Science.gov

Sample records for pathogenic staphylococcal species

  1. The Presence of Peptidoglycan O-Acetyltransferase in Various Staphylococcal Species Correlates with Lysozyme Resistance and Pathogenicity

    PubMed Central

    Bera, Agnieszka; Biswas, Raja; Herbert, Silvia; Götz, Friedrich

    2006-01-01

    Human-pathogenic bacteria that are able to cause persistent infections must have developed mechanisms to resist the immune defense system. Lysozyme, a cell wall-lytic enzyme, is one of the first defense compounds induced in serum and tissues after the onset of infection. Recently, we showed that Staphylococcus aureus is resistant to lysozyme by O acetylating its peptidoglycan (PG) by O-acetyltransferase (OatA). We asked the question of which staphylococcal species PG is O acetylated. We applied various methods, such as genome analysis, PCR, Southern blotting, lysozyme sensitivity assay, and verification of O acetylation of PG by high-performance liquid chromatography (HPLC) analysis. PCR analysis using S. aureus-derived oatA primers and Southern blotting did not yield reliable results with other staphylococcal species. Therefore, we used the HPLC-based assay to directly detect PG O acetylation. Our studies revealed that the muramic acid was O acetylated only in pathogenic, lysozyme-resistant staphylococci (e.g., S. aureus, S. epidermidis, S. lugdunensis, and others). All nonpathogenic species were lysozyme sensitive. They can be divided into sensitive species (e.g., S. carnosus, S. gallinarum, and S. xylosus) and hypersensitive species (e.g., S. equorum, S. lentus, and S. arlettae). In all lysozyme-sensitive species, the analyzed PG was de-O-acetylated. When we transformed the oatA gene from lysozyme-resistant S. aureus into S. carnosus, the corresponding transformants also became lysozyme resistant. PMID:16861647

  2. Persistence of staphylococcal species and genotypes in the bovine udder.

    PubMed

    Mørk, T; Jørgensen, H J; Sunde, M; Kvitle, B; Sviland, S; Waage, S; Tollersrud, T

    2012-09-14

    Staphylococci are a major cause of intramammary infections (IMI) in ruminants. The main aim of this study was to investigate staphylococcal IMI in dairy cattle with emphasis on persistence and distribution of staphylococcal species and genotypes. With a sampling interval of 4-8 weeks, over a year, 4030 samples from 206 cows in 4 herds were collected. Coagulase-negative staphylococci (CNS) and Staphylococcus aureus were detected in 13.2% and 4.2% of the samples, respectively. Selected CNS isolates from quarter milk samples were identified to species level using sodA sequencing. Staphylococcus chromogenes (32%) and Staphylococcus simulans (25%) predominated. The proportion of S. chromogenes was greater in primiparous (52%) than in multiparous cows (12%), while the opposite was the case for Staphylococcus epidermidis (6% and 21%, respectively). Isolates from possibly persistent IMI were selected for pulsed-field gel electrophoresis (PFGE). Six staphylococcal species were found to cause persistent IMI; S. aureus, S. chromogenes, S. simulans, S. epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri. It was shown that several pulsotypes (PTs) within each species were associated with persistent infections, but only a few were spread and caused persistent IMI in multiple cows within a herd. Of special interest was the observation that only one, or a few, strains of each species caused persistent IMI in multiple cows within a same herd. This indicates strain differences with respect to transmissibility and pathogenicity. PMID:22503603

  3. Automated ribotyping to distinguish the different non Sau/ non Sep staphylococcal emerging pathogens in orthopedic implant infections.

    PubMed

    Campoccia, D; Baldassarri, L; An, Y H; Kang, Q K; Pirini, V; Gamberini, S; Pegreffi, F; Montanaro, L; Arciola, C R

    2006-04-01

    Several species belonging to Staphylococcus genus, other than Staphylococcus aureus and Staphylococcus epidermidis (non Sau/ non Sep species), exhibit increasing abilities as opportunistic pathogens in the colonisation of periprosthetic tissues. Consequently, the availability of means for accurate identification is crucial to assess the pathogenic characteristics and to clarify clinical relevance of the individual species. Here, 146 clinical staphylococcal isolates belonging to non Sau/ non Sep species from prosthesis-associated orthopedic infections were analyzed by conventional enzymatic galleries and by automated ribotyping. Twelve different species were recognised: S. capitis, S. caprae, S. cohnii, S. equorum, S. haemolyticus, S. hominis, S. lugdunensis, S. pasteuri, S. sciuri, S. simulans, S. warneri, S. xylosus. Ribotype identifications were compared with the phenotypes obtained by the Api 20 Staph system and/or ID 32 Staph system. ID 32 Staph profiles were more consistent with ribotyping results than Api Staph profiles. Across the different staphylococcal species investigated, correct identifications with Api Staph were 45%, while with ID 32 Staph they were 59%. It has, however, to be mentioned that ID 32 Staph was mostly applied to discriminate unmatched ribotyping and Api Staph identifications, thus to a subpopulation of strains with "atypical" metabolic profile. Automated ribotyping provided a correct identification for 91% of the isolates. These results confirm automated ribotyping as a convenient rapid technique, still subject to improvements, which will accurately and rapidly recognise the newly emerging staphylococcal pathogens in implant-related orthopedic infections. PMID:16705611

  4. A Novel MSCRAMM Subfamily in Coagulase Negative Staphylococcal Species

    PubMed Central

    Arora, Srishtee; Uhlemann, Anne-Catrin; Lowy, Franklin D.; Hook, Magnus

    2016-01-01

    Coagulase negative staphylococci (CoNS) are important opportunistic pathogens. Staphylococcus epidermidis, a coagulase negative staphylococcus, is the third leading cause of nosocomial infections in the US. Surface proteins like Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are major virulence factors of pathogenic gram positive bacteria. Here, we identified a new chimeric protein in S. epidermidis, that we call SesJ. SesJ represents a prototype of a new subfamily of MSCRAMMs. Structural predictions show that SesJ has structural features characteristic of a MSCRAMM along with a N-terminal repeat region and an aspartic acid containing C-terminal repeat region, features that have not been previously observed in staphylococcal MSCRAMMs but have been found in other surface proteins from gram positive bacteria. We identified and analyzed structural homologs of SesJ in three other CoNS. These homologs of SesJ have an identical structural organization but varying sequence identities within the domains. Using flow cytometry, we also show that SesJ is expressed constitutively on the surface of a representative S. epidermidis strain, from early exponential to stationary growth phase. Thus, SesJ is positioned to interact with protein targets in the environment and plays a role in S. epidermidis virulence. PMID:27199900

  5. Development of a New Oligonucleotide Array To Identify Staphylococcal Strains at Species Level

    PubMed Central

    Giammarinaro, Philippe; Leroy, Sabine; Chacornac, Jean-Paul; Delmas, Julien; Talon, Regine

    2005-01-01

    The genus Staphylococcus is made up of 36 validated species which contain strains that are pathogenic, saprophytic, or used as starter cultures for the food industry. An oligonucleotide array targeting the manganese-dependent superoxide dismutase (sodA) gene was developed to overcome the drawbacks of the conventional methods of identification. Divergences of the sodA gene were used to design oligonucleotide probes, and we showed that each of the 36 species had a characteristic pattern of hybridization. To evaluate the array, we analyzed 38 clinical and 38 food or food plant Staphylococcus isolates identified by the phenotype-based system VITEK 2 (bioMérieux). This commercial kit failed to identify 8 (21%) of the clinical isolates and 32 (84%) of the food and food plant isolates. In contrast, the oligonucleotide array we designed provided an accurate and rapid method for the identification of staphylococcal strains, isolated from clinical, environmental, or food samples, at species level. PMID:16081895

  6. Genetic engineering of untransformable coagulase-negative staphylococcal pathogens.

    PubMed

    Winstel, Volker; Kühner, Petra; Rohde, Holger; Peschel, Andreas

    2016-05-01

    Coagulase-negative staphylococci (CoNS) are recognized as significant opportunistic pathogens. However, current knowledge of virulence mechanisms is very limited because a significant proportion of CoNS are refractory to available techniques for DNA transformation. We describe an efficient protocol for plasmid transfer using bacteriophage Φ187, which can transduce plasmid DNA to a wide range of CoNS from a unique, engineered Staphylococcus aureus strain. The use of a restriction-deficient, modification-proficient S. aureus PS187 mutant, which has a CoNS-type bacteriophage surface receptor, allows plasmid transfer to CoNS even when they are refractory to electroporation. Once the Φ187 titer reaches 10(9) plaque-forming units per milliliter, plasmid transfer can be accomplished within 1-2 d. Thus, our protocol is a major technical advance offering attractive opportunities for research on CoNS-mediated infections. PMID:27101516

  7. Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species

    PubMed Central

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C.; Hiramatsu, Keiichi

    2005-01-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the “oriC environ,” likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance. PMID:16237012

  8. Phylogeny of the Staphylococcal Major Autolysin and Its Use in Genus and Species Typing

    PubMed Central

    Albrecht, Till; Raue, Stefan; Rosenstein, Ralf; Nieselt, Kay

    2012-01-01

    The major staphylococcal autolysin Atl is an important player in cell separation and daughter cell formation. In this study, we investigated the amino acid sequences of Atl proteins derived from 15 staphylococcal and 1 macrococcal species representatives. The overall organization of the bifunctional precursor protein consisting of the signal peptide, a propeptide (PP), the amidase (AM), six repeat sequences (R1 to R6), and the glucosaminidase (GL) was highly conserved in all of the species. The most-conserved domains were the enzyme domains AM and GL; the least-conserved regions were the PP and R regions. An Atl-based phylogenetic tree for the various species representatives correlated well with the corresponding 16S rRNA-based tree and also perfectly matched the phylogenetic trees based on core genome analysis. The phylogenetic distance analysis of 18 AtlA proteins of various Staphylococcus aureus strains and 15 AtlE proteins of S. epidermidis revealed that both species representatives formed a relatively homogeneous cluster. Two S. epidermidis strains, M23864:W1 and VCU116, were identified by Atl typing that clustered far more distantly and belonged to either S. caprae and S. capitis or a new subspecies. Here we show that Atl typing is a useful tool for staphylococcal genus and species typing by using either the highly conserved AM domain or the less-conserved PP domain. PMID:22427631

  9. An insight into staphylococcal pathogenicity island-mediated interference with phage late gene transcription

    PubMed Central

    Ram, Geeta; Chen, John; Ross, Hope F; Novick, Richard P

    2015-01-01

    Staphylococcal pathogenicity islands (SaPIs) are ∼15 kb chromosomally located mobile elements that parasitize “helper” phages which provide a de-repressor protein plus virion and lysis proteins which enable the release of infectious SaPI particles in very high titers. All SaPIs interfere with the reproduction of their helper phages, using 3 different mechanisms. The logic of SaPI reproduction requires that these interference mechanisms do not totally block phage production, as this would be lethal for them as well as for the phage. The discovery of 2 SaPI2 proteins that totally block phage 80 by interfering with late phage transcription was inconsistent with this principle and led to the discovery of a third protein that binds to one of the interference proteins and modulates its activity, thus preventing complete inhibition of the phage. These systems permit the SaPIs to engage in horizontal transfer of unlinked chromosomal genes as well as their own. PMID:26459624

  10. "Staphylococcus pettenkoferi," a novel staphylococcal species isolated from clinical specimens.

    PubMed

    Trülzsch, Konrad; Rinder, Heinz; Trcek, Janja; Bader, Lutz; Wilhelm, Ulrike; Heesemann, Jürgen

    2002-07-01

    In this report we describe a novel species of coagulase-negative novobiocin susceptible staphylococci obtained from an epidemiologically unrelated blood culture and a wound infection. These isolates significantly differed from all other validated Staphylococcus species based on phenotypic characteristics and 16S rRNA gene sequencing. Both isolates had identical 16S rRNA sequences and phylogenetic trees constructed from evolutionary distances showed that this species formed a distinct and deep subline that was most closely related to members of the Staphylococcus saprophyticus cluster group (S. kloosii, S. gallinarum, S. arlettae, S. saprophyticus, S. xylosus, S. equorum, S. succinus and S. cohnii) and Staphylococcus auricularis. Furthermore these strains could each be distinguished from all other staphylococci based on at least one phenotypic trait. Therefore we propose the designation of "Staphylococcus pettenkoferi" a novel species of coagulase-negative staphylococci. PMID:12106949

  11. The Candida Pathogenic Species Complex

    PubMed Central

    Turner, Siobhán A.; Butler, Geraldine

    2014-01-01

    Candida species are the most common causes of fungal infection. Approximately 90% of infections are caused by five species: Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei. Three (C. albicans, C. tropicalis, and C. parapsilosis) belong to the CTG clade, in which the CTG codon is translated as serine and not leucine. C. albicans remains the most commonly isolated but is decreasing relative to the other species. The increasing incidence of C. glabrata is related to its reduced susceptibility to azole drugs. Genome analysis suggests that virulence in the CTG clade is associated with expansion of gene families, particularly of cell wall genes. Similar independent processes took place in the C. glabrata species group. Gene loss and expansion in an ancestor of C. glabrata may have resulted in preadaptations that enabled pathogenicity. PMID:25183855

  12. Pathogenic properties of Edwardsiella species.

    PubMed Central

    Janda, J M; Abbott, S L; Kroske-Bystrom, S; Cheung, W K; Powers, C; Kokka, R P; Tamura, K

    1991-01-01

    The pathogenic characteristics of 35 Edwardsiella strains from clinical and environmental sources were investigated. Overall, most Edwardsiella tarda strains were invasive in HEp-2 cell monolayers, produced a cell-associated hemolysin and siderophores, and bound Congo red; many strains also expressed mannose-resistant hemagglutination against guinea pig erythrocytes. Edwardsiella hoshinae strains bound Congo red and were variable in their invasive and hemolytic capabilities while Edwardsiella ictaluri strains did not produce either factor; neither E. hoshinae nor E. ictaluri expressed mannose-resistant hemagglutination nor elaborated siderophores under the tested conditions. Selected strains of each species tested for mouse lethality indicated strain variability in pathogenic potential, with E. tarda strains being the most virulent; 50% lethal doses in individual strains did not correlate with plasmid content, chemotactic motility, serum resistance, or expression of selected enzyme activities. The results suggest some potential important differences in pathogenic properties that may help explain their environmental distribution and ability to cause disease in humans. Images PMID:1774326

  13. The diversities of staphylococcal species, virulence and antibiotic resistance genes in the subclinical mastitis milk from a single Chinese cow herd.

    PubMed

    Xu, Jia; Tan, Xiao; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang

    2015-11-01

    Staphylococci are the leading pathogens of bovine mastitis which is difficult to control. However, the published data on the prevalence of staphylococcal species, virulence and antibiotic resistance genes in bovine mastitis from China are limited. In this study, 104 out of 209 subclinical mastitis milk samples from a single Chinese dairy herd were cultured-positive for staphylococci (49.8%), which were further identified as coagulase-positive staphylococci (CPS) or coagulase-negative staphylococci (CNS). According to the partial tuf and/or 16S rRNA gene sequence, the 28 CPS isolates were confirmed to be Staphylococcus aureus (26.9%), and 76 CNS isolates were assigned to 13 different species (73.1%) with Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus xylosus and Staphylococcus chromogenes as the dominant species. In the 28 S. aureus isolates, the most prevalent general virulence genes were coa, Ig and eno (100%), followed by hla (96.4%), hlb (92.9%), fib (92.9%), clfA (89.3%), clfB (85.7%) and nuc (85.7%). Both exotoxin and biofilm-associated genes were significantly less prevalent than the previously reported. Although 19 different virulence gene patterns were found, only one was dominant (32.1%). The prevalence of blaZ (82.1%) or mecA gene (35.7%) was much higher than the previously reported. In the 76 CNS isolates, the virulence genes were significantly less prevalent than that in the S. aureus isolates. Among the 4 main CNS species, S. chromogenes (n = 12) was the only species with high percentage (75%) of blaZ gene, while S. sciuri (n = 12) was the only species with the high percentage (66.7%) of mecA gene. The most of antibiotic resistance genes were present as multi-resistance genes, and the antibiotic resistances were attributed by different resistance genes between resistant S. aureus and CNS isolates. These data suggest that the prevalence of staphylococcal species, virulence and antibiotic resistance in the mastitis milk from the Chinese

  14. Meningitis - staphylococcal

    MedlinePlus

    Staphylococcal meningitis is caused by Staphylococcus bacteria. When it is caused by Staphylococcus aureus or Staphylococcus epidermidis bacteria, it usually develops as a complication of surgery or ...

  15. Investigations on the efficacy of routinely used phenotypic methods compared to genotypic approaches for the identification of staphylococcal species isolated from companion animals in Irish veterinary hospitals

    PubMed Central

    2013-01-01

    Background Identification of Staphylococci to species level in veterinary microbiology is important to inform therapeutic intervention and management. We report on the efficacy of three routinely used commercial phenotypic methods for staphylococcal species identification, namely API Staph 32 (bioMérieux), RapID (Remel) and Staph-Zym (Rosco Diagnostica) compared to genotyping as a reference method to identify 52 staphylococcal clinical isolates (23 coagulase positive; 29 coagulase negative) from companion animals in Irish veterinary hospitals. Results Genotyping of a 412 bp fragment of the staphylococcal tuf gene and coagulase testing were carried out on all 52 veterinary samples along with 7 reference strains. In addition, genotyping of the staphylococcal rpoB gene, as well as PCR-RFLP of the pta gene, were performed to definitively identify members of the Staphylococcus intermedius group (SIG). The API Staph 32 correctly identified all S. aureus isolates (11/11), 83% (10/12) of the SIG species, and 66% (19/29) of the coagulase negative species. RapID and Staph-Zym correctly identified 61% (14/23) and 0% (0/23) respectively of the coagulase-positives, and 10% (3/29) and 3% (1/29) respectively of the coagulase-negative species. Conclusions Commercially available phenotypic species identification tests are inadequate for the correct identification of both coagulase negative and coagulase positive staphylococcal species from companion animals. Genotyping using the tuf gene sequence is superior to phenotyping for identification of staphylococcal species of animal origin. However, use of PCR-RFLP of pta gene or rpoB sequencing is recommended as a confirmatory method for discriminating between SIG isolates. PMID:23635328

  16. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases

    PubMed Central

    Quiles-Puchalt, Nuria; Carpena, Nuria; Alonso, Juan C.; Novick, Richard P.; Marina, Alberto; Penadés, José R.

    2014-01-01

    Staphylococcal pathogenicity islands (SaPIs) are the prototypical members of a widespread family of chromosomally located mobile genetic elements that contribute substantially to intra- and interspecies gene transfer, host adaptation, and virulence. The key feature of their mobility is the induction of SaPI excision and replication by certain helper phages and their efficient encapsidation into phage-like infectious particles. Most SaPIs use the headful packaging mechanism and encode small terminase subunit (TerS) homologs that recognize the SaPI-specific pac site and determine SaPI packaging specificity. Several of the known SaPIs do not encode a recognizable TerS homolog but are nevertheless packaged efficiently by helper phages and transferred at high frequencies. In this report, we have characterized one of the non–terS-coding SaPIs, SaPIbov5, and found that it uses two different, undescribed packaging strategies. SaPIbov5 is packaged in full-sized phage-like particles either by typical pac-type helper phages, or by cos-type phages—i.e., it has both pac and cos sites—a configuration that has not hitherto been described for any mobile element, phages included—and uses the two different phage-coded TerSs. To our knowledge, this is the first example of SaPI packaging by a cos phage, and in this, it resembles the P4 plasmid of Escherichia coli. Cos-site packaging in Staphylococcus aureus is additionally unique in that it requires the HNH nuclease, carried only by cos phages, in addition to the large terminase subunit, for cos-site cleavage and melting. PMID:24711396

  17. Genomics of Pathogenic Vibrio Species

    NASA Astrophysics Data System (ADS)

    Dziejman, Michelle; Yildiz, Fitnat H.

    Members of the heterotrophic bacterial family Vibrionaceae are native inhabitants of aquatic environments worldwide, constituting a diverse and abundant component of marine microbial organisms. Over 60 species of the genus Vibrio have been identified (Thompson et al., 2004) and their phenotypic heterogeneity is well documented. The ecology of the genus remains less well understood, however, despite reports that vibrios are the dominant microorganisms inhabiting the superficial water layer and colonizing the chitinous exoskeleton of zooplankton (e.g., copepods, Thompson et al., 2004). Although some species were originally isolated from seawater as free living organisms, most were isolated in association with marine life such as bivalves, fish, eels, or shrimp.

  18. Staphylococcal Infections

    MedlinePlus

    ... number of skin infections (eg, impetigo, pimples, boils). Staphylococcus aureus also causes toxin-related illnesses, including toxic shock syndrome, scalded skin syndrome, and staphylococcal-related food poisoning. In fact, ... Staphylococcus that you should be familiar with include the ...

  19. Staphylococcal blepharitis.

    PubMed

    Smolin, G; Okumoto, M

    1977-05-01

    A detailed discussion of various aspects of staphylococcal blepharitis is presented. These include epidemiology, pathogenesis and immunity, microbiologic characteristics, clinical signs, associated systemic diseases, differential diagnosis, and treatment. PMID:324453

  20. Comparative Phylogenomics of Pathogenic and Nonpathogenic Species

    PubMed Central

    Whiston, Emily; Taylor, John W.

    2015-01-01

    The Ascomycete Onygenales order embraces a diverse group of mammalian pathogens, including the yeast-forming dimorphic fungal pathogens Histoplasma capsulatum, Paracoccidioides spp. and Blastomyces dermatitidis, the dermatophytes Microsporum spp. and Trichopyton spp., the spherule-forming dimorphic fungal pathogens in the genus Coccidioides, and many nonpathogens. Although genomes for all of the aforementioned pathogenic species are available, only one nonpathogen had been sequenced. Here, we enhance comparative phylogenomics in Onygenales by adding genomes for Amauroascus mutatus, Amauroascus niger, Byssoonygena ceratinophila, and Chrysosporium queenslandicum—four nonpathogenic Onygenales species, all of which are more closely related to Coccidioides spp. than any other known Onygenales species. Phylogenomic detection of gene family expansion and contraction can provide clues to fungal function but is sensitive to taxon sampling. By adding additional nonpathogens, we show that LysM domain-containing proteins, previously thought to be expanding in some Onygenales, are contracting in the Coccidioides-Uncinocarpus clade, as are the self-nonself recognition Het loci. The denser genome sampling presented here highlights nearly 800 genes unique to Coccidiodes, which have significantly fewer known protein domains and show increased expression in the endosporulating spherule, the parasitic phase unique to Coccidioides spp. These genomes provide insight to gene family expansion/contraction and patterns of individual gene gain/loss in this diverse order—both major drivers of evolutionary change. Our results suggest that gene family expansion/contraction can lead to adaptive radiations that create taxonomic orders, while individual gene gain/loss likely plays a more significant role in branch-specific phenotypic changes that lead to adaptation for species or genera. PMID:26613950

  1. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... consisting of a bacterial virus intended for medical purposes to identify pathogenic staphylococcal bacteria through use of the bacteria's susceptibility to destruction by the virus. Test results are...

  2. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consisting of a bacterial virus intended for medical purposes to identify pathogenic staphylococcal bacteria through use of the bacteria's susceptibility to destruction by the virus. Test results are...

  3. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... consisting of a bacterial virus intended for medical purposes to identify pathogenic staphylococcal bacteria through use of the bacteria's susceptibility to destruction by the virus. Test results are...

  4. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... consisting of a bacterial virus intended for medical purposes to identify pathogenic staphylococcal bacteria through use of the bacteria's susceptibility to destruction by the virus. Test results are...

  5. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... consisting of a bacterial virus intended for medical purposes to identify pathogenic staphylococcal bacteria through use of the bacteria's susceptibility to destruction by the virus. Test results are...

  6. Molecular Diagnosis of Pathogenic Sporothrix Species

    PubMed Central

    Rodrigues, Anderson Messias; de Hoog, G. Sybren; de Camargo, Zoilo Pires

    2015-01-01

    Background Sporotrichosis is a chronic (sub)cutaneous infection caused by thermodimorphic fungi in the order, Ophiostomatales. These fungi are characterized by major differences in routes of transmission, host predilections, species virulence, and susceptibilities to antifungals. Sporothrix species emerge in the form of outbreaks. Large zoonoses and sapronoses are ongoing in Brazil and China, respectively. Current diagnostic methods based on morphology and physiology are inaccurate due to closely related phenotypes with overlapping components between pathogenic and non-pathogenic Sporothrix. There is a critical need for new diagnostic tools that are specific, sensitive, and cost-effective. Methodology We developed a panel of novel markers, based on calmodulin (CAL) gene sequences, for the large-scale diagnosis and epidemiology of clinically relevant members of the Sporothrix genus, and its relative, Ophiostoma. We identified specific PCR-based markers for S. brasiliensis, S. schenckii, S. globosa, S. mexicana, S. pallida, and O. stenoceras. We employed a murine model of disseminated sporotrichosis to optimize a PCR assay for detecting Sporothrix in clinical specimens. Results Primer-BLAST searches revealed candidate sequences that were conserved within a single species. Species-specific primers showed no significant homology with human, mouse, or microorganisms outside the Sporothrix genus. The detection limit was 10–100 fg of DNA in a single round of PCR for identifying S. brasiliensis, S. schenckii, S. globosa, S. mexicana, and S. pallida. A simple, direct PCR assay, with conidia as a source of DNA, was effective for rapid, low-cost genotyping. Samples from a murine model of disseminated sporotrichosis confirmed the feasibility of detecting S. brasiliensis and S. schenckii DNA in spleen, liver, lungs, heart, brain, kidney, tail, and feces of infected animals. Conclusions This PCR-based method could successfully detect and identify a single species in samples

  7. A novel superantigen isolated from pathogenic strains of Streptococcus pyogenes with aminoterminal homology to staphylococcal enterotoxins B and C.

