These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Draft Genome Sequence of the Opportunistic Marine Pathogen Vibrio harveyi Strain E385  

PubMed Central

Vibrio harveyi strain E385 was isolated from a diseased cage-cultured grouper in Daya Bay, China. Phylogenetic analysis based on the 16S rRNA gene sequence showed similarity with V. harveyi strain BAA-1116. We sequenced the pathogenic strain V. harveyi E385 and compared the genome with that of the nonpathogenic strain V. harveyi BAA-1116. PMID:24336361

Yu, Mingjia; Ren, Chunhua; Qiu, Jinrong; Luo, Peng; Zhu, Ruyi

2013-01-01

2

Sigma E Regulators Control Hemolytic Activity and Virulence in a Shrimp Pathogenic Vibrio harveyi  

PubMed Central

Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, V. harveyi and V. vulnificus. We have used transposon mutagenesis to identify genes involved in the hemolytic activity of shrimp-pathogenic V. harveyi strain PSU3316. Out of 1,764 mutants screened, five mutants showed reduced hemolytic activity on sheep blood agar and exhibited virulence attenuation in shrimp (Litopenaeus vannamei). Mutants were identified by comparing transposon junction sequences to a draft of assembly of the PSU3316 genome. Surprisingly none of the disrupted open reading frames or gene neighborhoods contained genes annotated as hemolysins. The gene encoding RseB, a negative regulator of the sigma factor (?E), was interrupted in 2 out of 5 transposon mutants, in addition, the transcription factor CytR, a threonine synthetase, and an efflux-associated cytoplasmic protein were also identified. Knockout mutations introduced into the rpoE operon at the rseB gene exhibited low hemolytic activity in sheep blood agar, and were 3-to 7-fold attenuated for colonization in shrimp. Comparison of whole cell extracted proteins in the rseB mutant (PSU4030) to the wild-type by 2-D gel electrophoresis revealed 6 differentially expressed proteins, including two down-regulated porins (OmpC-like and OmpN) and an upregulated protease (DegQ) which have been associated with ?E in other organisms. Our study is the first report linking hemolytic activity to the ?E regulators in pathogenic Vibrio species and suggests expression of this virulence-linked phenotype is governed by multiple regulatory pathways within the V. harveyi. PMID:22384269

Rattanama, Pimonsri; Thompson, Janelle R.; Kongkerd, Natthawan; Srinitiwarawong, Kanchana; Vuddhakul, Varaporn; Mekalanos, John J.

2012-01-01

3

Inhibition of Luminescence and Virulence in the Black Tiger Prawn (Penaeus monodon) Pathogen Vibrio harveyi by Intercellular Signal Antagonists  

Microsoft Academic Search

Expression of luminescence in the Penaeus monodon pathogen Vibrio harveyi is regulated by an intercellular quorum sensing mechanism involving the synthesis and detection of two signaling molecules, one of which is N-hydroxy butanoyl-L-homoserine lactone and the other of which is uncharacterized. Indirect evidence has suggested that virulence, associated with a toxic extracellular protein, and luminescence in V. harveyi are coregulated.

MICHAEL MANEFIELD; LACHLAN HARRIS; SCOTT A. RICE; ROCKY DE NYS; STAFFAN KJELLEBERG

2000-01-01

4

A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi.  

PubMed

Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic Vibrio harveyi strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a Vibrio sp., Vibrio fischeri, Vibrio gazogenes and Vibrio parahaemolyticus. The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at > or =60 degrees C for 10 min. The activity was stable between pH 2-11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of approximately 5.4 and a molecular mass of approximately 32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches. PMID:16151215

Prasad, Sathish; Morris, Peter C; Hansen, Rasmus; Meaden, Philip G; Austin, Brian

2005-09-01

5

Sigma E Regulators Control Hemolytic Activity and Virulence in a Shrimp Pathogenic Vibrio harveyi  

E-print Network

Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, ...

Rattanama, Pimonsri

6

Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain.  

PubMed

Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQ(Vh) in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQ(Vh) protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQ(Vh) protein were 50 degrees C and pH 8.0. A vaccination study indicated that the purified recombinant DegQ(Vh) was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQ(Vh) as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQ(Vh) protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E. coli strain harboring pAQ1 could express and secrete the chimeric DegQ(Vh) protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain. PMID:18723647

Zhang, Wei-wei; Sun, Kun; Cheng, Shuang; Sun, Li

2008-10-01

7

Genetic Determinants of Tetracycline Resistance in Vibrio harveyi  

PubMed Central

Isolates of Vibrio harveyi, a prawn pathogen, have demonstrated multiple antibiotic resistance to commonly used antimicrobial agents, such as oxytetracycline. In this paper, we describe the cloning and characterization of two tetracycline resistance determinants from V. harveyi strain M3.4L. The first resistance determinant, cloned as a 4,590-bp fragment, was identical to tetA and flanking sequences encoded on transposon Tn10 from Shigella flexneri. The second determinant, cloned as a 3,358-bp fragment in pATJ1, contains two open reading frames, designated tet35 and txr. tet35 encodes a 369-amino-acid protein that was predicted to have nine transmembrane regions. It is a novel protein which has no homology to any other drug resistance protein but has low levels of homology (28%) to Na+/H+ antiporters. Transposon mutagenesis showed that tet35 and txr were required for tetracycline resistance in a heterologous Escherichia coli host. Tetracycline accumulation studies indicate that E. coli carrying tet35 and txr can function as an energy-dependent tetracycline efflux pump but is less efficient than TetA. PMID:11897587

Teo, Jeanette W. P.; Tan, Theresa M. C.; Poh, Chit Laa

2002-01-01

8

Cross-Species Induction of Luminescence in the Quorum Sensing Bacterium Vibrio harveyi  

Microsoft Academic Search

At least two species of marine bacteria, Vibrio fischeri and Vibrio harveyi, express bioluminescence in response to cell den- sity. These two vibrios are found in different environments in the ocean. V. harveyi is found free-living in the sea as well as in the gut tracts of marine animals, where it exists at high popu- lation densities in association with

BONNIE L. BASSLER; E. PETER GREENBERG; ANN M. STEVENS

1997-01-01

9

Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi  

PubMed Central

Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by ?-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by ?-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host.

Yang, Qian; Anh, Nguyen D. Q.; Bossier, Peter; Defoirdt, Tom

2014-01-01

10

Computational modeling of differences in the quorum sensing induced luminescence phenotypes of Vibrio harveyi and Vibrio cholerae  

Microsoft Academic Search

Vibrio harveyi and Vibrio cholerae have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in V. harveyi, the sRNAs act additively; however, in V. cholerae, the sRNAs act redundantly. Furthermore, there are striking differences in the luminescence phenotypes for different pathway

Andrew T. Fenley; Suman K. Banik; Rahul V. Kulkarni

2011-01-01

11

Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals  

PubMed Central

Background Vibrio harveyi and closely related species are important pathogens in aquaculture. A complex quorum sensing cascade involving three autoinducers controls bioluminescence and several genes encoding virulence factors. Single cell analysis of a V. harveyi population has already indicated intercellular heterogeneity in the production of bioluminescence. This study was undertaken to analyze the expression of various autoinducer-dependent genes in individual cells. Results Here we used reporter strains bearing promoter::gfp fusions to monitor the induction/repression of three autoinducer-regulated genes in wild type conjugates at the single cell level. Two genes involved in pathogenesis - vhp and vscP, which code for an exoprotease and a component of the type III secretion system, respectively, and luxC (the first gene in the lux operon) were chosen for analysis. The lux operon and the exoprotease gene are induced, while vscP is repressed at high cell density. As controls luxS and recA, whose expression is not dependent on autoinducers, were examined. The responses of the promoter::gfp fusions in individual cells from the same culture ranged from no to high induction. Importantly, simultaneous analysis of two autoinducer induced phenotypes, bioluminescence (light detection) and exoproteolytic activity (fluorescence of a promoter::gfp fusion), in single cells provided evidence for functional heterogeneity within a V. harveyi population. Conclusions Autoinducers are not only an indicator for cell density, but play a pivotal role in the coordination of physiological activities within the population. PMID:22985329

2012-01-01

12

Association of a luminous Vibrio sp ., taxonomically related to Vibrio harveyi, with Clytia linearis (Thornely, 1900) (Hydrozoa, Cnidaria)  

Microsoft Academic Search

A previously unknown association between a luminous Vibrio sp., taxonomically related to the species Vibrio harveyi and a common member of the shallow\\/mid water communities of the Mediterranean Sea, the hydrozoan Clytia linearis is described. All the specimens of C. linearis observed under blue light excitation showed both a natural luminescence appearing as a series of fine dots due to

Loredana Stabili; Cinzia Gravili; Salvatore Maurizio Tredici; Ferdinando Boero; Pietro Alifano

2011-01-01

13

Evolution of tolerance to PCBs and susceptibility to a bacterial pathogen ( Vibrio harveyi) in Atlantic killifish ( Fundulus heteroclitus) from New Bedford (MA, USA) harbor  

Microsoft Academic Search

A population of the non-migratory estuarine fish Fundulus heteroclitus (Atlantic killifish) resident to New Bedford (NB), Massachusetts, USA, an urban harbor highly contaminated with polychlorinated biphenyls (PCBs), demonstrates recently evolved tolerance to some aspects of PCB toxicity. PCB toxicology, ecological theory, and some precedence supported expectations of increased susceptibility to pathogens in NB killifish. However, laboratory bacterial challenges of the

Diane Nacci; Marina Huber; Denise Champlin; Saro Jayaraman; Sarah Cohen; Eric Gauger; Allison Fong; Marta Gomez-Chiarri

2009-01-01

14

Reprogramming of Vibrio harveyi gene expression during adaptation in cold seawater.  

PubMed

The life and survival of the marine bacterium Vibrio harveyi during its adaptation in natural aquatic systems is highly influenced by the availability of nutrients and temperature. To learn about adaptation strategies evolved by this bacterium to cope with drastic temperature downshifts and nutrients depletion, we have studied the phenotypical and gene expression changes occurring in V. harveyi during its adaptation to cold seawater. We found that incubation in cold seawater up to 12 h did not cause any significant morphological changes in V. harveyi and had no effect on the number of viable and culturable cells. Microarray analysis revealed that the V. harveyi response to cold seawater leads to up- and downregulation of numerous genes controlling the central carbon metabolism, nucleotide and amino acid biosynthesis as well as DNA repair. In addition, expression of some genes controlling biosynthesis of lipids, molecular transport, and energy production was altered to likely affect the composition and properties of the V. harveyi cell envelope, thus implying the putative role of this compartment in adaptation to stress. Here, we discuss these results with regard to the putative adaptive responses likely triggered by V. harveyi to cope with environmental challenges in natural aquatic systems. PMID:24102529

Montánchez, Itxaso; Arana, Inés; Parada, Claudia; Garaizabal, Idoia; Orruño, Maite; Barcina, Isabel; Kaberdin, Vladimir R

2014-01-01

15

Molecular Uptake of Chitooligosaccharides through Chitoporin from the Marine Bacterium Vibrio harveyi  

PubMed Central

Background Chitin is the most abundant biopolymer in marine ecosystems. However, there is no accumulation of chitin in the ocean-floor sediments, since marine bacteria Vibrios are mainly responsible for a rapid turnover of chitin biomaterials. The catabolic pathway of chitin by Vibrios is a multi-step process that involves chitin attachment and degradation, followed by chitooligosaccharide uptake across the bacterial membranes, and catabolism of the transport products to fructose-6-phosphate, acetate and NH3. Principal Findings This study reports the isolation of the gene corresponding to an outer membrane chitoporin from the genome of Vibrio harveyi. This porin, expressed in E. coli, (so called VhChiP) was found to be a SDS-resistant, heat-sensitive trimer. Immunoblotting using anti-ChiP polyclonal antibody confirmed the expression of the recombinant ChiP, as well as endogenous expression of the native protein in the V. harveyi cells. The specific function of VhChiP was investigated using planar lipid membrane reconstitution technique. VhChiP nicely inserted into artificial membranes and formed stable, trimeric channels with average single conductance of 1.8±0.13 nS. Single channel recordings at microsecond-time resolution resolved translocation of chitooligosaccharides, with the greatest rate being observed for chitohexaose. Liposome swelling assays showed no permeation of other oligosaccharides, including maltose, sucrose, maltopentaose, maltohexaose and raffinose, indicating that VhChiP is a highly-specific channel for chitooligosaccharides. Conclusion/Significance We provide the first evidence that chitoporin from V. harveyi is a chitooligosaccharide specific channel. The results obtained from this study help to establish the fundamental role of VhChiP in the chitin catabolic cascade as the molecular gateway that Vibrios employ for chitooligosaccharide uptake for energy production. PMID:23383078

Suginta, Wipa; Chumjan, Watcharin; Mahendran, Kozhinjampara R.; Janning, Petra; Schulte, Albert; Winterhalter, Mathias

2013-01-01

16

Mutagenicity test using Vibrio harveyi in the assessment of water quality from mussel farms.  

PubMed

This work analyses the mutagenicity of seawater from mussel farms using the Vibrio harveyi mutagenicity test and its relationship with the accumulated pollutants and the development of gonadal neoplasia in mussels. Histological disorders identified as germinoma were observed in the gonad of Mytilus galloprovincialis during the period of study. The prevalence of this pathology is significantly correlated with certain levels of pollutants accumulated in mussels, mainly of PAHs and PCBs, whose toxic equivalents were calculated as EROD induction equivalency. The mutagenicity and toxicity of the water surrounding mussel's farms is clearly correlated with the pollutants accumulated and with the neoplasia prevalence in mussels. Such correlations are corroborated by a multivariate analysis. Our results conclude with the utility of V. harveyi test as an optimal and rapid method in the monitoring of the quality of the water from mussel farms and as a tool to control the risks of pollution on mussel production and its safety for human food. PMID:23510693

Ruiz, Yolanda; Suárez, Pilar; Alonso, Ana; Longo, Elisa; San Juan, Fuencisla

2013-05-15

17

Synthesis and evaluation of new antagonists of bacterial quorum sensing in Vibrio harveyi.  

PubMed

Bacterial quorum sensing has received much attention in recent years because of its relevance to pathological events such as biofilm formation. Based on the structures of two lead inhibitors (IC50: 35-55 microM) against autoinducer-2-mediated quorum sensing identified through virtual screening, we synthesized 39 analogues and examined their inhibitory activities. Twelve of these new analogues showed equal or better inhibitory activities than the lead inhibitors. The best compound showed an IC50 value of approximately 6 microM in a whole-cell assay using Vibrio harveyi as the model organism. The structure-activity relationship is discussed herein. PMID:19533733

Peng, Hanjing; Cheng, Yunfeng; Ni, Nanting; Li, Minyong; Choudhary, Gaurav; Chou, Han Ting; Lu, Chung-Dar; Tai, Phang C; Wang, Binghe

2009-09-01

18

Effect of combined function of temperature and water activity on the growth of Vibrio harveyi  

PubMed Central

Vibrio harveyi is considered as a causative agent of the systemic disease, vibriosis, which occurs in many biological fields. The effects of temperatures (12.9–27.1 °C) and water activity (NaCl% 0.6%-3.4%) on V. harveyi were investigated. The behavior and growth characteristics of V. harveyi was studied and modeled. Growth curves were fitted by using Gompertz and Baranyi models, and the Baranyi model showed a better fittness. Then, the maximum growth rates (?max) and lag phase durations (LPD, ?) obtained from both Gompertz and Baranyi model were modeled as a combination function of temperature and water activity using the response surface and Arrhenius-Davey models for secondary model. The value of r2, MSE, bias and accuracy factor suggest Baranyi model has better fitness than Gompertz model. Furthermore, validation of the developed models with independent data from ComBase also shown better interrelationship between observed and predicted growth parameter when using Baranyi model. PMID:24031965

Zhou, Kang; Gui, Meng; Li, Pinglan; Xing, Shaohua; Cui, Tingting; Peng, Zhaohui

2012-01-01

19

Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin  

PubMed Central

Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

1997-01-01

20

Identification and characterization of Vibrio harveyi associated with diseased abalone Haliotis diversicolor.  

PubMed

Mass mortality of farmed small abalone Haliotis diversicolor occurred in Fujian, China, from 2009 to 2011. Among isolates obtained from moribund abalones, the dominant species AP37 exhibited the strongest virulence. After immersion challenge with 106 CFU ml-1 of AP37, abalone mortalities of 0, 53 and 67% were induced at water temperatures of 20°C, 24°C, and 28°C, respectively. Following intramuscular injection, AP37 showed a low LD50 (median lethal concentration) value of 2.9 × 102 CFU g-1 (colony forming units per gram abalone wet body weight). The LT50 (median lethal time) values were 5.2 h for 1 × 106 CFU abalone-1, 8.4 h for 1 × 105 CFU abalone-1, and 21.5 h for 1 × 104 CFU abalone-1. For further analysis of virulence, AP37 was screened for the production of extracellular factors. The results showed that various factors including presence of flagella and production of extracellular enzymes, such as lipase, phospholipase and haemolysin, could be responsible for pathogenesis. Based on its 16S rRNA gene sequence, strain AP37 showed >98.8% similarity to Vibrio harveyi, V. campbellii, V. parahaemolyticus, V. alginolyticus, V. natriegens and V. rotiferianus, so it could not be identified by this method. However, multi-locus sequence analysis (MLSA) of concatenated sequences, including the rpoD, rctB, gyrB, toxR and pyrH genes, identified strain AP37 as V. harveyi. Phenotypic characters of AP37 were identified by API 20E. In antibiotic susceptibility tests, strain AP37 exhibited susceptibility to 7 antibiotics and resistance to 13. This is the first report of a V. harveyi-related species being linked with the mass mortality of adult abalone H. diversicolor in southern China. PMID:23548363

Jiang, Qingru; Shi, Liuyang; Ke, Caihuan; You, Weiwei; Zhao, Jing

2013-03-26

21

Hemostasis of tiger prawn Penaeus monodon affected by Vibrio harveyi, extracellular products, and a toxic cysteine protease.  

PubMed

The effects of bacterial cells, extracellular products (ECP) and a purified cysteine protease of Vibrio harveyi on hemostasis and plasma components of tiger prawn (Penaeus monodon) were studied. The clotting ability of the hemolymph withdrawn from moribund prawns pre-injected with the bacteria, ECP, cysteine protease of PBS (control) was observed for 2 h at 25 C. Of these, only the control group was clottable while all the other groups were unclottable. A component of the plasma, previously identified as coagulogen-like protein, was further confirmed to be a coagulogen by the comparison of plasma with serum on non-reduced SDS-PAGE or using rabbit antiserum to the coagulogen-like protein (R alpha coagulogen) to neutralize the clotting ability of normal prawn hemolymph. The coagulogen was reduced in amount in plasma of moribund prawns after injection with the bacteria, ECP or cysteine protease while it apparently disappeared after pre-incubation with the ECP or cysteine protease for 2 h at 25 C compared with normal prawn plasma as observed in crossed immunoelectrophoresis (CIE) gels. The reduction of the amount of coagulogen in plasma of moribund prawns was also evident in CIE gels using R alpha coagulogen. In addition, the apparent disapperance of the coagulogen mentioned above was eventually proven to be due to the change of its migration rate in CIE gels after pre-incubation with ECP or cysteine protease, since the disappeared coagulogen arc (arc 2) (migrated into arc 1) could be visualized by using R alpha coagulogen or by reducing the time for pre-incubation from 2 h to 30 min. Thus, the effects of cysteine protease on plasma coagulogen observed in vitro and in vivo may markedly interfere with hemostasis leading to the occurrence of unclottable hemolymph. These complex events may significantly contribute to the pathogenicity of V. harveyi in the prawn. PMID:10575544

Lee, K K; Chen, Y L; Liu, P C

1999-01-01

22

A nonluminescent and highly virulent Vibrio harveyi strain is associated with "bacterial white tail disease" of Litopenaeus vannamei shrimp.  

PubMed

Recurrent outbreaks of a disease in pond-cultured juvenile and subadult Litopenaeus vannamei shrimp in several districts in China remain an important problem in recent years. The disease was characterized by "white tail" and generally accompanied by mass mortalities. Based on data from the microscopical analyses, PCR detection and 16S rRNA sequencing, a new Vibrio harveyi strain (designated as strain HLB0905) was identified as the etiologic pathogen. The bacterial isolation and challenge tests demonstrated that the HLB0905 strain was nonluminescent but highly virulent. It could cause mass mortality in affected shrimp during a short time period with a low dose of infection. Meanwhile, the histopathological and electron microscopical analysis both showed that the HLB0905 strain could cause severe fiber cell damages and striated muscle necrosis by accumulating in the tail muscle of L. vannamei shrimp, which led the affected shrimp to exhibit white or opaque lesions in the tail. The typical sign was closely similar to that caused by infectious myonecrosis (IMN), white tail disease (WTD) or penaeid white tail disease (PWTD). To differentiate from such diseases as with a sign of "white tail" but of non-bacterial origin, the present disease was named as "bacterial white tail disease (BWTD)". Present study revealed that, just like IMN and WTD, BWTD could also cause mass mortalities in pond-cultured shrimp. These results suggested that some bacterial strains are changing themselves from secondary to primary pathogens by enhancing their virulence in current shrimp aquaculture system. PMID:22383954

Zhou, Junfang; Fang, Wenhong; Yang, Xianle; Zhou, Shuai; Hu, Linlin; Li, Xincang; Qi, Xinyong; Su, Hang; Xie, Layue

2012-01-01

23

Biochemical evidence against protein-mediated uptake of myristic acid in the bioluminescent marine bacterium Vibrio harveyi.  

PubMed

The bioluminescent marine bacterium, Vibrio harveyi, can utilize exogenous myristic acid (14:0) for beta-oxidation, phospholipid and lipid A synthesis, and as an source of myristyl aldehyde for light emission in the V. harveyi dark mutant M17. A variety of genetic and biochemical strategies were employed in an attempt to isolate V. harveyi mutants defective in myristate uptake and to characterize proteins involved in this process. Although [3H]myristate uptake in a tritium suicide experiment decreased the survival of nitrosoguanidine-treated M17 cells by a factor of 10(5), none of the surviving cells characterized were defective in either incorporation of exogenous myristate into phospholipid or stimulation of light emission. These parameters were also unaffected when intact M17 cells were treated with proteases. Moreover, M17 double mutants selected on the basis of diminished luminescence response to myristate all incorporated [3H]myristate into lipids normally. Finally, no resistant colonies were obtained using the bacteriocidal fatty acid analogue, 11-bromoundecanoate, and experiments with decanoate (10:0) indicated that the V. harveyi cell envelope is very sensitive to physical disruption by fatty acids. Taken together, these results support an unfacilitated uptake of myristic acid in V. harveyi, in contrast with the regulated vectorial transport and activation of long chain fatty acids in Escherichia coli. PMID:12489783

Byers, David M; Shen, Zhiwei

2002-10-01

24

Metabolomic analysis revealed the differential responses in two pedigrees of clam Ruditapes philippinarum towards Vibrio harveyi challenge.  

PubMed

Manila clam Ruditapes philippinarum is an important marine aquaculture shellfish. This species has several pedigrees including White, Zebra, Liangdao Red and Marine Red distributing in the coastal areas in North China. In this work, we studied the metabolic differences induced by Vibrio harveyi in hepatopancreas from White and Zebra clams using NMR-based metabolomics. Metabolic responses (e.g., amino acids, glucose, glycogen, ATP and succinate) and altered mRNA expression levels of related genes (ATP synthase, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear disruption in energy metabolism and immune stresses in both White and Zebra clam hepatopancreas. However, V. harveyi caused obvious osmotic stress in Zebra clam hepatopancreas, which was not observed in V. harveyi-challenged White clams samples. In addition, V. harveyi challenge induced more severe disruption in energy metabolism and immune stress in White clams than in Zebra clams. Overall, our results indicated that the biological differences between different pedigrees of R. philippinarum should be considered in immunity studies. PMID:24161758

Liu, Xiaoli; Zhao, Jianmin; Wu, Huifeng; Wang, Qing

2013-12-01

25

Computational modeling of differences in the quorum sensing induced luminescence phenotypes of \\textit{Vibrio harveyi} and \\textit{Vibrio cholerae}  

E-print Network

\\textit{Vibrio harveyi} and \\textit{Vibrio cholerae} have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in \\textit{V. harveyi}, the sRNAs act additively; however, in \\textit{V. cholerae}, the sRNAs act redundantly. Furthermore, there are striking differences in the luminescence phenotypes for different pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. However these differences have not been connected with the observed differences for the sRNA deletion strains in these bacteria. In this work, we present a model for quorum sensing induced luminescence phenotypes focusing on the interactions of multiple sRNAs with target mRNA. Within our model, we find that one key parameter -- the fold-change in protein concentration necessary for luminescence activation -- can control whether the sRNAs appear to act additively or redundantly. For specific parameter choices, we find that differences in this key parameter can also explain hitherto unconnected luminescence phenotypes differences for various pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. The model can thus provide a unifying explanation for observed differences in luminescence phenotypes and can also be used to make testable predictions for future experiments.

Andrew T Fenley; Suman K Banik; Rahul V Kulkarni

2011-01-27

26

Mixture toxicity of nitrobenzene and trinitrobenzene using the marine bacterium Vibrio harveyi as the test organism.  

PubMed

Vibrio harveyi, a bioluminescent marine bacterium, was used to evaluate combined or mixture toxicity of two organic compounds, nitrobenzene and trinitrobenzene. An estimated median effective concentration (EC50) and confidence interval were determined for each chemical. These chemicals at their EC50 were evaluated in combination and an additive index method was used to determine a numerical toxicology value. Combinations at 20% intervals of the EC50 were performed using isopleths. The isopleths employed were the isobole plot and the isobologram. Bioluminescent change was also determined and graphed for evaluation of toxicity. Statistical evaluation of isopleths and the additive index method were employed by incorporating confidence intervals. Bioluminescent change and isopleths suggest that mixtures of nitrobenzene and trinitrobenzene are additive, while the additive index method is suggestive of synergism. Statistical evaluation between mixtures and single values, using the z test, was in some cases different at the 5% level. These data suggest that interaction of combinations should be evaluated and described by multiple methodologies. Evaluation of these data suggests, in part, that one mixture is statistically different for antagonism. This study supports the use of bioluminescent microbial toxicity tests with various evaluative methodologies for the determination of mixture interactions. PMID:9126438

Thomulka, K W; Lange, J H

1997-03-01

27

RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi.  

PubMed

In this study, we used real-time PCR to simultaneously monitor the responses of 12 key genes of the shrimp innate immune system in Litopenaeus vannamei after challenge with Vibrio harveyi. In the proPO activating system, we found that proPO was up-regulated (3.3x control at 36hpi). The hemolymph clotting genes transglutaminase (TGase) and clotting protein were also up-regulated, as were 5 genes in the antimicrobial peptide system (ALF, Crustin, Lyz, PEN2 and PEN4), with only PEN3 showing no significant changes. In the antioxidant defense system, SOD was slightly elevated while GPx was substantially down-regulated. In the pattern recognition receptor system, at 24hpi, the Toll gene (LvToll) showed the highest relative increase in expression level of all the investigated genes (15x greater than the sterile seawater control). In the second part of this study, when LvToll was knocked down by RNAi silencing, there was no effect on either survival rates or bacterial number in unchallenged shrimp. There was also no difference in mortality rates between control shrimp and LvToll-silenced shrimp when these two groups were challenged with a viral pathogen (white spot syndrome virus; WSSV). However, when LvToll-silenced shrimp were challenged by V. harveyi, there was a significant increase in mortality and bacterial CFU counts. We note that the increase in bacterial CFU count occurred even though treatment with EGFP dsRNA had the opposite effect of reducing the CFU counts. We conclude that LvToll is an important factor in the shrimp innate immune response to acute V. harveyi infection, but not to WSSV. PMID:19698743

Han-Ching Wang, Kc; Tseng, Chun-Wei; Lin, Han-You; Chen, I-Tung; Chen, Ya-Hui; Chen, Yi-Min; Chen, Tzong-Yueh; Yang, Huey-Lang

2010-01-01

28

Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade  

PubMed Central

In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

Tala, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

2014-01-01

29

The Vibrio harveyi bioassay used routinely to detect AI-2 quorum sensing inhibition is confounded by inconsistent normalization across marine matrices.  

PubMed

The Vibrio harveyi autoinducer-2 (AI-2) bioassay is used routinely to screen for inhibition of the AI-2 quorum sensing system. The present study utilizes three well-described bacterial strains to demonstrate that inconsistent normalization across matrices undermines the assay's use in screening marine samples for AI-2 inhibition. PMID:23305926

Blair, Walter M; Doucette, Gregory J

2013-03-01

30

The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals  

Microsoft Academic Search

Aims: To determine the relationship between yellow band disease (YBD)- associated pathogenic bacteria found in both Caribbean and Indo-Pacific reefs, and the virulence of these pathogens. YBD is one of the most significant coral diseases of the tropics. Materials and Results: The consortium of four Vibrio species was isolated from YBD tissue on Indo-Pacific corals: Vibrio rotiferianus, Vibrio harveyi, Vibrio

J. M. Cervino; F. L. Thompson; B. Gomez-Gil; E. A. Lorence; T. J. Goreau; R. L. Hayes; K. B. Winiarski-Cervino; G. W. Smith; K. Hughen; E. Bartels

2008-01-01

31

Vibrio parahaemolyticus cell biology and pathogenicity determinants  

Microsoft Academic Search

Vibrio parahaemolyticus is a significant cause of gastroenteritis worldwide. Characterization of this pathogen has revealed a unique repertoire of virulence factors that allow for colonization of the human host and disease. The following describes the known pathogenicity determinants while establishing the need for continued research.

Christopher A. Broberg; Thomas J. Calder; Kim Orth

2011-01-01

32

The outer membrane protein VhOmp of Vibrio harveyi: pore-forming properties in black lipid membranes.  

PubMed

Vibrio harveyi is known to cause fatal vibriosis in marine animals. Here, an outer membrane protein from V. harveyi, namely, VhOmp, was isolated and functionally characterized in terms of pore-forming contact with artificial lipid membranes. The native VhOmp exists as a trimer of a molecular weight similar to that of the porin OmpF from Escherichia coli. Reconstitution of VhOmp into black lipid membranes demonstrated its ability to form ion channels. The average pore conductance of VhOmp was revealed to be about 0.9 and 2 nS in 0.2 and 1 M KCl, respectively. Within transmembrane potentials of +/-100 mV, VhOmp pores behaved as ohmic conduits, and their conductance scaled linearly with voltage. Nonlinear plots of the pore conductance versus symmetrical salt concentrations at either side of the protein-incorporating membrane suggested the influence of interior channel functionalities on the passage of charged species. In the presence of Omp-specific polyclonal antibodies, the pore-forming property of VhOmp was modulated so that the usual step-like current increments were replaced by random transitory current fluctuations. VhOmp exhibited a strong biological activity by causing hemolysis of human red blood cells, indicating that VhOmp may act as a crucial determinant during bacterial infection to animal host cells. PMID:19672645

Schulte, Albert; Ruamchan, Sompong; Khunkaewla, Panida; Suginta, Wipa

2009-07-01

33

Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus  

PubMed Central

Work in recent years has led to the recognition of the importance of small regulatory RNAs (sRNAs) in bacterial regulation networks. New high-throughput sequencing technologies are paving the way to the exploration of an expanding sRNA world in nonmodel bacteria. In the Vibrio genus, compared to the enterobacteriaceae, still a limited number of sRNAs have been characterized, mostly in Vibrio cholerae, where they have been shown to be important for virulence, as well as in Vibrio harveyi. In addition, genome-wide approaches in V. cholerae have led to the discovery of hundreds of potential new sRNAs. Vibrio splendidus is an oyster pathogen that has been recently associated with massive mortality episodes in the French oyster growing industry. Here, we report the first RNA-seq study in a Vibrio outside of the V. cholerae species. We have uncovered hundreds of candidate regulatory RNAs, be it cis-regulatory elements, antisense RNAs, and trans-encoded sRNAs. Conservation studies showed the majority of them to be specific to V. splendidus. However, several novel sRNAs, previously unidentified, are also present in V. cholerae. Finally, we identified 28 trans sRNAs that are conserved in all the Vibrio genus species for which a complete genome sequence is available, possibly forming a Vibrio “sRNA core.” PMID:23097430

Toffano-Nioche, Claire; Nguyen, An N.; Kuchly, Claire; Ott, Alban; Gautheret, Daniel; Bouloc, Philippe; Jacq, Annick

2012-01-01

34

Multiple roles of Asp313 in the refined catalytic cycle of chitin degradation by Vibrio harveyi chitinase A.  

PubMed

Three acidic residues in the DXDXE sequence motif are suggested to play a concerted role in the catalysis of Vibrio harveyi ChiA. An increase in the optimum pH of 0.8 units in mutant D313A/N indicates that Asp313 influences the pKa of the ionizing groups around the cleavage site. D313A showed greatly reduced kcat/Km and increased KD, suggesting that Asp313 participates in catalysis and ligand binding. Investigation of the enzyme-substrate interactions of V. harveyi ChiA and Serratia marcescens ChiB revealed two conformations of Asp313 and (-1)GlcNAc. The first conformation, likely to be the initial conformation, showed that the ?-COOH of Asp313 only interacted with the -C=O of the N-acetyl group in the distorted sugar. The second conformation, formed from the first by concerted bond rotations, demonstrated hydrogen bonds between the Asp313 side chain and the -NH of the N-acetyl group and the ?-COOH of Glu315. Here we propose a further refinement of the catalytic cycle of chitin hydrolysis by family-18 chitinases that involves four steps: Step 1: Pre-priming. An acidic pair is formed between Asp311 and Asp313. Step 2: Substrate binding. The Asp313 side chain detaches from Asp311 and rotates to form a H-bond with the C=O of the 2-acetamido group of -1GlcNAc. Step 3: Bond cleavage. The side chain of Asp313 and the 2-acetamido group simultaneously rotate, permitting Asp313 to interact with the side chain of Glu315 and facilitating bond cleavage. Step 4: Formation of reaction intermediate. The transient (-1) C1-GlcNAc cation readily reacts with the 2-acetamido group, forming an oxazolinium ion intermediate. Further attack by a neighboring water results in retention of ?-configuration of the degradation products. PMID:23221718

Suginta, Wipa; Sritho, Natchanok

2012-01-01

35

Simultaneous identification of five marine fish pathogens belonging to the genera Tenacibaculum, Vibrio, Photobacterium and Pseudomonas by Reverse Line Blot Hybridization  

Microsoft Academic Search

The aim of this work was to develop a reverse line blot hybridization (RLB) assay for the identification of five fish pathogens (Tenacibaculum soleae, Tenacibaculum maritimum, Vibrio harveyi, Photobacterium damselae and Pseudomonas baetica) of importance in marine aquaculture. Species-specific probes were designed targeting the 16S-23S intergenic spacer region (ISR) or the 23S rRNA gene. Reference and clinical strains of each

J. R. López; J. I. Navas; N. Thanantong; R. de la Herran; O. A. E. Sparagano

36

Preliminary assessment of mutagenic and anti-mutagenic potential of some aminoalkanolic derivatives of xanthone by use of the Vibrio harveyi assay.  

PubMed

The Vibrio harveyi assay was used to evaluate mutagenic and anti-mutagenic effects of four new aminoalkanolic derivatives of xanthone with anticonvulsant activity, to select the potentially safe compounds for further in vivo studies in animal models. The study showed that at a concentration of 40ng/ml the test compounds were not mutagenic. Additionally, two of the investigated compounds, namely the (R,S)-N-methyl-1-amino-2-propanol derivative of 6-methoxyxanthone (compound III) and the (R)-N-methyl-2-amino-1-butanol derivative of 7-chloroxanthone (compound IV) were strong inhibitors of the mutagenicity induced by 4-nitroquinoline-N-oxide (4-NQO) in V. harveyi strains BB7M and BB7XM. The inhibition percentages for compound IV were 49 (in BB7M) and 69 (in BB7XM), whereas for compound III these percentages were 47 (in BB7M) and 42 (in BB7XM), respectively. The present study demonstrates that four bioactive derivatives of xanthone display no mutagenic activity in the V. harveyi assay. In addition, compounds III and IV demonstrated considerable anti-mutagenic activity in this test. Based on the results obtained here, these compounds could be selected for further studies in animal models, while compounds III and IV should be tested further for their anti-mutagenic properties. PMID:24769486

S?oczy?ska, Karolina; Waszkielewicz, Anna Maria; Marona, Henryk

2014-07-01

37

The Vibrio Pathogenicity Island of Epidemic Vibrio cholerae Forms Precise Extrachromosomal Circular Excision Products  

Microsoft Academic Search

The Vibrio pathogenicity island (VPI) in epidemic Vibrio cholerae is an essential virulence gene cluster. Like many pathogenicity islands, the VPI has at its termini a phage-like integrase gene (int), a transposase-like gene (vpiT), and phage-like attachment (att) sites, and is inserted at a tRNA-like locus (ssrA). We report that the VPI precisely excises from the chromosome and that its

C. Rajanna; J. Wang; D. Zhang; Zheng Xu; A. Ali; Y.-M. Hou; D. K. R. Karaolis

2003-01-01

38

A novel Vibrio sp. pathogen of the coral Pocillopora damicornis  

Microsoft Academic Search

A coral pathogen was isolated from the diseased tissue of Pocillopora damicornis in Zanzibar. The pathogenic bacterium, referred to as Vibrio coralyticus YB, was classified as a member of the genus Vibrio. Based on its 16S rDNA sequence, V. coralyticus is probably a new species. In controlled aquaria experiments at 26-29°C, inoculation of pure cultures of V. coralyticus YB either

Y. Ben-Haim; E. Rosenberg

2002-01-01

39

Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66  

Microsoft Academic Search

China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication,\\u000a extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v\\/v).

JianLan You; XiaoLi Xue; LiXiang Cao; Xin Lu; Jian Wang; LiXin Zhang; ShiNing Zhou

2007-01-01

40

Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum  

PubMed Central

Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen may offer a non-antibiotic-based approach to reduce vibriosis. A detailed understanding of the phage-host interaction is needed to evaluate the potential of phages to control the pathogen. In this study, we examined the diversity and interactions of 11 vibriophages, 24 V. anguillarum strains, and 13 Vibrio species strains. Together, the host ranges of the 11 phages covered all of the tested 37 Vibrio sp. host strains, which represented considerable temporal (20 years) and geographical (9 countries) differences in their origins of isolation. Thus, despite the occurrence of unique susceptibility patterns of the individual host isolates, key phenotypic properties related to phage susceptibility are distributed worldwide and maintained in the global Vibrio community for decades. The phage susceptibility pattern of the isolates did not show any relation to the physiological relationships obtained from Biolog GN2 profiles, demonstrating that similar phage susceptibility patterns occur across broad phylogenetic and physiological differences in Vibrio strains. Subsequent culture experiments with two phages and two V. anguillarum hosts demonstrated an initial strong lytic potential of the phages. However, rapid regrowth of both phage-resistant and phage-sensitive cells following the initial lysis suggested that several mechanisms of protection against phage infection had developed in the host populations. PMID:24610858

Tan, Demeng; Gram, Lone

2014-01-01

41

Genome Sequences of Vibrio navarrensis, a Potential Human Pathogen  

PubMed Central

Vibrio navarrensis is an aquatic bacterium recently shown to be associated with human illness. We report the first genome sequences of three V. navarrensis strains obtained from clinical and environmental sources. Preliminary analyses of the sequences reveal that V. navarrensis contains genes commonly associated with virulence in other human pathogens. PMID:25414502

Gladney, Lori M.; Katz, Lee S.; Knipe, Kristen M.; Rowe, Lori A.; Conley, Andrew B.; Rishishwar, Lavanya; Mariño-Ramírez, Leonardo

2014-01-01

42

Antimicrobial susceptibility of potentially pathogenic halophilic vibrios isolated from seafood  

Microsoft Academic Search

Susceptibility patterns to 27 antimicrobial agents and ?-lactamase production were investigated in potentially pathogenic halophilic vibrios from seafood. The effect of salinity on the response to the drugs in vitro was also studied. All isolates were uniformly sensitive to choramphenicol, imipenem, meropenem but resistant to lincomycin. All were highly sensitive to oxolinic acid, trimethoprim–sulphamethoxazole, doxycycline, flumequine, cefotaxime, nalidixic acid and

Donatella Ottaviani; Isidoro Bacchiocchi; Laura Masini; Francesca Leoni; Antonio Carraturo; Monica Giammarioli; Giovanni Sbaraglia

2001-01-01

43

Molecular cloning of peroxinectin gene and its expression in response to peptidoglycan and Vibrio harveyi in Indian white shrimp fenneropenaeus indicus.  

PubMed

Abstract The cDNA sequence of peroxinectin was obtained from the haemocytes of Indian white shrimp Fenneropenaeus indicus using RT-PCR and RACE. Fenneropenaeus indicus peroxinectin (Fi-Pxn) sequence has an open reading frame (ORF) of 2415 bp encoding a protein of 804 amino acids with 21 residues signal sequence. The mature protein has molecular mass of 89.8 kDa with an estimated pI of 8.6. Two putative integrin-binding motifs, RGD and KGD, were observed at the basic N-terminal and C-terminal part of the mature aminoacid sequence. Fi-Pxn nucleotide sequence comparison showed high homology to mud crab Scylla serrata (89%) and to various vertebrate and invertebrate species. qRT-PCR showed peroxinectin mRNA transcript in haemocytes of F. indicus increased at 6 h post injection of peptidoglycan and Vibrio harveyi. The Fi-Pxn was mainly expressed in the tissues of haemocytes and the heart. The moulting stage responses showed Fi-Pxn expression in premoult stages D0/1 and D0/2. PMID:25072536

Shanthi, Sathappan; Manju, Sivalingam; Rajakumaran, Perumal; Vaseeharan, Baskaralingam

2014-12-01

44

Characterization of the Secretomes of Two Vibrios Pathogenic to Mollusks  

PubMed Central

Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins (ECPs) of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each fraction on hemocyte cellular parameters (phagocytosis and adhesion). Fractions showing a significant effect were subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and 87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or proteins of unknown function (14 and 15 respectively). Interestingly, for V. aestuarianus, we noted the secretion of 3 extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease). For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis to further analyze the contribution of specific proteins in the virulence mechanisms of these species. PMID:25401495

Madec, Stéphanie; Pichereau, Vianney; Jacq, Annick; Paillard, Mathieu; Boisset, Claire; Guérard, Fabienne

2014-01-01

45

Structure-function relationship of Vibrio harveyi NADPH-flavin oxidoreductase FRP: essential residues Lys167 and Arg15 for NADPH binding.  

PubMed

Vibrio harveyi NADPH-FMN oxidoreductase (FRP) catalyzes flavin reduction by NADPH. In comparing amino acid sequence and crystal structure with Escherichia coli NfsA, residues N134, R225, R133, K167, and R15 were targeted for investigation of their possible roles in the binding and utilization of the NADPH substrate. By mutation of each of these five residues to an alanine, steady-state rate analyses showed that the variants K167A and R15A had apparently greatly increased K(m,NADPH) and reduced k(cat)/K(m,NADPH), whereas little or much more modest changes were found for the other variants. The deuterium isotope effects (D)(V/K) for (4R)-[4-(2)H]-NADPH were markedly increased to 6.3 and 7.4 for K167A and R15A, respectively, indicating that the rate constants for NADPH and NADP(+) dissociation were greatly enhanced relative to the hydride transfer steps. Also, anaerobic stopped-flow analyses revealed that the equilibrium dissociation constant for NADPH binding (K(d)) to be 2.5-3.9 and 1.1 mM for K167A and R15A, respectively, much higher than the 0.4 ?M K(d) for the native FRP, whereas the k(cat) of these two variants were similar to that of the wild-type enzyme. Moreover, the K167 to alanine mutation led to even a slight increase in k(cat)/K(m) for NADH. These results, taken together, provide a strong support to the conclusion that K167 and R15 each was critical in the binding of NADPH by FRP. Such a functional role may also exist for other FRP homologous proteins. PMID:22650604

Chung, Hae-Won; Tu, Shiao-Chun

2012-06-19

46

Influence of nitrogen substrates and substrate C:N ratios on the nitrogen isotopic composition of amino acids from the marine bacterium Vibrio harveyi  

NASA Astrophysics Data System (ADS)

Nitrogen (N) isotopic compositions of individual hydrolysable amino acids (?15NAAs) in N pools have been increasingly used for trophic position assessment and evaluation of sources and transformation processes of organic matter in marine environments. However, there are limited data about variability in ?15NAAs patterns and how this variability influences marine bacteria, an important mediator of trophic transfer and organic matter transformation. We explored whether marine bacterial ?15NAAs profiles change depending on the type and C:N ratio of the substrate. The ?15NAAs profile of a marine bacterium, Vibrio harveyi, was examined using medium containing either glutamate, alanine or ammonium as the N source [substrate C:N ratios (range, 3 to 20) were adjusted with glucose]. The data were interpreted as a reflection of isotope fractionations associated with de novo synthesis of amino acids by bacteria. Principal component analysis (PCA) using the ?15N offset values normalized to glutamate + glutamine ?15N revealed that ?15NAAs profiles differed depending on the N source and C:N ratio of the substrate. High variability in the ?15N offset of alanine and valine largely explained this bacterial ?15NAAs profile variability. PCA was also conducted using bacterial and phytoplankton (cyanobacteria and eukaryotic algae) ?15NAAs profile data reported previously. The results revealed that bacterial ?15NAAs patterns were distinct from those of phytoplankton. Therefore, the ?15NAAs profile is a useful indicator of biochemical responses of bacteria to changes in substrate conditions, serving as a potentially useful method for identifying organic matter sources in marine environments.

Maki, K.; Ohkouchi, N.; Chikaraishi, Y.; Fukuda, H.; Miyajima, T.; Nagata, T.

2014-09-01

47

Impaired chromosome partitioning and synchronization of DNA replication initiation in an insertional mutant in the Vibrio harveyi cgtA gene coding for a common GTP-binding protein.  

PubMed Central

The Vibrio harveyi cgtA gene product belongs to a subfamily of small GTP-binding proteins, called Obg-like proteins. Members of this subfamily are present in diverse organisms ranging from bacteria to humans. On the other hand, the functions of these proteins in the regulation of cellular processes are largely unknown. Genes coding for these proteins are essential in almost all bacteria investigated thus far. However, a viable V. harveyi insertional mutant in the cgtA gene was described recently. Therefore, this mutant gives a unique opportunity to study functions of a member of the subfamily of Obg-like proteins. Here we demonstrate that the mutant cells often form long filaments with expanded, non-partitioned or rarely partitioned chromosomes. Such a phenotype suggests impairment of the mechanism of chromosome partition. Flow cytometric studies revealed that synchronization of chromosome replication initiation is also significantly disturbed in the cgtA mutant. Moreover, in contrast to wild-type V. harveyi, inhibition of chromosome replication and/or of cell division in the mutant bacteria caused significant increase in the number of large cells, suggesting that the cgtA gene product may be involved in the coupling of cell growth to chromosome replication and cell division. These results indicate that CgtA, an Obg-like GTP-binding protein, plays an important role in the regulation of chromosomal functions. PMID:11879184

S?omi?ska, Monika; Konopa, Grazyna; Wegrzyn, Grzegorz; Czyz, Agata

2002-01-01

48

The human pathogenic vibrios--a public health update with environmental perspectives.  

PubMed Central

Pathogenic Vibrio species are naturally-occurring bacteria in freshwater and saline aquatic environments. Counts of free-living bacteria in water are generally less than required to induce disease. Increases in number of organisms towards an infective dose can occur as water temperatures rise seasonally followed by growth and concentration of bacteria on higher animals, such as chitinous plankton, or accumulation by shellfish and seafood. Pathogenic Vibrio species must elaborate a series of virulence factors to elicit disease in humans. Activities which predispose diarrhoeal and extraintestinal infections include ingestion of seafood and shellfish and occupational or recreational exposure to natural aquatic environments, especially those above 20 degrees C. Travel to areas endemic for diseases due to pathogenic Vibrio species may be associated with infections. Host risk factors strongly associated with infections are lack of gastric acid and liver disorders. Involvement of pathogenic Vibrio species in cases of diarrhoea should be suspected especially if infection is associated with ingestion of seafood or shellfish, raw or undercooked, in the previous 72 h. Vibrio species should be suspected in any acute infection associated with wounds sustained or exposed in the marine or estuarine environment. Laboratories serving coastal areas where infection due to pathogenic Vibrio species are most likely to occur should consider routine use of TCBS agar and other detection regimens for culture of Vibrio species from faeces, blood and samples from wound and ear infections. PMID:2673820

West, P. A.

1989-01-01

49

Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria.  

PubMed

Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness. PMID:24370863

Frydenborg, Beck R; Krediet, Cory J; Teplitski, Max; Ritchie, Kim B

2014-02-01

50

Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)  

ScienceCinema

Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Colwell, Rita [University of Maryland

2013-02-12

51

Vibrios as causal agents of zoonoses.  

