ultra-low temperatures.

      PubMed

      Uhl, Felix; Marx, Dominik; Ceriotti, Michele

      2016-08-01

      Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH5 (+). We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state. PMID:27497533

    2. Quantum-Classical Path Integral Simulation of Ferrocene-Ferrocenium Charge Transfer in Liquid Hexane.

      PubMed

      Walters, Peter L; Makri, Nancy

      2015-12-17

      We employ the quantum-classical path integral methodology to simulate the outer sphere charge-transfer process of the ferrocene-ferrocenium pair in liquid hexane with unprecedented accuracy. Comparison of the simulation results to those obtained by mapping the solvent on an effective harmonic bath demonstrates the accuracy of linear response theory in this system. PMID:26673195

    3. Path-dependent J-integral evaluations around an elliptical hole for large deformation theory

      NASA Astrophysics Data System (ADS)

      Unger, David J.

      2016-08-01

      An exact expression is obtained for a path-dependent J-integral for finite strains of an elliptical hole subject to remote tensile tractions under the Tresca deformation theory for a thin plate composed of non-work hardening material. Possible applications include an analytical resistance curve for the initial stage of crack propagation due to crack tip blunting.

    4. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

      ERIC Educational Resources Information Center

      Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

      2012-01-01

      This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

    5. Factors Affecting Technology Integration in K-12 Classrooms: A Path Model

      ERIC Educational Resources Information Center

      Inan, Fethi A.; Lowther, Deborah L.

      2010-01-01

      The purpose of this study was to examine the direct and indirect effects of teachers' individual characteristics and perceptions of environmental factors that influence their technology integration in the classroom. A research-based path model was developed to explain causal relationships between these factors and was tested based on data gathered…

    6. Coherent-state path integrals in the continuum: The SU(2) case

      NASA Astrophysics Data System (ADS)

      Kordas, G.; Kalantzis, D.; Karanikas, A. I.

      2016-09-01

      We define the time-continuous spin coherent-state path integral in a way that is free from inconsistencies. The proposed definition is used to reproduce known exact results. Such a formalism opens new possibilities for applying approximations with improved accuracy and can be proven useful in a great variety of problems where spin Hamiltonians are used.

    7. Route-segment odometry and its interactions with global path-integration.

      PubMed

      Collett, Thomas S; Collett, Matthew

      2015-06-01

      Insects such as desert ants and honeybees use visual memories to travel along familiar routes between their nest and a food-site. We trained Cataglyphis fortis foragers along a two-segment route to investigate whether they encode the lengths of route segments over which visual cues remain approximately constant. Our results support earlier studies suggesting that such route-segment odometry exists, and allows an individual to stop using a visual route memory at an appropriate point, even in the absence of any change in the visual surroundings. But we find that the behavioural effects of route-segment odometry are often complicated by interactions with guidance from the global path-integration system. If route-segment odometry and path-integration agree, they act together to produce a precise signal for search. If the endpoint of route-segment odometry arrives first, it does not trigger search but its effect can persist and cause guidance by path-integration to end early. Conversely, if ants start with their path-integration state at zero, they follow a route memory for no more than 3 m, irrespective of the route-segment length. A possible explanation for these results is that if one guidance system is made to overshoot its endpoint, it can cause the other to be cut short. PMID:25904159

    8. a Path-Integration Approach to the Correlators of XY Heisenberg Magnet and Random Walks

      NASA Astrophysics Data System (ADS)

      Bogoliubov, N. M.; Malyshev, C.

      2008-11-01

      The path integral approach is used for the calculation of the correlation functions of the XY Heisenberg chain. The obtained answers for the two-point correlators of the XX magnet are of the determinantal form and are interpreted in terms of the generating functions for the random turns vicious walkers.

    9. Perturbative path-integral study of active- and passive-tracer diffusion in fluctuating fields.

      PubMed

      Démery, Vincent; Dean, David S

      2011-07-01

      We study the effective diffusion constant of a Brownian particle linearly coupled to a thermally fluctuating scalar field. We use a path-integral method to compute the effective diffusion coefficient perturbatively to lowest order in the coupling constant. This method can be applied to cases where the field is affected by the particle (an active tracer) and cases where the tracer is passive. Our results are applicable to a wide range of physical problems, from a protein diffusing in a membrane to the dispersion of a passive tracer in a random potential. In the case of passive diffusion in a scalar field, we show that the coupling to the field can, in some cases, speed up the diffusion corresponding to a form of stochastic resonance. Our results on passive diffusion are also confirmed via a perturbative calculation of the probability density function of the particle in a Fokker-Planck formulation of the problem. Numerical simulations on simplified systems corroborate our results. PMID:21867153

    10. Path integral Monte Carlo with importance sampling for excitons interacting with an arbitrary phonon bath.

      PubMed

      Shim, Sangwoo; Aspuru-Guzik, Alán

      2012-12-14

      The reduced density matrix of excitons coupled to a phonon bath at a finite temperature is studied using the path integral Monte Carlo method. Appropriate choices of estimators and importance sampling schemes are crucial to the performance of the Monte Carlo simulation. We show that by choosing the population-normalized estimator for the reduced density matrix, an efficient and physically-meaningful sampling function can be obtained. In addition, the nonadiabatic phonon probability density is obtained as a byproduct during the sampling procedure. For importance sampling, we adopted the Metropolis-adjusted Langevin algorithm. The analytic expression for the gradient of the target probability density function associated with the population-normalized estimator cannot be obtained in closed form without a matrix power series. An approximated gradient that can be efficiently calculated is explored to achieve better computational scaling and efficiency. Application to a simple one-dimensional model system from the previous literature confirms the correctness of the method developed in this manuscript. The displaced harmonic model system within the single exciton manifold shows the numerically exact temperature dependence of the coherence and population of the excitonic system. The sampling scheme can be applied to an arbitrary anharmonic environment, such as multichromophoric systems embedded in the protein complex. The result of this study is expected to stimulate further development of real time propagation methods that satisfy the detailed balance condition for exciton populations. PMID:23249075

    11. Draw Your Physics Homework? Art as a Path to Understanding in Physics Teaching

      ERIC Educational Resources Information Center

      van der Veen, Jatila

      2012-01-01

      The persistent fear of physics by learners motivated the author to take action to increase all students' interest in the subject via a new curriculum for introductory college physics that applies Greene's model of Aesthetic Education to the study of contemporary physics, utilizing symmetry as the mathematical foundation of physics as well as the…

    12. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

      NASA Astrophysics Data System (ADS)

      Malgieri, M.; Onorato, P.; De Ambrosis, A.

      2014-09-01

      We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.

    13. Path integral pricing of Wasabi option in the Black-Scholes model

      NASA Astrophysics Data System (ADS)

      Cassagnes, Aurelien; Chen, Yu; Ohashi, Hirotada

      2014-11-01

      In this paper, using path integral techniques, we derive a formula for a propagator arising in the study of occupation time derivatives. Using this result we derive a fair price for the case of the cumulative Parisian option. After confirming the validity of the derived result using Monte Carlo simulation, a new type of heavily path dependent derivative product is investigated. We derive an approximation for our so-called Wasabi option fair price and check the accuracy of our result with a Monte Carlo simulation.

    14. PRELIMINARY PROJECT PLAN FOR LANSCE INTEGRATED FLIGHT PATHS 11A, 11B, 12, and 13

      SciTech Connect

      D. H. BULTMAN; D. WEINACHT - AIRES CORP.

      2000-08-01

      This Preliminary Project Plan Summarizes the Technical, Cost, and Schedule baselines for an integrated approach to developing several flight paths at the Manual Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. For example, the cost estimate is intended to serve only as a rough order of magnitude assessment of the cost that might be incurred as the flight paths are developed. Further refinement of the requirements and interfaces for each beamline will permit additional refinement and confidence in the accuracy of all three baselines (Technical, Cost, Schedule).

    15. Visual influence on path integration in darkness indicates a multimodal representation of large-scale space

      PubMed Central

      Tcheang, Lili; Bülthoff, Heinrich H.; Burgess, Neil

      2011-01-01

      Our ability to return to the start of a route recently performed in darkness is thought to reflect path integration of motion-related information. Here we provide evidence that motion-related interoceptive representations (proprioceptive, vestibular, and motor efference copy) combine with visual representations to form a single multimodal representation guiding navigation. We used immersive virtual reality to decouple visual input from motion-related interoception by manipulating the rotation or translation gain of the visual projection. First, participants walked an outbound path with both visual and interoceptive input, and returned to the start in darkness, demonstrating the influences of both visual and interoceptive information in a virtual reality environment. Next, participants adapted to visual rotation gains in the virtual environment, and then performed the path integration task entirely in darkness. Our findings were accurately predicted by a quantitative model in which visual and interoceptive inputs combine into a single multimodal representation guiding navigation, and are incompatible with a model of separate visual and interoceptive influences on action (in which path integration in darkness must rely solely on interoceptive representations). Overall, our findings suggest that a combined multimodal representation guides large-scale navigation, consistent with a role for visual imagery or a cognitive map. PMID:21199934

    16. path integral approach to closed form pricing formulas in the Heston framework.

      NASA Astrophysics Data System (ADS)

      Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven

      2008-03-01

      We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).

    17. Spatial representations of place cells in darkness are supported by path integration and border information

      PubMed Central

      Zhang, Sijie; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise

      2014-01-01

      Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment’s border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations. PMID:25009477

    18. Contrasting effects on path integration after hippocampal damage in humans and rats

      PubMed Central

      Kim, Soyun; Sapiurka, Maya; Clark, Robert E.; Squire, Larry R.

      2013-01-01

      The hippocampus and other medial temporal lobe structures have been linked to both memory and spatial cognition, but it has been unclear how these ideas are connected. We carried out parallel studies of path integration in patients with medial temporal lobe lesions and rats with hippocampal lesions. Subjects entered a circular arena without vision, searched for a target, and then attempted to return to the start location. Patients performed accurately, and as well as controls, so long as the outward path was relatively direct and the target was found within 20 s. In sharp contrast, rats with hippocampal lesions were impaired, even when the outward path was shorter than 1 m, involved no turns, and the target was found within 3 s. We suggest that patients succeeded because performance could be supported by working memory and that patients and rats differ after hippocampal lesions in their ability to construct a coherent working memory of spatial environments. PMID:23404706

    19. Functional integration of vertical flight path and speed control using energy principles

      NASA Technical Reports Server (NTRS)

      Lambregts, A. A.

      1984-01-01

      A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

    20. Moving to a Soft Path for Water: Integrated Research and Management Needs

      NASA Astrophysics Data System (ADS)

      Gleick, P. H.

      2011-12-01

      Water on Earth in its three fundamental phases is integral to the functioning, dynamics, and variability of the global climatological and biological support systems. From a purely scientific point of view, understanding the complexity of the hydrological cycle is of paramount interest and central to our understanding of other planetary geological, atmospheric, chemical, and physical processes. But water is more than that: water is key to economic, social, and political issues as well, including some of the core challenges of our time such central to issues of poverty, health, environmental sustainability, conflict, and economic prosperity. The more society seeks to solve these challenges, the more obvious it becomes that we must improve more than just our understanding of the fundamental science of the hydrological cycle and its links with related global processes; we must also improve our understanding of the complex social, economic, and structural challenges facing water managers and users. We must move to a different paradigm where water is managed in a far more integrated way - what I call the "soft path for water." Central to our basic science needs are (1) an expansion of the frequency and nature of the data we collect, (2) the development of systems for managing, sharing, and analyzing those data, and (3) improvements in our ability to model and forecast the hydrological cycle together with other climatological, geophysical, and biochemical systems. These improvements would lead to a far better understanding of the local, regional, and global details of the water balance on timescales from minutes to millennia. These needs are increasingly well understood in the research community and extensive efforts in these areas are underway under the auspices of national research centers, universities, and international scientific collaborations. But it is also becoming increasingly apparent that many of the current water challenges facing society are not going to be

    1. Lévy-Ciesielski random series as a useful platform for Monte Carlo path integral sampling.

      PubMed

      Predescu, Cristian

      2005-04-01

      We demonstrate that the Lévy-Ciesielski implementation of Lie-Trotter products enjoys several properties that make it extremely suitable for path-integral Monte Carlo simulations: fast computation of paths, fast Monte Carlo sampling, and the ability to use different numbers of time slices for the different degrees of freedom, commensurate with the quantum effects. It is demonstrated that a Monte Carlo simulation for which particles or small groups of variables are updated in a sequential fashion has a statistical efficiency that is always comparable to or better than that of an all-particle or all-variable update sampler. The sequential sampler results in significant computational savings if updating a variable costs only a fraction of the cost for updating all variables simultaneously or if the variables are independent. In the Lévy-Ciesielski representation, the path variables are grouped in a small number of layers, with the variables from the same layer being statistically independent. The superior performance of the fast sampling algorithm is shown to be a consequence of these observations. Both mathematical arguments and numerical simulations are employed in order to quantify the computational advantages of the sequential sampler, the Lévy-Ciesielski implementation of path integrals, and the fast sampling algorithm. PMID:15903818

    2. The path-independent M Integral around Röthlisberger channels

      NASA Astrophysics Data System (ADS)

      Meyer, C. R.; Rice, J. R.

      2015-12-01

      Röthlisberger channels are essential components of subglacial hydrologic systems. Deviations from the Nye creep closure of the ice around a Röthlisberger channel have been long recognized and enhancement factors or a more complex rheology for ice have been suggested as ameliorations to account for channels closing faster than predicted. Here we use the MM integral, a path-independent integral of the equations of continuum mechanics, with a Glen power-law rheology to unify descriptions of creep closure under a variety of stress states surrounding the Röthlisberger channel. The advantage of this approach is that the MM integral around the Röthlisberger channel is equivalent to the integral around the far field. In this way, the creep closure on the channel wall can be determined as a function of the far-field loading, e.g. antiplane shear as well as overburden pressure. We start by analyzing the case of axisymmetric creep closure and we see that the Nye solution is implied by the path-independence of MM integral. We then examine the effects of antiplane shear in several geometries and derive scalings for the creep closure rate based on the MM integral. The results are compared to observations for tunnel closure measurements in a variety of stress states and it is shown that the additional stress components can account for the deviations from the Nye solution. Furthermore, creep closure can be succinctly written in terms of the path-independent MM integral and the variation with applied shear can be found via scalings, which is useful for subglacial hydrology models.

    3. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line.

      PubMed

      Sesé, Luis M

      2016-03-01

      Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing. PMID:26957169

    4. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

      NASA Astrophysics Data System (ADS)

      Sesé, Luis M.

      2016-03-01

      Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

    5. Two-scale large deviations for chemical reaction kinetics through second quantization path integral

      NASA Astrophysics Data System (ADS)

      Li, Tiejun; Lin, Feng

      2016-04-01

      Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second quantization path integral technique. We get three important types of large deviation results when the underlying two timescales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by the path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis-Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes.

    6. A path-independent integral for the characterization of solute concentration and flux at biofilm detachments

      USGS Publications Warehouse

      Moran, B.; Kulkarni, S.S.; Reeves, H.W.

      2007-01-01

      A path-independent (conservation) integral is developed for the characterization of solute concentration and flux in a biofilm in the vicinity of a detachment or other flux limiting boundary condition. Steady state conditions of solute diffusion are considered and biofilm kinetics are described by an uptake term which can be expressed in terms of a potential (Michaelis-Menten kinetics). An asymptotic solution for solute concentration at the tip of the detachment is obtained and shown to be analogous to that of antiplane crack problems in linear elasticity. It is shown that the amplitude of the asymptotic solution can be calculated by evaluating a path-independent integral. The special case of a semi-infinite detachment in an infinite strip is considered and the amplitude of the asymptotic field is related to the boundary conditions and problem parameters in closed form for zeroth and first order kinetics and numerically for Michaelis-Menten kinetics. ?? Springer Science+Business Media, Inc. 2007.

    7. Efficient algorithms for semiclassical instanton calculations based on discretized path integrals

      SciTech Connect

      Kawatsu, Tsutomu E-mail: smiura@mail.kanazawa-u.ac.jp; Miura, Shinichi E-mail: smiura@mail.kanazawa-u.ac.jp

      2014-07-14

      Path integral instanton method is a promising way to calculate the tunneling splitting of energies for degenerated two state systems. In order to calculate the tunneling splitting, we need to take the zero temperature limit, or the limit of infinite imaginary time duration. In the method developed by Richardson and Althorpe [J. Chem. Phys. 134, 054109 (2011)], the limit is simply replaced by the sufficiently long imaginary time. In the present study, we have developed a new formula of the tunneling splitting based on the discretized path integrals to take the limit analytically. We have applied our new formula to model systems, and found that this approach can significantly reduce the computational cost and gain the numerical accuracy. We then developed the method combined with the electronic structure calculations to obtain the accurate interatomic potential on the fly. We present an application of our ab initio instanton method to the ammonia umbrella flip motion.

    8. The path integral for the statistical sum of the microcanonical ensemble in cosmology

      SciTech Connect

      Barvinsky, A.O.

      2011-04-01

      The path integral is calculated for the statistical sum of the microcanonical ensemble in a generic time-parametrization invariant gravitational model with the Friedman-Robertson-Walker (FRW) metric. This represents the first example of a systematic calculation of the Faddeev-Popov gauge-fixed path integral in the minisuperspace sector of quantum cosmology. The gauge fixing procedure, together with gauging out local diffeomorphisms, also handles the residual symmetries associated with the conformal Killing vector of the FRW metric and incorporates the Batalin-Vilkovisky quantization technique for gauge theories with linearly dependent generators. For a subset of saddle-point instantons, characterized by a single oscillation of the FRW scale factor, this technique is designed to obtain the one-loop statistical sum in the recently suggested model of cosmological initial conditions generated by a conformal field theory with a large number of quantum species.

    9. Path integral formulation of scattering theory with application to scattering by black holes

      SciTech Connect

      Zhang, T.R.

      1985-01-01

      The computational power of Feynman path integrals was exploited. Path-integration formalism for the quantum mechanics scattering and classical wave scattering was generalized. Firstly, the standard WKB approximation was generalized to the cases where the critical points of the action functional are degenerate. Three typical semiclassical scattering features served as examples for a classification of degenerate critical points: conservation laws, rainbows, glories. Secondly, the method developed for non-relativistic quantum mechanics scattering was used in the case of classical wave scattering. Scattering by Schwarzschild black holes was chosen as an example, and WKB cross sections for scalar, vector, and tensor fields were worked out. Finally, 2s-th Bessel function behavior of WKB cross section for helicity-s polarized glory scattering in curved space time was proved.

    10. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

      NASA Technical Reports Server (NTRS)

      Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

      2012-01-01

      A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

    11. Different time slices for different degrees of freedom in Feynman path integration

      NASA Astrophysics Data System (ADS)

      Li, Yimin; Miller, William H.

      2005-01-01

      A general scheme is presented for using different numbers of 'time slices' for different degrees of freedom in a path integral evaluation of the Boltzmann operator for a large molecular system. This will be particularly useful, for example, in evaluating the 'quantum instanton' rate constant [cf. W.H. Miller, Y. Zhao, M. Ceotto, S. Yang. J. Chem. Phys., 119, 1329 (2003)] for H atom transfer reactions, or any applications involving atoms with largely differing masses.

    12. Do familiar landmarks reset the global path integration system of desert ants?

      PubMed

      Collett, M; Collett, T S; Chameron, S; Wehner, R

      2003-03-01

      It is often suggested that animals may link landmark memories to a global coordinate system provided by path integration, thereby obtaining a map-like representation of familiar terrain. In an attempt to discover if desert ants form such associations we have performed experiments that test whether desert ants recall a long-term memory of a global path integration vector on arriving at a familiar food site. Ants from three nests were trained along L-shaped routes to a feeder. Each route was entirely within open-topped channels that obscured all natural landmarks. Conspicuous artificial landmarks were attached to the channelling that formed the latter part of the route. The homeward vectors of ants accustomed to the route were tested with the foodward route, either as in training, or with the first leg of the L shortened or extended. These ants were taken from the feeder to a test area and released, whereupon they performed a home vector. If travelling the latter part of a familiar route and arriving at a familiar food site triggers the recall of an accustomed home vector, then the home vector should be the same under both test conditions. We find instead that the home vector tended to reflect the immediately preceding outward journey. In conjunction with earlier work, these experiments led us to conclude in the case of desert ants that landmark memories do not prime the recall of long-term global path integration memories. On the other hand, landmark memories are known to be linked to local path integration vectors that guide ants along a segment of a route. Landmarks thus seem to provide procedural information telling ants what action to perform next but not the positional information that gives an ant its location relative to its nest. PMID:12547942

    13. Phase space path-integral formulation of the above-threshold ionization

      SciTech Connect

      Milosevic, D. B.

      2013-04-15

      Atoms and molecules submitted to a strong laser field can emit electrons of high energies in the above-threshold ionization (ATI) process. This process finds a highly intuitive and also quantitative explanation in terms of Feynman's path integral and the concept of quantum orbits [P. Salieres et al., Science 292, 902 (2001)]. However, the connection with the Feynman path-integral formalism is explained only by intuition and analogy and within the so-called strong-field approximation (SFA). Using the phase space path-integral formalism we have obtained an exact result for the momentum-space matrix element of the total time-evolution operator. Applying this result to the ATI we show that the SFA and the so-called improved SFA are, respectively, the zeroth- and the first-order terms of the expansion in powers of the laser-free effective interaction of the electron with the rest of the atom (molecule). We have also presented the second-order term of this expansion which is responsible for the ATI with double scattering of the ionized electron.

    14. Permutation blocking path integral Monte Carlo approach to the uniform electron gas at finite temperature.

      PubMed

      Dornheim, Tobias; Schoof, Tim; Groth, Simon; Filinov, Alexey; Bonitz, Michael

      2015-11-28

      The uniform electron gas (UEG) at finite temperature is of high current interest due to its key relevance for many applications including dense plasmas and laser excited solids. In particular, density functional theory heavily relies on accurate thermodynamic data for the UEG. Until recently, the only existing first-principle results had been obtained for N = 33 electrons with restricted path integral Monte Carlo (RPIMC), for low to moderate density, rs=r¯/aB≳1. These data have been complemented by configuration path integral Monte Carlo (CPIMC) simulations for rs ≤ 1 that substantially deviate from RPIMC towards smaller rs and low temperature. In this work, we present results from an independent third method-the recently developed permutation blocking path integral Monte Carlo (PB-PIMC) approach [T. Dornheim et al., New J. Phys. 17, 073017 (2015)] which we extend to the UEG. Interestingly, PB-PIMC allows us to perform simulations over the entire density range down to half the Fermi temperature (θ = kBT/EF = 0.5) and, therefore, to compare our results to both aforementioned methods. While we find excellent agreement with CPIMC, where results are available, we observe deviations from RPIMC that are beyond the statistical errors and increase with density. PMID:26627944

    15. i-PI: A Python interface for ab initio path integral molecular dynamics simulations

      NASA Astrophysics Data System (ADS)

      Ceriotti, Michele; More, Joshua; Manolopoulos, David E.

      2014-03-01

      Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these developments requires a considerable programming effort, which has hindered their adoption. Here we describe i-PI, an interface written in Python that has been designed to minimise the effort required to bring state-of-the-art path integral techniques to an electronic structure program. While it is best suited to first principles calculations and path integral molecular dynamics, i-PI can also be used to perform classical molecular dynamics simulations, and can just as easily be interfaced with an empirical forcefield code. To give just one example of the many potential applications of the interface, we use it in conjunction with the CP2K electronic structure package to showcase the importance of nuclear quantum effects in high-pressure water. Catalogue identifier: AERN_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AERN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 138626 No. of bytes in distributed program, including test data, etc.: 3128618 Distribution format: tar.gz Programming language: Python. Computer: Multiple architectures. Operating system: Linux, Mac OSX, Windows. RAM: Less than 256 Mb Classification: 7.7. External routines: NumPy Nature of problem: Bringing the latest developments in the modelling of nuclear quantum effects with path integral molecular dynamics to ab initio electronic structure programs with minimal implementational effort. Solution method: State-of-the-art path integral molecular dynamics techniques are implemented in a Python interface. Any electronic structure code can be patched to receive the atomic

    16. Diffraction in the semiclassical approximation to Feynman's path integral representation of the Green function

      NASA Astrophysics Data System (ADS)

      Schaden, Martin; Spruch, Larry

      2004-09-01

      We derive the semiclassical approximation to Feynman's path integral representation of the energy Green function of a massless particle in the shadow region of an ideal obstacle in a medium. The wavelength of the particle is assumed to be comparable to or smaller than any relevant length of the problem. Classical paths with extremal length partially creep along the obstacle and their fluctuations are subject to non-holonomic constraints. If the medium is a vacuum, the asymptotic contribution from a single classical path of overall length L to the energy Green function at energy E is that of a non-relativistic particle of mass E/ c2 moving in the two-dimensional space orthogonal to the classical path for a time τ= L/ c. Dirichlet boundary conditions at the surface of the obstacle constrain the motion of the particle to the exterior half-space and result in an effective time-dependent but spatially constant force that is inversely proportional to the radius of curvature of the classical path. We relate the diffractive, classically forbidden motion in the "creeping" case to the classically allowed motion in the "whispering gallery" case by analytic continuation in the curvature of the classical path. The non-holonomic constraint implies that the surface of the obstacle becomes a zero-dimensional caustic of the particle's motion. We solve this problem for extremal rays with piecewise constant curvature and provide uniform asymptotic expressions that are approximately valid in the penumbra as well as in the deep shadow of a sphere.

    17. An educational path for the magnetic vector potential and its physical implications

      NASA Astrophysics Data System (ADS)

      Barbieri, S.; Cavinato, M.; Giliberti, M.

      2013-09-01

      We present an educational path for the magnetic vector potential A aimed at undergraduate students and pre-service physics teachers. Starting from the generalized Ampère-Laplace law, in the framework of a slowly varying time-dependent field approximation, the magnetic vector potential is written in terms of its empirical references, i.e. the conduction currents. Therefore, once the currents are known, our approach allows for a clear and univocal physical determination of A, overcoming the mathematical indeterminacy due to the gauge transformations. We have no need to fix a gauge, since for slowly varying time-dependent electric and magnetic fields, the ‘natural’ gauge for A is the Coulomb one. We stress the difference between our approach and those usually presented in the literature. Finally, a physical interpretation of the magnetic vector potential is discussed and some examples of the calculation of A are analysed.

    18. CYBER/PHYSICAL SECURITY VULNERABILITY ASSESSMENT INTEGRATION

      SciTech Connect

      MacDonald, Douglas G.; Key, Brad; Clements, Samuel L.; Hutton, William J.; Craig, Philip A.; Patrick, Scott W.; Crawford, Cary E.

      2011-07-17

      This internally funded Laboratory-Directed R&D project by the Pacific Northwest National Laboratory, in conjunction with QinetiQ North America, is intended to identify and properly assess areas of overlap (and interaction) in the vulnerability assessment process between cyber security and physical protection. Existing vulnerability analysis (VA) processes and software tools exist, and these are heavily utilized in the determination of predicted vulnerability within the physical and cyber security domains. These determinations are normally performed independently of one another, and only interact on a superficial level. Both physical and cyber security subject matter experts have come to realize that though the various interactive elements exist, they are not currently quantified in most periodic security assessments. This endeavor aims to evaluate both physical and cyber VA techniques and provide a strategic approach to integrate the interdependent relationships of each into a single VA capability. This effort will also transform the existing suite of software currently utilized in the physical protection world to more accurately quantify the risk associated with a blended attack scenario. Performance databases will be created to support the characterization of the cyber security elements, and roll them into prototype software tools. This new methodology and software capability will enable analysts to better identify and assess the overall risk during a vulnerability analysis.

    19. A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates

      NASA Astrophysics Data System (ADS)

      Shiga, Motoyuki; Fujisaki, Hiroshi

      2012-05-01

      We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the "centroid IRC," corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH3 molecule and N2H_5^- ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH3, the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N2H_5^-, the centroid IRC is largely deviated from the "classical" IRC, and the free energy barrier is reduced by the quantum effects even more drastically.

    20. Path-integral virial estimator for reaction rate calculation basedon the quantum instanton aproximation

      SciTech Connect

      Yang, Sandy; Yamamoto, Takeshi; Miller, William H.

      2005-11-28

      The quantum instanton approximation is a type of quantum transition state theory that calculates the chemical reaction rate using the reactive flux correlation function and its low order derivatives at time zero. Here we present several path-integral estimators for the latter quantities, which characterize the initial decay profile of the flux correlation function. As with the internal energy or heat capacity calculation, different estimators yield different variances (and therefore different convergence properties) in a Monte Carlo calculation. Here we obtain a virial(-type) estimator by using a coordinate scaling procedure rather than integration by parts, which allows more computational benefits. We also consider two different methods for treating the flux operator, i.e., local-path and global-path approaches, in which the latter achieves a smaller variance at the cost of using second-order potential derivatives. Numerical tests are performed for a one-dimensional Eckart barrier and a model proton transfer reaction in a polar solvent, which illustrates the reduced variance of the virial estimator over the corresponding thermodynamic estimator.

    1. A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates

      SciTech Connect

      Shiga, Motoyuki; Fujisaki, Hiroshi

      2012-05-14

      We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the ''centroid IRC,'' corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH{sub 3} molecule and N{sub 2}H{sub 5}{sup -} ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH{sub 3}, the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N{sub 2}H{sub 5}{sup -}, the centroid IRC is largely deviated from the ''classical'' IRC, and the free energy barrier is reduced by the quantum effects even more drastically.