    PubMed Central

    Mollick, J A; Miller, G G; Musser, J M; Cook, R G; Grossman, D; Rich, R R

    1993-01-01

    Streptococcus pyogenes (group A Streptococcus) has re-emerged in recent years as a cause of severe human disease. Because extracellular products are involved in streptococcal pathogenesis, we explored the possibility that a disease isolate expresses an uncharacterized superantigen. We screened culture supernatants for superantigen activity with a major histocompatibility complex class II-dependent T cell proliferation assay. Initial fractionation with red dye A chromatography indicated production of a class II-dependent T cell mitogen by a toxic shock-like syndrome (TSLS) strain. The amino terminus of the purified streptococcal superantigen was more homologous to the amino termini of staphylococcal enterotoxins B, C1, and C3 (SEB, SEC1, and SEC3), than to those of pyrogenic exotoxins A, B, C or other streptococcal toxins. The molecule, designated SSA, had the same pattern of class II isotype usage as SEB in T cell proliferation assays. However, it differed in its pattern of human T cell activation, as measured by quantitative polymerase chain reaction with V beta-specific primers. SSA activated human T cells that express V beta 1, 3, 15 with a minor increase of V beta 5.2-bearing cells, whereas SEB activated V beta 3, 12, 15, and 17-bearing T cells. Immunoblot analysis of 75 disease isolates from several localities detected SSA production only in group A streptococci, and found that SSA is apparently confined to only three clonal lineages as defined by multilocus enzyme electrophoresis typing. Isolates of one of these lineages, (electrophoretic type 2) are strongly associated with TSLS. The data identify SSA as a novel streptococcal superantigen that appears to be more related structurally to staphylococcal enterotoxins than to streptococcal exotoxins. Because abundant SSA production is apparently confined to only three streptococcal clonal lineages, the data also suggest that the SSA gene has only recently been acquired by S. pyogenes. Images PMID:8349810

  8. StaphyloBase: a specialized genomic resource for the staphylococcal research community.

    PubMed

    Heydari, Hamed; Mutha, Naresh V R; Mahmud, Mahafizul Imran; Siow, Cheuk Chuen; Wee, Wei Yee; Wong, Guat Jah; Yazdi, Amir Hessam; Ang, Mia Yang; Choo, Siew Woh

    2014-01-01

    With the advent of high-throughput sequencing technologies, many staphylococcal genomes have been sequenced. Comparative analysis of these strains will provide better understanding of their biology, phylogeny, virulence and taxonomy, which may contribute to better management of diseases caused by staphylococcal pathogens. We developed StaphyloBase with the goal of having a one-stop genomic resource platform for the scientific community to access, retrieve, download, browse, search, visualize and analyse the staphylococcal genomic data and annotations. We anticipate this resource platform will facilitate the analysis of staphylococcal genomic data, particularly in comparative analyses. StaphyloBase currently has a collection of 754 032 protein-coding sequences (CDSs), 19 258 rRNAs and 15 965 tRNAs from 292 genomes of different staphylococcal species. Information about these features is also included, such as putative functions, subcellular localizations and gene/protein sequences. Our web implementation supports diverse query types and the exploration of CDS- and RNA-type information in detail using an AJAX-based real-time search system. JBrowse has also been incorporated to allow rapid and seamless browsing of staphylococcal genomes. The Pairwise Genome Comparison tool is designed for comparative genomic analysis, for example, to reveal the relationships between two user-defined staphylococcal genomes. A newly designed Pathogenomics Profiling Tool (PathoProT) is also included in this platform to facilitate comparative pathogenomics analysis of staphylococcal strains. In conclusion, StaphyloBase offers access to a range of staphylococcal genomic resources as well as analysis tools for comparative analyses. Database URL: http://staphylococcus.um.edu.my/. PMID:24578355

  9. Cryptosporidium species a "new" human pathogen.

    PubMed Central

    Casemore, D P; Sands, R L; Curry, A

    1985-01-01

    Publications describing aspects of the coccidian protozoan parasite Cryptosporidium, increased greatly during 1983 and 1984 as a result of not only increasing veterinary interest but also in the role of the parasite in the newly recognised acquired immune deficiency syndrome (AIDS). The reports reflected widespread collaboration, not only between clinicians, microbiologists, and histopathologists, but also between veterinary and human health care workers. Cryptosporidium was first described in mice in 1907 and subsequently in various other species; it was not described in man until 1976. Several likely putative species have been described, but there is probably little host specificity. Experimental and clinical studies have greatly increased the knowledge about the organism's biology. The parasite undergoes its complete life cycle within the intestine, although it may occasionally occur in other sites. The main symptom produced is a non-inflammatory diarrhoea, which, in patients with AIDS and children in Third World countries, may be life threatening: even in immunocompetent subjects this symptom is usually protracted. Attempts to find effective chemotherapeutic agents have been unsuccessful. Epidemiologically the infection was thought to be zoonotic in origin, but there is increasing evidence of person to person transmission. Diagnosis has depended upon histological examination, but simple methods of detection have now been described: more invasive methods need no longer be used. The parasite, which is found more commonly in children, occurs in about 2% of faecal specimens examined and seems to be closely associated with production of symptoms. A serological response has been shown. Much remains to be learned about its epidemiology and pathogenic mechanisms, while the expected increase in incidence of AIDS makes an effective form of treatment essential. Images PMID:3908490

  10. Comparison of phenotypic and genotypic methods for the species identification of coagulase-negative staphylococcal isolates from bovine intramammary infections

    PubMed Central

    Park, Joo Youn; Fox, Lawrence K.; Seo, Keun Seok; McGuire, Mark A.; Park, Yong Ho; Rurangirwa, Fred R.; Sischo, William M.; Bohach, Gregory A.

    2013-01-01

    Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens from cows with intramammary infection (IMI). Although API STAPH ID 20, a commercially available identification system, and PCR-restriction fragment length polymorphism (PCR-RFLP) of the gap gene (gap PCR-RFLP) have been successfully applied for the identification of CNS isolates from human specimens, their accuracy in the identification of veterinary isolates has not been fully established. In this study, we identified 263 CNS isolates from bovine IMI at species level by partial 16S rRNA gene sequence analysis as the definitive test. Species identification obtained using partial 16S rRNA gene sequence analysis was compared to results from the API STAPH ID 20 and gap PCR-RFLP analysis. Eleven different CNS species were identified by partial 16S rRNA gene sequence analysis. Only 76.0 % (200 / 263) of the species identification results obtained by API STAPH ID 20 matched those obtained by partial 16S rRNA gene sequence analysis, whereas 97.0 % (255 / 263) of the species identification results obtained by the gap PCR-RFLP analysis matched those obtained by partial 16S rRNA gene sequence analysis. The gap PCR-RFLP analysis could be a useful and reliable alternative method for the species identification of CNS isolates from bovine IMI and appears to be a more accurate method of species identification than the API STAPH ID 20 system. PMID:20667671

  11. Staphylococcal Enterotoxins

    PubMed Central

    Pinchuk, Irina V.; Beswick, Ellen J.; Reyes, Victor E.

    2010-01-01

    Staphylococcus aureus (S. aureus) is a Gram positive bacterium that is carried by about one third of the general population and is responsible for common and serious diseases. These diseases include food poisoning and toxic shock syndrome, which are caused by exotoxins produced by S. aureus. Of the more than 20 Staphylococcal enterotoxins, SEA and SEB are the best characterized and are also regarded as superantigens because of their ability to bind to class II MHC molecules on antigen presenting cells and stimulate large populations of T cells that share variable regions on the β chain of the T cell receptor. The result of this massive T cell activation is a cytokine bolus leading to an acute toxic shock. These proteins are highly resistant to denaturation, which allows them to remain intact in contaminated food and trigger disease outbreaks. A recognized problem is the emergence of multi-drug resistant strains of S. aureus and these are a concern in the clinical setting as they are a common cause of antibiotic-associated diarrhea in hospitalized patients. In this review, we provide an overview of the current understanding of these proteins. PMID:22069679

  12. Species coexistence and pathogens with frequency-dependent transmission.

    PubMed

    Rudolf, Volker H W; Antonovics, Janis

    2005-07-01

    Pathogens that infect multiple hosts are commonly transmitted by vectors, and their transmission rate is often thought to depend on the proportion of hosts or vectors infected (i.e., frequency dependence). A model of a two-host, one-pathogen system with frequency-dependent transmission is used to investigate how sharing a pathogen with an alternative host influences pathogen-mediated extinction. The results show that if there is frequency-dependent transmission, a host can be rescued from pathogen-mediated extinction by the presence of a second host with which it shares a pathogen. The study provides an important conceptual counterexample to the idea that shared pathogens necessarily result in apparent competition by showing that shared pathogens can mediate apparent mutualism. We distinguish two types of dilution effect (pathogen reduction with increasing host diversity), each resulting from different underlying pathogen transmission processes and host density effects. These results have important consequences for understanding the role of pathogens in species interactions and in maintaining host species diversity. PMID:15937794

  13. Diversity, Pathogenicity And Control of Verticillium Species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Verticillium is a cosmopolitan group of ascomycetous fungi, encompassing phytopathogenic species that cause vascular wilts of plants. Two of these species, V. dahliae and V. albo-atrum, cause billions of dollars in annual crop losses worldwide. The soil habitat of these species, the exte...

  14. Usefulness of the ID32 staph system and a method based on rRNA gene restriction site polymorphism analysis for species and subspecies identification of staphylococcal clinical isolates.

    PubMed Central

    Chesneau, O; Aubert, S; Morvan, A; Guesdon, J L; el Solh, N

    1992-01-01

    The usefulness of the ID32 Staph System and a method based on rRNA gene restriction site polymorphism was evaluated by the study of 42 staphylococcal clinical isolates phenotypically difficult to identify. The ID32 Staph micromethod and the genomic method are adapted for recognition of 27 and 31 staphylococcal taxa, respectively. The genomic method is based on a Dice analysis of the hybridization patterns obtained by cutting the cellular DNA either with EcoRI or with HindIII and by probing with pBA2, containing the Bacillus subtilis gene encoding 16S rRNA, labeled either with [alpha-32P]dCTP or with acetylaminofluorene. This study showed that the nonradioactive labeling provided a better resolution of the hybridizing bands than radioactive labeling. Of the 42 isolates selected, only 22 could be assigned to a staphylococcal species by the ID32 Staph System, whereas 35 could be identified by the genomic method. This latter method also enabled the screening of three unclassified isolates having hybridization patterns more closely related to each other than to any of the 31 staphylococcal taxa investigated. These three isolates could belong to a staphylococcal taxon not yet described. Images PMID:1357001

  15. Genomic Basis of Plant Pathogen Suppression by Biocontrol Pseudomonas Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various plant commensal bacterial species, which naturally colonize the plant rhizosphere, are able to suppress fungal, bacterial, viral and even insect plant pathogens. These biocontrol activities are elicited primarily through the production of secreted exoenzymes and secondary metabolites that ma...

  16. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia.

    PubMed

    Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Park, Kyoung Un; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436

  17. Usefulness of Multiplex Real-Time PCR for Simultaneous Pathogen Detection and Resistance Profiling of Staphylococcal Bacteremia

    PubMed Central

    Chung, Yousun; Kim, Taek Soo; Min, Young Gi; Hong, Yun Ji; Park, Jeong Su; Hwang, Sang Mee; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Song, Junghan; Kim, Eui-Chong

    2016-01-01

    Staphylococci are the leading cause of nosocomial blood stream infections. Fast and accurate identification of staphylococci and confirmation of their methicillin resistance are crucial for immediate treatment with effective antibiotics. A multiplex real-time PCR assay that targets mecA, femA specific for S. aureus, femA specific for S. epidermidis, 16S rRNA for universal bacteria, and 16S rRNA specific for staphylococci was developed and evaluated with 290 clinical blood culture samples containing Gram-positive cocci in clusters (GPCC). For the 262 blood cultures identified to the species level with the MicroScan WalkAway system (Siemens Healthcare Diagnostics, USA), the direct real-time PCR assay of positive blood cultures showed very good agreement for the categorization of staphylococci into methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), methicillin-resistant S. epidermidis (MRSE), methicillin-susceptible S. epidermidis (MSSE), methicillin-resistant non-S. epidermidis CoNS (MRCoNS), and methicillin-susceptible non-S. epidermidis CoNS (MSCoNS) (κ = 0.9313). The direct multiplex real-time PCR assay of positive blood cultures containing GPCC can provide essential information at the critical point of infection with a turnaround time of no more than 4 h. Further studies should evaluate the clinical outcome of using this rapid real-time PCR assay in glycopeptide antibiotic therapy in clinical settings. PMID:27403436

  18. Phytotoxins produced by plant pathogenic Streptomyces species.

    PubMed

    Bignell, D R D; Fyans, J K; Cheng, Z

    2014-02-01

    Streptomyces is a large genus consisting of soil-dwelling, filamentous bacteria that are best known for their capability of producing a vast array of medically and agriculturally useful secondary metabolites. In addition, a small number of Streptomyces spp. are capable of colonizing and infecting the underground portions of living plants and causing economically important crop diseases such as potato common scab (CS). Research into the mechanisms of Streptomyces plant pathogenicity has led to the identification and characterization of several phytotoxic secondary metabolites that are known or suspected of contributing to diseases in various plants. The best characterized are the thaxtomin phytotoxins, which play a critical role in the development of CS, acid scab and soil rot of sweet potato. In addition, the best-characterized CS-causing pathogen, Streptomyces scabies, produces a molecule that is predicted to resemble the Pseudomonas syringae coronatine phytotoxin and which contributes to seedling disease symptom development. Other Streptomyces phytotoxic secondary metabolites that have been identified include concanamycins, FD-891 and borrelidin. Furthermore, there is evidence that additional, unknown metabolites may participate in Streptomyces plant pathogenicity. Such revelations have implications for the rational development of better management procedures for controlling CS and other Streptomyces plant diseases. PMID:24131731

  19. Combinatorial stresses kill pathogenic Candida species.

    PubMed

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A R; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; de Moura, Alessandro P S; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J P

    2012-10-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H(2)O(2)) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly significant in host defences against these pathogenic yeasts. PMID:22463109

  20. Aspergillus species: An emerging pathogen in onychomycosis among diabetics

    PubMed Central

    Wijesuriya, T. M.; Kottahachchi, J.; Gunasekara, T. D. C. P.; Bulugahapitiya, U.; Ranasinghe, K. N. P.; Neluka Fernando, S. S.; Weerasekara, M. M.

    2015-01-01

    Introduction: Approximately, 33% patients with diabetes are afflicted with onychomycosis. In the past, nondermatophyte molds have been regarded as opportunistic pathogens; recently, Aspergillus species are considered as emerging pathogens of toenail infections. In Sri Lanka, the prevalence of Aspergillus species in onychomycosis among diabetics is not well documented. Objective: To determine the proportion of Aspergillus onychomycosis, risk factors and knowledge among diabetics. Materials and Methods: This was descriptive cross-sectional study. Three hundred diabetic patients were included. Clinical examinations of patients’ toenails were performed by a clinical microbiologist. Laboratory identification was done, and pathogens were identified to the species level by morpho-physiological methods. All inferential statistics were tested at P < 0.05. Results: Among clinically suspected patients, 85% (255/300) were mycologically confirmed to have onychomycosis. Aspergillus species were most commonly isolated n = 180 (71%) followed by dermatophytes, yeasts, and other molds n = 75 (29%). Of the patients having Aspergillus onychomycosis, 149 (83%) were in the > age group. In men, Aspergillus onycomycosis was seen in 82%. Among patients who had Aspergillus nail infection, 114 (63%) had diabetes for a period of > years. Among patients who were engaged in agricultural activities, 77% were confirmed to have infected nails due to Aspergillus species. Conclusion: Aspergillus niger was the most common pathogen isolated from toenail infection. Aspergillus species should be considered as an important pathogen in toenail onychomycosis in diabetic patients. Risk factors associated with Aspergillus onychomycosis were age, gender, duration of diabetes, length of exposure to fungi, and occupation. PMID:26693433

  1. Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms.

    PubMed

    Gutiérrez, Diana; Vandenheuvel, Dieter; Martínez, Beatriz; Rodríguez, Ana; Lavigne, Rob; García, Pilar

    2015-05-15

    Phage therapy is a promising option for fighting against staphylococcal infections. Two lytic phages, vB_SauM_phiIPLA-RODI (phiIPLA-RODI) and vB_SepM_phiIPLA-C1C (phiIPLA-C1C), belonging to the Myoviridae family and exhibiting wide host ranges, were characterized in this study. The complete genome sequences comprised 142,348 bp and 140,961 bp and contained 213 and 203 open reading frames, respectively. The gene organization was typical of Spounavirinae members, with long direct terminal repeats (LTRs), genes grouped into modules not clearly separated from each other, and several group I introns. In addition, four genes encoding tRNAs were identified in phiIPLA-RODI. Comparative DNA sequence analysis showed high similarities with two phages, GH15 and 676Z, belonging to the Twort-like virus genus (nucleotide identities of >84%); for phiIPLA-C1C, a high similarity with phage phiIBB-SEP1 was observed (identity of 80%). Challenge assays of phages phiIPLA-RODI and phiIPLA-C1C against planktonic staphylococcal cells confirmed their lytic ability, as they were able to remove 5 log units in 8 h. Exposure of biofilms to phages phiIPLA-RODI and phiIPLA-C1C reduced the amount of adhered bacteria to about 2 log units in both monospecies and dual-species biofilms, but phiIPLA-RODI turned out to be as effective as the mixture of both phages. Moreover, the frequencies of bacteriophage-insensitive mutants (BIMs) of Staphylococcus aureus and S. epidermidis with resistance to phiIPLA-RODI and phiIPLA-C1C were low, at 4.05 × 10(-7) ± 2.34 × 10(-9) and 1.1 × 10(-7) ± 2.08 × 10(-9), respectively. Overall, a generally reduced fitness in the absence of phages was observed for BIMs, which showed a restored phage-sensitive phenotype in a few generations. These results confirm that lytic bacteriophages can be efficient biofilm-disrupting agents, supporting their potential as antimicrobials against staphylococcal infections. PMID:25746992

  2. Two Phages, phiIPLA-RODI and phiIPLA-C1C, Lyse Mono- and Dual-Species Staphylococcal Biofilms

    PubMed Central

    Gutiérrez, Diana; Vandenheuvel, Dieter; Martínez, Beatriz; Rodríguez, Ana; Lavigne, Rob

    2015-01-01

    Phage therapy is a promising option for fighting against staphylococcal infections. Two lytic phages, vB_SauM_phiIPLA-RODI (phiIPLA-RODI) and vB_SepM_phiIPLA-C1C (phiIPLA-C1C), belonging to the Myoviridae family and exhibiting wide host ranges, were characterized in this study. The complete genome sequences comprised 142,348 bp and 140,961 bp and contained 213 and 203 open reading frames, respectively. The gene organization was typical of Spounavirinae members, with long direct terminal repeats (LTRs), genes grouped into modules not clearly separated from each other, and several group I introns. In addition, four genes encoding tRNAs were identified in phiIPLA-RODI. Comparative DNA sequence analysis showed high similarities with two phages, GH15 and 676Z, belonging to the Twort-like virus genus (nucleotide identities of >84%); for phiIPLA-C1C, a high similarity with phage phiIBB-SEP1 was observed (identity of 80%). Challenge assays of phages phiIPLA-RODI and phiIPLA-C1C against planktonic staphylococcal cells confirmed their lytic ability, as they were able to remove 5 log units in 8 h. Exposure of biofilms to phages phiIPLA-RODI and phiIPLA-C1C reduced the amount of adhered bacteria to about 2 log units in both monospecies and dual-species biofilms, but phiIPLA-RODI turned out to be as effective as the mixture of both phages. Moreover, the frequencies of bacteriophage-insensitive mutants (BIMs) of Staphylococcus aureus and S. epidermidis with resistance to phiIPLA-RODI and phiIPLA-C1C were low, at 4.05 × 10−7 ± 2.34 × 10−9 and 1.1 × 10−7 ± 2.08 × 10−9, respectively. Overall, a generally reduced fitness in the absence of phages was observed for BIMs, which showed a restored phage-sensitive phenotype in a few generations. These results confirm that lytic bacteriophages can be efficient biofilm-disrupting agents, supporting their potential as antimicrobials against staphylococcal infections. PMID:25746992

  3. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids

    PubMed Central

    Llop, Pablo

    2015-01-01

    New pathogenic bacteria belonging to the genus Erwinia associated with pome fruit trees (Erwinia, E. piriflorinigrans, E. uzenensis) have been increasingly described in the last years, and comparative analyses have found that all these species share several genetic characteristics. Studies at different level (whole genome comparison, virulence genes, plasmid content, etc.) show a high intraspecies homogeneity (i.e., among E. amylovora strains) and also abundant similarities appear between the different Erwinia species: presence of plasmids of similar size in the pathogenic species; high similarity in several genes associated with exopolysaccharide production and hence, with virulence, as well as in some other genes, in the chromosomes. Many genetic similarities have been observed also among some of the plasmids (and genomes) from the pathogenic species and E. tasmaniensis or E. billingiae, two epiphytic species on the same hosts. The amount of genetic material shared in this genus varies from individual genes to clusters, genomic islands and genetic material that even may constitute a whole plasmid. Recent research on evolution of erwinias point out the horizontal transfer acquisition of some genomic islands that were subsequently lost in some species and several pathogenic traits that are still present. How this common material has been obtained and is efficiently maintained in different species belonging to the same genus sharing a common ecological niche provides an idea of the origin and evolution of the pathogenic Erwinia and the interaction with non-pathogenic species present in the same niche, and the role of the genes that are conserved in all of them. PMID:26379649

  4. Defining Pathogenic Bacterial Species in the Genomic Era

    PubMed Central

    Georgiades, Kalliopi; Raoult, Didier

    2011-01-01

    Actual definitions of bacterial species are limited due to the current criteria of definition and the use of restrictive genetic tools. The 16S ribosomal RNA sequence, for example, has been widely used as a marker for phylogenetic analyses; however, its use often leads to misleading species definitions. According to the first genetic studies, removing a certain number of genes from pathogenic bacteria removes their capacity to infect hosts. However, more recent studies have demonstrated that the specialization of bacteria in eukaryotic cells is associated with massive gene loss, especially for allopatric endosymbionts that have been isolated for a long time in an intracellular niche. Indeed, sympatric free-living bacteria often have bigger genomes and exhibit greater resistance and plasticity and constitute species complexes rather than true species. Specialists, such as pathogenic bacteria, escape these bacterial complexes and colonize a niche, thereby gaining a species name. Their specialization allows them to become allopatric, and their gene losses eventually favor reductive genome evolution. A pathogenic species is characterized by a gene repertoire that is defined not only by genes that are present but also by those that are lacking. It is likely that current bacterial pathogens will disappear soon and be replaced by new ones that will emerge from bacterial complexes that are already in contact with humans. PMID:21687765

  5. Distribution of Plasmids in Distinct Leptospira Pathogenic Species

    PubMed Central

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-01-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups—pathogens, non-pathogens, and intermediates—based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  6. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    PubMed

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  7. Cutaneous bacterial species from Lithobates catesbeianus can inhibit pathogenic dermatophytes.

    PubMed

    Lauer, Antje; Hernandez, Trang

    2015-04-01

    Antibiotics are being successfully used to fight many infectious diseases caused by pathogenic microorganisms. However, new infectious diseases are continuously being identified, and some known pathogens are becoming resistant against known antibiotics. Furthermore, many antifungals are causing serious side effects in long-term treatments of patients, and many skin infections caused by dermatophytes are difficult to cure. The beneficial roles of resident cutaneous microbiota to inhibit pathogenic microorganisms have been shown for many vertebrate species. Microbial symbionts on the amphibian skin for example can be a source of powerful antimicrobial metabolites that can protect amphibians against diseases, such as chytridiomycosis, caused by a fungal pathogen. In this research, we investigated whether cutaneous bacterial species isolated from Lithobates catesbeianus (North American bullfrog), an invasive amphibian species that is resistant to chytridiomycosis, produce secondary metabolites that can be used to inhibit the growth of three species of dermatophytes (Microsporum gypseum, Epidermophyton floccosum, and Trichophyton mentagrophytes) which are known to cause topical or subdermal skin infections in humans. Strongly anti-dermatophyte bacterial species that belonged to the Bacillaceae, Streptomycetaceae, Pseudomonadaceae, Xanthomonadaceae, Aeromonadaceae, and Enterobacteriaceae were identified. This research has provided evidence of the presence of cutaneous anti-dermatophyte bacteria from L. catesbeianus which might provide a basis for health care providers to experiment with new antifungals in the future. PMID:25431089

  8. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. PMID:26950921

  9. Are Reactive Oxygen Species Always Detrimental to Pathogens?

    PubMed Central

    Bozza, Marcelo T.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037. PMID:23992156

  10. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms. PMID:23456779

  11. Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species

    PubMed Central

    Szekely, Adrien; Johnson, Elizabeth M.

    2016-01-01

    ABSTRACT Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show

  12. Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species.

    PubMed

    Borman, Andrew M; Szekely, Adrien; Johnson, Elizabeth M

    2016-01-01

    Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain

  13. Host–pathogen coevolution, secondary sympatry and species diversification

    PubMed Central

    Ricklefs, Robert E.