PubMed

Vibrios are Gram-negative rod-shaped bacteria that are widespread in the coastal and estuarine environments. Some species, e.g. Vibrio anguillarum and V. tapetis, comprise serious pathogens of aquatic vertebrates or invertebrates. Other groups, including Grimontia (=Vibrio) hollisae, Photobacterium (=Vibrio) damselae subsp. damselae, V. alginolyticus, V. harveyi (=V. carchariae), V. cholerae, V. fluvialis, V. furnissii, V. metschnikovii, V. mimicus, V. parahaemolyticus and V. vulnificus, may cause disease in both aquatic animals and humans. The human outbreaks, although low in number, typically involve wound infections and gastro-intestinal disease often with watery diarrhoea. In a minority of cases, for example V. vulnificus, there is good evidence to actually associate human infections with diseased animals. In other cases, the link is certainly feasible but hard evidence is mostly lacking. PMID:19342185

Austin, B

2010-01-27

52

Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans.  

PubMed Central

We report that the eel pathogen Vibrio vulnificus biotype 2 is also an opportunistic pathogen for humans. Results from a detailed comparative study using reference strains of both biotypes revealed that the clinical strain ATCC 33817, originally isolated from a human leg wound and classified as V. vulnificus (no reference on its biotype is noted), belongs to biotype 2 of the species. As a biotype 2 strain, it is negative for indole and pathogenic for eels and mice, harbors two plasmids of high MrS, and belongs to serogroup E, recently proposed as characteristic of biotype 2 strains. In consequence, appropriate measures must be taken by consumers, particularly by those running a health risk, and by fish farmers, above all when manipulating eels during epizootic outbreaks. PMID:8919812

Amaro, C; Biosca, E G

1996-01-01

53

Impact of milk fish farming in the tropics on potentially pathogenic vibrios.  

PubMed

Ratios of sucrose-negative to sucrose-positive vibrios on TCBS agar (suc-/suc+) indicate the abundance of potential human pathogenic non-cholera vibrios in coastal mariculture environments of the Lingayen Gulf (Philippines. In guts of adult maricultured milkfish (Chanos chanos) of suc- vibrios reached extreme peak values ranging between 2 and 545 million per g wet weight. Suc- vibrios outnumbered suc+ vibrios in anoxic sediments, too, and were rarely predominant in coastal waters or in oxidized sediments. Suc-/suc+ ratios in sediments increased toward the mariculture areas with distance from the open sea at decreasing redox potentials. There is circumstantial evidence that suc- vibrios can be dispersed from mariculture areas to adjacent environments including coral reefs. An immediate human health risk by pathogenic Vibrio species is discounted, since milkfish guts contained mainly members of the Enterovibrio group. A representative isolate of these contained proteolytic and other virulence factors, but no genes encoding toxins characteristic of clinical Vibrio species. PMID:24079922

Reichardt, W T; Reyes, J M; Pueblos, M J; Lluisma, A O

2013-12-15

54

Power plays: iron transport and energy transduction in pathogenic vibrios  

Microsoft Academic Search

The Vibrios are a unique group of bacteria inhabiting a vast array of aquatic environments. Many Vibrio species are capable of infecting a wide assortment of hosts. Some of these species include V. parahaemolyticus, V. alginolyticus, V. vulnificus, V. anguillarum, and V. cholerae. The ability of these organisms to utilize iron is essential in establishing both an infection in their

Ryan J. KustuschCarole; Carole J. Kuehl; Jorge H. Crosa

2011-01-01

55

Detection of pathogenic Vibrio parahaemolyticus in oyster enrichments by real time PCR  

Microsoft Academic Search

A real time polymerase chain reaction (PCR) assay was developed and evaluated to detect the presence of the thermostable direct hemolysin gene (tdh), a current marker of pathogenicity in Vibrio parahaemolyticus. The real time PCR fluorogenic probe and primer set was tested against a panel of numerous strains from 13 different bacterial species. Only V. parahaemolyticus strains possessing the tdh

George M Blackstone; Jessica L Nordstrom; Michael C. L Vickery; Michael D Bowen; Richard F Meyer; Angelo DePaola

2003-01-01

56

Ocean warming and spread of pathogenic vibrios in the aquatic environment.  

PubMed

Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens. PMID:23280498

Vezzulli, Luigi; Colwell, Rita R; Pruzzo, Carla

2013-05-01

57

Vibrio Pathogenicity Island and Cholera Toxin Genetic Element-Associated Virulence Genes and Their Expression in Non-O1 Non-O139 Strains of Vibrio cholerae  

Microsoft Academic Search

A non-O1 non-O139 Vibrio cholerae strain, 10259, belonging to the serogroup O53 was shown to harbor genes related to the vibrio pathogenicity island (VPI) and a cholera toxin (CT) genetic element called CTX. While the nucleotide sequence of the strain 10259 tcpA gene differed significantly (26 and 28%) from those of O1 classical and El Tor biotype strains, respectively, partial

Amit Sarkar; Ranjan K. Nandy; G. Balakrish Nair; Asoke C. Ghose

2002-01-01

58

Administration of Bacillus subtilis strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against Vibrio harveyi infection in juvenile white shrimp, Litopenaeus vannamei.  

PubMed

In this study, vegetative cell suspensions of two Bacillus subtilis strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU ml(-1) in the rearing water of shrimp (Litopenaeus vannamei) for eight weeks. Both probiotic groups showed a significant reduction of ammonia, nitrite and nitrate ions under in vitro and in vivo conditions. In comparison to untreated control group, final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and digestive enzymatic activity were significantly greater in the BM5 and BM8 groups. Significant differences for survival were recorded in the BM8 group as compared to the control. Eight weeks after the start of experiment, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 80%, whereas cumulative mortality of the shrimp that had been given probiotics was 36.7% with MB8 and 50% with MB5. Subsequently, real-time RT-PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and ?-1,3-glucan- binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was only significantly up-regulated in the BM5 group compared to the BM8 and control groups. These results suggest that administration of B. subtilis strains in the rearing water confers beneficial effects for shrimp aquaculture, considering water quality, growth performance, digestive enzymatic activity, immune response and disease resistance. PMID:24161773

Zokaeifar, Hadi; Babaei, Nahid; Saad, Che Roos; Kamarudin, Mohd Salleh; Sijam, Kamaruzaman; Balcazar, Jose Luis

2014-01-01

59

Pathogenic marine vibrio species in selected Nova Scotian recreational coastal waters.  

PubMed

Seven heavily frequented coastal recreation sites serving Metropolitan Halifax and Dartmouth were investigated to determine the numbers and species of pathogenic marine vibrios (PMV) present. Seawater, mussels and sea gull feces were cultured using quantitative methods and the effects of temperature and fecal pollution noted. Emergency rooms serving the sites under surveillance were monitored for PMV-related infections. All 11 recognized species of pathogenic marine vibrios were recovered from the 7 sites. Estuarine sites yielded a greater variety of species and greater numbers of PMV than non-estuarine sites. Culture of hand washings after immersion in seawater did not demonstrate contamination of skin by PMV. We did not demonstrate any cases of PMV infection associated with the 7 surveillance sites. PMV contamination of marine recreational waters does not frequently result in superficial infections. PMID:2207947

Badley, A; Phillips, B; Haldane, D J; Dalton, M T

1990-01-01

60

Multi-site Analysis Reveals Widespread Antibiotic Resistance in the Marine Pathogen Vibrio vulnificus  

Microsoft Academic Search

Vibrio vulnificus is a serious opportunistic human pathogen commonly found in subtropical coastal waters, and is the leading cause of seafood-borne\\u000a mortality in the USA. This taxon does not sustain prolonged presence in clinical or agricultural settings, where it would\\u000a undergo human-induced selection for antibiotic resistance. Therefore, few studies have verified the effectiveness of commonly\\u000a prescribed antibiotics in V. vulnificus

Craig Baker-Austin; J. V. McArthur; Angela H. Lindell; Meredith S. Wright; R. Cary Tuckfield; Jan Gooch; Liza Warner; James Oliver; Ramunas Stepanauskas

2009-01-01

61

Active bacterial luciferase from a fused gene: expression of a Vibrio harveyi luxAB translational fusion in bacteria, yeast and plant cells.  

PubMed

The luxA and luxB genes encoding the luciferase from Vibrio harvey were fused by site-directed mutagenesis so that one polypeptide was encoded by the fused gene. The fused gene facilitated light production in Escherichia coli, Saccharomyces cerevisiae, and Nicotiana plumbaginifolia when the substrates decanal and reduced flavin mononucleotide were present. The specific activity of the encoded enzyme is not known. In E. coli and S. cerevisiae cells the light emission could be measured in viable, intact cells. The luxAB fusion provides a simple reporter gene for in vivo measurement of promoter strength in these species and may be useful in other systems as well. PMID:2680772

Kirchner, G; Roberts, J L; Gustafson, G D; Ingolia, T D

1989-09-30

62

Outcomes of infections of sea anemone Aiptasia pallida with Vibrio spp. pathogenic to corals.  

PubMed

Incidents of coral disease are on the rise. However, in the absence of a surrogate animal host, understanding of the interactions between coral pathogens and their hosts remains relatively limited, compared to other pathosystems of similar global importance. A tropical sea anemone, Aiptasia pallida, has been investigated as a surrogate model to study certain aspects of coral biology. Therefore, to test whether the utility of this surrogate model can be extended to study coral diseases, in the present study, we tested its susceptibility to common coral pathogens (Vibrio coralliilyticus and Vibrio shiloi) as well as polymicrobial consortia recovered from the Caribbean Yellow Band Disease (CYBD) lesions. A. pallida was susceptible to each of the tested pathogens. A. pallida responded to the pathogens with darkening of the tissues (associated with an increased melanization) and retraction of tentacles, followed by complete disintegration of polyp tissues. Loss of zooxanthellae was not observed; however, the disease progression pattern is consistent with the behavior of necrotizing pathogens. Virulence of some coral pathogens in Aiptasia was paralleled with their glycosidase activities. PMID:24619233

Zaragoza, William J; Krediet, Cory J; Meyer, Julie L; Canas, Gabriela; Ritchie, Kim B; Teplitski, Max

2014-08-01

63

Survival of Normal and Chlorine-Stressed Pathogenic and Non-Pathogenic Vibrio parahaemolyticus Under Adverse Conditions  

PubMed Central

Background: Vibrio parahaemolyticus is an important human pathogen which can cause gastroenteritis when consumed in raw or partially-cooked seafood. The pathogenesis of V. parahaemolyticus is based on the presence of virulence factors: the thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), encoded by the tdh and trh genes, respectively. Objectives: The present study aimed to evaluate the survival of normal and chlorine-stressed cells of pathogenic and non-pathogenic V. parahaemolyticus under adverse conditions. Materials and Methods: Normal and chlorine-stressed cells of pathogenic and non-pathogenic V. parahaemolyticus were subjected to environmental stresses such as low storage temperature (4°C and -18°C), high incubation temperature (50°C) and high NaCl content (20%). Viable counts were then made at various time intervals by surface plating on TSA-2.0% NaCl, and the survival rates of the cells were determined and compared. Results: Findings of the current study revealed that the normal cells of pathogenic and non-pathogenic V. parahaemolyticus, as well as the chlorine-stressed cells of both strains behave similarly under adverse conditions. In addition, chlorine stress increased the susceptibility of pathogenic and non-pathogenic V. parahaemolyticus to incubation at 4°C, and the presence of high NaCl content in the medium. However, chlorine stress did not significantly affect the thermal tolerance of pathogenic and non-pathogenic V. parahaemolyticus, and the susceptibility to incubation at -18°C. Conclusions: Chlorine-stressed cells of V. parahaemolyticus were more susceptible to adverse conditions than the non-stressed ones. Pathogenic and non-pathogenic strains showed the same survival characteristics under the adverse conditions. These results should be considered in the development of food preservation measures. PMID:25147689

Zarei, Mehdi; Eskandari, Mohammad Hadi; Keshtkaran, Somayeh

2014-01-01

64

Examination of Diverse Toxin-Coregulated Pilus-Positive Vibrio cholerae Strains Fails To Demonstrate Evidence for Vibrio Pathogenicity Island Phage  

Microsoft Academic Search

The major virulence factors of toxigenic Vibrio cholerae are cholera toxin, which is encoded by a lysogenic filamentous bacteriophage (CTX), and toxin-coregulated pilus (TCP), an essential colonization factor that is also the receptor for CTX. The genes involved in the biosynthesis of TCP reside in a pathogenicity island, which has been reported to correspond to the genome of another filamentous

Shah M. Faruque; Jun Zhu; Asadulghani; M. Kamruzzaman; J. J. Mekalanos

2003-01-01

65

Quantitative Microbial Risk Assessment of Pathogenic Vibrios in Marine Recreational Waters of Southern California  

PubMed Central

This study investigated the occurrence of three types of vibrios in Southern California recreational beach waters during the peak marine bathing season in 2007. Over 160 water samples were concentrated and enriched for the detection of vibrios. Four sets of PCR primers, specific for Vibrio cholerae, V. parahaemolyticus, and V. vulnificus species and the V. parahaemolyticus toxin gene, respectively, were used for the amplification of bacterial genomic DNA. Of 66 samples from Doheny State Beach, CA, 40.1% were positive for V. cholerae and 27.3% were positive for V. parahaemolyticus, and 1 sample (1.5%) was positive for the V. parahaemolyticus toxin gene. Of the 96 samples from Avalon Harbor, CA, 18.7% were positive for V. cholerae, 69.8% were positive for V. parahaemolyticus, and 5.2% were positive for the V. parahaemolyticus toxin gene. The detection of the V. cholerae genetic marker was significantly more frequent at Doheny State Beach, while the detection of the V. parahaemolyticus genetic marker was significantly more frequent at Avalon Harbor. A probability-of-illness model for V. parahaemolyticus was applied to the data. The risk for bathers exposed to recreational waters at two beaches was evaluated through Monte Carlo simulation techniques. The results suggest that the microbial risk from vibrios during beach recreation was below the illness benchmark set by the U.S. EPA. However, the risk varied with location and the type of water recreation activities. Surfers and children were exposed to a higher risk of vibrio diseases. Microbial risk assessment can serve as a useful tool for the management of risk related to opportunistic marine pathogens. PMID:23104412

Dickinson, Gregory; Lim, Keah-ying

2013-01-01

66

An Improved Detection and Quantification Method for the Coral Pathogen Vibrio coralliilyticus  

PubMed Central

DNA- and RNA-based PCR and reverse-transcription real-time PCR assays were developed for diagnostic detection of the vcpA zinc-metalloprotease implicated in the virulence of the coral pathogen Vibrio coralliilyticus. Both PCR methods were highly specific for V. coralliilyticus and failed to amplify strains of closely-related Vibrio species. The assays correctly detected all globally occurring V. coralliilyticus isolates including a newly-described isolate [TAV24] infecting gorgonians in the Mediterranean Sea and highlighted those isolates that had been potentially misidentified, in particular V. tubiashii strains ATCC 19105 and RE22, historically described as important oyster pathogens. The real-time assay is sensitive, detecting 10 gene copies and the relationships between gene copy number and cycle threshold (CT) were highly linear (R2?99.7). The real-time assay was also not affected by interference from non-target DNA. These assays are useful for rapid detection of V. coralliilyticus and monitoring of virulence levels in environmental samples, allowing for implementation of timely management steps to limit and possibly prevent losses due to V. coralliilyticus infection, as well as furthering investigations of factors affecting pathogenesis of this important marine pathogen. PMID:24339968

Wilson, Bryan; Muirhead, Andrew; Bazanella, Monika; Huete-Stauffer, Carla; Vezzulli, Luigi; Bourne, David G.

2013-01-01

67

Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire  

PubMed Central

Vibrio coralliilyticus has been implicated as an important pathogen of coral species worldwide. In this study, the nearly complete genome of Vibrio coralliilyticus strain P1 (LMG23696) was sequenced and proteases implicated in virulence of the strain were specifically investigated. The genome sequence of P1 (5?513?256?bp in size) consisted of 5222 coding sequences and 58 RNA genes (53 tRNAs and at least 5 rRNAs). Seventeen metalloprotease and effector (vgrG, hlyA and hcp) genes were identified in the genome and expressed proteases were also detected in the secretome of P1. As the VcpA zinc-metalloprotease has been considered an important virulence factor of V. coralliilyticus, a vcpA deletion mutant was constructed to evaluate the effect of this gene in animal pathogenesis. Both wild-type and mutant (?vcpA) strains exhibited similar virulence characteristics that resulted in high mortality in Artemia and Drosophila pathogenicity bioassays and strong photosystem II inactivation of the coral dinoflagellate endosymbiont (Symbiodinium). In contrast, the ?vcpA mutant demonstrated higher hemolytic activity and secreted 18 proteins not secreted by the wild type. These proteins included four types of metalloproteases, a chitinase, a hemolysin-related protein RbmC, the Hcp protein and 12 hypothetical proteins. Overall, the results of this study indicate that V. coralliilyticus strain P1 has a diverse virulence repertoire that possibly enables this bacterium to be an efficient animal pathogen. PMID:21451583

de O Santos, Eidy; Alves, Nelson; Dias, Graciela M; Mazotto, Ana Maria; Vermelho, Alane; Vora, Gary J; Wilson, Bryan; Beltran, Victor H; Bourne, David G; Le Roux, Frederique; Thompson, Fabiano L

2011-01-01

68

Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention.  

PubMed

Vibrio anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is responsible for severe economic losses worldwide. Because of its high morbidity and mortality rates, substantial research has been carried out to elucidate the virulence mechanisms of this pathogen and to develop rapid detection techniques and effective disease-prevention strategies. This review summarizes the current state of knowledge pertaining to V. anguillarum, focusing on pathogenesis, known virulence factors, diagnosis, prevention and treatment. PMID:21838709

Frans, I; Michiels, C W; Bossier, P; Willems, K A; Lievens, B; Rediers, H

2011-09-01

69

Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits  

PubMed Central

Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo. PMID:23739050

Goudenege, David; Labreuche, Yannick; Krin, Evelyne; Ansquer, Dominique; Mangenot, Sophie; Calteau, Alexandra; Medigue, Claudine; Mazel, Didier; Polz, Martin F; Le Roux, Frederique

2013-01-01

70

DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae.  

PubMed

Here we determine the complete genomic sequence of the gram negative, gamma-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the gamma-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host 'addiction' genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen. PMID:10952301

Heidelberg, J F; Eisen, J A; Nelson, W C; Clayton, R A; Gwinn, M L; Dodson, R J; Haft, D H; Hickey, E K; Peterson, J D; Umayam, L; Gill, S R; Nelson, K E; Read, T D; Tettelin, H; Richardson, D; Ermolaeva, M D; Vamathevan, J; Bass, S; Qin, H; Dragoi, I; Sellers, P; McDonald, L; Utterback, T; Fleishmann, R D; Nierman, W C; White, O; Salzberg, S L; Smith, H O; Colwell, R R; Mekalanos, J J; Venter, J C; Fraser, C M

2000-08-01

71

Characterization of pathogenicity island prophage in clinical and environmental strains of Vibrio cholerae.  

PubMed

In this study 86 isolates of Vibrio cholerae were analysed for their adhesive properties and the presence of pathogenicity island genes. With the exception of three isolates, all of the other clinical isolates (92.5%) contained an intact TCP (toxin-co-regulated pilus) gene cluster. In contrast, 95% of all environmental non-O1-non-O139 isolates were negative for the TCP gene cluster. The majority of clinical isolates (82.5%) possessed the complete vibrio pathogenicity island (VPI) gene cluster and had a similar RFLP pattern, while only a single environmental strain possessed an almost complete VPI cluster (lacking 0.4 kb in the tcpA and toxT region). The result showed that the isolates with tcpA(+)/toxT(+) had a strong attachment for HT-29 and Vero cells, whereas isolates with tcpA(+)/toxT(-) or tcpA(-)/toxT(-) genomic characteristics showed no autoagglutination and weak attachment for the cell lines. Two environmental strains (tcpA(-)/toxT(-)) showed strong adhesive properties to the cell lines, indicating that non-fimbrial adhesive factors are involved in the environmental V. cholerae strains in the absence of TCP. PMID:21852526

Mohammadi-Barzelighi, H; Bakhshi, B; Rastegar Lari, A; Pourshafie, M R

2011-12-01

72

Characterization of Pathogenic Vibrio parahaemolyticus Isolates from Clinical Sources in Spain and Comparison with Asian and North American Pandemic Isolates  

Microsoft Academic Search

In spite of the potential risk involved with contamination of seafood with Vibrio parahaemolyticus, there is a lack of information on the occurrence of pathogenic V. parahaemolyticus in Europe. This organism was isolated in 1999 from a large outbreak (64 cases admitted to a single hospital) associated with raw oyster consumption in Galicia, Spain, one of the most important regions

Jaime Martinez-Urtaza; Antonio Lozano-Leon; Angelo DePaola; Masanori Ishibashi; Kanae Shimada; Mitsuaki Nishibuchi; Ernesto Liebana

2004-01-01

73

Biochemical properties of a new ?-carbonic anhydrase from the human pathogenic bacterium, Vibrio cholerae.  

PubMed

Abstract Vibrio cholerae, a Gram-negative bacterium, is the causative agent of cholera and colonizes the upper small intestine where sodium bicarbonate is present at a high concentration. Sodium bicarbonate is a potential inducer of virulence gene expression. Bacteria can increase cytosolic bicarbonate levels through the existence of transporter family proteins or through the action of metalloenzymes, called carbonic anhydrases (CAs, EC 4.2.1.1). Vibrio cholerae, lacking of transporter proteins in its genome, utilizes the CA system to accumulate bicarbonate into the cell suggesting a pivotal role of this metalloenzymes in the microbial virulence. Here, we report for the first time the characterization of the ?-CA of V. cholerae (VchCA), which has been identified by translated genome inspection. The ?-CA encoding gene was cloned and expressed in Escherichia coli and the recombinant protein purified to homogeneity. This investigation aimed to study the biochemical properties of VchCA and to provide preliminary insights in the field of this pathogen virulence. VchCA has a low esterase activity with 4-nitrophenyl acetate as substrate, and a high activity for the hydration of CO2 to bicarbonate. PMID:23321008

Del Prete, Sonia; De Luca, Viviana; Scozzafava, Andrea; Carginale, Vincenzo; Supuran, Claudiu T; Capasso, Clemente

2014-02-01

74

Chromosome-mediated iron uptake system in pathogenic strains of Vibrio anguillarum.  

PubMed Central

We describe in this work a new iron uptake system encoded by chromosomal genes in pathogenic strains of Vibrio anguillarum. This iron uptake system differs from the plasmid-encoded anguibactin-mediated system present in certain strains of V. anguillarum in several properties. The siderophore anguibactin is not utilized as an external siderophore, and although characteristic outer membrane proteins are synthesized under iron-limiting conditions, these are not related to the plasmid-mediated outer membrane protein OM2 associated with ferric anguibactin transport. Furthermore, the siderophore produced by the plasmidless strains may be functionally related to enterobactin as demonstrated by bioassays with enterobactin-deficient mutants, although its behavior under various chemical treatments suggested major differences from that siderophore. Hybridization experiments suggested that the V. anguillarum chromosome-mediated iron uptake system is unrelated genetically to either the anguibactin or enterobactin-associated iron assimilation systems. Images PMID:2965144

Lemos, M L; Salinas, P; Toranzo, A E; Barja, J L; Crosa, J H

1988-01-01

75

Taxonomy of bacterial fish pathogens  

PubMed Central

Bacterial taxonomy has progressed from reliance on highly artificial culture-dependent techniques involving the study of phenotype (including morphological, biochemical and physiological data) to the modern applications of molecular biology, most recently 16S rRNA gene sequencing, which gives an insight into evolutionary pathways (= phylogenetics). The latter is applicable to culture-independent approaches, and has led directly to the recognition of new uncultured bacterial groups, i.e. "Candidatus", which have been associated as the cause of some fish diseases, including rainbow trout summer enteritic syndrome. One immediate benefit is that 16S rRNA gene sequencing has led to increased confidence in the accuracy of names allocated to bacterial pathogens. This is in marked contrast to the previous dominance of phenotyping, and identifications, which have been subsequently challenged in the light of 16S rRNA gene sequencing. To date, there has been some fluidity over the names of bacterial fish pathogens, with some, for example Vibrio anguillarum, being divided into two separate entities (V. anguillarum and V. ordalii). Others have been combined, for example V. carchariae, V. harveyi and V. trachuri as V. harveyi. Confusion may result with some organisms recognized by more than one name; V. anguillarum was reclassified as Beneckea and Listonella, with Vibrio and Listonella persisting in the scientific literature. Notwithstanding, modern methods have permitted real progress in the understanding of the taxonomic relationships of many bacterial fish pathogens. PMID:21314902

2011-01-01

76

Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2.  

PubMed Central

At present, no reports exist on the isolation of the eel pathogen Vibrio vulnificus biotype 2 from water samples. Nevertheless, it has recently been demonstrated that this biotype can use water as a route of infection. In the present study, the survival of this pathogen in artificial seawater (ASW) microcosms at different temperatures (25 and 5 degrees C) was investigated during a 50-day period, with biotype 1 as a control, V. vulnificus biotype 2 was able to survive in the culturable state in ASW at 25 degrees C in the free-living form, at least for 50 days, entering into the nonculturable state when exposed to low temperature. In this state, this microorganism survived with reduced rates of activity, showing marked changes in size and morphology. The rate at which cells became nonculturable was dependent on their physiological age. The capsule seems not to be necessary for the survival of biotype 2 in aquatic environments as a free-living organism. Culturability remained the highest on modified salt water yeast extract agar, which is closer in salt and nutrient composition to ASW than heart infusion agar. Biotype 2 cells recovered culturability on solid media after an increase of incubation temperature from 5 to 25 degrees C. Culturable cells of this bacterium maintained infectivity for either eel or mice, while dormant cells seemed to lose their virulence. The former finding suggests that the aquatic environment is a reservoir and vehicle of transmission of this pathogen. PMID:8593047

Biosca, E G; Amaro, C; Marco-Noales, E; Oliver, J D

1996-01-01

77

Molecular Epidemiology and Genetic Variation of Pathogenic Vibrio parahaemolyticus in Peru  

PubMed Central

Vibrio parahaemolyticus is a foodborne pathogen that has become a public health concern at the global scale. The epidemiological significance of V. parahaemolyticus infections in Latin America received little attention until the winter of 1997 when cases related to the pandemic clone were detected in the region, changing the epidemic dynamics of this pathogen in Peru. With the aim to assess the impact of the arrival of the pandemic clone on local populations of pathogenic V. parahaemolyticus in Peru, we investigated the population genetics and genomic variation in a complete collection of non-pandemic strains recovered from clinical sources in Peru during the pre- and post-emergence periods of the pandemic clone. A total of 56 clinical strains isolated in Peru during the period 1994 to 2007, 13 strains from Chile and 20 strains from Asia were characterized by Multilocus Sequence Typing (MLST) and checked for the presence of Variable Genomic Regions (VGRs). The emergence of O3:K6 cases in Peru implied a drastic disruption of the seasonal dynamics of infections and a shift in the serotype dominance of pathogenic V. parahaemolyticus. After the arrival of the pandemic clone, a great diversity of serovars not previously reported was detected in the country, which supports the introduction of additional populations cohabitating with the pandemic group. Moreover, the presence of genomic regions characteristic of the pandemic clone in other non-pandemic strains may represent early evidence of genetic transfer from the introduced population to the local communities. Finally, the results of this study stress the importance of population admixture, horizontal genetic transfer and homologous recombination as major events shaping the structure and diversity of pathogenic V. parahaemolyticus. PMID:23696906

Gavilan, Ronnie G.; Zamudio, Maria L.; Martinez-Urtaza, Jaime

2013-01-01

78

In Silico Analyses of Primers Used to Detect the Pathogenicity Genes of Vibrio cholerae  

PubMed Central

In Vibrio cholerae, the etiological agent of cholera, most of the virulence genes are located in two pathogenicity islands, named TCP (Toxin-Co-regulated Pilus) and CTX (Cholera ToXins). For each V. cholerae pathogenicity gene, we retrieved every primer published since 1990 and every known allele in order to perform a complete in silico survey and assess the quality of the PCR primers used for amplification of these genes. Primers with a melting temperature in the range 55–60°C against any target sequence were considered valid. Our survey clearly revealed that two thirds of the published primers are not able to properly detect every genetic variant of the target genes. Moreover, the quality of primers did not improve with time. Their lifetime, i.e. the number of times they were cited in the literature, is also not a factor allowing the selection of valid primers. We were able to improve some primers or design new primers for the few cases where no valid primer was found. In conclusion, many published primers should be avoided or improved for use in molecular detection tests, in order to improve and perfect specificity and coverage. This study suggests that bioinformatic analyses are important to validate the choice of primers. PMID:22673304

Gardès, Julien; Croce, Olivier; Christen, Richard

2012-01-01

79

Indigenous Vibrio cholerae strains from a non-endemic region are pathogenic  

PubMed Central

Of the 200+ serogroups of Vibrio cholerae, only O1 or O139 strains are reported to cause cholera, and mostly in endemic regions. Cholera outbreaks elsewhere are considered to be via importation of pathogenic strains. Using established animal models, we show that diverse V. cholerae strains indigenous to a non-endemic environment (Sydney, Australia), including non-O1/O139 serogroup strains, are able to both colonize the intestine and result in fluid accumulation despite lacking virulence factors believed to be important. Most strains lacked the type three secretion system considered a mediator of diarrhoea in non-O1/O13 V. cholerae. Multi-locus sequence typing (MLST) showed that the Sydney isolates did not form a single clade and were distinct from O1/O139 toxigenic strains. There was no correlation between genetic relatedness and the profile of virulence-associated factors. Current analyses of diseases mediated by V. cholerae focus on endemic regions, with only those strains that possess particular virulence factors considered pathogenic. Our data suggest that factors other than those previously well described are of potential importance in influencing disease outbreaks. PMID:23407641

Islam, Atiqul; Labbate, Maurizio; Djordjevic, Steven P.; Alam, Munirul; Darling, Aaron; Melvold, Jacqueline; Holmes, Andrew J.; Johura, Fatema T.; Cravioto, Alejandro; Charles, Ian G.; Stokes, H. W.

2013-01-01

80

Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates  

NASA Astrophysics Data System (ADS)

Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

Seong, Kyeong Ah; Jeong, Hae Jin

2011-06-01

81

EXPERIMENTAL STUDIES ON THE PATHOGENICITY OF VIBRIO MIMICUS STRAINS ISOLATED IN BANGLADESH  

Microsoft Academic Search

Vibrio mimicus, a newly described species of the genus Vibrio has been isolated from stools of 14 patients with diarrhoea. Live cells of all the 14 strains tested caused accumulation of fluid in rabbit gut loops and diarrhoea in infant rabbits. Culture filtrates of all the strains caused increased capillary permeability in rabbit skin; however, five of the filtrates resembled

Suhas C Sanyal; Mohammad I Huq; Prodyut KB Neogy; Khorshed Alam; Mohammad I Kabir; Abu SMH Rahaman

1984-01-01

82

Draft Genome Sequence of the Shellfish Bacterial Pathogen Vibrio sp. Strain B183  

PubMed Central

We report the draft genome sequence of Vibrio sp. strain B183, a Gram-negative marine bacterium isolated from shellfish that causes mortality in larval mariculture. The availability of this genome sequence will facilitate the study of its virulence mechanisms and add to our knowledge of Vibrio sp. diversity and evolution. PMID:25237023

Schott, Eric J.

2014-01-01

83

Analysis of the Vibrio pathogenicity island-encoded Mop protein suggests a pleiotropic role in the virulence of epidemic Vibrio cholerae.  

PubMed

Epidemic Vibrio cholerae contain a large essential virulence gene cluster called the Vibrio pathogenicity island (VPI). We recently reported that no in vitro difference in virulence was found in El Tor strain N16961 containing a mutation in the VPI-encoded mop gene but this mutant was hypervirulent and reactogenic in rabbit ileal loops. In this paper, we report in vitro studies showing that independent Mop mutants of strain 3083 are significantly attenuated (approximately 40-fold) in cholera toxin (CT) production and have significantly increased motility and biofilm forming ability but appear to be unaffected in TcpA, hemagglutinin protease and hemolysin compared to their parent. The 3083 Mop mutant showed a 100-fold decrease in its in vivo intestinal colonization ability in the infant mouse competition assays. While reverse transcription polymerase chain reaction and phenotypic studies of a mop plasmid in both mutant and wild-type backgrounds suggest Mop is expressed by the plasmid, the differences in CT and biofilm formation could not be restored in any of the mutants. The inability to complement the Mop mutants in trans may be due either to the selection of secondary mutations or to mop possibly being part of an operon. Our findings that Mop is associated with CT, motility, biofilm formation and intestinal colonization support a hypothesis in which Mop has a pleiotropic role in the pathogenesis and persistence of epidemic V. cholerae. PMID:12951258

Zhang, Dalin; Rajanna, Chythanya; Sun, Weiyun; Karaolis, David K R

2003-08-29

84

Genes and regulatory mechanisms controlling environmental survival strategies of the waterborne pathogen Vibrio cholerae  

E-print Network

evidence that the Vibrio cholerae monolayer is a distinct stage in biofilmvirulence, biofilm formation and motility. Evidence is alsoevidence that different strains of V. cholerae possess overlapping but distinctive sets of genes for biofilm

Mueller, Ryan S.

2007-01-01

85

Temporal and Spatial Variability in Culturable Pathogenic Vibrio spp. in Lake Pontchartrain, Louisiana, following Hurricanes Katrina and Rita ? †  

PubMed Central

We investigated the abundance, distribution, and virulence gene content of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in the waters of southern Lake Pontchartrain in Louisiana on four occasions from October 2005 to September 2006, using selective cultivation and molecular assays. The three targeted pathogenic vibrios were generally below the detection level in January 2006, when the water was cold (13°C), and most abundant in September 2006, when the lake water was warmest (30°C). The maximum values for these species were higher than reported previously for the lake by severalfold to orders of magnitude. The only variable consistently correlated with total vibrio abundance within a single sampling was distance from shore (P = 0.000). Multiple linear regression of the entire data set revealed that distance from shore, temperature, and turbidity together explained 82.1% of the variability in total vibrio CFU. The log-transformed mean abundance of V. vulnificus CFU in the lake was significantly correlated with temperature (P = 0.014), but not salinity (P = 0.625). Virulence-associated genes of V. cholerae (ctx) and V. parahaemolyticus (trh and tdh) were not detected in any isolates of these species (n = 128 and n = 20, respectively). In contrast, 16S rRNA typing of V. vulnificus (n = 298) revealed the presence of both environmental (type A) and clinical (type B) strains. The percentage of the B-type V. vulnificus was significantly higher in the lake in October 2005 (35.8% of the total) than at other sampling times (P ? 0.004), consistent with the view that these strains represent distinct ecotypes. PMID:21642406

Nigro, Olivia D.; Hou, Aixin; Vithanage, Gayatri; Fujioka, Roger S.; Steward, Grieg F.

2011-01-01

86

Temporal and spatial variability in culturable pathogenic Vibrio spp. in Lake Pontchartrain, Louisiana, following hurricanes Katrina and Rita.  

PubMed

We investigated the abundance, distribution, and virulence gene content of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus in the waters of southern Lake Pontchartrain in Louisiana on four occasions from October 2005 to September 2006, using selective cultivation and molecular assays. The three targeted pathogenic vibrios were generally below the detection level in January 2006, when the water was cold (13°C), and most abundant in September 2006, when the lake water was warmest (30°C). The maximum values for these species were higher than reported previously for the lake by severalfold to orders of magnitude. The only variable consistently correlated with total vibrio abundance within a single sampling was distance from shore (P = 0.000). Multiple linear regression of the entire data set revealed that distance from shore, temperature, and turbidity together explained 82.1% of the variability in total vibrio CFU. The log-transformed mean abundance of V. vulnificus CFU in the lake was significantly correlated with temperature (P = 0.014), but not salinity (P = 0.625). Virulence-associated genes of V. cholerae (ctx) and V. parahaemolyticus (trh and tdh) were not detected in any isolates of these species (n = 128 and n = 20, respectively). In contrast, 16S rRNA typing of V. vulnificus (n = 298) revealed the presence of both environmental (type A) and clinical (type B) strains. The percentage of the B-type V. vulnificus was significantly higher in the lake in October 2005 (35.8% of the total) than at other sampling times (P ? 0.004), consistent with the view that these strains represent distinct ecotypes. PMID:21642406

Nigro, Olivia D; Hou, Aixin; Vithanage, Gayatri; Fujioka, Roger S; Steward, Grieg F

2011-08-01

87

Antibiofilm activity of Dendrophthoe falcata against different bacterial pathogens.  

PubMed

Dendrophthoe falcata is a hemiparasitic plant commonly used for ailments such as ulcers, asthma, impotence, paralysis, skin diseases, menstrual troubles, pulmonary tuberculosis, and wounds. In this context, the validations of the traditional claim that the leaf extract of D. falcata possesses antibiofilm and anti-quorum sensing activity against different bacterial pathogens were assessed. The bacterial biofilms were quantified by crystal violet staining. Among the 17 bacterial pathogens screened, the methanolic fraction of the leaf extract clearly demonstrated antibiofilm activity for Proteus mirabilis, Vibrio vulnificus, Aeromonas hydrophila, Shigella sonnei, Chromobacterium violaceum ATCC 12472, Vibrio parahaemolyticus, Vibrio harveyi, Vibrio alginolyticus, Vibrio cholerae, and Proteus vulgaris. At biofilm inhibitory concentrations, biofilm formation was reduced by up to 70-90?%. Furthermore, the potential quorum-sensing activity of the leaf extract was tested by agar well diffusion using Chromobacterium violaceum (ATCC 12472 & CV O26) reporter strains. The inhibition of violacein production may be due to direct or indirect interference on QS by active constituents or the interactive effect of different phytocompounds present in the extracts. This is the first report on antibiofilm and QS activity of D. falcata leaf extracts, signifying the scope for development of complementary medicine for biofilm-associated infections. PMID:23115018

Karthikeyan, Alagarsamy; Rameshkumar, Ramakrishnan; Sivakumar, Nallusamy; Al Amri, Issa S; Karutha Pandian, Shunmugiah; Ramesh, Manikandan

2012-12-01

88

The Phytoplankton Nannochloropsis oculata Enhances the Ability of Roseobacter Clade Bacteria to Inhibit the Growth of Fish Pathogen Vibrio anguillarum  

PubMed Central

Background Phytoplankton cultures are widely used in aquaculture for a variety of applications, especially as feed for fish larvae. Phytoplankton cultures are usually grown in outdoor tanks using natural seawater and contain probiotic or potentially pathogenic bacteria. Some Roseobacter clade isolates suppress growth of the fish pathogen Vibrio anguillarum. However, most published information concerns interactions between probiotic and pathogenic bacteria, and little information is available regarding the importance of phytoplankton in these interactions. The objectives of this study, therefore, were to identify probiotic Roseobacter clade members in phytoplankton cultures used for rearing fish larvae and to investigate their inhibitory activity towards bacterial fish pathogens in the presence of the phytoplankton Nannochloropsis oculata. Methodology/Principal Findings The fish pathogen V. anguillarum, was challenged with 6 Roseobacter clade isolates (Sulfitobacter sp. (2 strains), Thalassobius sp., Stappia sp., Rhodobacter sp., and Antarctobacter sp.) from phytoplankton cultures under 3 different nutritional conditions. In an organic nutrient-rich medium (VNSS), 6 Roseobacter clade isolates, as well as V. anguillarum, grew well (109 CFU/ml), even when cocultured. In contrast, in a phytoplankton culture medium (ESM) based on artificial seawater, coculture with the 6 isolates decreased the viability of V. anguillarum by approximately more than 10-fold. Excreted substances in media conditioned by growth of the phytoplankton N. oculata (NCF medium) resulted in the complete eradication of V. anguillarum when cocultured with the roseobacters. Autoclaved NCF had the same inhibitory effect. Furthermore, Sulfitobacter sp. much more efficiently incorporated 14C- photosynthetic metabolites (14C-EPM) excreted by N. oculata than did V. anguillarum. Conclusion/Significance Cocultures of a phytoplankton species and Roseobacter clade members exhibited a greater antibacterial effect against an important fish pathogen (V. anguillarum) than roseobacters alone. Thus, cooperation of N. oculata, and perhaps other phytoplankton species, with certain roseobacters might provide a powerful tool for eliminating fish pathogens from fish-rearing tanks. PMID:22053210

Sharifah, Emilia Noor; Eguchi, Mitsuru

2011-01-01

89

Complete genome sequence of virulent bacteriophage SHOU24, which infects foodborne pathogenic Vibrio parahaemolyticus.  

PubMed

A novel lytic Vibrio parahaemolyticus phage (SHOU24) belonging to the family Siphoviridae was isolated from aquatic market sewage. The phage is only able to infect V. parahaemolyticus containing a tdh gene. SHOU24 has a linear genome of 77,837 bp with a G+C content of 46.0 %. In total, 88 predicted proteins have homologues in databases, and the majority of the core genes share high sequence similarity with genes from unrelated viruses and bacteria. Genes related to lysogeny and host lysis were not detected. However, the detection method, the results of a one-step growth experiment and analysis using the Phage Classification Tool Set (PHACTS) indicate that SHOU24 is lytic. A bioinformatics analysis showed that SHOU24 is not closely related to other Vibrio phages. PMID:25115946

Yuan, Lin; Cui, Zelin; Wang, Yanchun; Guo, Xiaokui; Zhao, Yong

2014-11-01

90

DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae  

Microsoft Academic Search

Here we determine the complete genomic sequence of the Gram negative, ?-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and

John F. Heidelberg; Jonathan A. Eisen; William C. Nelson; Rebecca A. Clayton; Michelle L. Gwinn; Robert J. Dodson; Daniel H. Haft; Erin K. Hickey; Jeremy D. Peterson; Lowell Umayam; Steven R. Gill; Karen E. Nelson; Timothy D. Read; Hervé Tettelin; Delwood Richardson; Maria D. Ermolaeva; Jessica Vamathevan; Steven Bass; Haiying Qin; Ioana Dragoi; Patrick Sellers; Lisa McDonald; Teresa Utterback; Robert D. Fleishmann; William C. Nierman; Owen White; Steven L. Salzberg; Hamilton O. Smith; Rita R. Colwell; John J. Mekalanos; J. Craig Venter; Claire M. Fraser

2000-01-01

91

Selection and identification of non-pathogenic bacteria isolated from fermented pickles with antagonistic properties against two shrimp pathogens  

PubMed Central

In this study, potential probiotic strains were isolated from fermented pickles based on antagonistic activity against two shrimp pathogens (Vibrio harveyi and Vibrio parahaemolyticus). Two strains L10 and G1 were identified by biochemical tests, followed by16S ribosomal RNA gene sequence analysis as Bacillus subtilis, and characterized by PCR amplification of repetitive bacterial DNA elements (Rep-PCR). Subsequently, B. subtilis L10 and G1 strains were tested for antibacterial activity under different physical conditions, including culture medium, salinity, pH and temperature using the agar well diffusion assay. Among the different culture media, LB broth was the most suitable medium for antibacterial production. Both strains showed the highest level of antibacterial activity against two pathogens at 30?°C and 1.0% NaCl. Under the pH conditions, strain G1 showed the greatest activity against V. harveyi at pH 7.3–8.0 and against V. parahaemolyticus at pH 6.0–8.0, whereas strain L10 showed the greatest activity against two pathogens at pH 7.3. The cell-free supernatants of both strains were treated with four different enzymes in order to characterize the antibacterial substances against V. harveyi. The result showed considerable reduction of antibacterial activity for both strains, indicating the proteinaceous nature of the antibacterial substances. A wide range of tolerance to NaCl, pH and temperature was also recorded for both strains. In addition, both strains showed no virulence effect in juvenile shrimp Litopenaeus vannamei. On the basis of these results and safety of strains to L. vannamei, they may be considered for future challenge experiments in shrimp as a very promising alternative to the use of antibiotics. PMID:22491136

Zokaeifar, Hadi; Luis Balcazar, Jose; Kamarudin, Mohd Salleh; Sijam, Kamaruzaman; Arshad, Aziz; Saad, Che Roos

2012-01-01

92

Role of iron, capsule, and toxins in the pathogenicity of Vibrio vulnificus biotype 2 for mice.  

PubMed Central

The virulence mechanisms of Vibrio vulnificus biotype 2 have been studied and compared with those of biotype 1 in mice as the experimental animals. Biotype 2 isolates from European eels were as virulent for mice as biotype 1 strains (50% lethal dose, about 10(5) CFU per mouse); a septicemic infection developed in less than 24 h. These strains had several properties in common with biotype 1 organisms including capsule expression, uptake of various iron sources, and production of exoproteins, whose role in mouse virulence has been demonstrated. We also discuss the implication of biotype 2 strains in human infections. PMID:8300241

Amaro, C; Biosca, E G; Fouz, B; Toranzo, A E; Garay, E

1994-01-01

93

Functional characterization of EpsC, a component of the type II secretion system, in the pathogenicity of Vibrio vulnificus.  

PubMed

EpsC, one of the components comprising the type II secretion system (T2SS), was isolated from a human-pathogenic bacterium, Vibrio vulnificus, to evaluate its role in eliciting virulence. An espC-deleted mutant of V. vulnificus displayed a reduced cytotoxicity to the human cell line HEp-2 and an attenuated virulence in a mouse model. This mutant exhibited dramatic defects in the secretion of diverse extracellular proteins, such as outer membrane proteins, transporters, and the known secreted factors, notably, a hemolysin (VvhA) and an elastase (VvpE). A defect in its secretion of proteins was restored by in trans complementation of the intact epsC gene. Analyses of cellular fractions revealed that VvhA and VvpE of the ?epsC mutant were not excreted outside the cell but were present mainly in the periplasmic space. Examination of a V. vulnificus mutant deficient in TolC, a component of the T1SS, showed that it is not involved in the secretion of VvhA and VvpE but that it is necessary for the secretion of another major toxin of V. vulnificus, RtxA. Therefore, the T2SS is required for V. vulnificus pathogenicity, which is mediated by at least two secreted factors, VvhA and VvpE, via facilitating the secretion and exposure of these factors to host cells. PMID:21788383

Hwang, Won; Lee, Na Yeon; Kim, Juri; Lee, Mi-Ae; Kim, Kun-Soo; Lee, Kyu-Ho; Park, Soon-Jung

2011-10-01

94

Assessment of polyaromatic hydrocarbon degradation by potentially pathogenic environmental Vibrio parahaemolyticus isolates from coastal Louisiana, USA.  

PubMed

A presumed Vibrio parahaemolyticus isolate from Chesapeake Bay, Maryland, USA was previously reported to grow on phenanthrene, a polyaromatic hydrocarbon (PAH) found in crude oil. Following the Deepwater Horizon oil spill in the Gulf of Mexico, concerns were raised that PAH-degrading V. parahaemolyticus could increase in abundance, leading to elevated risks of disease derived from shellfish consumption. To assess this possibility, we examined responses to naphthalene and phenanthrene of 17 coastal Louisiana environmental V. parahaemolyticus isolates representing five distinct genotypes. Isolates were obtained immediately after the spill began and after oil had reached the Louisiana coast. None of the isolates grew on or oxidized either substrate and a naphthalene degradation product, 1-naphthol, substantially inhibited growth of some isolates. The use of PAH by V. parahaemolyticus is unusual, and an increase in human health risks due to stimulation of V. parahaemolyticus growth by oil-derived PAH under in situ conditions appears unlikely. PMID:22063191

Smith, Conor B; Johnson, Crystal N; King, Gary M

2012-01-01

95

Characterization of Heme Uptake Cluster Genes in the Fish Pathogen Vibrio anguillarum  

PubMed Central

Vibrio anguillarum can utilize hemin and hemoglobin as sole iron sources. In previous work we identified HuvA, the V. anguillarum outer membrane heme receptor by complementation of a heme utilization mutant with a cosmid clone (pML1) isolated from a genomic library of V. anguillarum. In the present study, we describe a gene cluster contained in cosmid pML1, coding for nine potential heme uptake and utilization proteins: HuvA, the heme receptor; HuvZ and HuvX; TonB, ExbB, and ExbD; HuvB, the putative periplasmic binding protein; HuvC, the putative inner membrane permease; and HuvD, the putative ABC transporter ATPase. A V. anguillarum strain with an in-frame chromosomal deletion of the nine-gene cluster was impaired for growth with heme or hemoglobin as the sole iron source. Single-gene in-frame deletions were constructed, demonstrating that each of the huvAZBCD genes are essential for utilization of heme as an iron source in V. anguillarum, whereas huvX is not. When expressed in Escherichia coli hemA (strain EB53), a plasmid carrying the gene for the heme receptor, HuvA, was sufficient to allow the use of heme as the porphyrin source. For utilization of heme as an iron source in E. coli ent (strain 101ESD), the tonB exbBD and huvBCD genes were required in addition to huvA. The V. anguillarum heme uptake cluster shows some differences in gene arrangement when compared to homologous clusters described for other Vibrio species. PMID:15342586

Mourino, Susana; Osorio, Carlos R.; Lemos, Manuel L.