    2. Spatial memory and path integration studied by self-driven passive linear displacement. I. Basic properties.

      PubMed

      Israël, I; Grasso, R; Georges-Francois, P; Tsuzuku, T; Berthoz, A

      1997-06-01

      According to path integration, the brain is able to compute the distance of a traveled path. In this research we applied our previously reported method for studying memory of linear distance, a crucial mechanism in path integration; our method is based on the overt reconstruction of a passive transport. Passive transport is a special case of navigation in which no active control is performed. Blindfolded subjects were first asked to travel 2 m forward, in darkness, by driving with a joystick the robot on which they were seated. The results show that all subjects but two undershot this distance, i.e., overestimated their own displacement. Then, subjects were submitted to a passive linear forward displacement along 2, 4, 6, 8, or 10 m, and had to reproduce the same distance, still blindfolded. The results show that the distance of the stimulus was accurately reproduced, as well as stimulus duration, peak velocity, and velocity profile. In this first condition, the imposed velocity profile was triangular and therefore stimulus distance and duration were correlated. In a second condition, it was shown that distance was correctly reproduced also when the information about stimulus duration was kept constant. Here, different velocity profiles were used as stimuli, and most subjects also reproduced the velocity profile. Statistical analyses indicated that distance was not reproduced as a consequence of duration, peak velocity, or velocity profile reproduction, but was uniquely correlated to stimulus distance. The previous hypothesis of a double integration of the otolith signal to provide a distance estimate can explain our results. There was a large discrepancy between the accuracy with which the subjects matched the velocity profiles and that of distance reproduction. It follows that, whereas the dynamics of passive motion are stored and available to further use, distance is independently estimated. It is concluded that vestibular and somatosensory signals excited by

    3. Managing the physics of the economics of integrated health care.

      PubMed

      Zismer, Daniel K; Werner, Mark J

      2012-01-01

      The physics metaphor, as applied to the economics (and financial performance) of the integrated health system, seems appropriate when considered together with the nine principles of management framework provided. The nature of the integrated design enhances leaders' management potential as they consider organizational operations and strategy in the markets ahead. One question begged by this argument for the integrated design is the durability, efficiency and ultimate long-term survivability of the more "traditional" community health care delivery models, which, by design, are fragmented, internally competitive and less capital efficient. They also cannot exploit the leverage of teams, optimal access management or the pursuit of revenues made available in many forms. For those who wish to move from the traditional to the more integrated community health system designs (especially those who have not yet started the journey), the path requires: * Sufficient balance sheet capacity to fund the integration process-especially as the model requires physician practice acquisitions and electronic health record implementations * A well-prepared board13, 14 * A functional, durable and sustainable physician services enterprise design * A redesigned organizational and governance structure * Favorable internal financial incentives alignment design * Effective accountable physician leadership * Awareness that the system is not solely a funding strategy for acquired physicians, rather a fully -.. committed clinical and business model, one in which patient-centered integrated care is the core service (and not acute care hospital-based services) A willingness to create and exploit the implied and inherent potential of an integrated design and unified brand Last, it's important to remember that an integrated health system is a tool that creates a "new potential" (a physics metaphor reference, one last time). The design doesn't operate itself. Application of the management principles

    4. Computing energy spectra for quantum systems using the Feynman-Kac path integral method

      NASA Astrophysics Data System (ADS)

      Rejcek, J. M.; Fazleev, N. G.

      2009-10-01

      We use group theory considerations and properties of a continuous path to define a failure tree numerical procedure for calculating the lowest energy eigenvalues for quantum systems using the Feynman-Kac path integral method. Within this method the solution of the imaginary time Schr"odinger equation is approximated by random walk simulations on a discrete grid constrained only by symmetry considerations of the Hamiltonian. The required symmetry constraints on random walk simulations are associated with a given irreducible representation and are found by identifying the eigenvalues for the irreducible representations corresponding to the symmetric or antisymmetric eigenfunctions for each group operator. The numerical method is applied to compute the eigenvalues of the ground and excited states of the hydrogen and helium atoms.

    5. From Classical to Quantum and Back: A Hamiltonian Scheme for Adaptive Multiresolution Classical/Path-Integral Simulations.

      PubMed

      Kreis, Karsten; Tuckerman, Mark E; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello

      2016-07-12

      Quantum delocalization of atomic nuclei affects the physical properties of many hydrogen-rich liquids and biological systems even at room temperature. In computer simulations, quantum nuclei can be modeled via the path-integral formulation of quantum statistical mechanics, which implies a substantial increase in computational overhead. By restricting the quantum description to a small spatial region, this cost can be significantly reduced. Herein, we derive a bottom-up, rigorous, Hamiltonian-based scheme that allows molecules to change from quantum to classical and vice versa on the fly as they diffuse through the system, both reducing overhead and making quantum grand-canonical simulations possible. The method is validated via simulations of low-temperature parahydrogen. Our adaptive resolution approach paves the way to efficient quantum simulations of biomolecules, membranes, and interfaces. PMID:27214610

    6. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

      NASA Astrophysics Data System (ADS)

      Geng, Hua Y.

      2015-02-01

      A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model-the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

    7. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

      SciTech Connect

      Geng, Hua Y.

      2015-02-15

      A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

    8. Dynamic response characteristics of dual flow-path integrally bladed rotors

      NASA Astrophysics Data System (ADS)

      Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

      2015-02-01

      New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

    9. Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation

      PubMed Central

      Erdem, Uğur M.; Ross, Robert S.; Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.

      2013-01-01

      The current study used fMRI in humans to examine goal-directed navigation in an open field environment. We designed a task that required participants to encode survey-level spatial information and subsequently navigate to a goal location in either first person, third person, or survey perspectives. Critically, no distinguishing landmarks or goal location markers were present in the environment, thereby requiring participants to rely on path integration mechanisms for successful navigation. We focused our analysis on mechanisms related to navigation and mechanisms tracking linear distance to the goal location. Successful navigation required translation of encoded survey-level map information for orientation and implementation of a planned route to the goal. Our results demonstrate that successful first and third person navigation trials recruited the anterior hippocampus more than trials when the goal location was not successfully reached. When examining only successful trials, the retrosplenial and posterior parietal cortices were recruited for goal-directed navigation in both first person and third person perspectives. Unique to first person perspective navigation, the hippocampus was recruited to path integrate self-motion cues with location computations toward the goal location. Last, our results demonstrate that the hippocampus supports goal-directed navigation by actively tracking proximity to the goal throughout navigation. When using path integration mechanisms in first person and third person perspective navigation, the posterior hippocampus was more strongly recruited as participants approach the goal. These findings provide critical insight into the neural mechanisms by which we are able to use map-level representations of our environment to reach our navigational goals. PMID:24305826

    10. Path-integral calculation of the second virial coefficient including intramolecular flexibility effects

      SciTech Connect

      Garberoglio, Giovanni; Jankowski, Piotr; Szalewicz, Krzysztof; Harvey, Allan H.

      2014-07-28

      We present a path-integral Monte Carlo procedure for the fully quantum calculation of the second molecular virial coefficient accounting for intramolecular flexibility. This method is applied to molecular hydrogen (H{sub 2}) and deuterium (D{sub 2}) in the temperature range 15–2000 K, showing that the effect of molecular flexibility is not negligible. Our results are in good agreement with experimental data, as well as with virials given by recent empirical equations of state, although some discrepancies are observed for H{sub 2} between 100 and 200 K.

    11. Light-front Hamiltonian and path integral formulations of large N scalar QCD2

      NASA Astrophysics Data System (ADS)

      Kulshreshtha, Usha; Kulshreshtha, D. S.; Vary, J. P.

      2012-02-01

      Recently Grinstein, Jora and Polosa (2009) [5] have studied a model of large N scalar quantum chromodynamics (QCD) in one-space one-time dimensions (cf. G. 't Hooft (1974) [6]). This theory admits a Bethe-Salpeter equation describing the discrete spectrum of qqbar bound states. They consider the gauge fields in the adjoint representation of SU (N) and the scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. In this work, we present the light-front quantization of this theory using the Hamiltonian and path integral formulations under appropriate light-cone gauges.

    12. Effect of temperature on fast hydrogen diffusion in iron: A path-integral quantum dynamics approach

      NASA Astrophysics Data System (ADS)

      Kimizuka, Hajime; Mori, Hideki; Ogata, Shigenobu

      2011-03-01

      Here we explicitly present the diffusion coefficients (D) and activation energies (Ea) of interstitial H in α-Fe over a temperature range of 100 to 1000 K. These values were predicted by applying path-integral molecular dynamics modeling based on first principles. The obtained D and Ea values exhibit clear non-Arrhenius temperature dependence and a transition from quantum to classical behavior at around 500 K. Our results show that the quantum effects not only significantly lower the diffusion barrier but also change the diffusion pathway even at room temperature; thus, fast diffusion becomes possible.

    13. Family of anomalies in two dimensions in path-integral formulation. I

      NASA Astrophysics Data System (ADS)

      Joglekar, Satish D.; Saini, Gaitri

      1991-02-01

      We study the regularization of the path integral for a two-dimensional fermionic system in terms of the eigenfunctions and eigenvalues of the operator Da=∂+ieaA where a is a real continuous parameter. We derive the associated Ward-Takahashi identities for the local chiral and vector transformations and obtain expressions for ∂μJAμ and ∂μJVμ. We propose a straightforward regularization that ultimately leads to the family of anomalies in which the parameter appearing in the family of anomalies is related to a. A comparison with the work of Alfaro, Urrutia, and Vergara is given.

    14. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

      NASA Technical Reports Server (NTRS)

      Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

      2012-01-01

      We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

    15. Calculating splittings between energy levels of different symmetry using path-integral methods.

      PubMed

      Mátyus, Edit; Althorpe, Stuart C

      2016-03-21

      It is well known that path-integral methods can be used to calculate the energy splitting between the ground and the first excited state. Here we show that this approach can be generalized to give the splitting patterns between all the lowest energy levels from different symmetry blocks that lie below the first-excited totally symmetric state. We demonstrate this property numerically for some two-dimensional models. The approach is likely to be useful for computing rovibrational energy levels and tunnelling splittings in floppy molecules and gas-phase clusters. PMID:27004864

    16. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane.

      PubMed

      Liu, Jian; Zhang, Zhijun

      2016-01-21

      Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems. PMID:26801034

    17. The exact fundamental solution for the Benes filter: a Feynman path integral derivation

      NASA Astrophysics Data System (ADS)

      Balaji, Bhashyam

      2011-06-01

      The Benes filtering problem has been shown to be related to the quantum mechanical simple harmonic oscillator. In a previous paper, the exact fundamental solution for the filtering problem was derived. The methods employed included the method of separation of variables for solving PDEs, results from Strum-Liouville theory, and properties of the Hermite special function. In this paper, the results are rederived more simply and directly using Feynman path integral methods. Numerical examples are included that demonstrate the correctness of formulas and their utility in solving continuous-discrete filtering problems with Benes drift and nonlinear measurement model.

    18. Option pricing formulas and nonlinear filtering: a Feynman path integral perspective

      NASA Astrophysics Data System (ADS)

      Balaji, Bhashyam

      2013-05-01

      Many areas of engineering and applied science require the solution of certain parabolic partial differential equa­ tions, such as the Fokker-Planck and Kolmogorov equations. The fundamental solution, or the Green's function, for such PDEs can be written in terms of the Feynman path integral (FPI). The partial differential equation arising in the valuing of options is the Kolmogorov backward equation that is referred to as the Black-Scholes equation. The utility of this is demonstrated and numerical examples that illustrate the high accuracy of option price calculation even when using a fairly coarse grid.

    19. Dimensional regularization of the path integral in curved space on an infinite time interval

      NASA Astrophysics Data System (ADS)

      Bastianelli, F.; Corradini, O.; van Nieuwenhuizen, P.

      2000-09-01

      We use dimensional regularization to evaluate quantum mechanical path integrals in arbitrary curved spaces on an infinite time interval. We perform 3-loop calculations in Riemann normal coordinates, and 2-loop calculations in general coordinates. It is shown that one only needs a covariant two-loop counterterm (VDR=ℏ2/8R) to obtain the same results as obtained earlier in other regularization schemes. It is also shown that the mass term needed in order to avoid infrared divergences explicitly breaks general covariance in the final result.

    20. Path-Integral Renormalization Group Method for Numerical Study of Strongly Correlated Electron Systems

      NASA Astrophysics Data System (ADS)

      Imada, Masatoshi; Kashima, Tsuyoshi

      2000-09-01

      A numerical algorithm for studying strongly correlated electron systems is proposed. The groundstate wavefunction is projected out after a numerical renormalization procedure in the path integral formalism. The wavefunction is expressed from the optimized linear combination of retained states in the truncated Hilbert space with a numerically chosen basis. This algorithm does not suffer from the negative sign problem and can be applied to any type of Hamiltonian in any dimension. The efficiency is tested in examples of the Hubbard model where the basis of Slater determinants is numerically optimized. We show results on fast convergence and accuracy achieved with a small number of retained states.

    1. Path-integral calculation of the third virial coefficient of quantum gases at low temperatures

      SciTech Connect

      Garberoglio, Giovanni; Harvey, Allan H.

      2011-04-07

      We derive path-integral expressions for the second and third virial coefficients of monatomic quantum gases. Unlike previous work that considered only Boltzmann statistics, we include exchange effects (Bose-Einstein or Fermi-Dirac statistics). We use state-of-the-art pair and three-body potentials to calculate the third virial coefficient of {sup 3}He and {sup 4}He in the temperature range 2.6-24.5561 K. We obtain uncertainties smaller than those of the limited experimental data. Inclusion of exchange effects is necessary to obtain accurate results below about 7 K.

    2. Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar.

      PubMed

      Riris, Haris; Numata, Kenji; Li, Steve; Wu, Stewart; Ramanathan, Anand; Dawsey, Martha; Mao, Jianping; Kawa, Randolph; Abshire, James B

      2012-12-01

      We report airborne measurements of the column abundance of atmospheric methane made over an altitude range of 3-11 km using a direct detection integrated-path differential-absorption lidar with a pulsed laser emitting at 1651 nm. The laser transmitter was a tunable, seeded optical parametric amplifier pumped by a Nd:YAG laser, and the receiver used a photomultiplier detector and photon-counting electronics. The results follow the expected changes with aircraft altitude, and the measured line shapes and optical depths show good agreement with theoretical calculations. PMID:23207402

    3. Small-scale spatial variations of gaseous air pollutants - A comparison of path-integrated and in situ measurement methods

      NASA Astrophysics Data System (ADS)

      Ling, Hong; Schäfer, Klaus; Xin, Jinyuan; Qin, Min; Suppan, Peter; Wang, Yuesi

      2014-08-01

      Traffic emissions are a very important factor in Beijing's urban air quality. To investigate small-scale spatial variations in air pollutants, a campaign was carried out from April 2009 through March 2011 in Beijing. DOAS (differential optical absorption spectroscopy) systems and in situ instruments were used. Atmospheric NO, NO2, O3 and SO2 mixing ratios were monitored. Meanwhile, HCHO mixing ratios were measured by two different DOAS systems. Diurnal variations of these mixing ratios were analysed. Differences between the path-integrated and in situ measurements were investigated based on the results from the campaign. The influences of different weather situations, dilution conditions and light-path locations were investigated as well. The results show that the differences between path-integrated and in situ mixing ratios were affected by combinations of emission source strengths, weather conditions, chemical transformations and local convection. Path-integrated measurements satisfy the requirements of traffic emission investigations better than in situ measurements.

    4. An integrated radiation physics computer code system.

      NASA Technical Reports Server (NTRS)

      Steyn, J. J.; Harris, D. W.

      1972-01-01

      An integrated computer code system for the semi-automatic and rapid analysis of experimental and analytic problems in gamma photon and fast neutron radiation physics is presented. Such problems as the design of optimum radiation shields and radioisotope power source configurations may be studied. The system codes allow for the unfolding of complex neutron and gamma photon experimental spectra. Monte Carlo and analytic techniques are used for the theoretical prediction of radiation transport. The system includes a multichannel pulse-height analyzer scintillation and semiconductor spectrometer coupled to an on-line digital computer with appropriate peripheral equipment. The system is geometry generalized as well as self-contained with respect to material nuclear cross sections and the determination of the spectrometer response functions. Input data may be either analytic or experimental.

    5. High-order sampling schemes for path integrals and Gaussian chain simulations of polymers

      SciTech Connect

      Müser, Martin H.; Müller, Marcus

      2015-05-07

      In this work, we demonstrate that path-integral schemes, derived in the context of many-body quantum systems, benefit the simulation of Gaussian chains representing polymers. Specifically, we show how to decrease discretization corrections with little extra computation from the usual O(1/P{sup 2}) to O(1/P{sup 4}), where P is the number of beads representing the chains. As a consequence, high-order integrators necessitate much smaller P than those commonly used. Particular emphasis is placed on the questions of how to maintain this rate of convergence for open polymers and for polymers confined by a hard wall as well as how to ensure efficient sampling. The advantages of the high-order sampling schemes are illustrated by studying the surface tension of a polymer melt and the interface tension in a binary homopolymers blend.

    6. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

      NASA Technical Reports Server (NTRS)

      Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

      2013-01-01

      Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

    7. Characterization of near-road pollutant gradients using path-integrated optical remote sensing.

      PubMed

      Thoma, Eben D; Shores, Richard C; Isakov, Vlad; Baldauf, Richard W

      2008-07-01

      Understanding motor vehicle emissions, near-roadway pollutant dispersion, and their potential impact to near-roadway populations is an area of growing environmental interest. As part of ongoing U.S. Environmental Protection Agency research in this area, a field study was conducted near Interstate 440 (I-440) in Raleigh, NC, in July and August of 2006. This paper presents a subset of measurements from the study focusing on nitric oxide (NO) concentrations near the roadway. Measurements of NO in this study were facilitated by the use of a novel path-integrated optical remote sensing technique called deep ultraviolet differential optical absorption spectroscopy (DUV-DOAS). This paper reviews the development and application of this measurement system. Time-resolved near-road NO concentrations are analyzed in conjunction with wind and traffic data to provide a picture of emissions and near-road dispersion for the study. Results show peak NO concentrations in the 150 ppb range during weekday morning rush hours with winds from the road accompanied by significantly lower afternoon and weekend concentrations. Traffic volume and wind direction are shown to be primary determinants of NO concentrations with turbulent diffusion and meandering accounting for significant near-road concentrations in off-wind conditions. The enhanced source capture performance of the open-path configuration allowed for robust comparisons of measured concentrations with a composite variable of traffic intensity coupled with wind transport (R2 = 0.84) as well as investigations on the influence of wind direction on NO dilution near the roadway. The benefits of path-integrated measurements for assessing line source impacts and evaluating models is presented. The advantages of NO as a tracer compound, compared with nitrogen dioxide, for investigations of mobile source emissions and initial dispersion under crosswind conditions are also discussed. PMID:18672712

    8. Path Integral Approach to a Single Polymer Chain with Random Media

      NASA Astrophysics Data System (ADS)

      Kunsombat, Ch.; Sa-Yakanit, V.

      In this paper we consider the problem of a polymer chain in random media with finite correlation. We show that the mean square end-to-end distance of a polymer chain can be obtained using the Feynman path integral developed by Feynman for treating the polaron problem and successfuly applied to the theory of heavily doped semiconductor. We show that for short-range correlation or the white Gaussian model we derive the results obtained by Edwards and Muthukumar using the replica method and for long-range correlation we obtain the result of Yohannes Shiferaw and Yadin Y. Goldschimidt. The main idea of this paper is to generalize the model proposed by Edwards and Muthukumar for short-range correlation to finite correlation. Instead of using a replica method, we employ the Feynman path integral by modeling the polymer Hamiltonian as a model of non-local quadratic trial Hamiltonian. This non-local trial Hamiltonian is essential as it will reflect the translation invariant of the original Hamiltonian. The calculation is proceeded by considering the differences between the polymer propagator and the trial propagator as the first cumulant approximation. The variational principle is used to find the optimal values of the variational parameters and the mean square end-to-end distance is obtained. Several asymptotic limits are considered and a comparison between this approaches and replica approach will be discussed.

    9. Accelerating Ab Initio Path Integral Simulations via Imaginary Multiple-Timestepping.

      PubMed

      Cheng, Xiaolu; Herr, Jonathan D; Steele, Ryan P

      2016-04-12

      This work investigates the use of multiple-timestep schemes in imaginary time for computationally efficient ab initio equilibrium path integral simulations of quantum molecular motion. In the simplest formulation, only every n(th) path integral replica is computed at the target level of electronic structure theory, whereas the remaining low-level replicas still account for nuclear motion quantum effects with a more computationally economical theory. Motivated by recent developments for multiple-timestep techniques in real-time classical molecular dynamics, both 1-electron (atomic-orbital basis set) and 2-electron (electron correlation) truncations are shown to be effective. Structural distributions and thermodynamic averages are tested for representative analytic potentials and ab initio molecular examples. Target quantum chemistry methods include density functional theory and second-order Møller-Plesset perturbation theory, although any level of theory is formally amenable to this framework. For a standard two-level splitting, computational speedups of 1.6-4.0x are observed when using a 4-fold reduction in time slices; an 8-fold reduction is feasible in some cases. Multitiered options further reduce computational requirements and suggest that quantum mechanical motion could potentially be obtained at a cost not significantly different from the cost of classical simulations. PMID:26966920

    10. Interactions of the polarization and the sun compass in path integration of desert ants.

      PubMed

      Lebhardt, Fleur; Ronacher, Bernhard

      2014-08-01

      Desert ants, Cataglyphis fortis, perform large-scale foraging trips in their featureless habitat using path integration as their main navigation tool. To determine their walking direction they use primarily celestial cues, the sky's polarization pattern and the sun position. To examine the relative importance of these two celestial cues, we performed cue conflict experiments. We manipulated the polarization pattern experienced by the ants during their outbound foraging excursions, reducing it to a single electric field (e-)vector direction with a linear polarization filter. The simultaneous view of the sun created situations in which the directional information of the sun and the polarization compass disagreed. The heading directions of the homebound runs recorded on a test field with full view of the natural sky demonstrate that none of both compasses completely dominated over the other. Rather the ants seemed to compute an intermediate homing direction to which both compass systems contributed roughly equally. Direct sunlight and polarized light are detected in different regions of the ant's compound eye, suggesting two separate pathways for obtaining directional information. In the experimental paradigm applied here, these two pathways seem to feed into the path integrator with similar weights. PMID:24337416

    11. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation

      NASA Astrophysics Data System (ADS)

      Yamamoto, Takeshi; Miller, William H.

      2004-02-01

      We present an efficient path integral approach for evaluating thermal rate constants within the quantum instanton (QI) approximation that was recently introduced to overcome the quantitative deficiencies of the earlier semiclassical instanton approach [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)]. Since the QI rate constant is determined solely by properties of the (quantum) Boltzmann operator (specifically, by the zero time properties of the flux-flux and delta-delta correlation functions), it can be evaluated by well-established techniques of imaginary time path integrals even for quite complex chemical reactions. Here we present a series of statistical estimators for relevant quantities which can be evaluated straightforwardly with any nonlinear reaction coordinates and general Hamiltonians in Cartesian space. To facilitate the search for the optimal dividing surfaces required by the QI approximation, we introduce a two-dimensional quantum free energy surface associated with the delta-delta correlation function and describe how an adaptive umbrella sampling can be used effectively to construct such a free energy surface. The overall computational procedure is illustrated by the application to a hydrogen exchange reaction in gas phase, which shows excellent agreement of the QI rates with those obtained from quantum scattering calculations.

    12. On the efficient path integral evaluation of thermal rate constants within the quantum instanton approximation.

      PubMed

      Yamamoto, Takeshi; Miller, William H

      2004-02-15

      We present an efficient path integral approach for evaluating thermal rate constants within the quantum instanton (QI) approximation that was recently introduced to overcome the quantitative deficiencies of the earlier semiclassical instanton approach [Miller, Zhao, Ceotto, and Yang, J. Chem. Phys. 119, 1329 (2003)]. Since the QI rate constant is determined solely by properties of the (quantum) Boltzmann operator (specifically, by the zero time properties of the flux-flux and delta-delta correlation functions), it can be evaluated by well-established techniques of imaginary time path integrals even for quite complex chemical reactions. Here we present a series of statistical estimators for relevant quantities which can be evaluated straightforwardly with any nonlinear reaction coordinates and general Hamiltonians in Cartesian space. To facilitate the search for the optimal dividing surfaces required by the QI approximation, we introduce a two-dimensional quantum free energy surface associated with the delta-delta correlation function and describe how an adaptive umbrella sampling can be used effectively to construct such a free energy surface. The overall computational procedure is illustrated by the application to a hydrogen exchange reaction in gas phase, which shows excellent agreement of the QI rates with those obtained from quantum scattering calculations. PMID:15268461

    13. Path Integral representation of quantum particles in fluids: Convergence of observables

      NASA Astrophysics Data System (ADS)

      Reese, Terrebce; Miller, Bruce

      2015-03-01

      In previous work the Path Integral Monte Carlo (PIMC) technique was used to simulate a low mass quantum particle (qp) in a dense Lennard-Jones 6-12 fluid having the thermodynamic properties of Xenon. Because of the difference in thermal wavelengths between the qp and the fluid molecules, the fluid molecules can be treated classically. This combination of using quantum mechanics for the qp and classical mechanics for the fluid molecules is known as a hybrid model. In the path integral formulation the qp is represented as a closed chain of P classical particles where the quantum uncertainty in the position of the qp is manifested by the finite spread of the polymer chain. The PIMC technique allows standard classical Monte Carlo techniques to be used to compute quantum mechanical equilibrium values like the ortho-Positronium pick-off decay rate. Here we compare the convergence of PIMC for different thermodynamic states, including one near the liquid-vapor critical point of the fluid. We employ the correlation function of the iterated quantum observables to estimate the number of statistically independent configurations in a run and provide an estimate of the standard error.

    14. Gas Path On-line Fault Diagnostics Using a Nonlinear Integrated Model for Gas Turbine Engines

      NASA Astrophysics Data System (ADS)

      Lu, Feng; Huang, Jin-quan; Ji, Chun-sheng; Zhang, Dong-dong; Jiao, Hua-bin

      2014-08-01

      Gas turbine engine gas path fault diagnosis is closely related technology that assists operators in managing the engine units. However, the performance gradual degradation is inevitable due to the usage, and it result in the model mismatch and then misdiagnosis by the popular model-based approach. In this paper, an on-line integrated architecture based on nonlinear model is developed for gas turbine engine anomaly detection and fault diagnosis over the course of the engine's life. These two engine models have different performance parameter update rate. One is the nonlinear real-time adaptive performance model with the spherical square-root unscented Kalman filter (SSR-UKF) producing performance estimates, and the other is a nonlinear baseline model for the measurement estimates. The fault detection and diagnosis logic is designed to discriminate sensor fault and component fault. This integration architecture is not only aware of long-term engine health degradation but also effective to detect gas path performance anomaly shifts while the engine continues to degrade. Compared to the existing architecture, the proposed approach has its benefit investigated in the experiment and analysis.

    15. a Latent Variable Path Analysis Model of Secondary Physics Enrollments in New York State.

      NASA Astrophysics Data System (ADS)

      Sobolewski, Stanley John

      The Percentage of Enrollment in Physics (PEP) at the secondary level nationally has been approximately 20% for the past few decades. For a more scientifically literate citizenry as well as specialists to continue scientific research and development, it is desirable that more students enroll in physics. Some of the predictor variables for physics enrollment and physics achievement that have been identified previously includes a community's socioeconomic status, the availability of physics, the sex of the student, the curriculum, as well as teacher and student data. This study isolated and identified predictor variables for PEP of secondary schools in New York. Data gathered by the State Education Department for the 1990-1991 school year was used. The source of this data included surveys completed by teachers and administrators on student characteristics and school facilities. A data analysis similar to that done by Bryant (1974) was conducted to determine if the relationships between a set of predictor variables related to physics enrollment had changed in the past 20 years. Variables which were isolated included: community, facilities, teacher experience, number of type of science courses, school size and school science facilities. When these variables were isolated, latent variable path diagrams were proposed and verified by the Linear Structural Relations computer modeling program (LISREL). These diagrams differed from those developed by Bryant in that there were more manifest variables used which included achievement scores in the form of Regents exam results. Two criterion variables were used, percentage of students enrolled in physics (PEP) and percent of students enrolled passing the Regents physics exam (PPP). The first model treated school and community level variables as exogenous while the second model treated only the community level variables as exogenous. The goodness of fit indices for the models was 0.77 for the first model and 0.83 for the second

    16. A model of grid cells involving extra hippocampal path integration, and the hippocampal loop.

      PubMed

      Gaussier, P; Banquet, J P; Sargolini, F; Giovannangeli, C; Save, E; Poucet, B

      2007-09-01

      In this paper, we present a model for the generation of grid cells and the emergence of place cells from multimodal input to the entorhinal cortex (EC). In this model, grid cell activity in the dorsocaudal medial entorhinal cortex (dMEC) [28] results from the operation of a long-distance path integration system located outside the hippocampal formation, presumably in retrosplenial and/or parietal cortex. If the connections between these structures and dMEC are organized as a modulo N operator, the resulting activity of dMEC neurons is a grid cell pattern. Furthermore, a robust high-resolution positional code can be built from a small set of different grid cells if the modulo factors are relatively prime. On the other hand, broad visual place cell activity in the MEC can result from the integration of visual information depending on the view-field of the visual input. The merging of entorhinal visual place cell information and grid cell information in the EC and/or in the dentate gyrus (DG) allows the building of precise and robust "place cells" (e.g., whose activity is maintained if light is suppressed for a short duration). Our model supports our previous proposition that hippocampal "place cell" activity code transitions between two successive states ("transition cells") rather than mere current locations. Furthermore, we discuss the possibility that the hippocampal loop participates in the emergence of grid cell activity but is not sufficient by itself. Finally, path integration at a short time scale (which is reset from one place to the next) would be merged in the subiculum with CA3/CA1 "transition cells" [22] to provide a robust feedback about current action to the deep layer of the entorhinal cortex in order to predict the recognition of the new animal location. PMID:17933021

    17. Integrated modeling, data transfers, and physical models

      NASA Astrophysics Data System (ADS)

      Brookshire, D. S.; Chermak, J. M.