    2010-01-01

    The build-up of species locally within a region by allopatric speciation depends on geographically separated (allopatric) sister populations becoming reproductively incompatible followed by secondary sympatry. Among birds, this has happened frequently in remote archipelagos, spectacular cases including the Darwin's finches (Geospizinae) and Hawaiian honeycreepers (Drepanidinae), but similar examples are lacking in archipelagos nearer to continental landmasses. Of the required steps in the speciation cycle, achievement of secondary sympatry appears to be limiting in near archipelagos and, by extension, in continental regions. Here, I suggest that secondary sympatry might be prevented by apparent competition mediated through pathogens that are locally coevolved with one population of host and are pathogenic in sister populations. The absence of numerous pathogens in remote archipelagos might, therefore, allow sister populations to achieve secondary sympatry more readily and thereby accelerate diversification. By similar reasoning, species should accumulate relatively slowly within continental regions. In this essay, I explore the assumptions and some implications of this model for species diversification. PMID:20194175

  14. Bacterial Toxins-Staphylococcal Enterotoxin B.

    PubMed

    Fries, Bettina C; Varshney, Avanish K

    2013-12-01

    Staphylococcal enterotoxin B is one of the most potent bacterial superantigens that exerts profound toxic effects upon the immune system, leading to stimulation of cytokine release and inflammation. It is associated with food poisoning, nonmenstrual toxic shock, atopic dermatitis, asthma, and nasal polyps in humans. Currently, there is no treatment or vaccine available. Passive immunotherapy using monoclonal antibodies made in several different species has shown significant inhibition in in vitro studies and reduction in staphylococcal enterotoxin B-induced lethal shock in in vivo studies. This should encourage future endeavors to develop these antibodies as therapeutic reagents. PMID:26184960

  15. Evaluation of Staf-Sistem 18-R for identification of staphylococcal clinical isolates to the species level.

    PubMed Central

    Piccolomini, R; Catamo, G; Picciani, C; D'Antonio, D

    1994-01-01

    The accuracy and efficiency of Staf-Sistem 18-R (Liofilchem s.r.l., Roseto degli Abruzzi, Teramo, Italy) were compared with those of conventional biochemical methods to identify 523 strains belonging to 16 different human Staphylococcus species. Overall, 491 strains (93.9%) were correctly identified (percentage of identification, > or = 90.0), with 28 (5.4%) requiring supplementary tests for complete identification. For 14 isolates (2.8%), the strains did not correspond to any key in the codebook and could not be identified by the manufacturer's computer service. Only 18 isolates (3.4%) were misidentified. The system is simple to use, is easy to handle, gives highly reproducible results, and is inexpensive. With the inclusion of more discriminating tests and adjustment in supplementary code numbers for some species, such as Staphylococcus lugdunensis and Staphylococcus schleiferi, Staf-Sistem 18-R is a suitable alternative for identification of human coagulase-positive and coagulase-negative Staphylococcus species in microbiological laboratories. Images PMID:8195373

  16. Tool for Quantification of Staphylococcal Enterotoxin Gene Expression in Cheese▿

    PubMed Central

    Duquenne, Manon; Fleurot, Isabelle; Aigle, Marina; Darrigo, Claire; Borezée-Durant, Elise; Derzelle, Sylviane; Bouix, Marielle; Deperrois-Lafarge, Véronique; Delacroix-Buchet, Agnès

    2010-01-01

    Cheese is a complex and dynamic microbial ecosystem characterized by the presence of a large variety of bacteria, yeasts, and molds. Some microorganisms, including species of lactobacilli or lactococci, are known to contribute to the organoleptic quality of cheeses, whereas the presence of other microorganisms may lead to spoilage or constitute a health risk. Staphylococcus aureus is recognized worldwide as an important food-borne pathogen, owing to the production of enterotoxins in food matrices. In order to study enterotoxin gene expression during cheese manufacture, we developed an efficient procedure to recover total RNA from cheese and applied a robust strategy to study gene expression by reverse transcription-quantitative PCR (RT-qPCR). This method yielded pure preparations of undegraded RNA suitable for RT-qPCR. To normalize RT-qPCR data, expression of 10 potential reference genes was investigated during S. aureus growth in milk and in cheese. The three most stably expressed reference genes during cheese manufacture were ftsZ, pta, and gyrB, and these were used as internal controls for RT-qPCR of the genes sea and sed, encoding staphylococcal enterotoxins A and D, respectively. Expression of these staphylococcal enterotoxin genes was monitored during the first 72 h of the cheese-making process, and mRNA data were correlated with enterotoxin production. PMID:20061456

  17. The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response.

    PubMed

    Paharik, Alexandra E; Horswill, Alexander R

    2016-04-01

    The staphylococci comprise a diverse genus of Gram-positive, nonmotile commensal organisms that inhabit the skin and mucous membranes of humans and other mammals. In general, staphylococci are benign members of the natural flora, but many species have the capacity to be opportunistic pathogens, mainly infecting individuals who have medical device implants or are otherwise immunocompromised. Staphylococcus aureus and Staphylococcus epidermidis are major sources of hospital-acquired infections and are the most common causes of surgical site infections and medical device-associated bloodstream infections. The ability of staphylococci to form biofilms in vivo makes them highly resistant to chemotherapeutics and leads to chronic diseases. These biofilm infections include osteomyelitis, endocarditis, medical device infections, and persistence in the cystic fibrosis lung. Here, we provide a comprehensive analysis of our current understanding of staphylococcal biofilm formation, with an emphasis on adhesins and regulation, while also addressing how staphylococcal biofilms interact with the immune system. On the whole, this review will provide a thorough picture of biofilm formation of the staphylococcus genus and how this mode of growth impacts the host. PMID:27227309

  18. The transferrin-iron import system from pathogenic Neisseria species.

    PubMed

    Noinaj, Nicholas; Buchanan, Susan K; Cornelissen, Cynthia Nau

    2012-10-01

    Two pathogenic species within the genus Neisseria cause the diseases gonorrhoea and meningitis. While vaccines are available to protect against four N. meningitidis serogroups, there is currently no commercial vaccine to protect against serogroup B or against N. gonorrhoeae. Moreover, the available vaccines have significant limitations and with antibiotic resistance becoming an alarming issue, the search for effective vaccine targets to elicit long-lasting protection against Neisseria species is becoming more urgent. One strategy for vaccine development has targeted the neisserial iron import systems. Without iron, the Neisseriae cannot survive and, therefore, these iron import systems tend to be relatively well conserved and are promising vaccine targets, having the potential to offer broad protection against both gonococcal and meningococcal infections. These efforts have been boosted by recent reports of the crystal structures of the neisserial receptor proteins TbpA and TbpB, each solved in complex with human transferrin, an iron binding protein normally responsible for delivering iron to human cells. Here, we review the recent structural reports and put them into perspective with available functional studies in order to derive the mechanism(s) for how the pathogenic Neisseriae are able to hijack human iron transport systems for their own survival and pathogenesis. PMID:22957710

  19. Four pathogenic Candida species differ in salt tolerance.

    PubMed

    Krauke, Yannick; Sychrova, Hana

    2010-10-01

    The virulence of Candida species depends on many environmental conditions, including extracellular pH and concentration of alkali metal cations. Tests of the tolerance/sensitivity of four pathogenic Candida species (C. albicans, C. dubliniensis, C. glabrata, and C. parapsilosis) to alkali metal cations under various growth conditions revealed significant differences among these species. Though all of them can be classified as rather osmotolerant yeast species, they exhibit different levels of tolerance to different salts. C. parapsilosis and C. albicans are the most salt-tolerant in general; C. dubliniensis is the least tolerant on rich YPD media and C. glabrata on acidic (pH 3.5) minimal YNB medium. C. dubliniensis is relatively salt-sensitive in spite of its ability to maintain as high intracellular K(+)/Na(+) ratio as its highly salt-tolerant relative C. albicans. On the other hand, C. parapsilosis can grow in the presence of very high external NaCl concentrations in spite of its high intracellular Na(+) concentrations (and thus lower K(+)/Na(+) ratio) and thus resembles salt-tolerant (halophilic) Debaryomyces hansenii. PMID:20300937

  20. Emergence and accumulation of novel pathogens suppress an invasive species.

    PubMed

    Stricker, Kerry Bohl; Harmon, Philip F; Goss, Erica M; Clay, Keith; Luke Flory, S

    2016-04-01

    Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities. PMID:26931647

  1. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray

    PubMed Central

    Stieber, Bettina; Monecke, Stefan; Müller, Elke; Büchler, Joseph; Ehricht, Ralf

    2015-01-01

    Background S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins. Methods In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays. Results 110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate. Conclusions The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers. PMID:26624622

  2. Database of host-pathogen and related species interactions, and their global distribution.

    PubMed

    Wardeh, Maya; Risley, Claire; McIntyre, Marie Kirsty; Setzkorn, Christian; Baylis, Matthew

    2015-01-01

    Interactions between species, particularly where one is likely to be a pathogen of the other, as well as the geographical distribution of species, have been systematically extracted from various web-based, free-access sources, and assembled with the accompanying evidence into a single database. The database attempts to answer questions such as what are all the pathogens of a host, and what are all the hosts of a pathogen, what are all the countries where a pathogen was found, and what are all the pathogens found in a country. Two datasets were extracted from the database, focussing on species interactions and species distribution, based on evidence published between 1950-2012. The quality of their evidence was checked and verified against well-known, alternative, datasets of pathogens infecting humans, domestic animals and wild mammals. The presented datasets provide a valuable resource for researchers of infectious diseases of humans and animals, including zoonoses. PMID:26401317

  3. Database of host-pathogen and related species interactions, and their global distribution

    PubMed Central

    Wardeh, Maya; Risley, Claire; McIntyre, Marie Kirsty; Setzkorn, Christian; Baylis, Matthew

    2015-01-01

    Interactions between species, particularly where one is likely to be a pathogen of the other, as well as the geographical distribution of species, have been systematically extracted from various web-based, free-access sources, and assembled with the accompanying evidence into a single database. The database attempts to answer questions such as what are all the pathogens of a host, and what are all the hosts of a pathogen, what are all the countries where a pathogen was found, and what are all the pathogens found in a country. Two datasets were extracted from the database, focussing on species interactions and species distribution, based on evidence published between 1950–2012. The quality of their evidence was checked and verified against well-known, alternative, datasets of pathogens infecting humans, domestic animals and wild mammals. The presented datasets provide a valuable resource for researchers of infectious diseases of humans and animals, including zoonoses. PMID:26401317

  4. Regional variation in pathogenic Streptomyces species has implications for common scab resistance breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common scab, caused by several species of Streptomyces, is a serious problem for potato growers. Regional patterns in the distribution of pathogenic Streptomyces species have recently begun to emerge. Although the mechanism of pathogenicity, based on the phytotoxin thaxtomin, is presumably conserve...

  5. Analyzing the Differences and Preferences of Pathogenic and Nonpathogenic Prokaryote Species

    NASA Astrophysics Data System (ADS)

    Nolen, L.; Duong, K.; Heim, N. A.; Payne, J.

    2015-12-01

    A limited amount of knowledge exists on the large-scale characteristics and differences of pathogenic species in comparison to all prokaryotes. Pathogenic species, like other prokaryotes, have attributes specific to their environment and lifestyles. However, because they have evolved to coexist inside their hosts, the conditions they occupy may be more limited than those of non-pathogenic species. In this study we investigate the possibility of divergent evolution between pathogenic and non-pathogenic species by examining differences that may have evolved as a result of the need to adapt to their host. For this research we analyzed data collected from over 1900 prokaryotic species and performed t-tests using R to quantify potential differences in preferences. To examine the possible divergences from nonpathogenic bacteria, we focused on three variables: cell biovolume, preferred environmental pH, and preferred environmental temperature. We also looked at differences between pathogenic and nonpathogenic species belonging to the same phylum. Our results suggest a strong divergence in abiotic preferences between the two groups, with pathogens occupying a much smaller range of temperatures and pHs than their non-pathogenic counterparts. However, while the median biovolume is different when comparing pathogens and nonpathogens, we cannot conclude that the mean values are significantly different from each other. In addition, we found evidence of convergent evolution, as the temperature and pH preferences of pathogenic bacteria species from different phlya all approach the same values. Pathogenic species do not, however, all approach the same biovolume values, suggesting that specific pH and temperature preferences are more characteristic of pathogens than certain biovolumes.

  6. Deciphering mechanisms of staphylococcal biofilm evasion of host immunity

    PubMed Central

    Hanke, Mark L.; Kielian, Tammy

    2012-01-01

    Biofilms are adherent communities of bacteria contained within a complex matrix. Although host immune responses to planktonic staphylococcal species have been relatively well-characterized, less is known regarding immunity to staphylococcal biofilms and how they modulate anti-bacterial effector mechanisms when organized in this protective milieu. Previously, staphylococcal biofilms were thought to escape immune recognition on the basis of their chronic and indolent nature. Instead, we have proposed that staphylococcal biofilms skew the host immune response away from a proinflammatory bactericidal phenotype toward an anti-inflammatory, pro-fibrotic response that favors bacterial persistence. This possibility is supported by recent studies from our laboratory using a mouse model of catheter-associated biofilm infection, where S. aureus biofilms led to the accumulation of alternatively activated M2 macrophages that exhibit anti-inflammatory and pro-fibrotic properties. In addition, relatively few neutrophils were recruited into S. aureus biofilms, representing another mechanism that deviates from planktonic infections. However, it is important to recognize the diversity of biofilm infections, in that studies by others have demonstrated the induction of distinct immune responses during staphylococcal biofilm growth in other models, suggesting influences from the local tissue microenvironment. This review will discuss the immune defenses that staphylococcal biofilms evade as well as conceptual issues that remain to be resolved. An improved understanding of why the host immune response is unable to clear biofilm infections could lead to targeted therapies to reverse these defects and expedite biofilm clearance. PMID:22919653

  7. Horse species symposium pathogenic and reproductive dysfunction in hourses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the major factors contributing to production losses in the equine industry is pathogen-associated reproductive dysfunction. Although it is difficult to place a true value on the economic losses associated with pathogen-induced reproductive dysfunction in the horse due to the varying value of ...

  8. Identification of Clinical Staphylococcal Isolates from Humans by Internal Transcribed Spacer PCR

    PubMed Central

    Couto, Isabel; Pereira, Sandro; Miragaia, Maria; Sanches, Ilda Santos; de Lencastre, Hermínia

    2001-01-01

    The emergence of coagulase-negative staphylococci not only as human pathogens but also as reservoirs of antibiotic resistance determinants requires the deployment and development of methods for their rapid and reliable identification. Internal transcribed spacer-PCR (ITS-PCR) was used to identify a collection of 617 clinical staphylococcal isolates. The amplicons were resolved in high-resolution agarose gels and visually compared with the patterns obtained for the control strains of 29 staphylococcal species. Of the 617 isolates studied, 592 (95.95%) were identified by ITS-PCR and included 11 species: 302 isolates of Staphylococcus epidermidis, 157 of S. haemolyticus, 79 of S. aureus, 21 of S. hominis, 14 of S. saprophyticus, 8 of S. warneri, 6 of S. simulans, 2 of S. lugdunensis, and 1 each of S. caprae, S. carnosus, and S. cohnii. All species analyzed had unique ITS-PCR patterns, although some were very similar, namely, the group S. saprophyticus, S. cohnii, S. gallinarum, S. xylosus, S. lentus, S. equorum, and S. chromogenes, the pair S. schleiferi and S. vitulus, and the pair S. piscifermentans and S. carnosus. Four species, S. aureus, S. caprae, S. haemolyticus, and S. lugdunensis, showed polymorphisms on their ITS-PCR patterns. ITS-PCR proved to be a valuable alternative for the identification of staphylococci, offering, within the same response time and at lower cost, higher reliability than the currently available commercial systems. PMID:11526135

  9. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  10. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  11. REAL-TIME PCR DETECTION OF THREE HUMAN-PATHOGENIC SPECIES FROM THE MICROSPORIDIAL GENUS ENCEPHALITOZOON

    EPA Science Inventory

    Three microsporidial species from the genus Encephalitozoon, E. hellem, E. cuniculi and E. intestinalis, have emerged as important opportunistic pathogens of humans affecting organ transplant recipients, AIDS patients, and other immunocompromised patients. Even though these thre...

  12. Species interactions in occurrence data for a community of tick-transmitted pathogens

    PubMed Central

    Estrada-Peña, Agustín; de la Fuente, José

    2016-01-01

    Interactions between tick species, their realized range of hosts, the pathogens they carry and transmit, and the geographic distribution of species in the Western Palearctic were determined based on evidence published between 1970–2014. These relationships were linked to remotely sensed features of temperature and vegetation and used to extract the network of interactions among the organisms. The resulting datasets focused on niche overlap among ticks and hosts, species interactions, and the fraction of the environmental niche in which tick-borne pathogens may circulate as a result of interactions and overlapping environmental traits. The resulting datasets provide a valuable resource for researchers interested in tick-borne pathogens, as they conciliate the abiotic and biotic sides of their niche, allowing exploration of the importance of each host species acting as a vertebrate reservoir in the circulation of tick-transmitted pathogens in the environmental niche. PMID:27479213

  13. Species interactions in occurrence data for a community of tick-transmitted pathogens.

    PubMed

    Estrada-Peña, Agustín; de la Fuente, José

    2016-01-01

    Interactions between tick species, their realized range of hosts, the pathogens they carry and transmit, and the geographic distribution of species in the Western Palearctic were determined based on evidence published between 1970-2014. These relationships were linked to remotely sensed features of temperature and vegetation and used to extract the network of interactions among the organisms. The resulting datasets focused on niche overlap among ticks and hosts, species interactions, and the fraction of the environmental niche in which tick-borne pathogens may circulate as a result of interactions and overlapping environmental traits. The resulting datasets provide a valuable resource for researchers interested in tick-borne pathogens, as they conciliate the abiotic and biotic sides of their niche, allowing exploration of the importance of each host species acting as a vertebrate reservoir in the circulation of tick-transmitted pathogens in the environmental niche. PMID:27479213

  14. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thaxtomin, a phytotoxic dipeptide that inhibits cellulose synthesis in expanding plant cells, is a pathogenicity determinant in scab-causing Streptomyces species. Cellobiose and cellotriose, the smallest subunits of cellulose, stimulated thaxtomin production in a defined medium, while other oligosa...

  15. Comparative behavior of root pathogens in stems and roots of southeastern Pinus species.

    PubMed

    Matusick, George; Nadel, Ryan L; Walker, David M; Hossain, Mohammad J; Eckhardt, Lori G

    2016-04-01

    Root diseases are expected to become a greater threat to trees in the future due to accidental pathogen introductions and predicted climate changes, thus there is a need for accurate and efficient pathogenicity tests. For many root pathogens, these tests have been conducted in stems instead of roots. It, however, remains unclear whether stem and root inoculations are comparable for most fungal species. In this study we compared the growth and damage caused by five root pathogens (Grosmannia huntii, Grosmannia alacris, Leptographium procerum, Leptographium terebrantis, and Heterobasidion irregulare) in root and stem tissue of two Pinus species by inoculating mature trees and tissue amended agar in the laboratory. Most fungal species tested caused greater damage in roots of both pine hosts following inoculation. The relationship between root and stem damage was, however, similar when most combinations of pathogens were compared. These results suggest that although stem inoculations are not suitable for determining the actual damage potential of a given species, they may be viewed as a useful surrogate for root inoculations when comparing the relative pathogenicity of multiple species. When grown on amended agar, fungal species generally had greater growth in stem tissue, contrasting with the findings from tree inoculations. PMID:27020149

  16. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati

    PubMed Central

    Frisvad, Jens C.; Larsen, Thomas O.

    2016-01-01

    Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species. PMID:26779142

  17. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits

    PubMed Central

    Mitchell, Charles E; Blumenthal, Dana; Jarošík, Vojtěch; Puckett, Emily E; Pyšek, Petr

    2010-01-01

    Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts’ native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts’ native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts’ introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance. PMID:20973907

  18. Molecular Epidemiology of Novel Pathogen “Brachyspira hampsonii” Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species

    PubMed Central

    Mirajkar, Nandita S.; Bekele, Aschalew Z.; Chander, Yogesh Y.

    2015-01-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated “Brachyspira hampsonii,” with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  19. Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species.

    PubMed

    Mirajkar, Nandita S; Bekele, Aschalew Z; Chander, Yogesh Y; Gebhart, Connie J

    2015-09-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  20. Emerging agents of phaeohyphomycosis: pathogenic species of Bipolaris and Exserohilum.

    PubMed Central

    McGinnis, M R; Rinaldi, M G; Winn, R E

    1986-01-01

    Study of numerous living isolates of Bipolaris, Drechslera, Exserohilum, and Helminthosporium spp., as well as a mycological assessment of published case reports of phaeohyphomycosis attributed to these fungi, showed that Bipolaris australiensis, B. hawaiiensis, B. spicifera, Exserohilum longirostratum, E. mcginnisii, and E. rostratum are well-documented pathogens. Conidial shape, septation, and size, hilar characteristics, the origin of the germ tube from the basal cell and, to a lesser extent, from other conidial cells, and the sequence and location of the conidial septa are useful criteria for distinguishing these taxa. Images PMID:3745423

  1. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses. PMID:26814367

  2. Determination of fungal pathogens of common weed species in the vicinity of Tokat, Turkey.

    PubMed

    Kadioğlu, I; Karamanli, N; Yanar, Y

    2010-01-01

    This study was carried out to determine the fungal pathogens on Chenopodium album L., Cirsium arvense (L.) Scop., Convolvulus arvensis L., Cynodon dactylon (L.) Pers., Delphinium consolida L., Portulaca oleracea L., Rumex crispus L., Solanum nigrum L., Sorghum halepense (L.) Pers. and Xanthium strumarium L. which were common weed species of agricultural areas. Surveys were conducted in May-June and August-September in 2004-2005 growing seasons. During the surveys density and frequency of the above mentioned weed species were also determined and number of infected plants was counted in each sampling area. Infected weed samples were collected from each sampling point and brought to the laboratory in polyethylene bags and the pathogens were identified at genus or species level. As a result of two year surveys, ten fungal pathogens were determined on eight weed species. The most important fungal pathogens determined on common weed species were as follow; Peronospora farinosa (Fr.) Fr. on C. album, and Septoria convolvuli DC., Erysiphe convolvuli DC., and Puccinia punctiformis (Strauss) Roehrl. on C. arvensis. These fungal diseases were observed mainly on the weeds located at the borders of fields. Infection rates of these pathogens reached up to 21.2% in some of the survey areas. Further studies should be conducted to evaluate the efficacy of these pathogen under in vitro and in vivo conditions. PMID:21542473

  3. Molecular analysis of staphylococcal superantigens.

    PubMed

    Salgado-Pabón, Wilmara; Case-Cook, Laura C; Schlievert, Patrick M

    2014-01-01

    Staphylococcal superantigens (SAgs) comprise a large family of exotoxins produced by Staphylococcus aureus strains. These exotoxins are important in a variety of serious human diseases, including menstrual and nonmenstrual toxic shock syndrome (TSS), staphylococcal pneumonia and infective endocarditis, and recently described staphylococcal purpura fulminans and extreme pyrexia syndrome. In addition, these SAg exotoxins are being increasingly recognized for their possible roles in many other human diseases, such as atopic dermatitis, Kawasaki syndrome, nasal polyposis, and certain autoimmune disorders. To clarify the full spectrum of human diseases caused by staphylococcal SAgs, it is necessary to have assays for them. At present there are 23 characterized, serologically distinct SAgs made by S. aureus: TSS toxin-1(TSST-1); staphylococcal enterotoxins (SEs) A, B (multiple variant forms exist), C (multiple minor variant forms exist), D, E, and G; and SE-like H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, and X. The most straightforward way to analyze S. aureus strains for SAgs is through polymerase chain reaction for their genes; we provide here our method for this analysis. Although it would be ideal to confirm that all of the same SAgs are produced by S. aureus strains that have the genes, antibody reagents for SAg detection are only available for TSST-1; SEs A-E and G; and enterotoxin-like proteins H, I, Q, and X. We provide a Western immunoblot procedure that allows in vitro quantification of these SAgs. PMID:24085696

  4. Controls on pathogen species richness in plants introduced and native ranges: roles of residence time, range size and host traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of hosts to new geographic regions allows them to escape many pathogens, raising two questions. How quickly do introduced hosts accumulate pathogens? Do the same factors control pathogen accumulation as in the native range? We analyzed fungal and viral pathogen species richness on 124 p...

  5. Species-Specific Chitin-Binding Module 18 Expansion in the Amphibian Pathogen Batrachochytrium dendrobatidis

    PubMed Central

    Abramyan, John; Stajich, Jason E.

    2012-01-01

    ABSTRACT Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. PMID:22718849

  6. The effect of soil-borne pathogens depends on the abundance of host tree species

    PubMed Central

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen–Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  7. The effect of soil-borne pathogens depends on the abundance of host tree species.

    PubMed

    Liu, Yu; Fang, Suqin; Chesson, Peter; He, Fangliang

    2015-01-01

    The overarching issue for understanding biodiversity maintenance is how fitness advantages accrue to a species as it becomes rare, as this is the defining feature of stable coexistence mechanisms. Without these fitness advantages, average fitness differences between species will lead to exclusion. However, empirical evidence is lacking, especially for forests, due to the difficulty of manipulating density on a large-enough scale. Here we took advantage of naturally occurring contrasts in abundance between sites of a subtropical tree species, Ormosia glaberrima, to demonstrate how low-density fitness advantages accrue by the Janzen-Connell mechanism. The results showed that soil pathogens suppressed seedling recruitment of O. glaberrima when it is abundant but had little effect on the seedlings when it is at low density due to the lack of pathogens. The difference in seedling survival between abundant and low-density sites demonstrates strong dependence of pathogenic effect on the abundance of host species. PMID:26632594

  8. Purification and Properties of Staphylococcal Delta Hemolysin

    PubMed Central

    Kreger, Arnold S.; Kim, Kwang-Shin; Zaboretzky, Frank; Bernheimer, Alan W.