2004-01-01

96

The detection of fish pathogen Vibrio anguillarum in water and fish using a species-specific DNA probe combined with membrane filtration  

Microsoft Academic Search

The marine bacteriumVibrio anguillarum causes disease in fish worldwide and is particularly devastating in aquaculture. Little is known about the ecology ofV. anguillarum in the environment and how this may relate to the pathogenicity of this organism. Combining membrane filtration and a species-specific DNA probe, culturableV. anguillarum cells were detected in water from three habitats and in chinook salmon (Onchorynchus

J. L. Powell; M. W. Loutit

1994-01-01

97

Purification and partial characterization of a toxic serine protease produced by pathogenic Vibrio alginolyticus.  

PubMed

An extracellular lethal toxin produced by Vibrio alginolyticus strain Swy originally isolated from diseased kuruma prawn (Penaeus japonicus) was purified using the AKTA purifier system with hydrophobic interaction chromatography, anion exchange and gel filtration columns. The toxin is an alkaline serine protease, inhibited by phenyl methylsulphonyl fluoride (PMSF), antipain and shows maximal activity at pH 8 to 11, having a pI of 4.3 and a molecular weight of approximately 33 kD. The toxin was completely inhibited by FeCl2 but partially inhibited by 3,4-dichloroisocoumarin (3,4-DCI), ethylenediamine tetraacetic acid (EDTA), ethylene glycol-bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid (EGTA), CuCl2 and ZnCl2. The purified protease was lethal for kuruma prawn at an LD50 of 0.29 microgram protein/g body weight. The haemolymph withdrawn from the moribund prawns injected with the toxic protease was unable to clot. The coagulogen in the kuruma prawn plasma showed an increased migration rate after incubation with this serine protease, and a plasma colour change from blue to pink was recorded. The addition of PMSF completely inhibited the lethal toxicity of the purified protease, indicating that this serine protease was a lethal toxin produced by the bacterium. The 33 kD protease was therefore a toxic protease produced by V. alginolyticus strain Swy. PMID:10624008

Chen, F R; Liu, P C; Lee, K K

1999-01-01

98

Polysiphonia harveyi, WNC2005-126  

NSDL National Science Digital Library

WNC2005-126, Polysiphonia harveyi J. Bailey, Floating docks at Banks Channel, Wrightville Beach, New Hanover County, NC, 30 Jan 2005, Coll: DW Freshwater & B Stuercke, Det: DW Freshwater & B Stuercke, Poly NC6

Freshwater, Wilson

2008-03-07

99

Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample.  

PubMed

Pathogenic Vibrio cholerae produces a cholera toxin which is the cause of a severe diarrheal disease called "Cholera". Available detection methods, including standard bacteriological test and immuno-based detection, are specific to the suspected pathogenic V. cholerae O1 and O139, but they are not specific to the cholera toxin producible strain. This work combined the polymerase chain reaction (PCR) of cholera toxin gene, ctxA gene, and microcantilever-based DNA sensor to improve the sensitivity and specificity of detection. Gold coated microcantilever, 250 µm long and 50 µm wide, with an embedded polysilicon wire acting as a piezoresistive material was modified by a self-assembled monolayer (SAM) of 3-mercaptopropionic acid (MPA) for immobilization of specific DNA probe via avidin layer on the surface. The avidin and 5' biotinylated single-stranded DNA (ssDNA) probe concentrations were optimized for the immobilization at 50 µg/mL and 1 µM, respectively. The hybridization between ssDNA probe on this DNA sensor and target DNA creates nanomechanical bending and resistance change of piezoresistive material inside the beam. This microcantilever-based DNA sensor offers a detection sensitivity of 3.25 pg or 14 nM of DNA template for ctxA gene detection. The lowest number of V. cholerae O1 in food sample with and without the enrichment process that the polymerase chain reaction (PCR) for ctxA gene combined with this DNA sensor can detect is 0.835 and 835 cells/g, respectively. This detection sensitivity is 10 times higher than that of the conventional PCR method. PMID:25113053

Khemthongcharoen, Numfon; Wonglumsom, Wijit; Suppat, Assawapong; Jaruwongrungsee, Kata; Tuantranont, Adisorn; Promptmas, Chamras

2015-01-15

100

Plasmid- and chromosome-encoded siderophore anguibactin systems found in marine vibrios: biosynthesis, transport and evolution  

PubMed Central

Vibrio anguillarum is a marine pathogen that causes vibriosis, a hemorrhagic septicemia in aquatic invertebrate as well as vertebrate animals. The siderophore anguibactin system is one of the most important virulence factors of this bacterium. Most of the anguibactin biosynthesis and transport genes are located in the 65-kb pJM1 virulence plasmid although some of them are found in the chromosome of this fish pathogen. Over 30 years of research unveiled the role numerous chromosomal and pJM1 genes play in the synthesis of anguibactin and the transport of cognate ferric complexes into the bacterial cell. Furthermore, these studies showed that pJM1-carrying strains might be originated from pJM1-less strains producing the chromosome-mediated siderophore vanchrobactin. Additionally, we recently identified a chromosome-mediated anguibactin system in V. harveyi suggesting the possible evolutional origin of the V. anguillarum anguibactin system. In this review, we present our current understanding of the mechanisms and evolution hypothesis of the anguibactin system that might have occurred in these pathogenic vibrios. PMID:23660776

Liu, Moqing; Actis, Luis A.; Crosa, Jorge H.

2013-01-01

101

Seasonal Abundance of Total and Pathogenic Vibrio parahaemolyticus in Alabama Oysters  

Microsoft Academic Search

to 12,000 g 1 . Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature

Angelo DePaola; Jessica L. Nordstrom; John C. Bowers; Joy G. Wells; David W. Cook

2003-01-01

102

Implications of Chitin Attachment for the Environmental Persistence and Clinical Nature of the Human Pathogen Vibrio vulnificus  

PubMed Central

Vibrio vulnificus naturally inhabits a variety of aquatic organisms, including oysters, and is the leading cause of seafood-related death in the United States. Strains of this bacterium are genetically classified into environmental (E) and clinical (C) genotypes, which correlate with source of isolation. E-genotype strains integrate into marine aggregates more efficiently than do C-genotype strains, leading to a greater uptake of strains of this genotype by oysters feeding on these aggregates. The causes of this increased integration of E-type strains into marine “snow” have not been demonstrated. Here, we further investigate the physiological and genetic causalities for this genotypic heterogeneity by examining the ability of strains of each genotype to attach to chitin, a major constituent of marine snow. We found that E-genotype strains attach to chitin with significantly greater efficiency than do C-genotype strains when incubated at 20°C. Type IV pili were implicated in chitin adherence, and even in the absence of chitin, the expression level of type IV pilin genes (pilA, pilD, and mshA) was found to be inherently higher by E genotypes than by C genotypes. In contrast, the level of expression of N-acetylglucosamine binding protein A (gbpA) was significantly higher in C-genotype strains. Interestingly, incubation at a clinically relevant temperature (37°C) resulted in a significant increase in C-genotype attachment to chitin, which subsequently provided a protective effect against exposure to acid or bile, thus offering a clue into their increased incidence in human infections. This study suggests that C- and E-genotype strains have intrinsically divergent physiological programs, which may help explain the observed differences in the ecology and pathogenic potential between these two genotypes. PMID:24362430

Williams, Tiffany C.; Ayrapetyan, Mesrop

2014-01-01

103

Implications of chitin attachment for the environmental persistence and clinical nature of the human pathogen Vibrio vulnificus.  

PubMed

Vibrio vulnificus naturally inhabits a variety of aquatic organisms, including oysters, and is the leading cause of seafood-related death in the United States. Strains of this bacterium are genetically classified into environmental (E) and clinical (C) genotypes, which correlate with source of isolation. E-genotype strains integrate into marine aggregates more efficiently than do C-genotype strains, leading to a greater uptake of strains of this genotype by oysters feeding on these aggregates. The causes of this increased integration of E-type strains into marine "snow" have not been demonstrated. Here, we further investigate the physiological and genetic causalities for this genotypic heterogeneity by examining the ability of strains of each genotype to attach to chitin, a major constituent of marine snow. We found that E-genotype strains attach to chitin with significantly greater efficiency than do C-genotype strains when incubated at 20°C. Type IV pili were implicated in chitin adherence, and even in the absence of chitin, the expression level of type IV pilin genes (pilA, pilD, and mshA) was found to be inherently higher by E genotypes than by C genotypes. In contrast, the level of expression of N-acetylglucosamine binding protein A (gbpA) was significantly higher in C-genotype strains. Interestingly, incubation at a clinically relevant temperature (37°C) resulted in a significant increase in C-genotype attachment to chitin, which subsequently provided a protective effect against exposure to acid or bile, thus offering a clue into their increased incidence in human infections. This study suggests that C- and E-genotype strains have intrinsically divergent physiological programs, which may help explain the observed differences in the ecology and pathogenic potential between these two genotypes. PMID:24362430

Williams, Tiffany C; Ayrapetyan, Mesrop; Oliver, James D

2014-03-01

104

Grimontia indica AK16T, sp. nov., Isolated from a Seawater Sample Reports the Presence of Pathogenic Genes Similar to Vibrio Genus  

PubMed Central

Grimontia indica strain AK16T sp. nov. is the type strain of G. indica sp. nov. a new species within the genus Grimontia. This strain, whose genome is described here, was isolated from seawater sample collected from southeast coast of Palk Bay, India. G. indica AK16T is a Gram-negative, facultative aerobic rod shaped bacterium. There are only two other strains in the genus Grimontia one of which, Grimontia hollisae CIP 101886T, is a reported human pathogen isolated from human stool sample while the other, ‘Grimontia marina IMCC5001T’, was isolated from a seawater sample. As compared to the pathogenic strain Grimontia hollisae CIP 101886T, the strain AK16T lacks some genes for pathogenesis like the accessory colonization factors AcfA and AcfD, which are required for the colonization of the bacterium in the host body. While it carries some pathogenesis genes like OmpU, which are related to pathogenesis of Vibrio strains. This suggests that the life cycle of AK16T may include some pathogenic interactions with marine animal(s), or it may be an opportunistic pathogen. Study of the Grimontia genus is important because of the severe pathogenic traits exhibited by a member of the genus with only three species reported in total. The study will provide some vital information which may be useful in future clinical studies on the genus. PMID:24465608

Singh, Aditya; Vaidya, Bhumika; Khatri, Indu; Srinivas, T. N. R.; Subramanian, Srikrishna; Korpole, Suresh; Pinnaka, Anil Kumar

2014-01-01

105

Vibrios in the Louisiana gulf coast environment  

Microsoft Academic Search

A polyphasic approach, using bacteriological, immunological, and molecular biological techniques was used to elucidate the distribution of pathogenicVibrio species in the Louisiana coastal environment. A variety ofVibrio species pathogenic for man, includingV. cholerae, V. parahaemolyticus, V. fluvialis, andV. vulnificus, were found to be ubiquitous in Louisiana.Vibrio species monitored were shown to fluctuate in response to environmental factors of temperature, salinity,

N. C. Roberts; R. J. Siebeling; J. B. Kaperfl; H. B. Bradford Jr

1982-01-01

106

A Novel Protein, TtpC, Is a Required Component of the TonB2 Complex for Specific Iron Transport in the Pathogens Vibrio anguillarum and Vibrio cholerae?  

PubMed Central

Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbD. In the pathogen Vibrio anguillarum we have identified two TonB systems, TonB1 and TonB2, the latter is used for ferric-anguibactin transport and is transcribed as part of an operon that consists of orf2, exbB2, exbD2, and tonB2. This cluster was identified by a polar transposon insertion in orf2 that resulted in a strain deficient for ferric-anguibactin transport. Only the entire cluster (orf2, exbB2, exbD2 and tonB2) could complement for ferric-anguibactin transport, while just the exbB2, exbD2, and tonB2 genes were unable to restore transport. This suggests an essential role for this Orf2, designated TtpC, in TonB2-mediated transport in V. anguillarum. A similar gene cluster exists in V. cholerae, i.e., with the homologues of ttpC-exbB2-exbD2-tonB2, and we demonstrate that TtpC from V. cholerae also plays a role in the TonB2-mediated transport of enterobactin in this human pathogen. Furthermore, we also show that in V. anguillarum the TtpC protein is found as part of a complex that might also contain the TonB2, ExbB2, and ExbD2 proteins. This novel component of the TonB2 system found in V. anguillarum and V. cholerae is perhaps a general feature in bacteria harboring the Vibrio-like TonB2 system. PMID:17189363

Stork, Michiel; Otto, Ben R.; Crosa, Jorge H.

2007-01-01

107

Vibrio campbellii hmgA-mediated pyomelanization impairs quorum sensing, virulence, and cellular fitness  

PubMed Central

Melanization due to the inactivation of the homogentisate-1,2-dioxygenase gene (hmgA) has been demonstrated to increase stress resistance, persistence, and virulence in some bacterial species but such pigmented mutants have not been observed in pathogenic members of the Vibrio Harveyi clade. In this study, we used Vibrio campbellii ATCC BAA-1116 as model organism to understand how melanization affected cellular phenotype, metabolism, and virulence. An in-frame deletion of the hmgA gene resulted in the overproduction of a pigment in cell culture supernatants and cellular membranes that was identified as pyomelanin. Unlike previous demonstrations in Vibrio cholerae, Burkholderia cepacia, and Pseudomonas aeruginosa, the pigmented V. campbellii mutant did not show increased UV resistance and was found to be ~2.7 times less virulent than the wild type strain in Penaeus monodon shrimp virulence assays. However, the extracted pyomelanin pigment did confer a higher resistance to oxidative stress when incubated with wild type cells. Microarray-based transcriptomic analyses revealed that the hmgA gene deletion and subsequent pyomelanin production negatively effected the expression of 129 genes primarily involved in energy production, amino acid, and lipid metabolism, and protein translation and turnover. This transcriptional response was mediated in part by an impairment of the quorum sensing regulon as transcripts of the quorum sensing high cell density master regulator LuxR and other operonic members of this regulon were significantly less abundant in the hmgA mutant. Taken together, the results suggest that the pyomelanization of V. campbellii sufficiently impairs the metabolic activities of this organism and renders it less fit and virulent than its isogenic wild type strain. PMID:24376440

Wang, Zheng; Lin, Baochuan; Mostaghim, Anahita; Rubin, Robert A.; Glaser, Evan R.; Mittraparp-arthorn, Pimonsri; Thompson, Janelle R.; Vuddhakul, Varaporn; Vora, Gary J.

2013-01-01

108

Transcriptomic and cellular response to bacterial challenge (pathogenic Vibrio parahaemolyticus) in farmed juvenile Haliotis rufescens fed with or without probiotic diet.  

PubMed

The abalone production in Chile has increased considerably in recent years with no sign of tapering off. Open and semi-closed circuits in the marine water zones in the north and south of Chile are the preferred areas of culture. Coastal ecosystems are subjected to a wide variety of contaminants that generate stress that affects populations via their impacts to individuals at both physiological and genetic levels. This work investigated the genomic and cellular response of post-weaning juvenile Haliotis rufescens abalone under hatchery conditions, fed with probiotic diets, and subsequently challenged with Vibrio parahaemolyticus. The expression patterns of 16 selected genes associated with different metabolic pathways were analyzed using Real-Time PCR. Gene expression was then compared to immunological response parameters in the abalone and quantification of V. parahaemolyticus during the experimental period. Both transcriptomic and immunological analyses indicated significant alteration of physiological processes in H. rufescens correlated to exposure to the pathogenic bacteria, as well as to probiotic nutrition. PMID:23535139

Silva-Aciares, Fernando; Moraga, Dario; Auffret, Michel; Tanguy, Arnaud; Riquelme, Carlos

2013-06-01

109

Sequence polymorphism-based identification and quantification of Vibrio nigripulchritudo at the species and subspecies level targeting an emerging pathogen for cultured shrimp in New Caledonia.  

E-print Network

1 Sequence polymorphism-based identification and quantification of Vibrio nigripulchritudo.03.007 #12;2 Introduction: Vibrio species are widely distributed bacteria that colonize aquatic habitats and isolation from the shrimp or its environment demand the use of suitable culture media and subsequent

Paris-Sud XI, Université de

110

The TonB3 System in the Human Pathogen Vibrio vulnificus Is under the Control of the Global Regulators Lrp and Cyclic AMP Receptor Protein  

PubMed Central

TonB systems transduce the proton motive force of the cytoplasmic membrane to energize substrate transport through a specific TonB-dependent transporter across the outer membrane. Vibrio vulnificus, an opportunistic marine pathogen that can cause a fatal septicemic disease in humans and eels, possesses three TonB systems. While the TonB1 and TonB2 systems are iron regulated, the TonB3 system is induced when the bacterium grows in human serum. In this work we have determined the essential roles of the leucine-responsive protein (Lrp) and cyclic AMP (cAMP) receptor protein (CRP) in the transcriptional activation of this system. Whereas Lrp shows at least four very distinctive DNA binding regions spread out from position ?59 to ?509, cAMP-CRP binds exclusively in a region centered at position ?122.5 from the start point of the transcription. Our results suggest that both proteins bind simultaneously to the region closer to the RNA polymerase binding site. Importantly, we report that the TonB3 system is induced not only by serum but also during growth in minimal medium with glycerol as the sole carbon source and low concentrations of Casamino Acids. In addition to catabolite repression by glucose, l-leucine acts by inhibiting the binding of Lrp to the promoter region, hence preventing transcription of the TonB3 operon. Thus, this TonB system is under the direct control of two global regulators that can integrate different environmental signals (i.e., glucose starvation and the transition between “feast” and “famine”). These results shed light on new mechanisms of regulation for a TonB system that could be widespread in other organisms. PMID:22307757

Crosa, Jorge H.

2012-01-01

111

Mixture Toxicity of Nitrobenzene and Trinitrobenzene Using the Marine Bacterium Vibrio harveyias the Test Organism  

Microsoft Academic Search

Vibrio harveyi,a bioluminescent marine bacterium, was used to evaluate combined or mixture toxicity of two organic compounds, nitrobenzene and trinitrobenzene. An estimated median effective concentration (EC50) and confidence interval were determined for each chemical. These chemicals at their EC50were evaluated in combination and an additive index method was used to determine a numerical toxicology value. Combinations at 20% intervals of

K. W. Thomulka; J. H. Lange

1997-01-01

112

Biodiversity of Vibrios  

PubMed Central

Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years. PMID:15353563

Thompson, Fabiano L.; Iida, Tetsuya; Swings, Jean

2004-01-01

113

Occurrence of the three major Vibrio species pathogenic for human in seafood products consumed in France using real-time PCR.  

PubMed

Vibrio spp. have emerged as a serious threat to human health worldwide. Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus are of particular concern as they have been linked to gastrointestinal infections and septicemia associated with the consumption of raw or undercooked seafood. We developed hydrolysis probe-based real-time PCR systems with an internal amplification control for the detection of these species. We applied these systems to a total of 167 fresh or frozen crustacean, fish and shellfish samples consumed in France. Of them, 34.7% (n=58) were positive for Vibrio. V. parahaemolyticus was the most common, in 31.1% of samples, followed by V. vulnificus in 12.6% and V. cholerae in 0.6%. Furthermore, V. parahaemolyticus and V. vulnificus were present simultaneously in 9.6% of samples. Virulence genes (tdh and trh sequences) were present in 25% of the V. parahaemolyticus-positive samples. The V. cholerae strain detected was non toxigenic. The densities of V. parahaemolyticus and V. cholerae ranged from <10(2) to 10(4)bacteria/g of seafood. All samples positive for V. vulnificus displayed low-level contamination with fewer than 10(2)bacteria/g. Our findings indicate that seafood consumption presents a potential risk to human health in France and highlight the importance of tools for a preventive consumer protection policy. PMID:25128747

Robert-Pillot, Annick; Copin, Stéphanie; Himber, Charlotte; Gay, Mélanie; Quilici, Marie-Laure

2014-10-17

114

Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance.  

PubMed

Quorum sensing (QS) is a bacterial communication process that depends on the bacterial population density. It involves small diffusible signaling molecules which activate the expression of myriad genes that control diverse array of functions like bioluminescence, virulence, biofilm formation, sporulation, to name a few. Since QS is responsible for virulence in the clinically relevant bacteria, inhibition of QS appears to be a promising strategy to control these pathogenic bacteria. With indiscriminate use of antibiotics, there has been an alarming increase in the number of antibiotic resistant pathogens. Antibiotics are no longer the magic bullets they were once thought to be and therefore there is a need for development of new antibiotics and/or other novel strategies to combat the infections caused by multidrug resistant organisms. Quorum sensing inhibition or quorum quenching has been pursued as one of such novel strategies. While antibiotics kill or slow down the growth of bacteria, quorum sensing inhibitors (QSIs) or quorum quenchers (QQs) attenuate bacterial virulence. A large body of work on QS has been carried out in deadly pathogens like Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio fischeri, V. harveyi, Escherichia coli and V. cholerae etc to unravel the mechanisms of QS as well as identify and study QSIs. This review describes various aspects of QS, QSI, different model systems to study these phenomena and recent patents on various QSIs. It suggests QSIs as attractive alternatives for controlling human, animal and plant pathogens and their utility in agriculture and other industries. PMID:23394143

Bhardwaj, Ashima K; Vinothkumar, Kittappa; Rajpara, Neha

2013-04-01

115

Predatory Bacteria as Natural Modulators of Vibrio parahaemolyticus and Vibrio vulnificus in Seawater and Oysters  

PubMed Central

This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters. PMID:22904049

Fay, Johnna P.; Dickens, Keyana A.; Parent, Michelle A.; Soroka, Douglas S.; Boyd, E. Fidelma

2012-01-01

116

Disruption of Cell-to-Cell Signaling Does Not Abolish the Antagonism of Phaeobacter gallaeciensis toward the Fish Pathogen Vibrio anguillarum in Algal Systems  

PubMed Central

Quorum sensing (QS) regulates Phaeobacter gallaeciensis antagonism in broth systems; however, we demonstrate here that QS is not important for antagonism in algal cultures. QS mutants reduced Vibrio anguillarum to the same extent as the wild type. Consequently, a combination of probiotic Phaeobacter and QS inhibitors is a feasible strategy for aquaculture disease control. PMID:23811510

Prol Garcia, M. J.; D'Alvise, P. W.

2013-01-01

117

Evidence for the Role of Horizontal Transfer in Generating pVT1, a Large Mosaic Conjugative Plasmid from the Clam Pathogen, Vibrio tapetis  

PubMed Central

The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum). pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae. PMID:21326607

Bidault-Toffin, Adeline; Le Chevalier, Patrick; Bouloc, Philippe; Paillard, Christine; Jacq, Annick

2011-01-01

118

Ethanolamine utilization in Vibrio alginolyticus  

PubMed Central

Abstract Ethanolamine is used as an energy source by phylogenetically diverse bacteria including pathogens, by the concerted action of proteins from the eut-operon. Previous studies have revealed the presence of eutBC genes encoding ethanolamine-ammonia lyase, a key enzyme that breaks ethanolamine into acetaldehyde and ammonia, in about 100 bacterial genomes including members of gamma-proteobacteria. However, ethanolamine utilization has not been reported for any member of the Vibrio genus. Our comparative genomics study reveals the presence of genes that are involved in ethanolamine utilization in several Vibrio species. Using Vibrio alginolyticus as a model system we demonstrate that ethanolamine is better utilized as a nitrogen source than as a carbon source. Reviewers This article was reviewed by Dr. Lakshminarayan Iyer and Dr. Vivek Anantharaman (nominated by Dr. L Aravind). PMID:23234435

2012-01-01

119

Mixed diarrhoeal infection caused by Vibrio cholerae and several other enteric pathogens in a 4-year-old child returning to Germany from Pakistan.  

PubMed

We report a mixed enteric infection in a 4-y-old child who returned from Pakistan with fever, vomiting and profuse diarrhoea leading to severe dehydration. Vibrio cholerae O1, Salmonella paratyphi A and Campylobacter coli were cultured from stool. Furthermore, Giardia lamblia antigen and hepatitis A RNA were detected. This is the first paediatric cholera case seen in Frankfurt/Main. PMID:15764195

Enzensberger, Ruxandra; Besier, Silke; Baumgärtner, Nicole; Brade, Volker

2005-01-01

120

Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR  

PubMed Central

Background To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. Results Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. Conclusion Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs. PMID:18793453

Brackman, Gilles; Defoirdt, Tom; Miyamoto, Carol; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans; Coenye, Tom

2008-01-01

121

Genome sequence of Vibrio diabolicus and identification of the exopolysaccharide HE800 biosynthesis locus.  

PubMed

Vibrio diabolicus, a marine bacterium originating from deep-sea hydrothermal vents, produces the HE800 exopolysaccharide with high value for biotechnological purposes, especially for human health. Its genome was sequenced and analyzed; phylogenetic analysis using the core genome revealed V. diabolicus is close to another deep-sea Vibrio sp. (Ex25) within the Harveyi clade and Alginolyticus group. A genetic locus homologous to the syp cluster from Vibrio fischeri was demonstrated to be involved in the HE800 production. However, few genetic particularities suggest that the regulation of syp expression may be different in V. diabolicus. The presence of several types of glycosyltransferases within the locus indicates a capacity to generate diversity in the glycosidic structure, which may confer an adaptability to environmental conditions. These results contribute to better understanding exopolysaccharide biosynthesis and for developing new efficient processes to produce this molecule for biotechnological applications. PMID:25273176

Goudenège, David; Boursicot, Vincent; Versigny, Typhaine; Bonnetot, Sandrine; Ratiskol, Jacqueline; Sinquin, Corinne; LaPointe, Gisèle; Roux, Frédérique Le; Delbarre-Ladrat, Christine

2014-12-01

122

Occurrence of Vibrio parahaemolyticus and Vibrio alginolyticus in the German Bight over a seasonal cycle.  

PubMed

Bacteria of the genus Vibrio are an important component of marine ecosystems worldwide. The genus harbors several human pathogens, for instance the species Vibrio parahaemolyticus, a main cause for foodborne gastroenteritis in Asia and the USA. Pathogenic V. parahaemolyticus strains emerged also in Europe, but little is known about the abundance, pathogenicity and ecology of V. parahaemolyticus especially in Northern European waters. This study focuses on V. parahaemolyticus and its close relative Vibrio alginolyticus in the North Sea (Helgoland Roads, Germany). Free-living, plankton-attached and shellfish-associated Vibrio spp. were quantified between May 2008 and January 2010. CFUs up to 4.3 × 10(3) N l(-1) and MPNs up to 240 N g(-1) were determined. Phylogenetic classification based on rpoB gene sequencing revealed V. alginolyticus as the dominant Vibrio species at Helgoland Roads, followed by V. parahaemolyticus. We investigated the intraspecific diversity of V. parahaemolyticus and V. alginolyticus using ERIC-PCR. The fingerprinting disclosed three distinct groups at Helgoland Roads, representing V. parahaemolyticus, V. alginolyticus and one group in between. The species V. parahaemolyticus occurred mainly in summer months. None of the strains carried the virulence-associated genes tdh or trh. We further analyzed the influence of nutrients, secchi depth, temperature, salinity, chlorophyll a and phytoplankton on the abundance of Vibrio spp. and the population structure of V. parahaemolyticus. Spearman Rank analysis revealed that particularly temperature correlated significantly with Vibrio spp. numbers. Based on multivariate statistical analyses we report that the V. parahaemolyticus population was structured by a complex combination of environmental parameters. To further investigate these influences is the key to understanding the dynamics of Vibrio spp. in temperate European waters, where this microbial group and especially the pathogenic species, are likely to gain in importance. PMID:21598011

Oberbeckmann, Sonja; Wichels, Antje; Wiltshire, Karen H; Gerdts, Gunnar

2011-08-01

123

A novel C1q-domain-containing (C1qDC) protein from Mytilus coruscus with the transcriptional analysis against marine pathogens and heavy metals.  

PubMed

The C1q-domain-containing (C1qDC) proteins, which are involved in various processes of vertebrates, are important pattern recognition receptors in innate immunity of invertebrates. In present study, a novel C1qDC was identified from Mytilus coruscus (designated as McC1qDC), which was 917 bp in length encoding 236 amino acids with a typical signal peptide of 19 amino acid residues in N-terminus. Based on its conserved C1q domain and molecular architecture of 10 ?-strand jelly-roll folding topology structure, McC1qDC might be classified as a member of the C1q family. The mRNA transcript of McC1qDC was predominantly detectable in the hemocytes, and a less degree in gill, gonad and mantle, but trace in foot, adductor and digestive gland. Upon induction by Vibrio harveyi and Vibrio alginolyticus, McC1qDC expression was significantly up-regulated. Time-dependent mRNA expression of McC1qDC was found during copper and cadmium exposure for its heavy metal-binding domain. These results indicated that McC1qDC was a novel member of the C1qDC protein family as a pattern recognition receptor against pathogens, and might be developed as a potential indicator for monitoring heavy metals pollution. PMID:24296435

Liu, Hui-Hui; Xiang, Li-Xin; Shao, Jian-Zhong

2014-05-01

124

Vibrio and Pregnancy  

MedlinePLUS

... 2012. Vibrio parahaemolyticus . [Cited2012 February 1]. Available at URL: http://www.cdc.gov/nczved/divisions/dfbmd/diseases/ ... Vibrio vulnificus . [Cited 2009 December 8]. Available at URL: http://www.cdc.gov/nczved/dfbmd/disease_listing/ ...

125

Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.  

PubMed Central

Recent taxonomic advances have now implicated several different Vibrio species as human pathogens. While the most common clinical presentation of Vibrio infection continues to be gastroenteritis, an increasing number of extraintestinal infections are being reported, particularly in immunocompromised individuals. Detection of Vibrio infections requires a good clinical history and the use of appropriate isolation and identification procedures by the laboratory to confirm illnesses attributed to Vibrio species. Except for Vibrio cholerae O1 and Vibrio parahaemolyticus, there is little direct evidence linking the production of a myriad of cell-associated or extracellular factors produced by each species with human disease and pathogenesis. Many questions regarding pathogenic Vibrio species remain unanswered, including their frequency and distribution in environmental specimens (water, shellfish), infective doses, virulence potential of individual isolates, and markers associated with such strains. Images PMID:3058295

Janda, J M; Powers, C; Bryant, R G; Abbott, S L

1988-01-01

126

Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture.  

PubMed

We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30 min using a halogen lamp. This resulted in the death of >50% of the cells within the first 10 min of exposure and the 50% reduction in the cell wall integrity after 30 min could be attributed to the destruction of outer membrane protein of V. harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V. harveyi and Artemia nauplii demonstrated that in 30 min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large. PMID:21951316

Asok, Aparna; Arshad, Esha; Jasmin, C; Pai, S Somnath; Singh, I S Bright; Mohandas, A; Anas, Abdulaziz

2012-01-01

127

Reducing Vibrio load in Artemia nauplii using antimicrobial photodynamic therapy: a promising strategy to reduce antibiotic application in shrimp larviculture  

PubMed Central

Summary We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30?min using a halogen lamp. This resulted in the death of >?50% of the cells within the first 10?min of exposure and the 50% reduction in the cell wall integrity after 30?min could be attributed to the destruction of outer membrane protein of V.?harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V.?harveyi and Artemia nauplii demonstrated that in 30?min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large. PMID:21951316

Asok, Aparna; Arshad, Esha; Jasmin, C.; Somnath Pai, S.; Bright Singh, I. S.; Mohandas, A.; Anas, Abdulaziz

2012-01-01

128

Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study  

PubMed Central

Vibrio cholerae, the causative agent of cholera, is a naturally occurring inhabitant of the Chesapeake Bay and serves as a predictor for other clinically important vibrios, including Vibrio parahaemolyticus and Vibrio vulnificus. A system was constructed to predict the likelihood of the presence of V. cholerae in surface waters of the Chesapeake Bay, with the goal to provide forecasts of the occurrence of this and related pathogenic Vibrio spp. Prediction was achieved by driving an available multivariate empirical habitat model estimating the probability of V. cholerae within a range of temperatures and salinities in the Bay, with hydrodynamically generated predictions of ambient temperature and salinity. The experimental predictions provided both an improved understanding of the in situ variability of V. cholerae, including identification of potential hotspots of occurrence, and usefulness as an early warning system. With further development of the system, prediction of the probability of the occurrence of related pathogenic vibrios in the Chesapeake Bay, notably V. parahaemolyticus and V. vulnificus, will be possible, as well as its transport to any geographical location where sufficient relevant data are available. PMID:20145974

Magny, Guillaume Constantin de; Long, Wen; Brown, Christopher W.; Hood, Raleigh R.; Huq, Anwar; Murtugudde, Raghu; Colwell, Rita R.

2010-01-01

129

Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae  

PubMed Central

This review highlighted the following: (i) pathogenic mechanism of the thermostable direct hemolysin produced by Vibrio parahaemolyticus, especially on its cardiotoxicity, (ii) heat-labile and heat-stable enterotoxins produced by enterotoxigenic Escherichia coli, especially structure–activity relationship of heat-stable enterotoxin, (iii) RNA N-glycosidase activity of Vero toxins (VT1 and VT2) produced by enterohemorrhagic Escherichia coli O157:H7, (iv) discovery of Vibrio cholerae O139, (v) isolation of new variant of Vibrio cholerae O1 El Tor that carries classical ctxB, and production of high concentration of cholera toxin by these strains, and (vi) conversion of viable but nonculturable (VBNC) Vibrio cholerae to culturable state by co-culture with eukaryotic cells. PMID:21233598

TAKEDA, Yoshifumi

2011-01-01

130

Light-scattering sensor for real-time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate.  

PubMed

The three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water- and seafood-related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label-free forward light-scattering sensor was developed to detect and identify colonies of these three pathogens in real time in the presence of other vibrios in food or water samples. Vibrio colonies grown on agar plates were illuminated by a 635?nm laser beam and scatter-image signatures were acquired using a CCD (charge-coupled device) camera in an automated BARDOT (BActerial Rapid Detection using Optical light-scattering Technology) system. Although a limited number of Vibrio species was tested, each produced a unique light-scattering signature that is consistent from colony to colony. Subsequently a pattern recognition system analysing the collected light-scatter information provided classification in 1-2?min with an accuracy of 99%. The light-scattering signatures were unaffected by subjecting the bacteria to physiological stressors: osmotic imbalance, acid, heat and recovery from a viable but non-culturable state. Furthermore, employing a standard sample enrichment in alkaline peptone water for 6?h followed by plating on selective thiosulphate citrate bile salts sucrose agar at 30°C for ??12?h, the light-scattering sensor successfully detected V.?cholerae, V.?parahaemolyticus and V.?vulnificus present in oyster or water samples in 18?h even in the presence of other vibrios or other bacteria, indicating the suitability of the sensor as a powerful screening tool for pathogens on agar plates. PMID:22613192

Huff, Karleigh; Aroonnual, Amornrat; Littlejohn, Amy E Fleishman; Rajwa, Bartek; Bae, Euiwon; Banada, Padmapriya P; Patsekin, Valery; Hirleman, E Daniel; Robinson, J Paul; Richards, Gary P; Bhunia, Arun K

2012-09-01

131

Detection of representative enteropathogenic bacteria, Vibrio spp., pathogenic Escherichia coli, Salmonella spp., Shigella spp., and Yersinia enterocolitica, using a virulence factor gene-based oligonucleotide microarray.  

PubMed

Rapid identification of enteropathogenic bacteria in stool samples is critical for clinical diagnosis and antimicrobial therapy. In this study, we describe the development of an approach that couples multiplex PCR with hybridization to a DNA microarray, to allow the simultaneous detection of the 10 pathogens. The microarray was synthesized with 20-mer oligonucleotide probes that were designed to be specific for virulence-factor genes of each strain. The detection limit for genomic DNA from a single strain was approximately 10 fg. In the presence of heterogeneous non-target DNA, the detection sensitivity of the array decreased to approximately 100 fg. We did not observe any non-specific hybridization. In addition, we successfully used this oligonucleotide-based DNA microarray to identify the causative agents in clinical stool samples from patients with food-borne enteritis. PMID:21046348

Kim, Dong-Hun; Lee, Bok-Kwon; Kim, Yong-Dae; Rhee, Sung-Keun; Kim, Young-Chang

2010-10-01

132

Genomic taxonomy of vibrios  

Microsoft Academic Search

BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence

Cristiane C Thompson; Ana Vicente; Rangel C Souza; Ana Tereza R Vasconcelos; Tammi Vesth; Nelson Alves; David W Ussery; Tetsuya Iida; Fabiano L Thompson

2009-01-01

133

Nontoxigenic Vibrio parahaemolyticus Strains Causing Acute Gastroenteritis  

PubMed Central

We investigated the virulence properties of four Vibrio parahaemolyticus strains causing acute gastroenteritis following consumption of indigenous mussels in Italy. The isolated strains were cytotoxic and adhesive but, surprisingly, lacked tdh, trh, and type three secretion system 2 (T3SS2) genes. We emphasize that nontoxigenic V. parahaemolyticus can induce acute gastroenteritis, highlighting the need for more investigation of the pathogenicity of this microorganism. PMID:23052317

Leoni, Francesca; Serra, Roberto; Serracca, Laura; Decastelli, Lucia; Rocchegiani, Elena; Masini, Laura; Canonico, Cristina; Talevi, Giulia; Carraturo, Antonio

2012-01-01

134

Antibiotic Resistant Salmonella and Vibrio Associated with Farmed Litopenaeus vannamei  

PubMed Central

Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%), V. mimicus (16.7%), V. parahaemolyticus (10%), V. vulnificus (6.7%), and V. alginolyticus (1.7%). Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp. PMID:22619583

Banerjee, Sanjoy; Ooi, Mei Chen; Shariff, Mohamed; Khatoon, Helena

2012-01-01

135

Local Mobile Gene Pools Rapidly Cross Species Boundaries To Create within Global Vibrio cholerae Populations  

E-print Network

Vibrio cholerae represents both an environmental pathogen and a widely distributed microbial species comprised of closely related strains occurring in the tropical to temperate coastal ocean across the globe (Colwell RR, ...

Boucher, Yan

136

Differential metabolic responses of clam Ruditapes philippinarum to Vibrio anguillarum and Vibrio splendidus challenges.  

PubMed

Clam Ruditapes philippinarum is one of the important marine aquaculture species in North China. However, pathogens can often cause diseases and lead to massive mortalities and economic losses of clam. In this work, we compared the metabolic responses induced by Vibrio anguillarum and Vibrio splendidus challenges towards hepatopancreas of clam using NMR-based metabolomics. Metabolic responses suggested that both V. anguillarum and V. splendidus induced disturbances in energy metabolism and osmotic regulation, oxidative and immune stresses with different mechanisms, as indicated by correspondingly differential metabolic biomarkers (e.g., amino acids, ATP, glucose, glycogen, taurine, betaine, choline and hypotaurine) and altered mRNA expression levels of related genes including ATP synthase, ATPase, glutathione peroxidase, heat shock protein 90, defensin and lysozyme. However, V. anguillarum caused more severe oxidative and immune stresses in clam hepatopancreas than V. splendidus. Our results indicated that metabolomics could be used to elucidate the biological effects of pathogens to the marine clam R. philippinarum. PMID:24056279

Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

2013-12-01

137

Vibrio cholerae: Measuring Natural Transformation Frequency.  

PubMed

Many bacteria can become naturally competent to take up extracellular DNA across their outer and inner membranes by a dedicated competence apparatus. Whereas some studies show that the DNA delivered to the cytoplasm may be used for genome repair or for nutrition, it can also be recombined onto the chromosome by homologous recombination: a process called natural transformation. Along with conjugation and transduction, natural transformation represents a mechanism for horizontal transfer of genetic material, e.g., antibiotic resistance genes, which can confer new beneficial characteristics onto the recipient bacteria. Described here are protocols for quantifying the frequency of transformation for the human pathogen Vibrio cholerae, one of several Vibrio species recently shown to be capable of natural transformation. © 2014 by John Wiley & Sons, Inc. PMID:25367272

Watve, Samit S; Bernardy, Eryn E; Hammer, Brian K

2014-01-01

138

New Vibrio species associated to molluscan microbiota: a review  

PubMed Central

The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed. PMID:24427157

Romalde, Jesus L.; Dieguez, Ana L.; Lasa, Aide; Balboa, Sabela

2014-01-01

139

Oligotyping reveals community level habitat selection within the genus Vibrio  

PubMed Central

The genus Vibrio is a metabolically diverse group of facultative anaerobic bacteria, common in aquatic environments and marine hosts. The genus contains several species of importance to human health and aquaculture, including the causative agents of human cholera and fish vibriosis. Vibrios display a wide variety of known life histories, from opportunistic pathogens to long-standing symbionts with individual host species. Studying Vibrio ecology has been challenging as individual species often display a wide range of habitat preferences, and groups of vibrios can act as socially cohesive groups. Although strong associations with salinity, temperature and other environmental variables have been established, the degree of habitat or host specificity at both the individual and community levels is unknown. Here we use oligotyping analyses in combination with a large collection of existing Vibrio 16S ribosomal RNA (rRNA) gene sequence data to reveal patterns of Vibrio ecology across a wide range of environmental, host, and abiotic substrate associated habitats. Our data show that individual taxa often display a wide range of habitat preferences yet tend to be highly abundant in either substrate-associated or free-living environments. Our analyses show that Vibrio communities share considerable overlap between two distinct hosts (i.e., sponge and fish), yet are distinct from the abiotic plastic substrates. Lastly, evidence for habitat specificity at the community level exists in some habitats, despite considerable stochasticity in others. In addition to providing insights into Vibrio ecology across a broad range of habitats, our study shows the utility of oligotyping as a facile, high-throughput and unbiased method for large-scale analyses of publically available sequence data repositories and suggests its wide application could greatly extend the range of possibilities to explore microbial ecology.

Schmidt, Victor T.; Reveillaud, Julie; Zettler, Erik; Mincer, Tracy J.; Murphy, Leslie; Amaral-Zettler, Linda A.

2014-01-01

140

rbcL sequences reveal multiple cryptic introductions of the Japanese red alga Polysiphonia harveyi  

Microsoft Academic Search

In Europe, the last 20 years have seen a spectacular increase in accidental introductions of marine species, but it has recently been suggested that both the actual number of invaders and their impacts have been seriously underestimated because of the prevalence of sibling species in marine habitats. The red alga Polysiphonia harveyi is regarded as an alien in the British

Lynne McIvor; Christine A. Maggs; Jim Provan; Michael J. Stanhope

2001-01-01

141

MODIFICATIONS OF THE LOCAL IMMUNE RESPONSE TO VIBRIO CHOLERAE ATTRIBUTED TO THE INTESTINAL MICROBIAL FLORA OF THE MOUSE  

Microsoft Academic Search

Oral immunisation studies in germfree, specific pathogen-free (SPF) and conventionalised mice illustrated that the autochthonous gut flora can have a suppressive effect on the induction of a local intestinal immune response to Vibrio cholerae. Temporary colonisation of the small bowel by viable vibrios occurred only in the germfree animal. The lack of colonisation in SPF and conventionalised mice was presumably

DJ Horsfall; D Rowley

1978-01-01

142

Interplay between Cyclic AMP-Cyclic AMP Receptor Protein and Cyclic di-GMP Signaling in Vibrio cholerae Biofilm Formation  

Microsoft Academic Search

Vibrio cholerae is a facultative human pathogen. The ability of V. cholerae to form biofilms is crucial for its survival in aquatic habitats between epidemics and is advantageous for host-to-host transmission during epidemics. Formation of mature biofilms requires the production of extracellular matrix components, includ- ing Vibrio polysaccharide (VPS) and matrix proteins. Biofilm formation is positively controlled by the tran-

Jiunn C. N. Fong; Fitnat H. Yildiz

2008-01-01

143

Draft Genome Sequence of Environmental Vibrio cholerae 2012EL-1759 with Similarities to the V. cholerae O1 Classical Biotype.  

PubMed

Vibrio cholerae 2012EL-1759 is an environmental isolate from Haiti that was recovered in 2012 during a cholera outbreak. The genomic backbone is similar to that of the prototypical V. cholerae O1 classical biotype strain O395, and it carries the Vibrio pathogenicity islands (VPI-1 and VPI-2) and a cholera toxin (CTX) prephage. PMID:25013135

Katz, Lee S; Turnsek, Maryann; Kahler, Amy; Hill, Vincent R; Boyd, E Fidelma; Tarr, Cheryl L

2014-01-01

144

Draft Genome Sequence of Environmental Vibrio cholerae 2012EL-1759 with Similarities to the V. cholerae O1 Classical Biotype  

PubMed Central

Vibrio cholerae 2012EL-1759 is an environmental isolate from Haiti that was recovered in 2012 during a cholera outbreak. The genomic backbone is similar to that of the prototypical V. cholerae O1 classical biotype strain O395, and it carries the Vibrio pathogenicity islands (VPI-1 and VPI-2) and a cholera toxin (CTX) prephage. PMID:25013135

Katz, Lee S.; Turnsek, Maryann; Kahler, Amy; Hill, Vincent R.; Boyd, E. Fidelma

2014-01-01

145

Design of Vibrio 16S rRNA gene specific primers and their application in the analysis of seawater Vibrio community  

NASA Astrophysics Data System (ADS)

The pathogenic species of genus Vibrio cause vibriosis, one of the most prevalent diseases of maricultured animals and seafood consumers. Monitoring their kinetics in the chain of seafood production, processing and consumption is of great importance for food and mariculture safety. In order to enrich Vibrio-representing 16S ribosomal RNA gene (rDNA) fragments and identify these bacteria further real-timely and synchronously among bacterial flora in the chain, a pair of primers that selectively amplify Vibrio 16S rDNA fragments were designed with their specificities and coverage testified in the analysis of seawater Vibrio community. The specificities and coverage of two primers, VF169 and VR744, were determined theoretically among bacterial 16S rDNAs available in GenBank by using BLAST program and practically by amplifying, Vibrio 16S rDNA fragments from seawater DNA. More than 88.3% of sequences in GenBank, which showed identical matches with VR744, belong to Vibrio genus. A total of 33 clones were randomly selected and sequenced. All of the sequences showed their highest similarities to and clustered around those of diverse known Vibrio species. The primers designed are capable of retrieving a wide range of Vibrio 16S rDNA fragments specifically among bacterial flora in seawater, the most important natural environment of seafood cultivation.

Liu, Yong; Yang, Guanpin; Wang, Hualei; Chen, Jixiang; Shi, Xianming; Zou, Guiwei; Wei, Qiwei; Sun, Xiuqin

2006-04-01

146

Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization.  

PubMed

Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V. parahaemolyticus in environmental samples; however, these can be misleading as they fail to detect V. parahaemolyticus in a viable but nonculturable (VBNC) state which leads to an underestimation of the population density. In this study, we used a novel fluorescence visualization technique, called recognition of individual gene fluorescence in situ hybridization (RING-FISH), which targets chromosomal DNA for enumeration. A polynucleotide probe labeled with Cyanine 3 (Cy3) was created corresponding to the ubiquitous V. parahaemolyticus gene that codes for thermolabile hemolysin (tlh). When coupled with the Kogure method to distinguish viable from dead cells, RING-FISH probes reliably enumerated total, viable V. parahaemolyticus. The probe was tested for sensitivity and specificity against a pure culture of tlh(+), tdh(-), trh(-)V. parahaemolyticus, pure cultures of Vibrio vulnificus, Vibrio harveyi, Vibrio alginolyticus and Vibrio fischeri, and a mixed environmental sample. This research will provide additional tools for a better understanding of the risk these environmental organisms pose to human health. PMID:21329738

Griffitt, Kimberly J; Noriea, Nicholas F; Johnson, Crystal N; Grimes, D Jay

2011-05-01

147

Substrate Specificity and Function of the Pheromone Receptor AinR in Vibrio fischeri ES114  

PubMed Central

Two distinct but interrelated pheromone-signaling systems, LuxI/LuxR and AinS/AinR, positively control bioluminescence in Vibrio fischeri. Although each system generates an acyl-homoserine lactone (AHL) signal, the protein sequences of LuxI/LuxR and AinS/AinR are unrelated. AinS and LuxI generate the pheromones N-octanoyl-AHL (C8-AHL) and N-3-oxo-hexanoyl-AHL (3OC6-AHL), respectively. LuxR is a transcriptional activator that responds to 3OC6-AHL, and to a lesser extent to C8-AHL. AinR is hypothesized to respond to C8-AHL and, based on homology to Vibrio harveyi LuxN, to mediate the repression of a Qrr regulatory RNA. However, a ?ainR mutation decreased luminescence, which was not predicted based on V. harveyi LuxN, raising the possibility of a distinct regulatory mechanism for AinR. Here we show that ainR can complement a luxN mutant, suggesting functional similarity. Moreover, in V. fischeri, we observed ainR-dependent repression of a Pqrr-lacZ transcriptional reporter in the presence of C8-AHL, consistent with its hypothesized regulatory role. The system appears quite sensitive, with a half-maximal effect on a Pqrr reporter at 140 pM C8-AHL. Several other AHLs with substituted and unsubstituted acyl chains between 6 and 10 carbons also displayed an AinR-dependent effect on Pqrr-lacZ; however, AHLs with acyl chains of four carbons or 12 or more carbons lacked activity. Interestingly, 3OC6-AHL also affected expression from the qrr promoter, but this effect was largely luxR dependent, indicating a previously unknown connection between these systems. Finally, we propose a preliminary explanation for the unexpected luminescence phenotype of the ?ainR mutant. PMID:24056099

Kimbrough, John H.