      2003-04-01

      Difficulties in developing precise economic policy models for water reallocation and re-regulation in various regional and transboundary settings has been exacerbated not only by climate issues but also by institutional changes reflected in the promulgation of environmental laws, changing regional populations, and an increased focus on water quality standards. As complexity of the water issues have increased, model development at a micro-policy level is necessary to capture difficult institutional nuances and represent the differing national, regional and stakeholders' viewpoints. More often than not, adequate "local" or specific micro-data are not available in all settings for modeling and policy decisions. Economic policy analysis increasingly deals with this problem through data transfers (transferring results from one study area to another) and significant progress has been made in understanding the issue of the dimensionality of data transfers. This paper explores the conceptual and empirical dimensions of data transfers in the context of integrated modeling when the transfers are not only from the behavioral, but also from the hard sciences. We begin by exploring the domain of transfer issues associated with policy analyses that directly consider uncertainty in both the behavioral and physical science settings. We then, through a stylized, hybrid, economic-engineering model of water supply and demand in the Middle Rio Grand Valley of New Mexico (USA) analyze the impacts of; (1) the relative uncertainty of data transfers methods, (2) the uncertainty of climate data and, (3) the uncertainly of population growth. These efforts are motivated by the need to address the relative importance of more accurate data both from the physical sciences as well as from demography and economics for policy analyses. We evaluate the impacts by empirically addressing (within the Middle Rio Grand model): (1) How much does the surrounding uncertainty of the benefit transfer

    18. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

      SciTech Connect

      Tanizaki, Yuya; Koike, Takayuki

      2014-12-15

      Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integrals on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.

    19. Integration of transcription and flux data reveals molecular paths associated with differences in oxygen-dependent phenotypes of Saccharomyces cerevisiae

      PubMed Central

      2014-01-01

      Background Saccharomyces cerevisiae is able to adapt to a wide range of external oxygen conditions. Previously, oxygen-dependent phenotypes have been studied individually at the transcriptional, metabolite, and flux level. However, the regulation of cell phenotype occurs across the different levels of cell function. Integrative analysis of data from multiple levels of cell function in the context of a network of several known biochemical interaction types could enable identification of active regulatory paths not limited to a single level of cell function. Results The graph theoretical method called Enriched Molecular Path detection (EMPath) was extended to enable integrative utilization of transcription and flux data. The utility of the method was demonstrated by detecting paths associated with phenotype differences of S. cerevisiae under three different conditions of oxygen provision: 20.9%, 2.8% and 0.5%. The detection of molecular paths was performed in an integrated genome-scale metabolic and protein-protein interaction network. Conclusions The molecular paths associated with the phenotype differences of S. cerevisiae under conditions of different oxygen provisions revealed paths of molecular interactions that could potentially mediate information transfer between processes that respond to the particular oxygen availabilities. PMID:24528924

    20. TOWARD EFFICIENT RIPARIAN RESTORATION: INTEGRATING ECONOMIC, PHYSICAL, AND BIOLOGICAL MODELS

      EPA Science Inventory

      This paper integrates economic, biological, and physical models to determine the efficient combination and spatial allocation of conservation efforts for water quality protection and salmonid habitat enhancement in the Grande Ronde basin, Oregon. The integrated modeling system co...

    1. LIGHT SCATTERING: Fast path-integration technique in simulation of light propagation through highly scattering objects

      NASA Astrophysics Data System (ADS)

      Voronov, Aleksandr V.; Tret'yakov, Evgeniy V.; Shuvalov, Vladimir V.

      2004-06-01

      Based on the path-integration technique and the Metropolis method, the original calculation scheme is developed for solving the problem of light propagation through highly scattering objects. The elimination of calculations of 'unnecessary' realisations and the phenomenological description of processes of multiple small-angle scattering provided a drastic increase (by nine and more orders of magnitude) in the calculation rate, retaining the specific features of the problem (consideration of spatial inhomogeneities, boundary conditions, etc.). The scheme allows one to verify other fast calculation algorithms and to obtain information required to reconstruct the internal structure of highly scattering objects (of size ~1000 scattered lengths and more) by the method of diffusion optical tomography.

    2. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

      NASA Astrophysics Data System (ADS)

      Velizhanin, Kirill A.; Saxena, Avadh

      2015-11-01

      One of the most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In the present work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexciton binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. The results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.

    3. Quantum Mechanical Single Molecule Partition Function from PathIntegral Monte Carlo Simulations

      SciTech Connect

      Chempath, Shaji; Bell, Alexis T.; Predescu, Cristian

      2006-10-01

      An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented.

    4. Family of anomalies in two dimensions in path-integral formulation. I

      SciTech Connect

      Joglekar, S.D.; Saini, G. )

      1991-02-15

      We study the regularization of the path integral for a two-dimensional fermionic system in terms of the eigenfunctions and eigenvalues of the operator {ital D}{sub {ital a}}={partial derivative}+{ital ieaA} where {ital a} is a real continuous parameter. We derive the associated Ward-Takahashi identities for the local chiral and vector transformations and obtain expressions for {partial derivative}{sup {mu}}{ital J}{sub {mu}}{sup A} and {partial derivative}{sup {mu}}{ital J}{sub {mu}}{sup {ital V}}. We propose a straightforward regularization that ultimately leads to the family of anomalies in which the parameter appearing in the family of anomalies is related to {ital a}. A comparison with the work of Alfaro, Urrutia, and Vergara is given.

    5. Gaussian white noise analysis and its application to Feynman path integral

      NASA Astrophysics Data System (ADS)

      Suryawan, Herry Pribawanto

      2016-02-01

      In applied science, Gaussian white noise (the time derivative of Brownian motion) is often chosen as a mathematical idealization of phenomena involving sudden and extremely large fluctuations. It is also possible to define and study Gaussian white noise in a mathematically rigorous framework. In this survey paper we review the Gaussian white noise as an object in an infinite dimensional topological vector space. A brief construction of Gaussian white noise space and Gaussian white noise distributions will be presented. Gaussian white noise analysis provides a framework which offers various generalization of concept known from finite dimensional analysis to the infinite dimensional case, among them are differential operators, Fourier transform, and distribution theory. We will also present some recent developments and results on the application of Gaussian white noise theory to Feynman's path integral approach for quantum mechanics.

    6. Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations.

      PubMed

      Dračínský, Martin; Bouř, Petr; Hodgkinson, Paul

      2016-03-01

      The influence of temperature on NMR chemical shifts and quadrupolar couplings in model molecular organic solids is explored using path integral molecular dynamics (PIMD) and density functional theory (DFT) calculations of shielding and electric field gradient (EFG) tensors. An approach based on convoluting calculated shielding or EFG tensor components with probability distributions of selected bond distances and valence angles obtained from DFT-PIMD simulations at several temperatures is used to calculate the temperature effects. The probability distributions obtained from the quantum PIMD simulations, which includes nuclear quantum effects, are significantly broader and less temperature dependent than those obtained with conventional DFT molecular dynamics or with 1D scans through the potential energy surface. Predicted NMR observables for the model systems were in excellent agreement with experimental data. PMID:26857802

    7. Semiclassical Path Integral Dynamics: Photosynthetic Energy Transfer with Realistic Environment Interactions.

      PubMed

      Lee, Mi Kyung; Huo, Pengfei; Coker, David F

      2016-05-27

      This article reviews recent progress in the theoretical modeling of excitation energy transfer (EET) processes in natural light harvesting complexes. The iterative partial linearized density matrix path-integral propagation approach, which involves both forward and backward propagation of electronic degrees of freedom together with a linearized, short-time approximation for the nuclear degrees of freedom, provides an accurate and efficient way to model the nonadiabatic quantum dynamics at the heart of these EET processes. Combined with a recently developed chromophore-protein interaction model that incorporates both accurate ab initio descriptions of intracomplex vibrations and chromophore-protein interactions treated with atomistic detail, these simulation tools are beginning to unravel the detailed EET pathways and relaxation dynamics in light harvesting complexes. PMID:27090842

    8. Semiclassical Path Integral Dynamics: Photosynthetic Energy Transfer with Realistic Environment Interactions

      NASA Astrophysics Data System (ADS)

      Lee, Mi Kyung; Huo, Pengfei; Coker, David F.

      2016-05-01

      This article reviews recent progress in the theoretical modeling of excitation energy transfer (EET) processes in natural light harvesting complexes. The iterative partial linearized density matrix path-integral propagation approach, which involves both forward and backward propagation of electronic degrees of freedom together with a linearized, short-time approximation for the nuclear degrees of freedom, provides an accurate and efficient way to model the nonadiabatic quantum dynamics at the heart of these EET processes. Combined with a recently developed chromophore-protein interaction model that incorporates both accurate ab initio descriptions of intracomplex vibrations and chromophore-protein interactions treated with atomistic detail, these simulation tools are beginning to unravel the detailed EET pathways and relaxation dynamics in light harvesting complexes.

    9. Path-independent integrals to identify localized plastic events in two dimensions.

      PubMed

      Talamali, Mehdi; Petäjä, Viljo; Vandembroucq, Damien; Roux, Stéphane

      2008-07-01

      We use a power expansion representation of plane-elasticity complex potentials due to Kolossov and Muskhelishvili to compute the elastic fields induced by a localized plastic deformation event. Far from its center, the dominant contributions correspond to first-order singularities of quadrupolar and dipolar symmetry which can be associated, respectively, with pure deviatoric and pure volumetric plastic strain of an equivalent circular inclusion. By construction of holomorphic functions from the displacement field and its derivatives, it is possible to define path-independent Cauchy integrals which capture the amplitudes of these singularities. Analytical expressions and numerical tests on simple finite-element data are presented. The development of such numerical tools is of direct interest for the identification of local structural reorganizations, which are believed to be the key mechanisms for plasticity of amorphous materials. PMID:18764022

    10. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

      SciTech Connect

      Velizhanin, Kirill A.; Saxena, Avadh

      2015-11-11

      The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexciton binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.

    11. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

      DOE PAGESBeta

      Velizhanin, Kirill A.; Saxena, Avadh

      2015-11-11

      The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less

    12. Quantum mechanical single molecule partition function from path integral Monte Carlo simulations.

      PubMed

      Chempath, Shaji; Predescu, Cristian; Bell, Alexis T

      2006-06-21

      An algorithm for calculating the partition function of a molecule with the path integral Monte Carlo method is presented. Staged thermodynamic perturbation with respect to a reference harmonic potential is utilized to evaluate the ratio of partition functions. Parallel tempering and a new Monte Carlo estimator for the ratio of partition functions are implemented here to achieve well converged simulations that give an accuracy of 0.04 kcal/mol in the reported free energies. The method is applied to various test systems, including a catalytic system composed of 18 atoms. Absolute free energies calculated by this method lead to corrections as large as 2.6 kcal/mol at 300 K for some of the examples presented. PMID:16821901

    13. Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics

      SciTech Connect

      Huo, Pengfei; Miller, Thomas F. III; Coker, David F.

      2013-10-21

      A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.

    14. Topics in mode conversion theory and the group theoretical foundations of path integrals

      NASA Astrophysics Data System (ADS)

      Richardson, Andrew Stephen

      discrete Beisenberg-Wey1 group to construct the symbol of a matrix. We then go on to show how the path integral arises when calculating the symbol of a function of an operator. We also show how the phase space and configuration space path integrals arise when considering reductions of the regular representation of the Heisenberg-Wey1 group to the primary representations and irreducible representations, respectively. We also show how the path integral can be interpreted as a Fourier transform on the space of measures, opening up the possibility of using tools from statistical mechanics (such as maximum entropy techniques) to analyze the path integral. We conclude with a survey of ideas for future research and describe several potential applications of this group theoretical perspective to problems in mode conversion.

    15. Error reduction methods for integrated-path differential-absorption lidar measurements.

      PubMed

      Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

      2012-07-01

      We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log". PMID:22772254

    16. Torsional path integral Monte Carlo method for the quantum simulation of large molecules

      NASA Astrophysics Data System (ADS)

      Miller, Thomas F.; Clary, David C.

      2002-05-01

      A molecular application is introduced for calculating quantum statistical mechanical expectation values of large molecules at nonzero temperatures. The Torsional Path Integral Monte Carlo (TPIMC) technique applies an uncoupled winding number formalism to the torsional degrees of freedom in molecular systems. The internal energy of the molecules ethane, n-butane, n-octane, and enkephalin are calculated at standard temperature using the TPIMC technique and compared to the expectation values obtained using the harmonic oscillator approximation and a variational technique. All studied molecules exhibited significant quantum mechanical contributions to their internal energy expectation values according to the TPIMC technique. The harmonic oscillator approximation approach to calculating the internal energy performs well for the molecules presented in this study but is limited by its neglect of both anharmonicity effects and the potential coupling of intramolecular torsions.

    17. Associations between perceived and observational physical environmental factors and the use of walking paths: a cross-sectional study

      PubMed Central

      2014-01-01

      Background How to promote physical activity is an important public health problem that is attracting increasing attention. Although the application of environmental approaches is believed to promote resident walking, there remains insufficient evidence of the effectiveness of these interventions. Methods This study employed direct observation and questionnaires. Observations were performed on each Tuesday, Thursday, Saturday, and Sunday from April 13th to May 16th. Fourteen trained observers observed six community walking paths, and an additional walking path in a park. The trained observers filled out 2388 observation forms in the field, including 228 forms rating the permanent environment, and 1080 forms assessing the current environment and counting the number of walkers. A total of 1800 questionnaireswere administered to community residents. Results The results of both observation and questionnaires showed good association regarding the characteristics of walking path users (for observation, female = 54.4%; for questionnaire interviews, female, OR = 1.441), and the environmental features associated with walking path utilization (for observation, positive associations were observed between the utilization index and observational environmental variables; for questionnaire interviews, roads and aesthetics were important, OR = 1.044). There were positive associations between path use and time, a preference for brisk walking, and the observed current and permanent environmental variables. Female participants were more likely to use walking paths than males (OR = 1.441, 95% confidence interval [CI] 1.126–1.846). BMI and traffic hazard safety were significantly negatively associated with walking path use (OR = 0.948, 95% CI 0.915–0.981, and OR = 0.933, 95% CI 0.887–0.981, respectively). Roads, aesthetics, and knowledge of physical activity were significantly positively correlated with use of walking paths (OR = 1.044, 95% CI 1.017–1.072, and OR = 1.175, 95% CI

    18. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

      NASA Technical Reports Server (NTRS)

      Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

      2014-01-01

      Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

    19. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature.

      PubMed

      Filinov, V S; Fortov, V E; Bonitz, M; Moldabekov, Zh

      2015-03-01

      The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a/aB--the ratio of the mean interparticle distance to the Bohr radius--approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N=33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4, and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5, both RPIMC and DPIMC are problematic due to the increased fermion sign problem. PMID:25871225

    20. Fermionic path-integral Monte Carlo results for the uniform electron gas at finite temperature

      NASA Astrophysics Data System (ADS)

      Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh.

      2015-03-01

      The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data, accurate theoretical models for high-density plasmas are needed that depend crucially on the quality of the thermodynamic properties of the quantum degenerate nonideal electrons and of the treatment of their interaction with the positive background. Recent fixed-node path-integral Monte Carlo (RPIMC) data are believed to be the most accurate for the UEG at finite temperature, but they become questionable at high degeneracy when the Brueckner parameter rs=a /aB —the ratio of the mean interparticle distance to the Bohr radius—approaches 1. The validity range of these simulations and their predictive capabilities for the UEG are presently unknown. This is due to the unknown quality of the used fixed nodes and of the finite-size scaling from N =33 simulated particles (per spin projection) to the macroscopic limit. To analyze these questions, we present alternative direct fermionic path integral Monte Carlo (DPIMC) simulations that are independent from RPIMC. Our simulations take into account quantum effects not only in the electron system but also in their interaction with the uniform positive background. Also, we use substantially larger particle numbers (up to three times more) and perform an extrapolation to the macroscopic limit. We observe very good agreement with RPIMC, for the polarized electron gas, up to moderate densities around rs=4 , and larger deviations for the unpolarized case, for low temperatures. For higher densities (high electron degeneracy), rs≲1.5 , both RPIMC and DPIMC are problematic due to the increased fermion sign problem.

    1. Movement and Learning: Integrating Physical Activity into the Classroom

      ERIC Educational Resources Information Center

      Reeves, Emily; Miller, Stacia; Chavez, Crystal

      2016-01-01

      We know the benefits of physical activity, and yet recess and physical education classes are being cut or scaled back to make room for meeting academic standards. Is cutting recess and physical education really benefiting academics? A look at some recent studies suggests that it is not. Integrating physical activity into the classroom may increase…

    2. Dogs, Cats, and Kids: Integrating Yoga into Elementary Physical Education

      ERIC Educational Resources Information Center

      Toscano, Lisa; Clemente, Fran

      2008-01-01

      This article describes the benefits of integrating yoga into elementary physical education classes. Taught as warm-up exercises or as an entire class, yoga offers children of any age and physical ability the opportunity to experience success in physical activity. Children need to experience joy while participating in physical activity in order to…

    3. Short-time asymptotics of a rigorous path integral for N = 1 supersymmetric quantum mechanics on a Riemannian manifold

      SciTech Connect

      Fine, Dana S.; Sawin, Stephen

      2014-06-15

      Following Feynman's prescription for constructing a path integral representation of the propagator of a quantum theory, a short-time approximation to the propagator for imaginary-time, N = 1 supersymmetric quantum mechanics on a compact, even-dimensional Riemannian manifold is constructed. The path integral is interpreted as the limit of products, determined by a partition of a finite time interval, of this approximate propagator. The limit under refinements of the partition is shown to converge uniformly to the heat kernel for the Laplace-de Rham operator on forms. A version of the steepest descent approximation to the path integral is obtained, and shown to give the expected short-time behavior of the supertrace of the heat kernel.

    4. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

      SciTech Connect

      Song, Linze; Shi, Qiang

      2015-05-07

      We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.

    5. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations

      NASA Astrophysics Data System (ADS)

      Song, Linze; Shi, Qiang

      2015-05-01

      We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated.

    6. Path integral calculation of free energies: quantum effects on the melting temperature of neon.

      PubMed

      Ramírez, R; Herrero, C P; Antonelli, A; Hernández, E R

      2008-08-14

      The path integral formulation has been combined with several methods to determine free energies of quantum many-body systems, such as adiabatic switching and reversible scaling. These techniques are alternatives to the standard thermodynamic integration method. A quantum Einstein crystal is used as a model to demonstrate the accuracy and reliability of these free energy methods in quantum simulations. Our main interest focuses on the calculation of the melting temperature of Ne at ambient pressure, taking into account quantum effects in the atomic dynamics. The free energy of the solid was calculated by considering a quantum Einstein crystal as reference state, while for the liquid, the reference state was defined by the classical limit of the fluid. Our findings indicate that, while quantum effects in the melting temperature of this system are small, they still amount to about 6% of the melting temperature, and are therefore not negligible. The particle density as well as the melting enthalpy and entropy of the solid and liquid phases at coexistence is compared to results obtained in the classical limit and also to available experimental data. PMID:18715054

    7. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

      NASA Astrophysics Data System (ADS)

      Yexin, Feng; Ji, Chen; Xin-Zheng, Li; Enge, Wang

      2016-01-01

      The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275008, 91021007, and 10974012) and the China Postdoctoral Science Foundation (Grant No. 2014M550005).

    8. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

      NASA Astrophysics Data System (ADS)

      Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

      2016-06-01

      The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-μm laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-μm integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

    9. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

      NASA Technical Reports Server (NTRS)

      Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

      2015-01-01

      The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

    10. A reliable acoustic path: Physical properties and a source localization method

      NASA Astrophysics Data System (ADS)

      Duan, Rui; Yang, Kun-De; Ma, Yuan-Liang; Lei, Bo

      2012-12-01

      The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace-fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.

    11. Effects of Partners Together in Health (PaTH) Intervention on Physical Activity and Healthy Eating Behaviors: A Pilot Study

      PubMed Central

      Yates, Bernice C.; Norman, Joseph; Meza, Jane; Krogstrand, Kaye Stanek; Harrington, Susana; Shurmur, Scott; Johnson, Matthew; Schumacher, Karen

      2014-01-01

      Background Despite proven efficacy of cardiac rehabilitation (CR) in helping patients initiate physical activity and healthy eating changes, less than 50% of CR participants maintain changes 6 months later. Objective The objective of this feasibility study was to test the Partners Together in Health (PaTH) Intervention versus usual care (UC) in improving physical activity and healthy eating behaviors in coronary artery bypass graft (CABG) surgery patients and spouses. Methods An experimental, two-group (n = 17 couples/group), repeated measures design was used. CABG patients in both groups participated in Phase II outpatient CR. Spouses in the PaTH group attended CR with the patient and were asked to make the same physical activity and healthy eating changes as patients. Spouses in the control group attended educational classes with patients. It was theorized that “two persons would be better than one” at making changes and sticking with them long-term. Physical activity behavior was measured using the Actiheart accelerometer; the activity biomarker was an exercise tolerance test. Eating behavior was measured using 3-day food records; the biomarker was the lipid profile. Data were collected at baseline (entrance in CR), 3-months (post-CR), and 6-months. Changes over time were examined using Mann-Whitney U statistics and effect sizes. Results The PaTH intervention was successful primarily in demonstrating improved trends in healthy eating behavior for patients and spouses. No differences were found between the PaTH and UC patients or spouses at 3 or 6 months in the number of minutes/week of physical activity. By 6 months, patients in both groups were, on average, below the national guidelines for PA recommendations (≥ 150 min/week at > 3 METs). Conclusions The couple-focused PaTH intervention demonstrated promise in offsetting the decline in dietary adherence typically seen 6 months after CR. PMID:24434826

    12. The Sensitivity of Sediment Path-Lengths to Channel Morphology: Results from Physical Models of Braided Rivers

      NASA Astrophysics Data System (ADS)

      Kasprak, A.; Ashmore, P.; Peirce, S.; Wheaton, J. M.

      2013-12-01

      The travel distances of coarse sediment in gravel-bed rivers during floods, or their path-lengths, exhibit strong dependencies on the arrangement of geomorphic units they are sourced from, routed through or around, and finally deposited on. Despite previous research on both braiding and single-thread meandering streams, a coherent rule set which relates particle path lengths to morphology remains elusive; such a rule set has the potential to vastly simplify models which seek to predict sediment transport or morphodynamics in these channels. Here we seek to understand the sensitivity of particle path-length distributions to morphology via a physical model of a braided stream, by using fluorescent tracer particles to track sediment path-lengths. These flume experiments provide a rich dataset composed of before-and-after bed photogrammetry, along with high-resolution photography and high-speed video documentation of particle deposition and mobility. Initial analyses indicate a strong coupling between particle path-length and the spatial arrangement of in-channel geomorphic units, with bar heads and point bars frequently acting as sink locations for tracer particles. This is interesting as it suggests that morphodynamics are in part contingent on morphology with strong positive feedbacks on hydraulics, deposition and negative feedbacks on path-length. Several mechanisms of braiding were captured in the simulations as erosional source processes for the tracers, including chute cutoff of point bars, bank erosion, channel incision, and bar edge trimming. These results may help inform the development of morphodynamic models for braided rivers which rely on particle path-lengths to simplify sediment transport algorithms, and such relations between channel morphology and path-length hold the potential to benefit numerous other modeling efforts, as well as provide a heuristic framework with which to understand fluvial morphodynamics.

    13. Discovering Integration through a Physical Phenomenon

      ERIC Educational Resources Information Center

      Burt, Derek; Magnes, Jenny; Schwarz, Gregory; Hartke, John

      2008-01-01

      This article outlines a method of conducting a laboratory designed to discover mathematical integration with students. The results are produced and verified in the laboratory by students. Understanding that an integral is defined by the area bounded by a function of x and the x-axis from a point a to a point b is challenging. Students often have…

    14. Comment on ‘An educational path for the magnetic vector potential and its physical implications’

      NASA Astrophysics Data System (ADS)

      Heras, José A.

      2014-03-01

      In their recent paper, Barbieri et al (2013 Eur. J. Phys. 34 1209) proposed an educational path for the magnetic vector potential. In this comment I point out that this educational path involves several inconsistencies and is therefore unattractive from a pedagogical point of view.

    15. Integrating Physical Activity into Academic Pursuits

      ERIC Educational Resources Information Center

      Gaus, Mark D.; Simpson, Cynthia G.

      2009-01-01

      Children of today may be the first generation in the United States in more than 200 years to have a life expectancy shorter than their parents. Low levels of fitness caused by physical inactivity and poor nutritional habits of many of today's youth may be a contributing factor. Combating low fitness levels with physical activity is of utmost…

    16. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

      NASA Astrophysics Data System (ADS)

      Collett, Jeffrey

      2008-03-01

      The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

    17. Computer Integrated Manufacturing: Physical Modelling Systems Design. A Personal View.

      ERIC Educational Resources Information Center

      Baker, Richard

      A computer-integrated manufacturing (CIM) Physical Modeling Systems Design project was undertaken in a time of rapid change in the industrial, business, technological, training, and educational areas in Australia. A specification of a manufacturing physical modeling system was drawn up. Physical modeling provides a flexibility and configurability…

    18. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

      ERIC Educational Resources Information Center

      Field, J. H.

      2011-01-01

      It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

    19. Green function of the double-fractional Fokker-Planck equation: path integral and stochastic differential equations.

      PubMed

      Kleinert, H; Zatloukal, V

      2013-11-01

      The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration. PMID:24329213

    20. Creativity, Spirituality, and Transcendence: Paths to Integrity and Wisdom in the Mature Self. Publications in Creativity Research.

      ERIC Educational Resources Information Center

      Miller, Melvin E., Ed.; Cook-Greuter, Susanne R., Ed.

      This book contains 11 papers on creativity, spirituality, and transcendence as paths to integrity and wisdom in the mature self. The book begins with the paper "Introduction--Creativity in Adulthood: Personal Maturity and Openness to Extraordinary Sources of Inspiration" (Susanne R. Cook-Greuter, Melvin E. Miller). The next four papers, which…

    1. Path-integral solution for a two-dimensional model with axial-vector-current--pseudoscalar derivative interaction

      SciTech Connect

      Botelho, L.C.L.

      1985-03-15

      We study a two-dimensional quantum field model with axial-vector-current--pseudoscalar derivative interaction using path-integral methods. We construct an effective Lagrangian by performing a chiral change in the fermionic variables leading to an exact solution of the model.

    2. White Noise Path Integral Treatment of a Two-dimensional Dirac Oscillator in a Uniform Magnetic Field

      SciTech Connect

      Bastatas, Lyndon D.; Bornales, Jinky B.

      2008-06-18

      White noise path integral prescription is applied to solve the Dirac equation for a two-dimensional Dirac oscillator in a uniform magnetic field. The energy spectrum obtained agrees with the result obtained by Villalba and Maggiolo using the differential approach.

    3. PLANE-INTEGRATED OPEN-PATH FOURIER TRANSFORM INFRARED SPECTROMETRY METHODOLOGY FOR ANAEROBIC SWINE LAGOON EMISSION MEASUREMENTS

      EPA Science Inventory

      Emissions of ammonia and methane from an anaerobic lagoon at a swine animal feeding operation were evaluated five times over a period of two years. The plane-integrated (PI) open-path Fourier transform infrared spectrometry (OP-FTIR) methodology was used to transect the plume at ...

    4. Integrated Health and Physical Education Program to Reduce Media Use and Increase Physical Activity in Youth

      ERIC Educational Resources Information Center

      Clocksin, Brian D.; Wattson, Doris L.; Williams, Daniel P.; Randsell, Lynda

      2009-01-01

      The purpose of this project was to compare an integrated health and physical education curriculum, focused on reducing media use and on increasing physical activity in middle school adolescents, to traditional and nonintegrated health and physical education curricula. Two middle schools' health and physical education classes were assigned to an…

    5. Cyber / Physical Security Vulnerability Assessment Integration

      SciTech Connect

      MacDonald, Douglas G.; Simpkins, Bret E.

      2012-07-28

      Abstract Both physical protection and cyber security domains offer solutions for the discovery of vulnerabilities through the use of various assessment processes and software tools. Each vulnerability assessment (VA) methodology provides the ability to identify and categorize vulnerabilities, and quantifies the risks within their own areas of expertise. Neither approach fully represents the true potential security risk to a site and/or a facility, nor comprehensively assesses the overall security posture. The technical approach to solving this problem was to identify methodologies and processes that blend the physical and cyber security assessments, and develop tools to accurately quantify the unaccounted for risk. SMEs from both the physical and the cyber security domains developed the blending methodologies, and cross trained each other on the various aspects of the physical and cyber security assessment processes. A local critical infrastructure entity volunteered to host a proof of concept physical/cyber security assessment, and the lessons learned have been leveraged by this effort. The four potential modes of attack an adversary can use in approaching a target are; Physical Only Attack, Cyber Only Attack, Physical Enabled Cyber Attack, and the Cyber Enabled Physical Attack. The Physical Only and the Cyber Only pathway analysis are two of the most widely analyzed attack modes. The pathway from an off-site location to the desired target location is dissected to ensure adversarial activity can be detected and neutralized by the protection strategy, prior to completion of a predefined task. This methodology typically explores a one way attack from the public space (or common area) inward towards the target. The Physical Enabled Cyber Attack and the Cyber Enabled Physical Attack are much more intricate. Both scenarios involve beginning in one domain to affect change in the other, then backing outward to take advantage of the reduced system effectiveness, before

    6. Path ANalysis

      SciTech Connect

      Snell, Mark K.

      2007-07-14

      The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes during courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.