    1971-01-01

    Large amounts (200 mg per liter of culture supernatant fluid) of highly purified staphylococcal soluble delta hemolysin were obtained by adsorption to and selective elution from hydroxyapatite followed by exhaustive dialysis against water, concentration by polyvinylpyrrolidone or polyethylene glycol 20,000 dialysis, and a final water dialysis. No carbohydrate, phosphorus, or inactive 280-nm absorbing material was detected in the preparation; however, analysis by density gradient centrifugation, gel filtration, analytical ultracentrifugation, carboxymethyl cellulose chromatography, polyacrylamide disc gel electrophoresis, isoelectric focusing, and electron microscopy revealed that the lysin was molecularly heterogeneous. The preparation contained an acidic fibrous lysin (S20,w of 11.9) and a basic lysin component composed of a population of granular aggregates of various sizes, with a maximum S20,w of approximately 4.9. No other staphylococcal products were detected in the preparation. The lysin was active against erythrocytes from many animal species and acted synergistically with staphylococcal beta hemolysin against sheep erythrocytes. It was soluble in chloroform-methanol (2:1), was inactivated by various phospholipids, normal sera, and proteolytic enzymes, but was partially resistant to heat inactivation. Activity was not affected by Ca2+, Mg2+, citrate, ethylenediaminetetraacetic acid, or cysteine. The lysin preparation also disrupted bacterial protoplasts and spheroplasts, erythrocyte membranes, lysosomes, and lipid spherules, was growth-inhibitory for certain bacteria, and clarified egg yolk-agar. Large amounts produced dermonecrosis in rabbits and guinea pigs. The minimum lethal intravenous dose for mice and guinea pigs was approximately 110 and 30 mg/kg, respectively. Images PMID:16557995

  9. Proteases as Markers for Differentiation of Pathogenic and Nonpathogenic Species of Acanthamoeba

    PubMed Central

    Khan, Naveed A.; Jarroll, Edward L.; Panjwani, Noorjahan; Cao, Zhiyi; Paget, Timothy A.

    2000-01-01

    Acanthamoeba keratitis is a vision-threatening infection caused by pathogenic species of the genus Acanthamoeba. Although not all Acanthamoeba spp. can cause keratitis, it is important to differentiate pathogenic species and isolates from nonpathogens. Since extracellular proteases may play a role in ocular pathology, we used colorimetric, cytopathic, and zymographic assays to assess extracellular protease activity in pathogenic and nonpathogenic Acanthamoeba. Colorimetric assays, using azo-linked protein as a substrate, showed extracellular protease activity in Acanthamoeba-conditioned medium and differentiated pathogenic and nonpathogenic Acanthamoeba. Monolayers of immortalized corneal epithelial cells in four-well plates were used for cytopathic effect (CPE) assays. Pathogenic Acanthamoeba isolates exhibited marked CPE on immortalized corneal epithelial cells, while nonpathogenic isolates did not exhibit CPE. Protease zymography was performed with Acanthamoeba-conditioned medium as well as with Acanthamoeba- plus epithelial-cell-conditioned medium. The zymographic protease assays showed various banding patterns for different strains of Acanthamoeba. In pathogenic Acanthamoeba isolates, all protease bands were inhibited by phenylmethylsulfonyl fluoride (PMSF), suggesting serine type proteases, while in nonpathogenic strains only partial inhibition was observed by using PMSF. The pathogenic Acanthamoeba strains grown under typical laboratory conditions without epithelial cells exhibited one overexpressed protease band of 107 kDa in common; this protease was not observed in nonpathogenic Acanthamoeba strains. The 107-kDa protease exhibited activity over a pH range of 5 to 9.5. PMID:10921939

  10. Culture of pathogenic campylobacter species at Mymensingh Medical College.

    PubMed

    Sarkar, S R; Hossain, M A; Paul, S K; Mahmud, M C; Ahmed, S; Ray, N C; Hoque, S M; Haq, J A; Yasmin, T

    2014-04-01

    Childhood diarrhea represents a major public health problem in developing countries, where campylobacteriosis is widespread and causes significant morbidity and mortality in infants and children. Despite the increasing importance of campylobacteriosis, most developing countries and even many developed countries do not have surveillance systems to measure the health and economic burden of human campylobacteriosis, nor detect trends in outbreaks. The present study was carried out to diagnose etiology of diarrhea caused by Campylobacter species. A total of 150 clinically diagnosed diarrheal pediatric patients were included in this study, of which 98(65.3%) were male and 52(34.6%) female from the Department of Pediatrics, Mymensingh Medical College Hospital, Mymensingh, Bangladesh from July 2011 to April 2012. Stool specimens were collected from each of the cases. The specimens were cultured in appropriate media and Campylobacters were isolated and identified by recommended tests. Among 150 cases, 17(11.3%) were culture positive for Campylobacter species, of which 15(88.2%) were C. jejuni and 02(11.7%) were C. coli. Of the cases, below 1 year of age group were 106(70.6%) cases showing 12(70.5%) positive for Campylobacters and 44(29.33%) cases were above 1 year of age group showing 05(29.41%) positive. The prevalence of Campylobacter infection found in the present study was higher below 1 year age group and was very much close to other countries of this subcontinent. PMID:24858144

  11. Herbivore and Fungal Pathogen Exclusion Affects the Seed Production of Four Common Grassland Species

    PubMed Central

    Dickson, Timothy L.; Mitchell, Charles E.

    2010-01-01

    Insect herbivores and fungal pathogens can independently affect plant fitness, and may have interactive effects. However, few studies have experimentally quantified the joint effects of insects and fungal pathogens on seed production in non-agricultural populations. We examined the factorial effects of insect herbivore exclusion (via insecticide) and fungal pathogen exclusion (via fungicide) on the population-level seed production of four common graminoid species (Andropogon gerardii, Schizachyrium scoparium, Poa pratensis, and Carex siccata) over two growing seasons in Minnesota, USA. We detected no interactive effects of herbivores and pathogens on seed production. However, the seed production of all four species was affected by either insecticide or fungicide in at least one year of the study. Insecticide consistently doubled the seed production of the historically most common species in the North American tallgrass prairie, A. gerardii (big bluestem). This is the first report of insect removal increasing seed production in this species. Insecticide increased A. gerardii number of seeds per seed head in one year, and mass per seed in both years, suggesting that consumption of flowers and seed embryos contributed to the effect on seed production. One of the primary insect species consuming A. gerardii flowers and seed embryos was likely the Cecidomyiid midge, Contarinia wattsi. Effects on all other plant species varied among years. Herbivores and pathogens likely reduce the dispersal and colonization ability of plants when they reduce seed output. Therefore, impacts on seed production of competitive dominant species may help to explain their relatively poor colonization abilities. Reduced seed output by dominant graminoids may thereby promote coexistence with subdominant species through competition-colonization tradeoffs. PMID:20711408

  12. Association of coagulase-negative staphylococcal species, mammary quarter milk somatic cell count, and persistence of intramammary infection in dairy cattle.

    PubMed

    Fry, P R; Middleton, J R; Dufour, S; Perry, J; Scholl, D; Dohoo, I

    2014-01-01

    This study was conducted to evaluate the association between subclinical intramammary infection (IMI) with coagulase-negative staphylococci (CNS), mammary quarter milk somatic cell count (SCC), and persistence of IMI in dairy cattle. Convenience samples of CNS isolates harvested from milk samples of subclinically infected mammary quarters collected between 4 and 2wk before drying-off, between 2wk before drying-off and the day of drying-off, within 24h after calving, between 1 and 2wk after calving, and during lactation were evaluated. Isolates were obtained from the Canadian Bovine Mastitis Research Network culture bank and were identified to the species level using rpoB gene sequencing. Cow and quarter-level data were obtained from the Canadian Bovine Mastitis Research Network database and used for statistical analyses. In addition, for mammary quarters that had more than one isolation of the same CNS species at different time points, the isolates were evaluated using pulsed-field gel electrophoresis to identify persistent IMI. Milk SCC was compared between mammary quarters infected with different CNS species and to a cohort of uninfected mammary quarters. A total of 877 isolates from 643 mammary quarters of 555 cows on 89 Canadian dairy farms were identified to the species level. Twenty different species were identified, with Staphylococcus chromogenes being the most common species identified (48% of isolates), followed by Staphylococcus simulans (19%) and Staphylococcus xylosus (10%). Of the 20 species identified, only 9 species were found in persistently infected quarters. Milk SCC was significantly higher in the CNS-infected mammary quarters than in the uninfected control quarters for 8 of the 20 species studied. Also, mean SCC differed significantly between mammary quarters infected with different CNS species. Within a given species, a high degree of variability was noted in milk SCC. These data corroborate recent data from Europe with regard to the

  13. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang

    PubMed Central

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-01-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679

  14. Staphylococcal food poisoning and botulism

    PubMed Central

    Gilbert, R. J.

    1974-01-01

    Staphylococcal food poisoning and botulism are caused by the ingestion of food containing exotoxins. Outbreaks of both are still a problem in many countries. This paper attempts to summarize information relating to these illnesses, together with advice on how their incidence may be reduced, or better still prevented. PMID:4619651

  15. Staphylococcal superantigen super-domains in immune evasion.

    PubMed

    Langley, Ries; Patel, Deepa; Jackson, Nicola; Clow, Fiona; Fraser, John D

    2010-01-01

    Staphylococcus aureus is a robust pathogen that is capable of growing in virtually any part of the human body, and can also survive and grow in many other species. S. aureus remains the most frequent cause of hospital-acquired infection and, with the emergence and spread of drug-resistant, hypervirulent, community-acquired strains, the specter looms of the ultimate superbug. S. aureus produces an array of immune evasion factors that target various components of host immune defense. Among them are the powerful superantigen (SAg) and SAg-like (SSL) molecules, which are coded for by genes scattered across several genomic and pathogenicity islands. The SAgs universally bind MHC (major histocompatibility complex) class II and T-cell receptors to induce profound T-cell activation, while the SSLs target a range of molecules regulating opsonophagocytosis and neutrophil function. Despite functional differences, the SAgs and SSLs have clearly evolved from a single ancestral gene that now codes for a stable, two-domain protein, with each domain responsible for binding a different target molecule. This superstructure tolerates extensive surface variation, enabling a wide assortment of virulence factors targeting multiple steps in innate immunity. Notably, both the SAgs and the SSLs exhibit optimal activity for humans and non-human primates, clearly indicating that primates have been the preferred host for S. aureus evolution. This restricted function makes it difficult to assess their role in staphylococcal virulence using animal models of infection. This brief review focuses on the structural features of SAgs and SSLs and their individual functions as we currently understand them. PMID:20370627

  16. Staphylococcal Blood Stream Infections: Epidemiology, Resistance Pattern and Outcome at a Level 1 Indian Trauma Care Center

    PubMed Central

    Tak, Vibhor; Mathur, Purva; Lalwani, Sanjeev; Misra, Mahesh Chandra

    2013-01-01

    Purpose: Blood stream infection (BSI)/bacteremia is a potentially life threatening infection and are associated with a high crude mortality. Coagulase negative Staphylococcus (CONS) and Staphylococcus aureus are the most commonly isolated gram positive bacteria from blood culture samples. While S. aureus is a known pathogen causing BSIs, CONS are considered to be common contaminants of blood culture. Of late many studies have challenged this traditional viewpoint. The aim of this study was to determine the epidemiology and significance of Staphylococcus aureus and CONS bacteremia, their resistance patterns and associated mortality in critically ill trauma patients admitted to a level 1 trauma center. Materials and Methods: The study was conducted from January 2009 to June 2011. All patients from whose blood samples yielded a S. aureus or CONS on culture were included in this study. A detailed history was obtained and follow-up of the patients was done. The isolates of Staphylococci were identified to species level. Antibiotic susceptibility was performed by the disc diffusion method and VITEK-2 system. Results: During this 30 month period, total of 10,509 blood samples were received from 2,938 patients. A total of 1,961 samples taken from 905 patients were positive for one or more pathogens. S. aureus/CONS were isolated from 469 samples from 374 patients. Crude mortality amongst the patients having Staphylococcal BSI was 25% (94/374). Conclusion: Staphylococcal blood stream infections are a leading cause of morbidity and mortality. PMID:24014969

  17. Genomic Characterization Reveals Insights Into Patulin Biosynthesis and Pathogenicity in Penicillium Species.

    PubMed

    Li, Boqiang; Zong, Yuanyuan; Du, Zhenglin; Chen, Yong; Zhang, Zhanquan; Qin, Guozheng; Zhao, Wenming; Tian, Shiping

    2015-06-01

    Penicillium species are fungal pathogens that infect crop plants worldwide. P. expansum differs from P. italicum and P. digitatum, all major postharvest pathogens of pome and citrus, in that the former is able to produce the mycotoxin patulin and has a broader host range. The molecular basis of host-specificity of fungal pathogens has now become the focus of recent research. The present report provides the whole genome sequence of P. expansum (33.52 Mb) and P. italicum (28.99 Mb) and identifies differences in genome structure, important pathogenic characters, and secondary metabolite (SM) gene clusters in Penicillium species. We identified a total of 55 gene clusters potentially related to secondary metabolism, including a cluster of 15 genes (named PePatA to PePatO), that may be involved in patulin biosynthesis in P. expansum. Functional studies confirmed that PePatL and PePatK play crucial roles in the biosynthesis of patulin and that patulin production is not related to virulence of P. expansum. Collectively, P. expansum contains more pathogenic genes and SM gene clusters, in particular, an intact patulin cluster, than P. italicum or P. digitatum. These findings provide important information relevant to understanding the molecular network of patulin biosynthesis and mechanisms of host-specificity in Penicillium species. PMID:25625822

  18. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    USGS Publications Warehouse

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  19. Serologic survey for cross-species pathogens in urban coyotes (Canis latrans), Colorado, USA.

    PubMed

    Malmlov, Ashley; Breck, Stewart; Fry, Tricia; Duncan, Colleen

    2014-10-01

    Abstract As coyotes (Canis latrans) adapt to living in urban environments, the opportunity for cross-species transmission of pathogens may increase. We investigated the prevalence of antibodies to pathogens that are either zoonotic or affect multiple animal species in urban coyotes in the Denver metropolitan area, Colorado, USA, in 2012. We assayed for antibodies to canine parvovirus-2, canine distemper virus, rabies virus, Toxoplasma gondii, Yersinia pestis, and serotypes of Leptospira interrogans. Overall, 84% of the animals had antibodies to canine parvovirus-2, 44% for canine distemper virus, 20% for T. gondii (IgG), 28% for Y. pestis, and 4% for L. interrogans serotype Grippotyphosa. No neutralizing antibodies were detected to rabies virus, T. gondii (IgM), or L. interrogans serotypes other than Grippotyphosa. With 88% of animals exposed to at least one pathogen, our results suggest that coyotes may serve as important reservoirs and sentinels for etiologic agents. PMID:25121408

  20. Populations of a Susceptible Amphibian Species Can Grow despite the Presence of a Pathogenic Chytrid Fungus

    PubMed Central

    Tobler, Ursina; Borgula, Adrian; Schmidt, Benedikt R.

    2012-01-01

    Disease can be an important driver of host population dynamics and epizootics can cause severe host population declines. Batrachochytrium dendrobatidis (Bd), the pathogen causing amphibian chytridiomycosis, may occur epizootically or enzootically and can harm amphibian populations in many ways. While effects of Bd epizootics are well documented, the effects of enzootic Bd have rarely been described. We used a state-space model that accounts for observation error to test whether population trends of a species highly susceptible to Bd, the midwife toad Alytes obstetricans, are negatively affected by the enzootic presence of the pathogen. Unexpectedly, Bd had no negative effect on population growth rates from 2002–2008. This suggests that negative effects of disease on individuals do not necessarily translate into negative effects at the population level. Populations of amphibian species that are susceptible to the emerging disease chytridiomycosis can persist despite the enzootic presence of the pathogen under current environmental conditions. PMID:22496836

  1. Characterization of a cryptic gene pair from Neisseria gonorrhoeae that is common to pathogenic Neisseria species.

    PubMed

    Seifert, H S; Wilson, D

    1992-03-01

    A pair of genes, each of which produces in Escherichia coli a 20-kDa, periplasmically localized protein that cross-reacts with anti-rpoN monoclonal antibody, was isolated from Neisseria gonorrhoeae. Homologs of the two genes were detected in pathogenic Neisseria species but not in commensal species. These genes are designated cnp1 and cnp2 (cryptic neisserial protein). PMID:1541538

  2. Cadophora species as trunk pathogens and wood-infecting fungi of grapevine in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cadophora species, in particular Cadophora luteo-olivacea, are reported from grapevine (Vitis vinifera L.) in California, South Africa, Spain, Uruguay, and Canada. Frequent isolation from vines co-infected with the Esca pathogens (Togninia minima, Phaeomoniella chlamydospora), and confirmation of it...

  3. Anatomical patterns of colonization of pets with staphylococcal species in homes of people with methicillin-resistant Staphylococcus aureus (MRSA) skin or soft tissue infection (SSTI).

    PubMed

    Iverson, S A; Brazil, A M; Ferguson, J M; Nelson, K; Lautenbach, E; Rankin, S C; Morris, D O; Davis, M F

    2015-03-23

    Methicillin-resistant strains of Staphylococcus aureus (MRSA), Staphylococcus pseudintermedius (MRSP), and other pathogenic staphylococci can cause infections in companion animals and humans. Identification of colonized animals is fundamental to research and practice needs, but harmonized methods have not yet been established. To establish the optimal anatomic site for the recovery of methicillin-resistant coagulase positive staphylococci (CPS), survey data and swabs were collected from 196 pets (dogs, cats, reptiles, birds, fish and pocket pets) that lived in households with an MRSA-infected person. Using broth-enrichment culture and PCR for speciation, S. aureus was identified in 27 of 179 (15%) pets sampled at baseline and 19 of 125 (15%) pets sampled at a three-month follow-up home visit. S. pseudintermedius was isolated from 33 of 179 (18%) pets sampled at baseline and 21 of 125 (17%) of pets sampled at follow-up. The baseline MRSA and MRSP prevalence was 8% and 1% respectively from 145 mammalian pets. The follow-up MRSA and MRSP prevalence was 7% and <1% respectively from 95 mammalian pets. The mouth was the most sensitive single site sampled for isolation of S. aureus and S. pseudintermedius in mammals. In a subset of pets, from which all available isolates were identified, dual carriage of S. aureus and S. pseudintermedius was 22% at baseline and 11% at follow-up. These results identify the mouth as the most sensitive site to screen for pathogenic staphylococci and suggest that it should be included in sampling protocols. PMID:25623014

  4. Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins

    PubMed Central

    Vandlen, Richard; Morisaki, J. Hiroshi; Lehar, Sophie M.; Kwakkenbos, Mark J.; Beaumont, Tim; Bakker, Arjen Q.; Phung, Qui; Swem, Lee R.; Ramakrishnan, Satish; Kim, Janice; Xu, Min; Shah, Ishita M.; Diep, Binh An; Sai, Tao; Sebrell, Andrew; Khalfin, Yana; Oh, Angela; Koth, Chris; Lin, S. Jack; Lee, Byoung-Chul; Strandh, Magnus; Koefoed, Klaus; Andersen, Peter S.; Spits, Hergen; Brown, Eric J.; Tan, Man-Wah; Mariathasan, Sanjeev

    2013-01-01

    Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen. PMID:24130480

  5. Development of Multiplex PCR for Simultaneous Detection of Three Pathogenic Shigella Species

    PubMed Central

    RANJBAR, Reza; AFSHAR, Davoud; MEHRABI TAVANA, Ali; NAJAFI, Ali; POURALI, Fatemeh; SAFIRI, Zahra; SOROURI ZANJANI, Rahim; JONAIDI JAFARI, Nematollah

    2014-01-01

    Background: Shigella species are among the common causes of bacterial diarrhoeal diseases. Traditional detection methods are time-consuming resulting in delay in treatment and control of Shigella infections thus there is a need to develop molecular methods for rapid and simultaneous detection of Shigella spp. In this study a rapid multiplex PCR were developed for simultaneous detection of three pathogenic Shigella species. Methods: For detection of Shigella spp., a pair of primers was used to replicate a chromosomal sequence. Three other sets of primers were also designed to amplify the target genes of three most common species of Shigella in Iran including S. sonnei, S. flexneri and S. boydii. The multiplex PCR assay was optimized for simultaneous detection and differentiation of three pathogenic Shigella species. The assay specificity was investigated by testing different strains of Shigella and other additional strains belonging to non Shigella species, but responsible for foodborne diseases. Results: The Shigella genus specific PCR yielded the expected DNA band of 159 bp in all tested strains belonging to four Shigella species. The standard and multiplex PCR assays also produced the expected fragments of 248 bp, 503 bp, and 314 bp, for S. boydii, S. sonnei and S. flexneri, respectively. Each species-specific primer pair did not show any cross-reactivity. Conclusion: Both standard and multiplex PCR protocols had a good specificity. They can provide a valuable tool for the rapid and simultaneous detection and differentiation of three most prevalent Shigella species in Iran. PMID:26171358

  6. The development of a real-time PCR to detect pathogenic Leptospira species in kidney tissue.

    PubMed

    Fearnley, C; Wakeley, P R; Gallego-Beltran, J; Dalley, C; Williamson, S; Gaudie, C; Woodward, M J

    2008-08-01

    A LightCycler real-time PCR hybridization probe-based assay that detects a conserved region of the16S rRNA gene of pathogenic but not saprophytic Leptospira species was developed for the rapid detection of pathogenic leptospires directly from processed tissue samples. In addition, a differential PCR specific for saprophytic leptospires and a control PCR targeting the porcine beta-actin gene were developed. To assess the suitability of these PCR methods for diagnosis, a trial was performed on kidneys taken from adult pigs with evidence of leptospiral infection, primarily a history of reproductive disease and serological evidence of exposure to pathogenic leptospires (n=180) and aborted pig foetuses (n=24). Leptospire DNA was detected by the 'pathogenic' specific PCR in 25 tissues (14%) and the control beta-actin PCR was positive in all 204 samples confirming DNA was extracted from all samples. No leptospires were isolated from these samples by culture and no positives were detected with the 'saprophytic' PCR. In a subsidiary experiment, the 'pathogenic' PCR was used to analyse kidney samples from rodents (n=7) collected as part of vermin control in a zoo, with show animals with high microagglutination titres to Leptospira species, and five were positive. Fifteen PCR amplicons from 1 mouse, 2 rat and 14 pig kidney samples, were selected at random from positive PCRs (n=30) and sequenced. Sequence data indicated L. interrogans DNA in the pig and rat samples and L. inadai DNA, which is considered of intermediate pathogenicity, in the mouse sample. The only successful culture was from this mouse kidney and the isolate was confirmed to be L. inadai by classical serology. These data suggest this suite of PCRs is suitable for testing for the presence of pathogenic leptospires in pig herds where abortions and infertility occur and potentially in other animals such as rodents. PMID:17961617

  7. Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species.

    PubMed

    Giles, Timothy; Yon, Lisa; Hannant, Duncan; Barrow, Paul; Abu-Median, Abu-Bakr

    2015-12-01

    The demand for diagnostic tools that allow simultaneous screening of samples for multiple pathogens is increasing because they overcome the limitations of other methods, which can only screen for a single or a few pathogens at a time. Microarrays offer the advantages of being capable to test a large number of samples simultaneously, screening for multiple pathogen types per sample and having comparable sensitivity to existing methods such as PCR. Array design is often considered the most important process in any microarray experiment and can be the deciding factor in the success of a study. There are currently no microarrays for simultaneous detection of rodent-borne pathogens. The aim of this report is to explicate the design, development and evaluation of a microarray platform for use as a screening tool that combines ease of use and rapid identification of a number of rodent-borne pathogens of zoonotic importance. Nucleic acid was amplified by multiplex biotinylation PCR prior to hybridisation onto microarrays. The array sensitivity was comparable to standard PCR, though less sensitive than real-time PCR. The array presented here is a prototype microarray identification system for zoonotic pathogens that can infect rodent species. PMID:26188129

  8. Antibodies to some pathogenic agents in free-living wild species in Tanzania.

    PubMed

    Hamblin, C; Anderson, E C; Jago, M; Mlengeya, T; Hipji, K

    1990-12-01

    A total of 535 sera from eight species of wildlife were collected from different game areas in Tanzania between 1987 and 1989. These sera were tested for antibodies against foot-and-mouth disease, bovine herpes virus types 1 and 2, lumpy skin disease, bovine viral diarrhoea, Akabane, bovine ephemeral fever, bluetongue, enzootic bovine leucosis, African horse sickness and African swine fever viruses and Brucella abortus based on the expected species susceptibility. Sera from buffalo Syncerus caffer, wildebeest Connochaetes taurinus and topi Damaliscus korrigum contained antibodies against the majority of the pathogens tested. Antibodies to fewer pathogens were detected in sera from the other species. No antibodies to lumpy skin disease virus were detected in any of the sera examined. African horse sickness antibodies were detected in sera from Zebra and African swine fever antibodies were detected in wart hog. The occurrence of antibodies to these agents suggests that wild species act as reservoirs of infection for some of these pathogens. However, until the susceptibility of individual species is proven by isolation of the aetiological agents their role must remain speculative. PMID:2123458

  9. Mechanisms of Disease: Host-Pathogen Interactions between Burkholderia Species and Lung Epithelial Cells

    PubMed Central

    David, Jonathan; Bell, Rachel E.; Clark, Graeme C.

    2015-01-01

    Members of the Burkholderia species can cause a range of severe, often fatal, respiratory diseases. A variety of in vitro models of infection have been developed in an attempt to elucidate the mechanism by which Burkholderia spp. gain entry to and interact with the body. The majority of studies have tended to focus on the interaction of bacteria with phagocytic cells with a paucity of information available with regard to the lung epithelium. However, the lung epithelium is becoming more widely recognized as an important player in innate immunity and the early response to infections. Here we review the complex relationship between Burkholderia species and epithelial cells with an emphasis on the most pathogenic species, Burkholderia pseudomallei and Burkholderia mallei. The current gaps in knowledge in our understanding are highlighted along with the epithelial host-pathogen interactions that offer potential opportunities for therapeutic intervention. PMID:26636042

  10. Comparative Genomic Analysis Reveals a Possible Novel Non-Tuberculous Mycobacterium Species with High Pathogenic Potential

    PubMed Central

    Choo, Siew Woh; Dutta, Avirup; Wong, Guat Jah; Wee, Wei Yee; Ang, Mia Yang; Siow, Cheuk Chuen

    2016-01-01

    Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections. PMID:27035710

  11. Antigenic relationship between the animal and human pathogen Pythium insidiosum and nonpathogenic Pythium species.

    PubMed Central

    Mendoza, L; Kaufman, L; Standard, P

    1987-01-01

    Identification of the newly named pathogenic oomycete Pythium insidiosum and its differentiation from other Pythium species by morphologic criteria alone can be difficult and time-consuming. Antigenic analysis by fluorescent-antibody and immunodiffusion precipitin techniques demonstrated that the P. insidiosum isolates that cause pythiosis in dogs, horses, and humans are identical and that they were distinguishable from other Pythium species by these means. The immunologic data agreed with the morphologic data. This indicated that the animal and human isolates belonged to a single species, P. insidiosum. Fluorescent-antibody and immunodiffusion reagents were developed for the specific identification of P. insidiosum. PMID:3121666

  12. Characterization and pathogenicity of Botryosphaeriaceae species collected from olive and other hosts in Spain and California.