2013-01-01

148

Occurrence of Vibrio vulnificus and Toxigenic Vibrio parahaemolyticus on Sea Catfishes from Galveston Bay, Texas.  

PubMed

Dorsal and pectoral fin spines from two species of sea catfishes (Bagre marinus and Ariopsis felis) landed at 54 sites in Galveston Bay, Texas, and its subbays from June to October 2005 were screened with traditional cultivation-based assays and quantitative PCR assays for Vibrio vulnificus and Vibrio parahaemolyticus. V. vulnificus was present on 51.2% of fish (n = 247), with an average of 403 ± 337 SD cells g(-1). V. parahaemolyticus was present on 94.2% (n = 247); 12.8% tested positive for the virulence-conferring tdh gene, having an average 2,039 ± 2,171 SD cells g(-1). The increasing trend in seafood consumption of "trash fishes" from lower trophic levels, such as sea catfishes, warrants evaluation of their life histories for association with pathogens of concern for human consumption. PMID:25285498

Baumeister, Leslie; Hochman, Mona E; Schwarz, John R; Brinkmeyer, Robin

2014-10-01

149

Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences.  

PubMed

Vibrios are ubiquitous in the aquatic environment and can be found in association with animal or plant hosts. The range of ecological relationships includes pathogenic and mutualistic associations. To gain a better understanding of the ecology of these microbes, it is important to determine their phenotypic features. However, the traditional phenotypic characterization of vibrios has been expensive, time-consuming and restricted in scope to a limited number of features. In addition, most of the commercial systems applied for phenotypic characterization cannot characterize the broad spectrum of environmental strains. A reliable and possible alternative is to obtain phenotypic information directly from whole genome sequences. The aim of the present study was to evaluate the usefulness of whole genome sequences as a source of phenotypic information. We performed a comparison of the vibrio phenotypes obtained from the literature with the phenotypes obtained from whole genome sequences. We observed a significant correlation between the previously published phenotypic data and the phenotypic data retrieved from whole genome sequences of vibrios. Analysis of 26 vibrio genomes revealed that all genes coding for the specific proteins involved in the metabolic pathways responsible for positive phenotypes of the 14 diagnostic features (Voges-Proskauer reaction, indole production, arginine dihydrolase, ornithine decarboxylase, utilization of myo-inositol, sucrose and L-leucine, and fermentation of D-mannitol, D-sorbitol, L-arabinose, trehalose, cellobiose, D-mannose and D-galactose) were found in the majority of the vibrios genomes. Vibrio species that were negative for a given phenotype revealed the absence of all or several genes involved in the respective biochemical pathways, indicating the utility of this approach to characterize the phenotypes of vibrios. The absence of the global regulation and regulatory proteins in the Vibrio parahaemolyticus genome indicated a non-vibrio phenotype. Whole genome sequences represent an important source for the phenotypic identification of vibrios. PMID:24505074

Amaral, Gilda Rose S; Dias, Graciela M; Wellington-Oguri, Michiyo; Chimetto, Luciane; Campeão, Mariana E; Thompson, Fabiano L; Thompson, Cristiane C

2014-02-01

150

[Prevalence of type III secretion system genes in cholera vibrios from different serogroups].  

PubMed

Prevalence of vcs genes coding the type III secretion system (T3SS) in cholera vibrios of different serogroups isolated in Russia and neighboring countries was studied for the first time. Virulent strains of O1 and O139 serogroups as well as toxigenic Vibrio cholerae strains of other serogroups contained no T3SS genes. Unlike mentioned strains, 29.2% of atoxigenic non O1/non O139 cholera vibrios isolated from patients in Russia and neighboring countries contained the T3SS genes cluster, which might contribute to the pathogenic properties of these strains. PMID:18819403

Eroshenko, G A; Kutyrev, V V; Fadeeva, A V; Shavina, N Iu; Stepanov, A V

2008-01-01

151

Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug targeting and discovery  

Microsoft Academic Search

Although the genomes of many microbial pathogens have been studied to help identify effective drug targets and novel drugs, such efforts have not yet reached full fruition. In this study, we report a systems biological approach that efficiently utilizes genomic information for drug targeting and discovery, and apply this approach to the opportunistic pathogen Vibrio vulnificus CMCP6. First, we partially

Hyun Uk Kim; Soo Young Kim; Haeyoung Jeong; Tae Yong Kim; Jae Jong Kim; Hyon E Choy; Kyu Yang Yi; Joon Haeng Rhee; Sang Yup Lee

2011-01-01

152

Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii  

Microsoft Academic Search

The ability of BLIS-(bacteriocin-like inhibitory substance)-producing Aeromonas media, strain A199, to act as a probiotic was assessed on the host animal, Crassostrea gigas, by testing whether or not strain A199 could prevent death of the oyster larvae when challenged with Vibrio tubiashii. Whereas larvae, challenged with the Vibrio, died within 5 days, the presence of both the pathogen and the

L. F Gibson; J Woodworth; A. M George

1998-01-01

153

Genome Sequence of Vibrio cholerae Strain O1 Ogawa El Tor, Isolated in Mexico, 2013.  

PubMed

We present the draft genome sequence of Vibrio cholerae InDRE 3140 recovered in 2013 during a cholera outbreak in Mexico. The genome showed the Vibrio 7th pandemic islands VSP1 and VSP2, the pathogenic islands VPI-1 and VPI-2, the integrative and conjugative element SXT/R391 (ICE-SXT), and both prophages CTX? and RS1?. PMID:25359919

Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; López-Martínez, Irma; Ortiz-Alcántara, Joanna; González-Durán, Elizabeth; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ramírez-González, José Ernesto

2014-01-01

154

Vibrio cholerae: Cholera toxin  

Microsoft Academic Search

The bacterial protein toxin of Vibrio cholerae, cholera toxin, is a major agent involved in severe diarrhoeal disease. Cholera toxin is a member of the AB toxin family and is composed of a catalytically active heterodimeric A-subunit linked with a homopentameric B-subunit. Upon binding to its receptor, GM01, cholera toxin is internalized and transported in a retrograde manner through the

Davy Vanden Broeck; Caroline Horvath; Marc J. S. De Wolf

2007-01-01

155

Antibiotic activity of lectins from marine algae against marine vibrios.  

PubMed

Saline and aqueous ethanol extracts of marine algae and the lectins from two red algal species were assayed for their antibiotic activity against marine vibrios. Experimental studies were also carried out on the influence of environmental factors on such activity, using batch cultures. The results indicated that many of the saline extracts of the algal species were active and that the activity was selective against those vibrios assayed. The algal extracts were active against Vibrio pelagius and the fish pathogen V. vulnificus, but inactive against V. neresis. Algal lectins from Eucheuma serra (ESA) and Galaxaura marginata (GMA) strongly inhibited V. vulnificus but were inactive against the other two vibrios. The antibacterial activity of algal extracts was inhibited by pretreatment with various sugars and glycoprotein. Extracts of the two red algae, E. serra and Pterocladia capillacea, in saline and aqueous ethanol, inhibited markedly the growth rate of V. vulnificus at very low concentrations. Culture results indicated that metabolites active against V. vulnificus were invariably produced in P. capillacea over a wide range of temperature, light intensity, and nutritional conditions. Enhanced antibacterial activity occurred when P. capillacea was grown under higher irradiance, severe nutrient stress and moderate temperature (20 degrees C), reflecting the specific antibiotic characteristics of this alga. The strong antibiotic activity of lectins towards fish pathogenic bacteria reveals one of the important roles played by algal lectins, as well as the potential high economic value of those marine algae assayed for aquaculture and for biomedical purposes. PMID:12884128

Liao, W-R; Lin, J-Y; Shieh, W-Y; Jeng, W-L; Huang, R

2003-07-01

156

Isolation of Vibrio vulnificus from Seawater and Emerging Vibrio vulnificus Septicemia on Jeju Island  

PubMed Central

Vibrio vulnificus is an opportunistic human pathogen, transmitted from seawater, raw oyster, and shellfish and responsible for severe septicemia. We studied V. vulnificus from surface seawater around Jeju Island between 2010 and 2011. In 2010, V. vulnificus was isolated and V. vulnificus septicemia was reported. Surface seawater temperature is an important factor for growth of V. vulnificus, and here we showed that high surface seawater temperature may influence growth of V. vulnificus and occurrence of emerging V. vulnificus septicemia on Jeju Island. This is the first report of isolation of V. vulnificus and emerging V. vulnificus septicemia on Jeju Island. PMID:25024873

Lee, Keun Hwa; Kim, Young Ree; Pang, Ig-Chan

2014-01-01

157

Microbial pathogens with impaired ability to acquire host iron  

Microsoft Academic Search

Successful microbial pathogens must be adept in obtaining growth-essential iron from healthy hosts. Some potential pathogens, however, are sufficiently impaired in iron acquisition ability so as to be dangerous mainly in hosts with such iron loading conditions as alcoholism, asplenia, hemochromatosis, ß-thalassemia major, or tobacco smoking. The association of six impaired pathogens (Capnocytophaga canimorsis, Yersinia enterocolitica and Y. pseudotuberculosis, Vibrio

E. D. Weinberg

2000-01-01

158

Virulence Genes in Environmental Strains of Vibrio cholerae  

Microsoft Academic Search

The virulence of a pathogen is dependent on a discrete set of genetic determinants and their well-regulated expression. The ctxAB and tcpA genes are known to play a cardinal role in maintaining virulence in Vibrio cholerae, and these genes are believed to be exclusively associated with clinical strains of O1 and O139 serogroups. In this study, we examined the presence

SOUMEN CHAKRABORTY; ASISH K. MUKHOPADHYAY; RUPAK KUMAR BHADRA; AMAR NATH GHOSH; RUPAK MITRA; TOSHIO SHIMADA; SHINJI YAMASAKI; SHAH M. FARUQUE; YOSHIFUMI TAKEDA; RITA R. COLWELL; G. B. Nair

2000-01-01

159

Prevalence of listeria, Aeromonas, and Vibrio species in fish used for human consumption in Turkey.  

PubMed

A total of 78 raw retail fish samples from 30 freshwater and 48 marine fish were examined for the presence of Listeria, Aeromonas, and Vibrio species. The overall incidence of Listeria spp. was 30% in freshwater samples and 10.4% in marine fish samples. Listeria monocytogenes (44.5%) was the most commonly isolated species in freshwater fish, and Listeria murrayi (83.5%) was the most commonly isolated species in marine fish samples. Motile aeromonads were more common in marine fish samples (93.7%) than in freshwater fish samples (10%). Vibrio alginolyticus, Vibrio fluvialis, and Vibrio damsela were isolated only in marine fish samples, representing 40.9, 38.6, and 36.3% of Vibrio isolates, respectively. In freshwater and marine fish, the highest incidences of Listeria and Aeromonas were found in skin samples; the highest incidence of Vibrio in marine fish was found in gill samples. The location of Listeria spp. and L. monocytogenes in a fish was significantly different among freshwater fish. A high incidence of these bacterial pathogens was found in the brown trout (Salmo trutta) and horse mackerel (Trachurus trachurus). Handling of contaminated fish, cross-contamination, or eating raw fish might pose a health hazard, especially in immunosuppressed individuals, elderly people, and children. This study highlights the importance of bacterial pathogens in fish intended for human consumption, but more study is needed. PMID:20132688

Yücel, Nihal; Balci, Senay

2010-02-01

160

Vibrio vulnificus Phage PV94 Is Closely Related to Temperate Phages of V. cholerae and Other Vibrio Species  

PubMed Central

Background Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. Results In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5?-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. Conclusion We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species. PMID:24732980

Reetz, Jochen; Strauch, Eckhard; Hertwig, Stefan

2014-01-01

161

Long-term effects of ocean warming on vibrios  

NASA Astrophysics Data System (ADS)

Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased in occurrence over the last half century in the southern North Sea, but also prevailed within the particle associated bacterial community of coastal marine waters. These findings provide support for the view that global warming may have a strong impact on the composition of marine bacterial communities with important implications for human and animal health into the future.

Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

2012-12-01

162

Features of cholera and Vibrio parahaemolyticus diarrhoea endemicity in Calabar, Nigeria.  

PubMed

The clinical and epidemiological features of acute vibrio diarrhoeal disease were studied in 881 patients seen at the University of Calabar Teaching Hospital (UCTH), Calabar, Nigeria, between January and December 1989. Stools and rectal swabs of patients and randomly-selected control subjects were microscopically and culturally examined for the presence of enteric pathogens. Households of vibrio diarrhoea cases and matched controls were visited for ecologic studies. Of a total of 108 (12.3%) culturally-confirmed bacterial diarrhoeas, 47 (43.5%) were due to Escherichia coli, 33 (30.6%) to Vibrio cholerae-01 (classical and El Tor biotypes) and V. parahaemolyticus, while shigellae and salmonellae accounted for 29 (26.9%) and 9 (8.3%) cases, respectively. Most cholera case households clustered within the ancient neighbourhood of the inner city, characterized by poorly developed water and sewage disposal systems. A preponderance of vibrio diarrhoea patients were children < or = 10 years. Adult cases involved mostly females. The only case of diarrhoea-related death involved an eight-month old child with kwashiorkor and V. parahaemolyticus infection. Incidence of vibrio diarrhoeas was seasonal, with most cases occurring during the dry season followed by subsidence at the onset of rainy season. Bimodal peaks of vibrio diarrhoeal episodes observed over the period appeared to coincide with periods of acute water scarcity, high temperature, increased fishing activities and trade traffic on the Calabar River estuary. Of the environments sampled, only clam shells from a case household and river sediments yielded vibrio pathogens on culture. Ecological factors that are capable of stabilizing a focus of vibrio diarrhoea endemicity in this area are highlighted. PMID:1294392

Utsalo, S J; Eko, F O; Antia-Obong, E O

1992-11-01

163

Vibrio chromosomes share common history  

E-print Network

Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it ...

Kirkup, Benjamin C.

164

Vibrio chromosomes share common history  

E-print Network

Background: While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an ...

Kirkup, Benjamin C.

165

A fast and indirect fluorescent antibody assay for the vibrio in large yellow croaker Pseudosciaena crocea (Richardson)  

NASA Astrophysics Data System (ADS)

A fast and indirect fluorescent antibody assay for the Vibrio alginolyticus and V. parahaemolyticus infecting the large yellow croaker has been developed. The specific antisera for the two strains of vibrio were prepared with New Zealand rabbit and the antiserum and cross-reactive efficacy was tested by coagulation in tube. It showed that the goat anti-rabbit IgG had been labeled by fluorescence isothiocyanate (FITC). The results showed that positive reactions were 100% for the large yellow croaker Pseudosciaena crocea with typical symptom of vibrio infection, while the positive reaction to the pathogen in healthy yellow croakers reached 40%, but seemed negative for aquaculture water. The results demonstrated that this fast and indirect fluorescent antibody assay can be used not only to test the vibrio pathogen in diseased yellow croaker but also in infected animals with no symptom.

Wang, Jun; Su, Yongquan; Yan, Qingpi

2003-03-01

166

Abundance and distribution of Vibrio cholerae, V. parahaemolyticus, and V. vulnificus following a major freshwater intrusion into the Mississippi Sound.  

PubMed

In response to a major influx of freshwater to the Mississippi Sound following the opening of the Bonnet Carre Spillway, water samples were collected from three sites along the Mississippi shoreline to assess the impact of altered salinity on three pathogenic Vibrio species. Salinity readings across the affected area during the 2011 sample period ranged from 1.4 to 12.9 ppt (mean = 7.0) and for the 2012 sample period from 14.1 to 23.6 ppt (mean = 19.8). Analyses of the data collected in 2011 showed a reduction in densities of Vibrio parahaemolyticus and Vibrio vulnificus with a concurrent increase of Vibrio cholerae numbers, with V. cholerae becoming the only Vibrio detected once salinity readings dropped to 6 ppt. Follow-up samples taken in 2012 after recovery of the salinity in the sound showed that the relative densities of the three pathogenic vibrios had reverted back to normal levels. This study shows that although the spillway was open but a few weeks and the effects were therefore time limited, the Mississippi River water had a profound, if temporary, effect on Vibrio ecology in the Mississippi Sound. PMID:23494573

Griffitt, Kimberly J; Grimes, D Jay

2013-04-01

167

Complete Genome Sequence of Vibrio vulnificus 93U204, a Bacterium Isolated from Diseased Tilapia in Taiwan  

PubMed Central

Vibrio vulnificus 93U204 is a bacterium isolated from a moribund tilapia collected in Kaohsiung, Taiwan. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its pathogenicity and for comparative analyses with human-pathogenic strains within the same species. PMID:25278541

Lo, Wen-Sui; Chen, Hwajiun; Chen, Chun-Yao

2014-01-01

168

Screening for antibacterial activity in 72 species of wood-colonizing fungi by the Vibrio fisheri bioluminescence method.  

PubMed

Resistance of pathogenic bacteria to antibiotics leads scientists to discover new antibacterial drugs. Ninety samples of wood-colonizing fungi were cultivated on agar plates, and their extracts tested for antibacterial activity using the Vibrio fischeri bioluminescence test. Two fungi species, Serpula lacrymans and Nectria vilior, were found to be a potential new source of thermostable antibiotics. Vibrio fischeri bioluminescence test was found to be a useful method for antibacterial activity screening from the samples of natural origin. PMID:15378528

Zrimec, Maja Berden; Zrimec, Alexis; Slanc, Petra; Kac, Javor; Kreft, Samo

2004-01-01

169

Occurrence of Vibrio Pathotypes in the Final Effluents of Five Wastewater Treatment Plants in Amathole and Chris Hani District Municipalities in South Africa  

PubMed Central

We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs) located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS) agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR) including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05). Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05). Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86) were V. fluvialis, 28% (84) were V. vulnificus and 12% (35) were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health. PMID:25093653

Nongogo, Vuyokazi; Okoh, Anthony I.

2014-01-01

170

Vibrio Infections and Surveillance in Maryland, 2002-2008  

PubMed Central

Objective Vibrio is a naturally occurring waterborne pathogen with potential occupational, recreational, and commercial impacts. During the last 15 years in the U.S. and in Maryland, the incidence of vibriosis has increased. Due to the increase in cases in Maryland, warming water temperatures, and public concern about human health effects resulting from exposure to the Chesapeake Bay, we reviewed cases of vibriosis and evaluated the Vibrio surveillance system in Maryland for timeliness and data quality, attributes necessary for successful outbreak investigation and illness prevention. Methods The evaluation included (1) informal qualitative surveys of state and local personnel who report and manage Vibrio cases and (2) a review of Vibrio surveillance data from 2002 through 2008 for data quality and timeliness of the system. Results From 2002 to 2008, 188 laboratory-confirmed cases of vibriosis were reported in Maryland with an annual average of 27 cases. The species of Vibrio that were most frequently responsible for infection, regardless of clinical presentation, were V. parahaemolyticus (43.6%), V. vulnificus (23.9%), V. alginolyticus (9.6%), and non-toxigenic V. cholerae (9.0%). The case fatality rate fluctuated during the study period, but the number of cases increased. Conclusions The surveillance system in Maryland is flexible and captures cases of vibriosis where specimens were collected for testing; however, the system may not adequately capture mild, self-limiting infections. Better integration of data collection for clinical, laboratory, and environmental information and improved completion of variables for shellfish harvest or water exposure locations could improve the system. Quarterly meetings comprising surveillance, public health laboratory, and food-control personnel could direct and ensure the success of improvement efforts. PMID:24179265

Feldman, Katherine A.; Palmer, Amanda; Butler, Erin; Blythe, David; Mitchell, Clifford S.

2013-01-01

171

Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa).  

PubMed

Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions. PMID:24859857

Machado, A; Bordalo, A A

2014-09-01

172

Crystal Structure of the Extracellular Protein Secretion NTPase EpsE of Vibrio cholerae  

Microsoft Academic Search

Type II secretion systems consist of an assembly of 12–15 Gsp proteins responsible for transporting a variety of virulence factors across the outer membrane in several pathogenic bacteria. In Vibrio cholerae, the major virulence factor cholera toxin is secreted by the Eps Type II secretion apparatus consisting of 14 Eps proteins. One of these, EpsE, is a cytoplasmic putative NTPase

Mark A. Robien; Brian E. Krumm; Maria Sandkvist; Wim G. J. Hol

2003-01-01

173

Vibrio natriegens: A Rapidly Growing Micro-Organism Ideally Suited for Class Experiments  

ERIC Educational Resources Information Center

Describes five microbiological experiments using the marine organism Vibrio natriegens. This organism is highly suitable for laboratory work because it is non-pathogenic and grows extremely rapidly, having the distinction of the lowest mean generation time yet recorded (9.8 minutes). (JR)

Mullenger, L.; Gill, Nijole R.

1973-01-01

174

Tracing Vibrio parahaemolyticus in oysters ( Tiostrea chilensis) using a Green Fluorescent Protein tag  

Microsoft Academic Search

Oysters feed by removing particles from the water. This food is composed of complex mixtures of living microorganisms, detritus, and inorganic particles that widely range in size. It has been speculated that some marine heterotrophic microorganisms, such as Vibrio parahaemolyticus, could enter in this digestive process and persist in the oyster tissue. Since some strains of V. parahaemolyticus are pathogenic

Alicia E. Cabello; Romilio T. Espejo; Jaime Romero

2005-01-01

175

Characterization of Vibrio fluvialis-Like Strains Implicated in Limp Lobster Disease  

Microsoft Academic Search

Studies were undertaken to characterize and determine the pathogenic mechanisms involved in a newly described systemic disease in Homarus americanus (American lobster) caused by a Vibrio fluvialis-like micro- organism. Nineteen isolates were obtained from eight of nine lobsters sampled. Biochemically, the isolates resembled V. fluvialis, and the isolates grew optimally at 20°C; none could grow at temperatures above 23°C. The

B. D. Tall; S. Fall; M. R. Pereira; M. Ramos-Valle; S. K. Curtis; M. H. Kothary; D. M. T. Chu; S. R. Monday; L. Kornegay; T. Donkar; D. Prince; R. L. Thunberg; K. A. Shangraw; D. E. Hanes; F. M. Khambaty; K. A. Lampel; J. W. Bier; R. C. Bayer

2003-01-01

176

The Regulatory Network of Natural Competence and Transformation of Vibrio cholerae  

Microsoft Academic Search

The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed “natural competence for genetic transformation.” Natural competence for transformation is

Mirella Lo Scrudato; Melanie Blokesch

2012-01-01

177

Vibrio parahaemolyticus in Rhode Island Coastal Ponds and the Estuarine Environment of Narragansett Bay  

PubMed Central

Quantification of the abundance of Vibrio parahaemolyticus in water and oysters from Rhode Island showed the presence of environmental strains and low levels of potentially pathogenic strains when water temperatures were ?18°C, with peak levels in late July to early August. A higher abundance of the trh gene than of the tdh gene was observed. PMID:22307298

Cox, Annie M.

2012-01-01

178

Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation.  

PubMed

Integron cassette arrays in a dozen cultivars of the most prevalent group of Vibrio isolates obtained from mucus expelled by a scleractinian coral (Pocillopora damicornis) colony living on the Great Barrier Reef were sequenced and compared. Although all cultivars showed >99% identity across recA, pyrH and rpoB genes, no two had more than 10% of their integron-associated gene cassettes in common, and some individuals shared cassettes exclusively with distantly-related members of the genus. Of cassettes shared within the population, a number appear to have been transferred between Vibrio isolates, as assessed by phylogenetic analysis. Prominent among the mucus Vibrio cassettes with potentially inferable functions are acetyltransferases, some with close similarity to known antibiotic-resistance determinants. A subset of these potential resistance cassettes were shared exclusively between the mucus Vibrio cultivars, Vibrio coral pathogens and human pathogens, thus illustrating a direct link between these microbial niches through exchange of integron-associated gene cassettes. PMID:21270840

Koenig, Jeremy E; Bourne, David G; Curtis, Bruce; Dlutek, Marlena; Stokes, H W; Doolittle, W Ford; Boucher, Yan

2011-06-01

179

A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor  

Microsoft Academic Search

While much has been learned regarding the genetic basis of host-pathogen interactions, less is known about the molecular basis of a pathogen's survival in the environment. Biofilm formation on abiotic surfaces represents a survival strategy utilized by many microbes. Here it is shown that Vibrio cholerae El Tor does not use the virulence-associated toxin-coregulated pilus to form biofilms on borosilicate

PAULA I. WATNICK; KARLA JEAN FULLNER; ROBERTO KOLTER

1999-01-01

180

Exoproteome and Secretome Derived Broad Spectrum Novel Drug and Vaccine Candidates in Vibrio cholerae Targeted by Piper betel Derived Compounds  

PubMed Central

Vibrio cholerae is the causal organism of the cholera epidemic, which is mostly prevalent in developing and underdeveloped countries. However, incidences of cholera in developed countries are also alarming. Because of the emergence of new drug-resistant strains, even though several generic drugs and vaccines have been developed over time, Vibrio infections remain a global health problem that appeals for the development of novel drugs and vaccines against the pathogen. Here, applying comparative proteomic and reverse vaccinology approaches to the exoproteome and secretome of the pathogen, we have identified three candidate targets (ompU, uppP and yajC) for most of the pathogenic Vibrio strains. Two targets (uppP and yajC) are novel to Vibrio, and two targets (uppP and ompU) can be used to develop both drugs and vaccines (dual targets) against broad spectrum Vibrio serotypes. Using our novel computational approach, we have identified three peptide vaccine candidates that have high potential to induce both B- and T-cell-mediated immune responses from our identified two dual targets. These two targets were modeled and subjected to virtual screening against natural compounds derived from Piper betel. Seven compounds were identified first time from Piper betel to be highly effective to render the function of these targets to identify them as emerging potential drugs against Vibrio. Our preliminary validation suggests that these identified peptide vaccines and betel compounds are highly effective against Vibrio cholerae. Currently we are exhaustively validating these targets, candidate peptide vaccines, and betel derived lead compounds against a number of Vibrio species. PMID:23382822

Barh, Debmalya; Barve, Neha; Gupta, Krishnakant; Chandra, Sudha; Jain, Neha; Tiwari, Sandeep; Leon-Sicairos, Nidia; Canizalez-Roman, Adrian; Rodrigues dos Santos, Anderson; Hassan, Syed Shah; Almeida, Sintia; Thiago Juca Ramos, Rommel; Augusto Carvalho de Abreu, Vinicius; Ribeiro Carneiro, Adriana; de Castro Soares, Siomar; Luiz de Paula Castro, Thiago; Miyoshi, Anderson; Silva, Artur; Kumar, Anil; Narayan Misra, Amarendra; Blum, Kenneth; Braverman, Eric R.; Azevedo, Vasco

2013-01-01

181

Polyphasic Taxonomy of the Genus Vibrio: Numerical Taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and Related Vibrio Species  

PubMed Central

A set of 86 bacterial cultures, including 30 strains of Vibrio cholerae, 35 strains of V. parahaemolyticus, and 21 representative strains of Pseudomonas, Spirillum, Achromobacter, Arthrobacter, and marine Vibrio species were tested for a total of 200 characteristics. Morphological, physiological, and biochemical characteristics were included in the analysis. Overall deoxyribonucleic acid (DNA) base compositions and ultrastructure, under the electron microscope, were also examined. The taxonomic data were analyzed by computer by using numerical taxonomy programs designed to sort and cluster strains related phenetically. The V. cholerae strains formed an homogeneous cluster, sharing overall S values of ?75%. Two strains, V. cholerae NCTC 30 and NCTC 8042, did not fall into the V. cholerae species group when tested by the hypothetical median organism calculation. No separation of “classic” V. cholerae, El Tor vibrios, and nonagglutinable vibrios was observed. These all fell into a single, relatively homogeneous, V. cholerae species cluster. V. parahaemolyticus strains, excepting 5144, 5146, and 5162, designated members of the species V. alginolyticus, clustered at S ?80%. Characteristics uniformly present in all the Vibrio species examined are given, as are also characteristics and frequency of occurrence for V. cholerae and V. parahaemolyticus. The clusters formed in the numerical taxonomy analyses revealed similar overall DNA base compositions, with the range for the Vibrio species of 40 to 48% guanine plus cytosine. Generic level of relationship of V. cholerae and V. parahaemolyticus is considered dubious. Intra- and intergroup relationships obtained from the numerical taxonomy studies showed highly significant correlation with DNA/DNA reassociation data. Images PMID:5473901

Colwell, R. R.

1970-01-01

182

Immunobiological relationships between Vibrio fluvialis and Vibrio cholerae enterotoxins  

Microsoft Academic Search

A total of 26 strains of Vibrio fluvialis was included in this study, which were isolated from patients with diarrhoea and other sources. The GM1 enzyme linked immunosorbent assays performed with the culture filtrates of V. fluvialis yielded negative results, indicating that their receptor site is different from that of the known labile toxin. The cholera antitoxin failed to neutralize

CR Ahsan; SC Sanyal; A Zaman; PKB Neogy; MI Huq

1988-01-01

183

Endophthalmitis Caused by Vibrio alginolyticus?  

PubMed Central

Vibrio alginolyticus is a facultative anaerobic gram-negative bacillus found in normal marine flora. Ocular infections induced by V. alginolyticus are extremely rare. We report a case of endophthalmitis caused by V. alginolyticus to draw attention to V. alginolyticus infections following ocular injuries. PMID:19710275

Li, Xiao Chun; Xiang, Zhen Yang; Xu, Xiao Ming; Yan, Wei Hua; Ma, Jian Min

2009-01-01

184

The interactions of Vibrio vulnificus and the oyster Crassostrea virginica.  

PubMed

The human bacterial pathogen, Vibrio vulnificus, is found in brackish waters and is concentrated by filter-feeding molluscan shellfish, especially oysters, which inhabit those waters. Ingestion of raw or undercooked oysters containing virulent strains of V. vulnificus can result in rapid septicemia and death in 50 % of victims. This review summarizes the current knowledge of the environmental interactions between these two organisms, including the effects of salinity and temperature on colonization, uptake, and depuration rates of various phenotypes and genotypes of the bacterium, and host-microbe immunological interactions. PMID:23280497

Froelich, Brett; Oliver, James D

2013-05-01

185

Effect of Temperature on Growth of Vibrio paraphemolyticus and Vibrio vulnificus in Flounder, Salmon Sashimi and Oyster Meat  

PubMed Central

Vibrio parahaemolyticus and Vibrio vulnificus are the major pathogenic Vibrio species which contaminate ready-to-eat seafood. The purpose of this study was to evaluate the risk of human illness resulting from consumption of ready-to-eat seafood such as sashimi and raw oyster meat due to the presence of V. parahaemolyticus and V. vulnificus. We compared the growth kinetics of V. parahaemolyticus and V. vulnificus strains in broth and ready-to-eat seafood, including flounder and salmon sashimi, as a function of temperature. The growth kinetics of naturally occurring V. vulnificus in raw oyster meat was also evaluated. The minimum growth temperatures of V. parahaemolyticus and V. vulnificus in broth were 13 °C and 11 °C, respectively. Overall, significant differences in lag time (LT) and specific growth rate (SGR) values between flounder and salmon sashimi were observed at temperatures ranging from 13 °C to 30 °C (p < 0.05). The growth of naturally occurring V. vulnificus reached stationary phase at ~4 log CFU/g in oysters, regardless of the storage temperature. This data indicates that the population of V. vulnificus in oysters did not reach the maximum population density as observed in the broth, where growth of V. vulnificus and V. parahaemolyticus isolated from oysters grew up to >8 log CFU/mL. PMID:23330227

Kim, Yoo Won; Lee, Soon Ho; Hwang, In Gun; Yoon, Ki Sun

2012-01-01

186

CT gene modulate differential expression of chitinase gene under variant habitats in Vibrio cholerae  

PubMed Central

Objective To investigate the interrelation of cholera toxin gene (CT gene) in expression of chitinase gene under different pH conditions among pathogenic and Non-pathogenic strains of Vibrio cholera (V. cholera). Methods The chitinase assay well diffusion method and calorimetric chitinase assay were performed. Further, time depended chitinase activity among pathogenic and nonpathogenic strain was evaluated with control as Escherichia coli. The expressed protein in variant environment was purified by cascade of chromatographic techniques. The partially purified protein was analyzed by SDS-PAGE in both the strain of V. cholera. Results The results have shown differential expression of chitinase gene among vibrio in time depended chitinase activity, purification of expressed protein and SDS-PAGE analysis. Conclusions From the current study, two conclusions came in picture, habitat is prime factor that regulation of chitin gene expression among many bacterial strains, second, moreover among the vibrio pathogenic strains (CT+) expression of chitinase gene is more precisely regulated by CT gene rather than external environments while in non-pathogenic strain ( CT-) completely absent.

Verma, Yogendra Kumar; Verma, Mahendra Kumar

2013-01-01

187

Increases in the Amounts of Vibrio spp. in Oysters upon Addition of Exogenous Bacteria  

PubMed Central

The bacterial pathogen Vibrio vulnificus is found naturally in brackish coastal waters but can be greatly concentrated by filter-feeding organisms such as shellfish. Numerous experiments in which exogenous V. vulnificus cells are added to oysters in an attempt to measure uptake and depuration have been performed. In nearly all cases, results have shown that laboratory-grown bacteria are rapidly taken up by the oysters but ultimately eliminated, while naturally present Vibrio populations in oysters are resistant to depuration. In this study, oysters harvested during winter months, with low culturable Vibrio concentrations, were incubated in aquaria supplemented with strains of V. vulnificus that were either genotypically or phenotypically distinct from the background bacteria. These exogenous cells were eliminated from the oysters, as previously seen, but other vibrios already inhabiting the oysters responded to the V. vulnificus inoculum by rapidly increasing in number and maintaining a large stable population. The presence of such an oyster-adapted Vibrio population would be expected to prevent colonization by exogenous V. vulnificus cells, thus explaining the rapid depuration of these added bacteria. PMID:23793640

Oliver, James

2013-01-01

188

Ecology of Vibrio parahaemolyticus in Chesapeake Bay  

PubMed Central

A study of the ecology of Vibrio parahaemolyticus and related vibrios in the Rhode River area of Chesapeake Bay was carried out over the period December 1970 through August 1971. The incidence of V. parahaemolyticus and related vibrios was found to be correlated with water temperature. The vibrios could not be detected in the water column during the winter months, although they were present in sediment. From late spring to early summer, when water temperatures were 14 ± 1 C, vibrios over-wintering in sediment were released from the bottom communities and attached to zooplankton, proliferating as the temperature rose. The number of vibrios in and on plankton was reflected in the water column bacterial population densities at water temperatures of ca. 19 C. Thus, temperature of the water column in the range of 14 to 19 C was found to be critical in the annual cycle of the vibrios. Interaction between sediment, water, and zooplankton was found to be essential in the natural estuarine ecosystem. Bacterial counts of zooplankton were found to be temperature dependent. The bacterial population associated with zooplankton was found to be predominantly on external surfaces and was specific, differing from that of the sediment. Vibrio spp. and related organisms comprised the total bacterial population associated with zooplankton in summer months. The ecological role of Vibrio spp., including V. parahaemolyticus, was found to be significant, with respect to their property of chitin digestion and in relation to the population dynamics of zooplankton in Chesapeake Bay. PMID:4567138

Kaneko, Tatsuo; Colwell, Rita R.

1973-01-01

189

Multiplex Real-time Polymerase Chain Reaction Assays for Simultaneous Detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus  

PubMed Central

Objectives A multiplex real-time polymerase chain reaction (RT-PCR) method was developed for the identification of three Vibrio species: Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Methods Specific primers and probes targeting the hlyA, tlh, and vvhA genes were selected and used for multiplex real-time PCR to confirm the identification of V. cholerae, V. parahaemolyticus, and V. vulnificus, respectively. This method was applied to screen Vibrio species from environmental samples and combining it with a culture-based method, its effectiveness was evaluated in comparison with culture-based methods alone. Results Specific PCR fragments were obtained from isolates belonging to the target species, indicating a high specificity of this multiplex real-time PCR. No cross-reactivity with the assay was observed between the tested bacteria. The sensitivity of the multiplex real-time PCR was found to have a lower limit of 104 colony-forming units/reaction for all three Vibrio species. The combination strategy raised the isolation ratio of all three Vibrio species 1.26- to 2.75-fold. Conclusion This assay provides a rapid, sensitive, and specific technique to detect these three Vibrio species in the environment. PMID:24159544

Park, Jie Yeun; Jeon, Semi; Kim, Jun Young; Park, Misun; Kim, Seonghan

2013-01-01

190

Dynamics in genome evolution of Vibrio cholerae.  

PubMed

Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains. PMID:24462909

Banerjee, Rachana; Das, Bhabatosh; Balakrish Nair, G; Basak, Surajit

2014-04-01

191

Cyclic-di-GMP Regulates Extracellular Polysaccharide Production, Biofilm Formation, and Rugose Colony Development by Vibrio vulnificus  

Microsoft Academic Search

Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control

Alina Nakhamchik; Caroline Wilde; Dean A. Rowe-Magnus

2008-01-01

192

Environmental Investigations of Vibrio parahaemolyticus in Oysters after Outbreaks in Washington, Texas, and New York (1997 and 1998)  

Microsoft Academic Search

Total Vibrio parahaemolyticus densities and the occurrence of pathogenic strains in shellfish were determined following outbreaks in Washington, Texas, and New York. Recently developed nonradioactive DNA probes were utilized for the first time for direct enumeration of V. parahaemolyticus in environmental shellfish samples. V. parahaemolyticus was prevalent in oysters from Puget Sound, Wash.; Galveston Bay, Tex.; and Long Island Sound,

ANGELO DEPAOLA; CHARLES A. KAYSNER; JOHN BOWERS; DAVID W. COOK

2000-01-01

193

Clearance rates of Sabella spallanzanii and Branchiomma luctuosum (Annelida: Polychaeta) on a pure culture of Vibrio alginolyticus  

Microsoft Academic Search

The influence exerted by filter-feeding activity on bacterial density by two sabellid species from the Mediterranean Sea (Ionian Sea, Italy), Branchiomma luctuosum Grube and Sabella spallanzanii Gmelin (Annelida: Polychaeta) was investigated. Clearance rates and retention efficiencies were estimated utilizing the species Vibrio alginolyticus selected on account of previous field studies and its importance in fish culture pathogenicity. The Cmax was

Margherita Licciano; Loredana Stabili; Adriana Giangrande

2005-01-01

194

Melanization reaction products of shrimp display antimicrobial properties against their major bacterial and fungal pathogens.  

PubMed

Melanization is a rapid defense mechanism in invertebrates. The substrate specificity of phenoloxidases (POs) and the role of melanization reaction products were investigated in the black tiger shrimp, Penaeus monodon. Two PmPOs (PmproPO1 and PmproPO2) were found to display a substrate specificity towards monophenols and diphenols, and exhibit relatively weak activity against 5,6-dihydroxyindole (DHI). Systemic infection of the PmproPO1/2 co-silenced shrimp with the fungus, Fusarium solani, led to a significantly increased mortality, suggesting an important role of PmproPOs in shrimp's defense against fungal infection. Using l-DOPA, dopamine or DHI as a substrate, the melanization reaction products exhibited in vitro antimicrobial activities towards Gram-negative bacteria (Vibrio harveyi and Vibrioparahaemolyticus) and Gram-positive bacteria (Bacillus subtilis), whereas the lower effect was detected against the fungus (F. solani). SEM analysis revealed the morphological changes and damage of cell membranes of V. harveyi and F. solani after treatment with shrimp melanization reaction products. Together, these findings demonstrate the crucial functions of the proPO system and the importance of melanization reaction products in the shrimp's immune defense. PMID:25043262

Charoensapsri, Walaiporn; Amparyup, Piti; Suriyachan, Chawapat; Tassanakajon, Anchalee

2014-11-01

195

Function of neuraminidase in vibrio taxonomy  

Microsoft Academic Search

Among all the microorganisms, Vibrio cholerae evidently possesses the highest neuraminidase activity, and for this reason it is used as a source of the enzyme on a commercial scale. The suggestion has been made that the formation of neuraminidase by Vibrio cholerae takes place parallel with the accumulation of type 2 toxins [7], including the factor that increases capillary permeability

V. D. Solov'ev; I. V. Domaradskii; N. Ya. Shimanyuk; I. I. Kurennaya

1972-01-01

196

Free-Living and Plankton-Associated Vibrios: Assessment in Ballast Water, Harbor Areas, and Coastal Ecosystems in Brazil  

PubMed Central

Ballast water (BW) is a major transport vector of exotic aquatic species and pathogenic microorganisms. The wide-ranging spread of toxigenic Vibrio cholerae O1 from harbor areas has been frequently ascribed to discharge of contaminated BW into eutrophic coastal environments, such as during the onset of the seventh cholera pandemic in South America in the early 1990s. To determine the microbiological hazards of BWs transported to Brazilian ports, we evaluated water and plankton samples taken from (i) BW tanks of recently arrived ships, (ii) port areas along the Brazilian coastline from ?1 to 32°S and (iii) three coastal areas in São Paulo State. Vibrio concentration and toxigenic V. cholerae O1 occurrence were analyzed. Plankton-associated vibrios were more abundant than free-living vibrios in all studied environments. V. cholerae was found in 9.5% of ballast tanks and 24.2% of port samples, both as free-living and attached forms and, apart from the Santos harbor, was absent off São Paulo State. Toxigenic V. cholerae O1 isolates (ctxA+, tcpA+), involved in cholera disease, were found in BW (2%) and harbor (2%) samples. These results confirm that BW is an important carrier of pathogenic organisms, and that monitoring of vibrios and other plankton-attached bacteria is of paramount importance in BW management programs. PMID:23335920

Rivera, Irma N. G.; Souza, Keili M. C.; Souza, Claudiana P.; Lopes, Rubens M.

2013-01-01

197

Identification and Characterization of Cyclic Diguanylate Signaling Systems Controlling Rugosity in Vibrio cholerae  

Microsoft Academic Search

Vibrio cholerae, the causative agent of the disease cholera, can generate rugose variants that have an increased capacity to form biofilms. Rugosity and biofilm formation are critical for the environmental survival and transmission of the pathogen, and these processes are controlled by cyclic diguanylate (c-di-GMP) signaling systems. c-di-GMP is produced by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). Proteins

Sinem Beyhan; Lindsay S. Odell; Fitnat H. Yildiz

2008-01-01

198

A Vibrio vulnificus Type IV Pilin Contributes to Biofilm Formation, Adherence to Epithelial Cells, and Virulence  

Microsoft Academic Search

Vibrio vulnificus expresses a multitude of cell-associated and secreted factors that potentially contribute to pathogenicity, although the specific roles of most of these factors have been difficult to define. Previously we have shown that a mutation in pilD (originally designated vvpD), which encodes a type IV prepilin peptidase\\/ N-methyltransferase, abolishes expression of surface pili, suggesting that they belong to the

Rohinee N. Paranjpye; Mark S. Strom

2005-01-01

199

Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a Possible Probiotic Treatment of Fish  

Microsoft Academic Search

To study the possible use of probiotics in fish farming, we evaluated the in vitro and in vivo antagonism of antibacterial strain Pseudomonas fluorescens strain AH2 against the fish-pathogenic bacterium Vibrio anguil- larum. As iron is important in virulence and bacterial interactions, the effect of P. fluorescens AH2 was studied under iron-rich and iron-limited conditions. Sterile-filtered culture supernatants from iron-limited

LONE GRAM; JETTE MELCHIORSEN; BETTINA SPANGGAARD; INGRID HUBER; TORBEN F. NIELSEN

1999-01-01

200

Vibrio ordalii sp. nov.: A causative agent of vibriosis in fish  

Microsoft Academic Search

Vibrio ordalii sp. nov. is the name proposed for the bacterium previously designated asV. anguillarum biotype 2. The change in the classification of this fish pathogen is based on differences between the classicalV. anguillarum andV. ordalii in cultural and biochemical characteristics, and in deoxyribonucleic acid (DNA) sequence relatedness. Phenotypically,V. ordalii was distinguishable fromV. anguillarum based on: negative Voges-Proskauer reaction; negative

Michael H. Schiewe; Trevor J. Trust; Jorge H. Crosaw

1981-01-01

201

Vibrio parahaemolyticus Induced Necrotizing Fasciitis: An Atypical Organism Causing an Unusual Presentation  

PubMed Central

Background necrotizing fasciitis (NF) represents a life-threatening bacterial infection characterized by a rapid necrosis of deep subcutaneous tissue and facia underlying the skin. Despite its lethal nature, NF occurs infrequently, leaving many physicians unfamiliar with the disease process, common pathogens, and treatment strategies. Here we present a case of NF caused by an unlikely organism, Vibrio parahaemolyticus. We highlight the innocuous nature of initial presentation and the potentially devastating sequela. PMID:24455339

Ahmad, Asim; Brumble, Lisa; Maniaci, Michael

2013-01-01

202

The Fur-Iron Complex Modulates Expression of the Quorum-Sensing Master Regulator, SmcR, To Control Expression of Virulence Factors in Vibrio vulnificus  

PubMed Central

The gene vvpE, encoding the virulence factor elastase, is a member of the quorum-sensing regulon in Vibrio vulnificus and displays enhanced expression at high cell density. We observed that this gene was repressed under iron-rich conditions and that the repression was due to a Fur (ferric uptake regulator)-dependent repression of smcR, a gene encoding a quorum-sensing master regulator with similarity to luxR in Vibrio harveyi. A gel mobility shift assay and a footprinting experiment demonstrated that the Fur-iron complex binds directly to two regions upstream of smcR (?82 to ?36 and ?2 to +27, with respect to the transcription start site) with differing affinities. However, binding of the Fur-iron complex is reversible enough to allow expression of smcR to be induced by quorum sensing at high cell density under iron-rich conditions. Under iron-limiting conditions, Fur fails to bind either region and the expression of smcR is regulated solely by quorum sensing. These results suggest that two biologically important environmental signals, iron and quorum sensing, converge to direct the expression of smcR, which then coordinates the expression of virulence factors. PMID:23716618

Kim, In Hwang; Wen, Yancheng; Son, Jee-Soo; Lee, Kyu-Ho

2013-01-01

203

Non-Lethal Heat Shock Increased Hsp70 and Immune Protein Transcripts but Not Vibrio Tolerance in the White-Leg Shrimp  

PubMed Central

Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886

Loc, Nguyen Hong; MacRae, Thomas H.; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd. Effendy; Sung, Yeong Yik

2013-01-01

204

Non-lethal heat shock increased Hsp70 and immune protein transcripts but not Vibrio tolerance in the white-leg shrimp.  

PubMed

Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined. PMID:24039886

Loc, Nguyen Hong; Macrae, Thomas H; Musa, Najiah; Bin Abdullah, Muhd Danish Daniel; Abdul Wahid, Mohd Effendy; Sung, Yeong Yik

2013-01-01

205

Surface Immuno-Functionalisation for the Capture and Detection of Vibrio Species in the Marine Environment: A New Management Tool for Industrial Facilities  

PubMed Central

Bacteria from the genus Vibrio are a common and environmentally important group of bacteria within coastal environments and include species pathogenic to aquaculture organisms. Their distribution and abundance are linked to specific environmental parameters, including temperature, salinity and nutrient enrichment. Accurate and efficient detection of Vibrios in environmental samples provides a potential important indicator of overall ecosystem health while also allowing rapid management responses for species pathogenic to humans or species implicated in disease of economically important aquacultured fish and invertebrates. In this study, we developed a surface immuno-functionalisation protocol, based on an avidin-biotin type covalent binding strategy, allowing specific sandwich-type detection of bacteria from the Vibrio genus. The assay was optimized on 12 diverse Vibrio strains, including species that have implications for aquaculture industries, reaching detection limits between 7×103 to 3×104 cells mL?1. Current techniques for the detection of total Vibrios rely on laborious or inefficient analyses resulting in delayed management decisions. This work represents a novel approach for a rapid, accurate, sensitive and robust tool for quantifying Vibrios directly in industrial systems and in the environment, thereby facilitating rapid management responses. PMID:25310801

Laczka, Olivier F.; Labbate, Maurizio; Seymour, Justin R.; Bourne, David G.; Fielder, Stewart S.; Doblin, Martina A.

2014-01-01

206

L-forms of Mechnikov's vibrio and NAG vibrio obtained with tetracycline and their biological properties  

Microsoft Academic Search

Stable L-forms were obtained by the action of tetracycline on Mechnikov's vibrio and the NAG vibrio, for the first time. Conversion of the L-forms of the vibrios by tetracycline is similar to that obtained by the use of penicillins. By passage of the L-forms three types of cultures were obtained: stable tetracycline-resistant L-forms, stable L-forms highly resistant to tetracycline, and

V. D. Timakov; V. S. Levashev; V. T. Savenkova; V. V. Androsov

1975-01-01

207

Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon  

Microsoft Academic Search

A sudden increase in temperature results in heat shock stress of the cultured shrimp. To cope with the stress, shrimp has to overcome by triggering a response known as heat shock response. To understand the heat shock response in the black tiger shrimp (Penaeus monodon), we examined expression patterns and distribution of three heat shock protein (hsp) genes in P.