    7. Path ANalysis

      Energy Science and Technology Software Center (ESTSC)

      2007-07-14

      The PANL software determines path through an Adversary Sequence Diagram (ASD) with minimum Probability of Interruption, P(I), given the ASD information and data about site detection, delay, and response force times. To accomplish this, the software generates each path through the ASD, then applies the Estimate of Adversary Sequence Interruption (EASI) methodology for calculating P(I) to each path, and keeps track of the path with the lowest P(I). Primary use is for training purposes duringmore » courses on physical security design. During such courses PANL will be used to demonstrate to students how more complex software codes are used by the US Department of Energy to determine the most-vulnerable paths and, where security needs improvement, how such codes can help determine physical security upgrades.« less

    8. Evading the sign problem in the mean-field approximation through Lefschetz-thimble path integral

      NASA Astrophysics Data System (ADS)

      Tanizaki, Yuya; Nishimura, Hiromichi; Kashiwa, Kouji

      2015-05-01

      The fermion sign problem appearing in the mean-field approximation is considered, and the systematic computational scheme of the free energy is devised by using the Lefschetz-thimble method. We show that the Lefschetz-thimble method respects the reflection symmetry, which makes physical quantities manifestly real at any order of approximations using complex saddle points. The formula is demonstrated through the Airy integral as an example, and its application to the Polyakov-loop effective model of dense QCD is discussed in detail.

    9. Bayesian Uncertainty Quantification for Bond Energies and Mobilities Using Path Integral Analysis

      PubMed Central

      Chang, Joshua C.; Fok, Pak-Wing; Chou, Tom

      2015-01-01

      Dynamic single-molecule force spectroscopy is often used to distort bonds. The resulting responses, in the form of rupture forces, work applied, and trajectories of displacements, are used to reconstruct bond potentials. Such approaches often rely on simple parameterizations of one-dimensional bond potentials, assumptions on equilibrium starting states, and/or large amounts of trajectory data. Parametric approaches typically fail at inferring complicated bond potentials with multiple minima, while piecewise estimation may not guarantee smooth results with the appropriate behavior at large distances. Existing techniques, particularly those based on work theorems, also do not address spatial variations in the diffusivity that may arise from spatially inhomogeneous coupling to other degrees of freedom in the macromolecule. To address these challenges, we develop a comprehensive empirical Bayesian approach that incorporates data and regularization terms directly into a path integral. All experimental and statistical parameters in our method are estimated directly from the data. Upon testing our method on simulated data, our regularized approach requires less data and allows simultaneous inference of both complex bond potentials and diffusivity profiles. Crucially, we show that the accuracy of the reconstructed bond potential is sensitive to the spatially varying diffusivity and accurate reconstruction can be expected only when both are simultaneously inferred. Moreover, after providing a means for self-consistently choosing regularization parameters from data, we derive posterior probability distributions, allowing for uncertainty quantification. PMID:26331254

    10. Boosting QED and QCD bound states in the path integral formalism

      NASA Astrophysics Data System (ADS)

      Simonov, Yu. A.

      2015-03-01

      Wave functions and energy eigenvalues of the path integral Hamiltonian are studied in the Lorentz frame moving with velocity v . The instantaneous interaction produced by the Wilson loop is shown to be reduced by an overall factor √{1 -(v/c )2 }. As a result, one obtains the boosted energy eigenvalues in the Lorentz covariant form E =√{P2+M02 } , where M0 is the c.m. energy, and this form is tested for two free particles and for the Coulomb and linear interaction. Using Lorentz-contracted wave functions of the bound states, one obtains the scaled-parton wave functions and valence quark distributions for large P . Matrix elements containing wave functions moving with different velocities strongly decrease with growing relative momentum; e.g., for the timelike form factors, one obtains Fh(Q0)˜(M/hQ_0)2 nh with nh=1 and 2 for mesons and baryons, as in the "quark counting rule."

    11. Path-integral Monte Carlo simulation of the second layer of 4He adsorbed on graphite

      NASA Astrophysics Data System (ADS)

      Pierce, Marlon; Manousakis, Efstratios

      1999-02-01

      We have developed a path-integral Monte Carlo method for simulating helium films and apply it to the second layer of helium adsorbed on graphite. We use helium-helium and helium-graphite interactions that are found from potentials which realistically describe the interatomic interactions. The Monte Carlo sampling is over both particle positions and permutations of particle labels. From the particle configurations and static structure factor calculations, we find that this layer possesses, in order of increasing density, a superfluid liquid phase, a 7×7 commensurate solid phase that is registered with respect to the first layer, and an incommensurate solid phase. By applying the Maxwell construction to the dependence of the low-temperature total energy on the coverage, we are able to identify coexistence regions between the phases. From these, we deduce an effectively zero-temperature phase diagram. Our phase boundaries are in agreement with heat capacity and torsional oscillator measurements, and demonstrate that the experimentally observed disruption of the superfluid phase is caused by the growth of the commensurate phase. We further observe that the superfluid phase has a transition temperature consistent with the two-dimensional value. Promotion to the third layer occurs for densities above 0.212 atom/Å 2, in good agreement with experiment. Finally, we calculate the specific heat for each phase and obtain peaks at temperatures in general agreement with experiment.

    12. Excitonic effects in 2D semiconductors: Path Integral Monte Carlo approach

      NASA Astrophysics Data System (ADS)

      Velizhanin, Kirill; Saxena, Avadh

      One of the most striking features of novel 2D semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multi-carrier bound states (e.g., excitons, trions and biexcitons), which could remain stable at near-room temperatures and contribute significantly to optical properties of such materials. In my talk, I will report on our recent progress in using the Path Integral Monte Carlo methodology to numerically study properties of multi-carrier bound states in 2D semiconductors. Incorporating the effect of the dielectric confinement (via Keldysh potential), we have investigated and tabulated the dependence of single exciton, trion and biexciton binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. The implications of the obtained results and the possible limitations of the used model will be discussed. The results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.

    13. Path-integral approach to the dynamics of a random chain with rigid constraints

      SciTech Connect

      Ferrari, Franco; Paturej, Jaroslaw; Vilgis, Thomas A.

      2008-02-15

      In this work the dynamics of a chain consisting of a set of beads attached to the ends of segments of fixed lengths is investigated. The chain fluctuates at constant temperature in a viscous medium. For simplicity, all interactions among the beads have been switched off and the number of spatial dimensions has been limited to two. In the limit in which the chain becomes a continuous system, its behavior may be described by a path integral, in which the rigid constraints coming from the infinitesimally small segments are imposed by means of a functional {delta} function. In this way a model of the dynamics of the chain is obtained, which closely resembles a two-dimensional nonlinear {sigma} model. The partition function of this generalized nonlinear {sigma} model is computed explicitly for a ring-shaped chain in the semiclassical approximation. The behavior of the chain at both long and short scales of time and distances is investigated. The connection between the generalized nonlinear {sigma} model presented here and the Rouse model is discussed.

    14. Iterative quantum-classical path integral with dynamically consistent state hopping

      NASA Astrophysics Data System (ADS)

      Walters, Peter L.; Makri, Nancy

      2016-01-01

      We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

    15. Iterative quantum-classical path integral with dynamically consistent state hopping.

      PubMed

      Walters, Peter L; Makri, Nancy

      2016-01-28

      We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort. PMID:26827203

    16. Path-Integral Monte Carlo and the Squeezed Trapped Bose-Einstein Gas

      SciTech Connect

      Fernandez, Juan Pablo; Mullin, William J.

      2006-09-07

      Bose-Einstein condensation has been experimentally found to take place in finite trapped systems when one of the confining frequencies is increased until the gas becomes effectively two-dimensional (2D). We confirm the plausibility of this result by performing path-integral Monte Carlo (PIMC) simulations of trapped Bose gases of increasing anisotropy and comparing them to the predictions of finite-temperature many-body theory. PIMC simulations provide an essentially exact description of these systems; they yield the density profile directly and provide two different estimates for the condensate fraction. For the ideal gas, we find that the PIMC column density of the squeezed gas corresponds quite accurately to that of the exact analytic solution and, moreover, is well mimicked by the density of a 2D gas at the same temperature; the two estimates for the condensate fraction bracket the exact result. For the interacting case, we find 2D Hartree-Fock solutions whose density profiles coincide quite well with the PIMC column densities and whose predictions for the condensate fraction are again bracketed by the PIMC estimates.

    17. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

      NASA Astrophysics Data System (ADS)

      Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

      2015-06-01

      A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

    18. Equilibrium fractionation of H and O isotopes in water from path integral molecular dynamics

      NASA Astrophysics Data System (ADS)

      Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Ferlat, Guillaume; Vuilleumier, Rodolphe; Mauri, Francesco

      2014-06-01

      The equilibrium fractionation factor between two phases is of importance for the understanding of many planetary and environmental processes. Although thermodynamic equilibrium can be achieved between minerals at high temperature, many natural processes involve reactions between liquids or aqueous solutions and solids. For crystals, the fractionation factor α can be theoretically determined using a statistical thermodynamic approach based on the vibrational properties of the phases. These calculations are mostly performed in the harmonic approximation, using empirical or ab-initio force fields. In the case of aperiodic and dynamic systems such as liquids or solutions, similar calculations can be done using finite-size molecular clusters or snapshots obtained from molecular dynamics (MD) runs. It is however difficult to assess the effect of these approximate models on the isotopic fractionation properties. In this work we present a systematic study of the calculation of the D/H and 18O/16O equilibrium fractionation factors in water for the liquid/vapour and ice/vapour phases using several levels of theory within the simulations. Namely, we use a thermodynamic integration approach based on Path Integral MD calculations (PIMD) and an empirical potential model of water. Compared with standard MD, PIMD takes into account quantum effects in the thermodynamic modeling of systems and the exact fractionation factor for a given potential can be obtained. We compare these exact results with those of modeling strategies usually used, which involve the mapping of the quantum system on its harmonic counterpart. The results show the importance of including configurational disorder for the estimation of isotope fractionation in liquid phases. In addition, the convergence of the fractionation factor as a function of parameters such as the size of the simulated system and multiple isotope substitution is analyzed, showing that isotope fractionation is essentially a local effect in

    19. Path Integral Monte Carlo Simulations of Solid Molecular Hydrogen Surfaces and Thin HELIUM-4 Films on Molecular Hydrogen Substrates

      NASA Astrophysics Data System (ADS)

      Wagner, Marcus

      Based on Richard P. Feynman's formulation of quantum mechanics, Path Integral Monte Carlo is a computational ab-initio method to calculate finite temperature equilibrium properties of quantum many-body systems. As input, only fundamental physical constants and pair-potentials are required. We carry out the first ab-initio particle simulations of three related physical systems. First, the bare H _2 substrate is simulated between 0.5 and 1.3K, because a liquid H_2 film is a candidate for a new superfluid. We find evidence of quantum exchange in surface terraces for up to 1K. Second, the melting of the H_2 surface between 3 and 15K is examined since this is the cleanest example of quantum surface melting. Third, atomically thin superfluid ^4He films on H_2 surfaces are simulated, calculating binding energies per ^4He atom and third sound, an important experimental probe for superfuid ^4 He films. For all systems we compute density profiles perpendicular and parallel to the surface and compare to experiment. We treat both H_2 molecules and ^4He atoms on the same footing, as spherical particles. For simulations of bulk/vapor interfaces and surface adsorption, a realistic representation of the macroscopic surface is crucial. Therefore, we introduce an external potential to account for arbitrarily layered substrates and long-range corrections. Two algorithms for parallel computers with independent processors are introduced, one to manage concurrent simulations of entire phase-diagrams, and one to improve input/output speed for files shared by all processors.

    20. The roots of physics students' motivations: Fear and integrity

      NASA Astrophysics Data System (ADS)

      Van Dusen, Ben

      Too often, physics students are beset by feelings of failure and isolation rather than experiencing the creative joys of discovery that physics has to offer. This dissertation research was founded on the desire of a teacher to make physics class exciting and motivating to his students. This work explores how various aspects of learning environments interact with student motivation. This work uses qualitative and quantitative methods to explore how students are motivated to engage in physics and how they feel about themselves while engaging in physics. The collection of four studies in this dissertation culminates in a sociocultural perspective on motivation and identity. This perspective uses two extremes of how students experience physics as a lens for understanding motivation: fear and self-preservation versus integrity and self-expression. Rather than viewing motivation as a property of the student, or viewing students as inherently interested or disinterested in physics, the theoretical perspective on motivation and identity helps examine features of the learning environments that determine how students' experience themselves through physics class. This perspective highlights the importance of feeling a sense of belonging in the context of physics and the power that teachers have in shaping students' motivation through the construction of their classroom learning environments. Findings demonstrate how different ways that students experience themselves in physics class impact their performance and interest in physics. This dissertation concludes with a set of design principles that can foster integration and integrity among students in physics learning environments.

    1. Proton Transfer Studied Using a Combined Ab Initio Reactive Potential Energy Surface with Quantum Path Integral Methodology

      PubMed Central

      Wong, Kim F.; Sonnenberg, Jason L.; Paesani, Francesco; Yamamoto, Takeshi; Vaníček, Jiří; Zhang, Wei; Schlegel, H. Bernhard; Case, David A.; Cheatham, Thomas E.; Miller, William H.; Voth, Gregory A.

      2010-01-01

      The rates of intramolecular proton transfer are calculated on a full-dimensional reactive electronic potential energy surface that incorporates high level ab initio calculations along the reaction path and by using classical Transition State theory, Path-Integral Quantum Transition State Theory, and the Quantum Instanton approach. The specific example problem studied is malonaldehyde. Estimates of the kinetic isotope effect using the latter two methods are found to be in reasonable agreement with each other. Improvements and extensions of this practical, yet chemically accurate framework for the calculations of quantized, reactive dynamics are also discussed. PMID:21116485

    2. An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction

      NASA Astrophysics Data System (ADS)

      Wang, Zhongyi; Gao, Qi; Wang, Chengyue; Wei, Runjie; Wang, Jinjun

      2016-06-01

      Particle image velocimetry (PIV)-based pressure reconstruction has become a popular technique in experimental fluid mechanics. Noise or errors in raw velocity field would significantly affect the quality of pressure reconstruction in PIV measurement. To reduce experimental errors in pressure gradient and improve the precision of reconstructed pressure field, a minimal 2-norm criteria-based new technique called irrotation correction (IC) with orthogonal decomposition is developed. The pressure reconstruction is therefore composed of three steps: calculation of pressure gradient from time-resolved velocity fields of PIV, an irrotation correction on the pressure gradient field, and finally a simple orthogonal-path integration (OPI) for pressure. Systematic assessments of IC algorithm are performed on synthetic solid-body rotation flow, direct numerical simulations of a channel flow and an isotropic turbulent flow. The results show that IC is a robust algorithm which can significantly improve the accuracy of pressure reconstruction primarily in the low wave number domain. After irrotation correction, noisy pressure gradient field ideally becomes an irrotational field on which the pressure integration is independent of integrating paths. Therefore, an OPI algorithm is proposed to perform the pressure integration in an efficient way with very few integration paths. This makes the new technique to be a doable method on three-dimensional pressure reconstruction with acceptable computational cost.

    3. On horizontal coherence estimates from path integral theory for sound propagation through random ocean sound-speed perturbations.

      PubMed

      Colosi, John A

      2013-10-01

      Previously published results from path integral theory for the horizontal coherence length utilized an empirical relation for the phase structure function density that was quite different from path integral results obtained for depth and time coherence where the phase structure function density was expanded to second order in the lag. This letter presents a result for horizontal coherence length which carries out the quadratic expansion and analytically solves the integral equations. Some simple calculations of horizontal coherence length demonstrate the differences between the present and old expressions. In contrast to the empirical result the present expression shows the expected one over square-root range and one over frequency scalings. The results also show more clearly how transverse coherence is sensitive to the space-time scales of internal waves and other environmental parameters. PMID:24116509

    4. Path programmable logic: A structured design method for digital and/or mixed analog integrated circuits

      NASA Technical Reports Server (NTRS)

      Taylor, B.

      1990-01-01

      The design of Integrated Circuits has evolved past the black art practiced by a few semiconductor companies to a world wide community of users. This was basically accomplished by the development of computer aided design tools which were made available to this community. As the tools matured into different components of the design task they were accepted into the community at large. However, the next step in this evolution is being ignored by the large tool vendors hindering the continuation of this process. With system level definition and simulation through the logic specification well understood, why is the physical generation so blatantly ignored. This portion of the development is still treated as an isolated task with information being passed from the designer to the layout function. Some form of result given back but it severely lacks full definition of what has transpired. The level of integration in I.C.'s for tomorrow, whether through new processes or applications will require higher speeds, increased transistor density, and non-digital performance which can only be achieved through attention to the physical implementation.

    5. Integrated Applied Programs in Physical Sciences.

      ERIC Educational Resources Information Center

      Byrd, J. William

      1980-01-01

      Data gathered from a national survey mailed to 55 industries employing large numbers of technical personnel support the notion that the employment market should be broadened for persons receiving their academic training in physics. Alternative curriculum strategies and course subjects are suggested for preparing physicists for industrial…

    6. A graph-theoretical approach to the selection of the minimum tiling path from a physical map.

      PubMed

      Bozdag, Serdar; Close, Timothy J; Lonardi, Stefano

      2013-01-01

      The problem of computing the minimum tiling path (MTP) from a set of clones arranged in a physical map is a cornerstone of hierarchical (clone-by-clone) genome sequencing projects. We formulate this problem in a graph theoretical framework, and then solve by a combination of minimum hitting set and minimum spanning tree algorithms. The tool implementing this strategy, called FMTP, shows improved performance compared to the widely used software FPC. When we execute FMTP and FPC on the same physical map, the MTP produced by FMTP covers a higher portion of the genome, and uses a smaller number of clones. For instance, on the rice genome the MTP produced by our tool would reduce by about 11 percent the cost of a clone-by-clone sequencing project. Source code, benchmark data sets, and documentation of FMTP are freely available at >http://code.google.com/p/fingerprint-based-minimal-tiling-path/ under MIT license. PMID:23929859

    7. The Atomic Relay: Integrating Physical Education and Science.

      ERIC Educational Resources Information Center

      Menelly, Daniel J.

      1997-01-01

      Presents a lesson plan for teaching abstract science concepts to gifted middle school students. The lesson integrates a physical education component into science instruction to reinforce the abstract notion that electrons emit energy in the form of visible light. (CR)

    8. Max Delbruck Prize in Biological Physics Lecture: Single-molecule protein folding and transition paths

      NASA Astrophysics Data System (ADS)

      Eaton, William

      2012-02-01

      The transition path is the tiny fraction of an equilibrium molecular trajectory when a transition occurs by crossing the free energy barrier between two states. It is a uniquely single-molecule property, and has not yet been observed experimentally for any system in the condensed phase. The importance of the transition path in protein folding is that it contains all of the mechanistic information on how a protein folds. As a major step toward observing transition paths, we have determined the average transition-path time for a fast and a slow-folding protein from a photon-by-photon analysis of fluorescence trajectories in single-molecule FRET experiments. While the folding rate coefficients differ by 10,000-fold, surprisingly, the transition-path times differ by less than 5-fold, showing that a successful barrier crossing event takes almost the same time for a fast- and a slow-folding protein, i.e. almost the same time to fold when it actually happens.

    9. Parallel estimation of path-integrated concentration and vapor absorptivity using topographic backscatter lidar

      NASA Astrophysics Data System (ADS)

      Warren, R. E.; Vanderbeek, R. G.

      2005-08-01

      Topographic backscatter lidar that uses solid surfaces to provide the return signals is a well known vapor estimation technique either though the two-wavelength DIAL (differential absorption lidar) paradigm or a multiple wavelength generalization. All algorithms known to the authors for estimating the path-integrated concentration, or CL, require prior knowledge of the wavelength dependence of the absorptivity of the vapor materials of interest for generating the CL estimates. However, for many applications it is not feasible to process the data in the traditional way. In addition, for some materials the absorptivity may be only approximately known. For these reasons it is often desirable to estimate the spectral structure of the absorptivity using the same data set used to estimate the vapor CL. This paper describes a method for simultaneously estimating the spectral dependence of the absorptivity of a set of Q materials in parallel with the timedependence of the corresponding CLs using a time series of topographic backscatter lidar data collected at M wavelengths. For processing efficiency we provide dynamic estimates of the CLs through a Kalman filter. The fluctuating transmitted energy is also included in the state vector. This inclusion automatically accomplishes transmitter energy normalization optimally. Absorptivity is estimated through a sequential least-squares method. The basic idea is to run two estimators in parallel: a Kalman filter for CL and transmitter energy, and a sequential least-squares estimator for absorptivity. These algorithms exchange information continuously over the data processing stream. The approach is illustrated on simulated and real topographic backscatter lidar data collected by ECBC.

    10. Quantum path-integral study of the phase diagram and isotope effects of neon.

      PubMed

      Ramírez, R; Herrero, C P

      2008-11-28

      The phase diagram of natural neon has been calculated for temperatures in the range of 17-50 K and pressures between 10(-2) and 2 x 10(3) bar. The phase coexistence between solid, liquid, and gas phases has been determined by the calculation of the separate free energy of each phase as a function of temperature. Thus, for a given pressure, the coexistence temperature was obtained by the condition of equal free energy of coexisting phases. The free energy was calculated by using nonequilibrium techniques such as adiabatic switching and reversible scaling. The phase diagram obtained by classical Monte Carlo simulations has been compared to that obtained by quantum path-integral simulations. Quantum effects related to the finite mass of neon cause that coexistence lines are shifted toward lower temperatures when compared to the classical limit. The shift found in the triple point amounts to 1.5 K, i.e., about 6% of the triple-point temperature. The triple-point isotope effect has been determined for (20)Ne, (21)Ne, (22)Ne, and natural neon. The simulation data show satisfactory agreement to previous experimental results, which report a shift of about 0.15 K between triple-point temperatures of (20)Ne and (22)Ne. The vapor pressure isotope effect has been calculated for both solid and liquid phases at triple-point conditions. The quantum simulations predict that this isotope effect is larger in the solid than in the liquid phase, and the calculated values show nearly quantitative agreement to available experimental data. PMID:19045868

    11. Comparison of the timing of hippocampal and subicular spatial signals: implications for path integration.

      PubMed

      Sharp, P E

      1999-01-01

      Cells in several portions of the hippocampal formation show location-related firing, so that the momentary rate of each cell signals the spatial location of a freely moving rat. Insight into how these signals are generated, and how they travel around the hippocampal circuitry, can be gained by examination of the exact timing of the locational signal. Here, this was investigated for both hippocampal and subicular cells. For this, several aspects of the spatial firing pattern of each cell were examined over a series of time shifts, in which spikes were paired with locations occupied by the animal in either the immediate past, present, or future. Results showed that subicular cells appear to anticipate future locations by approximately 50 to 70 msec, on average. In contrast, hippocampal cells were best correlated with positions about 30 to 40 msec in the future. However, this timing, for hippocampal cells only, was related to the average session running speed, so that the cells were correlated with future locations at slow speeds, but lagged behind (were correlated with past locations) at high speeds. These data support the idea that both subicular and hippocampal cells use a path integration mechanism to generate their spatial signal (since both can anticipate future location). For the hippocampal cells the mechanism does not, apparently, take into account speed information, however. Also, the data suggest that the subicular signal cannot be the result of simple transmission of spatial information from the hippocampus to the subiculum, since this would predict that the subicular signal should correlate with later positions than the hippocampal signal. PMID:10226776

    12. Proton transport in triflic acid hydrates studied via path integral car-parrinello molecular dynamics.

      PubMed

      Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

      2009-12-31

      The mono-, di-, and tetrahydrates of trifluoromethanesulfonic acid, which contain characteristic H(3)O(+), H(5)O(2)(+), and H(9)O(4)(+) structures, provide model systems for understanding proton transport in materials with high perfluorosulfonic acid density such as perfluorosulfonic acid membranes commonly employed in hydrogen fuel cells. Ab initio molecular dynamics simulations indicate that protons in these solids are predisposed to transfer to the water most strongly bound to sulfonate groups via a Grotthuss-type mechanism, but quickly return to the most solvated defect structure either due to the lack of a nearby species to stabilize the new defect or a preference for the proton to be maximally hydrated. Path integral molecular dynamics of the mono- and dihydrate reveal significant quantum effects that facilitate proton transfer to the "presolvated" water or SO(3)(-) in the first solvation shell and increase the Zundel character of all the defects. These trends are quantified in free energy profiles for each bonding environment. Hydrogen bonding criteria for HOH-OH(2) and HOH-O(3)S are extracted from the two-dimensional potential of mean force. The quantum radial distribution function, radius of gyration, and root-mean-square displacement position correlation function show that the protonic charge is distributed over two or more water molecules. Metastable structural defects with one excess proton shared between two sulfonate groups and another Zundel or Eigen type cation defect are found for the mono- and dihydrate but not for the tetrahydrate crystal. Results for the tetrahydrate native crystal exhibit minor differences at 210 and 250 K. IR spectra are calculated for all native and stable defect structures. Graph theory techniques are used to characterize the chain lengths and ring sizes in the hydrogen bond network. Low conductivities when limited water is present may be attributable to trapping of protons between SO(3)(-) groups and the increased

    13. Generalization of the coherent-state path integrals and systematic derivation of semiclassical propagators

      SciTech Connect

      Koda, Shin-ichi; Takatsuka, Kazuo

      2011-03-15

      The coherent path integral is generalized such that the identity operator represented in a complete (actually overcomplete) set of the coherent states with the ''time-variable'' exponents are inserted between two consecutive short-time propagators. Since such a complete set of any given exponent can constitute the identity operator, the exponent may be varied from time to time without loss of generality as long as it is set common to all the Gaussians. However, a finite truncation of the coherent state expansion should result in different values of the propagator depending on the choice of the exponents. Furthermore, approximation methodology to treat with the exact propagator can also depend on this choice, and thereby many different semiclassical propagators may emerge from these combinations. Indeed, we show that the well-known semiclassical propagators such as those of Van Vleck, Herman-Kluk, Heller's thawed Gaussian, and many others can be derived in a systematic manner, which enables one to comprehend these semiclassical propagators from a unified point of view. We are particularly interested in our generalized form of the Herman-Kluk propagator, since the relative accuracy of this propagator has been well established by Kay, and since, nevertheless, its derivation was not necessarily clear. Thus our generalized Herman-Kluk propagator replaces the classical Hamiltonian with a Gaussian averaged quantum Hamiltonian, generating non-Newtonian trajectories. We perform a numerical test to assess the quality of such a family of generalized Herman-Kluk propagators and find that the original Herman-Kluk gives an accurate result. The reason why this has come about is also discussed.

    14. Ensuring critical event sequences in high integrity software by applying path expressions

      SciTech Connect

      Kidd, M.E.C.

      1996-07-01

      The goal of this work is to extend the use of existing path expression theory and methodologies to ensure that critical software event sequences are maintained even in the face of malevolent attacks and harsh or unstable operating environments. This will be accomplished by providing dynamic fault management measures directly to the software developer and to their varied development environments. This paper discusses the perceived problems, a brief overview of path expressions, and the author`s proposed extension areas. The authors discuss how the traditional path expression usage and implementation differs from the intended usage and implementation.

    15. Blip decomposition of the path integral: Exponential acceleration of real-time calculations on quantum dissipative systems

      NASA Astrophysics Data System (ADS)

      Makri, Nancy

      2014-10-01

      The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the "fully incoherent limit" zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.

    16. Blip decomposition of the path integral: Exponential acceleration of real-time calculations on quantum dissipative systems

      SciTech Connect

      Makri, Nancy

      2014-10-07

      The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the “fully incoherent limit” zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.

    17. Accelerator physics analysis with an integrated toolkit

      SciTech Connect

      Holt, J.A.; Michelotti, L.; Satogata, T.

      1992-08-01

      Work is in progress on an integrated software toolkit for linear and nonlinear accelerator design, analysis, and simulation. As a first application, ``beamline`` and ``MXYZPTLK`` (differential algebra) class libraries, were used with an X Windows graphics library to build an user-friendly, interactive phase space tracker which, additionally, finds periodic orbits. This program was used to analyse a theoretical lattice which contains octupoles and decapoles to find the 20th order, stable and unstable periodic orbits and to explore the local phase space structure.

    18. Integrating Computational Chemistry into the Physical Chemistry Curriculum

      ERIC Educational Resources Information Center

      Johnson, Lewis E.; Engel, Thomas

      2011-01-01

      Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

    19. Integrative Curriculum Program for Physical Education: Classroom on the Court

      ERIC Educational Resources Information Center

      Irwin, Carol C.; Irwin, Richard L.; Hays, Brandon

      2011-01-01

      Integrative curriculum has been noted as a best practice toward effective learning. Quality physical educators struggle and search for different ways to integrate other content areas (e.g.., language arts, math, and social studies) into their daily lessons; however, due to budgetary limitations, they must find ways to do so with educationally…

    20. Determinants of physical activity based on the theory of planned behavior in Iranian Military Staff's Wives: a path analysis.

      PubMed

      Gholamnia Shirvani, Zeinab; Ghofranipour, Fazlollah; Gharakhanlou, Reza; Kazemnejad, Anoshirvan

      2015-01-01

      Level of physical activity as a key determinant of healthy lifestyle less than is required in individuals particularly women. Applying theories of behavioral change about complex behaviors such as physical activity leads to identify effective factors and their relations. The aim of this study was to determine predictors of physical activity behavior based on the Theory of Planned Behavior in military staff's wives in Tehran. This cross-sectional study was performed in 180 military personnel's spouses residing in organizational houses, in Tehran, Iran in 2014. The participants were randomly selected with multi-stage cluster sampling. The validity and reliability of the theory based scale evaluated before conducting the path analysis. Statistical analysis was carried out using SPSS16 and LISREL8.8. The results indicated the model explained 77% and 17% of intention and behavior variance. Subjective norms (Beta=0.83) and intention (Beta=0.37) were the strongest predictors of intention and behavior, respectively. The instrumental and affective attitude had no significant path to intention and behavior. The direct relation of perceived behavioral control to behavior was non-significant. This research demonstrated relative importance and relationships of Theory of Planned Behavior constructs in physical activity behavior of military personnel's spouses in Tehran. It is essential to consider these determinants in designing of educational interventions for promoting and maintaining physical activity behavior in this target group. PMID:25948459

    1. Integrating social and physical sciences in water management

      NASA Astrophysics Data System (ADS)

      Lund, Jay R.

      2015-08-01

      Water management has always required more than physical science. This paper reviews the accomplishments of integrating social with physical sciences for water management in the last 50 years. Particular successes are highlighted to illustrate how fundamentals from both physical science and social science have been brought together to improve the performance of water management systems. Some forward-looking lessons for managing practical and academic interdisciplinary research for water management are also provided.