    PubMed

    Moral, Juan; Muñoz-Díez, Concepción; González, Nazaret; Trapero, Antonio; Michailides, Themis J

    2010-12-01

    Species in the family Botryosphaeriaceae are common pathogens causing fruit rot and dieback of many woody plants. In this study, 150 Botryosphaeriaceae isolates were collected from olive and other hosts in Spain and California. Representative isolates of each type were characterized based on morphological features and comparisons of DNA sequence data of three regions: internal transcribed spacer 5.8S, β-tubulin, and elongation factor. Three main species were identified as Neofusicoccum mediterraneum, causing dieback of branches of olive and pistachio; Diplodia seriata, causing decay of ripe fruit and dieback of olive branches; and Botryosphaeria dothidea, causing dalmatian disease on unripe olive fruit in Spain. Moreover, the sexual stage of this last species was also found attacking olive branches in California. In pathogenicity tests using unripe fruit and branches of olive, D. seriata isolates were the least aggressive on the fruit and branches while N. mediterraneum isolates were the most aggressive on both tissues. Isolates of B. dothidea which cause dalmatian disease on fruit were not pathogenic on branches and only weakly aggressive on fruit. These results, together with the close association between the presence of dalmatian disease symptoms and the wound created by the olive fly (Bactrocera oleae), suggest that the fly is essential for the initiation of the disease on fruit. Isolates recovered from dalmatian disease symptoms had an optimum of 26°C for mycelial growth and 30°C for conidial germination, suggesting that the pathogen is well adapted to high summer temperatures. In contrast, the range of water activity in the medium for growth of dalmatian isolates was 0.93 to 1 MPa, which was similar to that for the majority of fungi. This study resolved long-standing questions of identity and pathogenicity of species within the family Botryosphaeriaceae attacking olive trees in Spain and California. PMID:20731532

  13. Development of oligonucleotide microarrays for simultaneous multi-species identification of Phellinus tree-pathogenic fungi.

    PubMed

    Tzean, Yuh; Shu, Po-Yao; Liou, Ruey-Fen; Tzean, Shean-Shong

    2016-03-01

    Polyporoid Phellinus fungi are ubiquitously present in the environment and play an important role in shaping forest ecology. Several species of Phellinus are notorious pathogens that can affect a broad variety of tree species in forest, plantation, orchard and urban habitats; however, current detection methods are overly complex and lack the sensitivity required to identify these pathogens at the species level in a timely fashion for effective infestation control. Here, we describe eight oligonucleotide microarray platforms for the simultaneous and specific detection of 17 important Phellinus species, using probes generated from the internal transcribed spacer regions unique to each species. The sensitivity, robustness and efficiency of this Phellinus microarray system was subsequently confirmed against template DNA from two key Phellinus species, as well as field samples collected from tree roots, trunks and surrounding soil. This system can provide early, specific and convenient detection of Phellinus species for forestry, arboriculture and quarantine inspection, and could potentially help to mitigate the environmental and economic impact of Phellinus-related diseases. PMID:26853539

  14. Species composition, toxigenic potential and pathogenicity of Fusarium graminearum species complex isolates from southern Brazilian rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in Brazilian rice. Four species and two trichothecene genotypes were found among 89 FGSC isolates obtained from infected seeds: F. asiaticum with the nivalenol (NIV) genotype (69%), F. gra...

  15. Brucellosis, botflies, and brainworms: the impact of edge habitats on pathogen transmission and species extinction.

    PubMed

    Cantrell, R S; Cosner, C; Fagan, W F

    2001-02-01

    Ecological interactions between species that prefer different habitat types but come into contact in edge regions at the interfaces between habitat types are modeled via reaction-diffusion systems. The primary sort of interaction described by the models is competition mediated by pathogen transmission. The models are somewhat novel because the spatial domains for the variables describing the population densities of the interacting species overlap but do not coincide. Conditions implying coexistence of the two species or the extinction of one species are derived. The conditions involve the principal eigenvalues of elliptic operators arising from linearizations of the model system around equilibria with only one species present. The conditions for persistence or extinction are made explicit in terms of the parameters of the system and the geometry of the underlying spatial domains via estimates of the principal eigenvalues. The implications of the models with respect to conservation and refuge design are discussed. PMID:11261318

  16. Species or Genotypes? Reassessment of Four Recently Described Species of the Ceratocystis Wilt Pathogen, Ceratocystis fimbriata, on Mangifera indica.

    PubMed

    Oliveira, Leonardo S S; Harrington, Thomas C; Ferreira, Maria A; Damacena, Michelle B; Al-Sadi, Abdullah M; Al-Mahmooli, Issa H S; Alfenas, Acelino C

    2015-09-01

    Ceratocystis wilt is among the most important diseases on mango (Mangifera indica) in Brazil, Oman, and Pakistan. The causal agent was originally identified in Brazil as Ceratocystis fimbriata, which is considered by some as a complex of many cryptic species, and four new species on mango trees were distinguished from C. fimbriata based on variation in internal transcribed spacer sequences. In the present study, phylogenetic analyses using DNA sequences of mating type genes, TEF-1α, and β-tubulin failed to identify lineages corresponding to the four new species names. Further, mating experiments found that the mango isolates representing the new species were interfertile with each other and a tester strain from sweet potato (Ipomoea batatas), on which the name C. fimbriata is based, and there was little morphological variation among the mango isolates. Microsatellite markers found substantial differentiation among mango isolates at the regional and population levels, but certain microsatellite genotypes were commonly found in multiple populations, suggesting that these genotypes had been disseminated in infected nursery stock. The most common microsatellite genotypes corresponded to the four recently named species (C. manginecans, C. acaciivora, C. mangicola, and C. mangivora), which are considered synonyms of C. fimbriata. This study points to the potential problems of naming new species based on introduced genotypes of a pathogen, the value of an understanding of natural variation within and among populations, and the importance of phenotype in delimiting species. PMID:25822187

  17. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    PubMed

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians. PMID:25958806

  18. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola

    PubMed Central

    Choi, Yoon-E; Lee, Changsu

    2016-01-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  19. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  20. The olive compound 4-hydroxytyrosol inactivates Staphyloccoccus aureus bacteria and Staphylococcal enterotoxin A (SEA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal enterotoxin A (SEA), a single chain protein which consists of 233 amino acid residues with a molecular weight of 27,078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, ...

  1. Inhibition of Biological Activity of Staphylococcal Enterotoxin A (SEA) by Apple Juice and Apple Polyphenols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The foodborne pathogen Staphylococcus aureus produces the virulent staphylococcal entertoxin A (SEA), a single-chain protein that consists of 233 amino acid residues with a molecular weight of 27 078 Da. SEA is a superantigen that is reported to contribute to animal (mastitis) and human (emesis, dia...

  2. A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species

    PubMed Central

    Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.

    2013-01-01

    Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis. PMID:23359622

  3. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish famine pathogen, P. infestans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The global movement of plant pathogens threatens natural ecosystems, food security, and commercial interests. Introduction of a plant pathogen to new geographic regions has been the primary mechanism by which new pathogens have emerged. Another documented mechanism for the emergence of plant pathoge...

  4. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species.

    PubMed

    Lee, Kim-Chung; Tam, Emily W T; Lo, Ka-Ching; Tsang, Alan K L; Lau, Candy C Y; To, Kelvin K W; Chan, Jasper F W; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2015-01-01

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu-Glu-Leu-Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu-Glu-Leu-Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species. PMID:26090713

  5. The occurrence of enteric pathogens and Aeromonas species in organic vegetables.

    PubMed

    McMahon, M A; Wilson, I G

    2001-10-22

    A range of commercially available organic vegetables (n = 86) was examined for the presence of Salmonella, Campylobacter, Escherichia coli, E. coli O 157. Listeria and Aeromonas spp., to provide information on the occurrence of such organisms in organic vegetables in Northern Ireland. The study was not designed to quantify such organisms or to compare occurrence with conventionally farmed vegetables. Standard enrichment techniques were used to isolate and identify enteric pathogens and Aeromonas species. No Salmonella, Campylobacter, E. coli. E. coli O 157, Listeria were found in any of the samples examined. Aeromonas species were isolated from 34% of the total number of organic vegetables examined. Many (64%) of the organic vegetables examined were "ready-to-eat" after minimal processing, i.e., washing. Aeromonas spp. was isolated from 41% of these vegetables. Aeromonas spp. was not recovered from certain vegetable types. The most commonly isolated species of Aeromonas was Aeromonas schubertii with 21.0% of all samples contaminated with this species; 5.8% of samples contained A. hydrophila, 5.8% A. trota, 3.5% A. caviae and 2.3% contained A. veronii biovar veronii. Although Aeromonas species are frequently detected in organic vegetables, the absence of accepted enteric pathogens was encouraging, and does not support the allegation of organic foods being of high risk due to the farming methods used. PMID:11759753

  6. Metabolomics Analysis Reveals Specific Novel Tetrapeptide and Potential Anti-Inflammatory Metabolites in Pathogenic Aspergillus species

    PubMed Central

    Lee, Kim-Chung; Tam, Emily W. T.; Lo, Ka-Ching; Tsang, Alan K. L.; Lau, Candy C. Y.; To, Kelvin K. W.; Chan, Jasper F. W.; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K. P.; Woo, Patrick C. Y.

    2015-01-01

    Infections related to Aspergillus species have emerged to become an important focus in infectious diseases, as a result of the increasing use of immunosuppressive agents and high fatality associated with invasive aspergillosis. However, laboratory diagnosis of Aspergillus infections remains difficult. In this study, by comparing the metabolomic profiles of the culture supernatants of 30 strains of six pathogenic Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, A. nomius and A. tamarii) and 31 strains of 10 non-Aspergillus fungi, eight compounds present in all strains of the six Aspergillus species but not in any strain of the non-Aspergillus fungi were observed. One of the eight compounds, Leu–Glu–Leu–Glu, is a novel tetrapeptide and represents the first linear tetrapeptide observed in Aspergillus species, which we propose to be named aspergitide. Two other closely related Aspergillus-specific compounds, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid, may possess anti-inflammatory properties, as 2-(sulfooxy)benzoic acid possesses a structure similar to those of aspirin [2-(acetoxy)benzoic acid] and salicylic acid (2-hydroxybenzoic acid). Further studies to examine the potentials of these Aspergillus-specific compounds for laboratory diagnosis of aspergillosis are warranted and further experiments will reveal whether Leu–Glu–Leu–Glu, hydroxy-(sulfooxy)benzoic acid and (sulfooxy)benzoic acid are virulent factors of the pathogenic Aspergillus species. PMID:26090713

  7. The Colletotrichum destructivum species complex – hemibiotrophic pathogens of forage and field crops

    PubMed Central

    Damm, U.; O'Connell, R.J.; Groenewald, J.Z.; Crous, P.W.

    2014-01-01

    Colletotrichum destructivum is an important plant pathogen, mainly of forage and grain legumes including clover, alfalfa, cowpea and lentil, but has also been reported as an anthracnose pathogen of many other plants worldwide. Several Colletotrichum isolates, previously reported as closely related to C. destructivum, are known to establish hemibiotrophic infections in different hosts. The inconsistent application of names to those isolates based on outdated species concepts has caused much taxonomic confusion, particularly in the plant pathology literature. A multilocus DNA sequence analysis (ITS, GAPDH, CHS-1, HIS3, ACT, TUB2) of 83 isolates of C. destructivum and related species revealed 16 clades that are recognised as separate species in the C. destructivum complex, which includes C. destructivum, C. fuscum, C. higginsianum, C. lini and C. tabacum. Each of these species is lecto-, epi- or neotypified in this study. Additionally, eight species, namely C. americae-borealis, C. antirrhinicola, C. bryoniicola, C. lentis, C. ocimi, C. pisicola, C. utrechtense and C. vignae are newly described. PMID:25492986

  8. Virulence of oomycete pathogens from Phragmites australis-invaded and noninvaded soils to seedlings of wetland plant species

    PubMed Central

    Crocker, Ellen V; Karp, Mary Ann; Nelson, Eric B

    2015-01-01

    Soil pathogens affect plant community structure and function through negative plant–soil feedbacks that may contribute to the invasiveness of non-native plant species. Our understanding of these pathogen-induced soil feedbacks has relied largely on observations of the collective impact of the soil biota on plant populations, with few observations of accompanying changes in populations of specific soil pathogens and their impacts on invasive and noninvasive species. As a result, the roles of specific soil pathogens in plant invasions remain unknown. In this study, we examine the diversity and virulence of soil oomycete pathogens in freshwater wetland soils invaded by non-native Phragmites australis (European common reed) to better understand the potential for soil pathogen communities to impact a range of native and non-native species and influence invasiveness. We isolated oomycetes from four sites over a 2-year period, collecting nearly 500 isolates belonging to 36 different species. These sites were dominated by species of Pythium, many of which decreased seedling survival of a range of native and invasive plants. Despite any clear host specialization, many of the Pythium species were differentially virulent to the native and non-native plant species tested. Isolates from invaded and noninvaded soils were equally virulent to given individual plant species, and no apparent differences in susceptibility were observed between the collective groups of native and non-native plant species. PMID:26078850

  9. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence

    PubMed Central

    2010-01-01

    Background The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. Results The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. Conclusions Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic

  10. Species Tree Estimation for the Late Blight Pathogen, Phytophthora infestans, and Close Relatives

    PubMed Central

    Blair, Jaime E.; Coffey, Michael D.; Martin, Frank N.

    2012-01-01

    To better understand the evolutionary history of a group of organisms, an accurate estimate of the species phylogeny must be known. Traditionally, gene trees have served as a proxy for the species tree, although it was acknowledged early on that these trees represented different evolutionary processes. Discordances among gene trees and between the gene trees and the species tree are also expected in closely related species that have rapidly diverged, due to processes such as the incomplete sorting of ancestral polymorphisms. Recently, methods have been developed for the explicit estimation of species trees, using information from multilocus gene trees while accommodating heterogeneity among them. Here we have used three distinct approaches to estimate the species tree for five Phytophthora pathogens, including P. infestans, the causal agent of late blight disease in potato and tomato. Our concatenation-based “supergene” approach was unable to resolve relationships even with data from both the nuclear and mitochondrial genomes, and from multiple isolates per species. Our multispecies coalescent approach using both Bayesian and maximum likelihood methods was able to estimate a moderately supported species tree showing a close relationship among P. infestans, P. andina, and P. ipomoeae. The topology of the species tree was also identical to the dominant phylogenetic history estimated in our third approach, Bayesian concordance analysis. Our results support previous suggestions that P. andina is a hybrid species, with P. infestans representing one parental lineage. The other parental lineage is not known, but represents an independent evolutionary lineage more closely related to P. ipomoeae. While all five species likely originated in the New World, further study is needed to determine when and under what conditions this hybridization event may have occurred. PMID:22615869

  11. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens.

    PubMed

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  12. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens

    PubMed Central

    Giaouris, Efstathios; Heir, Even; Desvaux, Mickaël; Hébraud, Michel; Møretrø, Trond; Langsrud, Solveig; Doulgeraki, Agapi; Nychas, George-John; Kačániová, Miroslava; Czaczyk, Katarzyna; Ölmez, Hülya; Simões, Manuel

    2015-01-01

    A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety. PMID:26347727

  13. Morphological and genomic characterization of Filobasidiella depauperata: a homothallic sibling species of the pathogenic cryptococcus species complex.

    PubMed

    Rodriguez-Carres, Marianela; Findley, Keisha; Sun, Sheng; Dietrich, Fred S; Heitman, Joseph

    2010-01-01

    The fungal species Cryptococcus neoformans and Cryptococcus gattii cause respiratory and neurological disease in animals and humans following inhalation of basidiospores or desiccated yeast cells from the environment. Sexual reproduction in C. neoformans and C. gattii is controlled by a bipolar system in which a single mating type locus (MAT) specifies compatibility. These two species are dimorphic, growing as yeast in the asexual stage, and producing hyphae, basidia, and basidiospores during the sexual stage. In contrast, Filobasidiella depauperata, one of the closest related species, grows exclusively as hyphae and it is found in association with decaying insects. Examination of two available strains of F. depauperata showed that the life cycle of this fungal species shares features associated with the unisexual or same-sex mating cycle in C. neoformans. Therefore, F. depauperata may represent a homothallic and possibly an obligately sexual fungal species. RAPD genotyping of 39 randomly isolated progeny from isolate CBS7855 revealed a new genotype pattern in one of the isolated basidiospores progeny, therefore suggesting that the homothallic cycle in F. depauperata could lead to the emergence of new genotypes. Phylogenetic analyses of genes linked to MAT in C. neoformans indicated that two of these genes in F. depauperata, MYO2 and STE20, appear to form a monophyletic clade with the MATa alleles of C. neoformans and C. gattii, and thus these genes may have been recruited to the MAT locus before F. depauperata diverged. Furthermore, the ancestral MATa locus may have undergone accelerated evolution prior to the divergence of the pathogenic Cryptococcus species since several of the genes linked to the MATa locus appear to have a higher number of changes and substitutions than their MATalpha counterparts. Synteny analyses between C. neoformans and F. depauperata showed that genomic regions on other chromosomes displayed conserved gene order. In contrast, the genes

  14. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  15. Staphylococcal response to oxidative stress

    PubMed Central

    Gaupp, Rosmarie; Ledala, Nagender; Somerville, Greg A.

    2012-01-01

    Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host. PMID:22919625

  16. Innate immune responses to infection with H5N1 highly pathogenic avian influenza virus in different duck species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ducks have been implicated in the dissemination and evolution of H5N1 highly pathogenic avian influenza (HPAI) viruses. Differences in pathogenicity and response to vaccination have been observed between different duck species. The innate immune system is responsible for controlling viruses during t...

  17. Multiple Pathogens Including Potential New Species in Tick Vectors in Côte d’Ivoire

    PubMed Central

    Ehounoud, Cyrille Bilé; Yao, Kouassi Patrick; Dahmani, Mustapha; Achi, Yaba Louise; Amanzougaghene, Nadia; Kacou N’Douba, Adèle; N’Guessan, Jean David; Raoult, Didier; Fenollar, Florence; Mediannikov, Oleg

    2016-01-01

    Background Our study aimed to assess the presence of different pathogens in ticks collected in two regions in Côte d’Ivoire. Methodology/Principal Findings Real-time PCR and standard PCR assays coupled to sequencing were used. Three hundred and seventy eight (378) ticks (170 Amblyomma variegatum, 161 Rhipicepalus microplus, 3 Rhipicephalus senegalensis, 27 Hyalomma truncatum, 16 Hyalomma marginatum rufipes, and 1 Hyalomma impressum) were identified and analyzed. We identified as pathogenic bacteria, Rickettsia africae in Am. variegatum (90%), Rh. microplus (10%) and Hyalomma spp. (9%), Rickettsia aeschlimannii in Hyalomma spp. (23%), Rickettsia massiliae in Rh. senegalensis (33%) as well as Coxiella burnetii in 0.2%, Borrelia sp. in 0.2%, Anaplasma centrale in 0.2%, Anaplasma marginale in 0.5%, and Ehrlichia ruminantium in 0.5% of all ticks. Potential new species of Borrelia, Anaplasma, and Wolbachia were detected. Candidatus Borrelia africana and Candidatus Borrelia ivorensis (detected in three ticks) are phylogenetically distant from both the relapsing fever group and Lyme disease group borreliae; both were detected in Am. variegatum. Four new genotypes of bacteria from the Anaplasmataceae family were identified, namely Candidatus Anaplasma ivorensis (detected in three ticks), Candidatus Ehrlichia urmitei (in nine ticks), Candidatus Ehrlichia rustica (in four ticks), and Candidatus Wolbachia ivorensis (in one tick). Conclusions/Significance For the first time, we demonstrate the presence of different pathogens such as R. aeschlimannii, C. burnetii, Borrelia sp., A. centrale, A. marginale, and E. ruminantium in ticks in Côte d’Ivoire as well as potential new species of unknown pathogenicity. PMID:26771308

  18. An Enterotoxin-Bearing Pathogenicity Island in Staphylococcus epidermidis.

    PubMed

    Madhusoodanan, Jyoti; Seo, Keun Seok; Remortel, Brian; Park, Joo Youn; Hwang, Sun Young; Fox, Lawrence K; Park, Yong Ho; Deobald, Claudia F; Wang, Dan; Liu, Song; Daugherty, Sean C; Gill, Ann Lindley; Bohach, Gregory A; Gill, Steven R

    2011-04-01

    Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage. PMID:21317317

  19. Inflammatory molecules expression pattern for identifying pathogen species in febrile patient serum

    PubMed Central

    LIU, KUAN-TING; LIU, YAO-HUA; LIN, CHUN-YU; KUO, PO-LIN; YEN, MENG-CHI

    2016-01-01

    Inflammatory molecules, such as cytokines and chemokines, have been considered markers for bacterial or viral infection in serum of patients in numerous studies. The aim of the present study was to investigate whether we were able to identify the pathogen species through patterns of inflammatory molecules. A total of 132 patients with elevated body temperature (tympanic temperature, >38.3°C) were recruited for this study. The concentrations of various inflammatory molecules in the patients' serum were evaluated using a cytometric bead array. Higher concentrations of interleukin (IL)-6 and IL-8 were detected in bacterial infection groups (patients with positive and negative blood cultures), as compared with the viral infection group. Viral infection (including influenza and dengue viral infections) was associated with higher concentrations of interferon-γ-inducible protein 10 (IP-10), as compared with the bacterial infection group. In addition, IL-8 levels in the gram-negative bacteria group were higher, as compared with the gram-positive bacteria group. However, IL-8 was insufficient for bacterial species identification. By contrast, dengue virus infection induced the highest serum level of IP-10 among all groups. In conclusion, detection of the patterns of inflammatory molecules may aid the subsequent management and treatment modalities in hospitals, although evaluation of these molecules alone may be insufficient for identifying the pathogen species. PMID:27347055

  20. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species.

    PubMed

    Menardo, Fabrizio; Praz, Coraline R; Wyder, Stefan; Ben-David, Roi; Bourras, Salim; Matsumae, Hiromi; McNally, Kaitlin E; Parlange, Francis; Riba, Andrea; Roffler, Stefan; Schaefer, Luisa K; Shimizu, Kentaro K; Valenti, Luca; Zbinden, Helen; Wicker, Thomas; Keller, Beat

    2016-02-01

    Throughout the history of agriculture, many new crop species (polyploids or artificial hybrids) have been introduced to diversify products or to increase yield. However, little is known about how these new crops influence the evolution of new pathogens and diseases. Triticale is an artificial hybrid of wheat and rye, and it was resistant to the fungal pathogen powdery mildew (Blumeria graminis) until 2001 (refs. 1,2,3). We sequenced and compared the genomes of 46 powdery mildew isolates covering several formae speciales. We found that B. graminis f. sp. triticale, which grows on triticale and wheat, is a hybrid between wheat powdery mildew (B. graminis f. sp. tritici) and mildew specialized on rye (B. graminis f. sp. secalis). Our data show that the hybrid of the two mildews specialized on two different hosts can infect the hybrid plant species originating from those two hosts. We conclude that hybridization between mildews specialized on different species is a mechanism of adaptation to new crops introduced by agriculture. PMID:26752267

  1. Synergistic fungicidal activity of the lipopeptide bacillomycin D with amphotericin B against pathogenic Candida species.

    PubMed

    Tabbene, Olfa; Di Grazia, Antonio; Azaiez, Sana; Ben Slimene, Imen; Elkahoui, Salem; Alfeddy, Mohamed Najib; Casciaro, Bruno; Luca, Vincenzo; Limam, Ferid; Mangoni, Maria Luisa

    2015-06-01

    In the present study, the synergism of the lipopeptide bacillomycin D in combination with the polyene amphotericin B against pathogenic Candida species is described along with their potential cytotoxicity against mammalian cells. Bacillomycin D inhibited the growth of various Candida species at minimal concentrations from 12.5 to 25 μg ml(-1). Furthermore, it showed a synergistic effect with the antifungal drug amphotericin B in inhibiting the growth of Candida strains, with fractional inhibitory concentration indices ranging from 0.28 to 0.5. Time killing studies revealed a >2-log reduction in the viability of Candida albicans ATCC 10231 cells after 3 h incubation with the combination amphotericin B plus bacillomycin D, at their subinhibitory concentration. Interestingly, when the two drugs were used together at those dosages displaying a synergism in the anti-Candida activity, no cytotoxic effect was observed against mammalian cells. Therefore, the combination bacillomycin D/amphotericin B may represent a valid alternative to conventional antifungals for topical treatment of C. albicans infections. To the best of our knowledge, this is the first report describing the in vitro interaction between the antifungal drug amphotericin B and bacillomycin D against pathogenic Candida species. PMID:25956541

  2. Phylogenetic, Morphological, and Pathogenic Characterization of Alternaria Species Associated with Fruit Rot of Blueberry in California.