Wanilada Rungrassamee; Rungnapa Leelatanawit; Pikul Jiravanichpaisal; Sirawut Klinbunga; Nitsara Karoonuthaisiri

2010-01-01

208

IbpA\\/B Small Heat-Shock Protein of Marine Bacterium Vibrio harveyi Binds to Proteins Aggregated in a Cell During Heat Shock  

Microsoft Academic Search

:   The IbpA and IbpB are 16-kDa Escherichia coli proteins belonging to a family of small heat-shock proteins (sHsps). According to the present model, based on the in vitro\\u000a experiments, sHsps are molecular chaperones that bind and prevent aggregation of nonnative proteins during heat shock. Previously,\\u000a we have shown that IbpA and IbpB bind to endogenous E. coli proteins aggregated

Gracjana Klein; Ewa Laskowska; Alina Taylor; Barbara Lipi?ska

2001-01-01

209

Vibrio chromosome-specific families  

PubMed Central

We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished chromosomes, we find a core set of 1269 encoded protein families for chromosome 1, and a core of 252 encoded protein families for chromosome 2. Many of these core proteins are also found in the draft genomes (although which chromosome they are located on is unknown.) Of the chromosome specific core protein families, 1169 and 153 are uniquely found in chromosomes 1 and 2, respectively. Gene ontology (GO) terms for each of the protein families were determined, and the different sets for each chromosome were compared. A total of 363 different “Molecular Function” GO categories were found for chromosome 1 specific protein families, and these include several broad activities: pyridoxine 5' phosphate synthetase, glucosylceramidase, heme transport, DNA ligase, amino acid binding, and ribosomal components; in contrast, chromosome 2 specific protein families have only 66 Molecular Function GO terms and include many membrane-associated activities, such as ion channels, transmembrane transporters, and electron transport chain proteins. Thus, it appears that whilst there are many “housekeeping systems” encoded in chromosome 1, there are far fewer core functions found in chromosome 2. However, the presence of many membrane-associated encoded proteins in chromosome 2 is surprising. PMID:24672511

Lukjancenko, Oksana; Ussery, David W.

2014-01-01

210

Incidence of Pathogenic Microorganisms in Aquacultured Rainbow Trout (Oncorhynchus mykiss)  

Microsoft Academic Search

Quantitative levels of six known pathogens (Listeria monocytogenes, Clostridium botulinum, Salmonella species, Vibrio cholerae, Yersinia enterocolitica, and Y. pseudotuberculosis) and aerobic plate counts were measured at five aquaculture facilities. The farmed rainbow trout (Oncorhynchus mykiss) and trout fillets were sampled at two different growing seasons to monitor for microbial hazards. Listeria spp. was identified in both whole trout and trout

T. James McAdams; Robert G. Reinhart; Custy F. Fernandes; George J. Flick Jr; Stephen A. Smith; Cameron R. Hackney; George S. Libey; L. Ankenman Granata

2005-01-01

211

Phenotypic characterization of Vibrio vulnificus biotype 2, a lipopolysaccharide-based homogeneous O serogroup within Vibrio vulnificus.  

PubMed Central

In this study, we have reevaluated the taxonomic position of biotype 2 of Vibrio vulnificus. For this purpose, we have biochemically and serologically characterized 83 biotype 2 strains from diseased eels, comparing them with 17 biotype 1 strains from different sources. Selected strains were also molecularly analyzed and tested for eel and mouse pathogenicity. Results have shown that biotype 2 (i) is biochemically homogeneous, indole production being the main trait that distinguishes it from biotype 1, (ii) presents small variations in DNA restriction profiles and outer membrane protein patterns, some proteins being immunologically related to outer membrane proteins from biotype 1, (iii) expresses a common lipopolysaccharide (LPS) profile, which is immunologically identical among strains and distinct from that of LPS of tested biotype 1 strains, and (iv) contains at least two high-Mr plasmids. Regarding host range, we have confirmed that both biotypes are pathogenic for mice but only biotype 2 is pathogenic for eels. On the basis of these data, we propose that biotype 2 of V. vulnificus constitutes an LPS-based O serogroup which is phenotypically homogeneous and pathogenic for eels. In this article, the serogroup is designated serogroup E (for eels). PMID:8975619

Biosca, E G; Oliver, J D; Amaro, C

1996-01-01

212

Vibrio vulnificus as a health hazard for shrimp consumers.  

PubMed

Over the last 30 years, a number of Vibrio species found in the aquatic environment have been indicated as cause of disease in human beings. Vibrio vulnificus is an emergent pathogen, an invasive and lethal marine bacterium related to wound infection and held accountable for gastroenteritis and primary septicemia. It occurs quite frequently in marine organisms, mainly in mollusks. This study aimed at isolating and identifying strains of V. vulnificus based upon the analysis of twenty samples of seabob shrimp, Xiphopenaeus kroyeri (Heller), purchased at the Mucuripe fish market (Fortaleza, Brazil). TCBS agar was used to isolate suspect strains. Seven of twenty-nine strains isolated from six different samples were confirmed as such by means of biochemical evidence and thus submitted to biological assays to determine their virulence. The susceptibility of the V. vulnificus strains to a number of antibiotics was tested. None of the V. vulnificus strains showed signs of virulence during a 24-hour observation period, possibly due to the shedding of the capsules by the cells. As to the results of the antimicrobial susceptibility tests, the seven above-mentioned V. vulnificus strains were found to be sensitive to nitrofurantoin (NT), ciprofloxacin (CIP), gentamicin (GN) and chloramphenicol (CO) and resistant to clindamycin (CI), penicillin (PN) and ampicillin (AP). PMID:11696848

do Nascimento, S M; dos Fernandes Vieira, R H; Theophilo, G N; Dos Prazeres Rodrigues, D; Vieira, G H

2001-01-01

213

Identification of genetic bases of vibrio fluvialis species-specific biochemical pathways and potential virulence factors by comparative genomic analysis.  

PubMed

Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang; Zhu, Jun; Kan, Biao

2014-03-01

214

Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis  

PubMed Central

Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

2014-01-01

215

Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals.  

PubMed

The taxonomic position of the fluorescent amplified fragment length polymorphism fingerprinting groups A46 (five isolates), A51 (six isolates), A52 (five isolates) and A53 (seven isolates) obtained in a previous study were further analysed through a polyphasic approach. The 23 isolates were phylogenetically related to Vibrio splendidus, but DNA-DNA hybridization experiments proved that they belong to three novel species. Chemotaxonomic and phenotypic analyses further disclosed several features that differentiate between the 23 isolates and known Vibrio species. The names Vibrio kanaloae sp. nov. (type strain LMG 20539(T) = CAIM 485(T); EMBL accession no. AJ316193; G + C content 44.7 mol%), Vibrio pomeroyi sp. nov. (type strain LMG 20537(T) = CAIM 578(T); EMBL accession no. AJ491290; G +C content 44.1 mol%) and Vibrio chagasii sp. nov. (type strain LMG 21353(T) = CAIM 431(T); EMBL accession no. AJ316199; G + C content 44.6 mol%) are respectively proposed to encompass the five isolates of A46, the six isolates of A51 and the 12 isolates of A52/A53. The three novel species can be distinguished from known Vibrio species by several phenotypic features, including utilization and fermentation of various carbon sources, beta-galactosidase activity and fatty acid content (particularly of 12 : 0, 14: 0, 14 : 0 iso and 16 : 0 iso). PMID:12807197

Thompson, F L; Thompson, C C; Li, Y; Gomez-Gil, B; Vandenberghe, J; Hoste, B; Swings, J

2003-05-01

216

A simple fluorogenic method to detect Vibrio cholerae and Aeromonas hydrophila in well water for areas impacted by catastrophic disasters.  

PubMed

The colony overlay procedure for peptidases (COPP) is a simple, fluorogenic assay that can rapidly detect and quantify Vibrio cholerae and Aeromonas hydrophila in well water. Cleavage of the substrate L-lysyl-7-amino-4-trifluoromethylcoumarin by enzymes present in Vibrio and Aeromonas species produces fluorescent foci on cellulose acetate membranes exposed to long-wave ultraviolet light. Vibrio cholerae O1, O139, O155, and A. hydrophila were readily detected using this procedure, whereas Enterobacteriaceae and other non-Vibrionaceae pathogens did not produce fluorescence. The assay is practical for assessing the relative safety of well water in areas that have experienced catastrophic devastation from natural disasters, acts of war, or civil strife and may help curb outbreaks of cholera and other enteric illnesses in affected areas. In tropical climates, the procedure may be adapted for use in areas without electricity. PMID:16968933

Richards, Gary P; Watson, Michael A

2006-09-01

217

Lessons from cholera & Vibrio cholerae.  

PubMed

Cholera is an acute form of diarrhoeal disease that plagued human civilization over the centuries. The sudden and explosive onset of the disease in the form of an outbreak or epidemic, coupled with high mortality and morbidity rates, had a tragic impact on the personal as well as social life of people living in the affected areas. The enormity of human sufferings led clinicians and scientists to carry out extensive research on cholera and Vibrio cholerae (the causative bacterium of the disease) leading to major discoveries that opened up novel areas of research or new disciplines in biomedical sciences. An attempt is made here to summarize some of these breakthroughs and outline their significance in broader perspectives. Finally, the possible impact of the global socio-political scenario on the spread of cholera epidemics (pandemicity of cholera) is briefly discussed. PMID:21415490

Ghose, Asoke C

2011-02-01

218

VIBRIO VULNIFICUS EDUCATION WORKSHOP FOR THE FLORIDA MEDICAL COMMUNITY  

EPA Science Inventory

Vibrio vulnificus is a naturally occurring microorganism that occurs warm marine and estuarine waters. The bacteria are concentrated by filter feeding shellfish. Certain immunocompromised individuals and those with liver disease can be adversely, even fatally affected by Vibrio...

219

Multilocus sequence analysis of Vibrio tapetis, the causative agent of Brown Ring Disease: description of Vibrio tapetis subsp. britannicus subsp. nov.  

PubMed

Vibrio tapetis is the causative agent of an epizootic infection described in adult clams called Brown Ring Disease (BRD). The isolation of the pathogen from different hosts showed strain variability both at serological and genetic level, allowing the description of three major groups related to the host origin of the isolates. In this work we performed for the first time a phylogenetic study for this pathogen. When including the closest related Vibrio species, all strains of V. tapetis appeared as a robust monophyletic cluster in the trees generated from all genes studied, namely 16S rRNA, atpA, fstZ, gapA, pyrH, recA, rpoA and rpoD and topA, as well as from their concatenated sequences. On the other hand, V. tapetis strains appeared clearly separated in two main clusters, sharing a similarity percentage for the concatenated sequences from 95 to 95.2% and values of DDH between 65.5 and 79.8%. Both clusters are themselves variable, with isolates within each cluster grouped according their host origin. The two clusters are easily distinguishable for their capacity to produce acid from mannitol and arabinose and for the use of citrate. Therefore, the results obtained supported the existence of two subspecies within this pathogen for which the names V. tapetis subsp. tapetis and V. tapetis subsp. britannicus subsp. nov. are proposed. PMID:23394813

Balboa, Sabela; Romalde, Jesús L

2013-05-01

220

Gene cloning and prokaryotic expression of recombinant flagellin A from Vibrio parahaemolyticus  

NASA Astrophysics Data System (ADS)

The Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. Bacteria flagellins play an important role during infection and induction of the host immune response. Thus, flagellin proteins are an ideal target for vaccines. We amplified the complete flagellin subunit gene ( flaA) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 62.78 kDa. We purified and characterized the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for further studies into the utility of the FlaA protein as a vaccine candidate against infection by Vibrio parahaemolyticus. In addition, the purified FlaA protein can be used for further functional and structural studies.

Yuan, Ye; Wang, Xiuli; Guo, Sheping; Liu, Yang; Ge, Hui; Qiu, Xuemei

2010-11-01

221

Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae  

PubMed Central

The human protein siderocalin (Scn) inhibits bacterial iron acquisition by binding catechol siderophores. Several pathogenic bacteria respond by making stealth siderophores that are not recognized by Scn. Fluvibactin and vibriobactin, respectively of Vibrio fluvialis and Vibrio cholerae, include an oxazoline adjacent to a catechol. This chelating unit binds iron either in a catecholate or a phenolate oxazoline coordination mode. The latter has been suggested to make vibriobactin a stealth siderophore without directly identifying the coordination mode in relation to Scn binding. We use Scn binding assays with the two siderophores and two oxazoline substituted analogs and the crystal structure of Fe fluvibactin:Scn to show that the oxazoline does not prevent Scn binding; hence, vibriobactin is not a stealth siderophore. We show that the phenolate oxazoline coordination mode is present at physiological pH and is not bound by Scn. However, Scn binding shifts the coordination to the catecholate mode and thereby inactivates this siderophore. PMID:23755875

Allred, Benjamin E.; Correnti, Colin; Clifton, Matthew C.; Strong, Roland K.; Raymond, Kenneth N.

2013-01-01

222

Effects of extracellular products of Vibrio alginolyticus on penaeid prawn plasma components.  

PubMed

The effects of both crude extracellular products (ECP) and a partially purified protease of Vibrio alginolyticus on the plasma components of kuruma prawn (Penaeus japonicus) and tiger prawn (P. monodon) were studied using crossed immunoelectrophoresis (CIE). A component of the plasma, tentatively identified as coagulogen, apparently disappeared after incubation with the ECP, while the amount of a component tentatively identified as haemocyanin decreased. The coagulogen and an unknown component (component 1) in the penaeid plasma showed an increased migration rate after incubation with a partially purified 33 kDa protease of the bacterium. In contrast, incubation with protease had no detectable effect on the amount of haemocyanin. These events may significantly contribute to the pathogenicity of Vibrio alginolyticus in penaeids. PMID:9281857

Lee, K K; Chen, F R; Yu, S R; Yang, T I; Liu, P C

1997-08-01

223

Quorum-Quenching Activity of the AHL-Lactonase from Bacillus licheniformis DAHB1 Inhibits Vibrio Biofilm Formation In Vitro and Reduces Shrimp Intestinal Colonisation and Mortality.  

PubMed

Vibrio parahaemolyticus is a significant cause of gastroenteritis resulting from the consumption of undercooked sea foods and often cause significant infections in shrimp aquaculture. Vibrio virulence is associated with biofilm formation and is regulated by N-acylated homoserine lactone (AHL)-mediated quorum sensing. In an attempt to reduce vibrio colonisation of shrimps and mortality, we screened native intestinal bacilli from Indian white shrimps (Fenneropenaeus indicus) for an isolate which showed biofilm-inhibitory activity (quorum quenching) against the pathogen V. parahaemolyticus DAHP1. The AHL-lactonase (AiiA) expressed by one of these, Bacillus licheniformis DAHB1, was characterised as having a broad-spectrum AHL substrate specificity and intrinsic resistance to the acid conditions of the shrimp intestine. Purified recombinant AiiA inhibited vibrio biofilm development in a cover slip assay and significantly attenuated infection and mortality in shrimps reared in a recirculation aquaculture system. Investigation of intestinal samples also showed that AiiA treatment also reduced vibrio viable counts and biofilm development as determined by confocal laser scanning microscopy (CLSM) imaging. These findings suggest that the B. licheniformis DAHB1 quorum-quenching AiiA might be developed for use as a prophylactic treatment to inhibit or reduce vibrio colonisation and mortality of shrimps in aquaculture. PMID:25060960

Vinoj, G; Vaseeharan, B; Thomas, S; Spiers, A J; Shanthi, S

2014-12-01

224

Identification and Characterization of RbmA, a Novel Protein Required for the Development of Rugose Colony Morphology and Biofilm Structure in Vibrio cholerae  

Microsoft Academic Search

Phase variation between smooth and rugose colony variants of Vibrio cholerae is predicted to be important for the pathogen's survival in its natural aquatic ecosystems. The rugose variant forms corrugated colonies, exhibits increased levels of resistance to osmotic, acid, and oxidative stresses, and has an enhanced capacity to form biofilms. Many of these phenotypes are mediated in part by increased

Jiunn C. N. Fong; Kevin Karplus; Gary K. Schoolnik; Fitnat H. Yildiz

2006-01-01

225

Draft Genome Sequences of Two Vibrionaceae Species, Vibrio ponticus C121 and Photobacterium aphoticum C119, Isolated as Coral Reef Microbiota  

PubMed Central

Here, the draft genome sequences of two Vibrionaceae, Vibrio ponticus C121 and Photobacterium aphoticum C119, which were isolated from the coral reef vicinity in Okinawa, Japan, are reported. The genome provides further insight into the genomic plasticity, biocomplexity, and ecophysiology, including pathogenicity and evolution, of these genera. PMID:25359913

Al-saari, Nurhidayu; Meirelles, Pedro Milet; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Thompson, Fabiano L.; Gomez-Gil, Bruno; Sawabe, Toko

2014-01-01

226

Draft Genome Sequences of Two Vibrionaceae Species, Vibrio ponticus C121 and Photobacterium aphoticum C119, Isolated as Coral Reef Microbiota.  

PubMed

Here, the draft genome sequences of two Vibrionaceae, Vibrio ponticus C121 and Photobacterium aphoticum C119, which were isolated from the coral reef vicinity in Okinawa, Japan, are reported. The genome provides further insight into the genomic plasticity, biocomplexity, and ecophysiology, including pathogenicity and evolution, of these genera. PMID:25359913

Al-Saari, Nurhidayu; Meirelles, Pedro Milet; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Thompson, Fabiano L; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

2014-01-01

227

Vibrio cortegadensis sp. nov., isolated from clams.  

PubMed

A group of four strains isolated from clams (Venerupis decussata and Venerupis philippinarum) in Galicia (NW Spain) were subjected to a polyphasic characterization, based on the phenotypic characteristics, the analysis of chemotaxonomic features, the sequencing of the 16S rRNA and five housekeeping (atpA, pyrH, recA, rpoA and rpoD) genes, as well as DNA-DNA hybridization (DDH). The analysis of the phenotypic and chemotaxonomic characteristics and the results of a phylogenetic study, based on the 16S rRNA gene sequence analysis and multilocus sequence analysis, clearly indicated that these strains belong to the genus Vibrio and were allocated between the Splendidus and Anguillarum clades showing a close relationship with the type strains of Vibrio tapetis (98.8 %), Vibrio pomeroyi (98.0 %) and Vibrio crassostreae (97.9 %). DNA-DNA hybridization results confirmed that these isolates constitute a new species. The name Vibrio cortegadensis sp. nov. is proposed with C 16.17(T) (=CECT 7227(T)=LMG 27474(T)) as the type strain. PMID:24271473

Lasa, Aide; Diéguez, Ana L; Romalde, Jesús L

2014-02-01

228

Effectiveness of icing as a postharvest treatment for control of Vibrio vulnificus and Vibrio parahaemolyticus in the eastern oyster (Crassostrea virginica).  

PubMed

The focus of this research was to investigate the efficacy of icing as a postharvest treatment for reduction of the levels of Vibrio vulnificus and Vibrio parahaemolyticus in commercial quantities of shellstock oysters. The experiments were conducted in June and August of 2006 and consisted of the following treatments: (i) on-board icing immediately after harvest; (ii) dockside icing approximately 1 to 2 h prior to shipment; and (iii) no icing (control). Changes in the levels of pathogenic Vibrio spp. during wholesale and retail handling for 2 weeks postharvest were also monitored. On-board icing achieved temperature reductions in all sacks in accordance with the National Shellfish Sanitation Program standard, but dockside icing did not meet this standard. Based on one-way analysis of variance, the only statistically significant relationship between Vibrio levels and treatment occurred for samples harvested in August; in this case, the levels of V. vulnificus in the noniced oysters were significantly higher (P < 0.05) than were the levels in the samples iced on-board. When analyzing counts over the 14-day storage period, using factorial analysis, there were statistically significant differences in V. vulnificus and V. parahaemolyticus levels by sample date and/or treatment (P < 0.05), but these relationships were not consistent. Treated (iced) oysters had significantly higher gaping (approximately 20%) after 1 week in cold storage than did noniced oysters (approximately 10%) and gaping increased significantly by day 14 of commercial storage. On-board and dockside icing did not predictably reduce the levels of V. vulnificus or V. parahaemolyticus in oysters, and icing negatively impacted oyster survival during subsequent cold storage. PMID:18680950

Melody, Kevin; Senevirathne, Reshani; Janes, Marlene; Jaykus, Lee Ann; Supan, John

2008-07-01

229

Quorum Sensing in Vibrio anguillarum: Characterization of the vanI\\/vanR Locus and Identification of the Autoinducer N-(3-Oxodecanoyl)-L-Homoserine Lactone  

Microsoft Academic Search

Certain gram-negative pathogens are known to control virulence gene expression through cell-cell commu- nication via small diffusible signal molecules termed autoinducers. This intercellular signal transduction mechanism termed quorum sensing depends on the interaction of an N-acylhomoserine lactone (AHL) auto- inducer molecule with a receptor protein belonging to the LuxR family of positive transcriptional activators. Vibrio anguillarum is a gram-negative pathogen

DEBRA L. MILTON; ANDREA HARDMAN; MIGUEL CAMARA; SIRI RAM CHHABRA; BARRIE W. BYCROFT; GORDON S. A. B. STEWART; PAUL WILLIAMS

1997-01-01

230

Inactivation of bacterial and viral fish pathogens by ozonation or UV irradiation in water of different salinity  

Microsoft Academic Search

Bacterial and viral fish pathogens were exposed to ozone or ultraviolet (UV) irradiation in laboratory batch systems. Inactivation curves were made for Aeromonas salmonicida subsp. salmonicida, Vibrio anguillarum, Vibrio salmonicida, Yersinia ruckeri and the infectious pancreatic necrosis virus (IPNV) in ozonated lake, brackish and sea water at 9–12°C. The four bacteria tested were inactivated by 99·99% (4 log reductions in

Helge Liltved; Halvor Hektoen; Harry Efraimsen

1995-01-01

231

Genome assortment, not serogroup, defines Vibrio cholerae pandemic strains  

SciTech Connect

Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the 6th and the current 7th pandemics, respectively. Cholera researchers continually face newly emerging and re-emerging pathogenic clones carrying combinations of new serogroups as well as of phenotypic and genotypic properties. These genotype and phenotype changes have hampered control of the disease. Here we compare the complete genome sequences of 23 strains of V. cholerae isolated from a variety of sources and geographical locations over the past 98 years in an effort to elucidate the evolutionary mechanisms governing genetic diversity and genesis of new pathogenic clones. The genome-based phylogeny revealed 12 distinct V. cholerae phyletic lineages, of which one, designated the V. cholerae core genome (CG), comprises both O1 classical and EI Tor biotypes. All 7th pandemic clones share nearly identical gene content, i.e., the same genome backbone. The transition from 6th to 7th pandemic strains is defined here as a 'shift' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages within the CG clade. In contrast, transition among clones during the present 7th pandemic period can be characterized as a 'drift' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V.cholerae serogroup O139 and V.cholerae O1 El Tor hybrid clones that produce cholera toxin of classical biotype. Based on the comprehensive comparative genomics presented in this study it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.

Brettin, Thomas S [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Han, Cliff S [Los Alamos National Laboratory; Munik, A C [Los Alamos National Laboratory; Chertkov, Olga [Los Alamos National Laboratory; Meincke, Linda [Los Alamos National Laboratory; Saunders, Elizabeth [Los Alamos National Laboratory; Choi, Seon Y [SEOUL NATL. UNIV.; Haley, Bradd J [U. MARYLAND; Taviani, Elisa [U. MARYLAND; Jeon, Yoon - Seong [INTL. VACCINE INST. SEOUL; Kim, Dong Wook [INTL. VACCINE INST. SEOUL; Lee, Jae - Hak [SEOUL NATL. UNIV.; Walters, Ronald A [PNNL; Hug, Anwar [NATL. INST. CHOLERIC ENTERIC DIS.; Colwell, Rita R [U. MARYLAND

2009-01-01

232

Risk of Vibrio transmission linked to the consumption of crustaceans in coastal towns of Côte d'Ivoire.  

PubMed

The purpose of this study was to assess the risk of Vibrio spp. transmission from crustaceans to humans in two coastal towns of Côte d'Ivoire. Bacteriologic analysis was performed on 322 crustacean samples obtained from six markets in Abidjan and one in Dabou. Suspected Vibrio colonies were identified by morphological, cultural, biochemical, and molecular tests and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. PCR assays were used to further characterize Vibrio strains. A survey on consumption of crustaceans was conducted among 120 randomly selected households in Abidjan. Overall, Vibrio spp. were isolated from 7.8% of the crustacean samples studied, at levels as high as 6.3 log CFU/g. Of the Vibrio strains identified, 40% were V. alginolyticus, 36% were V. parahaemolyticus, and 24% were nontoxigenic V. cholerae; the latter two species can cause mild to severe forms of seafood-associated gastroenteritis. Among interviewed households, 11.7% reported daily consumption of crustaceans, confirming the high probability of exposure of human population to Vibrio spp., and 7.5% reported symptoms of food poisoning after consumption of crustaceans. The absence of genes encoding major virulence factors in the studied strains, i.e., cholera toxin (ctxA and ctxB) in V. cholerae and thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (trh) in V. parahaemolyticus, does not exclude the possibility of exposure to pathogenic strains. However, human infections are not common because most households (96.7%) boil crustaceans, usually for at least 45 min (85.9% of households) before consumption. PMID:22691466

Traoré, S G; Bonfoh, B; Krabi, R; Odermatt, P; Utzinger, J; Rose, K-N; Tanner, M; Frey, J; Quilici, M-L; Koussémon, M

2012-06-01

233

Characterization of htrB and msbB Mutants of the Light Organ Symbiont Vibrio fischeri  

Microsoft Academic Search

Bacterial lipid A is an important mediator of bacterium-host interactions, and secondary acylations added by HtrB and MsbB can be critical for colonization and virulence in pathogenic infections. In contrast, Vibrio fischeri lipid A stimulates normal developmental processes in this bacterium's mutualistic host, Euprymna scolopes, although the importance of lipid A structure in this symbiosis is unknown. To further examine

Dawn M. Adin; Nancy J. Phillips; Bradford W. Gibson; Michael A. Apicella; Edward G. Ruby; Margaret J. McFall-Ngai; Daniel B. Hall; Eric V. Stabb

2008-01-01

234

Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat.  

PubMed

Several recent outbreaks associated with oysters have heightened safety concerns of raw shellfish consumptions, with the majority being attributed to Vibrio spp. The objective of this study was to determine the effect of high-hydrostatic pressure (HHP) followed by mild heating on the inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in live oysters. Inoculated oysters were randomly subjected to: a) pressurization at 200-300 MPa for 2 min at 21 °C, b) mild heat treatment at 40, 45 or 50 °C for up to 20 min and c) pressure treatment of 200-300 MPa for 2 min at 21 °C followed by heat treatment at 40-50 °C. Counts of V. parahaemolyticus and V. vulnificus were then determined using the most probable number (MPN) method. Pressurization at 200-300 MPa for 2 min resulted in various degrees of inactivation, from 1.2 to >7 log MPN/g reductions. Heat treatment at 40 and 45 °C for 20 min only reduced V. parahaemolyticus and V. vulnificus by 0.7-2.5 log MPN/g while at 50 °C for 15 min achieved >7 log MPN/g reduction. HHP and mild heat had synergistic effects. Combinations such as HHP at 250 MPa for 2 min followed by heat treatment at 45 °C for 15 min and HHP at 200 MPa for 2 min followed by heat treatment at 50 °C for 5 min reduced both V. parahaemolyticus and V. vulnificus to non-detectable levels by the MPN method (<3 MPN/g). HHP at ?275 MPa for 2 min followed by heat treatment at 45 °C for 20 min and HHP at ?200 MPa for 2 min followed by heat treatment at 50 °C for 15 min completely eliminated both pathogens in oysters (negative enrichment results). This study demonstrated the efficiency of HHP followed by mild heat treatments on inactivation of V. parahaemolyticus and V. vulnificus and could help the industry to establish parameters for processing oysters. PMID:22850390

Ye, Mu; Huang, Yaoxin; Chen, Haiqiang

2012-10-01

235

Occurrence of Vibrio parahaemolyticus and Vibrio vulnificus in retail raw oysters from the eastern coast of Thailand.  

PubMed

Occurrence, population density and virulence of Vibrio parahaemolyticus and V. vulnificus in 240 retail raw oysters collected monthly between March 2010 and February 2011 from Ang Sila coast, Chon Buri Province, Thailand were determined using most probable number (MPN) multiplex PCR. Multiplex PCR detected V. parahaemolyticus in 219 raw oyster samples, of which 29 samples contained the virulence tdh. MPN values for V. parahaemolyticus and pathogenic strains in most samples ranged from 10 to 10(2) and from 3 to 10 MPN/g, respectively. The presence of V. vulnificus was found in 53 oyster samples in amounts between 10 and 10(2) MPN/g. Of 1,087 V. parahaemolyticus isolates, 14 and 2 isolates carried tdh and virulence trh, respectively but none with both genes. However, none of the presumptive isolates was shown to be V. vulnificus. The detection of pathogenic V. parahaemolyticus and V. vulnificus in raw oysters has rendered high awareness of risk in consumption of raw or undercooked oysters. PMID:24974651

Changchai, Nuttawee; Saunjit, Sudarat

2014-05-01

236

Vibrios in hatchery cultures of the razor clam, Solen marginatus (Pulteney).  

PubMed

Hatchery culture of the razor clam, Solen marginatus (Pulteney), has recently been developed in Galicia (NW Spain). However, recurrent episodes of mortalities of larval and post-larval cultures have been recorded during the course of various studies. The disease signs were similar to those described for other bivalve species in outbreaks caused by bacteria of the genus Vibrio. In this article, we present the results of microbiological monitoring of two batches of razor clams with different survival rates. All fermentative isolates were identified as members of the Splendidus clade within the genus Vibrio. Some of these isolates, identified as Vibrio splendidus-like, were clearly associated with the batch suffering mortalities, indicating their possible role as pathogens. Similar strains were found in the broodstock, suggesting vertical transmission of these bacteria. This is the first study of the microbiota associated with hatchery culture of S. marginatus, and the results will provide useful information for the optimization of a protocol for hatchery culture of this bivalve species. PMID:23496328

Prado, S; Dubert, J; da Costa, F; Martínez-Patiño, D; Barja, J L

2014-03-01

237

Low temperature pasteurization to reduce the risk of vibrio infections from raw shell-stock oysters.  

PubMed

Vibrio vulnificus and V. parahaemolyticus are natural inhabitants of estuarine environments and may be transmitted to humans by ingestion of raw oysters. This study focused on the use of low temperature pasteurization, to reduce these Vibrio spp. to nondetectable levels, thus reducing the risk of infection associated with raw oyster consumption. Artificially-inoculated V. vulnificus and V. parahaemolyticus and naturally-contaminated V. vulnificus in live oysters were pasteurized at 50 degrees C for up to 15 min. Samples of processed and unprocessed oysters were enumerated for V. vulnificus, V. parahaemolyticus, and aerobic spoilage bacteria for 0-14 days. Low temperature pasteurization was effective in reducing these pathogens from > 100,000 to non-detectable levels in less than 10 min of processing. Spoilage bacteria were reduced by 2-3 logs, thus increasing the shelf-life for up to 7 days beyond live unprocessed oysters. Vibrio vulnificus in control oysters was reduced by 10(2) during ice storage alone. Following pasteurization and during a temperature storage abuse study (24 h at 22 degrees C), V. vulnificus was not recovered. During this storage period spoilage bacteria exceeded 1 million/g oyster meat. PMID:11091792

Andrews, L S; Park, D L; Chen, Y P

2000-09-01

238

Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106).  

SciTech Connect

Vibrio tubiashii NCIMB 1337 is a major and increasingly prevalent pathogen of bivalve mollusks, and shares a close phylogenetic relationship with both V. orientalis and V. coralliilyticus. It is a Gram-negative, curved rod-shaped bacterium, originally isolated from a moribund juvenile oyster, and is both oxidase and catalase positive. It is capable of growth under both aerobic and anaerobic conditions. Here we describe the features of this organism, together with the draft genome and annotation. The genome is 5,353,266 bp long, consisting of two chromosomes, and contains 4,864 protein-coding and 86 RNA genes.

Temperton, B.; Thomas, S.; Tait, K.; Parry, H.; Emery, M.; Allen, M.; Quinn, J.; McGrath, J.; Gilbert, J. (CLS-GSB); (Plymouth Marine Lab.); (Queen's Univ.); (Univ. of Plymouth); (Univ. of Chicago)

2011-01-01

239

Sulfonamides with Potent Inhibitory Action and Selectivity against the ?-Carbonic Anhydrase from Vibrio cholerae.  

PubMed

By using N-?-acetyl-l-lysine or GABA scaffolds and the conversion of the terminal amino group to the guanidine one, benzenesulfonamides incorporating water solubilizing moieties were synthesized. The new compounds were medium potency inhibitors of the cytosolic carbonic anhydrase (CA, EC 4.2.1.1) isoforms I and II, and highly effective, nanomolar inhibitors of the pathogenic bacterial ?-CA from Vibrio cholerae. These sulfonamides possess good selectivity for inhibiting the bacterial over the mammalian isoforms and may be used as tools to understand the role of bacterial CAs in pathogenesis. PMID:25050173

Ceruso, Mariangela; Del Prete, Sonia; Alothman, Zeid; Capasso, Clemente; Supuran, Claudiu T

2014-07-10

240

A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems.  

PubMed

A marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and alpha-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae. PMID:16465832

Jayaprakash, N S; Pai, S Somnath; Anas, A; Preetha, R; Philip, Rosamma; Singh, I S Bright

2005-12-30

241

Regulation of Cytotoxicity by Quorum-Sensing Signaling in Vibrio vulnificus Is Mediated by SmcR, a Repressor of hlyU?†  

PubMed Central

Cytotoxicity is an important virulence determinant in the pathogenesis of Vibrio vulnificus, and two cytotoxins, RTX (encoded by rtxA1) and cytolysin/hemolysin (encoded by vvhA), have been identified in this organism. We showed that the quorum-sensing regulator LuxO controlled the cytotoxicity of this organism: a ?luxO mutant exhibited low cytotoxicity, whereas a constitutively activated luxO mutant, luxO(D47E), remained highly cytotoxic. The cytotoxicity of the ?luxO mutant was restored when smcR, a Vibrio harveyi luxR homologue repressed by luxO, was further deleted. SmcR then was shown to repress the expression of both rtxA1 and vvhA. A DNA library of V. vulnificus was screened in Escherichia coli for clones that upregulated vvhA in the presence of SmcR, and hlyU, which has been shown to positively regulate rtxA1 and vvhA, was identified. We demonstrated that SmcR repressed the expression of hlyU and bound to a region upstream of hlyU in V. vulnificus. The deletion of hlyU resulted in the loss of cytotoxicity and reduced cytolysin/hemolysin production in the ?smcR mutant. The ?smcR ?hlyU mutant regained cytotoxicity and cytolysin/hemolysin activity when hns, which has been shown to repress the transcription of rtxA1 and interfere with hlyU, was further removed. Collectively, our data suggest that SmcR mediates the regulation of cytotoxicity by quorum-sensing signaling in V. vulnificus by repressing hlyU, an activator of rtxA1 and vvhA. PMID:21398530

Shao, Chung-Ping; Lo, Horng-Ren; Lin, Jen-Hsing; Hor, Lien-I

2011-01-01

242

Detection of pathogenic gram negative bacteria using infrared thermography  

NASA Astrophysics Data System (ADS)

Detection of viable bacteria is of prime importance in all fields of microbiology and biotechnology. Conventional methods of enumerating bacteria are often time consuming and labor-intensive. All living organisms generate heat due to metabolic activities and hence, measurement of heat energy is a viable tool for detection and quantification of bacteria. In this article, we employ a non-contact and real time method - infrared thermography (IRT) for measurement of temperature variations in four clinically significant gram negative pathogenic bacteria, viz. Vibrio cholerae, Vibrio mimicus, Proteus mirabilis and Pseudomonas aeruginosa. We observe that, the energy content, defined as the ratio of heat generated by bacterial metabolic activities to the heat lost from the liquid medium to the surrounding, vary linearly with the bacterial concentration in all the four pathogenic bacteria. The amount of energy content observed in different species is attributed to their metabolisms and morphologies that affect the convection velocity and hence heat transport in the medium.

Lahiri, B. B.; Divya, M. P.; Bagavathiappan, S.; Thomas, Sabu; Philip, John

2012-11-01

243

Molecular Mechanisms of Bacterial Pathogenicity  

NASA Astrophysics Data System (ADS)

Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

Fuchs, Thilo Martin

244

Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."  

ERIC Educational Resources Information Center

Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)

Slock, James

1995-01-01

245

Inhibitory activity of Phaeobacter strains against aquaculture pathogenic bacteria.  

PubMed

A total of 523 bacterial strains were isolated during a 4-year period from mollusc hatcheries (flat oyster and clams) in Galicia (NW Spain). All of the strains were tested for their antibacterial activity against three larval pathogens (Vibrio anguillarum USC-72, V. neptunius PP-145.98, and Vibrio sp. PP-203). Of the isolates, 52 inhibited at least one of the target strains, and 11 inhibited all of them. The main source of active strains was oyster larvae, followed by water, tank surfaces, spat, and broodstock. Four similar strains, belonging to the genus Phaeobacter, showed the strongest activity. Strain PP-154, selected as representative of this group, displayed a wide spectrum of inhibitory activity against aquaculture pathogens, especially against members of the genus Vibrio, which is responsible for the most larval deaths. The inhibitory ability of such strain on solid medium was confirmed in seawater experiments, and the optimal conditions for antibacterial activity were established. These strains are promising probiotics for aquaculture facilities. Their potential benefit is based on the capacity to control the proliferation of a variety of aquaculture bacterial pathogens in mollusc larval cultures. PMID:19784930

Prado, Susana; Montes, Jaime; Romalde, Jesús L; Barja, Juan L

2009-06-01

246

Quorum Regulation of Luminescence in Vibrio fischeri  

Microsoft Academic Search

Luminescence in Vibrio fischeri is controlled by a population density-responsive regulatory mechanism called quorum sensing. Elements of the mechanism include: LuxI, an acyl-homoserine lactone (acyl-HSL) synthase that directs synthesis of the diffusible signal molecule, 3-oxo-hexanoyl-HSL (V. fischeri auto- inducer-1, VAI-1); LuxR, a transcriptional activator protein necessary for response to VAI-1; GroEL, which is necessary for production of active LuxR; and

Paul V. Dunlap

2000-01-01

247

Fatal necrotizing fasciitis due to Vibrio damsela.  

PubMed

A patient who succumbed to fulminant necrotizing fasciitis due to Vibrio damsela after injury by a rabbitfish is described. Despite the absence of any known underlying illness, he did not respond to appropriate antibiotic therapy and radical surgical intervention. This represents the first documented case of necrotizing fasciitis due to this organism, and is also the first reported case in Southeast Asia inflicted by rabbitfish. PMID:8284652

Yuen, K Y; Ma, L; Wong, S S; Ng, W F

1993-01-01

248

Nigribactin, a novel siderophore from Vibrio nigripulchritudo, modulates Staphylococcus aureus virulence gene expression.  

PubMed

Staphylococcus aureus is a serious human pathogen that employs a number of virulence factors as part of its pathogenesis. The purpose of the present study was to explore marine bacteria as a source of compounds that modulate virulence gene expression in S. aureus. During the global marine Galathea 3 expedition, a strain collection was established comprising bacteria that express antimicrobial activity against Vibrio anguillarum and/or Staphylococcus aureus. Within this collection we searched colony material, culture supernatants, and cell extracts for virulence modulating activity showing that 68 out of 83 marine bacteria (affiliated with the Vibrionaceae and Pseudoalteromonas sp.) influenced expression of S. aureus hla encoding ?-hemolysin toxin and/or spa encoding Protein A. The isolate that upon initial screening showed the highest degree of interference (crude ethyl acetate extract) was a Vibrio nigripulchritudo. Extraction, purification and structural elucidation revealed a novel siderophore, designated nigribactin, which induces spa transcription. The effect of nigribactin on spa expression is likely to be independent from its siderophore activity, as another potent siderophore, enterobactin, failed to influence S. aureus virulence gene expression. This study shows that marine microorganisms produce compounds with potential use in therapeutic strategies targeting virulence rather than viability of human pathogens. PMID:23203279

Nielsen, Anita; Mansson, Maria; Wietz, Matthias; Varming, Anders N; Phipps, Richard K; Larsen, Thomas O; Gram, Lone; Ingmer, Hanne

2012-11-01

249

In situ and in vitro impacts of the Deepwater Horizon oil spill on Vibrio parahaemolyticus.  

PubMed

Most established virulence genes in Vibrio parahaemolyticus (Vp), e.g., thermostable direct hemolysin (tdh), tdh-related hemolysin (trh), and type three secretion system 2 (TTSS2), are on the chromosome 2 pathogenicity island, which also possesses numerous uncharacterized genes. We hypothesized the 2010 Deepwater Horizon (DH) oil spill would cause an increase in populations of Vibrio parahaemolyticus carrying environmental adaptation genes. Vp isolated pre- and post-spill were analyzed for TTSS2 genes, and impacts of DH oil on Vp were examined in vitro. There was no change in TTSS2 in situ, but tdh and V. vulnificus levels were higher post-spill. In vitro exposure of water samples to DH oil produced no changes in Vp densities. Two years post-spill, total Vp remained low; tdh and trh increased. These results indicate the effects of the DH oil spill on potentially pathogenic Vp subpopulations were complex and difficult to discern from other concurrent anthropogenic and natural events. PMID:23987095

Stephens, Erica L; Molina, Vanessa; Cole, Krystal M; Laws, Edward; Johnson, Crystal N

2013-10-15

250

A Vibrio vulnificus Type IV Pilin Contributes to Biofilm Formation, Adherence to Epithelial Cells, and Virulence  

PubMed Central

Vibrio vulnificus expresses a multitude of cell-associated and secreted factors that potentially contribute to pathogenicity, although the specific roles of most of these factors have been difficult to define. Previously we have shown that a mutation in pilD (originally designated vvpD), which encodes a type IV prepilin peptidase/N-methyltransferase, abolishes expression of surface pili, suggesting that they belong to the type IV class. In addition, a pilD mutant exhibits reduced adherence to HEp-2 cells, a block in secretion of several exoenzymes that follow the type II secretion pathway, and decreased virulence. In this study, we have cloned and characterized a V. vulnificus type IV pilin (PilA) that shares extensive homology to group A type IV pilins expressed by many pathogens, including Vibrio cholerae (PilA), Pseudomonas aeruginosa (PilA), and Aeromonas hydrophila (TapA). The V. vulnificus pilA gene is part of an operon and is clustered with three other pilus biogenesis genes, pilBCD. Inactivation of pilA reduces the ability of V. vulnificus to form biofilms and significantly decreases adherence to HEp-2 cells and virulence in iron dextran-treated mice. Southern blot analysis demonstrates the widespread presence of both pilA and pilD in clinical as well as environmental strains of V. vulnificus. PMID:15731039

Paranjpye, Rohinee N.; Strom, Mark S.

2005-01-01

251

Metalloprotease Vsm Is the Major Determinant of Toxicity for Extracellular Products of Vibrio splendidus? †  

PubMed Central

Genomic data combined with reverse genetic approaches have contributed to the characterization of major virulence factors of Vibrio species; however, these studies have targeted primarily human pathogens. Here, we investigate virulence factors in the oyster pathogen Vibrio splendidus LGP32 and show that toxicity is correlated to the presence of a metalloprotease and its corresponding vsm gene. Comparative genomics showed that an avirulent strain closely related to LGP32 lacked the metalloprotease. The toxicity of LGP32 metalloprotease was confirmed by exposing mollusk and mouse fibroblastic cell lines to extracellular products (ECPs) of the wild type (wt) and a vsm deletion mutant (?vsm mutant). The ECPs of the wt induced a strong cytopathic effect whose severity was cell type dependent, while those of the ?vsm mutant were much less toxic, and exposure to purified protein demonstrated the direct toxicity of the Vsm metalloprotease. Finally, to investigate Vsm molecular targets, a proteomic analysis of the ECPs of both LGP32 and the ?vsm mutant was performed, revealing a number of differentially expressed and/or processed proteins. One of these, the VSA1062 metalloprotease, was found to have significant identity to the immune inhibitor A precursor, a virulence factor of Bacillus thuringiensis. Deletion mutants corresponding to several of the major proteins were constructed by allelic exchange, and the ECPs of these mutants proved to be toxic to both cell cultures and animals. Taken together, these data demonstrate that Vsm is the major toxicity factor in the ECPs of V. splendidus. PMID:18836018

Binesse, Johan; Delsert, Claude; Saulnier, Denis; Champomier-Verges, Marie-Christine; Zagorec, Monique; Munier-Lehmann, Helene; Mazel, Didier; Le Roux, Frederique

2008-01-01

252

Response of Vibrio parahaemolyticus 03:K6 to a hot water/cold shock pasteurization process.  

PubMed

Vibrio vulnificus and V. parahaemolyticus are natural inhabitants of estuarine environments world wide. Pathogenic strains of these bacteria are often transmitted to humans through consumption of raw oysters, which flourish in the same estuaries. Previous studies reported the effective use of hot water pasteurization followed by cold shock to eliminate from raw oysters naturally and artificially incurred environmental strains of V. vulnificus and V. parahaemolyticus common to the Gulf of Mexico. The present study focused on the use of the same pasteurization method to reduce a highly process resistant Vibrio strain, V. parahaemolyticus O3:K6 to non-detectable levels. Oysters were artificially contaminated with 10(4) and 10(6) V. parahaemolyticus 03:K6 cfu g(-1) oyster meat. Contaminated oysters were pasteurized between 50 and 52 degrees C for up to 22 min. Samples of processed oysters were enumerated for V. parahaemolyticus O3:K6 at 2-min intervals beginning after the 'come-up time' to achieve an oyster internal temperature of at least 50 degrees C. The D value (D(52)deg C) was 1.3-1.6 min. V. parahaemolyticus O3:K6 proved more process resistant than non-pathogenic environmental strains found in Gulf of Mexico waters. A total processing time of at least 22 min at 52 degrees C was recommended to reduce this bacterium to non-detectable levels (< 3 g(-1) oyster meat). PMID:12775474

Andrews, L S; DeBlanc, S; Veal, C D; Park, D L

2003-04-01

253

Abundance of Vibrio cholerae, V. vulnificus, and V. parahaemolyticus in Oysters (Crassostrea virginica) and Clams (Mercenaria mercenaria) from Long Island Sound.  

PubMed

Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)-real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh(+) and/or trh(+)) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n = 30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and -0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities. PMID:25281373

Jones, Jessica L; Lüdeke, Catharina H M; Bowers, John C; DeRosia-Banick, Kristin; Carey, David H; Hastback, William

2014-12-15

254

Gene cloning and prokaryotic expression of recombinant outer membrane protein from Vibrio parahaemolyticus  

NASA Astrophysics Data System (ADS)

Gram-negative Vibrio parahaemolyticus is a common pathogen in humans and marine animals. The outer membrane protein of bacteria plays an important role in the infection and pathogenicity to the host. Thus, the outer membrane proteins are an ideal target for vaccines. We amplified a complete outer membrane protein gene (ompW) from V. parahaemolyticus ATCC 17802. We then cloned and expressed the gene into Escherichia coli BL21 (DE3) cells. The gene coded for a protein that was 42.78 kDa. We purified the protein using Ni-NTA affinity chromatography and Anti-His antibody Western blotting, respectively. Our results provide a basis for future application of the OmpW protein as a vaccine candidate against infection by V. parahaemolyticus. In addition, the purified OmpW protein can be used for further functional and structural studies.

Yuan, Ye; Wang, Xiuli; Guo, Sheping; Qiu, Xuemei

2011-06-01

255

Evidence that water transmits Vibrio vulnificus biotype 2 infections to eels.  

PubMed Central

Vibrio vulnificus biotype 2 is classically considered an obligate eel pathogen. However, it has recently been associated with one human septicemic case. In this paper, the opportunistic behavior of this pathogen is discussed. The bacterium can survive alone in brackish water or attached to eel surfaces for at least 14 days. It is able to spread through water and infect healthy eels by using skin as a portal of entry. These results suggest that water and infected eels may act as reservoirs of infection. A capsule seems to be essential for waterborne infectivity, which would explain why cells recovered from naturally diseased eels give rise to pure cultures of opaque colonies. The spread of the disease is dependent on temperature and water salinity, thus suggesting a method to reduce the risk of epizootics and that of infection for humans. PMID:7793914

Amaro, C; Biosca, E G; Fouz, B; Alcaide, E; Esteve, C

1995-01-01

256

The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition.  