    2. Going beyond the BCS level in the superfluid path integral: A consistent treatment of electrodynamics and thermodynamics

      NASA Astrophysics Data System (ADS)

      Anderson, Brandon M.; Boyack, Rufus; Wu, Chien-Te; Levin, K.

      2016-05-01

      In this Rapid Communication we derive the full gauge-invariant electromagnetic response beyond the BCS level using the fermionic superfluid path integral. In the process we identify and redress a failure to satisfy the compressibility sum rule; this shortcoming is associated with the conventional path-integral formulation of BCS-level electrodynamics. The approach in this paper builds on an alternative saddle point scheme. At the mean field level, this leads to the well known gauge-invariant electrodynamics of BCS theory and to the satisfaction of the compressibility sum rule. Moreover, this scheme can be readily extended to address arbitrary higher order fluctuation theories (for example, at the Gaussian level.) At any level this approach will lead to a gauge invariant and compressibility sum rule consistent treatment of electrodynamics and thermodynamics.

    3. A new approach to calculate charge carrier transport mobility in organic molecular crystals from imaginary time path integral simulations.

      PubMed

      Song, Linze; Shi, Qiang

      2015-05-01

      We present a new non-perturbative method to calculate the charge carrier mobility using the imaginary time path integral approach, which is based on the Kubo formula for the conductivity, and a saddle point approximation to perform the analytic continuation. The new method is first tested using a benchmark calculation from the numerical exact hierarchical equations of motion method. Imaginary time path integral Monte Carlo simulations are then performed to explore the temperature dependence of charge carrier delocalization and mobility in organic molecular crystals (OMCs) within the Holstein and Holstein-Peierls models. The effects of nonlocal electron-phonon interaction on mobility in different charge transport regimes are also investigated. PMID:25956086

    4. News Report: The career paths of physics graduates Education: Network day to hold workshops for teaching ideas Experiments: PhysHOME brings innovators together Meeting: Physics Education Networks collaborate at WCPE Workshop: World experts in physics education meet Training: Something for everyone at SPEED 2012 Conference: Sun, cocktails and physics create a buzz at WCPE Students: The physics paralympian 2012 Forthcoming events

      NASA Astrophysics Data System (ADS)

      2012-09-01

      Report: The career paths of physics graduates Education: Network day to hold workshops for teaching ideas Experiments: PhysHOME brings innovators together Meeting: Physics Education Networks collaborate at WCPE Workshop: World experts in physics education meet Training: Something for everyone at SPEED 2012 Conference: Sun, cocktails and physics create a buzz at WCPE Students: The physics paralympian 2012 Forthcoming events

    5. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

      NASA Astrophysics Data System (ADS)

      Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

      2016-06-01

      The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

    6. Integrated Path Detection of Co2 and CH4 Using a Waveform Driven Electro-Optic Single Sideband Laser Source

      NASA Astrophysics Data System (ADS)

      Wagner, Gerd; Maxwell, Stephen; Plusquellic, David

      2016-06-01

      Integrated path concentrations of ambient levels of carbon dioxide and methane have been measured during nighttime periods at NIST, Boulder (CO, USA), using a ground-based, eyesafe laser system. In this contribution, we describe the transmitter and receiver system, demonstrate measurements of CO2 and CH4 in comparison with an in situ point sensor measurement using a commercial cavity ring-down instrument, and demonstrate a speckle noise reduction method.

    7. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

      NASA Astrophysics Data System (ADS)

      Agarwal, Animesh; Delle Site, Luigi

      2015-09-01

      Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

    8. Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues

      NASA Astrophysics Data System (ADS)

      Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas

      2014-06-01

      We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψT, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 - 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.

    9. Inclusion of trial functions in the Langevin equation path integral ground state method: Application to parahydrogen clusters and their isotopologues

      SciTech Connect

      Schmidt, Matthew; Constable, Steve; Ing, Christopher; Roy, Pierre-Nicholas

      2014-06-21

      We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen for cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.

    10. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

      SciTech Connect

      Agarwal, Animesh Delle Site, Luigi

      2015-09-07

      Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

    11. Proton transport in triflic acid pentahydrate studied via ab initio path integral molecular dynamics.

      PubMed

      Hayes, Robin L; Paddison, Stephen J; Tuckerman, Mark E

      2011-06-16

      Trifluoromethanesulfonic acid hydrates provide a well-defined system to study proton dissociation and transport in perfluorosulfonic acid membranes, typically used as the electrolyte in hydrogen fuel cells, in the limit of minimal water. The triflic acid pentahydrate crystal (CF(3)SO(3)H·5H(2)O) is sufficiently aqueous that it contains an extended three-dimensional water network. Despite it being extended, however, long-range proton transport along the network is structurally unfavorable and would require considerable rearrangement. Nevertheless, the triflic acid pentahydrate crystal system can provide a clear picture of the preferred locations of local protonic defects in the water network, which provides insights about related structures in the disordered, low-hydration environment of perfluorosulfonic acid membranes. Ab initio molecular dynamics simulations reveal that the proton defect is most likely to transfer to the closest water that has the expected presolvation and only contains water in its first solvation shell. Unlike the tetrahydrate of triflic acid (CF(3)SO(3)H·4H(2)O), there is no evidence of the proton preferentially transferring to a water molecule bridging two of the sulfonate groups. However, this could be an artifact of the crystal structure since the only such water molecule is separated from the proton by long O-O distances. Hydrogen bonding criteria, using the two-dimensional potential of mean force, are extracted. Radial distribution functions, free energy profiles, radii of gyration, and the root-mean-square displacement computed from ab initio path integral molecular dynamics simulations reveal that quantum effects do significantly extend the size of the protonic defect and increase the frequency of proton transfer events by nearly 15%. The calculated IR spectra confirm that the dominant protonic defect mostly exists as an Eigen cation but contains some Zundel ion characteristics. Chain lengths and ring sizes determined from the

    12. Physical Activity and Health Perception in Aging: Do Body Mass and Satisfaction Matter? A Three-Path Mediated Link.

      PubMed

      Condello, Giancarlo; Capranica, Laura; Stager, Joel; Forte, Roberta; Falbo, Simone; Di Baldassarre, Angela; Segura-Garcia, Cristina; Pesce, Caterina

      2016-01-01

      Although ageing people could benefit from healthy diet and physical activity to maintain health and quality of life, further understandings of the diet- and physical activity-related mechanisms that may cause changes in health and quality of life perception are necessary. The purpose of the study was to investigate the effect of eating attitudes, body mass and image satisfaction, and exercise dependence in the relationship between physical activity and health and quality of life perception in older individuals. Hundred and seventy-nine late middle-aged, (55-64 yrs), young-old (65-74 yrs), and old (75-84 yrs) senior athletes (n = 56), physically active (n = 58) or sedentary adults (n = 65) were submitted to anthropometric evaluations (body mass, height) and self-reported questionnaires: Body Image Dimensional Assessment, Exercise Dependence Scale, Eating Attitude Test, and Short Form Health Survey (Physical Component Summary [PCS] and Mental Component Summary [MCS] of and health and quality of life perception). Senior athletes, physically active, and sedentary participants subgroups differed (P<0.05) from each other in body mass index (BMI) and several components of body image and exercise dependence. Senior athletes showed, compared to their sedentary counterparts, further differences (P<0.05) in eating attitudes and in both PCS and MCS. Mediation analysis showed that the relationship between physical activity habit and MCS, but not PCS, was indirectly explained by a serial mediation chain composed of objective BMI and subjective body image (dis)satisfaction. Findings confirm the relevant role of physically active life habits for older individuals to perceive good physical and mental health. The novelty of the three-path mediated link between physical activity level and mental health perception suggests that the beneficial effect of a physically active lifestyle on weight control can positively impinge on the cognitive-emotional dimension of mental health by

    13. Physical and model interpretation of HF radio propagation on the St. Petersburg-Longyearbyen (Svalbard) path

      NASA Astrophysics Data System (ADS)

      Blagoveshchensky, D. V.; Andreyev, M. Yu.; Mingalev, V. S.; Mingaleva, G. I.; Kalishin, A. S.

      2009-06-01

      HF radio wave observations have been carried out with an oblique ionospheric sounding (OIS) method on the radio path from St. Petersburg to Longyearbyen (Svalbard), and experimental ionograms were obtained for December 2001. These ionograms have been analysed to investigate the impact of the main ionospheric trough (MIT) and magnetic disturbances on the signals on this path. The observations during weakly disturbed ( Kр = 2) magnetic conditions on 14-15 December 2001 were compared with predictions from ray-tracing through a numerical model of the ionosphere. The ray-tracing computer program synthesizes the OIS ionograms by means of the "shooting method". This method calculates trajectories of HF radio waves for different values of elevation angle and transmission frequency. There was a variety of calculated trajectories, from which we choose those which reach the receiver, and the selected paths provide a synthesis of the oblique ionograms. To simulate HF radio wave propagation, we apply a three-dimensional distribution of the electron density calculated with the mathematical model of the high-latitude ionosphere developed in the Polar Geophysical Institute (PGI). These numerical simulations permit us to interpret specific peculiarities of the OIS data such as abnormal propagation modes, increased delays of signals, enhanced MOF (maximum observed frequency) values etc. New results of the study are summarised as follows. (1) An unusual feature of the propagation along the path is the change of propagation mechanism during substorms on entering a path midpoint (or 1-hop reflection point) to the MIT. (2) Even weak substorms, having the distinguished intensities, lead to the appearance of different types of irregularities observed by the CUTLASS radar and therefore to the different propagation modes and F2MOF values. (3) The PGI model of the ionosphere was first used for ray-tracing at high latitudes. The model results are basically in a good qualitative agreement

    14. Path integrated optical remote sensing technique to estimate ammonia and methane gas emissions from CAFOs

      Technology Transfer Automated Retrieval System (TEKTRAN)

      The U.S. EPA recently demonstrated the open-path optical remote sensing technology to identify hot spots and estimate mass flux of fugitive gases from closed landfill. The objective of this research is to validate this technology for estimating ammonia and methane emission from concentrated animal f...

    15. Associations among environmental supports, physical activity, and blood pressure in African-American adults in the PATH trial.

      PubMed

      Coulon, Sandra M; Wilson, Dawn K; Egan, Brent M

      2013-06-01

      High blood pressure disproportionately affects African-American adults and is a leading cause of stroke and heart attack. Engaging in recommended levels of physical activity reduces blood pressure, and social and physical environmental supports for physical activity may increase engagement in physical activity. Based on social cognitive theory within a bioecological framework, the present study tested hypotheses that perceived peer social support for physical activity and neighborhood walkability would be positively associated with physical activity, and that physical activity would mediate their relation with blood pressure. Baseline data were collected with 434 African-American adults in underserved communities (low income, high crime) participating in the Positive Action for Today's Health (PATH) trial. Perceived peer social support for physical activity and neighborhood walkability were measured with validated surveys. Physical activity was assessed with 7-day accelerometry (moderate-to-vigorous physical activity, min/day) and with a 4-week recall of walking. Three blood pressure assessments were taken by trained staff using standard protocols, with values from the second and third assessments averaged. The sample was predominantly female (63%), overweight (mean body mass index = 30.9, SD = 8.4), and had slightly elevated blood pressures with a mean systolic blood pressure of 132.4 (SD = 17.9) and a mean diastolic blood pressure of 81.4 (SD = 11.0). Results demonstrated that peer social support for physical activity (B = 2.43, p = .02) and neighborhood walkability (B = 2.40, p = .046) were significantly related to average daily moderate-to-vigorous physical activity. Neighborhood walkability was also significantly associated with self-reported average daily walking (B = 8.86, p = .02). Physical activity did not mediate their relation with blood pressure and no significant direct effects of these variables on blood pressure were found. The positive influence of

    16. Integrated information theory: from consciousness to its physical substrate.

      PubMed

      Tononi, Giulio; Boly, Melanie; Massimini, Marcello; Koch, Christof

      2016-07-01

      In this Opinion article, we discuss how integrated information theory accounts for several aspects of the relationship between consciousness and the brain. Integrated information theory starts from the essential properties of phenomenal experience, from which it derives the requirements for the physical substrate of consciousness. It argues that the physical substrate of consciousness must be a maximum of intrinsic cause-effect power and provides a means to determine, in principle, the quality and quantity of experience. The theory leads to some counterintuitive predictions and can be used to develop new tools for assessing consciousness in non-communicative patients. PMID:27225071

    17. Testing a Longitudinal Integrated Self-Efficacy and Self-Determination Theory Model for Physical Activity Post-Cardiac Rehabilitation

      PubMed Central

      Sweet, Shane N.; Fortier, Michelle S.; Strachan, Shaelyn M.; Blanchard, Chris M.; Boulay, Pierre

      2014-01-01

      Self-determination theory and self-efficacy theory are prominent theories in the physical activity literature, and studies have begun integrating their concepts. Sweet, Fortier, Strachan and Blanchard (2012) have integrated these two theories in a cross-sectional study. Therefore, this study sought to test a longitudinal integrated model to predict physical activity at the end of a 4-month cardiac rehabilitation program based on theory, research and Sweet et al.’s cross-sectional model. Participants from two cardiac rehabilitation programs (N=109) answered validated self-report questionnaires at baseline, two and four months. Data were analyzed using Amos to assess the path analysis and model fit. Prior to integration, perceived competence and self-efficacy were combined, and labeled as confidence. After controlling for 2-month physical activity and cardiac rehabilitation site, no motivational variables significantly predicted residual change in 4-month physical activity. Although confidence at two months did not predict residual change in 4-month physical activity, it had a strong positive relationship with 2-month physical activity (β=0.30, P<0.001). The overall model retained good fit indices. In conclusion, results diverged from theoretical predictions of physical activity, but self-determination and self-efficacy theory were still partially supported. Because the model had good fit, this study demonstrated that theoretical integration is feasible. PMID:26973926

    18. A Path Analytic Explanation of the Lower Participation Rates of Women in College Physical Science.

      ERIC Educational Resources Information Center

      Brush, Lorelei R.

      Two studies used a structural equation model to examine the relationship between gender and participation in college mathematics, physics, and chemistry courses. The intervening variables under scrutiny were ability scores, attitudes toward mathematics and mathematicians, and expectations of future performance in physical science courses. The…

    19. Alternative Career Paths in Physical Education: Fitness and Exercise. ERIC Digest.

      ERIC Educational Resources Information Center

      Zak, Janet L.; Sullivan, Patricia

      During the past 20 years, alternative professional preparation and certification programs have expanded within the field of physical education. Societal trends, the media, and demographics have dictated these changes. This digest examines factors leading to an increase in the scope of career opportunities for physical education professionals and…

    20. Path integral Monte Carlo determination of the fourth-order virial coefficient for unitary two-component Fermi gas with zero-range interactions

      NASA Astrophysics Data System (ADS)

      Yan, Yangqian; Blume, D.

      2016-05-01

      The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-interacting Fermi gas using a customized ab inito path integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4, our b4 agrees with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. We gratefully acknowledge support by the NSF.

    1. Vulnerabilities, Influences and Interaction Paths: Failure Data for Integrated System Risk Analysis

      NASA Technical Reports Server (NTRS)

      Malin, Jane T.; Fleming, Land

      2006-01-01

      We describe graph-based analysis methods for identifying and analyzing cross-subsystem interaction risks from subsystem connectivity information. By discovering external and remote influences that would be otherwise unexpected, these methods can support better communication among subsystem designers at points of potential conflict and to support design of more dependable and diagnosable systems. These methods identify hazard causes that can impact vulnerable functions or entities if propagated across interaction paths from the hazard source to the vulnerable target. The analysis can also assess combined impacts of And-Or trees of disabling influences. The analysis can use ratings of hazards and vulnerabilities to calculate cumulative measures of the severity and importance. Identification of cross-subsystem hazard-vulnerability pairs and propagation paths across subsystems will increase coverage of hazard and risk analysis and can indicate risk control and protection strategies.

    2. How physics teachers approach innovation: An empirical study for reconstructing the appropriation path in the case of special relativity

      NASA Astrophysics Data System (ADS)

      de Ambrosis, Anna; Levrini, Olivia

      2010-07-01

      This paper concerns an empirical study carried out with a group of high school physics teachers engaged in the Module on relativity of a Master course on the teaching of modern physics. The study is framed within the general research issue of how to promote innovation in school via teachers’ education and how to foster fruitful interactions between research and school practice via the construction of networks of researchers and teachers. In the paper, the problems related to innovation are addressed by focusing on the phase during which teachers analyze an innovative teaching proposal in the perspective of designing their own paths for the class work. The proposal analyzed in this study is Taylor and Wheeler’s approach for teaching special relativity. The paper aims to show that the roots of problems known in the research literature about teachers’ difficulties in coping with innovative proposals, and usually related to the implementation process, can be found and addressed already when teachers approach the proposal and try to appropriate it. The study is heuristic and has been carried out in order to trace the “appropriation path,” followed by the group of teachers, in terms of the main steps and factors triggering the progressive evolution of teachers’ attitudes and competences.

    3. TOWARD EFFICIENT RIPARIAN RESTORATION: INTEGRATING ECONOMIC, PHYSICAL, AND BIOLOGICAL MODELS

      EPA Science Inventory

      This paper integrates economic, biological, and physical models to explore the efficient combination and spatial allocation of conservation efforts to protect water quality and increase salmonid populations in the Grande Ronde basin, Oregon. We focus on the effects of shade on wa...

    4. Milkweed Seed Dispersal: A Means for Integrating Biology and Physics.

      ERIC Educational Resources Information Center

      Bisbee, Gregory D.; Kaiser, Cheryl A.

      1997-01-01

      Describes an activity that integrates biology and physics concepts by experimenting with the seed dispersal of common milkweed or similar wind-dispersed seeds. Student teams collect seeds and measure several parameters, review principles of trajectory motion, perform experiments, and graph data. Students examine the ideas of…

    5. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

      ERIC Educational Resources Information Center

      Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

      2008-01-01

      This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

    6. Understanding Student Use of Differentials in Physics Integration Problems

      ERIC Educational Resources Information Center

      Hu, Dehui; Rebello, N. Sanjay

      2013-01-01

      This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In…

    7. Integrating Computer Simulations into High School Physics Teaching.

      ERIC Educational Resources Information Center

      Ronen, Miky; And Others

      1992-01-01

      Describes a project aimed at examining the problems involved in a large scale integration of computerized simulations into the present structure of physics teaching in Israeli high schools. Assessment by students, teachers, and the project team indicated general satisfaction with the project. Discusses difficulties of implementing computer-based…

    8. Integrating Physical Activity Data Technologies into Elementary School Classrooms

      ERIC Educational Resources Information Center

      Lee, Victor R.; Thomas, Jonathan M.

      2011-01-01

      This paper describes an iteration of a design-based research project that involved integrating commercial physical activity data (PAD) sensors, such as heart rate monitors and pedometers, as technologies that could be used in two fifth grade classrooms. By working in partnership with two participating teachers and seeking out immediate resources…

    9. Effects of neonatal (+)-methamphetamine on path integration and spatial learning in rats: Effects of dose and rearing conditions

      PubMed Central

      Vorhees, Charles V.; Herring, Nicole R.; Schaefer, Tori L.; Grace, Curtis E.; Skelton, Matthew R.; Johnson, Holly L.; Williams, Michael T.

      2008-01-01

      Postnatal day (P)11–20 (+)-methamphetamine (MA) treatment impairs spatial learning and reference memory in the Morris water maze, but has marginal effects on path integration learning in a labyrinthine maze. A subsequent experiment showed that MA treatment on P11–15, but not P16–20, is sufficient to induce Morris maze deficits. Here we tested the effects of P11–15 MA treatment under two different rearing conditions on Morris maze performance and path integration learning in the Cincinnati water maze in which distal cues were unavailable by using infrared illumination. Littermates were treated with 0, 10, 15, 20, or 25 mg/kg x 4 per day (2 h intervals). Half the litters were reared under standard housing conditions and half under partial enrichment by adding stainless steel enclosures. All MA groups showed impaired Cincinnati water maze performance with no significant effects of rearing condition. In the Morris maze, the MA-25 group showed impaired spatial acquisition, reversal, and small platform learning. Enrichment significantly improved Morris maze acquisition in all groups but did not interact with treatment. The male MA-25 group was also impaired on probe trial performance after acquisition and on small platform trials. A narrow window of MA treatment (P11–15) induces impaired path integration learning irrespective of dose within the range tested but impairments in spatial learning are dependent on dose. The results demonstrate that a narrower exposure window (5 days) changes the long-term effects of MA treatment compared to longer exposures (10 days). PMID:18502078

    10. Path integral approach to closed-form option pricing formulas with applications to stochastic volatility and interest rate models

      NASA Astrophysics Data System (ADS)

      Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.

      2008-07-01

      We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.

    11. Beyond complex Langevin equations: from simple examples to positive representation of Feynman path integrals directly in the Minkowski time

      NASA Astrophysics Data System (ADS)

      Wosiek, Jacek

      2016-04-01

      A positive representation for an arbitrary complex, gaussian weight is derived and used to construct a statistical formulation of gaussian path integrals directly in the Minkowski time. The positivity of Minkowski weights is achieved by doubling the number of real variables. The continuum limit of the new representation exists only if some of the additional couplings tend to infinity and are tuned in a specific way. The construction is then successfully applied to three quantum mechanical examples including a particle in a constant magnetic field — a simplest prototype of a Wilson line. Further generalizations are shortly discussed and an intriguing interpretation of new variables is alluded to.

    12. Directional Radiometry and Radiative Transfer: the Convoluted Path From Centuries-old Phenomenology to Physical Optics

      NASA Technical Reports Server (NTRS)

      Mishchenko, Michael I.

      2014-01-01

      This Essay traces the centuries-long history of the phenomenological disciplines of directional radiometry and radiative transfer in turbid media, discusses their fundamental weaknesses, and outlines the convoluted process of their conversion into legitimate branches of physical optics.

    13. Physical Activity Affects Brain Integrity in HIV + Individuals

      PubMed Central

      Ortega, Mario; Baker, Laurie M.; Vaida, Florin; Paul, Robert; Basco, Brian; Ances, Beau M.

      2015-01-01

      Prior research has suggested benefits of aerobic physical activity (PA) on cognition and brain volumes in HIV uninfected (HIV−) individuals, however, few studies have explored the relationships between PA and brain integrity (cognition and structural brain volumes) in HIV-infected (HIV +) individuals. Seventy HIV + individuals underwent neuropsychological testing, structural neuroimaging, laboratory tests, and completed a PA questionnaire, recalling participation in walking, running, and jogging activities over the last year. A PA engagement score of weekly metabolic equivalent (MET) hr of activity was calculated using a compendium of PAs. HIV + individuals were classified as physically active (any energy expended above resting expenditure, n = 22) or sedentary (n = 48). Comparisons of neuropsychological performance, grouped by executive and motor domains, and brain volumes were completed between groups. Physically active and sedentary HIV + individuals had similar demographic and laboratory values, but the active group had higher education (14.0 vs. 12.6 years, p = .034). Physically active HIV + individuals performed better on executive (p = .040, unadjusted; p = .043, adjusted) but not motor function (p = .17). In addition, among the physically active group the amount of physical activity (METs) positively correlated with executive (Pearson’s r = 0.45, p = 0.035) but not motor (r = 0.21; p = .35) performance. In adjusted analyses the physically active HIV + individuals had larger putamen volumes (p = .019). A positive relationship exists between PA and brain integrity in HIV + individuals. Results from the present study emphasize the importance to conduct longitudinal interventional investigation to determine if PA improves brain integrity in HIV + individuals. PMID:26581799

    14. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

      NASA Astrophysics Data System (ADS)

      Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

      2016-06-01

      [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

    15. Intensity moments by path integral techniques for wave propagation through random media, with application to sound in the ocean

      NASA Technical Reports Server (NTRS)

      Bernstein, D. R.; Dashen, R.; Flatte, S. M.

      1983-01-01

      A theory is developed which describes intensity moments for wave propagation through random media. It is shown using the path integral technique that these moments are significantly different from those of a Rayleigh distribution in certain asymptotic regions. The path integral approach is extended to inhomogeneous, anisotropic media possessing a strong deterministic velocity profile. The behavior of the corrections to Rayleigh statistics is examined, and it is shown that the important characteristics can be attributed to a local micropath focusing function. The correction factor gamma is a micropath focusing parameter defined in terms of medium fluctuations. The value of gamma is calculated for three ocean acoustic experiments, using internal waves as the medium fluctuations. It is found that all three experiments show excellent agreement as to the relative values of the intensity moments. The full curved ray is found to yield results that are significantly different from the straight-line approximations. It is noted that these methods are applicable to a variety of experimental situations, including atmospheric optics and radio waves through plasmas.

    16. Total and correlation energy of the uniform polarized electron gas at finite temperature: Direct path integral simulations

      NASA Astrophysics Data System (ADS)

      Filinov, V. S.; Fortov, V. E.; Bonitz, M.; Moldabekov, Zh

      2015-11-01

      The uniform electron gas (UEG) at finite temperature has recently attracted substantial interest due to the experimental progress in the field of warm dense matter. To explain the experimental data accurate theoretical models for high density plasmas are needed which crucially depend on treatment of quantum effects in electron-electron interaction as well as in the interaction of electrons with uniform positive background. To comply with these requirements we have developed the new quantum path integral model of the UEG and present the results of related direct path integral Monte-Carlo (DPIMC) simulations. Contrary to the known in literature approaches treating the electron-background interaction classically our simulations take into account the quantum effects in this interaction. We have observed very good agreement with known in literature results only up to moderate densities when the ratio of the average interparticle distance to the Bohr radius is of order four (rs ≥ 4) and observe deviations for higher densities. At very high electron density (rs ≈ 1) presented in literature approaches as well as our simulations are problematic due to the strong degeneracy of electrons and increasing fermion sign problem.

    17. Quantum partition functions of composite particles in a hydrogen-helium plasma via path integral Monte Carlo

      SciTech Connect

      Wendland, D.; Ballenegger, V.; Alastuey, A.

      2014-11-14

      We compute two- and three-body cluster functions that describe contributions of composite entities, like hydrogen atoms, ions H{sup −}, H{sub 2}{sup +}, and helium atoms, and also charge-charge and atom-charge interactions, to the equation of state of a hydrogen-helium mixture at low density. A cluster function has the structure of a truncated virial coefficient and behaves, at low temperatures, like a usual partition function for the composite entity. Our path integral Monte Carlo calculations use importance sampling to sample efficiently the cluster partition functions even at low temperatures where bound state contributions dominate. We also employ a new and efficient adaptive discretization scheme that allows one not only to eliminate Coulomb divergencies in discretized path integrals, but also to direct the computational effort where particles are close and thus strongly interacting. The numerical results for the two-body function agree with the analytically known quantum second virial coefficient. The three-body cluster functions are compared at low temperatures with familiar partition functions for composite entities.

    18. Bifurcation of a Common Path: Gender Splitting on the Road to Engineering and Physical Science Careers.

      ERIC Educational Resources Information Center

      Lips, Hilary M.

      1992-01-01

      Findings from 55 female and 42 male college students revealed that inclination toward mathematics/science was significantly, positively, and similarly related to likely careers in mathematical sciences. For physical and engineering science careers, however, there was little or no relationship between self-described interest in science and…

    19. Ab Initio Path-Integral Calculations of Kinetic and Equilibrium Isotope Effects on Base-Catalyzed RNA Transphosphorylation Models

      PubMed Central

      Wong, Kin-Yiu; Yuqing, Xu; York, Darrin M.

      2014-01-01

      Detailed understandings of the reaction mechanisms of RNA catalysis in various environments can have profound importance for many applications, ranging from the design of new biotechnologies to the unraveling of the evolutionary origin of life. An integral step in the nucleolytic RNA catalysis is self-cleavage of RNA strands by 2′-O-transphosphorylation. Key to elucidating a reaction mechanism is determining the molecular structure and bonding characteristics of transition state. A direct and powerful probe of transition state is measuring isotope effects on biochemical reactions, particularly if we can reproduce isotope effect values from quantum calculations. This paper significantly extends the scope of our previous joint experimental and theoretical work in examining isotope effects on enzymatic and non-enzymatic 2′-O-transphosphorylation reaction models that mimic reactions catalyzed by RNA enzymes (ribozymes), and protein enzymes such as ribonuclease A (RNase A). Native reactions are studied, as well as reactions with thio substitutions representing chemical modifications often used in experiments to probe mechanism. Here, we report and compare results from eight levels of electronic-structure calculations for constructing the potential energy surfaces in kinetic and equilibrium isotope effects (KIE and EIE) computations, including a “gold-standard” coupled-cluster level of theory [CCSD(T)]. In addition to the widely-used Bigeleisen equation for estimating KIE and EIE values, internuclear anharmonicity and quantum tunneling effects were also computed using our recently-developed ab initio path-integral method, i.e., automated integration-free path-integral (AIF-PI) method. The results of this work establish an important set of benchmarks that serve to guide calculations of KIE and EIE for RNA catalysis. PMID:24841935

    20. The new AP Physics exams: Integrating qualitative and quantitative reasoning

      NASA Astrophysics Data System (ADS)

      Elby, Andrew

      2015-04-01

      When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

    1. Beam Physics of Integrable Optics Test Accelerator at Fermilab

      SciTech Connect

      Nagaitsev, S.; Valishev, A.; Danilov, V.V.; Shatilov, D.N.; /Novosibirsk, IYF

      2012-05-01

      Fermilab's Integrable Optics Test Accelerator (IOTA) is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on numerical simulations setting the requirements on the design and supporting the choice of machine parameters.

    2. ["Living with the bomb" - Carl Friedrich von Weizsäcker's path from physics to politics].