    PubMed

    Zhu, X Q; Xiao, C L

    2015-12-01

    Fruit rot caused by Alternaria spp. is one of the most important factors affecting the postharvest quality and shelf life of blueberry fruit. The aims of this study were to characterize Alternaria isolates using morphological and molecular approaches and test their pathogenicity to blueberry fruit. Alternaria spp. isolates were collected from decayed blueberry fruit in the Central Valley of California during 2012 and 2013. In total, 283 isolates were obtained and five species of Alternaria, including Alternaria alternata, A. tenuissima, A. arborescens, A. infectoria, and A. rosae, were identified based on DNA sequences of the plasma membrane ATPase, Alt a1 and Calmodulin gene regions in combination with morphological characters of the culture and sporulation. Of the 283 isolates, 61.5% were identified as A. alternata, 32.9% were A. arborescens, 5.0% were A. tenuissima, and only one isolate of A. infectoria and one isolate of A. rosae were found. These fungi were able to grow at temperatures from 0 to 35°C, and mycelial growth was arrested at 40°C. Optimal radial growth occurred between 20 to 30°C. Pathogenicity tests showed that all five Alternaria spp. were pathogenic on blueberry fruit at 0, 4, and 20°C, with A. alternata, A. arborescens, and A. tenuissima being the most virulent species, followed by A. infectoria and A. rosae. Previously A. tenuissima has been reported to be the primary cause of Alternaria fruit rot of blueberry worldwide. Our results indicated that the species composition of Alternaria responsible for Alternaria fruit rot in blueberry can be dependent on geographical region. A. alternata, A. arborescens, A. infectoria, and A. rosae are reported for the first time on blueberry in California. This is also the first report of A. infectoria and A. rosae infecting blueberry fruit. PMID:26267542

  3. Chromosomal locus for staphylococcal enterotoxin B.

    PubMed Central

    Shafer, W M; Iandolo, J J

    1978-01-01

    The genetic locus of staphylococcal enterotoxin B (SEB) was investigated in the Staphylococcus aureus food-poisoning isolates, strains S6 and 277. Direct neutral sucrose gradient centrifugation analysis of sodium dodecyl sulfate-sodium chloride-mediated cleared lysates demonstrated that strain S6 contained a single 37S plasmid. Transductional analysis revealed that the 37S plasmid in S6 encoded for cadmium resistance (Cad) but not SEB. Additionally, elimination of cadmium resistance in S6 provided a plasmid-negative derivative that produced SEB at the same level as the parent. Examination of strain 277 showed two plasmids, a 37S species encoding for penicillin resistance (Penr) and a 21S species containing the gene(s) responsible for tetracycline resistance (Tetr). Elimination of the 37S, penr plasmid in 277 had no effect on SEB production, whereas introduction of the 21S tetr plasmid via transformation into strain 8325 (SEB--) did not confer enterotoxigenesis upon the transformants. The data obtained in this investigation suggest that the SEB gene(s) in these food-poisoning isolates of S. aureus is chromosomal. Images PMID:669796

  4. Functional comparison of plasma-membrane Na+/H+ antiporters from two pathogenic Candida species

    PubMed Central

    Krauke, Yannick; Sychrova, Hana

    2008-01-01

    Background The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far. Results The tolerance/sensitivity of four pathogenic Candida species to alkali metal cations was tested and the role of one of the cation transporters in that tolerance (presumed to be the plasma-membrane Na+/H+ antiporter) was studied. The genes encoding these antiporters in the most and least salt sensitive species, C. dubliniensis and C. parapsilosis respectively, were identified, cloned and functionally expressed in the plasma membranes of Saccharomyces cerevisiae cells lacking their own cation exporters. Both CpCnh1 and CdCnh1 antiporters had broad substrate specificity and transported Na+, K+, Li+, and Rb+. Their activity in S. cerevisiae cells differed; CpCnh1p provided cells with a much higher salt tolerance than the CdCnh1 antiporter. The observed difference in activity was confirmed by direct measurements of sodium and potassium efflux mediated by these antiporters. Conclusion We have cloned two genes encoding putative Na+/H+ antiporters in C. parapsilosis and C. dubliniensis, and characterized the transport properties of encoded proteins. Our results show that the activity of plasma-membrane Na+/H+ antiporters is one of the factors determining the tolerance of pathogenic Candida species to high external concentrations of alkali metal cations. PMID:18492255

  5. Survival of pathogenic and lactobacilli species of fermented olives during simulated human digestion

    PubMed Central

    Arroyo-López, Francisco N.; Blanquet-Diot, Stéphanie; Denis, Sylvain; Thévenot, Jonathan; Chalancon, Sandrine; Alric, Monique; Rodríguez-Gómez, Francisco; Romero-Gil, Verónica; Jiménez-Díaz, Rufino; Garrido-Fernández, Antonio

    2014-01-01

    The present survey uses a dynamic gastric and small intestinal model to assess the survival of one pathogenic (Escherichia coli O157:H7 EDL 933) and three lactobacilli bacteria with probiotic potential (Lactobacillus rhamnosus GG, L. pentosus TOMC-LAB2, and L. pentosus TOMC-LAB4) during their passage through the human gastrointestinal tract using fermented olives as the food matrix. The data showed that the survival of the E. coli strain in the stomach and duodenum was very low, while its transit through the distal parts (jejunum and ileum) resulted in an increase in the pathogen population. The production of Shiga toxins by this enterohemorrhagic microorganism in the ileal effluents of the in vitro system was too low to be detected by ELISA assays. On the contrary, the three lactobacilli species assayed showed a considerable resistance to the gastric digestion, but not to the intestinal one, which affected their survival, and was especially evident in the case of both L. pentosus strains. In spite of this, high population levels for all assayed microorganisms were recovered at the end of the gastrointestinal passage. The results obtained in the present study show the potential use of table olives as a vehicle of beneficial microorganisms to the human body, as well as the need for good hygienic practices on the part of olive manufacturers in order to avoid the possibility of contamination by food-borne pathogens. PMID:25352842

  6. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

    PubMed Central

    Ruiu, Luca

    2013-01-01

    Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity. PMID:26462431

  7. The staphylococcal enterotoxin (SE) family

    PubMed Central

    Krakauer, Teresa; Stiles, Bradley G

    2013-01-01

    Staphylococcus aureus plays an important role in numerous human cases of food poisoning, soft tissue, and bone infections, as well as potentially lethal toxic shock. This common bacterium synthesizes various virulence factors that include staphylococcal enterotoxins (SEs). These protein toxins bind directly to major histocompatibility complex class II on antigen-presenting cells and specific Vβ regions of T-cell receptors, resulting in potentially life-threatening stimulation of the immune system. Picomolar concentrations of SEs ultimately elicit proinflammatory cytokines that can induce fever, hypotension, multi-organ failure, and lethal shock. Various in vitro and in vivo models have provided important tools for studying the biological effects of, as well as potential vaccines/therapeutics against, the SEs. This review succinctly presents known physical and biological properties of the SEs, including various intervention strategies. In particular, SEB will often be portrayed as per biodefense concerns dating back to the 1960s. PMID:23959032

  8. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species.

    PubMed

    Hasan, Nur A; Grim, Christopher J; Lipp, Erin K; Rivera, Irma N G; Chun, Jongsik; Haley, Bradd J; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A Christine; Brettin, Thomas S; Bruce, David; Challacombe, Jean F; Detter, J Chris; Han, Cliff S; Eisen, Jonathan A; Huq, Anwar; Colwell, Rita R

    2015-05-26

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea. PMID:25964331

  9. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species

    PubMed Central

    Hasan, Nur A.; Grim, Christopher J.; Lipp, Erin K.; Rivera, Irma N. G.; Chun, Jongsik; Haley, Bradd J.; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A. Christine; Brettin, Thomas S.; Bruce, David; Challacombe, Jean F.; Detter, J. Chris; Han, Cliff S.; Eisen, Jonathan A.; Huq, Anwar; Colwell, Rita R.

    2015-01-01

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea. PMID:25964331

  10. Three-Dimensional Structures of Pathogenic and Saprophytic Leptospira Species Revealed by Cryo-Electron Tomography

    PubMed Central

    Raddi, Gianmarco; Morado, Dustin R.; Yan, Jie; Haake, David A.

    2012-01-01

    Leptospira interrogans is the primary causative agent of the most widespread zoonotic disease, leptospirosis. An in-depth structural characterization of L. interrogans is needed to understand its biology and pathogenesis. In this study, cryo-electron tomography (cryo-ET) was used to compare pathogenic and saprophytic species and examine the unique morphological features of this group of bacteria. Specifically, our study revealed a structural difference between the cell envelopes of L. interrogans and Leptospira biflexa involving variations in the lipopolysaccharide (LPS) layer. Through cryo-ET and subvolume averaging, we determined the first three-dimensional (3-D) structure of the flagellar motor of leptospira, with novel features in the flagellar C ring, export apparatus, and stator. Together with direct visualization of chemoreceptor arrays, DNA packing, periplasmic filaments, spherical cytoplasmic bodies, and a unique “cap” at the cell end, this report provides structural insights into these fascinating Leptospira species. PMID:22228733

  11. Phylogenomics and Molecular Signatures for Species from the Plant Pathogen-Containing Order Xanthomonadales

    PubMed Central

    Naushad, Hafiz Sohail; Gupta, Radhey S.

    2013-01-01

    The species from the order Xanthomonadales, which harbors many important plant pathogens and some human pathogens, are currently distinguished primarily on the basis of their branching in the 16S rRNA tree. No molecular or biochemical characteristic is known that is specific for these bacteria. Phylogenetic and comparative analyses were conducted on 26 sequenced Xanthomonadales genomes to delineate their branching order and to identify molecular signatures consisting of conserved signature indels (CSIs) in protein sequences that are specific for these bacteria. In a phylogenetic tree based upon sequences for 28 proteins, Xanthomonadales species formed a strongly supported clade with Rhodanobacter sp. 2APBS1 as its deepest branch. Comparative analyses of protein sequences have identified 13 CSIs in widely distributed proteins such as GlnRS, TypA, MscL, LysRS, LipA, Tgt, LpxA, TolQ, ParE, PolA and TyrB that are unique to all species/strains from this order, but not found in any other bacteria. Fifteen additional CSIs in proteins (viz. CoxD, DnaE, PolA, SucA, AsnB, RecA, PyrG, LigA, MutS and TrmD) are uniquely shared by different Xanthomonadales except Rhodanobacter and in a few cases by Pseudoxanthomonas species, providing further support for the deep branching of these two genera. Five other CSIs are commonly shared by Xanthomonadales and 1–3 species from the orders Chromatiales, Methylococcales and Cardiobacteriales suggesting that these deep branching orders of Gammaproteobacteria might be specifically related. Lastly, 7 CSIs in ValRS, CarB, PyrE, GlyS, RnhB, MinD and X001065 are commonly shared by Xanthomonadales and a limited number of Beta- or Gamma-proteobacteria. Our analysis indicates that these CSIs have likely originated independently and they are not due to lateral gene transfers. The Xanthomonadales-specific CSIs reported here provide novel molecular markers for the identification of these important plant and human pathogens and also as potential

  12. Evolutionary Genetics of a New Pathogenic Escherichia Species: Escherichia albertii and Related Shigella boydii Strains

    PubMed Central

    Hyma, Katie E.; Lacher, David W.; Nelson, Adam M.; Bumbaugh, Alyssa C.; Janda, J. Michael; Strockbine, Nancy A.; Young, Vincent B.; Whittam, Thomas S.

    2005-01-01

    A bacterium originally described as Hafnia alvei induces diarrhea in rabbits and causes epithelial damage similar to the attachment and effacement associated with enteropathogenic Escherichia coli. Subsequent studies identified similar H. alvei-like strains that are positive for an intimin gene (eae) probe and, based on DNA relatedness, are classified as a distinct Escherichia species, Escherichia albertii. We determined sequences for multiple housekeeping genes in five E. albertii strains and compared these sequences to those of strains representing the major groups of pathogenic E. coli and Shigella. A comparison of 2,484 codon positions in 14 genes revealed that E. albertii strains differ, on average, at ∼7.4% of the nucleotide sites from pathogenic E. coli strains and at 15.7% from Salmonella enterica serotype Typhimurium. Interestingly, E. albertii strains were found to be closely related to strains of Shigella boydii serotype 13 (Shigella B13), a distant relative of E. coli representing a divergent lineage in the genus Escherichia. Analysis of homologues of intimin (eae) revealed that the central conserved domains are similar in E. albertii and Shigella B13 and distinct from those of eae variants found in pathogenic E. coli. Sequence analysis of the cytolethal distending toxin gene cluster (cdt) also disclosed three allelic groups corresponding to E. albertii, Shigella B13, and a nontypeable isolate serologically related to S. boydii serotype 7. Based on the synonymous substitution rate, the E. albertii-Shigella B13 lineage is estimated to have split from an E. coli-like ancestor ∼28 million years ago and formed a distinct evolutionary branch of enteric pathogens that has radiated into groups with distinct virulence properties. PMID:15629933

  13. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily.

    PubMed

    Matsunaga, James; Barocchi, Michele A; Croda, Julio; Young, Tracy A; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A; Reis, Mitermayer G; Riley, Lee W; Haake, David A; Ko, Albert I

    2003-08-01

    Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudogene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  14. Comparison of the pathogen species-specific immune response in udder derived cell types and their models.

    PubMed

    Günther, Juliane; Koy, Mirja; Berthold, Anne; Schuberth, Hans-Joachim; Seyfert, Hans-Martin

    2016-01-01

    The outcome of an udder infection (mastitis) largely depends on the species of the invading pathogen. Gram-negative pathogens, such as Escherichia coli often elicit acute clinical mastitis while Gram-positive pathogens, such as Staphylococcus aureus tend to cause milder subclinical inflammations. It is unclear which type of the immune competent cells residing in the udder governs the pathogen species-specific physiology of mastitis and which established cell lines might provide suitable models. We therefore profiled the pathogen species-specific immune response of different cell types derived from udder and blood. Primary cultures of bovine mammary epithelial cells (pbMEC), mammary derived fibroblasts (pbMFC), and bovine monocyte-derived macrophages (boMdM) were challenged with heat-killed E. coli, S. aureus and S. uberis mastitis pathogens and their immune response was scaled against the response of established models for MEC (bovine MAC-T) and macrophages (murine RAW 264.7). Only E. coli provoked a full scale immune reaction in pbMEC, fibroblasts and MAC-T cells, as indicated by induced cytokine and chemokine expression and NF-κB activation. Weak reactions were induced by S. aureus and none by S. uberis challenges. In contrast, both models for macrophages (boMdM and RAW 264.7) reacted strongly against all the three pathogens accompanied by strong activation of NF-κB factors. Hence, the established cell models MAC-T and RAW 264.7 properly reflected key aspects of the pathogen species-specific immune response of the respective parental cell type. Our data imply that the pathogen species-specific physiology of mastitis likely relates to the respective response of MEC rather to that of professional immune cells. PMID:26830914

  15. Identification, Purification, and Characterization of Staphylococcal Superantigens.

    PubMed

    Merriman, Joseph A; Schlievert, Patrick M

    2016-01-01

    Purifying natively produced staphylococcal superantigens is an important process in the study of these proteins, as many common methods of protein purification are affected by staphylococcal protein A contamination. Here, we describe a proven approach for identifying superantigens in vitro as well as for purifying novel superantigens both in His-tagged and native forms using modern genetic tools coupled with thin-layer isoelectric focusing. PMID:26676034

  16. Pathogenic Bacterial Species Associated with Endodontic Infection Evade Innate Immune Control by Disabling Neutrophils

    PubMed Central

    Matsui, Aritsune; Jin, Jun-O; Johnston, Christopher D.; Yamazaki, Hajime; Houri-Haddad, Yael

    2014-01-01

    Endodontic infections, in which oral bacteria access the tooth pulp chamber, are common and do not resolve once established. To investigate the effects of these infections on the innate immune response, we established a mouse subcutaneous chamber model, where a mixture of four oral pathogens commonly associated with these infections (endodontic pathogens [EP]), i.e., Fusobacterium nucleatum, Streptococcus intermedius, Parvimonas micra, and Prevotella intermedia, was inoculated into subcutaneously implanted titanium chambers. Cells that infiltrated the chamber after these infections were primarily neutrophils; however, these neutrophils were unable to control the infection. Infection with a nonpathogenic oral bacterial species, Streptococcus mitis, resulted in well-controlled infection, with bacterial numbers reduced by 4 to 5 log units after 7 days. Propidium iodide (PI) staining of the chamber neutrophils identified three distinct populations: neutrophils from EP-infected chambers were intermediate in PI staining, while cells in chambers from mice infected with S. mitis were PI positive (apoptotic) or negative (live). Strikingly, neutrophils from EP-infected chambers were severely impaired in their ability to phagocytose and to generate reactive oxygen species in vitro after removal from the chamber compared to cells from S. mitis-infected chambers. The mechanism of neutrophil impairment was necrotic cell death as determined by morphological analyses. P. intermedia alone could induce a similar neutrophil phenotype. We conclude that the endodontic pathogens, particularly P. intermedia, can efficiently disable and kill infiltrating neutrophils, allowing these infections to become established. These results can help explain the persistence of endodontic infections and demonstrate a new virulence mechanism associated with P. intermedia. PMID:25024367

  17. Sensitive and rapid RT-qPCR quantification of pathogenic Candida species in human blood.

    PubMed

    Ogata, Kiyohito; Matsuda, Kazunori; Tsuji, Hirokazu; Nomoto, Koji

    2015-10-01

    For accurate diagnosis and appropriate treatment of candidiasis, we developed a highly sensitive quantitative RT-PCR (RT-qPCR) system for five Candida species that have been reported to be the major causes of bloodstream fungal infection (Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei), together with a system for all pathogenic Candida species. Cells of each fungal species spiked into human peripheral blood (PB) were specifically detected at a lower detection limit of 10(0) cell/1 mL PB by this system using the newly developed specific primer sets targeting 18S or 26S rRNA of the five Candida species, together with the existing group primer set. The total count of the five Candida spp. as the sum of those obtained by using the five species primer sets was equivalent to the count obtained by using the group primer set, indicating that the group set covered the major five Candida spp. in human blood with the same degree of accuracy as the species primer sets. The RT-qPCR counts of the Candida species were in good agreement with CFU counts obtained by their culture on CHROMagar™, with a lower detection limit of 10(0)cell/mL of PB. Candida rRNA molecules were stably stored for at least 7 days at 4°C by keeping the blood specimens in an RNA stabilizing reagent. These results strongly suggest that this sensitive system is useful for accurate and rapid diagnosis of Candida bloodstream infections. PMID:26232708

  18. The impact of Staphylococcus aureus-associated molecular patterns on staphylococcal superantigen-induced toxic shock syndrome and pneumonia.

    PubMed

    Tilahun, Ashenafi Y; Karau, Melissa; Ballard, Alessandro; Gunaratna, Miluka P; Thapa, Anusa; David, Chella S; Patel, Robin; Rajagopalan, Govindarajan

    2014-01-01

    Staphylococcus aureus is capable of causing a spectrum of human illnesses. During serious S. aureus infections, the staphylococcal pathogen-associated molecular patterns (PAMPs) such as peptidoglycan, lipoteichoic acid, and lipoproteins and even intact S. aureus, are believed to act in conjunction with the staphylococcal superantigens (SSAg) to activate the innate and adaptive immune system, respectively, and cause immunopathology. However, recent studies have shown that staphylococcal PAMPs could suppress inflammation by several mechanisms and protect from staphylococcal toxic shock syndrome, a life-threatening systemic disease caused by toxigenic S. aureus. Given the contradictory pro- and anti-inflammatory roles of staphylococcal PAMPs, we examined the effects of S. aureus-derived molecular patterns on immune responses driven by SSAg in vivo using HLA-DR3 and HLA-DQ8 transgenic mice. Our study showed that neither S. aureus-derived peptidoglycans (PGN), lipoteichoic acid (LTA), nor heat-killed Staphylococcus aureus (HKSA) inhibited SSAg-induced T cell proliferation in vitro. They failed to antagonize the immunostimulatory effects of SSAg in vivo as determined by their inability to attenuate systemic cytokine/chemokine response and reduce SSAg-induced T cell expansion. These staphylococcal PAMPs also failed to protect HLA-DR3 as well as HLA-DQ8 transgenic mice from either SSAg-induced toxic shock or pneumonia induced by a SSAg-producing strain of S. aureus. PMID:25024509

  19. Thermal Augmentation of Vancomycin Against Staphylococcal Biofilms.

    PubMed

    Sturtevant, Rachael A; Sharma, Prannda; Pavlovsky, Leonid; Stewart, Elizabeth J; Solomon, Michael J; Younger, John G

    2015-08-01

    Given the increasing evidence of safe application of elevated temperature in other clinical contexts, we consider the potential for supplemental hyperthermia to augment the effects of vancomycin against staphylococci, a major source of postoperative and posttraumatic sepsis. Laboratory reference strains and libraries of clinical blood isolates of Staphylococcus epidermidis and methicillin-resistant Staphylococcus aureus, both as planktonic cells and as established biofilms, were assessed for thermosensitivity and increased susceptibility to vancomycin in the setting of thermal treatment. In addition to viability measures, patterns of stress gene expression were assessed with quantitative polymerase chain reaction, and structural changes were measured using quantitative transmission electron microscopy. Laboratory strains of both species had reduced growth and biofilm viability at 45°C, a temperature commonly used in other domains such as adjuvant treatments of malignancy. Blood isolates of S. epidermidis were consistent in this regard as well, but significant between-isolate variability in thermosensitivity was seen in blood isolates of S. aureus. Expression profiling and ultrastructural measurements confirmed that elevated temperature was a substantial stressor with or without vancomycin treatment. Our findings suggest that temperature elevations shown to be tolerated in humans in other settings hold the potential to be used as an adjuvant to antibiotic therapy against staphylococcal biofilms. PMID:25784524

  20. Susceptibility of selected wild avian species to experimental infection with H5N1 high pathogenicity avian influenza virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since 2002, H5N1 highly pathogenic avian influenza (HPAI) viruses have caused mortality in wide diversity of wild avian species but, to date, the role that different species play in the transmission and maintenance of H5N1 HPAI viruses is poorly understood. To begin to address these uncertainties a...

  1. Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-phiIPLA7 as an Anti-biofilm Agent in Staphylococcal Species.

    PubMed

    Gutiérrez, Diana; Briers, Yves; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; Lavigne, Rob; García, Pilar

    2015-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are important causative agents of hospital-acquired infections and bacteremia, likely due to their ability to form biofilms. The production of a dense exopolysaccharide (EPS) matrix enclosing the cells slows the penetration of antibiotic down, resulting in therapy failure. The EPS depolymerase (Dpo7) derived from bacteriophage vB_SepiS-phiIPLA7, was overexpressed in Escherichia coli and characterized. A dose dependent but time independent response was observed after treatment of staphylococcal 24 h-biofilms with Dpo7. Maximum removal (>90%) of biofilm-attached cells was obtained with 0.15 μM of Dpo7 in all polysaccharide producer strains but Dpo7 failed to eliminate polysaccharide-independent biofilm formed by S. aureus V329. Moreover, the pre-treatment of polystyrene surfaces with Dpo7 reduced the biofilm biomass by 53-85% in the 67% of the tested strains. This study supports the use of phage-encoded EPS depolymerases to prevent and disperse staphylococcal biofilms, thereby making bacteria more susceptible to the action of antimicrobials. PMID:26635776

  2. Role of the Pre-neck Appendage Protein (Dpo7) from Phage vB_SepiS-phiIPLA7 as an Anti-biofilm Agent in Staphylococcal Species

    PubMed Central

    Gutiérrez, Diana; Briers, Yves; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; Lavigne, Rob; García, Pilar

    2015-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are important causative agents of hospital-acquired infections and bacteremia, likely due to their ability to form biofilms. The production of a dense exopolysaccharide (EPS) matrix enclosing the cells slows the penetration of antibiotic down, resulting in therapy failure. The EPS depolymerase (Dpo7) derived from bacteriophage vB_SepiS-phiIPLA7, was overexpressed in Escherichia coli and characterized. A dose dependent but time independent response was observed after treatment of staphylococcal 24 h-biofilms with Dpo7. Maximum removal (>90%) of biofilm-attached cells was obtained with 0.15 μM of Dpo7 in all polysaccharide producer strains but Dpo7 failed to eliminate polysaccharide-independent biofilm formed by S. aureus V329. Moreover, the pre-treatment of polystyrene surfaces with Dpo7 reduced the biofilm biomass by 53–85% in the 67% of the tested strains. This study supports the use of phage-encoded EPS depolymerases to prevent and disperse staphylococcal biofilms, thereby making bacteria more susceptible to the action of antimicrobials. PMID:26635776

  3. Investigating Differences across Host Species and Scales to Explain the Distribution of the Amphibian Pathogen Batrachochytrium dendrobatidis

    PubMed Central

    Peterson, Anna C.; McKenzie, Valerie J.

    2014-01-01

    Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape. PMID

  4. Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species

    PubMed Central

    Inderbitzin, Patrik; Bostock, Richard M.; Davis, R. Michael; Usami, Toshiyuki; Platt, Harold W.; Subbarao, Krishna V.

    2011-01-01

    Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen

  5. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands.