PubMed

Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species. PMID:24686479

Unterweger, Daniel; Miyata, Sarah T; Bachmann, Verena; Brooks, Teresa M; Mullins, Travis; Kostiuk, Benjamin; Provenzano, Daniele; Pukatzki, Stefan

2014-01-01

257

A Vibrio anguillarum strain associated with skin ulcer on cultured flounder, Paralichthys olivaceus  

NASA Astrophysics Data System (ADS)

The characteristics of a bacterium strain M3, isolated from cultured flounder Paralichthys olivaceus with remarkable external sign of skin ulcer during an epizootic outbreak, indicated that the bacterium belonged to the species Vibrio anguillarum. Challenge by I.M. (intramuscular injection), bath, and oral administration with M3 showed that it was highly pathogenic for Paralichthys olivacues. The LD50 dose was 5.144×103 CFU/ per fish infection by I.M. injection. Recovered inoculated bacteria from the surviving fish revealed that the asymptomatic carriers could be a latent contagious source. Study of the effect of bacterial culture CFS (cell-free-supernatant) showed that the exotoxins produced by M3 play an important role in its pathogenicity for flounder. The resistance of M3 to 36 out of 41 antibiotics indicated that the bacterial disease outbreak was mainly attributable to the frequent and excessive use of antimicrobial agents; and that vaccination would be an effective precaution against bacterial disease.

Mo, Zhao-Lan; Tan, Xun-Gang; Xu, Yong-Li; Zhang, Pei-Jun

2001-12-01

258

Survival of Vibrio cholerae in African domestic water storage containers.  

PubMed

Although much has been published about growth of Vibrio cholerae in natural sources of water, little or nothing has been written on its survival in common household water storage containers. This study compared the behaviour of the El Tor and Classical biotypes of V. cholerae in different containers commonly used in Africa for domestic water storage. These included traditional clay pots, wooden barrels, galvanised iron drums (corroded and non-corroded) and plastic (polyethylene) drums. The findings are considered to be of public health interest with reference to selection of the most suitable containers for the storage of water drawn from a treated source. Although survival of V. cholerae was much shorter in clay pots than in any of the other containers, the numbers of viable V. cholerae were higher than in non-corroding iron drums and plastic drums. The clay pots, being porous, also showed a tendency to constant outward seepage of water which, when collected, was also shown to harbour cholera bacilli. These containers are therefore considered hazardous as pathogens in the stored water are easily disseminated to contaminate either hands or food prepared in the vicinity. The longest survival occurred in damaged metal drums. Presence of other bacteria greatly inhibited survival of V. cholerae. The response of the two biotypes was much the same in all the experiments. PMID:2799584

Patel, M; Isaäcson, M

1989-10-01

259

Vibrio coralliilyticus Search Patterns across an Oxygen Gradient  

PubMed Central

The coral pathogen, Vibrio coralliilyticus shows specific chemotactic search pattern preference for oxic and anoxic conditions, with the newly identified 3-step flick search pattern dominating the patterns used in oxic conditions. We analyzed motile V. coralliilyticus cells for behavioral changes with varying oxygen concentrations to mimic the natural coral environment exhibited during light and dark conditions. Results showed that 3-step flicks were 1.4× (P?=?0.006) more likely to occur in oxic conditions than anoxic conditions with mean values of 18 flicks (95% CI?=?0.4, n?=?53) identified in oxic regions compared to 13 (95% CI?=?0.5, n?=?38) at anoxic areas. In contrast, run and reverse search patterns were more frequent in anoxic regions with a mean value of 15 (95% CI?=?0.7, n?=?46), compared to a mean value of 10 (95% CI?=?0.8, n?=?29) at oxic regions. Straight swimming search patterns remained similar across oxic and anoxic regions with a mean value of 13 (95% CI?=?0.7, n?=?oxic: 13, anoxic: 14). V. coralliilyticus remained motile in oxic and anoxic conditions, however, the 3-step flick search pattern occurred in oxic conditions. This result provides an approach to further investigate the 3-step flick. PMID:23874480

Winn, Karina M.; Bourne, David G.; Mitchell, James G.

2013-01-01

260

Trophic regulation of Vibrio cholerae in coastal marine waters.  

PubMed

Cholera disease, caused by the bacterium Vibrio cholerae, afflicts hundreds of thousands worldwide each year. Endemic to aquatic environments, V. cholerae's proliferation and dynamics in marine systems are not well understood. Here, we show that under a variety of coastal seawater conditions V. cholerae remained primarily in a free-living state as opposed to attaching to particles. Growth rates of free-living V. cholerae (micro: 0.6-2.9 day(-1)) were high (similar to reported values for the bacterial assemblages; 0.3-2.5 day(-1)) particularly in phytoplankton bloom waters. However, these populations were subject to heavy grazing-mortality by protozoan predators. Thus, grazing-mortality counterbalanced growth, keeping V. cholerae populations in check. Net population gains were observed under particularly intense bloom conditions when V. cholerae proliferated, overcoming grazing pressure terms in part via rapid growth (> 4 doublings day(-1)). Our results show V. cholerae is subject to protozoan control and capable of utilizing multiple proliferation pathways in the marine environment. These findings suggest food web effects play a significant role controlling this pathogen's proliferation in coastal waters and should be considered in predictive models of disease risk. PMID:16343318

Worden, Alexandra Z; Seidel, Michael; Smriga, Steven; Wick, Arne; Malfatti, Francesca; Bartlett, Douglas; Azam, Farooq

2006-01-01

261

Diet enriched with mushroom Phellinus linteus extract enhances the growth, innate immune response, and disease resistance of kelp grouper, Epinephelus bruneus against vibriosis.  

PubMed

The effect of diet supplemented with Phellinus linteus fed for 30 days was investigated in grouper Epinephelus bruneus challenged with Vibrio anguillarum, Vibrio harveyi, Vibrio alginolyticus, and Vibrio carchariae; infected and treated fish had a significantly higher percent weight gain and feed efficiency. In groups fed with enriched diet and challenged with V. anguillarum and V. harveyi the mortality rate declined with a consequent rise in survival rate than with other pathogens. On the other hand, in groups fed with P. linteus enriched diet and challenged with V. anguillarum, V. harveyi, and V. alginolyticus the cellular and humoral immune responses, such as the alternative complement activity (ACH(50)), serum lysozyme activity, phagocytic activity (PA), phagocytic index (PI) significantly higher than in the control group. The respiratory bursts (RB), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities were found significantly enhanced when the groups fed with enriched diet against V. anguillarum and V. harveyi. The results reveal that kelp grouper fed for 30 days with P. linteus enriched diet had higher cellular and humoral immune response and disease protection from vibriosis than the group fed on basal diet with the protection linked to stimulation of immune system. PMID:20883799

Harikrishnan, Ramasamy; Balasundaram, Chellam; Heo, Moon-Soo

2011-01-01

262

An enzyme-linked immunosorbent assay for detection of Vibrio vulnificus biotype 2: development and field studies.  

PubMed Central

Vibrio vulnificus biotype 2 is a primary eel pathogen which constitutes a lipopolysaccharide (LPS)-based homogeneous O serogroup within the species. In the present work, we have developed an enzyme-linked immunosorbent assay (ELISA) based on the specificity of LPS for the detection of this pathogen. The ELISA specificity was confirmed after testing 36 biotype 2 strains from laboratory cultures and environmental samples, 31 clinical and environmental biotype 1 isolates, and several strains of Vibrio, Aeromonas, and Yersinia species, including the fish pathogens V. anguillarum, V. furnissii, A. hydrophila, and Y. ruckerii. The detection limits for biotype 2 cells were around 10(4) to 10(5) cells/well, and the immunoassay was also able to detect cells in the nonculturable state. Artificially infected eels and environmental samples were analyzed, and the immunodetection was confirmed by cultural methods (isolation on selective and nonselective media before and after broth enrichment). With this methodology, V. vulnificus biotype 2 was successfully detected in infected eels and asymptomatic carriers, which suggests that eels can act as a reservoir for this pathogen. PMID:9023934

Biosca, E G; Marco-Noales, E; Amaro, C; Alcaide, E

1997-01-01

263

Vibrio Factors Cause Rapid Fluid Accumulation in Suckling Mice,  

National Technical Information Service (NTIS)

Non-O-1 and O-1 Vibrio cholerae and Vibrio fluvialis isolated from clinical and environmental sources were examined for virulence factor production in 3-day-old suckling mice and in Y-1 tissue culture. The responses of the suckling mice to intragastricall...

M. Nishibuchi, R. J. Seidler, D. M. Rollins, S. W. Joseph

1983-01-01

264

Ultrastructural Evidence of Invasive Activity of Vibrio Cholerae  

Microsoft Academic Search

The development of experimental cholera in suckling rabbits is associated with typical cholerogenic syndrome: the presence of Vibrio cholerae in the blood, bile (in 60 and 70% cases, respectively), small and large intestine (in 100% cases). Simultaneously with enterocyte desquamation and increased permeability of the blood-enterocyte barrier, the vibrios are released into villous stroma and then into the microcirculatory bed.

N. G. Kharlanova; Yu. M. Lomov; I. D. Bardykh; E. V. Monakhova; E. A. Bardakhchyan

2004-01-01

265

Vibrio cholerae non-serogroup O1 cystitis.  

PubMed Central

We report a case of a patient who developed cystitis caused by non-serogroup O1 Vibrio cholerae after swimming in the Chesapeake Bay. Treatment was empirical, with complete symptomatic resolution. Genitourinary tract infections by Vibrio spp. are uncommon but should be considered when cystitis occurs after saltwater exposure in appropriate geographic regions. PMID:2768474

Dumler, J S; Osterhout, G J; Spangler, J G; Dick, J D

1989-01-01

266

Vibrio diversity and dynamics in the Monterey Bay upwelling region  

PubMed Central

The Vibrionaceae (Vibrio) are a ubiquitous group of metabolically flexible marine bacteria that play important roles in biogeochemical cycling in the ocean. Despite this versatility, little is known about Vibrio diversity and abundances in upwelling regions. The seasonal dynamics of Vibrio populations was examined by analysis of 16S rRNA genes in Monterey Bay (MB), California from April 2006–April 2008 at two long term monitoring stations, C1 and M2. Vibrio phylotypes within MB were diverse, with subpopulations clustering with several different cultured representatives including Allivibrio spp., Vibrio penaecida, and Vibrio splendidus as well as with many unidentified marine environmental bacterial 16S rRNA gene sequences. Total Vibrio population abundances, as well as abundances of a Vibrio sp. subpopulation (MBAY Vib7) and an Allivibrio sp. subpopulation (MBAY Vib4) were examined in the context of environmental parameters from mooring station and CTD cast data. Total Vibrio populations showed some seasonal variability but greater variability was observed within the two subpopulations. MBAY Vib4 was negatively associated with MB upwelling indices and positively correlated with oceanic season conditions, when upwelling winds relax and warmer surface waters are present in MB. MBAY Vib7 was also negatively associated with upwelling indices and represented a deeper Vibrio sp. population. Correlation patterns suggest that larger oceanographic conditions affect the dynamics of the populations in MB, rather than specific environmental factors. This study is the first to target and describe the diversity and dynamics of these natural populations in MB and demonstrates that these populations shift seasonally within the region. PMID:24575086

Mansergh, Sarah; Zehr, Jonathan P.

2013-01-01

267

Antibacterial activity of the lipopetides produced by Bacillus amyloliquefaciens M1 against multidrug-resistant Vibrio spp. isolated from diseased marine animals.  

PubMed

In this work, the antibacterial activity of the lipopeptides produced by Bacillus amyloliquefaciens M1 was examined against multidrug-resistant Vibrio spp. and Shewanella aquimarina isolated from diseased marine animals. A new and cheap medium which contained 1.0 % soybean powder, 1.5 % wheat flour, pH 7.0 was developed. A crude surfactant concentration of 0.28 mg/ml was obtained after 18 h of 10-l fermentation and diameter of the clear zone on the plate seeded with Vibrio anguillarum was 34 mm. A preliminary characterization suggested that the lipopeptide N3 produced by B. amyloliquefaciens M1 was the main product and contained the surfactin isoforms with amino acids (GLLVDLL) and hydroxy fatty acids (of 12-15 carbons in length). The evaluation of the antibacterial activity of the lipopeptide N3 was carried out against S. aquimarina and nine species of Vibrio spp.. It was found that all the Vibrio spp. and S. aquimarina showed resistance to several different antibiotics, suggesting that they were the multidrug resistance. It was also indicated that all the Vibrio spp. strains and S. aquimarina were sensitive to the surfactin N3, in particular V. anguillarum. The results demonstrated that the lipopeptides produced by B. amyloliquefaciens M1 had a broad spectrum of action, including antibacterial activity against the pathogenic Vibrio spp. with multidrug-resistant profiles. After the treatment with the lipopeptide N3, the cell membrane of V. anguillarum was damaged, and the whole cells of the bacterium were disrupted. PMID:24132666

Xu, Hong-Mei; Rong, Yan-Jun; Zhao, Ming-Xin; Song, Bo; Chi, Zhen-Ming

2014-01-01

268

The Crystal Structure of a Binary Complex of Two Pseudopilins: EpsI And EpsJ From the Type 2 Secretion System of Vibrio Vulnificus  

Microsoft Academic Search

Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins

M. E. Yanez; K. V. Korotkov; J. Abendroth; W. G. J. Hol

2009-01-01

269

Structure of TcpG, the DsbA protein folding catalyst from Vibrio cholerae 1 1 Edited by I. A. Wilson  

Microsoft Academic Search

The efficient and correct folding of bacterial disulfide bonded proteins in vivo is dependent upon a class of periplasmic oxidoreductase proteins called DsbA, after the Escherichia coli enzyme. In the pathogenic bacterium Vibrio cholerae, the DsbA homolog (TcpG) is responsible for the folding, maturation and secretion of virulence factors. Mutants in which the tcpg gene has been inactivated are avirulent;

Shu-Hong Hu; Joel A Peek; Eileen Rattigan; Ronald K Taylor; Jennifer L Martin

1997-01-01

270

The Crystal Structure of a Binary Complex of two Pseudopilins: EpsI and EpsJ from the Type 2 Secretion System of Vibrio vulnificus  

Microsoft Academic Search

Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins

Marissa E. Yanez; Konstantin V. Korotkov; Jan Abendroth; Wim G. J. Hol

2008-01-01

271

Two Cases of Bacteriemia Caused by Nontoxigenic, Non-O1, Non-O139 Vibrio cholerae Isolates in Ho Chi Minh City, Vietnam  

PubMed Central

The toxigenic bacterium Vibrio cholerae belonging to the O1 and O139 serogroups is commonly associated with epidemic diarrhea in tropical settings; other diseases caused by this environmental pathogen are seldom identified. Here we report two unassociated cases of nonfatal, nontoxigenic V. cholerae non-O1, non-O139 bacteremia in patients with comorbidities in Ho Chi Minh City, Vietnam, that occurred within a 4-week period. PMID:25122858

Lan, Nguyen Phu Huong; Nga, Tran Vu Thieu; Yen, Nguyen Thi Thu; Dung, Le Thi; Tuyen, Ha Thanh; Campbell, James I.; Whitehorn, Jamie; Thwaites, Guy; Chau, Nguyen Van Vinh

2014-01-01

272

Two Cases of Bacteriemia Caused by Nontoxigenic, Non-O1, Non-O139 Vibrio cholerae Isolates in Ho Chi Minh City, Vietnam.  

PubMed

The toxigenic bacterium Vibrio cholerae belonging to the O1 and O139 serogroups is commonly associated with epidemic diarrhea in tropical settings; other diseases caused by this environmental pathogen are seldom identified. Here we report two unassociated cases of nonfatal, nontoxigenic V. cholerae non-O1, non-O139 bacteremia in patients with comorbidities in Ho Chi Minh City, Vietnam, that occurred within a 4-week period. PMID:25122858

Lan, Nguyen Phu Huong; Nga, Tran Vu Thieu; Yen, Nguyen Thi Thu; Dung, Le Thi; Tuyen, Ha Thanh; Campbell, James I; Whitehorn, Jamie; Thwaites, Guy; Chau, Nguyen Van Vinh; Baker, Stephen

2014-10-01

273

Detection of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae with respect to seasonal fluctuations in temperature and plankton abundance.  

PubMed

Over a 1-year period, bi-monthly estuarine surface water and plankton samples (63-200 and >?200??m fractions) were assayed by polymerase chain reaction for the prevalence of total Vibrio parahaemolyticus, V.?vulnificus and V.?cholerae and select genes associated with clinical strains found in each species. Neither temperature nor plankton abundance was a significant correlate of total V.?parahaemolyticus; however, the prevalence of genes commonly associated with clinical strains (trh, tdh, ORF8) increased with temperature and copepod abundance (P?Vibrio strains were more frequently detected in association with chitinous plankton. We conclude that V.?parahaemolyticus, V.?vulnificus, V.?cholerae and subpopulations that harbour genes common to clinical strains respond distinctly to seasonal changes in temperature as well as shifts in the taxonomic composition of discrete plankton fractions. PMID:24024909

Turner, Jeffrey W; Malayil, Leena; Guadagnoli, Dominic; Cole, D; Lipp, Erin K

2014-04-01

274

High-throughput screening and whole genome sequencing identifies an antimicrobially active inhibitor of Vibrio cholerae  

PubMed Central

Background Pathogenic serotypes of Vibrio cholerae cause the life-threatening diarrheal disease cholera. The increasing development of bacterial resistances against the known antibiotics necessitates the search for new antimicrobial compounds and targets for this pathogen. Results A high-throughput screening assay with a Vibrio cholerae reporter strain constitutively expressing green fluorescent protein (GFP) was developed and applied in the investigation of the growth inhibitory effect of approximately 28,300 structurally diverse natural compounds and synthetic small molecules. Several compounds with activities in the low micromolar concentration range were identified. The most active structure, designated vz0825, displayed a minimal inhibitory concentration (MIC) of 1.6 ?M and a minimal bactericidal concentration (MBC) of 3.2 ?M against several strains of V. cholerae and was specific for this pathogen. Mutants with reduced sensitivity against vz0825 were generated and whole genome sequencing of 15 pooled mutants was carried out. Comparison with the genome of the wild type strain identified the gene VC_A0531 (GenBank: AE003853.1) as the major site of single nucleotide polymorphisms in the resistant mutants. VC_A0531 is located on the small chromosome of V. cholerae and encodes the osmosensitive K+-channel sensor histidine kinase (KdpD). Nucleotide exchange of the major mutation site in the wild type strain confirmed the sensitive phenotype. Conclusion The reporter strain MO10 pG13 was successfully used for the identification of new antibacterial compounds against V. cholerae. Generation of resistant mutants and whole genome sequencing was carried out to identify the histidine kinase KdpD as a novel antimicrobial target. PMID:24568688

2014-01-01

275

The Effects of Storage Temperature on the Growth of Vibrio parahaemolyticus and Organoleptic Properties in Oysters.  

PubMed

During harvesting and storage, microbial pathogens and natural spoilage flora may grow, negatively affecting the composition and texture of oysters and posing a potential health threat to susceptible consumers. A solution to these problems would mitigate associated damaging effects on the seafood industry. The purpose of this study was to investigate the effects of storage temperature on growth of vibrios as well as other microbial, sensory, and textural characteristics of post-harvest shellstock Eastern oysters (Crassostrea virginica). Oysters harvested from the Chesapeake Bay, Maryland, during summer months (June, July, and August, 2010) were subjected to three storage temperatures (5, 10, and 20°C) over a 10-day period. At selected time intervals (0, 1, 3, 7, and 10?days), two separate samples of six oysters each were homogenated and analyzed for pH, halophilic plate counts (HPC), total vibrios, and Vibrio parahaemolyticus (Vp). Oyster meats shucked after storage were also organoleptically evaluated (acceptability, appearance, and odor). Texture analysis was performed using a texture analyzer on meats shucked from oysters held under the same conditions. The pH of the oyster homogenates showed no consistent pattern with storage time and temperature. The HPC (4.5-9.4?log?CFU/g) were highest on day 7 at 20°C while olfactory acceptance reduced with time and increasing storage temperatures. The Vp counts increased over time from 3.5 to 7.5?log MPN/g by day 10. Loss of freshness as judged by appearance and odor was significant over time (p?

Mudoh, Meshack Fon; Parveen, Salina; Schwarz, Jurgen; Rippen, Tom; Chaudhuri, Anish

2014-01-01

276

The Effects of Storage Temperature on the Growth of Vibrio parahaemolyticus and Organoleptic Properties in Oysters  

PubMed Central

During harvesting and storage, microbial pathogens and natural spoilage flora may grow, negatively affecting the composition and texture of oysters and posing a potential health threat to susceptible consumers. A solution to these problems would mitigate associated damaging effects on the seafood industry. The purpose of this study was to investigate the effects of storage temperature on growth of vibrios as well as other microbial, sensory, and textural characteristics of post-harvest shellstock Eastern oysters (Crassostrea virginica). Oysters harvested from the Chesapeake Bay, Maryland, during summer months (June, July, and August, 2010) were subjected to three storage temperatures (5, 10, and 20°C) over a 10-day period. At selected time intervals (0, 1, 3, 7, and 10?days), two separate samples of six oysters each were homogenated and analyzed for pH, halophilic plate counts (HPC), total vibrios, and Vibrio parahaemolyticus (Vp). Oyster meats shucked after storage were also organoleptically evaluated (acceptability, appearance, and odor). Texture analysis was performed using a texture analyzer on meats shucked from oysters held under the same conditions. The pH of the oyster homogenates showed no consistent pattern with storage time and temperature. The HPC (4.5–9.4?log?CFU/g) were highest on day 7 at 20°C while olfactory acceptance reduced with time and increasing storage temperatures. The Vp counts increased over time from 3.5 to 7.5?log MPN/g by day 10. Loss of freshness as judged by appearance and odor was significant over time (p?

Mudoh, Meshack Fon; Parveen, Salina; Schwarz, Jurgen; Rippen, Tom; Chaudhuri, Anish

2014-01-01

277

Liposome-encapsulated cinnamaldehyde enhances zebrafish (Danio rerio) immunity and survival when challenged with Vibrio vulnificus and Streptococcus agalactiae.  

PubMed

Cinnamaldehyde, which is extracted from cinnamon, is a natural compound with activity against bacteria and a modulatory immune function. However, the antibacterial activity and immunostimulation of cinnamaldehyde in fish has not been well investigated due to the compound's poor water solubility. Thus, liposome-encapsulated cinnamaldehyde (LEC) was used to evaluate the effects of cinnamaldehyde on in vitro antibacterial activity against aquatic pathogens and in vivo immunity and protection parameters against Vibrio vulnificus and Streptococcus agalactiae. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) as well as bactericidal agar plate assay results demonstrated the effective bacteriostatic and bactericidal potency of LEC against Aeromonas hydrophila, V. vulnificus, and S. agalactiae, as well as the antibiotic-resistant Vibrio parahaemolyticus and Vibrio alginolyticus. Bacteria challenge test results demonstrated that LEC significantly enhances the survival rate and inhibits bacterial growth in zebrafish infected with A. hydrophila, V. vulnificus, and S. agalactiae. A gene expression study using a real-time PCR showed that LEC immersion-treated zebrafish had increased endogenous interleukin (IL)-1?, IL-6, IL-15, IL-21, tumor necrosis factor (TNF)-?, and interferon (INF)-? expression in vivo. After the zebrafish were infected with V. vulnificus or S. agalactiae, the LEC immersion treatment suppressed the expression of the inflammatory cytokines IL-1?, IL-6, IL-15, NF-?b, and TNF-? and induced IL-10 and C3b expression. These findings demonstrate that cinnamaldehyde exhibits antimicrobial activity against aquatic pathogens, even antibiotic-resistant bacterial strains and immune-stimulating effects to protect the host's defenses against pathogen infection in bacteria-infected zebrafish. These results suggest that LEC could be used as an antimicrobial agent and immunostimulant to protect bacteria-infected fish in aquaculture. PMID:24632045

Faikoh, Elok Ning; Hong, Yong-Han; Hu, Shao-Yang

2014-05-01

278

Year round patchiness of Vibrio vulnificus within a temperate texas bay  

PubMed Central

Aims To investigate with high geographical resolution the small-scale spatial and temporal distribution of the pathogen Vibrio vulnificus throughout the water column in a temperate Texas bay where numerous V. vulnificus infections had been reported by the regional media the previous Summer. Methods and Results Surface and bottom water samples were collected from 19 sites between Apr 2005 and Oct 2006 from Matagorda Bay, TX. Physicochemical parameters were measured and V. vulnificus were analyzed using quantitative polymerase chain reaction (Q-PCR) as a means of overcoming constraints of traditional culturing techniques. V. vulnificus was detected through out the year, although it’s temporal and spatial distribution was patchy. V. vulnificus abundances at individual sites ranged from <10 to >1.1×103 cells mL?1. No statistically reliable predictive model related to the physicochemical parameters could be developed for this pathogen. Conclusions This study demonstrates year round detection of V. vulnificus while likely in the viable but non-culturable (VBNC) state during the winter months and emphasizes why physicochemical factors are insufficient metrics for robust regression modeling of this pathogen. Significance and Impact of the Study This study provides an effective new tool, Q-PCR, to study environmental distribution of V. vulnificus and that in light of the patchy distribution observed, new reliable approaches and a mechanistic understanding of pathogen ecology need to be considered to effectively model the aquatic distribution of V. vulnificus. PMID:22212214

Shelli, F.; Gabriel, S.; Richard, L.

2012-01-01

279

Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae  

PubMed Central

Understanding the genetic and ecological factors which support the emergence of new clones of pathogenic bacteria is vital to develop preventive measures. Vibrio cholerae the causative agent of cholera epidemics represents a paradigm for this process in that this organism evolved from environmental non-pathogenic strains by acquisition of virulence genes. The major virulence factors of V. cholerae, cholera toxin (CT) and toxin coregulated pilus (TCP) are encoded by a lysogenic bacteriophage (CTX?) and a pathogenicity island, respectively. Additional phages which cooperate with the CTX? in horizontal transfer of genes in V. cholerae have been characterized, and the potential exists for discovering yet new phages or genetic elements which support the transfer of genes for environmental fitness and virulence leading to the emergence of new epidemic strains. Phages have also been shown to play a crucial role in modulating seasonal cholera epidemics. Thus, the complex array of natural phenomena driving the evolution of pathogenic V. cholerae includes, among other factors, phages that either participate in horizontal gene transfer or in a bactericidal selection process favoring the emergence of new clones of V. cholerae. PMID:23076327

Faruque, Shah M.; Mekalanos, John J.

2012-01-01

280

RpoS and Indole Signaling Control the Virulence of Vibrio anguillarum towards Gnotobiotic Sea Bass (Dicentrarchus labrax) Larvae  

PubMed Central

Quorum sensing, bacterial cell-to-cell communication with small signal molecules, controls the virulence of many pathogens. In contrast to other vibrios, neither the VanI/VanR acylhomoserine lactone quorum sensing system, nor the three-channel quorum sensing system affects virulence of the economically important aquatic pathogen Vibrio anguillarum. Indole is another molecule that recently gained attention as a putative signal molecule. The data presented in this study indicate that indole signaling and the alternative sigma factor RpoS have a significant impact on the virulence of V. anguillarum. Deletion of rpoS resulted in increased expression of the indole biosynthesis gene tnaA and in increased production of indole. Both rpoS deletion and the addition of exogenous indole (50–100 µM) resulted in decreased biofilm formation, exopolysaccharide production (a phenotype that is required for pathogenicity) and expression of the exopolysaccharide synthesis gene wbfD. Further, indole inhibitors increased the virulence of the rpoS deletion mutant, suggesting that indole acts downstream of RpoS. Finally, in addition to the phenotypes found to be affected by indole, the rpoS deletion mutant also showed increased motility and decreased sensitivity to oxidative stress. PMID:25360804

Li, Xuan; Yang, Qian; Dierckens, Kristof; Milton, Debra L.; Defoirdt, Tom

2014-01-01

281

Pathogenesis of Vibrio anguillarum in the channel catfish (Ictalurus punctatus)  

E-print Network

+ ( +2084), t 8 '1', * d ~, 9 d n. ( 69), d fl 1 ll g ll, 1 11 2 ll, *i, ~h 11 b~d' ', ~h) +, ~tt fnb, V'8 ' ~) ~) ( 2078), 8 ' ~) ( 4263), V. ~)) ( 972) . fuscus (m23099), and V. arahaemol ticus (ms544) Enumeration of Bacteria Each of fifty-nine fish... (ms4277-1) 1 b 1 ' ~h (ms2056, 4030, 2058) Nicrococcus ~s. (~Gaffk a ~s. ) Nicrococcus ~s . (Sarcina ~s . ) ~h' u '4 ( 2494) EZH ?" '9 ' ~3' 1 t' ( 2979) Vibrio alclosus (ms4263) Eih 1 ~23 ( 972) Vibrio fuscus (ms3099) Vibrio arahaemol ticus...

Jones, David Munson

2012-06-07

282

Factors That Explain Excretion of Enteric Pathogens by Persons Without Diarrhea  

PubMed Central

Excretion of enteropathogens by subjects without diarrhea influences our appreciation of the role of these pathogens as etiologic agents. Characteristics of the pathogens and host and environmental factors help explain asymptomatic excretion of diarrheal pathogens by persons without diarrhea. After causing acute diarrhea followed by clinical recovery, some enteropathogens are excreted asymptomatically for many weeks. Thus, in a prevalence survey of persons without diarrhea, some may be excreting pathogens from diarrheal episodes experienced many weeks earlier. Volunteer challenges with Vibrio cholerae O1, enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli, Campylobacter jejuni, and Giardia lamblia document heterogeneity among enteropathogen strains, with some inexplicably not eliciting diarrhea. The immune host may not manifest diarrhea following ingestion of a pathogen but may nevertheless asymptomatically excrete. Some human genotypes render them less susceptible to symptomatic or severe diarrheal infection with certain pathogens such as Vibrio cholerae O1 and norovirus. Pathogens in stools of individuals without diarrhea may reflect recent ingestion of inocula too small to cause disease in otherwise susceptible hosts or of animal pathogens (eg, bovine or porcine ETEC) that do not cause human illness. PMID:23169942

Levine, Myron M.; Robins-Browne, Roy M.

2012-01-01

283

Factors that explain excretion of enteric pathogens by persons without diarrhea.  

PubMed

Excretion of enteropathogens by subjects without diarrhea influences our appreciation of the role of these pathogens as etiologic agents. Characteristics of the pathogens and host and environmental factors help explain asymptomatic excretion of diarrheal pathogens by persons without diarrhea. After causing acute diarrhea followed by clinical recovery, some enteropathogens are excreted asymptomatically for many weeks. Thus, in a prevalence survey of persons without diarrhea, some may be excreting pathogens from diarrheal episodes experienced many weeks earlier. Volunteer challenges with Vibrio cholerae O1, enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli, Campylobacter jejuni, and Giardia lamblia document heterogeneity among enteropathogen strains, with some inexplicably not eliciting diarrhea. The immune host may not manifest diarrhea following ingestion of a pathogen but may nevertheless asymptomatically excrete. Some human genotypes render them less susceptible to symptomatic or severe diarrheal infection with certain pathogens such as Vibrio cholerae O1 and norovirus. Pathogens in stools of individuals without diarrhea may reflect recent ingestion of inocula too small to cause disease in otherwise susceptible hosts or of animal pathogens (eg, bovine or porcine ETEC) that do not cause human illness. PMID:23169942

Levine, Myron M; Robins-Browne, Roy M

2012-12-01

284

Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner?  

PubMed Central

Although it is a human pathogen, Vibrio cholerae is a regular member of aquatic habitats, such as coastal regions and estuaries. Within these environments, V. cholerae often takes advantage of the abundance of zooplankton and their chitinous molts as a nutritious surface on which the bacteria can form biofilms. Chitin also induces the developmental program of natural competence for transformation in several species of the genus Vibrio. In this study, we show that V. cholerae does not distinguish between species-specific and non-species-specific DNA at the level of DNA uptake. This is in contrast to what has been shown for other Gram-negative bacteria, such as Neisseria gonorrhoeae and Haemophilus influenzae. However, species specificity with respect to natural transformation still occurs in V. cholerae. This is based on a positive correlation between quorum sensing and natural transformation. Using mutant-strain analysis, cross-feeding experiments, and synthetic cholera autoinducer-1 (CAI-1), we provide strong evidence that the species-specific signaling molecule CAI-1 plays a major role in natural competence for transformation. We suggest that CAI-1 can be considered a competence pheromone. PMID:21784943

Suckow, Gaia; Seitz, Patrick; Blokesch, Melanie

2011-01-01

285

Interspecific Quorum Sensing Mediates the Resuscitation of Viable but Nonculturable Vibrios  

PubMed Central

Entry and exit from dormancy are essential survival mechanisms utilized by microorganisms to cope with harsh environments. Many bacteria, including the opportunistic human pathogen Vibrio vulnificus, enter a form of dormancy known as the viable but nonculturable (VBNC) state. VBNC cells can resuscitate when suitable conditions arise, yet the molecular mechanisms facilitating resuscitation in most bacteria are not well understood. We discovered that bacterial cell-free supernatants (CFS) can awaken preexisting dormant vibrio populations within oysters and seawater, while CFS from a quorum sensing mutant was unable to produce the same resuscitative effect. Furthermore, the quorum sensing autoinducer AI-2 could induce resuscitation of VBNC V. vulnificus in vitro, and VBNC cells of a mutant unable to produce AI-2 were unable to resuscitate unless the cultures were supplemented with exogenous AI-2. The quorum sensing inhibitor cinnamaldehyde delayed the resuscitation of wild-type VBNC cells, confirming the importance of quorum sensing in resuscitation. By monitoring AI-2 production by VBNC cultures over time, we found quorum sensing signaling to be critical for the natural resuscitation process. This study provides new insights into the molecular mechanisms stimulating VBNC cell exit from dormancy, which has significant implications for microbial ecology and public health. PMID:24509922

Ayrapetyan, Mesrop; Williams, Tiffany C.

2014-01-01

286

Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae  

SciTech Connect

The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

2008-07-15

287

Integrating conjugative elements of the SXT/R391 family from fish-isolated Vibrios encode restriction-modification systems that confer resistance to bacteriophages.  

PubMed

Integrating conjugative elements (ICEs) of the SXT/R391 family have been described in Vibrios, mainly Vibrio cholerae, and other bacteria as carriers of variable gene content conferring adaptive advantages upon their hosts, including antimicrobial resistance and motility regulation. However, our knowledge on their host range and ecological significance is still limited. Here, we report the identification and characterization of ICEVspPor3 and ICEValSpa1, two novel ICEs of the SXT/R391 family from fish-isolated Vibrio splendidus and Vibrio alginolyticus, respectively. We found that ICEVspPor3 carries tetracycline and HgCl(2) resistance determinants and can be transferred by conjugation to Escherichia coli and to several species of marine bacteria including some of the major bacterial fish pathogens in marine aquaculture, whereas ICEValSpa1 lacks resistance genes. Interestingly, both ICEs harbor genes encoding distinct restriction-modification (RM) systems. We demonstrate here that these RM systems, when expressed in E. coli, confer protection to infection by T1 bacteriophage and by environmental water bacteriophages. Our results provide evidences that the variable gene content of ICEs of the SXT/R391 family encodes fitness functions beyond those related to antimicrobial resistance and motility regulation and suggest that the host range of these elements in the marine environment might be broader than expected. PMID:22974320

Balado, Miguel; Lemos, Manuel L; Osorio, Carlos R

2013-02-01

288

Survival of Vibrio parahaemolyticus in Cooked Seafood at Refrigeration Temperatures  

PubMed Central

The growth and survival of two strains of Vibrio parahaemolyticus isolated during food-borne gastroenteritis outbreaks in Japan and surface inoculated on cooked shrimp, shrimp with sauce, or cooked crab were tested at various refrigeration temperatures during a 48-h holding period. On cooked shrimp and crab, the vibrios grew well at 18.3 C, but their numbers declined gradually at 10 C and below. At 12.8 C, vibrios remained static for the most part. Thus, it appeared that 12.8 C was the borderline temperature for growth of the organism on cooked seafood. When cocktail sauce was added to surface-inoculated shrimp at a ratio of 2:1, the vibrio die-off rate was accelerated. In the shrimp and sauce few cells remained after 48 h, but in the sauce alone die-off was complete at 6 h. PMID:4825975

Bradshaw, Joe G.; Francis, David W.; Twedt, Robert M.

1974-01-01

289

The Squid-Vibrio Symbioses: From Demes to Genes  

Microsoft Academic Search

SYNOPSIS. The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from

JENNIFER R. KIMBELL

2003-01-01

290

Natural transformation of a marine Vibrio species by plasmid DNA  

Microsoft Academic Search

Vibrio sp. DI9, recently isolated from Tampa Bay, FL, has been found to be naturally transformed by the broad host range plasmid pKT230 in both filter transformation assays and sterile sediment microcosms. This is the first report of natural transformation by plasmid DNA of aVibrio sp. and of a marine bacterial isolate. Transformation frequencies ranged from 0.3 to 3.1×10?8 transformants

Wade H. Jeffrey; John H. Paul; Gregory J. Stewart

1990-01-01

291

Vibrio neptunius sp. nov., Vibrio brasiliensis sp. nov. and Vibrio xuii sp. nov., isolated from the marine aquaculture environment (bivalves, fish, rotifers and shrimps).  

PubMed

The fluorescent amplified fragment length polymorphism (FAFLP) groups A5 (21 isolates), A8 (6 isolates) and A23 (3 isolates) distinguished in an earlier paper (Thompson et al., Syst Appl Microbiol 24, 520-538, 2001) were examined in more depth. These three groups were phylogenetically related to Vibrio tubiashii, but DNA-DNA hybridization experiments proved that the three AFLP groups are in fact novel species. Chemotaxonomic and phenotypic analyses further revealed several differences among the 30 isolates and known Vibrio species. It is proposed to accommodate these isolates in three novel species, namely Vibrio neptunius (type strain LMG 20536T; EMBL accession no. AJ316171; G +C content of the type strain 46.0 mol%), Vibrio brasiliensis (type strain LMG 20546T; EMBL accession no. AJ316172; G + C content of the type strain 45.9 mol%) and Vibrio xuii (type strain LMG 21346T; EMBL accession no. AJ316181; G +C content of the type strain 46.6 mol%). These species can be differentiated on the basis of phenotypic features, including fatty acid composition (particularly 14:0 iso, 14:0 iso 3-OH, 16:0 iso, 16:0, 17:0 and 17:1 omega8c), enzyme activities and utilization and fermentation of various carbon sources. PMID:12656180

Thompson, F L; Li, Y; Gomez-Gil, B; Thompson, C C; Hoste, B; Vandemeulebroecke, K; Rupp, G S; Pereira, A; De Bem, M M; Sorgeloos, P; Swings, J

2003-01-01

292

Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine.  

PubMed Central

Vibrio vulnificus, a normal bacterial inhabitant of estuaries, is of concern because it can be a potent human pathogen, causing septicemia, wound infections, and gastrointestinal disease in susceptible hosts. From May 1989 through December 1990, oysters and/or water were obtained from six areas in the Great Bay estuary of New Hampshire and Maine. Water was also sampled from three freshwater sites that lead into these areas. V. vulnificus was first detected in the estuary in early July and remained present through September. V. vulnificus was isolated routinely during this period from oysters and water of the Squamscott, Piscataqua, and Oyster Rivers but was only isolated twice from the oysters or water of the Great Bay itself. This study determined that there was a strong correlation (by analysis of variance) between temperature, salinity, and the presence of V. vulnificus in water and oysters. However, other unidentified factors appear to influence its presence in certain areas of the estuary. PMID:1444362

O'Neill, K R; Jones, S H; Grimes, D J

1992-01-01

293

Engineering Vibrio fischeri for Inducible Gene Expression  

PubMed Central

The marine bacterium Vibrio fischeri serves as a model organism for a variety of natural phenomena, including symbiotic host colonization. The ease with which the V. fischeri genome can be manipulated contributes greatly to our ability to identify the factors involved in these phenomena. Here, we have adapted genetic tools for use in V. fischeri to promote our ability to conditionally control the expression of genes of interest. Specifically, we modified the commonly used mini-Tn5 transposon to contain an outward-facing, LacI-repressible/IPTG-inducible promoter, and inserted the lacI gene into the V. fischeri chromosome. Used together, these tools permit the identification and induction of genes that control specific phenotypes. To validate this approach, we identified IPTG-controllable motility mutants. We anticipate that the ability to randomly insert an inducible promoter into the genome of V. fischeri will advance our understanding of various aspects of the physiology of this microbe.

Ondrey, Jakob M; Visick, Karen L

2014-01-01

294

A chimeric siderophore halts swarming Vibrio.  

PubMed

Some bacteria swarm under some circumstances; they move rapidly and collectively over a surface. In an effort to understand the molecular signals controlling swarming, we isolated two bacterial strains from the same red seaweed, Vibrio alginolyticus B522, a vigorous swarmer, and Shewanella algae B516, which inhibits V.?alginolyticus swarming in its vicinity. Plate assays combined with NMR, MS, and X-ray diffraction analyses identified a small molecule, which was named avaroferrin, as a potent swarming inhibitor. Avaroferrin, a previously unreported cyclic dihydroxamate siderophore, is a chimera of two well-known siderophores: putrebactin and bisucaberin. The sequenced genome of S.?algae revealed avaroferrin's biosynthetic gene cluster to be a mashup of putrebactin and bisucaberin biosynthetic genes. Avaroferrin blocks swarming through its ability to bind iron in a form that cannot be pirated by V.?alginolyticus, thereby securing this essential resource for its producer. PMID:24615751

Böttcher, Thomas; Clardy, Jon

2014-03-24

295

Vibrio cholerae: lessons for mucosal vaccine design  

PubMed Central

The ability of Vibrio cholerae to persist in bodies of water will continue to confound our ability to eradicate cholera through improvements to infrastructure, and thus cholera vaccines are needed. We aim for an inexpensive vaccine that can provide long-lasting protection from all epidemic cholera infections, currently caused by O1 or O139 serogroups. Recent insights into correlates of protection, epidemiology and pathogenesis may help us design improved vaccines. This notwithstanding, we have come to appreciate that even marginally protective vaccines, such as oral whole-cell killed vaccines, if widely distributed, can provide significant protection, owing to herd immunity. Further efforts are still required to provide more effective protection of young children. PMID:21162623

Bishop, Anne L; Camilli, Andrew

2011-01-01

296

Viscosity dictates metabolic activity of Vibrio ruber  

PubMed Central

Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705

Bori?, Maja; Danev?i?, Tjaša; Stopar, David

2012-01-01

297

Environmental determinants of Vibrio cholerae biofilm development.  

PubMed

Vibrio cholerae is a versatile bacterium that flourishes in diverse environments, including the human intestine, rivers, lakes, estuaries, and the ocean. Surface attachment is believed to be essential for colonization of all of these natural environments. Previous studies have demonstrated that the vps genes, which encode proteins required for exopolysaccharide synthesis and transport, are required for V. cholerae biofilm development in Luria-Bertani broth. In this work, we showed that V. cholerae forms vps-dependent biofilms and vps-independent biofilms. The vps-dependent and -independent biofilms differ in their environmental activators and in architecture. Our results suggest that environmental activators of vps-dependent biofilm development are present in freshwater, while environmental activators of vps-independent biofilm development are present in seawater. The distinct environmental requirements for the two modes of biofilm development suggest that vps-dependent biofilm development and vps-independent biofilm development may play distinct roles in the natural environment. PMID:12957889

Kierek, Katharine; Watnick, Paula I

2003-09-01

298

Identification of a novel vaccine candidate by immunogenic screening of Vibrio parahaemolyticus outer membrane proteins.  

PubMed

Vibrio parahaemolyticus is an important halophilous pathogen that can cause not only a broad range of disease in aquatic animals but also serious seafood-borne illness in humans as a result of the consumption of seafood. To avoid the use of antibiotics, it is critical to identify protective antigens for developing highly effective vaccines against this pathogen. Outer membrane proteins (OMPs) have been suggested as potential vaccine candidates for conferring protection against infection. In this study, we identified novel immunogenic OMPs using an immune assay with serum antibodies from mice infected by V. parahaemolyticus combined with mass spectrometry analysis. Nine OMPs were identified to be immunogenic proteins, and four of these identified proteins with relatively low abundance in OMP profiles, LptD, VP0802, VP1243 and VP0966, were determined to have immunogenicity for the first time. One OMP of interest, VP0802, is highly conserved among major Vibrio species and was proposed to adopt a ?-barrel conformation and to be a member of the OprD protein family by bioinformatic analysis. The immunogenicity and protective efficacy of VP0802 were further evaluated by bacterial challenge postimmunization in a mouse model. VP0802 was confirmed to be highly immunogenic and to offer strong protection against V. parahaemolyticus infection, with an RPS of at least 66.7. Efficient clearance of bacteria from the blood of vaccinated mice was also observed. Moreover, upregulation of VP0802 expression was found after bacteria were exposed to fresh sera. These data, taken together, suggest that VP0802 is a promising candidate for the development of a subunit vaccine to prevent V. parahaemolyticus infection. PMID:25236587

Li, Chuchu; Ye, Zhicang; Wen, Liangyou; Chen, Ran; Tian, Lihua; Zhao, Fukun; Pan, Jianyi

2014-10-21

299

Characterization of a novel zinc transporter ZnuA acquired by Vibrio parahaemolyticus through horizontal gene transfer  

PubMed Central

Vibrio parahaemolyticus is a clinically important foodborne pathogen that causes acute gastroenteritis worldwide. It has been shown that horizontal gene transfer (HGT) contributes significantly to virulence development of V. parahaemolyticus. In this study, we identified a novel znuA homolog (vpa1307) that belongs to a novel subfamily of ZnuA, a bacterial zinc transporter. The vpa1307 gene is located upstream of the V. parahaemolyticus pathogenicity island (Vp-PAIs) in both tdh-positive and trh-positive V. parahaemolyticus strains. Phylogenetic analysis revealed the exogenous origin of vpa1307 with 40% of V. parahaemolyticus clinical isolates possessing this gene. The expression of vpa1307 gene in V. parahaemolyticus clinical strain VP3218 is induced under zinc limitation condition. Gene deletion and complementation assays confirmed that vpa1307 contributes to the growth of VP3218 under zinc depletion condition and that conserved histidine residues of Vpa1307 contribute to its activity. Importantly, vpa1307 contributes to the cytotoxicity of VP3218 in HeLa cells and a certain degree of virulence in murine model. These results suggest that the horizontally acquired znuA subfamily gene, vpa1307, contributes to the fitness and virulence of Vibrio species. PMID:24133656

Liu, Ming; Yan, Meiying; Liu, Lizhang; Chen, Sheng

2013-01-01

300

Isolation and experimental infection with Vibrio alginolyticus in the sea horse, Hippocampus reidi Ginsburg, 1933 (Osteichthyes: Syngnathidae) in Brazil.  

PubMed

The aim of this study was to evaluate the pathogenicity of Vibrio alginolyticus isolated from an outbreak of sea horse Hippocampus reidi reared in the State of Santa Catarina, Brazil, by experimental infection. Sea horses with necrosis on the mouth epithelium were collected from aquaria at the Aquaculture Department, UFSC and the bacterium isolated from the mouth, liver, heart and blood in thiosulphate citrate bilesalt sucrose agar broth. The strains were identified by API 20E kit with 99.1% probability as Vibrio alginolyticus. Twelve adult sea horses (9.63 +/- 2.42 g and 15.12 +/- 0.87 cm) were distributed in six aquaria of 10 L capacity with aerated sea water. Fish from three aquaria were submitted to an immersion bath in a solution containing 1.0 x 10(7) CFU of V. alginolyticus/mL for 15 minutes. Fish from the other three aquaria received the same procedure without bacteria. Twenty four hours after this challenge, 100% mortality was observed in the animals infected with V. alginolyticus. No mortality was observed in non-infected fish. Hyperplasia, displacement and fusion of secondary lamellae of the gills; leukocyte infiltration and necrotic foci in the kidney; hyperplasia, sinusoidal deformation and necrotic foci in the liver were observed in histopathological analysis. The V. alginolyticus isolated in this study was pathogenic to H. reidi and constitutes an important sanitary problem to its culture. PMID:20231979

Martins, M L; Mouriño, J L P; Fezer, G F; Buglione Neto, C C; Garcia, P; Silva, B C; Jatobá, A; Vieira, F N

2010-02-01

301

Population Structure and Evolution of Non-O1/Non-O139 Vibrio cholerae by Multilocus Sequence Typing  

PubMed Central

Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTX?), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTX?. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity. PMID:23776471

Lam, Connie; Leung, Queenie; Ahsan, Sunjukta; Reeves, Peter R.; Nair, G. Balakrish; Lan, Ruiting

2013-01-01

302

Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria  

PubMed Central

Vibrio cholerae, the agent of cholera, is a motile non-invasive pathogen that colonizes the small intestine (SI). Most of our knowledge of the processes required for V. cholerae intestinal colonization is derived from enumeration of wt and mutant V. cholerae recovered from orogastrically infected infant mice. There is limited knowledge of the distribution of V. cholerae within the SI, particularly its localization along the villous axis, or of the bacterial and host factors that account for this distribution. Here, using confocal and intravital two-photon microscopy to monitor the localization of fluorescently tagged V. cholerae strains, we uncovered unexpected and previously unrecognized features of V. cholerae intestinal colonization. Direct visualization of the pathogen within the intestine revealed that the majority of V. cholerae microcolonies attached to the intestinal epithelium arise from single cells, and that there are notable regiospecific aspects to V. cholerae localization and factors required for colonization. In the proximal SI, V. cholerae reside exclusively within the developing intestinal crypts, but they are not restricted to the crypts in the more distal SI. Unexpectedly, V. cholerae motility proved to be a regiospecific colonization factor that is critical for colonization of the proximal, but not the distal, SI. Furthermore, neither motility nor chemotaxis were required for proper V. cholerae distribution along the villous axis or in crypts, suggesting that yet undefined processes enable the pathogen to find its niches outside the intestinal lumen. Finally, our observations suggest that host mucins are a key factor limiting V. cholerae intestinal colonization, particularly in the proximal SI where there appears to be a more abundant mucus layer. Collectively, our findings demonstrate the potent capacity of direct pathogen visualization during infection to deepen our understanding of host pathogen interactions. PMID:25275396

Millet, Yves A.; Alvarez, David; Ringgaard, Simon; von Andrian, Ulrich H.; Davis, Brigid M.; Waldor, Matthew K.