      PubMed

      Walker, Mark

      2014-01-01

      Carl Friedrich von Weizsäcker spanned a spectrum from physics to politics, with philosophy in-between. This chapter surveys the most controversial part of his career, including his work on nuclear weapons and participation in cultural propaganda during the Second World War, his subsequent active political engagement during the postwar Federal German Republic, in particular the role of nuclear weapons, and his participation in myths surrounding Hitler's Bomb". PMID:24974611

    3. Displaced path integral formulation for the momentum distribution of quantum particles.

      PubMed

      Lin, Lin; Morrone, Joseph A; Car, Roberto; Parrinello, Michele

      2010-09-10

      The proton momentum distribution, accessible by deep inelastic neutron scattering, is a very sensitive probe of the potential of mean force experienced by the protons in hydrogen-bonded systems. In this work we introduce a novel estimator for the end-to-end distribution of the Feynman paths, i.e., the Fourier transform of the momentum distribution. In this formulation, free particle and environmental contributions factorize. Moreover, the environmental contribution has a natural analogy to a free energy surface in statistical mechanics, facilitating the interpretation of experiments. The new formulation is not only conceptually but also computationally advantageous. We illustrate the method with applications to an empirical water model, ab initio ice, and one dimensional model systems. PMID:20867559

    4. Maximizing Information Diffusion in the Cyber-physical Integrated Network.

      PubMed

      Lu, Hongliang; Lv, Shaohe; Jiao, Xianlong; Wang, Xiaodong; Liu, Juan

      2015-01-01

      Nowadays, our living environment has been embedded with smart objects, such as smart sensors, smart watches and smart phones. They make cyberspace and physical space integrated by their abundant abilities of sensing, communication and computation, forming a cyber-physical integrated network. In order to maximize information diffusion in such a network, a group of objects are selected as the forwarding points. To optimize the selection, a minimum connected dominating set (CDS) strategy is adopted. However, existing approaches focus on minimizing the size of the CDS, neglecting an important factor: the weight of links. In this paper, we propose a distributed maximizing the probability of information diffusion (DMPID) algorithm in the cyber-physical integrated network. Unlike previous approaches that only consider the size of CDS selection, DMPID also considers the information spread probability that depends on the weight of links. To weaken the effects of excessively-weighted links, we also present an optimization strategy that can properly balance the two factors. The results of extensive simulation show that DMPID can nearly double the information diffusion probability, while keeping a reasonable size of selection with low overhead in different distributed networks. PMID:26569254

    5. Understanding student use of differentials in physics integration problems

      NASA Astrophysics Data System (ADS)

      Hu, Dehui; Rebello, N. Sanjay

      2013-12-01

      This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq). In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second-semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics.

    6. The heritable path of human physical performance: from single polymorphisms to the "next generation".

      PubMed

      Santos, C G M; Pimentel-Coelho, P M; Budowle, B; de Moura-Neto, R S; Dornelas-Ribeiro, M; Pompeu, F A M S; Silva, R

      2016-06-01

      Human physical performance is a complex multifactorial trait. Historically, environmental factors (e.g., diet, training) alone have been unable to explain the basis of all prominent phenotypes for physical performance. Therefore, there has been an interest in the study of the contribution of genetic factors to the development of these phenotypes. Support for a genetic component is found with studies that shown that monozygotic twins were more similar than were dizygotic twins for many physiological traits. The evolution of molecular techniques and the ability to scan the entire human genome enabled association of several genetic polymorphisms with performance. However, some biases related to the selection of cohorts and inadequate definition of the study variables have complicated the already difficult task of studying such a large and polymorphic genome, often resulting in inconsistent results about the influence of candidate genes. This review aims to provide a critical overview of heritable genetic aspects. Novel molecular technologies, such as next-generation sequencing, are discussed and how they can contribute to improving understanding of the molecular basis for athletic performance. It is important to ensure that the large amount of data that can be generated using these tools will be used effectively by ensuring well-designed studies. PMID:26147924

    7. Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts

      ERIC Educational Resources Information Center

      Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan

      2016-01-01

      This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…

    8. Physical Education Teachers' Subjective Theories about Integrating Information and Communication Technology (ICT) into Physical Education

      ERIC Educational Resources Information Center

      Kretschmann, Rolf

      2015-01-01

      As well as other school subjects, physical education (PE) is emerging in terms of integrating information and communication technology (ICT) into regular classes. Such innovative teaching practices that implement ICT in PE involve diverse parties that are affected by these teaching processes. Students, principals, districts, parents,…

    9. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice

      PubMed Central

      2015-01-01

      External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

    10. Photon, light ion, and heavy ion cancer radiotherapy: paths from physics and biology to clinical practice.

      PubMed

      Nickoloff, Jac A

      2015-12-01

      External beam radiotherapy has proven highly effective against a wide range of cancers, and in recent decades there have been rapid advances with traditional photon-based (X-ray) radiotherapy and the development of two particle-based techniques, proton and carbon ion radiotherapy (CIRT). There are major cost differences and both physical and biological differences among these modalities that raise important questions about relative treatment efficacy and cost-effectiveness. Randomized clinical trials (RCTs) represent the gold standard for comparing treatments, but there are significant cost and ethical barriers to their wide-spread use. Meta-analysis of non-coordinated clinical trials data is another tool that can be used to compare treatments, and while this approach has recognized limitations, it is argued that meta-analysis represents an early stage of investigation that can help inform the design of future RCTs. PMID:26734646

    11. The Regional University: Paths of Integration in the Framework of the Bologna Process

      ERIC Educational Resources Information Center

      Lazarev, G.; Martynenko, O.

      2006-01-01

      The development of international systems of education is opening the way to accomplish tasks in the sphere of higher education that are common to the world community. The Bologna Process, in the framework of which the educational systems of Europe are becoming integrated, makes it possible for Russia to make a choice of the forms of its…

    12. The polarization compass dominates over idiothetic cues in path integration of desert ants.

      PubMed

      Lebhardt, Fleur; Koch, Julja; Ronacher, Bernhard

      2012-02-01

      Desert ants, Cataglyphis, use the sky's pattern of polarized light as a compass reference for navigation. However, they do not fully exploit the complexity of this pattern, rather - as proposed previously - they assess their walking direction by means of an approximate solution based on a simplified internal template. Approximate rules are error-prone. We therefore asked whether the ants use additional cues to improve the accuracy of directional decisions, and focused on 'idiothetic' cues, i.e. cues based on information from proprioceptors. We trained ants in a channel system that was covered with a polarization filter, providing only a single e-vector direction as a directional 'celestial' cue. Then we observed their homebound runs on a test field, allowing full view of the sky. In crucial experiments, the ants were exposed to a cue conflict, in which sky compass and idiothetic information disagreed, by training them in a straight channel that provided a change in e-vector direction. The results indicated that the polarization information completely dominates over idiothetic cues. Two path segments with different e-vector orientations are combined linearly to a summed home vector. Our data provide additional evidence that Cataglyphis uses a simplified internal template to derive directional information from the sky's polarization pattern. PMID:22246261

    13. Integrated Multi Path Model to Calculate Radionuclide Release From a Repository Using Wavelet Galerkin Method

      SciTech Connect

      Nasif, Hesham R.; Neyama, Atsushi

      2002-07-01

      This work represents a WIRS code developed using wavelet Galerkin method to solve radionuclide transport model in near field and far field of a repository for high-level radioactive waste. After overpack failure, radionuclides diffuse through the bentonite buffer material to the water bearing fracture around the repository transport horizontally through this geosphere then transport vertically through the major water conducting fault (MWCF) reach the biosphere. The radionuclides transport barriers considered in this model are engineered barrier system (EBS), geosphere, and MWCF. Hydraulic conductivity of the bentonite is more than three orders of magnitude smaller than that of the surrounding host rock, so the only transport mechanism through EBS is diffusion. In the host rock, the problem is of advection-diffusion type with highly varying parameters from one medium to other due to the variability in length, transmissivity and other transport-relevant properties of the transport paths. Daubechies' wavelet is used as a basis function to solve the nonlinear partial differential equations arising from the model formulation of the radionuclides transport. Since the scaling functions are compactly supported, only a finite number of the connection coefficients are nonzero. The resultant matrix has a block diagonal structure, which can be inverted easily. We tested our WGM algorithm with several problems to verify the model. The solutions are very accurate with a proper selection of Daubechies' order and dilation order. The solution is very accurate at the interfaces where the radionuclide concentration exhibits very steep gradients. (authors)

    14. A new post-quantization constrained propagator for rigid tops for use in path integral quantum simulations

      SciTech Connect

      Guillon, Grégoire; Zeng, Tao; Roy, Pierre-Nicholas

      2013-11-14

      In this paper, we extend the previously introduced Post-Quantization Constraints (PQC) procedure [G. Guillon, T. Zeng, and P.-N. Roy, J. Chem. Phys. 138, 184101 (2013)] to construct approximate propagators and energy estimators for different rigid body systems, namely, the spherical, symmetric, and asymmetric tops. These propagators are for use in Path Integral simulations. A thorough discussion of the underlying geometrical concepts is given. Furthermore, a detailed analysis of the convergence properties of the density as well as the energy estimators towards their exact counterparts is presented along with illustrative numerical examples. The Post-Quantization Constraints approach can yield converged results and is a practical alternative to so-called sum over states techniques, where one has to expand the propagator as a sum over a complete set of rotational stationary states [as in E. G. Noya, C. Vega, and C. McBride, J. Chem. Phys. 134, 054117 (2011)] because of its modest memory requirements.

    15. Characterizing magnetic resonance signal decay due to Gaussian diffusion: the path integral approach and a convenient computational method

      PubMed Central

      Özarslan, Evren; Westin, Carl-Fredrik; Mareci, Thomas H.

      2016-01-01

      The influence of Gaussian diffusion on the magnetic resonance signal is determined by the apparent diffusion coefficient (ADC) and tensor (ADT) of the diffusing fluid as well as the gradient waveform applied to sensitize the signal to diffusion. Estimations of ADC and ADT from diffusion-weighted acquisitions necessitate computations of, respectively, the b-value and b-matrix associated with the employed pulse sequence. We establish the relationship between these quantities and the gradient waveform by expressing the problem as a path integral and explicitly evaluating it. Further, we show that these important quantities can be conveniently computed for any gradient waveform using a simple algorithm that requires a few lines of code. With this representation, our technique complements the multiple correlation function (MCF) method commonly used to compute the effects of restricted diffusion, and provides a consistent and convenient framework for studies that aim to infer the microstructural features of the specimen. PMID:27182208

    16. Place field expansion after focal MEC inactivations is consistent with loss of Fourier components and path integrator gain reduction

      PubMed Central

      Ormond, Jake; McNaughton, Bruce L.

      2015-01-01

      Both hippocampal place fields and medial entorhinal cortex (MEC) grid fields increase in scale along the dorsoventral axis. Because the connections from MEC to hippocampus are topographically organized and divergent, it has been hypothesized that place fields are generated by a Fourier-like summation of inputs over a range of spatial scales. This hypothesis predicts that inactivation of dorsal MEC should cause place field expansion, whereas inactivation of ventral MEC should cause field contraction. Inactivation of dorsal MEC caused substantial expansion of place fields; however, as inactivations were made more ventrally, the effect diminished but never switched to contraction. Expansion was accompanied by proportional decreases in theta power, intrinsic oscillation frequencies, phase precession slopes, and firing rates. Our results are most consistent with the predicted loss of specific Fourier components coupled with a path integration gain reduction, which raises the overall place field scale and masks the contraction expected from ventral inactivations. PMID:25733884

    17. Path-Integral Monte Carlo Study on a Droplet of a Dipolar Bose–Einstein Condensate Stabilized by Quantum Fluctuation

      NASA Astrophysics Data System (ADS)

      Saito, Hiroki

      2016-05-01

      Motivated by recent experiments [H. Kadau et al., Nature (London) 530, 194 (2016); I. Ferrier-Barbut et al., arXiv:1601.03318] and theoretical prediction (F. Wächtler and L. Santos, arXiv:1601.04501), the ground state of a dysprosium Bose-Einstein condensate with strong dipole-dipole interaction is studied by the path-integral Monte Carlo method. It is shown that quantum fluctuation can stabilize the condensate against dipolar collapse.

    18. A new post-quantization constrained propagator for rigid tops for use in path integral quantum simulations

      NASA Astrophysics Data System (ADS)

      Guillon, Grégoire; Zeng, Tao; Roy, Pierre-Nicholas

      2013-11-01

      In this paper, we extend the previously introduced Post-Quantization Constraints (PQC) procedure [G. Guillon, T. Zeng, and P.-N. Roy, J. Chem. Phys. 138, 184101 (2013)] to construct approximate propagators and energy estimators for different rigid body systems, namely, the spherical, symmetric, and asymmetric tops. These propagators are for use in Path Integral simulations. A thorough discussion of the underlying geometrical concepts is given. Furthermore, a detailed analysis of the convergence properties of the density as well as the energy estimators towards their exact counterparts is presented along with illustrative numerical examples. The Post-Quantization Constraints approach can yield converged results and is a practical alternative to so-called sum over states techniques, where one has to expand the propagator as a sum over a complete set of rotational stationary states [as in E. G. Noya, C. Vega, and C. McBride, J. Chem. Phys. 134, 054117 (2011)] because of its modest memory requirements.

    19. Double path integral method for obtaining the mobility of the one-dimensional charge transport in molecular chain.

      PubMed

      Yoo-Kong, Sikarin; Liewrian, Watchara

      2015-12-01

      We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain. PMID:26701710

    20. Effects of Uncertainty in TRMM Precipitation Radar Path Integrated Attenuation on Interannual Variations of Tropical Oceanic Rainfall

      NASA Technical Reports Server (NTRS)

      Robertson, Franklin R.; Fitzjarrald, Dan E.; Kummerow, Christian D.; Arnold, James E. (Technical Monitor)

      2002-01-01

      Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.

    1. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements.

      PubMed

      Militzer, Burkhard; Driver, Kevin P

      2015-10-23

      We extend the applicability range of fermionic path integral Monte Carlo simulations to heavier elements and lower temperatures by introducing various localized nodal surfaces. Hartree-Fock nodes yield the most accurate prediction for pressure and internal energy, which we combine with the results from density functional molecular dynamics simulations to obtain a consistent equation of state for hot, dense silicon under plasma conditions and in the regime of warm dense matter (2.3-18.6  g cm(-3), 5.0×10(5)-1.3×10(8)  K). The shock Hugoniot curve is derived and the structure of the fluid is characterized with various pair correlation functions. PMID:26551129

    2. An Integrated Simulation Module for Cyber-Physical Automation Systems.

      PubMed

      Ferracuti, Francesco; Freddi, Alessandro; Monteriù, Andrea; Prist, Mariorosario

      2016-01-01

      The integration of Wireless Sensors Networks (WSNs) into Cyber Physical Systems (CPSs) is an important research problem to solve in order to increase the performances, safety, reliability and usability of wireless automation systems. Due to the complexity of real CPSs, emulators and simulators are often used to replace the real control devices and physical connections during the development stage. The most widespread simulators are free, open source, expandable, flexible and fully integrated into mathematical modeling tools; however, the connection at a physical level and the direct interaction with the real process via the WSN are only marginally tackled; moreover, the simulated wireless sensor motes are not able to generate the analogue output typically required for control purposes. A new simulation module for the control of a wireless cyber-physical system is proposed in this paper. The module integrates the COntiki OS JAva Simulator (COOJA), a cross-level wireless sensor network simulator, and the LabVIEW system design software from National Instruments. The proposed software module has been called "GILOO" (Graphical Integration of Labview and cOOja). It allows one to develop and to debug control strategies over the WSN both using virtual or real hardware modules, such as the National Instruments Real-Time Module platform, the CompactRio, the Supervisory Control And Data Acquisition (SCADA), etc. To test the proposed solution, we decided to integrate it with one of the most popular simulators, i.e., the Contiki OS, and wireless motes, i.e., the Sky mote. As a further contribution, the Contiki Sky DAC driver and a new "Advanced Sky GUI" have been proposed and tested in the COOJA Simulator in order to provide the possibility to develop control over the WSN. To test the performances of the proposed GILOO software module, several experimental tests have been made, and interesting preliminary results are reported. The GILOO module has been applied to a smart home

    3. Effects of neonatal (+)-methamphetamine on path integration and spatial learning in rats: effects of dose and rearing conditions.

      PubMed

      Vorhees, Charles V; Herring, Nicole R; Schaefer, Tori L; Grace, Curtis E; Skelton, Matthew R; Johnson, Holly L; Williams, Michael T

      2008-10-01

      Postnatal day (P)11-20 (+)-methamphetamine (MA) treatment impairs spatial learning and reference memory in the Morris water maze, but has marginal effects on learning in a labyrinthine maze. A subsequent experiment showed that MA treatment on P11-15, but not P16-20, is sufficient to induce Morris maze deficits. Here we tested the effects of P11-15 MA treatment under two different rearing conditions on Morris maze performance and path integration learning in the Cincinnati water maze in which distal cues were unavailable by using infrared illumination. Littermates were treated with 0, 10, 15, 20, or 25mg/kg MA x 4/day (2 h intervals). Half the litters were reared under standard housing conditions and half under partial enrichment by adding stainless steel enclosures. All MA groups showed impaired Cincinnati water maze performance with no significant effects of rearing condition. In the Morris maze, the MA-25 group showed impaired spatial acquisition, reversal, and small platform learning. Enrichment significantly improved Morris maze acquisition in all groups but did not interact with treatment. The male MA-25 group was also impaired on probe trial performance after acquisition and on small platform trials. A narrow window of MA treatment (P11-15) induces impaired path integration learning irrespective of dose within the range tested but impairments in spatial learning are dependent on dose. The results demonstrate that a narrower exposure window (5 days) changes the long-term effects of MA treatment compared to longer exposures (10 days). PMID:18502078

    4. Toward efficient riparian restoration: integrating economic, physical, and biological models.

      PubMed

      Watanabe, Michio; Adams, Richard M; Wu, Junjie; Bolte, John P; Cox, Matt M; Johnson, Sherri L; Liss, William J; Boggess, William G; Ebersole, Joseph L

      2005-04-01

      This paper integrates economic, biological, and physical models to explore the efficient combination and spatial allocation of conservation efforts to protect water quality and increase salmonid populations in the Grande Ronde basin, Oregon. We focus on the effects of shade on water temperatures and the subsequent impacts on endangered juvenile salmonid populations. The integrated modeling system consists of a physical model that links riparian conditions and hydrological characteristics to water temperature; a biological model that links water temperature and riparian conditions to salmonid abundance, and an economic model that incorporates both physical and biological models to estimate minimum cost allocations of conservation efforts. Our findings indicate that conservation alternatives such as passive and active riparian restoration, the width of riparian restoration zones, and the types of vegetation used in restoration activities should be selected based on the spatial distribution of riparian characteristics in the basin. The relative effectiveness of passive and active restoration plays an important role in determining the efficient allocations of conservation efforts. The time frame considered in the restoration efforts and the magnitude of desired temperature reductions also affect the efficient combinations of restoration activities. If the objective of conservation efforts is to maximize fish populations, then fishery benefits should be directly targeted. Targeting other criterion such as water temperatures would result in different allocations of conservation efforts, and therefore are not generally efficient. PMID:15763152

    5. Integrating statistical rock physics and sedimentology for quantitative seismic interpretation

      NASA Astrophysics Data System (ADS)

      Avseth, Per; Mukerji, Tapan; Mavko, Gary; Gonzalez, Ezequiel

      This paper presents an integrated approach for seismic reservoir characterization that can be applied both in petroleum exploration and in hydrological subsurface analysis. We integrate fundamental concepts and models of rock physics, sedimentology, statistical pattern recognition, and information theory, with seismic inversions and geostatistics. Rock physics models enable us to link seismic amplitudes to geological facies and reservoir properties. Seismic imaging brings indirect, noninvasive, but nevertheless spatially exhaustive information about the reservoir properties that are not available from well data alone. Classification and estimation methods based on computational statistical techniques such as nonparametric Bayesian classification, Monte Carlo simulations and bootstrap, help to quantitatively measure the interpretation uncertainty and the mis-classification risk at each spatial location. Geostatistical stochastic simulations incorporate the spatial correlation and the small scale variability which is hard to capture with only seismic information because of the limits of resolution. Combining deterministic physical models with statistical techniques has provided us with a successful way of performing quantitative interpretation and estimation of reservoir properties from seismic data. These formulations identify not only the most likely interpretation but also the uncertainty of the interpretation, and serve as a guide for quantitative decision analysis. The methodology shown in this article is applied successfully to map petroleum reservoirs, and the examples are from relatively deeply buried oil fields. However, we suggest that this approach can also be carried out for improved characterization of shallow hydrologic aquifers using shallow seismic or GPR data.

    6. A Path to Successful Energy Retrofits: Early Collaboration through Integrated Project Delivery Teams

      SciTech Connect

      Parrish, Kristen

      2012-10-31

      This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.

    7. Integrating particle physical geometry into composting degradation kinetics.

      PubMed

      Wang, Yongjiang; Ai, Ping

      2016-01-01

      The study was carried out to integrate physical geometry of compost particle with degradation kinetics to model biological reactions, which revealing additional dynamic approaches. A sphere and its circumscribing cube were used to represent compost particles. An inner sphere, representing anaerobic zone, was introduced to describe variations of substrate volume without sufficient oxygen supply. Degradation of soluble substrates and hydrolysis of insoluble substrates were associated with the particle geometry. Transportation of soluble substrates produced from hydrolysis was expressed using Fick's law. Through the integration of degradation kinetics with geometry models, degradation models could describe varying volume of composting materials involving aerobic or anaerobic digestion and transportation of soluble substrates in a unit compost particle. PMID:26520491

    8. Making Laboratories Count -- Better Integration of Laboratories in Physics Courses

      NASA Astrophysics Data System (ADS)

      Sizemore, Jim

      2011-10-01

      The quality of K-12 education leaves something to be desired and presents higher education faculty with the challenge of instructing under-prepared students. However, by their own admission, students from many institutions inform us that laboratory sections in science classes, including physics, consist mostly of showing up, going through the motions, and getting grades that boost their overall grade. This work presents laboratories that challenge students to take their laboratory work more seriously including specific rubrics enforcing SOLVE and Bloom's Taxonomy, pre-lab preparation work, and quizzes on pre-lab preparation. Early results are encouraging revealing greater student progress with better integration of laboratory with the rest of a complete physics course.

    9. Physical incorporation of particles in a porous media: a path to a smart wood

      NASA Astrophysics Data System (ADS)

      Zerriaa, Azza; El Ganaoui, Mohammed; Gerardin, Christine; Tazibt, Abdel; Gabsi, Slimane

      2016-05-01

      The aim of this work is to develop a functional wood incorporating, in its surface, physical and chemical properties that meet society demand. For instance: fire resistance, magnetic electrical conduction (metal-wood particles), antibacterial reaction (copper-wood), anti-pollution (zeolite-wood), dry coloring, reflective effects (minerals-wood). As part of the research on wooden materials, the technique of "JAZOLTHOP1" driving micrometric particles before combining them and moving in supersonic speeds was used in the framework of enriching a wooden substrate. Various tests were conducted on two wooden materials (fir and ash tree) submitted to four typologies of particles (steel shot, garnet, corundum and glass beads). The surfaces of the test samples were machined beforehand for a use of conventional smooth quality, thus defining a reference surface before incorporation. The enriched samples were characterized by using two optical techniques; firstly a surface technique through macroscopy Leica 110X ZP, then a volume technique through tomography2. Subsequently, volume simulations (wood-inclusions) were implemented to study the thermal transfer. The obtained results showcase the existence of certain set conditions to reach the critical fluency of incorporation and to localize the enrichment on a parallel plan to the sample surface. The results show also the influence of particles concentration and the kind of the chosen wood on the final composite matrix/particle media. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui http:// http:// http:// http:// http:// http://Nunzihttp://

    10. Neocartilage integration in temporomandibular joint discs: physical and enzymatic methods

      PubMed Central

      Murphy, Meghan K.; Arzi, Boaz; Prouty, Shannon M.; Hu, Jerry C.; Athanasiou, Kyriacos A.

      2015-01-01

      Integration of engineered musculoskeletal tissues with adjacent native tissues presents a significant challenge to the field. Specifically, the avascularity and low cellularity of cartilage elicit the need for additional efforts in improving integration of neocartilage within native cartilage. Self-assembled neocartilage holds significant potential in replacing degenerated cartilage, though its stabilization and integration in native cartilage require further efforts. Physical and enzymatic stabilization methods were investigated in an in vitro model for temporomandibular joint (TMJ) disc degeneration. First, in phase 1, suture, glue and press-fit constructs were compared in TMJ disc intermediate zone defects. In phase 1, suturing enhanced interfacial shear stiffness and strength immediately; after four weeks, a 15-fold increase in stiffness and a ninefold increase in strength persisted over press-fit. Neither suture nor glue significantly altered neocartilage properties. In phase 2, the effects of the enzymatic stabilization regimen composed of lysyl oxidase, CuSO4 and hydroxylysine were investigated. A full factorial design was employed, carrying forward the best physical method from phase 1, suturing. Enzymatic stabilization significantly increased interfacial shear stiffness after eight weeks. Combined enzymatic stabilization and suturing led to a fourfold increase in shear stiffness and threefold increase in strength over press-fit. Histological analysis confirmed the presence of a collagen-rich interface. Enzymatic treatment additionally enhanced neocartilage mechanical properties, yielding a tensile modulus over 6 MPa and compressive instantaneous modulus over 1200 kPa at eight weeks. Suturing enhances stabilization of neocartilage, and enzymatic treatment enhances functional properties and integration of neocartilage in the TMJ disc. Methods developed here are applicable to other orthopaedic soft tissues, including knee meniscus and hyaline articular

    11. Object Individuation and Physical Reasoning in Infancy: An Integrative Account

      PubMed Central

      Baillargeon, Renée; Stavans, Maayan; Wu, Di; Gertner, Yael; Setoh, Peipei; Kittredge, Audrey K.; Bernard, Amélie

      2012-01-01

      Much of the research on object individuation in infancy has used a task in which two different objects emerge in alternation from behind a large screen, which is then removed to reveal either one or two objects. In their seminal work, Xu and Carey (1996) found that it is typically not until the end of the first year that infants detect a violation when a single object is revealed. Since then, a large number of investigations have modified the standard task in various ways and found that young infants succeed with some but not with other modifications, yielding a complex and unwieldy picture. In this article, we argue that this confusing picture can be better understood by bringing to bear insights from a related subfield of infancy research, physical reasoning. By considering how infants reason about object information within and across physical events, we can make sense of apparently inconsistent findings from different object-individuation tasks. In turn, object-individuation findings deepen our understanding of how physical reasoning develops in infancy. Integrating the insights from physical-reasoning and object-individuation investigations thus enriches both subfields and brings about a clearer account of how infants represent objects and events. PMID:23204946

    12. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

      NASA Astrophysics Data System (ADS)

      Butko, Yana A.; Grothaus, Martin; Smolyanov, Oleg G.

      2016-02-01

      Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin's problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

    13. 77 FR 9226 - Physical Systems Integration, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

      Federal Register 2010, 2011, 2012, 2013, 2014

      2012-02-16

      ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Physical Systems Integration, LLC; Supplemental Notice That Initial Market... in the above-referenced proceeding of Physical Systems Integration, LLC's application for...

    14. Integrative Analysis of the Physical Transport Network into Australia

      PubMed Central

      Cope, Robert C.; Ross, Joshua V.; Wittmann, Talia A.; Prowse, Thomas A. A.; Cassey, Phillip

      2016-01-01

      Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999–2012. Seaborne and air traffic were weighted to calculate a “weighted cumulative impact” score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy. PMID:26881782

    15. Integrative Analysis of the Physical Transport Network into Australia.

      PubMed

      Cope, Robert C; Ross, Joshua V; Wittmann, Talia A; Prowse, Thomas A A; Cassey, Phillip

      2016-01-01

      Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999-2012. Seaborne and air traffic were weighted to calculate a "weighted cumulative impact" score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong), and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights), were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy. PMID:26881782

    16. Note: A portable Raman analyzer for microfluidic chips based on a dichroic beam splitter for integration of imaging and signal collection light paths

      SciTech Connect

      Geng, Yijia; Xu, Shuping; Xu, Weiqing; Chen, Lei; Chen, Gang; Bi, Wenbin; Cui, Haining

      2015-05-15

      An integrated and portable Raman analyzer featuring an inverted probe fixed on a motor-driving adjustable optical module was designed for the combination of a microfluidic system. It possesses a micro-imaging function. The inverted configuration is advantageous to locate and focus microfluidic channels. Different from commercial micro-imaging Raman spectrometers using manual switchable light path, this analyzer adopts a dichroic beam splitter for both imaging and signal collection light paths, which avoids movable parts and improves the integration and stability of optics. Combined with surface-enhanced Raman scattering technique, this portable Raman micro-analyzer is promising as a powerful tool for microfluidic analytics.

    17. Physical incorporation of particles in a porous media: a path to a smart wood

      NASA Astrophysics Data System (ADS)

      Zerriaa, Azza; El Ganaoui, Mohammed; Gerardin, Christine; Tazibt, Abdel; Gabsi, Slimane

      2016-05-01

      The aim of this work is to develop a functional wood incorporating, in its surface, physical and chemical properties that meet society demand. For instance: fire resistance, magnetic electrical conduction (metal-wood particles), antibacterial reaction (copper-wood), anti-pollution (zeolite-wood), dry coloring, reflective effects (minerals-wood). As part of the research on wooden materials, the technique of "JAZOLTHOP1" driving micrometric particles before combining them and moving in supersonic speeds was used in the framework of enriching a wooden substrate. Various tests were conducted on two wooden materials (fir and ash tree) submitted to four typologies of particles (steel shot, garnet, corundum and glass beads). The surfaces of the test samples were machined beforehand for a use of conventional smooth quality, thus defining a reference surface before incorporation. The enriched samples were characterized by using two optical techniques; firstly a surface technique through macroscopy Leica 110X ZP, then a volume technique through tomography2. Subsequently, volume simulations (wood-inclusions) were implemented to study the thermal transfer. The obtained results showcase the existence of certain set conditions to reach the critical fluency of incorporation and to localize the enrichment on a parallel plan to the sample surface. The results show also the influence of particles concentration and the kind of the chosen wood on the final composite matrix/particle media. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui http:// http:// http:// http:// http:// http://Nunzihttp://

    18. Source Apportionment of the Anthropogenic Increment to Ozone, Formaldehyde, and Nitrogen Dioxide by the Path-Integral Method in a 3D Model.