    PubMed

    Laliberté, Etienne; Lambers, Hans; Burgess, Treena I; Wright, S Joseph

    2015-04-01

    Hyperdiverse forests occur in the lowland tropics, whereas the most species-rich shrublands are found in regions such as south-western Australia (kwongan) and South Africa (fynbos). Despite large differences, these ecosystems share an important characteristic: their soils are strongly weathered and phosphorus (P) is a key growth-limiting nutrient. Soil-borne pathogens are increasingly being recognized as drivers of plant diversity in lowland tropical rainforests, but have received little attention in species-rich shrublands. We suggest a trade-off in which the species most proficient at acquiring P have ephemeral roots that are particularly susceptible to soil-borne pathogens. This could equalize out the differences in competitive ability among co-occurring species in these ecosystems, thus contributing to coexistence. Moreover, effective protection against soil-borne pathogens by ectomycorrhizal (ECM) fungi might explain the occurrence of monodominant stands of ECM trees and shrubs amongst otherwise species-rich communities. We identify gaps in our knowledge which need to be filled in order to evaluate a possible link between P limitation, fine root traits, soil-borne pathogens and local plant species diversity. Such a link may help to explain how numerous plant species can coexist in hyperdiverse rainforests and shrublands, and, conversely, how monodominant stands can develop in these ecosystems. PMID:25494682

  6. Pathogenic and saprophytic Leptospira species in water and soils from selected urban sites in peninsular Malaysia.

    PubMed

    Benacer, Douadi; Woh, Pei Yee; Mohd Zain, Siti Nursheena; Amran, Fairuz; Thong, Kwai Lin

    2013-01-01

    Leptospira species were studied in water and soils from selected urban sites in Malaysia. A total of 151 water (n=121) and soil (n=30) samples were collected from 12 recreational lakes and wet markets. All samples were filtered and inoculated into semi-solid Ellinghausen and McCullough modified by Johnson and Harris (EMJH) media supplemented with additional 5-fluorouracil. The cultures were then incubated at 30°C and observed under a dark field microscope with intervals of 10 days. A PCR assay targeting the rrs gene was used to confirm the genus Leptospira among the isolates. Subsequently, the pathogenic status of the isolates was determined using primer sets G1/G2 and Sapro1/Sapro2, which target the secY and rrs genes, respectively. The isolates were identified at serogroup level using the microscopic agglutination test (MAT) while their genetic diversity was assessed by pulsed field gel electrophoresis (PFGE). Based on dark field microscopy, 23.1% (28/121) water and 23.3% (7/30) soil cultures were positive for Leptospira spp. Of the 35 positive cultures, only 8 were pure and confirmed as Leptospira genus by PCR assay. Two out of 8 isolates were confirmed as pathogenic, 5 were saprophytic and one was intermediate. These 8 isolates were negative for the 25 reference hyperimmune rabbit sera tested in the MAT. PFGE showed that all 8 of these environmental Leptospira spp. were genetically diverse. In conclusion, the presence of pathogenic Leptospira spp. in the urban Malaysian environment may indicate and highlight the importance of water screening, especially in recreational lakes, in order to minimize any chance of Leptospira infection. PMID:23363618

  7. Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus

    PubMed Central

    Tristão, Gabriel B.; Assunção, Leandro do Prado; dos Santos, Luiz Paulo A.; Borges, Clayton L.; Silva-Bailão, Mirelle Garcia; Soares, Célia M. de Almeida; Cavallaro, Gabriele; Bailão, Alexandre M.

    2015-01-01

    Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens. PMID:25620964

  8. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia

    PubMed Central

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C.; Raaijmakers, Jos M.; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture. PMID:26317985

  9. Screening of different Trichoderma species against agriculturally important foliar plant pathogens.

    PubMed

    Prabhakaran, Narayanasamy; Prameeladevi, Thokala; Sathiyabama, Muthukrishnan; Kamil, Deeba

    2015-01-01

    Different isolates of Trichoderma were isolated from soil samples which were collected from different part of India. These isolates were grouped into four Trichoderma species viz., Trichoderma asperellum (Ta), T. harzianum (Th), T. pseudokoningii (Tp) and T. longibrachiatum (Tl) based on their morphological characters. Identification of the above isolates was also confirmed through ITS region analysis. These Trichoderma isolates were tested for in vitro biological control of Alternaria solani, Bipolaris oryzae, Pyricularia oryzae and Sclerotinia scierotiorum which cause serious diseases like early blight (target spot) of tomato and potato, brown leaf spot disease in rice, rice blast disease, and white mold disease in different plants. Under in vitro conditions, all the four species of Trichoderma (10 isolates) proved 100% potential inhibition against rice blast pathogen Pyracularia oryzae. T. harzianum (Th-01) and T. asperellum (Ta-10) were effective with 86.6% and 97.7%, growth inhibition of B. oryzae, respectively. Among others, T. pseudokoningii (Tp-08) and T. Iongibrachiatum (Tl-09) species were particularly efficient in inhibiting growth of S. sclerotiorum by 97.8% and 93.3%. T. Iongibrachiatum (TI-06 and TI-07) inhibited maximum mycelial growth of A. solani by 87.6% and 84.75. However, all the T. harzianum isolates showed significantly higher inhibition against S. sclerotiorum (CD value 9.430), causing white mold disease. This study led to the selection of potential Trichoderma isolates against rice blast, early blight, brown leaf spot in rice and white mold disease in different crops. PMID:26536792

  10. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California.

    PubMed

    Straub, Mary H; Kelly, Terra R; Rideout, Bruce A; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  11. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    PubMed

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C; Raaijmakers, Jos M; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture. PMID:26317985

  12. Comparison of pathogenicity of Alternaria pellucida and Curvularia lunata on weed Echinochloa species.

    PubMed

    Reza, Mohammad; Motlagh, Safari

    2015-07-01

    Echinochloa spp. are the most important weeds in rice fields. In this research Curvularia lunata and Alternaria pellucida were isolated from these weeds and their pathogenicity effects were compared on these weeds and five rice cultivars in a completely random design with three replications in greenhouse conditions. Fungi were inoculated on weeds and rice cultivars, using spore suspension consisting of 10' spore ml(-1) of distilled water. Results indicated significant effect of Curvularia lunata and Alternaria pellucida on Echinochloa oryzicola and E. crus-galli. In the present study, effect of C. lunata on fresh weight, dry weight and height of Echinochloa species based on variance analysis table, a significant reaction was observed for height and fresh weight, but for dry weight reaction was not significant. The effect of A. pellucida on fresh weight, dry weight and height of Echinochloa species based on variance analysis table, a significant reaction was observed for all the three traits. Also, rice cultivars did not show any significant reaction to C. lunata and A. pellucida. The results showed that in comparison between effect of Curvularia lunata and Alternaria pellucida on Echinochloa spp., disease rating caused by A. pellucida on E. oryzicola and E. crusalli was more than disease rating caused by C. lunata and these species of weed were more susceptible to A. pellucida. However, A. alternata can be considered as a better promising bioherbicide to control Echinochloa spp. PMID:26364476

  13. Seroepidemiologic Survey of Potential Pathogens in Obligate and Facultative Scavenging Avian Species in California

    PubMed Central

    Straub, Mary H.; Kelly, Terra R.; Rideout, Bruce A.; Eng, Curtis; Wynne, Janna; Braun, Josephine; Johnson, Christine K.

    2015-01-01

    Throughout the world, populations of scavenger birds are declining rapidly with some populations already on the brink of extinction. Much of the current research into the factors contributing to these declines has focused on exposure to drug residues, lead, and other toxins. Despite increased monitoring of these declining populations, little is known about infectious diseases affecting scavenger bird species. To assess potential infectious disease risks to both obligate and facultative scavenger bird species, we performed a serosurvey for eleven potential pathogens in three species of scavenging birds in California: the California condor (Gymnogyps californianus), turkey vulture (Cathartes aura) and golden eagle (Aquila chrysaetos). California condors were seropositive for avian adenovirus, infectious bronchitis virus, Mycoplasma gallisepticum, avian paramyxovirus-2, West Nile virus (WNV) and Toxoplasma gondii. Golden eagles were seropositive for avian adenovirus, Chlamydophila psittaci and Toxoplasma gondii, and turkey vultures were seropositive for avian adenovirus, Chlamydophila psittaci, avian paramyxovirus-1, Toxoplasma gondii and WNV. Risk factor analyses indicated that rearing site and original release location were significantly associated with a positive serologic titer to WNV among free-flying condors. This study provides preliminary baseline data on infectious disease exposure in these populations for aiding in early disease detection and provides potentially critical information for conservation of the endangered California condor as it continues to expand its range and encounter new infectious disease threats. PMID:26606755

  14. Gluconobacter as well as Asaia species, newly emerging opportunistic human pathogens among acetic acid bacteria.

    PubMed

    Alauzet, Corentine; Teyssier, Corinne; Jumas-Bilak, Estelle; Gouby, Anne; Chiron, Raphael; Rabaud, Christian; Counil, François; Lozniewski, Alain; Marchandin, Hélène

    2010-11-01

    Acetic acid bacteria (AAB) are broadly used in industrial food processing. Among them, members of the genera Asaia, Acetobacter, and Granulibacter were recently reported to be human opportunistic pathogens. We isolated AAB from clinical samples from three patients and describe here the clinical and bacteriological features of these cases. We report for the first time (i) the isolation of a Gluconobacter sp. from human clinical samples; (ii) the successive isolation of different AAB, i.e., an Asaia sp. and two unrelated Gluconobacter spp., from a cystic fibrosis patient; and (iii) persistent colonization of the respiratory tract by a Gluconobacter sp. in this patient. We reviewed the main clinical features associated with AAB isolation identified in the 10 documented reports currently available in the literature. Albeit rare, infections as well as colonization with AAB are increasingly reported in patients with underlying chronic diseases and/or indwelling devices. Clinicians as well as medical microbiologists should be aware of these unusual opportunistic pathogens, which are difficult to detect during standard medical microbiological investigations and which are multiresistant to antimicrobial agents. Molecular methods are required for identification of genera of AAB, but the results may remain inconclusive for identification to the species level. PMID:20826638

  15. Multi-locus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, Oomycota), including pathogens of beet and spinach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate species determination of plant pathogens is a prerequisite for their control and quarantine, and further for assessing their potential threat to crops. The family Peronosporaceae (Straminipila; Oomycota) consists of obligate biotrophic pathogens that cause downy mildew disease on angiosperm...

  16. Pathogenic tau species drive a psychosis-like phenotype in a mouse model of Alzheimer's disease.

    PubMed

    Koppel, J; Jimenez, H; Azose, M; D'Abramo, C; Acker, C; Buthorn, J; Greenwald, B S; Lewis, J; Lesser, M; Liu, Z; Davies, P

    2014-12-15

    Psychotic Alzheimer's disease (AD+P) is a rapidly progressive variant of AD associated with an increased burden of frontal tau pathology that affects up to 50% of those with AD, and is observed more commonly in females. To date, there are no safe and effective medication interventions with an indication for treatment in this condition, and there has been only very limited exploration of potential animal models for pre-clinical drug development. Pathogenic tau is over represented in the frontal cortex in AD+P, especially in females. In order to develop a candidate animal model of AD+P, we employed a tau mouse model with a heavy burden of frontal tau pathology, the rTg(tauP301L)4510 mouse, hereafter termed rTg4510. We explored deficits of prepulse inhibition of acoustic startle (PPI), a model of psychosis in rodents, and the correlation between pathogenic phospho-tau species associated with AD+P and PPI deficits in female mice. We found that female rTg4510 mice exhibit increasing PPI deficits relative to littermate controls from 4.5 to 5.5 months of age, and that these deficits are driven by insoluble fractions of the phospho-tau species pSer396/404, pSer202, and pThr231 found to be associated with human AD+P. This preliminary data suggests the utility of the rTg4510 mouse as a candidate disease model of human female AD+P. Further work expanded to include both genders and other behavioral outcome measures relevant to AD+P is necessary. PMID:25151619

  17. Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species.

    PubMed Central

    Shang, E S; Summers, T A; Haake, D A

    1996-01-01

    We report the cloning of the gene encoding a surface-exposed leptospiral lipoprotein, designated LipL41. In a previous study, a 41-kDa protein antigen was identified on the surface of Leptospira kirschneri (D. A. Haake, E. M. Walker, D. R. Blanco, C. A. Bolin, J. N. Miller, and M. A. Lovett, Infect. Immun. 59:1131-1140, 1991). We obtained the N-terminal amino acid sequence of a staphylococcal V8 proteolytic-digest fragment in order to design an oligonucleotide probe.A Lambda ZAP II library containing EcoRI fragments of L. kirschneri DNA was screened, and a 2.3-kb DNA fragment which contained the entire structural lipL41 gene was identified. The deduced amino acid sequence of LipL41 would encode a 355-amino-acid polypeptide with a 19-amino-acid signal peptide, followed by an L-X-Y-C lipoprotein signal peptidase cleavage site. A recombinant His6-LipL41 fusion protein was expressed in Escherichia coli in order to generate specific rabbit antiserum. LipL41 is solubilized by Triton X-114 extraction of L. kirschneri; phase separation results in partitioning of LipL41 exclusively into the detergent phase. At least eight proteins, including LipL41 and the other major Triton X-114 detergent phase proteins, are intrinsically labeled during incubation of L. kirschneri in media containing [3H] palmitate. Processing of LipL41 is inhibited by globomycin, a selective inhibitor of lipoprotein signal peptidase. Triton X-100 extracts of L. kirschneri contain immunoprecipitable OmpL1 (porin), LipL41, and another lipoprotein, LipL36. However, in contrast to LipL36, only LipL41 and OmpL1 were exposed on the surface of intact organisms. Immunoblot analysis of a panel of Leptospira species reveals that LipL41 expression is highly conserved among leptospiral pathogens. PMID:8675344

  18. Role of Ionic Strength in Staphylococcal Cell Aggregation.

    PubMed

    Vanzieleghem, Thomas; Couniot, Numa; Herman-Bausier, Philippe; Flandre, Denis; Dufrêne, Yves F; Mahillon, Jacques

    2016-07-26

    Cell aggregation plays a key role in biofilm formation and pathogenesis of Staphylococcus species. Although the molecular basis of aggregation in Staphylococci has already been extensively investigated, the influence of environmental factors, such as ionic strength, remains poorly understood. In this paper, we report a new type of cellular aggregation of Staphylococci that depends solely on ionic strength. Seven strains out of 14, all belonging to staphylococcal species, formed large cell clusters within minutes in buffers of ionic strength ranging from 1.5 to 50 mM, whereas isolates belonging to other Gram-positive species did not display this phenotype. Atomic force microscopy (AFM) with chemically functionalized tips provided direct evidence that ionic strength modulates cell surface adhesive properties through changes in cell surface charge. The optimal ionic strength for aggregation was found to be strain dependent, but in all cases, bacterial aggregates formed at an ionic strength of 1.5-50 mM were rapidly dispersed in a solution of higher ionic strength, indicating a reversibility of the cell aggregation process. These findings suggest that some staphylococcal isolates can respond to ionic strength as an external stimulus to trigger rapid cell aggregation in a way that has not yet been reported. PMID:27364477

  19. [Staphylococcal epidermal exfoliation (Ritter's disease)].

    PubMed

    Ruiz Maldonado, R; Tamayo, L; Vazquez, V; Dominguez, J

    1976-01-01

    According to the authors the best designation of Ritter's disease would be "staphilococcic epidermal exfoliation" SEE. The physiopathological and agnoslogical basis for this denomination could be the following: 1st The "S. aureus" is the ehtiological agent of the SSE in man. The Koch postulates necessary to confirm this hypothesis have been accomplished. 2nd "Staphylococcus aureus" produces a thermostable toxin that is active indepently of the staphilococcus and gives rise to the separation of the cells of the stratum granulosus of the epidermis and eventually exfoliation in suckling babies and in the newborn mouse. 3rd The "Staphylococcus aureus" may be present on the skin or in other localisations such as the bowel or pharinx. 4th The viable "S. aureus" when administered subcutaneously to the adult mice gives rise to lesions clinically and histologically similar to the impetigo observed in children. 5th The "S. aureus" killed by means of autoclave (that is, the staphylococcic toxine by itself does not give rise to any lesion when administered to the healthy adult mouse). Neijther has the SEE been observed in healthy adult man. The authors reach the conclusion that the SSE and the toxic epidermal necrolysis are basically different according to the histopathology therapeutic response and prognosis and they must be considered as independant entities. PMID:138775

  20. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms

    PubMed Central

    2011-01-01

    Background The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. Results A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. Conclusions This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of

  1. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen

    PubMed Central

    2014-01-01

    Background Traditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common. Results Coalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia. Conclusions The number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to

  2. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification

    PubMed Central

    Rodrigues, Anderson M.; Najafzadeh, Mohammad J.; de Hoog, G. Sybren; de Camargo, Zoilo P.

    2015-01-01

    Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA) as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 × 106 copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0), supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies. PMID:26696992

  3. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification.

    PubMed

    Rodrigues, Anderson M; Najafzadeh, Mohammad J; de Hoog, G Sybren; de Camargo, Zoilo P

    2015-01-01

    Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA) as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 × 10(6) copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0), supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies. PMID:26696992

  4. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review.

    PubMed

    Mishra, Nagendra Nath; Prasad, Tulika; Sharma, Neeraj; Payasi, Anurag; Prasad, Rajendra; Gupta, Dwijendra K; Singh, Randhir

    2007-09-01

    Pathogenic yeasts from the genus Candida can cause serious infection in humans particularly, in immunocompromised patients and are now recognized as major agents of hospital acquired (nosocomial) infections. In the recent years, there has been a marked increase in the incidence of treatment failures in candidiasis patients receiving long-term antifungal therapy, which has posed a serious problem in its successful use in chemotherapy. Candida cells acquire drug resistance (MDR) during the course of the treatment. The mechanisms of resistance to azole antifungal agents have been elucidated in Candida species and can be mainly categorized as (i) changes in the cell wall or plasma membrane, which lead to impaired drug (azole) uptake; (ii) alterations in the affinity of the drug target Erg11p (lanosterol 14alpha-demethylase) especially to azoles or in the cellular content of Erg11p due to target site mutation or overexpression of the ERG11 gene; and (iii) the efflux of drugs mediated by membrane transport proteins belonging to the ATP-binding cassette (ABC) transporters, namely CDR1 and CDR2 or to the major facilitator superfamily (MFS) transporter, CaMDR1. Many such manifestations are associated with the formation of Candida biofilms including those occurring on devices like indwelling intravascular catheters. Biofilm-associated Candida show uniform resistance to a wide spectrum of antifungal drugs. A combination of different resistance mechanisms is responsible for drug resistance in clinical isolates of Candida species. PMID:17896473

  5. Laboratory evaluation of pathogenicity of entomogenous nematodes to African tick species.

    PubMed

    Kaaya, G P; Samish, M; Glazer, I

    2000-01-01

    Five strains of entomogenous nematodes, Steinernema carpocapsae strains DD, Mexican, SR, and Heterorhabditis bacteriophora strains 1S5 and HP88, were tested for their pathogenicity to various developmental stages of five African tick species namely; Rhipicephalus appendiculatus, R. evertsi, Amblyomma variegatum, A. gemma, and Boophilus decoloratus. In engorged female R. appendiculatus, all nematodes at a concentration of 1,000 infective juveniles (IJ)/dish, except S. carpocapsae Mexican strain, induced high mortalities (56-100%), whereas in engorged female R. evertsi, only S. carpocapsae DD and H. bacteriophora HP88 induced high mortalities (78% and 56%, respectively). In engorged B. decoloratus, S. carpocapsae DD, Mexican, SR and H. bacteriophora HP88 (100 IJ/dish) induced mortalities of 85%, 65%, 80%, and 100%, respectively. In all cases, except for S. carpocapsae Mexican strain, a higher concentration (5,000 IJ/dish) did not result in higher mortality than occurred with 1,000 IJ/dish. Unfed females and immature stages of ticks were found to be generally resistant to the nematodes. The feasibility of using entomogenous nematodes for biological control of African tick species are briefly discussed. PMID:11193637

  6. Rhodomyrtus tomentosa (Aiton) Hassk. leaf extract: An alternative approach for the treatment of staphylococcal bovine mastitis.

    PubMed

    Mordmuang, Auemphon; Voravuthikunchai, Supayang Piyawan

    2015-10-01

    Antibiotic residues in dairy products as well as emergence of antimicrobial resistance in foodborne pathogens have been recognized as global public health concerns. The present work was aimed to study a potent antibacterial extract from natural product as an alternative treatment for staphylococcal bovine mastitis. Staphylococcal isolates (n=44) were isolated from milk samples freshly squeezed from individual cows. All staphylococcal isolates were resistant to ampicillin, ciprofloxacin, erythromycin, gentamicin, penicillin, except vancomycin. Rhodomyrtus tomentosa leaf ethanolic extract was accessed for its antibacterial activity and anti-inflammatory potential. The extract exhibited profound antibacterial activity against all of staphylococcal isolates with MIC and MBC values ranged from 16-64 μg/ml and 64->128 μg/ml, respectively. Moreover, the extract also exerted anti-protein denaturation and human red blood cell membrane stabilizing activity. The results support the use of R. tomentosa extract that could be applied to cure bovine mastitis and to reduce inflammatory injury caused by the bacterial infections. PMID:26412553

  7. Replication of Staphylococcal Multiresistance Plasmids

    PubMed Central

    Firth, Neville; Apisiridej, Sumalee; Berg, Tracey; O'Rourke, Brendon A.; Curnock, Steve; Dyke, Keith G. H.; Skurray, Ronald A.

    2000-01-01

    Based on structural and functional properties, three groups of large staphylococcal multiresistance plasmids have been recognized, viz., the pSK1 family, pSK41-like conjugative plasmids, and β-lactamase–heavy-metal resistance plasmids. Here we describe an analysis of the replication functions of a representative of each of these plasmid groups. The replication initiation genes from the Staphylococcus aureus plasmids pSK1, pSK41, and pI9789::Tn552 were found to be related to each other and to the Staphylococcus xylosus plasmid pSX267 and are also related to rep genes of several plasmids from other gram-positive genera. Nucleotide sequence similarity between pSK1 and pI9789::Tn552 extended beyond their rep genes, encompassing upstream divergently transcribed genes, orf245 and orf256, respectively. Our analyses revealed that genes encoding proteins related to the deduced orf245 product are variously represented, in several types of organization, on plasmids possessing six seemingly evolutionarily distinct types of replication initiation genes and including both theta-mode and rolling-circle replicons. Construction of minireplicons and subsequent functional analysis demonstrated that orf245 is required for the segregational stability of the pSK1 replicon. In contrast, no gene equivalent to orf245 is evident on the conjugative plasmid pSK41, and a minireplicon encoding only the pSK41 rep gene was found to exhibit a segregational stability approaching that of the parent plasmid. Significantly, the results described establish that many of the large multiresistance plasmids that have been identified in clinical staphylococci, which were formerly presumed to be unrelated, actually utilize an evolutionarily related theta-mode replication system. PMID:10735859

  8. A cohort study of coagulase negative staphylococcal mastitis in selected dairy herds in Prince Edward Island.

    PubMed

    Davidson, T J; Dohoo, I R; Donald, A W; Hariharan, H; Collins, K

    1992-10-01

    The epidemiology and importance of coagulase negative staphylococcal (CNS) mastitis in Prince Edward Island had not been documented. To investigate this, a cohort of 84 cows at seven farms were quarter sampled eight times over a lactation, commencing with samples taken prior to drying off in the previous lactation. Thirteen species of CNS were isolated. The quarter prevalence of CNS mastitis varied from 4.8% to 6.4% in the first five months of lactation and increased to 14.2 to 16.6% in the last four months of lactation. The geometric mean somatic cell counts (SCC) for quarters infected with CNS and uninfected quarters were 90 x 10(3) and 64 x 10(3) respectively (difference significant at p > 0.005). The two month new infection risk of CNS was 9.0% while the two month elimination risk was 74.4%. Infection with CNS did not alter the risk of subsequent infection with Staphylococcus aureus. The results from this project support the classification of CNS as a minor pathogen in mastitis control programs. PMID:1477796

  9. Pathogenicity in six Australian reptile species following experimental inoculation with Bohle iridovirus.

    PubMed

    Ariel, E; Wirth, W; Burgess, G; Scott, J; Owens, L

    2015-08-20

    Ranaviruses are able to infect multiple species of fish, amphibian and reptile, and some strains are capable of interclass transmission. These numerous potential carriers and reservoir species compound efforts to control and contain infections in cultured and wild populations, and a comprehensive knowledge of susceptible species and life stage is necessary to inform such processes. Here we report on the challenge of 6 water-associated reptiles with Bohle iridovirus (BIV) to investigate its potential pathogenicity in common native reptiles of the aquatic and riparian fauna of northern Queensland, Australia. Adult tortoises Elseya latisternum and Emydura krefftii, snakes Boiga irregularis, Dendrelaphis punctulatus and Amphiesma mairii, and yearling crocodiles Crocodylus johnstoni were exposed via intracoelomic inoculation or co-habitation with infected con-specifics, but none were adversely affected by the challenge conditions applied here. Bohle iridovirus was found to be extremely virulent in hatchling tortoises E. latisternum and E. krefftii via intracoelomic challenge, as demonstrated by distinct lesions in multiple organs associated with specific immunohistochemistry staining and a lethal outcome (10/17) of the challenge. Virus was re-isolated from 2/5 E. latisternum, 4/12 E. krefftii and 1/3 brown tree snakes B. irregularis. Focal necrosis, haemorrhage and infiltration of granulocytes were frequently observed histologically in the pancreas, liver and sub-mucosa of the intestine of challenged tortoise hatchlings. Immunohistochemistry demonstrated the presence of ranavirus antigens in the necrotic lesions and in individual cells of the vascular endothelium, the connective tissue and in granulocytes associated with necrosis or present along serosal surfaces. The outcome of this study confirms hatchling tortoises are susceptible to BIV, thereby adding Australian reptiles to the host range of ranaviruses. Additionally, given that BIV was originally isolated from an

  10. Genome-wide identification and comprehensive analyses of the kinomes in four pathogenic microsporidia species.

    PubMed

    Li, Zhi; Hao, Youjin; Wang, Linling; Xiang, Heng; Zhou, Zeyang

    2014-01-01

    Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia—Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae—was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and