2014-01-01

303

In-vitro anti- Vibrio spp. activity and chemical composition of some Tunisian aromatic plants  

Microsoft Academic Search

The chemical composition of five aromatic plants (Mentha longifolia, M. pulegium, Eugenia caryophyllata, Thymus vulgaris and Rosmarinus officinalis) frequently used in food preparation in Tunisia was analysed by GC-MS. The antimicrobial effect of the essential oils obtained\\u000a from these plants was tested against Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio fluvialis strains. Thyme oil exhibited a high level of

Mejdi Snoussi; Hafedh Hajlaoui; Emira Noumi; Donatella Usai; Leonardo Antonio Sechi; Stefania Zanetti; Amina Bakhrouf

2008-01-01

304

Survival of Vibrio parahaemolyticus and Aeromonas hydrophila in sea bream (Sparus aurata) fillets packaged under enriched CO(2) modified atmospheres.  

PubMed

The ability to survive of two pathogens (Vibrio parahaemolyticus and Aeromonas hydrophila) spread over sea bream fillets packaged under different modified atmospheres (MAPs) was studied at 0°C and 4°C under refrigerated storage. The atmospheres used were 60% CO2/40% N2, 70% CO2/30% N2 and 80% CO2/20% N2 and a control batch packaged in air. Head space gas analyses, microbial counts and confirming test of pathogenic bacteria were carried out during 16days. The results obtained showed that all the modified atmospheres studied were effective to reduce the microbial load of sea bream fillets when compared with air packaged samples although small differences were found among MAPs. Temperature storage was the main factor to reduce microbial growth. V. parahaemolyticus was unable to grow at both temperatures, 0°C and 4°C (except air batches) while A. hydrophila showed significant growth at 4°C and microbial inactivation at 0°C. PMID:23860282

Provincial, Laura; Guillén, Elena; Alonso, Verónica; Gil, Mario; Roncalés, Pedro; Beltrán, José A

2013-08-16

305

Vibrio alfacsensis sp. nov., isolated from marine organisms.  

PubMed

Five strains (CAIM 1831(T), CAIM 1832, CAIM 1833, CAIM 1834 and CAIM 1836) were isolated from cultured sole (Solea senegalensis) in two regions of Spain, two strains (CAIM 404 and CAIM 1294) from wild-caught spotted rose snapper (Lutjanus guttatus) in Mexico, and one strain (CAIM 1835) from corals in Brazil. The 16S rRNA gene sequences of the novel isolates showed similarity to Vibrio ponticus (98.2-98.3%, GenBank accession no. AJ630103) and to a lesser degree to Vibrio furnissii (97.2-97.3%, X76336) and to Vibrio fluvialis (96.9-97.1%, X74703). Multilocus sequence analysis clustered these strains closely together and clearly separated them from phylogenetically related species of the genus Vibrio. Genomic fingerprinting by rep-PCR clustered the novel strains according to their geographical origin. Phenotypic analyses showed a large variation among the new strains, but many tests enabled them to be differentiated from other species of the genus Vibrio. The mean ?T(m) values between the strains analysed here and closely related type strains were above 6.79 °C. The values between the novel isolates were below 2.35 °C, well outside the limit suggested for the delineation of a bacterial species. The phenotypic and genotypic data presented here clearly place these new strains as a coherent group within the genus Vibrio, for which we propose the name Vibrio alfacsensis sp. nov. with CAIM 1831(T) (?= DSM 24595(T) = S277(T)) as the type strain. PMID:22286904

Gomez-Gil, Bruno; Roque, Ana; Chimetto, Luciane; Moreira, Ana Paula B; Lang, Elke; Thompson, Fabiano L

2012-12-01

306

Characterization of novel alleles of toxin co-regulated pilus A gene (tcpA) from environmental isolates of Vibrio cholerae.  

PubMed

Vibrio cholerae is causative agent of life threatening diarrheal disease, cholera. The toxin co-regulated pilus (TCP) is a critical colonization factor of V. cholerae and it also serves as receptor for CTX?. In this study, we describe nucleotide sequence of four novel alleles of tcpA gene from toxigenic and non-toxigenic V. cholerae isolated from environmental sources. The phylogenetic analysis of tcpA revealed that it is related to tcpA of newly emerged O1 strain and unrelated to tcpA of wild type (classical and El Tor strains). All strains showed variant tcpA and also harbored intact Vibrio Pathogenicity Island (VPI). The expression of all variant alleles was demonstrated by RT-PCR. PMID:20967447

Kumar, Praveen; Thulaseedharan, Anuja; Chowdhury, Gautam; Ramamurthy, Thandavarayan; Thomas, Sabu

2011-03-01

307

Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis  

Microsoft Academic Search

Squids from the genus Euprymna (Cephalopoda: Sepiolidae) and their symbiotic bacteria Vibrio fischeri form a mutualism in which vibrios inhabit a complex light organ within the squid host. A host-mediated daily expulsion event seeds surrounding seawater with symbiotically capable V. fischeri that environmentally colonize newly hatched axenic Euprymna juveniles. Competition experiments using native and non-native Vibrio have shown that this

B. W. JONES; J. E. LOPEZ; J. HUTTENBURG; M. K. NISHIGUCHI

2006-01-01

308

Molecular and Phenotypic Characterization of Vibrio navarrensis Isolates Associated with Human Illness.  

PubMed

We characterized 18 Vibrio isolates, including 15 recovered from human clinical specimens, and found that they clustered with two previously characterized Vibrio navarrensis isolates in a phylogenetic analysis. Four of the 18 strains may represent a new Vibrio species, distinct from V. navarrensis. The potential role of V. navarrensis in human disease needs further investigation. PMID:25187632

Gladney, Lori M; Tarr, Cheryl L

2014-11-01

309

Draft Genome Sequence of Hawaiian Sea Slug Symbiont Vibrio sp. Strain ER1A  

PubMed Central

Bacteria belonging to the genus Vibrio are prevalent in the marine environment and are known for forming symbiotic relationships with hosts. Vibrio sp. strain ER1A is a dominant symbiont of the Hawaiian sea slug, Elysia rufescens. Here we report the draft genome sequence of Vibrio sp. ER1A. PMID:25146136

Davis, Jeanette

2014-01-01

310

Draft Genome Sequence of Hawaiian Sea Slug Symbiont Vibrio sp. Strain ER1A.  

PubMed

Bacteria belonging to the genus Vibrio are prevalent in the marine environment and are known for forming symbiotic relationships with hosts. Vibrio sp. strain ER1A is a dominant symbiont of the Hawaiian sea slug, Elysia rufescens. Here we report the draft genome sequence of Vibrio sp. ER1A. PMID:25146136

Davis, Jeanette; Hill, Russell T

2014-01-01

311

Probes and polymerase chain reaction for detection of food-borne bacterial pathogens  

Microsoft Academic Search

DNA-hybridization and the polymerase chain reaction (PCR) are techniques commonly used to detect pathogenic bacteria. In this paper, the use of these techniques for detection of Salmonella, E. coli, V. cholerae, non-O1 Vibrio, Yersinia enterocolitica, Campylobacter, Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, and C. botulinum is reviewed with emphasis on application in food microbiology. In food control, DNA-techniques

J. E Olsen; S Aabo; W Hill; S Notermans; K Wernars; P. E Granum; T Popovic; H. N Rasmussen; Ø Olsvik

1995-01-01

312

Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran  

PubMed Central

Background The quality of drinking water has an important role in human infection and disease. This study was aimed at comparing polymerase chain reaction and culture in detecting Escherichia coli, Salmonella species and Vibrio cholera in tape water and bottled drinking water in various seasons in Isfahan province, Iran. Methods A total of 448 water samples from tap water and bottled mineral water were taken over 6 months, from July 2010 to December 2010, and after filtration, samples were examined by culture and polymerase chain reaction methods for detection of Escherichia coli, Salmonella species, and Vibrio cholerae. Results The culture method showed that 34 (7.58%), 4 (0.89%) and 3 (0.66%) of all 448 water samples were positive for Escherichia coli, Salmonella species, and Vibrio cholera, respectively. The uidA gene from Escherichia coli, IpaB gene from Salmonella species, and epsM gene from Vibrio cholera were detected in 38 (26.38%), 5 (3.47%), and 3 (2.08%) of 144 tap-water samples, respectively. Escherichia coli was detected in 8 (2.63%) of 304 samples of bottled drinking water from 5 companies. The water of southern part of Isfahan and company 5 had the highest prevalence of bacteria. The Escherichia coli water contamination was significantly higher (P?Vibrio cholerae as water-borne pathogens in tap water and bottled drinking water of Isfahan, Iran. The present study showed the important public health problem in Isfahan, Iran. PMID:23742181

2013-01-01

313

Prevalence of Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. in seafood products using multiplex polymerase chain reaction.  

PubMed

Although several etiological agents can be transmitted through seafood consumption, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. are considered among the most important pathogens in terms of public health and disease. In this study, multiplex polymerase chain reaction (PCR), as a rapid and cost-effective method, was used to determine the prevalence of these pathogens in 245 samples of raw/fresh, frozen, and ready-to-eat (RTE) seafood products marketed in Iran. The prevalence of L. monocytogenes in raw/fresh fish and shrimp samples was 1.4%, whereas 2.9% of the raw/fresh fish and 7.1% of the shrimp samples were contaminated with V. parahaemolyticus. No contamination with L. monocytogenes and V. parahaemolyticus was found in frozen and RTE seafood products. The prevalence of S. aureus was found to be higher than other investigated pathogens. S. aureus was detected in 5% of the raw/fresh samples of fish and shrimp, 17.5% of the frozen, and 12.3% of the RTE samples. Further, our findings indicate that 2.9% of the fish samples, 4.3% of the shrimp samples, and 1.5% of the RTE samples were contaminated with Salmonella spp. Owing to the potential hazard of these pathogenic bacteria, multiplex PCR can provide a rapid and cost-effective method for the surveillance of these pathogens in seafood products. PMID:22044288

Zarei, Mehdi; Maktabi, Siavash; Ghorbanpour, Masoud

2012-02-01

314

Vibrio toranzoniae sp. nov., a new member of the Splendidus clade in the genus Vibrio.  

PubMed

Four motile facultative anaerobic marine isolates (Vb 10.8(T) [CECT 7225(T), CAIM 1869(T)], CMJ 9.4 [CECT 8091, CAIM 1870], CMJ 9.11 and Cmf 13.9), were obtained from cultured clams (Venerupis philippinarum and Venerupis decussata) in Galicia (NW Spain). These isolates were studied by a polyphasic approach, including a phylogenetic analysis based on sequences of 16S rRNA and five housekeeping genes atpA, recA, pyrH, rpoA and rpoD, that supported their inclusion in the Splendidus clade of the genus Vibrio, forming a well-defined group separated from the others species of the clade. DNA-DNA hybridizations with the type strains of species showing more than 98.5% 16S rRNA gene sequence similarity rendered values of hybridization below 60%. These isolates could be differentiated from the closest relatives on the basis of several phenotypic and chemotaxonomic features. These results demonstr8ated that the strains constitute a novel specie of the genus for which the name Vibrio toranzoniae sp. nov. is proposed, with Vb 10.8(T) (=CECT 7225(T)CAIM 1869(T)) as the type strain. PMID:23280322

Lasa, Aide; Diéguez, Ana L; Romalde, Jesús L

2013-03-01

315

Multilocus sequence analysis of putative Vibrio mediterranei strains and description of Vibrio thalassae sp. nov.  

PubMed

A multilocus sequence analysis based on partial gyrB, mreB, rpoD and pyrH genes was undertaken with 61 putative Vibrio mediterranei/V. shilonii strains from different hosts (mussels, oysters, clams, coral, fish and plankton) or habitat (seawater and sediment) and geographical origins (Mediterranean, Atlantic and Pacific). A consistent grouping was obtained with individual and concatenated gene sequences, and the clade, comprising 54 strains, was split into three subclades by all methods: subclade A (40 strains, including AK1, the former type strain of Vibrio shilonii), subclade B (8 strains) corresponding to the species V. mediterranei, and subclade C (six strains) representing a new species, V. thalassae sp. nov., with strain MD16(T) (=CECT 8203(T)=KCTC 32373(T)) as the proposed type strain. Average nucleotide identity (ANI) values, determined as a measure of genomic similarity, confirmed these assignments, and supported that strains in subclade C were a different species from V. mediterranei, with ANIb and ANIm figures lower than 90.0%. The synonymy of V. shilonii and V. mediterranei was also stressed by both MLSA and ANI determinations (97.0% between both type strains). No connection was found between geographic origin or sample type and MLSA grouping. PMID:24935234

Tarazona, Eva; Lucena, Teresa; Arahal, David R; Macián, M Carmen; Ruvira, María A; Pujalte, María J

2014-07-01

316

Chitovibrin: a chitin-binding lectin from Vibrio parahemolyticus.  

PubMed

A novel 134 kDa, calcium-independent chitin-binding lectin, 'chitovibrin', is secreted by the marine bacterium Vibrio parahemolyticus, inducible with chitin or chitin-oligomers. Chitovibrin shows no apparent enzymatic activity but exhibits a strong affinity for chitin and chito-oligomers > dp9. The protein has an isoelectric pH of 3.6, shows thermal tolerance, binds chitin with an optimum at pH 6 and is active in 0-4 M NaCl. Chitovibrin appears to be completely different from other reported Vibrio lectins and may function to bind V. parahemolyticus to chitin substrates, or to capture or sequester chito-oligomers. It may be a member of a large group of recently described proteins in Vibrios related to a complex chitinoclastic (chitinivorous) system. PMID:7696854

Gildemeister, O S; Zhu, B C; Laine, R A

1994-12-01

317

Vibrio coralliilyticus Strain OCN008 Is an Etiological Agent of Acute Montipora White Syndrome  

PubMed Central

Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in K?ne‘ohe Bay, Hawai‘i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 107 and 108 CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain. PMID:24463971

Ushijima, Blake; Videau, Patrick; Burger, Andrew H.; Shore-Maggio, Amanda; Runyon, Christina M.; Sudek, Mareike; Aeby, Greta S.

2014-01-01

318

Culturable and VBNC Vibrio cholerae: interactions with chironomid egg masses and their bacterial population.  

PubMed

Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments. Recently, it was found that chironomid (nonbiting midges) egg masses serve as a reservoir for the cholera bacterium and that flying chironomid adults are possible windborne carriers of V. cholerae non-O1 non-O139. Chironomids are the most widely distributed insect in freshwater. Females deposit egg masses at the water's edge, and each egg mass contains eggs embedded in a gelatinous matrix. Hemagglutinin/protease, an extracellular enzyme of V. cholerae, was found to degrade chironomid egg masses and to prevent them from hatching. In a yearly survey, chironomid populations and the V. cholerae in their egg masses followed phenological succession and interaction of host-pathogen population dynamics. In this report, it is shown via FISH technique that most of the V. cholerae inhabiting the egg mass are in the viable but nonculturable (VBNC) state. The diversity of culturable bacteria from chironomid egg masses collected from two freshwater habitats was determined. In addition to V. cholerae, representatives of the following genera were isolated: Acinetobacter, Aeromonas, Klebsiella, Shewanella, Pseudomonas, Paracoccus, Exiguobacterium, and unidentified bacteria. Three important human pathogens, Aeromonas veronii, A. caviae, and A. hydrophila, were isolated from chironomid egg masses, indicating that chironomid egg masses may be a natural reservoir for pathogenic Aeromonas species in addition to V. cholerae. All isolates of V. cholerae were capable of degrading chironomid egg masses. This may help explain their host-pathogen relationship with chironomids. In contrast, almost none of the other bacteria that were isolated from the egg masses possessed this ability. Studying the interaction between chironomid egg masses, the bacteria inhabiting them, and V. cholerae could contribute to our understanding of the nature of the V. cholerae-egg mass interactions. PMID:17186156

Halpern, Malka; Landsberg, Ori; Raats, Dina; Rosenberg, Eugene

2007-02-01

319

The Apparent Quorum-Sensing Inhibitory Activity of Pyrogallol Is a Side Effect of Peroxide Production  

PubMed Central

There currently is more and more interest in the use of natural products, such as tea polyphenols, as therapeutic agents. The polyphenol compound pyrogallol has been reported before to inhibit quorum-sensing-regulated bioluminescence in Vibrio harveyi. Here, we report that the addition of 10 mg · liter?1 pyrogallol protects both brine shrimp (Artemia franciscana) and giant river prawn (Macrobrachium rosenbergii) larvae from pathogenic Vibrio harveyi, whereas the compound showed relatively low toxicity (therapeutic index of 10). We further demonstrate that the apparent quorum-sensing-disrupting activity is a side effect of the peroxide-producing activity of this compound rather than true quorum-sensing inhibition. Our results emphasize that verification of minor toxic effects by using sensitive methods and the use of appropriate controls are essential when characterizing compounds as being able to disrupt quorum sensing. PMID:23545532

Pande, Gde Sasmita Julyantoro; Baruah, Kartik; Bossier, Peter

2013-01-01

320

The apparent quorum-sensing inhibitory activity of pyrogallol is a side effect of peroxide production.  

PubMed

There currently is more and more interest in the use of natural products, such as tea polyphenols, as therapeutic agents. The polyphenol compound pyrogallol has been reported before to inhibit quorum-sensing-regulated bioluminescence in Vibrio harveyi. Here, we report that the addition of 10 mg · liter(-1) pyrogallol protects both brine shrimp (Artemia franciscana) and giant river prawn (Macrobrachium rosenbergii) larvae from pathogenic Vibrio harveyi, whereas the compound showed relatively low toxicity (therapeutic index of 10). We further demonstrate that the apparent quorum-sensing-disrupting activity is a side effect of the peroxide-producing activity of this compound rather than true quorum-sensing inhibition. Our results emphasize that verification of minor toxic effects by using sensitive methods and the use of appropriate controls are essential when characterizing compounds as being able to disrupt quorum sensing. PMID:23545532

Defoirdt, Tom; Pande, Gde Sasmita Julyantoro; Baruah, Kartik; Bossier, Peter

2013-06-01

321

Circulation and Transmission of Clones of Vibrio cholerae During Cholera Outbreaks  

PubMed Central

Cholera is still a major public health problem. The underlying bacterial pathogen Vibrio cholerae (V. cholerae) is evolving and some of its mutations have set the stage for outbreaks. After V. cholerae acquired the mobile elements VSP I & II, the El Tor pandemic began and spread across the tropics. The replacement of the O1 serotype encoding genes with the O139 encoding genes triggered an outbreak that swept across the Indian subcontinent. The sxt element generated a third selective sweep and most recently a fourth sweep was associated with the exchange of the El Tor ctx allele for a classical ctx allele in the El Tor background. In Kenya, variants of this fourth selective sweep have differentiated and become endemic residing in and emerging from environmental reservoirs. On a local level, studies in Bangladesh have revealed that outbreaks may arise from a nonrandom subset of the genetic lineages in the environment and as the population of the pathogen expands, many novel mutations may be found increasing the amount of genetic variation, a phenomenon known as a founder flush. In Haiti, after the initial invasion and expansion of V. cholerae in 2010, a second outbreak occurred in the winter of 2011–2012 driven by natural selection of specific mutations. PMID:24407776

Morris, J. Glenn

2014-01-01

322

Incidence of Salmonella spp., Clostridium botulinum, and Vibrio parahaemolyticus in an estuary.  

PubMed

A study of the incidence of Salmonella spp., Vibrio parahaemolyticus-like organisms, and clostridium botulinum in samples collected at five stations located in the Upper Chesapeake Bay, a major estuary on the Atlantic Coast of the United States, was conducted in December 1973 through December 1974. C. botulinum types B and E were detected in 12.3% of the total sediment samples examined. V. parahaemolyticus was recovered from 10.4% of a total of 86 water, sediment, and suspended sediment samples. Of 131 samples examined for the presence of Salmonella spp., approximately 3% were found to be positive for serologically confirmed Salmonella isolates. Shellfish examined during the investigation were also found to be free of enteric pathogens. The low frequency of occurrence of V. parahaemolyticus was attributed to the low salinities encountered at the sites included in the study. A low incidence of Salmonella spp. in the Upper Chesapeake Bay samples was found, whereas the distribution of C. botulinum appeared to be both random and autochthonous. A strong relationship between presence of potential pathogens and other generally accepted microbiological indicators of pollution was not observed. PMID:776085

Sayler, G S; Nelson, J D; Justice, A; Colwell, R R

1976-05-01

323

The Vibrio cholerae ToxR-Regulated Porin OmpU Confers Resistance to Antimicrobial Peptides  

PubMed Central

BPI (bactericidal/permeability-increasing) is a potent antimicrobial protein that was recently reported to be expressed as a surface protein on human gastrointestinal tract epithelial cells. In this study, we investigated the resistance of Vibrio cholerae, a small-bowel pathogen that causes cholera, to a BPI-derived peptide, P2. Unlike in Escherichia coli and Salmonella enterica serovar Typhimurium, resistance to P2 in V. cholerae was not dependent on the BipA GTPase. Instead, we found that ToxR, the master regulator of V. cholerae pathogenicity, controlled resistance to P2 by regulating the production of the outer membrane protein OmpU. Both toxR and ompU mutants were at least 100-fold more sensitive to P2 than were wild-type cells. OmpU also conferred resistance to polymyxin B sulfate, suggesting that this porin may impart resistance to cationic antibacterial proteins via a common mechanism. Studies of stationary-phase cells revealed that the ToxR-repressed porin OmpT may also contribute to P2 resistance. Finally, although the mechanism of porin-mediated resistance to antimicrobial peptides remains elusive, our data suggest that the BPI peptide sensitivity of OmpU-deficient V. cholerae is not attributable to a generally defective outer membrane. PMID:15155667

Mathur, Jyoti; Waldor, Matthew K.

2004-01-01

324

Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state.  

PubMed

Vibrio vulnificus is responsible for 95% of all seafood-associated fatalities in the United States. When water temperatures drop below c. 13 °C, the cells enter into the viable but nonculturable (VBNC) state wherein they are unable to grow on routine media but retain viability and the ability to return to the culturable state. The aim of this study was to determine whether V. vulnificus cells in the VBNC state are protected against a variety of potentially lethal challenges (heat, oxidative, osmotic, pH, ethanol, antibiotic and heavy metal) and to examine genetic regulators that might underlie such protection. The data presented here indicate that VBNC cells of this pathogen are protected against a wide variety of stresses and retain the ability to return to the culturable state. Surprisingly, we found no significant difference in the expression of relA and spoT between VBNC and logarithmic cells, nor any significant difference in the expression of rpoS in the case of the clinical (C) genotype of this pathogen. However, expression of relA was significantly different in VBNC cells of the environmental (E) genotype compared with logarithmic cells. This might account for findings indicating an enhanced ability for E-genotype cells to withstand environmental changes better than C-genotype cells. PMID:23228034

Nowakowska, Joanna; Oliver, James D

2013-04-01

325

A quantitative risk assessment model for Vibrio parahaemolyticus in raw oysters in Sao Paulo State, Brazil.  

PubMed

A risk assessment of Vibrio parahaemolyticus associated with raw oysters produced and consumed in São Paulo State was developed. The model was built according to the United States Food and Drug Administration framework for risk assessment. The outcome of the exposure assessment estimated the prevalence and density of pathogenic V. parahaemolyticus in raw oysters from harvest to consumption. The result of the exposure step was combined with a Beta-Poisson dose-response model to estimate the probability of illness. The model predicted that the average risks per serving of raw oysters were 4.7×10(-4), 6.0×10(-4), 4.7×10(-4) and 3.1×10(-4) for spring, summer, fall and winter, respectively. Sensitivity analyses indicated that the most influential variables on the risk of illness were the total density of V. parahaemolyticus at harvest, transport temperature, relative prevalence of pathogenic strains and storage time at retail. Only storage time under refrigeration at retail showed negative correlation with the risk of illness. PMID:24786920

Sobrinho, Paulo de S Costa; Destro, Maria T; Franco, Bernadette D G M; Landgraf, Mariza

2014-06-16

326

Intraspecific Differentiation of Vibrio vulnificus Biotypes by Amplified Fragment Length Polymorphism and Ribotyping  

PubMed Central

The intraspecific genomic relatedness of 80 Vibrio vulnificus isolates, 44 of biotype 1 and 36 of biotype 2, from different geographic origins and sources was evaluated by ribotyping and AFLP (amplified fragment length polymorphism) fingerprinting. Ribopatterns of DNAs digested with KpnI and hybridized with an oligonucleotide complementary to a highly conserved sequence in the 23S rRNA gene revealed up to 19 ribotypes in the species, which were different for the two biotypes. Sixteen different ribotypes were found within biotype 1 strains from clinical and environmental sources, and only three, recovered mainly from diseased eels, were found within biotype 2. Within this biotype, 96% of the strains showed the same ribopattern. The closest similarity was shown by the strains coming from the same eel farm, irrespectively of biotype. AFLP fingerprints obtained by selective PCR amplification of HindIII-TaqI double-restricted DNA fragments exhibited a strain-specific pattern which allowed the finest differentiation of subgroups within the eel-pathogenic isolates sharing the same ribopattern. Both techniques revealed good genetic markers for intraspecific differentiation of V. vulnificus. Ribotyping clearly separated the eel-pathogenic strains from the clinical and environmental isolates, whereas AFLP enabled the monitoring of individual strains and therefore constitutes one of the most discriminative tools for epidemiological and ecological studies. PMID:16535640

Arias, C. R.; Verdonck, L.; Swings, J.; Garay, E.; Aznar, R.

1997-01-01

327

Detection of Vibrio vulnificus biotypes 1 and 2 in eels and oysters by PCR amplification.  

PubMed Central

DNA extraction procedures and PCR conditions to detect Vibrio vulnificus cells naturally occurring in oysters were developed. In addition, PCR amplification of V. vulnificus from oysters seeded with biotype 1 cells was demonstrated. By the methods described, V. vulnificus cells on a medium (colistin-polymyxin B-cellobiose agar) selective for this pathogen were detectable in oysters harvested in January and March, containing no culturable cells (< 67 CFU/g), as well as in oysters harvested in May and June, containing culturable cells. It was possible to complete DNA extraction, PCR, and gel electrophoresis within 10 h by using the protocol described for oysters. V. vulnificus biotype 2 cells were also detected in eel tissues that had been infected with this strain and subsequently preserved in formalin. The protocol used for detection of V. vulnificus cells in eels required less than 5 h to complete. Optimum MgCl2 concentrations for the PCR of V. vulnificus from oysters and eels were different, although the same primer pair was used for both. This is the first report on the detection of cells of V. vulnificus naturally present in shellfish and represents a potentially powerful method for monitoring this important human and eel pathogen. PMID:8919800

Coleman, S S; Melanson, D M; Biosca, E G; Oliver, J D

1996-01-01

328

Rapid, sensitive detection of Vibrio anguillarum using loop-mediated isothermal amplification  

NASA Astrophysics Data System (ADS)

Vibrio anguillarum is an important bacterial pathogen of aquatic organisms and a significant problem in aquatic farming. The rapid detection and identification of V. anguillarum, and other pathogens that infect marine organisms, is crucial to effective disease management. In this study, we developed a loop-mediated amplification (LAMP) assay to detect V. anguillarum in an hour in a single tube without the need for thermal cycling. Conserved regions of the metalloproteinase ( empA) gene of V. anguillarum served as the targets for primer design. A fragment of the empA gene was amplified at 65°C in the presence of the primer mixture and Bst DNA polymerase. In the optimized LAMP assay, 6.7 pg of V. anguillarum DNA could be detected. Six strains of V. anguillarum and 17 strains of non- V. anguillarum bacteria were used in this study to evaluate the species specificity of the primers. The six V. anguillarum strains gave a positive result in the LAMP assay. This method was also validated in V. anguillarum-infected fish. This LAMP method is more sensitive than PCR in the detection of V. anguillarum and shows good species specificity. The LAMP assay is therefore an effective method for the quick detection of V. anguillarum both in the laboratory and in the field.

Gao, Hongwei; Li, Fuhua; Zhang, Xiaojun; Wang, Bing; Xiang, Jianhai

2010-01-01

329

Members of the human gut microbiota involved in recovery from Vibrio cholerae infection.  

PubMed

Given the global burden of diarrhoeal diseases, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, establish that R. obeum restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2 (AI-2) synthase) expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing-mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants discloses that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other enteropathogens. PMID:25231861

Hsiao, Ansel; Ahmed, A M Shamsir; Subramanian, Sathish; Griffin, Nicholas W; Drewry, Lisa L; Petri, William A; Haque, Rashidul; Ahmed, Tahmeed; Gordon, Jeffrey I

2014-11-20

330

The Lipid A from Vibrio fischeri Lipopolysaccharide  

PubMed Central

Vibrio fischeri, a bioluminescent marine bacterium, exists in an exclusive symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, whose light organ it colonizes. Previously, it has been shown that the lipopolysaccharide (LPS) or free lipid A of V. fischeri can trigger morphological changes in the juvenile squid's light organ that occur upon colonization. To investigate the structural features that might be responsible for this phenomenon, the lipid A from V. fischeri ES114 LPS was isolated and characterized by multistage mass spectrometry (MSn). A microheterogeneous mixture of mono- and diphosphorylated diglucosamine disaccharides was observed with variable states of acylation ranging from tetra- to octaacylated forms. All lipid A species, however, contained a set of conserved primary acyl chains consisting of an N-linked C14:0(3-OH) at the 2-position, an unusual N-linked C14:1(3-OH) at the 2?-position, and two O-linked C12:0(3-OH) fatty acids at the 3- and 3?-positions. The fatty acids found in secondary acylation were considerably more variable, with either a C12:0 or C16:1 at the 2-position, C14:0 or C14:0(3-OH) at the 2?-position, and C12:0 or no substituent at the 3?-position. Most surprising was the presence of an unusual set of modifications at the secondary acylation site of the 3-position consisting of phosphoglycerol (GroP), lysophosphatidic acid (GroP bearing C12:0, C16:0, or C16:1), or phosphatidic acid (GroP bearing either C16:0 + C12:0 or C16:0 + C16:1). Given their unusual nature, it is possible that these features of the V. fischeri lipid A may underlie the ability of E. scolopes to recognize its symbiotic partner. PMID:21498521

Phillips, Nancy J.; Adin, Dawn M.; Stabb, Eric V.; McFall-Ngai, Margaret J.; Apicella, Michael A.; Gibson, Bradford W.

2011-01-01

331

Biological approaches for controlling shellfish-associated pathogens.  

PubMed

As the consumption of seafood and shellfish increases around the world, so is the incidence of associated outbreaks of illness. Various postharvest treatments are effective at killing seafood-associated bacteria, but most of these treatments also kill the mollusks. Because consumer preferences for raw live shellfish persist, biological approaches for promoting microbiological safety of live product are being considered. Applications of probiotic bacteria to reduce human pathogens in live shellfish could augment current practices for preharvest monitoring of water quality. Postharvest, biological controls will be important to remove shellfish-associated commensal Vibrio spp. that are pathogenic to humans. Further investigations will reveal whether combining depuration with chemical disruption of bacterial attachment or cell-to-cell signaling may accomplish this goal. PMID:19342220

Teplitski, Max; Wright, Anita C; Lorca, Graciela

2009-04-01

332

Clinical, epidemiological, and spatial characteristics of Vibrio parahaemolyticus diarrhea and cholera in the urban slums of Kolkata, India  

PubMed Central

Background There is not much information on the differences in clinical, epidemiological and spatial characteristics of diarrhea due to V. cholerae and V. parahaemolyticus from non-coastal areas. We investigated the differences in clinical, epidemiological and spatial characteristics of the two Vibrio species in the urban slums of Kolkata, India. Methods The data of a cluster randomized cholera vaccine trial were used. We restricted the analysis to clusters assigned to placebo. Survival analysis of the time to the first episode was used to analyze risk factors for V. parahaemolyticus diarrhea or cholera. A spatial scan test was used to identify high risk areas for cholera and for V. parahaemolyticus diarrhea. Results In total, 54,519 people from the placebo clusters were assembled. The incidence of cholera (1.30/1000/year) was significantly higher than that of V. parahaemolyticus diarrhea (0.63/1000/year). Cholera incidence was inversely related to age, whereas the risk of V. parahaemolyticus diarrhea was age-independent. The seasonality of diarrhea due to the two Vibrio species was similar. Cholera was distinguished by a higher frequency of severe dehydration, and V. parahaemolyticus diarrhea was by abdominal pain. Hindus and those who live in household not using boiled or treated water were more likely to have V. parahaemolyticus diarrhea. Young age, low socioeconomic status, and living closer to a project healthcare facility were associated with an increased risk for cholera. The high risk area for cholera differed from the high risk area for V. parahaemolyticus diarrhea. Conclusion We report coexistence of the two vibrios in the slums of Kolkata. The two etiologies of diarrhea had a similar seasonality but had distinguishing clinical features. The risk factors and the high risk areas for the two diseases differ from one another suggesting different modes of transmission of these two pathogens. PMID:23020794

2012-01-01

333

Enhanced Cellular Immunity in Shrimp (Litopenaeus vannamei) after 'Vaccination'  

PubMed Central

It has long been viewed that invertebrates rely exclusively upon a wide variety of innate mechanisms for protection from disease and parasite invasion and lack any specific acquired immune mechanisms comparable to those of vertebrates. Recent findings, however, suggest certain invertebrates may be able to mount some form of specific immunity, termed ‘specific immune priming’, although the mechanism of this is not fully understood (see Textbox S1). In our initial experiments, either formalin-inactivated Vibrio harveyi or sterile saline were injected into the main body cavity (haemocoel) of juvenile shrimp (Litopenaeus vannamei). Haemocytes (blood cells) from V. harveyi-injected shrimp were collected 7 days later and incubated with a 1?1 mix of V. harveyi and an unrelated Gram positive bacterium, Bacillus subtilis. Haemocytes from ‘vaccinated’ shrimp showed elevated levels of phagocytosis of V. harveyi, but not B. subtilis, compared with those from saline-injected (non-immunised) animals. The increased phagocytic activity was characterised by a significant increase in the percentage of phagocytic cells. When shrimp were injected with B. subtilis rather than vibrio, there was no significant increase in the phagocytic activity of haemocytes from these animals in comparison to the non-immunised (saline injected) controls. Whole haemolymph (blood) from either ‘immunised’ or non-immunised’ shrimp was shown to display innate humoral antibacterial activity against V. harveyi that was absent against B. subtilis. However, there was no difference in the potency of antibacterial activity between V. harveyi-injected shrimp and control (saline injected) animals showing that ‘vaccination’ has no effect on this component of the shrimp's immune system. These results imply that the cellular immune system of shrimp, particularly phagocytosis, is capable of a degree of specificity and shows the phenomenon of ‘immune priming’ reported by other workers. However, in agreement with other studies, this phenomenon is not universal to all potential pathogens. PMID:21698190

Roberts, Emily C.; Shields, Robin J.; Wardle, Robin; Rowley, Andrew F.

2011-01-01

334

Intracellular Vibrio parahaemolyticus Escapes the Vacuole and Establishes a Replicative Niche in the Cytosol of Epithelial Cells  

PubMed Central

ABSTRACT Vibrio parahaemolyticus is a globally disseminated Gram-negative marine bacterium and the leading cause of seafood-borne acute gastroenteritis. Pathogenic bacterial isolates encode two type III secretion systems (T3SS), with the second system (T3SS2) considered the main virulence factor in mammalian hosts. For many decades, V. parahaemolyticus has been studied as an exclusively extracellular bacterium. However, the recent characterization of the T3SS2 effector protein VopC has suggested that this pathogen has the ability to invade, survive, and replicate within epithelial cells. Herein, we characterize this intracellular lifestyle in detail. We show that following internalization, V. parahaemolyticus is contained in vacuoles that develop into early endosomes, which subsequently mature into late endosomes. V. parahaemolyticus then escapes into the cytoplasm prior to vacuolar fusion with lysosomes. Vacuolar acidification is an important trigger for this escape. The cytoplasm serves as the pathogen’s primary intracellular replicative niche; cytosolic replication is rapid and robust, with cells often containing over 150 bacteria by the time of cell lysis. These results show how V. parahaemolyticus successfully establishes an intracellular lifestyle that could contribute to its survival and dissemination during infection. PMID:25205094

de Souza Santos, Marcela

2014-01-01

335

Identification and Characterization of RbmA, a Novel Protein Required for the Development of Rugose Colony Morphology and Biofilm Structure in Vibrio cholerae  

E-print Network

Phase variation between smooth and rugose colony variants of Vibrio cholerae is predicted to be important for the pathogen’s survival in its natural aquatic ecosystems. The rugose variant forms corrugated colonies, exhibits increased levels of resistance to osmotic, acid, and oxidative stresses, and has an enhanced capacity to form biofilms. Many of these phenotypes are mediated in part by increased production of an exopolysaccharide termed VPS. In this study, we compared total protein profiles of the smooth and rugose variants using two-dimensional gel electrophoresis and identified one protein that is present at a higher level in the rugose variant. A mutation in the gene encoding this protein, which does not have any known homologs in the protein databases, causes cells to form biofilms that are more fragile and sensitive to sodium dodecyl sulfate than wild-type biofilms. The results indicate that the gene, termed rbmA (rugosity and biofilm structure modulator A), is required for rugose colony formation and biofilm structure integrity in V. cholerae. Transcription of rbmA is positively regulated by the response regulator VpsR but not VpsT. The etiologic agent of the diarrheal disease cholera (28), Vibrio cholerae, is a facultative human pathogen. It is naturally found in environmental aquatic habitats both as a free-living organism in the water column and in a biofilm state attached to

unknown authors

2005-01-01

336

Characterization and distribution of Vibrio alginolyticus and Vibrio parahaemolyticus isolated in Indonesia.  

PubMed Central

Previous studies have shown that Vibrio alginolyticus and Vibrio parahaemolyticus can be isolated from similar types of marine samples. In this report, the results of an examination of 567 V. alginolyticus and V. parahaemolyticus strains, isolated from seawater in Jakarta Bay and from more than 30 types of seafood from markets in Jakarta, Indonesia, are presented. Most isolates were from mackerel, shrimp, or squid. Numerical taxonomic analyses clustered 337 isolates and three V. alginolyticus reference strains at S greater than or equal to 80%. These strains produced acid from sucrose, but only approximately 80% produced acetoin or grew in the presence of 10% NaCl. The frequency of occurrence of V. alginolyticus in seawater samples ranged from 0% (in February and March 1972) to 100% (in September and December 1972) and was highest in seafood samples from August to December 1972. A second cluster of 230 isolates and seven V. parahaemolyticus reference strains was observed at S greater than or equal to 82%. These strains did not produce acetoin or acid from sucrose, and approximately 20% grew in the presence of 10% NaCl. V. parahaemolyticus was detected in seawater samples each month, with the highest frequency of occurrence (83.3%) in May 1972. Twenty-nine K antigen serotypes were demonstrated in V. parahaemolyticus isolates, and another 40% were untypable. The modal antibiotic resistance pattern for each species included five drugs. Only 12% of the V. parahaemolyticus strains were Kanagawa positive, and 10% elicited fluid accumulation in ligated rabbit ileal loops. All of the 7 V. alginolyticus strains and 94 (70%) of the V. parahaemolyticus strains tested killed mice when inoculated intraperitoneally.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4091566

Molitoris, E; Joseph, S W; Krichevsky, M I; Sindhuhardja, W; Colwell, R R

1985-01-01

337

Fish as Reservoirs and Vectors of Vibrio cholerae  

Microsoft Academic Search

Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments, but despite intensive efforts its ecology remains an enigma. Recently, it was suggested that copepods and chironomids, both considered as natural reservoirs of V. cholerae, are dispersed by migratory waterbirds, thus possibly distributing the bacteria between water bodies within and between continents. Although fish have been implicated

Yigal Senderovich; Ido Izhaki; Malka Halpern; Adam J. Ratner

2010-01-01

338

NATURAL TRANSFORMATION OF A MARINE VIBRIO SPECIES BY PLASMID DNA  

EPA Science Inventory

A series of thirty marine and estuarine bacterial isolates was examined for the ability to naturally transform with plasmid DNA. One isolate from Tampa Bay, Florida, identified as Vibrio parahaemolyticus, successfully incorporated and maintained the broad host range plasmid pKT23...

339

Luciferase-dependent oxygen consumption by bioluminescent vibrios  

Microsoft Academic Search

Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for

Makemson

1986-01-01

340

Covariability of Vibrio cholerae Microdiversity and Environmental Parameters? †  

PubMed Central

Fine-scale diversity of natural bacterial assemblages has been attributed to neutral radiation because correspondence between bacterial phylogenetic signals in the natural environment and environmental parameters had not been detected. Evidence that such correspondence occurs is provided for Vibrio cholerae, establishing a critical role for environmental parameters in bacterial diversity. PMID:18310414

Zo, Young-Gun; Chokesajjawatee, Nipa; Arakawa, Eiji; Watanabe, Haruo; Huq, Anwar; Colwell, Rita R.

2008-01-01

341

Visick Lab: Home of the Vibrio-Euprymna Symbiosis  

NSDL National Science Digital Library

This website features general information about the lab of Karen Visick, which studies the genes needed to establish an interaction between the small Hawaiian squid Euprymna scolopes and its luminescent symbiont, the marine bacterium Vibrio fischeri. It features links to more information about current research in the Visick lab, lab members and events, and the summer research program and microbiology department at Loyola University.

Visick, Karen; University, Loyola

342

Necrotizing Fasciitis Due to Vibrio alginolyticus in an Immunocompetent Patient  

PubMed Central

We describe a patient with a history of asthma and remote use of steroids the development of necrotizing fascitis due to Vibrio alginolyticus after an injury from a coral reef during bathing in the Caribbean Sea off Colombia. The patient recovered with aggressive surgical debridement and antibiotics. PMID:12843111

Gomez, Juan M.; Fajardo, Roosevelt; Patiño, Jose F.; Arias, Cesar A.

2003-01-01

343

Central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) in sodium bioenergetics of Vibrio cholerae.  

PubMed

Abstract Vibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera. Vibrio cholerae maintains a Na+ gradient at its cytoplasmic membrane that drives substrate uptake, motility, and efflux of antibiotics. Here, we summarize the major Na+-dependent transport processes and describe the central role of the Na+-translocating NADH:quinone oxidoreductase (Na+-NQR), a primary Na+ pump, in maintaining a Na+-motive force. The Na+-NQR is a membrane protein complex with a mass of about 220 kDa that couples the exergonic oxidation of NADH to the transport of Na+ across the cytoplasmic membrane. We describe the molecular architecture of this respiratory complex and summarize the findings how electron transport might be coupled to Na+-translocation. Moreover, recent advances in the determination of the three-dimensional structure of this complex are reported. PMID:25205724

Steuber, Julia; Halang, Petra; Vorburger, Thomas; Steffen, Wojtek; Vohl, Georg; Fritz, Günter

2014-12-01

344

Levels of Vibrio vulnificus and organoleptic quality of raw shellstock oysters (Crassostrea virginica) maintained at different storage temperatures.  

PubMed

Temperature abuse during raw oyster harvesting and storage may allow for the multiplication of natural spoilage flora as well as microbial pathogens, thus posing a potential health threat to susceptible consumers and compromising product quality. The objective of this study was to provide a scientific basis for determining whether different refrigeration and abuse temperatures for raw oysters would result in a spoiled product before it became unsafe. Raw shellstock oysters (Crassostrea virginica) purchased from a commercial Virginia processor were subjected to different temperature abuse conditions (7, 13, and 21 degrees C) over a 10-day storage period. Salinity, pH, halophilic plate count (HPC), total culturable Vibrio counts, and culturable Vibrio vulnificus counts were determined at each abuse condition. V. vulnificus isolates were confirmed by a specific enzyme-linked immunosorbent assay. Olfactory analysis was performed to determine consumer acceptability of the oysters at each abuse stage. The pH of the oysters decreased over time in each storage condition. The HPC increased 2 to 4 logs for all storage conditions, while olfactory acceptance decreased over time. V. vulnificus levels increased over time, reaching 10(5) to 10(6) CFU/g by day 6. The length of storage had a greater effect on the bacterial counts and olfactory acceptance of the oysters (P < 0.05) over time than did the storage temperature (P < 0.05). PMID:11726149

Lorca, T A; Pierson, M D; Flick, G J; Hackney, C R

2001-11-01

345

Involvement of VAMP-2 in exocytosis of IL-1{beta} in turbot (Scophthalmus maximus) leukocytes after Vibrio anguillarum infection  

SciTech Connect

Vibrio anguillarum is a major pathogen threatening the fish aquaculture in China. Infection of cultivated turbot (Scophthalmus maximus) with V. anguillarum induced rapid synthesis and secretion of IL-1{beta}, which initiates the innate immune response. SNARE proteins are known to regulate vesicular trafficking and fusion in all eukaryotes. Here, we determined whether SNARE proteins, specifically vesicle-associated membrane protein-2 (VAMP-2), are involved in regulated exocytosis of IL-1{beta} of leukocytes in marine fish. We show that VAMP-2 is present in turbot blood leukocytes, with nucleotide sequence identity of 88.2% and 93.0% to those of zebra fish and sea bass, respectively. After Vibrio infection, turbot leukocyte VAMP-2 was increased at the levels of transcription and translation in a temporal pattern coinciding with leukocyte IL-1{beta} secretion. Confocal microscopy localized VAMP-2 to vesicle structures in leukocytes. Taken together, our results suggest that VAMP-2 is involved in regulated exocytosis of cytokines in immunocytes in fish.

Chai Yingmei [Department of Life Science, Ocean University of China, Qingdao 266003 (China); Marine Bioactive Substances Laboratory, First Institute of Oceanography, SOA, Qingdao 266061 (China); College of Marine Life Sciences, Shandong University at Weihai, Weihai 264209 (China); Huang Xiaohang [Marine Bioactive Substances Laboratory, First Institute of Oceanography, SOA, Qingdao 266061 (China)]. E-mail: xiaohanghuang@yahoo.ca; Cong Bailin [Marine Bioactive Substances Laboratory, First Institute of Oceanography, SOA, Qingdao 266061 (China); Liu Shenghao [Marine Bioactive Substances Laboratory, First Institute of Oceanography, SOA, Qingdao 266061 (China); Chen Kui [Marine Bioactive Substances Laboratory, First Institute of Oceanography, SOA, Qingdao 266061 (China); Li Guangyou [Marine Bioactive Substances Laboratory, First Institute of Oceanography, SOA, Qingdao 266061 (China); Gaisano, Herbert Y. [Department of Medicine, University of Toronto, Toronto, M5S 1A8 (Canada)

2006-04-07

346

The Type II Secretion System Delivers Matrix Proteins for Biofilm Formation by Vibrio cholerae.  

PubMed

Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ?20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies. PMID:25266381

Johnson, Tanya L; Fong, Jiunn C; Rule, Chelsea; Rogers, Andrew; Yildiz, Fitnat H; Sandkvist, Maria

2014-12-15

347

Household Transmission of Vibrio cholerae in Bangladesh  

PubMed Central

Background Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures. Methodology/Principal Findings Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001–2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001) occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%–22.8%) risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length). The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%–8.0%). The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%–16.6%) and 8.2% (2.1%–27.1%) through direct exposure, and 3.4% (1.7%–6.7%) and 2.0% (0.5%–7.3%) through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered. Conclusions Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities. PMID:25411971

Sugimoto, Jonathan D.; Koepke, Amanda A.; Kenah, Eben E.; Halloran, M. Elizabeth; Chowdhury, Fahima; Khan, Ashraful I.; LaRocque, Regina C.; Yang, Yang; Ryan, Edward T.; Qadri, Firdausi; Calderwood, Stephen B.; Harris, Jason B.; Longini, Ira M.