      PubMed

      Dunker, Alan M; Koo, Bonyoung; Yarwood, Greg

      2015-06-01

      The anthropogenic increment of a species is the difference in concentration between a base-case simulation with all emissions included and a background simulation without the anthropogenic emissions. The Path-Integral Method (PIM) is a new technique that can determine the contributions of individual anthropogenic sources to this increment. The PIM was applied to a simulation of O3 formation in July 2030 in the U.S., using the Comprehensive Air Quality Model with Extensions and assuming advanced controls on light-duty vehicles (LDVs) and other sources. The PIM determines the source contributions by integrating first-order sensitivity coefficients over a range of emissions, a path, from the background case to the base case. There are many potential paths, with each representing a specific emission-control strategy leading to zero anthropogenic emissions, i.e., controlling all sources together versus controlling some source(s) preferentially are different paths. Three paths were considered, and the O3, formaldehyde, and NO2 anthropogenic increments were apportioned to five source categories. At rural and urban sites in the eastern U.S. and for all three paths, point sources typically have the largest contribution to the O3 and NO2 anthropogenic increments, and either LDVs or area sources, the smallest. Results for formaldehyde are more complex. PMID:25938820

    19. The Results of the “Positive Action for Today’s Health” (PATH) Trial for Increasing Walking and Physical Activity in Underserved African-American Communities

      PubMed Central

      Wilson, Dawn K.; Van Horn, M. Lee; Siceloff, E. Rebekah; Alia, Kassandra A.; St. George, Sara M.; Lawman, Hannah G.; Trumpeter, Nevelyn N.; Coulon, Sandra M.; Griffin, Sarah F.; Wandersman, Abraham; Egan, Brent; Colabianchi, Natalie; Forthofer, Melinda; Gadson, Barney

      2015-01-01

      Background The “Positive Action for Today’s Health” (PATH) trial tested an environmental intervention to increase walking in underserved communities. Methods Three matched communities were randomized to a police-patrolled walking plus social marketing, a police-patrolled walking-only, or a no-walking intervention. The 24-month intervention addressed safety and access for physical activity (PA) and utilized social marketing to enhance environmental supports for PA. African-Americans (N=434; 62 % females; aged 51±16 years) provided accelerometry and psychosocial measures at baseline and 12, 18, and 24 months. Walking attendance and trail use were obtained over 24 months. Results There were no significant differences across communities over 24 months for moderate-to-vigorous PA. Walking attendance in the social marketing community showed an increase from 40 to 400 walkers per month at 9 months and sustained ~200 walkers per month through 24 months. No change in attendance was observed in the walking-only community. Conclusions Findings support integrating social marketing strategies to increase walking in underserved African-Americans (ClinicalTrials.gov #NCT01025726). PMID:25385203

    20. The Effects of Sexual Abuse as a Child on the Risk of Mothers Physically Abusing Their Children: A Path Analysis Using Systems Theory

      ERIC Educational Resources Information Center

      Mapp, Susan C.

      2006-01-01

      Objective: The potential path from sexual abuse as a child to the current risk of physical abuse by mothers was assessed. Ontogenic variables including the experience of the parent's sexual abuse as a child and current depression or substance abuse were expected to have a greater impact on the risk of child abuse than microsystem and exosystem…

    1. First-principles path-integral molecular dynamics study of diffusion process of hydrogen in face-centered cubic metals

      NASA Astrophysics Data System (ADS)

      Kimizuka, Hajime; Ogata, Shigenobu

      We investigated the H diffusivity in face-centered cubic Pd and Al by performing path-integral molecular dynamics (PIMD) modeling in the framework of density functional theory (DFT); in our calculations, we took nuclear quantum effects into consideration. The DFT results showed that the H-migration barriers (Em) in Pd and Al exhibited similar values (approximately 0.16 eV), while the H atoms were stable at octahedral (O) sites for Pd and at tetrahedral (T) sites for Al. The PIMD-based free-energy profiles for H migration between the O-site and T-site were evaluated using the thermodynamic integration of the centroid forces at 150-600 K. We confirmed that the quantum effects significantly affected the Em and the difference between the energies of the H atom at the O-site and the T-site (EO - T); The Em and EO - T values in Pd at 300 K increased by 32% and 98%, respectively, relative to the classical limit. On the other hand, the Em and ET - O (i.e., -EO - T) values in Al at 300 K decreased by 3% and 41%, respectively. This suggested that the quantum nature of H nuclei was essential for understanding the H-diffusion kinetics in these metals even above ambient temperature.

    2. Using Multiple Instrument Measurements To Assess Integrated Water Vapor Path From A Multispectral Microwave Radiometer

      NASA Astrophysics Data System (ADS)

      Fallon, J.; Han, Z. T.; Gross, B.; Moshary, F.

      2013-12-01

      Microwave Radiometers are mounted on satellites and the ground to collect climatological data. While they provide very useful information about temperature, RH, and water vapor, radiometers should periodically be cross-referenced with other instruments to gauge the veracity of the data. Data available from the closest ground-based GPS receivers and sun photometers was plotted alongside, and used to analyze, data from City College's Microwave Radiometer. Observing all of the data together in a graph allows one to see some of the general advantages and disadvantages of each instrument. The GPS-MET seems to be accurate continuously, while AERONET data is not even available during the night and while there is cloud cover. Lastly, the microwave radiometer collects data continuously, but at certain times the data are about five times higher than the expected values, based on the values given by GPS-MET and AERONET. A good explanation for those spikes is rainfall. For times when it is not raining, the microwave radiometer at City College is sufficiently close to the integrated water vapor data collected by City College's sun photometer and data from Union, New Jersey and East Moriches, New York, as proven by statistical tools.

    3. A Critical Path for Data Integration in the U.S. Earth Sciences

      NASA Astrophysics Data System (ADS)

      Gallagher, K. T.; Allison, M. L.

      2011-12-01

      Development efforts for the U.S. Geoscience Information Network (US GIN) have crystallized around the Community for Data Integration (CDI) at the USGS, and the 50-state AASG State Geothermal Data project. The next step in developing a USGS-AASG community is to bring these two efforts into closer alignment through greater participation in CDI activities by geoinformatics practitioners from state geological surveys, and implementation of test bed activities by the USGIN partners. Test bed activities in the geological survey community will define a scope and provide a foundation to promote the use of specifications developed by the larger geoinformatics community. Adoption of some of these specifications as 'standards' by USGS and AASG for use by those organizations will lend authority and motivate wider adoption. The arc from use case to test bed to production deployments to agreement on 'standard' specifications for data discovery and access must be propelled by active interest from the user communities who have a stake in the outcome. The specifications developed will benefit the organizations involved in development, testing and deployment, which motivates participation -- a model that has worked successfully for standards organizations such as OGC, ISO and OASIS. The governance structure to support such a community process should promote grass root nucleation of interest groups that are the core of development efforts. Some mechanism for community agreement on priorities is desirable because geological survey agencies will need to allocate resources to support development. Loosely knit organizations such as ESIP and the current CDI provide models for this kind of structure. Because many geological surveys have data archive and dissemination functions as part of their portfolio, some support for the system can be built into the operating expenses and overhead. Sharing of resources and reuse of components can reduce the cost. Wide adoption of similar software

    4. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.).

      PubMed

      Varshney, Rajeev K; Mir, Reyazul Rouf; Bhatia, Sabhyata; Thudi, Mahendar; Hu, Yuqin; Azam, Sarwar; Zhang, Yong; Jaganathan, Deepa; You, Frank M; Gao, Jinliang; Riera-Lizarazu, Oscar; Luo, Ming-Cheng

      2014-03-01

      Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance "QTL-hotspot" region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement. PMID:24610029

    5. An analysis of quantum effects on the thermodynamic properties of cryogenic hydrogen using the path integral method.

      PubMed

      Nagashima, H; Tsuda, S; Tsuboi, N; Koshi, M; Hayashi, K A; Tokumasu, T

      2014-04-01

      In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide density-temperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressure-volume-temperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases. PMID:24712800

    6. Effect of a force-free end on the mechanical property of a biopolymer — A path integral approach

      NASA Astrophysics Data System (ADS)

      Zhou, Zicong; Joós, Béla

      2016-08-01

      We study the effect of a force-free end on the mechanical property of a stretched biopolymer. The system can be divided into two parts. The first part consists of the segment counted from the fixed point (i.e., the origin) to the forced point in the biopolymer, with arclength L f . The second part consists of the segment counted from the forced point to the force-free end with arclength ΔL. We apply the path integral technique to find the relationship between these two parts. At finite temperature and without any constraint at the end, we show exactly that if we focus on the quantities related to the first part, then we can ignore the second part completely. Monte Carlo simulation confirms this conclusion. In contrast, the effect for the quantities related to the second part is dependent on what we want to observe. A force-free end has little effect on the relative extension, but it affects seriously the value of the end-to-end distance if ΔL is comparable to L f . Project supported by the MOST and the NSERC (Canada).

    7. Polymer extension under flow: A path integral evaluation of the free energy change using the Jarzynski relation.

      PubMed

      Ghosal, Aishani; Cherayil, Binny J

      2016-06-01

      The Jarzynski relation (and its variants) has provided a route to the experimental evaluation of equilibrium free energy changes based on measurements conducted under arbitrary non-equilibrium conditions. Schroeder and co-workers [Soft Matter 10, 2178 (2014) and J. Chem. Phys. 141, 174903 (2014)] have recently exploited this fact to determine the elastic properties of model DNA from simulations and experiments of chain extension under elongational flow, bypassing the need to make these measurements mechanically using sophisticated optical trapping techniques. In this paper, motivated by these observations, we investigate chain elasticity analytically, using the Jarzynski relation and a finitely extensible nonlinear elastic-type Rouse model within a path integral formalism to calculate (essentially exactly) both the flow-induced free energy change between chain conformations of definite average end-to-end distance, as well as the force-extension curve that follows from it. This curve, based on a new analytic expression, matches the trends in the corresponding curve obtained from a model of chain stretching developed by Marko and Siggia [Macromolecules 28, 8759 (1995)], which itself is in very satisfactory agreement with the numerical and experimental data from the work of Schroeder et al. PMID:27276965

    8. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

      SciTech Connect

      Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

      2015-03-07

      A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

    9. Quantum effects in a free-standing graphene lattice: Path-integral against classical Monte Carlo simulations

      NASA Astrophysics Data System (ADS)

      Brito, B. G. A.; Cândido, Ladir; Hai, G.-Q.; Peeters, F. M.

      2015-11-01

      In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene, we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy, interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very close to the energy of a three-dimensional harmonic oscillator 3 kBT . The PIMC simulation shows that quantum effects due to zero-point vibrations are significant for temperatures T <1000 K. The quantum contribution to the lattice vibrational energy becomes larger than that of the classical lattice for T <400 K. The lattice expansion due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice parameter appears at T ≃500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and its free energy are investigated.

    10. Path Integral Simulation of the H/D Kinetic Isotope Effect in Monoamine Oxidase B Catalyzed Decomposition of Dopamine.

      PubMed

      Mavri, Janez; Matute, Ricardo A; Chu, Zhen T; Vianello, Robert

      2016-04-14

      Brain monoamines regulate many centrally mediated body functions, and can cause adverse symptoms when they are out of balance. A starting point to address challenges raised by the increasing burden of brain diseases is to understand, at atomistic level, the catalytic mechanism of an essential amine metabolic enzyme-monoamine oxidase B (MAO B). Recently, we demonstrated that the rate-limiting step of MAO B catalyzed conversion of amines into imines represents the hydride anion transfer from the substrate α-CH2 group to the N5 atom of the flavin cofactor moiety. In this article we simulated for MAO B catalyzed dopamine decomposition the effects of nuclear tunneling by the calculation of the H/D kinetic isotope effect. We applied path integral quantization of the nuclear motion for the methylene group and the N5 atom of the flavin moiety in conjunction with the QM/MM treatment on the empirical valence bond (EVB) level for the rest of the enzyme. The calculated H/D kinetic isotope effect of 12.8 ± 0.3 is in a reasonable agreement with the available experimental data for closely related biogenic amines, which gives strong support for the proposed hydride mechanism. The results are discussed in the context of tunneling in enzyme centers and advent of deuterated drugs into clinical practice. PMID:27010708

    11. Polymer extension under flow: A path integral evaluation of the free energy change using the Jarzynski relation

      NASA Astrophysics Data System (ADS)

      Ghosal, Aishani; Cherayil, Binny J.

      2016-06-01

      The Jarzynski relation (and its variants) has provided a route to the experimental evaluation of equilibrium free energy changes based on measurements conducted under arbitrary non-equilibrium conditions. Schroeder and co-workers [Soft Matter 10, 2178 (2014) and J. Chem. Phys. 141, 174903 (2014)] have recently exploited this fact to determine the elastic properties of model DNA from simulations and experiments of chain extension under elongational flow, bypassing the need to make these measurements mechanically using sophisticated optical trapping techniques. In this paper, motivated by these observations, we investigate chain elasticity analytically, using the Jarzynski relation and a finitely extensible nonlinear elastic-type Rouse model within a path integral formalism to calculate (essentially exactly) both the flow-induced free energy change between chain conformations of definite average end-to-end distance, as well as the force-extension curve that follows from it. This curve, based on a new analytic expression, matches the trends in the corresponding curve obtained from a model of chain stretching developed by Marko and Siggia [Macromolecules 28, 8759 (1995)], which itself is in very satisfactory agreement with the numerical and experimental data from the work of Schroeder et al.

    12. Accurate path integral molecular dynamics simulation of ab-initio water at near-zero added cost

      NASA Astrophysics Data System (ADS)

      Elton, Daniel; Fritz, Michelle; Soler, José; Fernandez-Serra, Marivi

      It is now established that nuclear quantum motion plays an important role in determining water's structure and dynamics. These effects are important to consider when evaluating DFT functionals and attempting to develop better ones for water. The standard way of treating nuclear quantum effects, path integral molecular dynamics (PIMD), multiplies the number of energy/force calculations by the number of beads, which is typically 32. Here we introduce a method whereby PIMD can be incorporated into a DFT molecular dynamics simulation at virtually zero cost. The method is based on the cluster (many body) expansion of the energy. We first subtract the DFT monomer energies, using a custom DFT-based monomer potential energy surface. The evolution of the PIMD beads is then performed using only the more-accurate Partridge-Schwenke monomer energy surface. The DFT calculations are done using the centroid positions. Various bead thermostats can be employed to speed up the sampling of the quantum ensemble. The method bears some resemblance to multiple timestep algorithms and other schemes used to speed up PIMD with classical force fields. We show that our method correctly captures some of key effects of nuclear quantum motion on both the structure and dynamics of water. We acknowledge support from DOE Award No. DE-FG02-09ER16052 (D.E.) and DOE Early Career Award No. DE-SC0003871 (M.V.F.S.).

    13. Direct assessment of quantum nuclear effects on hydrogen bond strength by constrained-centroid ab initio path integral molecular dynamics.

      PubMed

      Walker, Brent; Michaelides, Angelos

      2010-11-01

      The impact of quantum nuclear effects on hydrogen (H-) bond strength has been inferred in earlier work from bond lengths obtained from path integral molecular dynamics (PIMD) simulations. To obtain a direct quantitative assessment of such effects, we use constrained-centroid PIMD simulations to calculate the free energy changes upon breaking the H-bonds in dimers of HF and water. Comparing ab initio simulations performed using PIMD and classical nucleus molecular dynamics (MD), we find smaller dissociation free energies with the PIMD method. Specifically, at 50 K, the H-bond in (HF)(2) is about 30% weaker when quantum nuclear effects are included, while that in (H(2)O)(2) is about 15% weaker. In a complementary set of simulations, we compare unconstrained PIMD and classical nucleus MD simulations to assess the influence of quantum nuclei on the structures of these systems. We find increased heavy atom distances, indicating weakening of the H-bond consistent with that observed by direct calculation of the free energies of dissociation. PMID:21054031

    14. Effect of the shape on the spin state and exchange in quantum dots. Feynman path integral analysis

      SciTech Connect

      Shevkunov, S. V.

      2015-05-15

      The ab initio computer simulation of the mixed quantum states of 1–5-nm model ellipsoid quantum dots with “soft” walls containing two and three quantum-indistinguishable nonrelativistic electrons has been performed by the path integral method. The calculation has been carried out beyond the single-electron and mean-field approximations with the fundamentally exact inclusion of Coulomb and exchange correlations of all orders and the spin variable. Distributions over the eigenfunctions of the spin-squared operator, as well as the equilibrium spin numbers, have been obtained depending on the shape of a quantum dot and the temperature. The complete set of basis functions symmetrized in permutations according to the spin of the system has been obtained by application of the Young symmetry operators. The dependence of the energy on the shape of the quantum dot corresponds to the negative sign of the surface tension at its boundary. The calculation indicates that the spin magnetic susceptibility in the system of two electrons decreases strongly for spherical quantum dots (“pairing” of spins) and the temperature dependences have a pronounced maximum whose position depends on the shape of the quantum dot. For three electrons in an oblate quantum dot, the inversion of the energy levels of spin states is observed and affects the spin magnetic susceptibility. The results indicate a strong dependence of the energy of collective spin states of electrons on the detailed inclusion of exchange and Coulomb spatial correlations.

    15. Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations

      NASA Astrophysics Data System (ADS)

      Boninsegni, M.; Prokof'Ev, N. V.; Svistunov, B. V.

      2006-09-01

      A detailed description is provided of a new worm algorithm, enabling the accurate computation of thermodynamic properties of quantum many-body systems in continuous space, at finite temperature. The algorithm is formulated within the general path integral Monte Carlo (PIMC) scheme, but also allows one to perform quantum simulations in the grand canonical ensemble, as well as to compute off-diagonal imaginary-time correlation functions, such as the Matsubara Green function, simultaneously with diagonal observables. Another important innovation consists of the expansion of the attractive part of the pairwise potential energy into elementary (diagrammatic) contributions, which are then statistically sampled. This affords a complete microscopic account of the long-range part of the potential energy, while keeping the computational complexity of all updates independent of the size of the simulated system. The computational scheme allows for efficient calculations of the superfluid fraction and off-diagonal correlations in space-time, for system sizes which are orders of magnitude larger than those accessible to conventional PIMC. We present illustrative results for the superfluid transition in bulk liquid He4 in two and three dimensions, as well as the calculation of the chemical potential of hcp He4 .

    16. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

      PubMed

      Moix, Jeremy M; Ma, Jian; Cao, Jianshu

      2015-03-01

      A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters. PMID:25747062

    17. An analysis of quantum effects on the thermodynamic properties of cryogenic hydrogen using the path integral method

      SciTech Connect

      Nagashima, H.; Tsuda, S.; Tsuboi, N.; Koshi, M.; Hayashi, K. A.; Tokumasu, T.

      2014-04-07

      In this paper, we describe the analysis of the thermodynamic properties of cryogenic hydrogen using classical molecular dynamics (MD) and path integral MD (PIMD) method to understand the effects of the quantum nature of hydrogen molecules. We performed constant NVE MD simulations across a wide density–temperature region to establish an equation of state (EOS). Moreover, the quantum effect on the difference of molecular mechanism of pressure–volume–temperature relationship was addressed. The EOS was derived based on the classical mechanism idea only using the MD simulation results. Simulation results were compared with each MD method and experimental data. As a result, it was confirmed that although the EOS on the basis of classical MD cannot reproduce the experimental data of saturation property of hydrogen in the high-density region, the EOS on the basis of PIMD well reproduces those thermodynamic properties of hydrogen. Moreover, it was clarified that taking quantum effects into account makes the repulsion force larger and the potential well shallower. Because of this mechanism, the intermolecular interaction of hydrogen molecules diminishes and the virial pressure increases.

    18. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy

      NASA Astrophysics Data System (ADS)

      Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

      2016-05-01

      We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems.

    19. Hamiltonian, path integral and BRST formulations of large scalar QCD on the light-front and spontaneous symmetry breaking

      NASA Astrophysics Data System (ADS)

      Kulshreshtha, Usha; Kulshreshtha, Daya Shankar; Vary, James P.

      2015-04-01

      Recently Grinstein, Jora, and Polosa have studied a theory of large- scalar quantum chromodynamics in one space and one time dimension. This theory admits a Bethe-Salpeter equation describing the discrete spectrum of quark-antiquark bound states. They consider gauge fields in the adjoint representation of and scalar fields in the fundamental representation. The theory is asymptotically free and linearly confining. The theory could possibly provide a good field theoretic framework for the description of a large class of diquark-antidiquark (tetra-quark) states. Recently we have studied the light-front quantization of this theory without a Higgs potential. In the present work, we study the light-front Hamiltonian, path integral, and BRST formulations of the theory in the presence of a Higgs potential. The light-front theory is seen to be gauge invariant, possessing a set of first-class constraints. The explicit occurrence of spontaneous symmetry breaking in the theory is shown in unitary gauge as well as in the light-front 't Hooft gauge.

    20. Permutation blocking path integral Monte Carlo: a highly efficient approach to the simulation of strongly degenerate non-ideal fermions

      NASA Astrophysics Data System (ADS)

      Dornheim, Tobias; Groth, Simon; Filinov, Alexey; Bonitz, Michael

      2015-07-01

      Correlated fermions are of high interest in condensed matter (Fermi liquids, Wigner molecules), cold atomic gases and dense plasmas. Here we propose a novel approach to path integral Monte Carlo (PIMC) simulations of strongly degenerate non-ideal fermions at finite temperature by combining a fourth-order factorization of the density matrix with antisymmetric propagators, i.e., determinants, between all imaginary time slices. To efficiently run through the modified configuration space, we introduce a modification of the widely used continuous space worm algorithm, which allows for an efficient sampling at arbitrary system parameters. We demonstrate how the application of determinants achieves an effective blocking of permutations with opposite signs, leading to a significant relieve of the fermion sign problem. To benchmark the capability of our method regarding the simulation of degenerate fermions, we consider multiple electrons in a quantum dot and compare our results with other ab initio techniques, where they are available. The present permutation blocking PIMC approach allows us to obtain accurate results even for N = 20 electrons at low temperature and arbitrary coupling, where no other ab initio results have been reported, so far.

    1. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

      NASA Technical Reports Server (NTRS)

      Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

      2013-01-01

      We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

    2. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

      NASA Technical Reports Server (NTRS)

      Pliutau, Denis; Prasad, Narasimha S.

      2012-01-01

      In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

    3. Fostering Scientific Thinking by Prospective Teachers in a Course That Integrates Physics and Literacy Learning

      ERIC Educational Resources Information Center

      van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam

      2013-01-01

      We designed a physics course for prospective elementary and middle school teachers to foster aspects of scientific thinking recommended in reform documents. Because the elementary school curriculum focuses heavily on literacy, we also explicitly integrated physics and literacy learning in this course. By integrating physics and literacy learning,…

    4. An Integrated Approach toward Retrieving Physically Consistent Profiles of Temperature, Humidity, and Cloud Liquid Water.

      NASA Astrophysics Data System (ADS)

      Löhnert, Ulrich; Crewell, Susanne; Simmer, Clemens

      2004-09-01

      A method is presented for deriving physically consistent profiles of temperature, humidity, and cloud liquid water content. This approach combines a ground-based multichannel microwave radiometer, a cloud radar, a lidar-ceilometer, the nearest operational radiosonde measurement, and ground-level measurements of standard meteorological properties with statistics derived from results of a microphysical cloud model. All measurements are integrated within the framework of optimal estimation to guarantee a retrieved profile with maximum information content. The developed integrated profiling technique (IPT) is applied to synthetic cloud model output as a test of accuracy. It is shown that the liquid water content profiles obtained with the IPT are significantly more accurate than common methods that use the microwave-derived liquid water path to scale the radar reflectivity profile. The IPT is also applied to 2 months of the European Cloud Liquid Water Network (CLIWA-NET) Baltic Sea Experiment (BALTEX) BRIDGE main experiment (BBC) campaign data, considering liquid-phase, nonprecipitating clouds only. Error analysis indicates root-mean-square uncertainties of less than 1 K in temperature and less than 1 g m-3 in humidity, where the relative error in liquid water content ranges from 15% to 25%. A comparison of the vertically integrated humidity profile from the IPT with the nearest operational radiosonde shows an acceptable bias error of 0.13 kg m-2 when the Rosenkranz gas absorption model is used. However, if the Liebe gas absorption model is used, this systematic error increases to -1.24 kg m-2, showing that the IPT humidity retrieval is significantly dependent on the chosen gas absorption model.


    5. Developmental effects of +/-3,4-methylenedioxymethamphetamine on spatial versus path integration learning: effects of dose distribution.

      PubMed

      Vorhees, Charles V; Schaefer, Tori L; Williams, Michael T

      2007-07-01

      We previously demonstrated that postnatal day 11-20 +/-3,4-methylenedioxymethamphetamine (MDMA) exposure reduces locomotor activity and impairs path integration and spatial learning independent of the effects on activity. The effects were seen when the drug was administered twice per day, but the optimal dosing regimen is unknown. We tested whether the same total daily dose of MDMA administered in different patterns would equally affect later behavior. A split-litter design (15 litters) was used with one male/female pair per litter receiving one of four treatment regimens. All offspring received four injections per day on P11-20 as follows: 40 x 1 (40 mg/kg MDMA x 1 + saline x 3), 20 x 2 (20 mg/kg MDMA x 2 + saline x 2), 10 x 4 (10 mg/kg MDMA x 4), or Saline (saline x 4). Doses were spaced 2 h apart. Group 40 x 1 received MDMA as the first daily dose followed by three saline doses; group 20 x 2 received MDMA as the first and last dose and saline for the middle two doses; group 10 x 4 received MDMA for all four doses; and the saline group received saline for all four doses. Regardless of dose schedule, all groups treated with MDMA exhibited reduced locomotor activity. No MDMA effects were found on swimming ability in a straight channel. Modest MDMA effects were found on Barnes maze performance. The major findings were that the 40 x 1 and 20 x 2 MDMA groups showed impaired Cincinnati multiple T-water-maze learning and the 10 x 4 and 20 x 2 MDMA groups showed impaired Morris water maze learning. The results suggest that MDMA dose distribution has a long-term differential effect on different types of learning. Dose distribution warrants greater attention in the design of developmental drug studies along with the standard considerations of dose and age. PMID:17415794

    6. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics

      NASA Astrophysics Data System (ADS)

      Pinilla, Carlos; Blanchard, Marc; Balan, Etienne; Natarajan, Suresh K.; Vuilleumier, Rodolphe; Mauri, Francesco

      2015-08-01

      The theoretical determination of the isotopic fractionation between an aqueous solution and a mineral is of utmost importance in Earth sciences. While for crystals, it is well established that equilibrium isotopic fractionation factors can be calculated using a statistical thermodynamic approach based on the vibrational properties, several theoretical methods are currently used to model ions in aqueous solution. In this work, we present a systematic study to determine the reduced partition function ratio (β-factor) of aqueous Mg2+ using several levels of theory within the simulations. In particular, using an empirical force field, we compare and discuss the performance of the exact results obtained from path integral molecular dynamics (PIMD) simulations, with respect to the more traditional methods based on vibrational properties and the cluster approximation. The results show the importance of including configurational disorder for the estimation of the equilibrium isotope fractionation factor. We also show that using the vibrational frequencies computed from snapshots taken from equilibrated classical molecular dynamics represents a good approximation for the study of aqueous ions. Based on these conclusions, the β-factor of aqueous Mg2+ have been estimated from a Car-Parrinello molecular dynamics (CPMD) simulation with an ab initio force field, and combined with the β-factors of carbonate minerals (magnesite, dolomite, calcite and aragonite). Mg β-factor of Mg-bearing aragonite, calculated here for the first time, displays a lower value than the three other carbonate minerals. This is explained by a strong distortion of the cationic site leading to a decrease of the coordination number during Ca-Mg substitution. Overall, the equilibrium magnesium isotope fractionation factors between aqueous Mg2+ and carbonate minerals that derive from this methodological study support the previous theoretical results obtained from embedded cluster models.

    7. A path integral molecular dynamics study of the hyperfine coupling constants of the muoniated and hydrogenated acetone radicals

      NASA Astrophysics Data System (ADS)

      Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori

      2016-08-01

      The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and "reduced" isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is -8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.

    8. Path integral Monte Carlo simulations of H2 adsorbed to lithium-doped benzene: A model for hydrogen storage materials.