2014-01-01

348

Parallel analysis of 7 food-borne pathogens using capillary electrophoresis-based single-strand conformation polymorphism  

Microsoft Academic Search

Capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) coupled with multiplex polymerase chain\\u000a reaction (PCR) method was used for the detection of 7 pathogens associated with foodborne illness, including Salmonella enterica, Clostridium perfringens, Bacillus cereus, Listeria monocytogenes, Yersinia enterocolitica, Vibrio parahaemolyticus, and Escherichia coli O157:H7. The method was applied to model food systems, both of culture medium and cooked rice. The detection

Ae-Rim Kim; Mi-Hwa Oh; Kuk-Hwan Seol; Gi-Won Shin; Gyoo Yeol Jung; Sangsuk Oh

2010-01-01

349

Finding immune gene expression differences induced by marine bacterial pathogens in the Deep-sea hydrothermal vent mussel Bathymodiolus azoricus  

NASA Astrophysics Data System (ADS)

The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental infections, clustered in discrete groups in accordance with the gene expression patterns induced by bacterial pathogens.

Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

2013-11-01

350

Vibrio parahemolyticus septicaemia in a liver transplant patient: a case report  

Microsoft Academic Search

Introduction  \\u000a Vibrio parahemolyticus is the leading cause of vibrio-associated gastroenteritis in the United States of America, usually related to poor food handling;\\u000a only rarely has it been reported to cause serious infections including sepsis and soft tissue infections. In contrast, Vibrio vulnificus is a well-known cause of septicaemia, especially in patients with cirrhosis. We present a patient with V. parahemolyticus

Rajeev R Fernando; Sujatha Krishnan; Morgan G Fairweather; Charles D Ericsson

2011-01-01

351

VibrioBase: A Model for Next-Generation Genome and Annotation Database Development  

PubMed Central

To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC) tool, and pathogenomics profiling tool (PathoProT). The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development.

Choo, Siew Woh; Tan, Tze King; Mutha, Naresh V. R.; Wong, Guat Jah

2014-01-01

352

Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response  

PubMed Central

Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

2014-01-01

353

Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response.  

PubMed

Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an 'efficient' immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

2014-01-01

354

Vibrio cholerae Exploits Sub-Lethal Concentrations of a Competitor-Produced Antibiotic to Avoid Toxic Interactions.  

PubMed

Vibrio cholerae is a human pathogenic marine bacterium inhabiting coastal regions and is vectored into human food and water supplies via attachment to particles including detritus, phytoplankton, and zooplankton. Particle colonization by the pathogen is inhibited by an antagonistic interaction with the particle-associated Vibrionales bacterium SWAT3, a producer of the antibiotic andrimid. By analyzing the individual movement behaviors of V. cholerae exposed to a gradient of andrimid in a microfluidics device, we show that the pathogen has a concentration dependent avoidance response to sub-lethal concentrations of the pure antibiotic and to the metabolites produced by a growing colony of SWAT3-wild-type. This avoidance behavior includes a 25% increase in swimming speeds, 30% increase in run lengths, and a shift in the direction of the bacteria away from the andrimid source. Consequently, these behavioral shifts at low concentrations of andrimid would lead to higher diffusivity and result in the dispersion of bacteria away from the competitor and source of the antibiotic. Such alterations in motility were not elicited in response to a non-andrimid-producing SWAT3 mutant, suggesting andrimid may be a negative effector of chemotaxis for V. cholerae. The behavioral response of colonizing bacteria to sub-inhibitory concentrations of competitor-produced antibiotics is one mechanism that can influence microbial diversity and interspecific competition on particles, potentially affecting human health in coastal communities and element cycling in the ocean. PMID:23386845

Graff, Jason R; Forschner-Dancause, Stephanie R; Menden-Deuer, Susanne; Long, Richard A; Rowley, David C

2013-01-01

355

Molecular Architecture and Assembly Principles of Vibrio cholerae Biofilms  

PubMed Central

In their natural environment, microbes organize into communities held together by an extracellular matrix composed of polysaccharides and proteins. We developed an in vivo labeling strategy to allow the extracellular matrix of developing biofilms to be visualized with conventional and super-resolution light microscopy. Vibrio cholerae biofilms displayed three distinct levels of spatial organization: cells, clusters of cells, and collections of clusters. Multiresolution imaging of living V. cholerae biofilms revealed the complementary architectural roles of the four essential matrix constituents: RbmA provided cell-cell adhesion, Bap1 allowed the developing biofilm to adhere to surfaces, and heterogeneous mixtures of Vibrio polysaccharide (VPS), RbmC, and Bap1 formed dynamic, flexible and ordered envelopes that encased the cell clusters. PMID:22798614

Berk, Veysel; Fong, Jiunn C. N.; Dempsey, Graham T.; Develioglu, Omer N.; Zhuang, Xiaowei; Liphardt, Jan; Yildiz, Fitnat H.; Chu, Steven

2012-01-01

356

Comparison of methods for the rapid recognition of cholera vibrios  

PubMed Central

A comparison was made of three methods of bacteriological diagnosis during the outbreak of cholera due to Vibrio El Tor in the Republic of the Philippines in the last quarter of 1961. Although the disease was clinically indistinguishable from cholera caused by V. cholerae the etiological agent was a haemolytic, cholera-related vibrio which differed in some respects from what is classically regarded as V. cholerae. Of the three techniques evaluated, the selective-enrichment/fluorescent-antibody technique provided the most rapid and the greatest number of positive results in the 481 specimens examined in parallel. The oblique-light technique was second in sensitivity and rapidity, while the gelatin-agar method also had some advantages. Imagesp329-a PMID:20604143

Finkelstein, Richard A.; Gomez, Cecilia Z.

1963-01-01

357

Genome sequencing of 15 clinical Vibrio isolates, including 13 non-o1/non-o139 serogroup strains.  

PubMed

We present draft genome sequences of 15 clinical Vibrio isolates of various serogroups. These are valuable data for use in studying Vibrio cholerae genetic diversity, epidemic potential, and strain attribution. PMID:25212618

Bishop-Lilly, Kimberly A; Johnson, Shannon L; Verratti, Kathleen; Luu, Truong; Khiani, Amy; Awosika, Joy; Mokashi, Vishwesh P; Chain, Patrick S G; Sozhamannan, Shanmuga

2014-01-01

358

Genome Sequencing of 15 Clinical Vibrio Isolates, Including 13 Non-O1/Non-O139 Serogroup Strains  

PubMed Central

We present draft genome sequences of 15 clinical Vibrio isolates of various serogroups. These are valuable data for use in studying Vibrio cholerae genetic diversity, epidemic potential, and strain attribution. PMID:25212618

Johnson, Shannon L.; Verratti, Kathleen; Luu, Truong; Khiani, Amy; Awosika, Joy; Mokashi, Vishwesh P.; Chain, Patrick S. G.; Sozhamannan, Shanmuga

2014-01-01

359

Vibrio species associated with mortality of sharks held in captivity  

Microsoft Academic Search

Two urease-positiveVibrio spp. were isolated from a brown shark (Carcharhinus plumbeus) that died in captivity at a national aquarium. Morphological, biochemical, and molecular genetic studies revealed one of the isolates to beV. damsela; the other isolate was unique and has been classified asV. carchariae sp. nov. BothV. damsela andV. carchariae were found to be virulent for spiny dogfish (Squalus acanthias),

D. J. Grimes; J. Stemmler; H. Hada; E. B. May; D. Maneval; F. M. Hetrick; R. T. Jones; M. Stoskopf; R. R. Colwell

1984-01-01

360

Oral vaccination of fish against Vibrio anguillarum using alginate microparticles  

Microsoft Academic Search

The 800gsupernatant fraction of aVibrio anguillarumbacterin was encapsulated in alginate microparticles to protect the vaccine against degradation in the anterior part of the digestive tract. Microparticles can be optimised for different fish species with respect to differences in the digestive tract. Two types of microparticles were tested in carp (stomachless) and trout (stomach-containing). For oral vaccination, alginate microparticles with or

P. H. M. JOOSTEN; E. TIEMERSMA; A. THREELS; C. CAUMARTIN-DHIEUX; J. H. W. M. ROMBOUT

1997-01-01

361

The Winnowing: Establishing the Squid-Vibrio Symbiosis  

NSDL National Science Digital Library

This Nature Reviews Microbiology article examines the symbiosis between the squid Euprymna scolopes and its luminous bacterial symbiont, Vibrio fischeri. Using image-rich illustrations, it depicts the progression of light-organ colonization as a series of steps and discusses the advent of genomic approaches used to study this model system. A subscription is required to access the full-text version of this article.

Nyholm, Spencer V.; Mcfall-Ngai, Margaret; Microbiology, Nature R.

362

Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater  

PubMed Central

Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. PMID:22705866

Ferguson, Andrew S.; Layton, Alice C.; Mailloux, Brian J; Culligan, Patricia J.; Williams, Daniel E.; Smartt, Abby E.; Sayler, Gary S.; Feighery, John; McKay, Larry; Knappett, Peter S.K.; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md. Jahangir; Streatfield, P. Kim; Yunus, Mohammad; van Geen, Alexander

2012-01-01

363

Genetic analysis and prevalence studies of the brp exopolysaccharide locus of Vibrio vulnificus.  

PubMed

Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously, it was shown that the brp locus, which consists of nine genes arranged as an operon, is up-regulated in rugose strains in a c-di-GMP-dependent manner, and that plasmid insertions into the locus resulted in loss of rugosity and efficient biofilm production. Here, we have used non-polar mutagenesis to assess the involvement of individual brp genes in production of EPS and related phenotypes. Inactivation of genes predicted to be involved in various stages of EPS biosynthesis eliminated both the rugose colonial appearance and production of EPS, while knockout of a predicted flippase function involved in EPS transport resulted in a dry, lightly striated phenotype, which was associated with a reduction of brp-encoded EPS on the cell surface. All brp mutants retained the reduced motility characteristic of rugose strains. Lastly, we provide evidence that the brp locus is highly prevalent among strains of V. vulnificus. PMID:25013926

Garrison-Schilling, Katherine L; Kaluskar, Zelam M; Lambert, Bliss; Pettis, Gregg S

2014-01-01

364

Genetic Analysis and Prevalence Studies of the brp Exopolysaccharide Locus of Vibrio vulnificus  

PubMed Central

Phase variation in the Gram-negative human pathogen Vibrio vulnificus involves three colonial morphotypes- smooth opaque colonies due to production of capsular polysaccharide (CPS), smooth translucent colonies as the result of little or no CPS expression, and rugose colonies due to production of a separate extracellular polysaccharide (EPS), which greatly enhances biofilm formation. Previously, it was shown that the brp locus, which consists of nine genes arranged as an operon, is up-regulated in rugose strains in a c-di-GMP-dependent manner, and that plasmid insertions into the locus resulted in loss of rugosity and efficient biofilm production. Here, we have used non-polar mutagenesis to assess the involvement of individual brp genes in production of EPS and related phenotypes. Inactivation of genes predicted to be involved in various stages of EPS biosynthesis eliminated both the rugose colonial appearance and production of EPS, while knockout of a predicted flippase function involved in EPS transport resulted in a dry, lightly striated phenotype, which was associated with a reduction of brp-encoded EPS on the cell surface. All brp mutants retained the reduced motility characteristic of rugose strains. Lastly, we provide evidence that the brp locus is highly prevalent among strains of V. vulnificus. PMID:25013926

Garrison-Schilling, Katherine L.; Kaluskar, Zelam M.; Lambert, Bliss; Pettis, Gregg S.

2014-01-01

365

VIBRIO CHOLERAE EL TOR TCPA CRYSTAL STRUCTURE AND MECHANISM FOR PILUS-MEDIATED MICROCOLONY FORMATION  

PubMed Central

Type IV pili (T4P) are critical to virulence for Vibrio cholerae and other bacterial pathogens. Among their diverse functions, T4P mediate microcolony formation, which protects the bacteria from host defenses and concentrates secreted toxins. The T4P of the two V. cholerae disease biotypes, classical and El Tor, share 81% identity in their TcpA subunits, yet these filaments differ in their interaction patterns as assessed by electron microscopy. To understand the molecular basis for pilus-mediated microcolony formation, we solved a 1.5 Å resolution crystal structure of N-terminally-truncated El Tor TcpA and compared it to that of classical TcpA. Residues that differ between the two pilins are located on surface-exposed regions of the TcpA subunits. By iteratively changing these non-conserved amino acids in classical TcpA to their respective residues in El Tor TcpA, we identified residues that profoundly affect pilus:pilus interaction patterns and bacterial aggregation. These residues lie on either the protruding D-region of the TcpA subunit or in a cavity between pilin subunits in the pilus filament. Our results support a model whereby pili interact via intercalation of surface protrusions on one filament into depressions between subunits on adjacent filaments as a means to hold V. cholerae cells together in microcolonies. PMID:20545841

Lim, Mindy S.; Ng, Dixon; Zong, Stuart; Arvai, Andrew S.; Taylor, Ronald K.; Tainer, John A.; Craig, Lisa

2010-01-01

366

Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization.  

PubMed

Despite its notoriety as a human pathogen, Vibrio cholerae is an aquatic microbe suited to live in freshwater, estuarine, and marine environments where biofilm formation may provide a selective advantage. Here we report characterization of biofilms formed on abiotic and biotic surfaces by two non-O1/O139 V. cholerae strains, TP and SIO, and by the O1 V. cholerae strain N16961 in addition to the isolation of 44 transposon mutants of SIO and TP impaired in biofilm formation. During the course of characterizing the mutants, 30 loci which have not previously been associated with V. cholerae biofilms were identified. These loci code for proteins which perform a wide variety of functions, including amino acid metabolism, ion transport, and gene regulation. Also, when the plankton colonization abilities of strains N16961, SIO, and TP were examined, each strain showed increased colonization of dead plankton compared with colonization of live plankton (the dinoflagellate Lingulodinium polyedrum and the copepod Tigriopus californicus). Surprisingly, most of the biofilm mutants were not impaired in plankton colonization. Only mutants impaired in motility or chemotaxis showed reduced colonization. These results indicate the presence of both conserved and variable genes which influence the surface colonization properties of different V. cholerae subspecies. PMID:17496082

Mueller, Ryan S; McDougald, Diane; Cusumano, Danielle; Sodhi, Nidhi; Kjelleberg, Staffan; Azam, Farooq; Bartlett, Douglas H

2007-07-01

367

Quinazoline-sulfonamides with potent inhibitory activity against the ?-carbonic anhydrase from Vibrio cholerae.  

PubMed

Thirteen novel sulfonamide derivatives incorporating the quinazoline scaffold were synthesized by simple, eco-friendly procedures. These compounds were tested for their ability to inhibit the ?-carbonic anhydrases (CA, EC 4.2.1.1) from Vibrio cholerae (VchCA) as well as the human ?-CA isoforms, hCA I and hCA II. Nine compounds were highly effective, nanomolar inhibitors of the pathogenic enzyme VchCA. Three of them were also highly effective sub-nanomolar inhibitors of the cytosolic isoform II. The best VchCA inhibitor had a KI of 2.7nM. Many of these developed compounds showed high selectivity for inhibition of the bacterial over the mammalian CA isoforms, with one compound possessing selectivity ratios as high as 97.9 against hCA I and 9.7 against hCA II. Compound 9d was another highly effective VchCA inhibitor presenting a selectivity ratio of 99.1 and 8.1 against hCA I and hCA II, respectively. These results suggest that sulfonamides with quinazoline backbone could be considered suitable tools to better understand the role of bacterial CAs in pathogenesis. PMID:25194929

Alafeefy, Ahmed M; Ceruso, Mariangela; Al-Tamimi, Abdul-Malek S; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T

2014-10-01

368

The virulence phenotypes and molecular epidemiological characteristics of Vibrio fluvialis in China  

PubMed Central

Background Vibrio fluvialis is considered to be an emerging foodborne pathogen and has been becoming a high human public health hazard all over the world, especially in coastal areas of developing countries and regions with poor sanitation. The distribution of virulence factors, microbiological and molecular epidemiological features of V. fluvialis isolates in China remains to be examined. Methods and results PCR targeted at the virulence determinants and phenotype tests including metabolism, virulence and antibiotic susceptibility were performed. Pulsed-field gel electrophoresis (PFGE) analysis was used to access the relatedness of isolates. A strain with deletion of the arginine dihydrolase system was first reported and proved in molecular level by PCR. Virulence genes vfh, hupO and vfpA were detected in all strains, the ability to produce hemolysin, cytotxin, protease and biofilm formation varied with strains. High resistance rate to ?-lactams, azithromycin and sulfamethoxazole were observed. Twenty-seven percent of test strains showed resistant to two and three antibiotics. PFGE analysis demonstrated great genetic heterogeneity of test V. fluvialis strains. Conclusion This study evaluated firstly the biological characteristics and molecular epidemiological features of V. fluvialis in China. Some uncommon biochemical characteristics were found. Virulence genes were widely distributed in the isolates from patient and seafood sources, and the occurrence of virulence phenotypes varied with strains. Continued and enhanced laboratory based-surveillance is needed in the future together with systematically collection of the epidemiological information of the cases or the outbreaks. PMID:23522652

2013-01-01

369

Translocation of a Vibrio cholerae Type VI Secretion Effector Requires Bacterial Endocytosis by Host Cells  

PubMed Central

SUMMARY The type VI secretion system (T6SS) is a virulence mechanism common to several Gram-negative pathogens. In Vibrio cholerae, VgrG-1 is required for T6SS-dependent secretion. VgrG-1 is also secreted by T6SS and displays a C-terminal actin cross-linking domain (ACD). Using a heterologous reporter enzyme in place of the ACD, we show that the effector and secretion functions of VgrG-1 are genetically dissociable with the ACD being dispensable for secretion, but required for T6SS-dependent phenotypes. Furthermore, internalization of bacteria is required for ACD translocation into phagocytic target cells. Inhibiting bacterial uptake abolishes actin cross-linking while improving intracellular survival enhances it. Otherwise resistant nonphagocytic cells become susceptible to T6SS-mediated actin cross-linking when engineered to take up bacteria. Our results support a model for translocation of VgrG C-terminal effector domains into target cell cytosol by a process that requires trafficking of bacterial cells into an endocytic compartment where translocation is triggered by an unknown signal. PMID:19286133

Ma, Amy T.; McAuley, Steven; Pukatzki, Stefan; Mekalanos, John J.

2011-01-01

370

Comparison of ribotyping and randomly amplified polymorphic DNA PCR for characterization of Vibrio vulnificus.  

PubMed Central

A total of 85 isolates of Vibrio vulnificus were characterized by ribotyping with a probe complementary to 16S and 23S rRNA of Escherichia coli and by randomly amplified polymorphic DNA-PCR (RAPD-PCR) with a 10-mer oligonucleotide primer. The RAPD-PCR results were scanned, and the images were analyzed with a computer program. Ribotype membranes were evaluated visually. Both the ribotyping and the RAPD-PCR results showed that the collection of strains was genetically very heterogeneous. Ribotyping enabled us to differentiate U.S. and Danish strains and V. vulnificus biotypes 1 and 2, while the RAPD-PCR technique was not able to correlate isolates with sources or to differentiate the two biotypes, suggesting that ribotyping is useful for typing V. vulnificus strains whereas RAPD-PCR profiles may subdivide ribotypes. Two Danish clinical biotype 2 strains isolated from fishermen who contracted the infection cleaning eels belonged to the same ribotype as three eel strains (biotype 2), providing further evidence that V. vulnificus biotype 2 is an opportunistic pathogen for humans. One isolate (biotype 2) from Danish coastal waters also showed the same ribotype as the eel strains. This is, to our knowledge, the first time the isolation of V. vulnificus biotype 2 from coastal waters has been described. PMID:9143101

Høi, L; Dalsgaard, A; Larsen, J L; Warner, J M; Oliver, J D

1997-01-01

371

Transcriptomic analysis of Ruditapes philippinarum hemocytes reveals cytoskeleton disruption after in vitro Vibrio tapetis challenge.  

PubMed

The Manila clam, Ruditapes philippinarum, is an economically-important, commercial shellfish; harvests are diminished in some European waters by a pathogenic bacterium, Vibrio tapetis, that causes Brown Ring disease. To identify molecular characteristics associated with susceptibility or resistance to Brown Ring disease, Suppression Subtractive Hybridization (SSH) analyzes were performed to construct cDNA libraries enriched in up- or down-regulated transcripts from clam immune cells, hemocytes, after a 3-h in vitro challenge with cultured V. tapetis. Nine hundred and ninety eight sequences from the two libraries were sequenced, and an in silico analysis identified 235 unique genes. BLAST and "Gene ontology" classification analyzes revealed that 60.4% of the Expressed Sequence Tags (ESTs) have high similarities with genes involved in various physiological functions, such as immunity, apoptosis and cytoskeleton organization; whereas, 39.6% remain unidentified. From the 235 unique genes, we selected 22 candidates based upon physiological function and redundancy in the libraries. Then, Real-Time PCR analysis identified 3 genes related to cytoskeleton organization showing significant variation in expression attributable to V. tapetis exposure. Disruption in regulation of these genes is consistent with the etiologic agent of Brown Ring disease in Manila clams. PMID:22450167

Brulle, Franck; Jeffroy, Fanny; Madec, Stéphanie; Nicolas, Jean-Louis; Paillard, Christine

2012-10-01

372

Role of the Vibrio cholerae Matrix Protein Bap1 in Cross-Resistance to Antimicrobial Peptides  

PubMed Central

Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP. PMID:24098113

Duperthuy, Marylise; Sjostrom, Annika E.; Sabharwal, Dharmesh; Damghani, Fatemeh; Uhlin, Bernt Eric; Wai, Sun Nyunt

2013-01-01

373

Phenotypic and genotypic characterization Vibrio cholerae O139 of clinical and aquatic isolates in China.  

PubMed

To enhance the understanding of epidemiological impact of environmental Vibrio cholerae O139 strains, we characterized 10 clinical and 20 environmental isolates collected from human clinical samples and Pear River estuary during 2006 to 2008. Isolates were tested by PCR for eight virulence genes: cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), outer membrane protein (ompU), and regulatory protein genes (tcpI). Genetic relatedness was assessed by pulsed-field gel electrophoresis (PFGE), and antibiotic susceptibility was determined using disk diffusion. Seven of eight virulence markers were detected in six clinical isolates and one environmental isolate. One clinical and one environmental isolate were positive for six virulence markers. 60% clinical isolates showed multi-drug resistance to tetracycline (TET), Nalidixic acid (NAL), chloramphenicol (CHL), and ampicillin (AMP), 70% were resistant to Trimethoprim + Sulfamethoxazole (SXT), while only 35% environmental strains were resistant to SXT. PFGE analysis revealed that the isolates in this study were formed three clusters. Cluster III was more related to strains from diarrheal patients than the strains in other clusters. Different from the clinical strains, most environmental strains lacked CTX and TCP gene clusters. Most environmental strains possess a single resistance profile, while most clinical isolates show multidrug resistant. PFGE analysis indicated the cluster III has more possibility to become a potential pathogenic clonal cluster. PMID:21079963

Li, Bai-sheng; Tan, Hai-ling; Wang, Duo-chun; Deng, Xiao-ling; Chen, Jing-diao; Zhong, Hao-jie; Ke, Bi-xia; Ke, Chang-wen; Kan, Biao

2011-03-01

374

Characterization of a Vibrio alginolyticus Strain, Isolated from Alaskan Oysters, Carrying a Hemolysin Gene Similar to the Thermostable Direct Hemolysin-Related Hemolysin Gene (trh) of Vibrio parahaemolyticus?  

PubMed Central

A Vibrio strain isolated from Alaskan oysters and classified by its biochemical characteristics as Vibrio alginolyticus possessed a thermostable direct hemolysin-related hemolysin (trh) gene previously reported only in Vibrio parahaemolyticus. This trh-like gene was cloned and sequenced and was 98% identical to the trh2 gene of V. parahaemolyticus. This gene seems to be functional since it was transcriptionally active in early-stationary-phase growing cells. To our knowledge, this is the first report of V. alginolyticus possessing a trh gene. PMID:17056701

Gonzalez-Escalona, Narjol; Blackstone, George M.; DePaola, Angelo

2006-01-01

375

Vibrio cholerae evades neutrophil extracellular traps by the activity of two extracellular nucleases.  

PubMed

The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation. PMID:24039581

Seper, Andrea; Hosseinzadeh, Ava; Gorkiewicz, Gregor; Lichtenegger, Sabine; Roier, Sandro; Leitner, Deborah R; Röhm, Marc; Grutsch, Andreas; Reidl, Joachim; Urban, Constantin F; Schild, Stefan

2013-01-01

376

Characteristics of a sharp decrease in Vibrio parahaemolyticus infections and seafood contamination in Japan.  

PubMed

Vibrio parahaemolyticus has been one of the most important foodborne pathogens in Japan since the 1960s, and a large epidemic was caused by the pandemic serotype O3:K6 from 1997 to 2001. V. parahaemolyticus infections, however, have sharply declined since that time. Data on serotypes isolated from 977 outbreaks were collected and analysed. Total and pathogenic, thermostable direct hemolysin (TDH) gene-positive V. parahaemolyticus were qualitatively and quantitatively detected in 842 seafood samples from wholesale markets in 2007-2009. Strains isolated from patients and seafood were analysed by serotyping, tdh-PCR, group-specific PCR for pandemic strains, and pulsed-field gel electrophoresis (PFGE). The sharp decrease in the infections from 1999 onwards was noted not only for O3:K6 infections but also for other serotypes. The change in the seafood contamination situation from 2001 to 2007-2009 was characterised by a decrease to three-fourths in the frequency of tdh-positive samples, although that decrease was small compared to the 18-fold decrease in the cases of V. parahaemolyticus outbreaks. PFGE detected the pandemic O3:K6 serotype in the same profile in seafood and patients from 1998 to the present. Because of no large decrease in seafood contamination by V. parahaemolyticus from the production to distribution stages and the presence of pandemic O3:K6 serotype in seafood to the present, it was suggested that the change of seafood contamination was unrelated to the sharp decrease in V. parahaemolyticus infections. V. parahaemolyticus infections might be prevented at the stages after the distribution stage. PMID:22583518

Hara-Kudo, Yukiko; Saito, Shihoko; Ohtsuka, Kayoko; Yamasaki, Shogo; Yahiro, Shunsuke; Nishio, Tomohiro; Iwade, Yoshito; Otomo, Yoshimitsu; Konuma, Hirotaka; Tanaka, Hiroyuki; Nakagawa, Hiroshi; Sugiyama, Kanji; Sugita-Konishi, Yoshiko; Kumagai, Susumu

2012-06-15

377

Iron and Quorum Sensing Coordinately Regulate the Expression of Vulnibactin Biosynthesis in Vibrio vulnificus*  

PubMed Central

Vibrio vulnificus is a halophilic marine pathogen associated with human diseases such as septicemia and serious wound infections. Genes vvsA and vvsB, which are co-transcribed and encode a member of the nonribosomal peptide synthase family, are required for vulnibactin biosynthesis in V. vulnificus. In this study, we found that quorum sensing represses the transcription of a vvsAB-lux reporter fusion. Gel shift assay and DNaseI footprinting experiments show that the main regulator of quorum sensing, SmcR, binds to a 22-bp region located between ?40 and ?19 with respect to the vvsA transcription start site. Mutation of the SmcR binding site abolishes the repression of vvsA::luxAB by SmcR. Fur represses vvsAB transcription in the presence of iron by binding to a 47-bp region located between ?45 and +2 with respect to the vvsA transcription start site. A competition gel shift assay and footprinting experiment using Fur and SmcR showed that Fur binds to the vvsA promoter region with higher affinity than SmcR. Studies with the vvsAB::luxAB transcriptional fusion demonstrate that in the presence of iron, Fur is the key repressor of vvsAB transcription, whereas in iron-limited conditions, SmcR is the key regulator repressing vvsAB transcription. This study demonstrates that the Fe-Fur complex and quorum sensing cooperate to repress the transcription of vvsAB in response to iron conditions, suggesting that fine tuning of the intracellular iron level is important for the survival and pathogenicity of V. vulnificus. PMID:22696215

Wen, Yancheng; Kim, In Hwang; Son, Jee-Soo; Lee, Byeong-Ha; Kim, Kun-Soo

2012-01-01

378

Fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water treatment.  

PubMed

The objective of this study was to investigate the fate of Vibrio parahaemolyticus on shrimp after acidic electrolyzed water (AEW) treatment during storage. Shrimp, inoculated with a cocktail of four strains of V. parahaemolyticus, were stored at different temperatures (4-30 °C) after AEW treatment. Experimental data were fitted to modified Gompertz and Log-linear models. The fate of V. parahaemolyticus was determined based on the growth and survival kinetics parameters (lag time, ?; the maximum growth rate, ?max; the maximum growth concentration, D; the inactivation value, K) depending on the respective storage conditions. Moreover, real-time PCR was employed to study the population dynamics of this pathogen during the refrigeration temperature storage (10, 7, 4 °C). The results showed that AEW treatment could markedly (p<0.05) decrease the growth rate (?max) and extend the lag time (?) during the post-treatment storage at 30, 25, 20 and 15 °C, while it did not present a capability to lower the maximum growth concentration (D). AEW treatment increased the sensitivity of V. parahaemolyticus to refrigeration temperatures, indicated by a higher (p<0.05) inactivation value (K) of V. parahaemolyticus, especially for 10 °C storage. The results also revealed that AEW treatment could completely suppress the proliferation of V. parahaemolyticus in combination with refrigeration temperature. Based on above analysis, the present study demonstrates the potential of AEW in growth inhibition or death acceleration of V. parahaemolyticus on seafood, hence to greatly reduce the risk of illness caused by this pathogen during post-treatment storage. PMID:24727382

Wang, Jing Jing; Sun, Wen Shuo; Jin, Meng Tong; Liu, Hai Quan; Zhang, Weijia; Sun, Xiao Hong; Pan, Ying Jie; Zhao, Yong

2014-06-01

379

Activation of Cholera Toxin Production by Anaerobic Respiration of Trimethylamine N-oxide in Vibrio cholerae*  

PubMed Central

Vibrio cholerae is a Gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2?,7?-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor. PMID:23019319

Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-il; Yoon, Sang Sun

2012-01-01

380

Activation of cholera toxin production by anaerobic respiration of trimethylamine N-oxide in Vibrio cholerae.  

PubMed

Vibrio cholerae is a gram-negative bacterium that causes cholera. Although the pathogenesis caused by this deadly pathogen takes place in the intestine, commonly thought to be anaerobic, anaerobiosis-induced virulence regulations are not fully elucidated. Anerobic growth of the V. cholerae strain, N16961, was promoted when trimethylamine N-oxide (TMAO) was used as an alternative electron acceptor. Strikingly, cholera toxin (CT) production was markedly induced during anaerobic TMAO respiration. N16961 mutants unable to metabolize TMAO were incapable of producing CT, suggesting a mechanistic link between anaerobic TMAO respiration and CT production. TMAO reductase is transported to the periplasm via the twin arginine transport (TAT) system. A similar defect in both anaerobic TMAO respiration and CT production was also observed in a N16961 TAT mutant. In contrast, the abilities to grow on TMAO and to produce CT were not affected in a mutant of the general secretion pathway. This suggests that V. cholerae may utilize the TAT system to secrete CT during TMAO respiration. During anaerobic growth with TMAO, N16961 cells exhibit green fluorescence when stained with 2',7'-dichlorofluorescein diacetate, a specific dye for reactive oxygen species (ROS). Furthermore, CT production was decreased in the presence of an ROS scavenger suggesting a positive role of ROS in regulating CT production. When TMAO was co-administered to infant mice infected with N16961, the mice exhibited more severe pathogenic symptoms. Together, our results reveal a novel anaerobic growth condition that stimulates V. cholerae to produce its major virulence factor. PMID:23019319

Lee, Kang-Mu; Park, Yongjin; Bari, Wasimul; Yoon, Mi Young; Go, Junhyeok; Kim, Sang Cheol; Lee, Hyung-Il; Yoon, Sang Sun

2012-11-16

381

Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity.  

PubMed

Pathogens selectively target host cells using adhesion molecules and secreted virulence factors that may utilize protein, lipid, or carbohydrate ligands on the cell surface. The human intestinal pathogen Vibrio cholerae secretes a pore-forming toxin, V.cholerae cytolysin (VCC), which contains two domains that are structurally similar to known carbohydrate-binding proteins. These tandem domains are attached to the carboxy-terminus of the cytolytic domain and contain a ?-trefoil fold and a ?-prism fold. VCC has been shown to bind glycosylated proteins, and removal of the ?-prism domain leads to a large decrease in lytic activity against rabbit erythrocytes. Despite these clues, the identity of the glycan receptors of VCC and the role of glycan binding in toxin activity remain unknown. To better understand this specificity, we used a combination of structural and functional approaches to characterize the carbohydrate-binding activity of the VCC toxin. We first probed the monosaccharide-binding activity of VCC and demonstrated that the toxin exhibits millimolar affinity for aldohexoses. To understand this specificity, we solved the crystal structure of the VCC ?-prism domain bound to methyl-?-mannose. Next, we utilized a mammalian glycan screen to determine that the ?-prism domain preferentially binds complex N-glycans with a heptasaccharide GlcNAc(4)Man(3) core (NGA2). Fluorescence anisotropy and surface plasmon resonance indicated an approximately 100-nM affinity of the ?-prism domain for the heptasaccharide core. Our results suggest that carbohydrate-binding domains on the VCC toxin facilitate high-affinity targeting of mammalian cell membranes, which may contribute to the ability of VCC to lyse cells at picomolar concentrations. PMID:23274141

Levan, Sophia; De, Swastik; Olson, Rich

2013-03-11

382

Finding immune gene expression differences induced by marine bacterial pathogens in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus  

NASA Astrophysics Data System (ADS)

The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate analyses demonstrated that immune genes, as well as experimental infections, clustered in discrete groups in accordance with the patterns observed in gene expression changes induced by bacterial pathogens.

Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.

2013-02-01

383

Reactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins  

E-print Network

vaccine strains have led to side effects in volunteers. Such side effects, often referred to as vaccineReactogenicity of live-attenuated Vibrio cholerae vaccines is dependent on flagellins Haopeng Ruia disease caused by the motile Gram- negative rod Vibrio cholerae. Live-attenuated V. cholerae vaccines

Mekalanos, John

384

Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin  

Microsoft Academic Search

MARTX toxins modulate the virulence of a number of Gram-negative Vibrio species. This family of toxins is defined by the presence of a cysteine protease domain (CPD), which proteolytically activates the Vibrio cholerae MARTX toxin. Although recent structural studies of the CPD have uncovered a new allosteric activation mechanism, the mechanism of CPD substrate recognition or toxin processing is unknown.

Patrick J Lupardus; Victoria E Albrow; Andrew Guzzetta; James C Powers; K Christopher Garcia; Aimee Shen; Matthew Bogyo

2009-01-01

385

Reduction of biological activity of cholera vibrio culture filtrates by neuraminidase inhibitors  

Microsoft Academic Search

With edema of the albino mouse paw as experimental model the action of neuraminidase inhibitors on the cholerogenic effect of cholera vibrio culture filtrates (CVCF) was studied. Addition of inhibitors to CVCF was found to depress their biological activity. Since purified neuraminidase preparations from cholera vibrios had no cholerogenic action it was postulated that the region of the cholerogen responsible

K. V. Durikhin

1976-01-01

386

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri  

E-print Network

LuxU connects quorum sensing to biofilm formation in Vibrio fischeri Valerie A. Ray and Karen L, USA. Summary Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators polysaccha- ride (syp) locus. To identify other regulators of biofilm formation in V. fischeri, we screened

McFall-Ngai, Margaret

387

CHITINASE DETERMINANTS OF 'VIBRIO VULNIFICUS': GENE CLONING AND APPLICATIONS OF A CHITINASE PROBE  

EPA Science Inventory

To initiate study of the genetic control of chitinolytic activity in vibrios, the chitobiase gene was isolated by cloning chromosomal DNA prepared from Vibrio vulnificus. Chimeric plasmids were constructed from Sau3A I partial digests of chromosomal DNA by ligating 5 to 15-Kiloba...

388

Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio  

E-print Network

Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio fischeri symbiotic vibrios. The pilA gene was found to be upstream from all other pil genes, and not contiguousB and pilD) are conserved among strains of V. fischeri, but pilC differs in sequence between symbiotic

McFall-Ngai, Margaret

389

Draft Genome Sequence of the Fast-Growing Bacterium Vibrio natriegens Strain DSMZ 759  

PubMed Central

Vibrio natriegens is a Gram-negative bacterium known for its extremely short doubling time. Here we present the annotated draft genome sequence of Vibrio natriegens strain DSMZ 759, with the aim of providing insights about its high growth rate. PMID:23969053

Maida, Isabel; Bosi, Emanuele; Perrin, Elena; Papaleo, Maria Cristiana; Orlandini, Valerio; Fondi, Marco; Fani, Renato; Wiegel, Juergen; Bianconi, Giovanna

2013-01-01

390

Antibacterial Effect of Silver Nanoparticles Against Four Foodborne Pathogens  

PubMed Central

Background: There is increased demand for improved disinfection methods due to microorganisms resistant to multiple antimicrobial agents. Numerous types of disinfectants are available with different properties; but the proper disinfectant must be carefully selected for any specific application to obtain the desired antimicrobial effect. Objectives: Antimicrobial effect of a commercial nanosilver product, NanoCid® L2000, against some foodborne pathogens was evaluated. Materials and Methods: Minimum inhibitory concentrations (MIC) were determined by monitoring the growth of bacteria at 600 nm, after 24 hours incubation at 35°C. Minimum bactericidal concentrations (MBC) were determined based on 3 log decrease in the viable population of the pathogens after incubation of nutrient agar plates at 35°C for 24 hours. The required exposure time for 3 log reduction in the viable population of the tested pathogens was determined as the minimum exposure time for efficient bactericidal activity. Results: The MIC values of Ag NPs against tested pathogens were in the range of 3.12-6.25 µg/mL. While Listeria monocytogenes showed the MIC value of 6.25 µg/mL, Escherichia coli O157:H7, Salmonella typhimurium and Vibrio parahaemolyticus all showed the MIC values of 3.12 µg/mL. However, all the pathogens showed the same MBC value of 6.25 µg/mL. To obtain an efficient bactericidal activity against E. coli O157:H7 and S. typhimurium, the exposure time should be at least ca. 6 hours., while this time was ca. 5 hours for V. parahaemolyticus and ca. 7 hours for L. monocytogenes. Conclusions: Silver nanoparticles showed great antibacterial effectiveness on four important foodborne pathogens. Therefore, Ag NPs could be a good alternative for cleaning and disinfection of equipment and surfaces in food-related environments. PMID:25147658

Zarei, Mehdi; Jamnejad, Amirhesam; Khajehali, Elahe

2014-01-01

391

Association between Giardia duodenalis and Coinfection with Other Diarrhea-Causing Pathogens in India  

PubMed Central

Giardia duodenalis, is often seen as an opportunistic pathogen and one of the major food and waterborne parasites. Some insights of Giardia infestation in a diarrhoea-prone population were investigated in the present study. Our primary goal was to understand the interaction of this parasite with other pathogens during infection and to determine some important factors regulating the diarrhoeal disease spectrum of a population. Giardia showed a steady rate of occurrence throughout the entire study period with a nonsignificant association with rainfall (P > 0.05). Interestingly coinfecting pathogens like Vibrio cholerae and rotavirus played a significant (P ? 0.001) role in the occurrence of this parasite. Moreover, the age distribution of the diarrhoeal cases was very much dependent on the coinfection rate of Giardia infection. As per our findings, Giardia infection rate seems to play a vital role in regulation of the whole diarrhoeal disease spectrum in this endemic region. PMID:25009820

Mukherjee, Avik K.; Chowdhury, Punam; Rajendran, Krishnan; Nozaki, Tomoyoshi

2014-01-01

392

Presence of Bacteroidales as a Predictor of Pathogens in Surface Waters of the Central California Coast ?  

PubMed Central

The value of Bacteroidales genetic markers and fecal indicator bacteria (FIB) to predict the occurrence of waterborne pathogens was evaluated in ambient waters along the central California coast. Bacteroidales host-specific quantitative PCR (qPCR) was used to quantify fecal bacteria in water and provide insights into contributing host fecal sources. Over 140 surface water samples from 10 major rivers and estuaries within the Monterey Bay region were tested over 14 months with four Bacteroidales-specific assays (universal, human, dog, and cow), three FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., Escherichia coli O157:H7, Salmonella spp., and Vibrio spp.). Indicator and pathogen distribution was widespread, and detection was not highly seasonal. Vibrio cholerae was detected most frequently, followed by Giardia, Cryptosporidium, Salmonella, and Campylobacter spp. Bayesian conditional probability analysis was used to characterize the Bacteroidales performance assays, and the ratios of concentrations determined using host-specific and universal assays were used to show that fecal contamination from human sources was more common than livestock or dog sources in coastal study sites. Correlations were seen between some, but not all, indicator-pathogen combinations. The ability to predict pathogen occurrence in relation to indicator threshold cutoff levels was evaluated using a weighted measure that showed the universal Bacteroidales genetic marker to have a comparable or higher mean predictive potential than standard FIB. This predictive ability, in addition to the Bacteroidales assays providing information on contributing host fecal sources, supports using Bacteroidales assays in water quality monitoring programs. PMID:20639358

Schriewer, Alexander; Miller, Woutrina A.; Byrne, Barbara A.; Miller, Melissa A.; Oates, Stori; Conrad, Patricia A.; Hardin, Dane; Yang, Hsuan-Hui; Chouicha, Nadira; Melli, Ann; Jessup, Dave; Dominik, Clare; Wuertz, Stefan

2010-01-01

393

Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections.  

PubMed

A rapid and accurate method for detection for common pathogenic bacteria in foodborne infections was established by using oligonucleotide array technology. Nylon membrane was used as the array support. A mutation region of the 23S rRNA gene was selected as the discrimination target from 14 species (genera) of bacteria causing foodborne infections and two unrelated bacterial species. A pair of universal primers was designed for PCR amplification of the 23S rRNA gene. Twenty-one species (genera)-specific oligonucleotide detection probes were synthesized and spotted onto the nylon membranes. The 23S rRNA gene amplification products of 14 species of pathogenic bacteria were hybridized to the oligonucleotide array. Hybridization results were analyzed with digoxigenin-linked enzyme reaction. Results indicated that nine species of pathogenic bacteria (Escherichia coli, Campylobacter jejuni, Shigella dysenteriae, Vibrio cholerae, Vibrio parahaemolyticus, Proteus vulgaris, Bacillus cereus, Listeria monocytogenes and Clostridium botulinum) showed high sensitivity and specificity for the oligonucleotide array. Two other species (Salmonella enterica and Yersinia enterocolitica) gave weak cross-reaction with E. coli, but the reaction did not affect their detection. After redesigning the probes, positive hybridization results were obtained with Staphylococcus aureus, but not with Clostridium perfringens and Streptococcus pyogenes. The oligonucleotide array can also be applied to samples collected in clinical settings of foodborne infections. The superiority of oligonucleotide array over other tests lies on its rapidity, accuracy and efficiency in the diagnosis, treatment and control of foodborne infections. PMID:15279944

Hong, Bang-Xing; Jiang, Li-Fang; Hu, Yu-Shan; Fang, Dan-Yun; Guo, Hui-Yu

2004-09-01

394

Exotoxinas proteicas de cepas de Vibrio penaeicida y Vibrio nigripulchritudo, patogénicas para camarón  

Microsoft Academic Search

The pathogenicity of two V. penaeicida strains, AM101 and KH-1, with different geographic origin, and V. nigripulchritudo strain AM102, were investigated in juvenile blue shrimp species Litopenaeus stylirostris. Alive bacteria and protein fractions (PFs) obtained from cell-free supernatants (CFS) were used in experimental challenges. Strains AM102, AM101, and KH-1 produced respectively 60, 54 and 12% mortality at 96 h after

Gabriel Aguirre-Guzmán; Yannick Labreuche; Dominique Ansquer; Benoît Espiau; Peva Levy; Felipe Ascencio; Denis Saulnier

395

Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle.  

PubMed Central

Most probable numbers of Vibrio cholerae and related vibrios were determined in Albufera Lake, Valencia, Spain, and in coastal waters under the influence of the lake discharges over the course of an annual cycle. The influence of temperature, kind of water, and characteristics of the different sampling sites on the numbers of vibrios recovered was evaluated. Maximum recovery of vibrios reached 10(3)/ml in both types of waters analyzed. V. cholerae numbers reached 10(3)/ml in the lake and 10(2) in one of the coastal sites. Frequently during the warm season, all vibrios isolated were identified as V. cholerae. Occasionally, no V. cholerae was recovered. The recovery of vibrios was significantly influenced by the temperature of the water and the type of water analyzed. Most of the V. cholerae isolates were included in Heiberg groups I and II, and nearly 50% of the strains used chitin as sole carbon source. Indole was not produced by 100% of the strains. All strains tested were non-O1 serovars. PMID:4051487

Garay, E; Arnau, A; Amaro, C

1985-01-01

396

Genotypic Diversity and Virulence Characteristics of Clinical and Environmental Vibrio vulnificus Isolates from the Baltic Sea Region  

PubMed Central

The genetic diversity of Vibrio vulnificus isolates from clinical and environmental sources originating from the Baltic Sea region was evaluated by multilocus sequence typing (MLST), and possible relationships between MLST clusters, potential genotypic and phenotypic traits associated with pathogenicity, and source of isolation were investigated. The studied traits included genotyping of polymorphic loci (16S rRNA, vcg, and pilF), presence/absence of potential virulence genes, including nanA, nab, and genes of pathogenicity regions, metabolic features, hemolytic activity, resistance to human serum, and cytotoxicity to human intestinal cells. MLST generated 35 (27 new) sequence types and divided the 53 isolates (including four reference strains) into two main clusters, with cluster I containing biotype 1 and 2 isolates of mainly environmental origin and cluster II containing biotype 1 isolates of mainly clinical origin. Cluster II isolates were further subdivided into two branches. Branch IIB included isolates from recent cases of wound infections that were acquired at the German Baltic Sea coastline between 2010 and 2011 and isolates from seawater samples of the same regions isolated between 1994 and 2010. Comparing the MLST data with the results of genotyping and phenotyping showed that strains of MLST cluster II possess a number of additional pathogenicity-associated traits compared to cluster I strains. Rapid microbiological methods such as matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry combined with typing of selected virulence-associated traits (e.g., serum resistance, mannitol fermentation, nanA, and pathogenicity region XII) could be used for risk assessment purposes regarding V. vulnificus strains isolated from the Baltic Sea region. PMID:23542621

Bier, Nadja; Bechlars, Silke; Diescher, Susanne; Klein, Florian; Hauk, Gerhard; Duty, Oliver; Strauch, Eckhard

2013-01-01

397

Vaccines against dangerous pathogens  

Microsoft Academic Search

Dangerous pathogens are defined by the UK Health and Safety Executive's advisory committee as category 3 (those which cause severe human disease for which prophylaxis or therapy is usually available) or category 4 (as for category 3, but for which prophylaxis or therapy is not available). Research and development of vaccines for such pathogens is challenging, due to the safety

E D Williamson; R W Titball

2002-01-01

398

Emerging Escherichia pathogen.  

PubMed

Escherichia hermannii was first identified as a new species in 1982. It has rarely been reported as a human pathogen. We report the first case of E. hermannii as the sole pathogen in a catheter-related bloodstream infection. PMID:23740732

Kaewpoowat, Quanhathai; Permpalung, Nitipong; Sentochnik, Deborah E

2013-08-01

399

Emerging Escherichia Pathogen  

PubMed Central

Escherichia hermannii was first identified as a new species in 1982. It has rarely been reported as a human pathogen. We report the first case of E. hermannii as the sole pathogen in a catheter-related bloodstream infection. PMID:23740732

Permpalung, Nitipong; Sentochnik, Deborah E.

2013-01-01

400

BACTERIAL WATERBORNE PATHOGENS  

EPA Science Inventory

Bacterial pathogens are examples of classical etiological agents of waterborne disease. While these agents no longer serve as major threats to U.S. water supplies, they are still important pathogens in areas with substandard sanitation and poor water treatment facilities. In th...

401

Plant pathogen resistance  

DOEpatents

Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

2012-11-27

402

OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139 and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay  

PubMed Central

Background Cholera is an acute diarrheal disease caused by Vibrio cholerae. Outbreaks are caused by a genetically homogenous group of strains from serogroup O1 or O139 that are able to produce the cholera toxin. Rapid detection and identification of these epidemic strains is essential for an effective response to cholera outbreaks. Results The use of ferulic acid as a matrix in a new MALDI-TOF MS assay increased the measurable mass range of existing MALDI-TOF MS protocols for bacterial identification. The assay enabled rapid discrimination between epidemic V. cholerae O1/O139 strains and other less pathogenic V. cholerae strains. OmpU, an outer membrane protein whose amino acid sequence is highly conserved among epidemic strains of V. cholerae, appeared as a discriminatory marker in the novel MALDI-TOF MS assay. Conclusions The extended mass range of MALDI-TOF MS measurements obtained by using ferulic acid improved the screening for biomarkers in complex protein mixtures. Differences in the mass of abundant homologous proteins due to variation in amino acid sequences can rapidly be examined in multiple samples. Here, a rapid MALDI-TOF MS assay was developed that could discriminate between epidemic O1/O139 strains and other less pathogenic V. cholerae strains based on differences in mass of the OmpU protein. It appeared that the amino acid sequence of OmpU from epidemic V. cholerae O1/O139 strains is unique and highly conserved. PMID:24943244

2014-01-01

403