      PubMed

      Lindoy, Lachlan P; Kolmann, Stephen J; D'Arcy, Jordan H; Crittenden, Deborah L; Jordan, Meredith J T

      2015-11-21

      Finite temperature quantum and anharmonic effects are studied in H2-Li(+)-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H2. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H2 molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔUads, and enthalpy, ΔHads, for H2 adsorption onto Li(+)-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling-coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H2-Li(+)-benzene are the "helicopter" and "ferris wheel" H2 rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔUads and ΔHads are -13.3 ± 0.1 and -14.5 ± 0.1 kJ mol(-1), respectively. PMID:26590532

    9. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

      PubMed

      Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

      2016-05-20

      Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

    10. Determinants of Physical Activity Based on the Theory of Planned Behavior in Iranian Military Staff’s Wives: A Path Analysis

      PubMed Central

      Shirvani, Zeinab Gholamnia; Ghofranipour, Fazlollah; Gharakhanlou, Reza; Kazemnejad, Anoshirvan

      2015-01-01

      Level of physical activity as a key determinant of healthy lifestyle less than is required in individuals particularly women. Applying theories of behavioral change about complex behaviors such as physical activity leads to identify effective factors and their relations. The aim of this study was to determine predictors of physical activity behavior based on the Theory of Planned Behavior in military staff’s wives in Tehran. This cross-sectional study was performed in 180 military personnel’s spouses residing in organizational houses, in Tehran, Iran in 2014. The participants were randomly selected with multi-stage cluster sampling. The validity and reliability of the theory based scale evaluated before conducting the path analysis. Statistical analysis was carried out using SPSS16 and LISREL8.8. The results indicated the model explained 77% and 17% of intention and behavior variance. Subjective norms (Beta=0.83) and intention (Beta=0.37) were the strongest predictors of intention and behavior, respectively. The instrumental and affective attitude had no significant path to intention and behavior. The direct relation of perceived behavioral control to behavior was non-significant. This research demonstrated relative importance and relationships of Theory of Planned Behavior constructs in physical activity behavior of military personnel’s spouses in Tehran. It is essential to consider these determinants in designing of educational interventions for promoting and maintaining physical activity behavior in this target group. PMID:25948459

    11. A Car-Parrinello and path integral molecular dynamics study of the intramolecular lithium bond in the lithium 2-pyridyl-N-oxide acetate

      NASA Astrophysics Data System (ADS)

      Durlak, Piotr; Latajka, Zdzisław; Berski, Sławomir

      2009-07-01

      Lithium bonding in lithium 2-pyridyl-N-oxide acetate has been investigated using classic Car-Parrinello molecular dynamics (CPMD) and the path integral approach [path integrals molecular dynamics (PIMD)]. The simulations have been performed in 300 K. Structures, energies, and lithium trajectories have been determined. The CPMD results show that the lithium atom is generally equidistant between heavy atoms in the (O⋯Li⋯O) bridge. Applying quantum effects through the PIMD leads to similar conclusion. The theoretical lithium 2-pyridyl-N-oxide acetate infrared spectrum has also been determined using the CPMD calculations. This shows very good agreement with available experimental results and reproduces well the broad low-frequency band observed experimentally. In order to gain deeper understanding of the nature of the lithium bonding topological analysis of the electron localization function has been applied.

    12. Path Finder

      Energy Science and Technology Software Center (ESTSC)

      2014-01-07

      PathFinder is a graph search program, traversing a directed cyclic graph to find pathways between labeled nodes. Searches for paths through ordered sequences of labels are termed signatures. Determining the presence of signatures within one or more graphs is the primary function of Path Finder. Path Finder can work in either batch mode or interactively with an analyst. Results are limited to Path Finder whether or not a given signature is present in the graph(s).

    13. Physical approach to analytic simulation of Fresnel integrals

      NASA Astrophysics Data System (ADS)

      Anokhov, Sergey

      2007-01-01

      Fresnel integrals continue to find new applications in various areas of human activity, including technology and music. However, performing calculations with them is often hindered by a mathematical peculiarity of these integrals, which is the rapidly oscillating functions of the basic variable. This circumstance complicates the numerical calculations when these integrals need additional integral transformation: convolution, Fourier transform, etc. The suggested solution of the problem consists of replacement of the complex Fresnel integral by a single rational function that simulates this integral in the entire area of its existence with an accuracy up to 10-6. The advantages of the suggested approach are confirmed by the concrete example.

    14. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational-rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane

      NASA Astrophysics Data System (ADS)

      Mielke, Steven L.; Truhlar, Donald G.

      2015-01-01

      We present an improved version of our "path-by-path" enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P-6) to O(P-12), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational-rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan-Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ˜1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300-3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

    15. Integrating Global Games in the Elementary Physical Education Curriculum

      ERIC Educational Resources Information Center

      Gross, Michael K.; Buchanan, Alice M.

      2011-01-01

      Global education units are great motivators for activity in elementary physical education because they can bring freshness and excitement to a physical education program. Additionally, children are provided with the opportunity to learn just how much physical education interacts with the other academic subjects that they study. This article…

    16. Automated integration of genomic physical mapping data via parallel simulated annealing

      SciTech Connect

      Slezak, T.

      1994-06-01

      The Human Genome Center at the Lawrence Livermore National Laboratory (LLNL) is nearing closure on a high-resolution physical map of human chromosome 19. We have build automated tools to assemble 15,000 fingerprinted cosmid clones into 800 contigs with minimal spanning paths identified. These islands are being ordered, oriented, and spanned by a variety of other techniques including: Fluorescence Insitu Hybridization (FISH) at 3 levels of resolution, ECO restriction fragment mapping across all contigs, and a multitude of different hybridization and PCR techniques to link cosmid, YAC, AC, PAC, and Pl clones. The FISH data provide us with partial order and distance data as well as orientation. We made the observation that map builders need a much rougher presentation of data than do map readers; the former wish to see raw data since these can expose errors or interesting biology. We further noted that by ignoring our length and distance data we could simplify our problem into one that could be readily attacked with optimization techniques. The data integration problem could then be seen as an M x N ordering of our N cosmid clones which ``intersect`` M larger objects by defining ``intersection`` to mean either contig/map membership or hybridization results. Clearly, the goal of making an integrated map is now to rearrange the N cosmid clone ``columns`` such that the number of gaps on the object ``rows`` are minimized. Our FISH partially-ordered cosmid clones provide us with a set of constraints that cannot be violated by the rearrangement process. We solved the optimization problem via simulated annealing performed on a network of 40+ Unix machines in parallel, using a server/client model built on explicit socket calls. For current maps we can create a map in about 4 hours on the parallel net versus 4+ days on a single workstation. Our biologists are now using this software on a daily basis to guide their efforts toward final closure.

    17. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

      NASA Technical Reports Server (NTRS)

      Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

      2016-01-01

      For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

    18. Shortest Paths.

      ERIC Educational Resources Information Center

      Shore, M. L.

      1980-01-01

      There are many uses for the shortest path algorithm presented which are limited only by our ability to recognize when a problem may be converted into the shortest path in a graph representation. (Author/TG)

    19. Path planning for everday robotics with SANDROS

      SciTech Connect

      Watterberg, P.; Xavier, P.; Hwang, Y.

      1997-02-01

      We discuss the integration of the SANDROS path planner into a general robot simulation and control package with the inclusion of a fast geometry engine for distance calculations. This creates a single system that allows the path to be computed, simulated, and then executed on the physical robot. The architecture and usage procedures are presented. Also, we present examples of its usage in typical environments found in our organization. The resulting system is as easy to use as the general simulation system (which is in common use here) and is fast enough (example problems are solved in seconds) to be used interactively on an everyday basis.

    20. Integrating Children's Books and Literacy into the Physical Education Curriculum

      ERIC Educational Resources Information Center

      Fingon, Joan C.

      2011-01-01

      Since the onset of No Child Left Behind (NCLB, 2002) schools have been focusing on raising test scores in reading and mathematics, while at the same time feeling pressured to reduce subjects such as physical education and health. It seems for many educators finding time in the school day for students' physical activity has become increasingly…

    1. The Relative Effectiveness of Integrated Reading Study Strategy and Conceptual Physics Approach

      ERIC Educational Resources Information Center

      Taslidere, Erdal; Eryilmaz, Ali

      2012-01-01

      The primary purpose of this study was to investigate the combined and partial effects of the Integrated Reading/Study Strategy and Conceptual Physics Approach on ninth grade private high school students' achievement in and attitudes toward optics. The Integrated Reading/Study Strategy is a new strategy which was developed by integrating previously…

    2. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

      NASA Technical Reports Server (NTRS)

      Simon, Donald L.

      2010-01-01

      Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

    3. Improved methods for Feynman path integral calculations and their application to calculate converged vibrational–rotational partition functions, free energies, enthalpies, entropies, and heat capacities for methane

      SciTech Connect

      Mielke, Steven L. E-mail: truhlar@umn.edu; Truhlar, Donald G. E-mail: truhlar@umn.edu

      2015-01-28

      We present an improved version of our “path-by-path” enhanced same path extrapolation scheme for Feynman path integral (FPI) calculations that permits rapid convergence with discretization errors ranging from O(P{sup −6}) to O(P{sup −12}), where P is the number of path discretization points. We also present two extensions of our importance sampling and stratified sampling schemes for calculating vibrational–rotational partition functions by the FPI method. The first is the use of importance functions for dihedral angles between sets of generalized Jacobi coordinate vectors. The second is an extension of our stratification scheme to allow some strata to be defined based only on coordinate information while other strata are defined based on both the geometry and the energy of the centroid of the Feynman path. These enhanced methods are applied to calculate converged partition functions by FPI methods, and these results are compared to ones obtained earlier by vibrational configuration interaction (VCI) calculations, both calculations being for the Jordan–Gilbert potential energy surface. The earlier VCI calculations are found to agree well (within ∼1.5%) with the new benchmarks. The FPI partition functions presented here are estimated to be converged to within a 2σ statistical uncertainty of between 0.04% and 0.07% for the given potential energy surface for temperatures in the range 300–3000 K and are the most accurately converged partition functions for a given potential energy surface for any molecule with five or more atoms. We also tabulate free energies, enthalpies, entropies, and heat capacities.

    4. Parents' Perceptions of the Factors Essential for Integrated Physical Education Programs.

      ERIC Educational Resources Information Center

      Downing, John H.; Rebollo, Joanne

      1999-01-01

      A survey of 75 parents of elementary students with physical disabilities investigated their perspectives regarding the factors essential for placement into integrated physical-education programs. Results found they believed that class size, program support, physical and communicative skills, health status, and motivation were prerequisites of an…

    5. A Path Analysis to Identify the Psychosocial Factors Influencing Physical Activity and Bone Health in Middle-School Girls

      PubMed Central

      Sharma, Shreela V.; Hoelscher, Deanna M.; Kelder, Steven H.; Diamond, Pamela M.; Day, R. Sue; Hergenroeder, Albert C.

      2011-01-01

      Background The purpose of this study was to identify pathways used by psychosocial factors to influence physical activity and bone health in middle-school girls. Methods Baseline data from the Incorporating More Physical Activity and Calcium in Teens (IMPACT) study collected in 2001 to 2003 were used. IMPACT was a 1 1/2 years nutrition and physical activity intervention study designed to improve bone density in 717 middle-school girls in Texas. Structural Equations Modeling was used to examine the interrelationships and identify the direct and indirect pathways used by various psychosocial and environmental factors to influence physical activity and bone health. Results Results show that physical activity self-efficacy and social support (friend, family engagement, and encouragement in physical activity) had a significant direct and indirect influence on physical activity with participation in sports teams as the mediator. Participation in sports teams had a direct effect on both physical activity (β= 0.20, P < .05) and bone health and (β=0.13, P < .05). Conclusion The current study identified several direct and indirect pathways that psychosocial factors use to influence physical activity and bone health among adolescent girls. These findings are critical for the development of effective interventions for promoting bone health in this population. PMID:19953837

    6. How Physics Teachers Approach Innovation: An Empirical Study for Reconstructing the Appropriation Path in the Case of Special Relativity

      ERIC Educational Resources Information Center

      De Ambrosis, Anna; Levrini, Olivia

      2010-01-01

      This paper concerns an empirical study carried out with a group of high school physics teachers engaged in the Module on relativity of a Master course on the teaching of modern physics. The study is framed within the general research issue of how to promote innovation in school via teachers' education and how to foster fruitful interactions…

    7. "On-the-fly" coupled cluster path-integral molecular dynamics: impact of nuclear quantum effects on the protonated water dimer.

      PubMed

      Spura, Thomas; Elgabarty, Hossam; Kühne, Thomas D

      2015-06-14

      We present an accelerated ab initio path-integral molecular dynamics technique, where the interatomic forces are calculated "on-the-fly" by accurate coupled cluster electronic structure calculations. In this way not only dynamic electron correlation, but also the harmonic and anharmonic zero-point energy, as well as tunneling effects are explicitly taken into account. This method thus allows for very precise finite temperature quantum molecular dynamics simulations. The predictive power of this novel approach is illustrated on the example of the protonated water dimer, where the impact of nuclear quantum effects on its structure and the (1)H magnetic shielding tensor are discussed in detail. PMID:25650366

    8. Structure and Dynamics of the Instantaneous Water/Vapor Interface Revisited by Path-Integral and Ab Initio Molecular Dynamics Simulations.

      PubMed

      Kessler, Jan; Elgabarty, Hossam; Spura, Thomas; Karhan, Kristof; Partovi-Azar, Pouya; Hassanali, Ali A; Kühne, Thomas D

      2015-08-01

      The structure and dynamics of the water/vapor interface is revisited by means of path-integral and second-generation Car-Parrinello ab initio molecular dynamics simulations in conjunction with an instantaneous surface definition [Willard, A. P.; Chandler, D. J. Phys. Chem. B 2010, 114, 1954]. In agreement with previous studies, we find that one of the OH bonds of the water molecules in the topmost layer is pointing out of the water into the vapor phase, while the orientation of the underlying layer is reversed. Therebetween, an additional water layer is detected, where the molecules are aligned parallel to the instantaneous water surface. PMID:26174102

    9. Resolution enhancement in integral microscopy by physical interpolation

      PubMed Central

      Llavador, Anabel; Sánchez-Ortiga, Emilio; Barreiro, Juan Carlos; Saavedra, Genaro; Martínez-Corral, Manuel

      2015-01-01

      Integral-imaging technology has demonstrated its capability for computing depth images from the microimages recorded after a single shot. This capability has been shown in macroscopic imaging and also in microscopy. Despite the possibility of refocusing different planes from one snap-shot is crucial for the study of some biological processes, the main drawback in integral imaging is the substantial reduction of the spatial resolution. In this contribution we report a technique, which permits to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy by a factor of √2. This is made by a double-shot approach, carried out by means of a rotating glass plate, which shifts the microimages in the sensor plane. We experimentally validate the resolution enhancement as well as we show the benefit of applying the technique to biological specimens. PMID:26309749

    10. Mechanisms of homing in the fiddler crab Uca rapax. 2. Information sources and frame of reference for a path integration system.

      PubMed

      Layne, John E; Barnes, W Jon P; Duncan, Lindsey M J

      2003-12-01

      Fiddler crabs Uca rapax are central-place foragers, making feeding excursions of up to several meters from their burrows. This study investigates the sources of directional and distance information used by these crabs when returning to their burrows. We tested the spatial frame of reference (egocentric or exocentric), and the source of spatial information (idiothetic or allothetic) used during homing. We also tested which components of their locomotion they integrated (only voluntary, or voluntary plus reflexive). Fiddler crabs in their natural mudflat habitat were passively rotated during normal foraging behavior using experimenter-controlled disks, before they returned home. Crabs resisted passive rotations on the disk by counter-rotating when the disk turned, which was a compensatory response to unintended movement. Crabs were usually situated eccentrically on the disk, and therefore were also subjected to a translation when the disk rotated. No crab actively compensated for this translation. Crabs that fully compensated for disk rotation made no directional homing error. Crabs that did not fully compensate homed in a direction that reflected their new body orientation. In other words, if we succeeded in reorienting a crab (i.e. it undercompensated for disk rotation), its homing error was equal to the angle by which it had been reoriented, regardless of the magnitude of the optomotor compensation. Computer-modelled crabs, each equipped with a path integrator utilizing different combinations of external (allothetic) and path-related (idiothetic) input, traversed the digitized paths of the real crabs. The home vector computed by the model crab was then compared to the homing direction observed in the real crab. The model home vector that most closely matched that of the real crab was taken to comprise the path integration mechanism employed by fiddler crabs. The model that best matched the real crab gained direction and distance idiothetically (from internal

    11. Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models

      NASA Astrophysics Data System (ADS)

      Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann

      2009-02-01

      Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.

    12. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

      SciTech Connect

      Piekarz, Henryk; /Fermilab

      2008-02-01

      The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

    13. Integrating Animations, Narratives and Textual Information for Improving Physics Learning

      ERIC Educational Resources Information Center

      Adegoke, Benson Adesina

      2010-01-01

      Introduction: This article examined the effect of multimedia instruction on students' learning outcomes (achievement and interest) in secondary school physics. Method: The sample comprised of 517 (294 boys and 223 girls) students who came from 12 senior secondary schools in Ibadan Educational Zone 1, Oyo State, Nigeria. Their ages ranged between…

    14. How to Integrate Tai Ji Quan into Physical Education Programs

      ERIC Educational Resources Information Center

      Lu, Chunlei

      2008-01-01

      Tai ji quan, also known as "tai chi," is an ancient Chinese exercise characterized by soft, slow, and meditative movements. It consists of a set of continuous, evenly paced, carefully choreographed, but natural, body shifts. "Tai ji" is an ancient Chinese philosophy, while "tai ji quan" refers to a type of physical activity based on tai ji…

    15. An Integrated, Statistical Molecular Approach to the Physical Chemistry Curriculum

      ERIC Educational Resources Information Center

      Cartier, Stephen F.

      2009-01-01

      As an alternative to the "thermodynamics first" or "quantum first" approaches to the physical chemistry curriculum, the statistical definition of entropy and the Boltzmann distribution are introduced in the first days of the course and the entire two-semester curriculum is then developed from these concepts. Once the tools of statistical mechanics…

    16. Integrated Hydrologic Validation to Improve Physical Precipitation Retrievals for GPM

      NASA Astrophysics Data System (ADS)

      Peters-Lidard, C. D.; Harrison, K. W.; Tian, Y.; Kumar, S.

      2011-12-01

      One of the five scientific objectives for GPM is to "Improve hydrological modeling and prediction", including advancing prediction skill for high-impact hazards such as floods, droughts, landslides and landfalling hurricanes. Given the focus on land hydrology, and the range of hydrologic regimes targeted by GPM, it follows that a hydrologically-oriented ground validation program that covers these regimes from both the physical retrieval and the hydrological prediction perspectives is required for the successful application of GPM to land hydrology. In order to investigate the robustness of both hydrologic model predictions and physical precipitation retrievals, this talk will present recent evaluations of skill in land surface hydrologic models forced with TRMM-era multisensor products, with and without land data assimilation. In addition to LSM skill, we will also demonstrate how physical precipitation retrievals can be supported by land surface emissivity and temperature estimates obtained by coupling microwave emission models (e.g., the Joint Center for Satellite Data Assimilation Community Radiative Transfer Model CRTM and the European Center for Medium-Range Weather Forecasting's Community Microwave Emission Model CMEM) to the land surface models in the Land Information System (LIS; http://lis.gsfc.nasa.gov). Evaluation at multiple frequencies, with and without land data assimilation, demonstrates the critical impact of certain real-time ancillary data (e.g., snow cover) on the microwave background states required for physical retrievals.

    17. Integrating Microcomputers and Microelectronics into the Physics Curriculum.

      ERIC Educational Resources Information Center

      Gale, Douglas S.

      1980-01-01

      Describes an interdisciplinary microcomputer and microelectronics program offered jointly by the Physics and Computer Science Departments of East Texas State University. The program operates on both the graduate and undergraduate level. Content as well as structure of the program are discussed. (Author/DS)

    18. Rainsticks: Integrating Culture, Folklore, and the Physics of Sound

      ERIC Educational Resources Information Center

      Moseley, Christine; Fies, Carmen

      2007-01-01

      The purpose of this activity is for students to build a rainstick out of materials in their own environment and imitate the sound of rain while investigating the physical principles of sound. Students will be able to relate the sound produced by an instrument to the type and quantity of materials used in its construction.

    19. The Physics Tutor: Integrating Hypertext and Expert Systems.

      ERIC Educational Resources Information Center

      Jonassen, David H.; Wang, Sherwood

      1994-01-01

      Discussion of the development of intelligent tutoring systems (ITS) using expert systems and hypertext focuses on the Physics Tutor, a prototype ITS built with off-the-shelf software to test the utility, practicality, and generalizability of the ITS concept. Expert models and student models are explained. (Contains 27 references.) (LRW)

    20. Spatially-global integration of closed, fragmented contours by finding the shortest-path in a log-polar representation

      PubMed Central

      Kwon, TaeKyu; Agrawal, Kunal; Li, Yunfeng; Pizlo, Zygmunt

      2015-01-01

      Finding the occluding contours of objects in real 2D retinal images of natural 3D scenes is done by determining, which contour fragments are relevant, and the order in which they should be connected. We developed a model that finds the closed contour represented in the image by solving a shortest path problem that uses a log-polar representation of the image; the kind of representation known to exist in area V1 of the primate cortex. The shortest path in a log-polar representation favors the smooth, convex and closed contours in the retinal image that have the smallest number of gaps. This approach is practical because finding a globally-optimal solution to a shortest path problem is computationally easy. Our model was tested in four psychophysical experiments. In the first two experiments, the subject was presented with a fragmented convex or concave polygon target among a large number of unrelated pieces of contour (distracters). The density of these pieces of contour was uniform all over the screen to minimize spatially-local cues. The orientation of each target contour fragment was randomly perturbed by varying the levels of jitter. Subjects drew a closed contour that represented the target’s contour on a screen. The subjects’ performance was nearly perfect when the jitter-level was low. Their performance deteriorated as jitter-levels were increased. The performance of our model was very similar to our subjects’. In two subsequent experiments, the subject was asked to discriminate a briefly-presented egg-shaped object while maintaining fixation at several different positions relative to the closed contour of the shape. The subject’s discrimination performance was affected by the fixation position in much the same way as the model’s. PMID:26241462

    1. A physically based model for dielectric charging in an integrated optical MEMS wavelength selective switch.

      SciTech Connect

      Nielson, Gregory N.; Barbastathis, George

      2005-07-01

      A physical parameter based model for dielectric charge accumulation is proposed and used to predict the displacement versus applied voltage and pull-in response of an electrostatic MEMS wavelength selective integrated optical switch.

    2. Mixed signal custom integrated circuit development for physics instrumentation

      SciTech Connect

      Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S.

      1998-10-01

      The Monolithic Systems Development Group at the Oak Ridge National Laboratory has been greatly involved in custom mixed-mode integrated circuit development for the PHENIX detector at the Relativistic Heavy Ion collider (RHIC) at Brookhaven National Laboratory and position-sensitive germanium spectrometer front-ends for the Naval Research Laboratory (NRL). This paper will outline the work done for both PHENIX and the Naval Research Laboratory in the area of full-custom, mixed-signal CMOS integrated electronics. This paper presents the architectures chosen for the various PHENIX detectors which include position-sensitive silicon, capacitive pixel, and phototube detectors, and performance results for the subsystems as well as a system description of the NRL germanium strip system and its performance. The performance of the custom preamplifiers, discriminators, analog memories, analog-digital converters, and control circuitry for all systems will be presented.

    3. Angular velocity and head direction signals recorded from the dorsal tegmental nucleus of gudden in the rat: implications for path integration in the head direction cell circuit.

      PubMed

      Sharp, P E; Tinkelman, A; Cho, J

      2001-06-01

      When a rat navigates through space, head direction (HD) cells provide an ongoing signal of the rat's directional heading. It is thought that these cells rely, in part, on angular path integration of the rat's head movements. This integration requires that the HD cell system receive information about angular head movements and that this information be combined with the current directional signal, to generate the next "predicted" direction. Recent data suggest that the dorsal tegmental nucleus (DTN) may play a critical role in helping to generate the HD cell signal. To test this, recordings were made from cells in the DTN in freely moving rats. The following cell types were found: (a) "classic" HD cells, (b) angular velocity cells, and (c) cells that fired as a function of both head direction and angular velocity. Thus, DTN cells exhibit firing characteristics that are critical to the neural circuit hypothesized for generation of the HD cell signal. PMID:11439447

    4. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

      PubMed

      Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

      2015-09-28

      With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure. PMID:26429008

    5. Path integration, views, search, and matched filters: the contributions of Rüdiger Wehner to the study of orientation and navigation.

      PubMed

      Cheng, Ken; Freas, Cody A

      2015-06-01

      Rüdiger Wehner's work on insect orientation and navigation has influenced many scientists studying navigation, not only in ants and bees, but in other animals as well. We review the scientific legacy of six topics arising from Wehner's work on navigation. The polarisation compass is a chapter with a lot of behavioural and neurobiological detail. It has influenced the study of polarisation vision in other systems, and led Wehner to formulate the concept of a matched filter. The matched filter has probably had earlier formulations, but Wehner's paper on it has been much cited in studies on navigation and in other fields. The polarisation compass serves the task of path integration in insects. Work on path integration took off in the 1980s with work on desert ants and rodents. The use of terrestrial visual cues, landmarks or the panorama in view-based matching is another major theme of navigational research today. Search strategies were also well described in desert ants, and this line of research helped to launch theoretical and empirical developments in searching behaviour, now a lively area of research. Finally, robotic work has often drawn inspiration from work on insect navigation. We end with some discussion of current research directions. PMID:25663391

    6. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane.

      PubMed

      Webb, Michael A; Miller, Thomas F

      2014-01-16

      We combine path-integral Monte Carlo methods with high-quality potential energy surfaces to compute equilibrium isotope effects in a variety of systems relevant to 'clumped' isotope analysis and isotope geochemistry, including CO2, N2O, methane, and propane. Through a systematic study of heavy-atom isotope-exchange reactions, we quantify and analyze errors that arise in the widely used Urey model for predicting equilibrium constants of isotope-exchange reactions using reduced partition function ratios. These results illustrate that the Urey model relies on a nontrivial cancellation of errors that can shift the apparent equilibrium temperature by as much as 35 K for a given distribution of isotopologues. The calculations reported here provide the same level of precision as the best existing analytical instrumentation, resolving the relative enrichment of certain isotopologues to as little as 0.01‰. These findings demonstrate path-integral methods to be a rigorous and viable alternative to more approximate methods for heavy-atom geochemical applications. PMID:24372450

    7. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

      SciTech Connect

      Ivanov, Sergei D. Grant, Ian M.; Marx, Dominik

      2015-09-28

      With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

    8. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated

      NASA Astrophysics Data System (ADS)

      Ivanov, Sergei D.; Grant, Ian M.; Marx, Dominik

      2015-09-01

      With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

    9. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

      ERIC Educational Resources Information Center

      Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

      2014-01-01

      It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

    10. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

      ERIC Educational Resources Information Center

      Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

      2016-01-01

      In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

    11. Paths correlation matrix.

      PubMed

      Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang

      2015-09-15

      Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions. PMID:26371930

    12. Vertically integrated pixel readout chip for high energy physics

      SciTech Connect

      Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Khalid, Farah; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab

      2011-01-01

      We report on the development of the vertex detector pixel readout chips based on multi-tier vertically integrated electronics for the International Linear Collider. Some testing results of the VIP2a prototype are presented. The chip is the second iteration of the silicon implementation of the prototype, data-pushed concept of the readout developed at Fermilab. The device was fabricated in the 3D MIT-LL 0.15 {micro}m fully depleted SOI process. The prototype is a three-tier design, featuring 30 x 30 {micro}m{sup 2} pixels, laid out in an array of 48 x 48 pixels.

    13. "Riding the Rip": An Experiential and Integrated Human-Physical Geography Curriculum in Costa Rica

      ERIC Educational Resources Information Center

      Brannstrom, Christian; Houser, Chris

      2015-01-01

      Integrating research into short-term study abroad programs is challenging because of language, fieldwork logistics, and traditional learning models based on passive classroom experiences. Experiential learning often makes use of research as experience, but relatively few examples integrate human and physical geography. Here, we describe an…

    14. Ego Integrity of Older People with Physical Disability and Therapeutic Recreation

      ERIC Educational Resources Information Center

      de Guzman, Allan B.; Shim, Hye-Eun; Sia, Charmin Kathleen M.; Siazon, Wilbart Harvey S.; Sibal, Mary Joyce Ann P.; Siglos, Joanna Brigitte Lorraine C.; Simeon, Francis Marlo C.

      2011-01-01

      Ego integrity, the last developmental task in Erikson's psychological theory, develops naturally among older people. However, the presence of loss-like physical disability-can considerably affect the quality of life, interactions, and well being of older adults. Hence, older people with physical disabilities need more assistance in accomplishing…

    15. Integrating Video-Capture Virtual Reality Technology into a Physically Interactive Learning Environment for English Learning

      ERIC Educational Resources Information Center

      Yang, Jie Chi; Chen, Chih Hung; Jeng, Ming Chang

      2010-01-01

      The aim of this study is to design and develop a Physically Interactive Learning Environment, the PILE system, by integrating video-capture virtual reality technology into a classroom. The system is designed for elementary school level English classes where students can interact with the system through physical movements. The system is designed to…

    16. An integrated BAC/BIBAC-based physical and genetic map of the cotton genome

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Integrated genome-wide genetic and physical maps are crucial to many aspects of cotton genome research. We report a genome-wide BAC/BIBAC-based physical and genetic map of the upland cotton genome using a high-resolution and high-throughput capillary-based fingerprinting method. The map was constr...

    17. The Impact of the Physical Environment on the Social Integration of Individuals with Disabilities in Community

      ERIC Educational Resources Information Center

      Christensen, Keith M.

      2010-01-01

      Social integration in community is especially important for individuals with disabilities well-being. Although individuals with disabilities reside within the community's physical environment, they are often marginalized in the social environment. This may be the result of individuals with disabilities residing in physical environments that…

    18. Understanding Introductory Students' Application of Integrals in Physics from Multiple Perspectives

      ERIC Educational Resources Information Center

      Hu, Dehui

      2013-01-01

      Calculus is used across many physics topics from introductory to upper-division level college courses. The concepts of differentiation and integration are important tools for solving real world problems. Using calculus or any mathematical tool in physics is much more complex than the straightforward application of the equations and algorithms that…

    19. The Effects of Role Modeling on Technology Integration within Physical Education Teacher Education

      ERIC Educational Resources Information Center

      Baert, Helena

      2014-01-01

      The national standards for physical education teacher education (PETE) in the US state that teacher candidates should be able to plan and implement technology infused lessons that meet lesson objectives and enhance learning in physical education (standard 3.7). Research shows that role modeling of technology integration can have a positive impact…

    20. Integrating Geology and Physics To Enhance Science Learning Experience of Students and Serve the Community.

      ERIC Educational Resources Information Center

      Revetta, Frank A.; Das, Biman

      2002-01-01

      Suggests an integrated approach to make science teaching and learning more effective, interesting and motivating to students. Argues that team teaching by physics and geology departments enables students to learn concepts and principles of physics and apply them to solve geological problems facing the local community. Reports that a typical…