  11. Genome-Wide Identification and Comprehensive Analyses of the Kinomes in Four Pathogenic Microsporidia Species

    PubMed Central

    Li, Zhi; Hao, Youjin; Wang, Linling; Xiang, Heng; Zhou, Zeyang

    2014-01-01

    Microsporidia have attracted considerable attention because they infect a wide range of hosts, from invertebrates to vertebrates, and cause serious human diseases and major economic losses in the livestock industry. There are no prospective drugs to counteract this pathogen. Eukaryotic protein kinases (ePKs) play a central role in regulating many essential cellular processes and are therefore potential drug targets. In this study, a comprehensive summary and comparative analysis of the protein kinases in four microsporidia–Enterocytozoon bieneusi, Encephalitozoon cuniculi, Nosema bombycis and Nosema ceranae–was performed. The results show that there are 34 ePKs and 4 atypical protein kinases (aPKs) in E. bieneusi, 29 ePKs and 6 aPKs in E. cuniculi, 41 ePKs and 5 aPKs in N. bombycis, and 27 ePKs and 4 aPKs in N. ceranae. These data support the previous conclusion that the microsporidian kinome is the smallest eukaryotic kinome. Microsporidian kinomes contain only serine-threonine kinases and do not contain receptor-like and tyrosine kinases. Many of the kinases related to nutrient and energy signaling and the stress response have been lost in microsporidian kinomes. However, cell cycle-, development- and growth-related kinases, which are important to parasites, are well conserved. This reduction of the microsporidian kinome is in good agreement with genome compaction, but kinome density is negatively correlated with proteome size. Furthermore, the protein kinases in each microsporidian genome are under strong purifying selection pressure. No remarkable differences in kinase family classification, domain features, gain and/or loss, and selective pressure were observed in these four species. Although microsporidia adapt to different host types, the coevolution of microsporidia and their hosts was not clearly reflected in the protein kinases. Overall, this study enriches and updates the microsporidian protein kinase database and may provide valuable information and

  12. Influence of pathogenic bacteria species present in the postpartum bovine uterus on proteome profiles.

    PubMed

    Ledgard, A M; Smolenski, G A; Henderson, H; Lee, R S F

    2015-01-01

    In the first 2-3 weeks after parturition >90% of dairy cows will have some form of uterine infection. Uterine contamination with pathogens, such as Trueperella (formerly Arcanobacterium) pyogenes increases the risk of developing more severe endometritis, which can reduce conception rates. In this study, we compared the uterine proteome of cows infected with Trueperella pyogenes with that of uninfected cows, using 2D gel electrophoresis, and identified annexins A1 and A2 (ANXA1 and ANXA2), apolipoprotein A-1, calprotectin (S100A9), cathelicidin, enolase 1 (ENO1), peptidoglycan recognition protein 1 (PGLYRP1), phosphoglycerate mutase 1 (PGAM1), serine dehydratase (SDS) and serine protease inhibitors (SERPIN) B1, B3 and B4 proteins as differing in abundance in endometritis. Subsequently, levels of ten of these proteins were monitored in uterine samples collected from a herd of lactating, dairy cows at 15 and 42 days post-partum (DPP). The levels were compared with the cytology scores of the samples and the bacterial species isolated from the uterus. Cathelicidin, PGLYRP1, SERPINB1 and S100A9 levels at 15DPP showed strong positive correlations (r=0.78, 0.80, 0.79, and 0.68 respectively; P<0.001) with % of polymorphonuclear neutrophils (PMN). When compared with other bacterial pathogens identified, Streptococcus agalactiae and Truperella pyogenes induced increased expression of the indicator proteins, suggesting that these organisms may adversely affect the subsequent ability of the cow to conceive. Interestingly, there was no difference in the proportion of cows pregnant at 6 and 17 weeks after start of mating between the cows with high or low %PMN. PMID:24331367

  13. Duplex real-time SYBR green PCR assays for detection of 17 species of food- or waterborne pathogens in stools.

    PubMed

    Fukushima, Hiroshi; Tsunomori, Yoshie; Seki, Ryotaro

    2003-11-01

    A duplex real-time SYBR Green LightCycler PCR (LC-PCR) assay with DNA extraction using the QIAamp DNA Stool Mini kit was evaluated with regard to detection of 8 of 17 species of food- or waterborne pathogens in five stool specimens in 2 h or less. The protocol used the same LC-PCR with 20 pairs of specific primers. The products formed were identified based on a melting point temperature (T(m)) curve analysis. The 17 species of food- or waterborne pathogens examined were enteroinvasive Escherichia coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enterotoxigenic E. coli, enteroaggregative E. coli, Salmonella spp., Shigella spp., Yersinia enterocolitica, Yersinia pseudotuberculosis, Campylobacter jejuni, Vibrio cholerae, Vibrio parahaemolyticus, Vibrio vulnificus, Aeromonas spp., Staphylococcus aureus, Clostridium perfringens, and Bacillus cereus. No interference with the LC-PCR assay was observed when stool specimens were artificially inoculated with each bacterial species. The detection levels were approximately 10(5) food- or waterborne pathogenic bacteria per g of stool. The protocol for processing stool specimens for less than 10(4) food- or waterborne pathogenic bacteria per g of stool requires an overnight enrichment step to achieve adequate sensitivity. However, the rapid amplification and reliable detection of specific genes of greater than 10(5) food- or waterborne pathogenic bacteria per g in samples should facilitate the diagnosis and management of food- or waterborne outbreaks. PMID:14605150

  14. Cell shape dynamics during the staphylococcal cell cycle

    PubMed Central

    Monteiro, João M.; Fernandes, Pedro B.; Vaz, Filipa; Pereira, Ana R.; Tavares, Andreia C.; Ferreira, Maria T.; Pereira, Pedro M.; Veiga, Helena; Kuru, Erkin; VanNieuwenhze, Michael S.; Brun, Yves V.; Filipe, Sérgio R.; Pinho, Mariana G.

    2015-01-01

    Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci. PMID:26278781

  15. Molecular Diversity of Anthracnose Pathogen Populations Associated with UK Strawberry Production Suggests Multiple Introductions of Three Different Colletotrichum Species

    PubMed Central

    Baroncelli, Riccardo; Zapparata, Antonio; Sarrocco, Sabrina; Sukno, Serenella A.; Lane, Charles R.; Thon, Michael R.; Vannacci, Giovanni; Holub, Eric; Sreenivasaprasad, Surapareddy

    2015-01-01

    Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production. PMID:26086351

  16. Direct Detection and Differentiation of Pathogenic Leptospira Species Using a Multi-Gene Targeted Real Time PCR Approach

    PubMed Central

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  17. Direct detection and differentiation of pathogenic Leptospira species using a multi-gene targeted real time PCR approach.

    PubMed

    Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A; Inácio, João

    2014-01-01

    Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140

  18. River Networks As Ecological Corridors for Species, Populations and Pathogens of Water-Borne Disease

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.

    2014-12-01

    River basins are a natural laboratory for the study of the integration of hydrological, ecological and geomorphological processes. Moving from morphological and functional analyses of dendritic geometries observed in Nature over a wide range of scales, this Lecture addresses essential ecological processes that take place along dendritic structures, hydrology-driven and controlled, like e.g.: population migrations and human settlements, that historically proceeded along river networks to follow water supply routes; riparian ecosystems composition that owing to their positioning along streams play crucial roles in their watersheds and in the loss of biodiversity proceeding at unprecedented rates; waterborne disease spreading, like epidemic cholera that exhibits epidemic patterns that mirror those of watercourses and of human mobility and resurgences upon heavy rainfall. Moreover, the regional incidence of Schistosomiasis, a parasitic waterborne disease, and water resources developments prove tightly related, and proliferative kidney disease in fish thrives differently in pristine and engineered watercourses: can we establish quantitatively the critical linkages with hydrologic drivers and controls? How does connectivity within a river network affect community composition or the spreading mechanisms? Does the river basin act as a template for biodiversity or for species' persistence? Are there hydrologic controls on epidemics of water-borne disease? Here, I shall focus on the noteworthy scientific perspectives provided by spatially explicit eco-hydrological studies centered on river networks viewed as ecological corridors for species, populations and pathogens of waterborne disease. A notable methodological coherence is granted by the mathematical description of river networks as the support for reactive transport. The Lecture overviews a number of topics idiosyncratically related to my own research work but ideally aimed at a coherent body of materials and methods. A

  19. mecA Gene Dissemination Among Staphylococcal and Non-staphylococcal Isolates Shed in Surface Waters.

    PubMed

    Seyedmonir, Elnaz; Yilmaz, Fadime; Icgen, Bulent

    2015-07-01

    Aquatic ecosystems represent important vehicles for the dissemination of antibiotic resistant bacteria and antibiotic resistance genes. Of particular interest are methicillin-resistant staphylococci (MRS) harboring mecA gene that confers their resistance to β-lactams. Therefore, in this study, water samples collected from different locations of a river impacted by surrounding facilities and domestic effluents were analyzed to learn more about the occurrence of MRS and mecA gene. Out of 290, 12 surface water isolates displayed resistance to both cefoxitin and oxacillin antibiotics. Resistant staphylococcal and non-staphylococcal isolates, identified by 16S rRNA sequencing, were found to harbor mecA gene. The phylogenetic tree of partial mecA sequences obtained from staphylococcal and non-staphylococcal isolates showed sequence similarity values of 8 %-100 %. Surface water bodies receive contaminated waters via runoff, effluents from industrial, agricultural, and municipal discharges. Therefore, surface waters are not only hot spots for mecA harboring staphylococcal isolates but also non-staphylococcal isolates and require special scientific consideration. PMID:25733448

  20. Ferrets as sentinels of the presence of pathogenic Cryptococcus species in the Mediterranean environment.

    PubMed

    Morera, Neus; Hagen, Ferry; Juan-Sallés, Carles; Artigas, Carlos; Patricio, Rui; Serra, Juan Ignacio; Colom, Ma Francisca

    2014-08-01

    Cryptococcus gattii is a pathogenic environmental yeast that is considered to be emerging in different areas of the world including the Mediterranean Basin. Exposure to infection might be more likely in animals than in human beings, given their closer relationship with the natural habitat of the yeast, vegetation and soil. Thus, animals, and especially pets, can act as indicators of the presence of this yeast in a determined area. Domestic ferrets (Mustela putorius furo) have become common pets in the past 10-20 years. Their natural behavior of sniffing around and going inside narrow spaces makes them prone to contact with decaying organic matter and soil, the substrate for Cryptococcus species. This study describes two cases of cryptococcosis in ferrets in the Iberian Peninsula and Balearic Islands and documents a relationship of ferret cryptococcosis with environmental isolates in the same locations. Here, we emphasize the importance of how an adequate identification and environmental search of the yeast leads to a better understanding of the epidemiology of cryptococcosis and suggests ferrets may act as sentinels for this fungal disease. PMID:24962111

  1. Pathogenic Leptospira Species Acquire Factor H and Vitronectin via the Surface Protein LcpA

    PubMed Central

    da Silva, Ludmila Bezerra; Miragaia, Lidia dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima

    2014-01-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn2+-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. PMID:25534939

  2. Human pathogenic Cryptosporidium species bioanalytical detection method with single oocyst detection capability.

    PubMed

    Connelly, John T; Nugen, Sam R; Borejsza-Wysocki, Wlodek; Durst, Richard A; Montagna, Richard A; Baeumner, Antje J

    2008-05-01

    A bioanalytical detection method for specific detection of viable human pathogenic Cryptosporidium species, C. parvum, C. hominis, and C. meleagridis is described. Oocysts were isolated from water samples via immunomagnetic separation, and mRNA was extracted with oligo-dT magnetic beads, amplified using nucleic acid sequence-based amplification (NASBA), and then detected in a nucleic acid hybridization lateral flow assay. The amplified target sequence employed was hsp70 mRNA, production of which is stimulated via a brief heat shock. The described method was capable of detecting one oocyst in 10 μL using flow-cytometer-counted samples. Only viable oocysts were detected, as confirmed using 4',6-diamidino-2-phenylindole and propidium iodide (DAPI/PI) staining. The detection system was challenged by detecting oocysts in the presence of large numbers of common waterborne microorganisms and packed pellet material filtered from environmental water samples. When the method was compared with EPA Method 1622 for C. parvum detection, highly comparable results were obtained. Since the described detection system yields unambiguous results within 4.5 h, it is an ideal method for monitoring the safety of drinking water. PMID:18311563

  3. Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection.

    PubMed

    Grover, Sonam; Gupta, Paras; Kahlon, Parvinderdeep S; Goyal, Sukriti; Grover, Abhinav; Dalal, Kuldeep; Sabeeha; Ehtesham, Nasreen Z; Hasnain, Seyed E

    2016-05-26

    Tuberculosis is a devastating disease, taking one human life every 20 seconds globally. We hypothesize that professional pathogens such as M.tb have acquired specific features that might assist in causing infection, persistence and transmissible pathology in their host. We have identified 121 methyltransferases (MTases) in the M.tb proteome, which use a variety of substrates - DNA, RNA, protein, intermediates of mycolic acid biosynthesis and other fatty acids - that are involved in cellular maintenance within the host. A comparative analysis of the proteome of the virulent strain H37Rv and the avirulent strain H37Ra identified 3 MTases, which displayed significant variations in terms of N-terminal extension/deletion and point mutations, possibly impacting various physicochemical properties. The cross-proteomic comparison of MTases of M.tb H37Rv with 15 different Mycobacterium species revealed the acquisition of novel MTases in a MTB complex as a function of evolution. Phylogenetic analysis revealed that these newly acquired MTases showed common roots with certain extremophiles such as halophilic and acidophilic organisms. Our results establish an evolutionary relationship of M.tb with halotolerant organisms and also the role of MTases of M.tb in withstanding the host osmotic stress, thereby pointing to their likely role in pathogenesis, virulence and niche adaptation. PMID:26983646

  4. An Enterotoxin-Bearing Pathogenicity Island in Staphylococcus epidermidis▿†

    PubMed Central

    Madhusoodanan, Jyoti; Seo, Keun Seok; Remortel, Brian; Park, Joo Youn; Hwang, Sun Young; Fox, Lawrence K.; Park, Yong Ho; Deobald, Claudia F.; Wang, Dan; Liu, Song; Daugherty, Sean C.; Gill, Ann Lindley; Bohach, Gregory A.; Gill, Steven R.

    2011-01-01

    Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution of virulent clinical isolates. Although there have been reports of the production of toxic shock syndrome toxin 1 (TSST-1), enterotoxin, and other superantigens by coagulase-negative staphylococci, no associated pathogenicity islands have been found in the genome of Staphylococcus epidermidis, a generally less virulent relative of S. aureus. We show here the first evidence of a composite S. epidermidis pathogenicity island (SePI), the product of multiple insertions in the genome of a clinical isolate. The taxonomic placement of S. epidermidis strain FRI909 was confirmed by a number of biochemical tests and multilocus sequence typing. The genome sequence of this strain was analyzed for other unique gene clusters and their locations. This pathogenicity island encodes and expresses staphylococcal enterotoxin C3 (SEC3) and staphylococcal enterotoxin-like toxin L (SElL), as confirmed by quantitative reverse transcription-PCR (qRT-PCR) and immunoblotting. We present here an initial characterization of this novel pathogenicity island, and we establish that it is stable, expresses enterotoxins, and is not obviously transmissible by phage transduction. We also describe the genome sequence, excision, replication, and packaging of a novel bacteriophage in S. epidermidis FRI909, as well as attempts to mobilize the SePI element by this phage. PMID:21317317

  5. Genome Content and Phylogenomics Reveal both Ancestral and Lateral Evolutionary Pathways in Plant-Pathogenic Streptomyces Species.

    PubMed

    Huguet-Tapia, Jose C; Lefebure, Tristan; Badger, Jonathan H; Guan, Dongli; Pettis, Gregg S; Stanhope, Michael J; Loria, Rosemary

    2016-04-01

    Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer. PMID:26826232

  6. Isolation and Characterization of Plant-Pathogenic Streptomyces Species Associated with Common Scab-Infected Potato Tubers in Newfoundland.

    PubMed

    Fyans, Joanna K; Bown, Luke; Bignell, Dawn R D

    2016-02-01

    Potato common scab (CS) is an economically important crop disease that is caused by several members of the genus Streptomyces. In this study, we characterized the plant-pathogenic Streptomyces spp. associated with CS-infected potato tubers harvested in Newfoundland, Canada. A total of 17 pathogenic Streptomyces isolates were recovered from potato scab lesions, of which eight were determined to be most similar to the known CS pathogen S. europaeiscabiei. All eight S. europaeiscabiei isolates were found to produce the thaxtomin A phytotoxin and to harbor the nec1 virulence gene, and most also carry the putative virulence gene tomA. The remaining isolates appear to be novel pathogenic species that do not produce thaxtomin A, and only two of these isolates were determined to harbor the nec1 or tomA genes. Of the non-thaxtomin-producing isolates, strain 11-1-2 was shown to exhibit a severe pathogenic phenotype against different plant hosts and to produce a novel, secreted phytotoxic substance. This is the first report documenting the plant-pathogenic Streptomyces spp. associated with CS disease in Newfoundland. Furthermore, our findings provide further evidence that phytotoxins other than thaxtomin A may also contribute to the development of CS by Streptomyces spp. PMID:26524546

  7. Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex.

    PubMed

    Schroers, H-J; Baayen, R P; Meffert, J P; de Gruyter, J; Hooftman, M; O'Donnell, K

    2004-01-01

    A new disease recently was discovered in begonia elatior hybrid (Begonia × hiemalis) nurseries in The Netherlands. Diseased plants showed a combination of basal rot, vein yellowing and wilting and the base of collapsing plants was covered by unusually large masses of Fusarium macroconidia. A species of Fusarium was isolated consistently from the discolored veins of leaves and stems. It differed morphologically from F. begoniae, a known agent of begonia flower, leaf and stem blight. The Fusarium species resembled members of the F. oxysporum species complex in producing short monophialides on the aerial mycelium and abundant chlamydospores. Other phenotypic characters such as polyphialides formed occasionally in at least some strains, relatively long monophialides intermingled with the short monophialides formed on the aerial mycelium, distinct sporodochial conidiomata, and distinct pungent colony odor distinguished it from the F. oxysporum species complex. Phylogenetic analyses of partial sequences of the mitochondrial small subunit of the ribosomal DNA (mtSSU rDNA), nuclear translation elongation factor 1α (EF-1α) and β-tubulin gene exons and introns indicate that the Fusarium species represents a sister group of the F. oxysporum species complex. Begonia × hiemalis cultivars Bazan, Bellona and Netja Dark proved to be highly susceptible to the new species. Inoculated plants developed tracheomycosis within 4 wk, and most died within 8 wk. The new taxon was not pathogenic to Euphorbia pulcherrima, Impatiens walleriana and Saintpaulia ionantha that commonly are grown in nurseries along with B. × hiemalis. Inoculated plants of Cyclamen persicum did not develop the disease but had discolored vessels from which the inoculated fungus was isolated. Given that the newly discovered begonia pathogen is distinct in pathogenicity, morphology and phylogeny from other fusaria, it is described here as a new species, Fusarium foetens. PMID:21148861

  8. Distribution and Diversity of Pathogenic Leptospira Species in Peri-domestic Surface Waters from South Central Chile

    PubMed Central

    Mason, Meghan R.; Encina, Carolina; Sreevatsan, Srinand; Muñoz-Zanzi, Claudia

    2016-01-01

    Background Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease. Methods and Findings Water samples (n = 104) were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples. Conclusions This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists. PMID

  9. Impact of Environmental Cues on Staphylococcal Quorum Sensing and Biofilm Development.

    PubMed

    Kavanaugh, Jeffrey S; Horswill, Alexander R

    2016-06-10

    Staphylococci are commensal bacteria that colonize the epithelial surfaces of humans and many other mammals. These bacteria can also attach to implanted medical devices and develop surface-associated biofilm communities that resist clearance by host defenses and available chemotherapies. These communities are often associated with persistent staphylococcal infections that place a tremendous burden on the healthcare system. Understanding the regulatory program that controls staphylococcal biofilm development, as well as the environmental conditions that modulate this program, has been a focal point of research in recent years. A central regulator controlling biofilm development is a peptide quorum-sensing system, also called the accessory gene regulator or agr system. In the opportunistic pathogen Staphylococcus aureus, the agr system controls production of exo-toxins and exo-enzymes essential for causing infections, and simultaneously, it modulates the ability of this pathogen to attach to surfaces and develop a biofilm, or to disperse from the biofilm state. In this review, we explore advances on the interconnections between the agr quorum-sensing system and biofilm mechanisms, and topics covered include recent findings on how different environmental conditions influence quorum sensing, the impact on biofilm development, and ongoing questions and challenges in the field. As our understanding of the quorum sensing and biofilm interconnection advances, there are growing opportunities to take advantage of this knowledge and develop therapeutic approaches to control staphylococcal infections. PMID:27129223

  10. Species-specific fate of bacteria in house flies and impact on vector potential for pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    House flies ingest bacteria during filth-feeding and consequently can transport microbes from septic environments to human habitats and food. Vector potential is influenced both by flies encountering pathogens and by the fate of bacteria in the fly alimentary canal. In order for pathogens to be tran...

  11. Molecular and pathogenic variation within Melampsora on Salix in western North America reveals numerous cryptic species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel pathogens have occasionally devastated naïve plants (e.g., chestnut blight), but genes for resistance can also condition harmless outcomes of such encounters. Both global and regional homogenization will increasingly expose plants for the first time to those ‘exotic’ or ‘emergent’ pathogens t...

  12. Hybridization speeds up the emergence and evolution of a new pathogen species.

    PubMed

    Stukenbrock, Eva H

    2016-02-01

    Plant pathogens can evolve new host specificities and overcome host resistances over surprisingly few generations, a process that is greatly accelerated by agricultural practices. A new study provides a striking example in which the rapid emergence of a new pathogen via introgressive hybridization mirrors the evolution of a hybrid cereal crop. PMID:26813763

  13. Rapid whole protein quantitation of staphylococcal enterotoxins A and B by liquid chromatography/mass spectrometry.

    PubMed

    Sospedra, Isabel; Soler, Carla; Mañes, Jordi; Soriano, José Miguel

    2012-05-18

    Staphylococcus aureus is an important pathogen and has been indicated as the fifth causative agent of food-borne human illness throughout the world. Staphylococcal enterotoxins (SEs) are toxic compounds excreted mainly by strains of S. aureus. Among these toxins, enterotoxins A (SEA) and B (SEB) are both of the most prevalent compounds in staphylococcal food poisoning. In this work, reverse phase liquid chromatography coupled to ESI mass spectrometry (LC-ESI/MS) has been applied for its rapid identification and quantification. Limit of detection (LOD) values were 0.5 and 0.2 ng for SEA and SEB, respectively and limit of quantification (LOQ) value was 1 ng for both enterotoxins. SEA and SEB have been analyzed as intact proteins in milk and fruit juices. Analytical methods are essential for routine monitoring purposes and safeguard public health and the proposed technique can detect and quantify successfully SEA and SEB in food samples. PMID:22498351

  14. Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids.

    PubMed

    Drini, Sima; Criscuolo, Alexis; Lechat, Pierre; Imamura, Hideo; Skalický, Tomáš; Rachidi, Najma; Lukeš, Julius; Dujardin, Jean-Claude; Späth, Gerald F

    2016-01-01

    All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment-genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites. PMID:27371955

  15. Species- and Strain-Specific Adaptation of the HSP70 Super Family in Pathogenic Trypanosomatids

    PubMed Central

    Drini, Sima; Criscuolo, Alexis; Lechat, Pierre; Imamura, Hideo; Skalický, Tomáš; Rachidi, Najma; Lukeš, Julius; Dujardin, Jean-Claude; Späth, Gerald F.

    2016-01-01

    All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of Paratrypanosoma and recently published genome sequences of 204 L. donovani field isolates, we gained unique insight into the evolutionary dynamics of the Leishmania HSP70 protein family. We provide evidence for (i) significant evolutionary expansion of this protein family in Leishmania through gene amplification and functional specialization of highly conserved canonical HSP70 members, (ii) evolution of trypanosomatid-specific, non-canonical family members that likely gained ATPase-independent functions, and (iii) loss of one atypical HSP70 member in the Trypanosoma genus. Finally, we reveal considerable copy number variation of canonical cytoplasmic HSP70 in highly related L. donovani field isolates, thus identifying this locus as a potential hot spot of environment–genotype interaction. Our data draw a complex picture of the genetic history of HSP70 in trypanosomatids that is driven by the remarkable plasticity of the Leishmania genome to undergo massive intra-chromosomal gene amplification to compensate for the absence of regulated transcriptional control in these parasites. PMID:27371955

  16. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.

    PubMed

    Udayanga, Dhanushka; Castlebury, Lisa A; Rossman, Amy Y; Chukeatirote, Ekachai; Hyde, Kevin D

    2015-05-01

    Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations. PMID:25937066

  17. A Multiplex Assay for Detection of Staphylococcal and Streptococcal Exotoxins.

    PubMed

    Sharma, Preeti; Wang, Ningyan; Chervin, Adam S; Quinn, Cheryl L; Stone, Jennifer D; Kranz, David M

    2015-01-01

    Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes. PMID:26305471

  18. Homology Analysis of Pathogenic Yersinia Species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis Based on Multilocus Sequence Typing

    PubMed Central

    Duan, Ran; Liang, Junrong; Shi, Guoxiang; Cui, Zhigang; Hai, Rong; Wang, Peng; Xiao, Yuchun; Li, Kewei; Qiu, Haiyan; Gu, Wenpeng; Du, Xiaoli

    2014-01-01

    We developed a multilocus sequence typing (MLST) scheme and used it to study the population structure and evolutionary relationships of three pathogenic Yersinia species. MLST of these three Yersinia species showed a complex of two clusters, one composed of Yersinia pseudotuberculosis and Yersinia pestis and the other composed of Yersinia enterocolitica. Within the first cluster, the predominant Y. pestis sequence type 90 (ST90) was linked to Y. pseudotuberculosis ST43 by one locus difference, and 81.25% of the ST43 strains were from serotype O:1b, supporting the hypothesis that Y. pestis descended from the O:1b serotype of Y. pseudotuberculosis. We also found that the worldwide-prevalent serotypes O:1a, O:1b, and O:3 were predominated by specific STs. The second cluster consisted of pathogenic and nonpathogenic Y. enterocolitica strains, two of which may not have identical STs. The pathogenic Y. enterocolitica strains formed a relatively conserved group; most strains clustered within ST186 and ST187. Serotypes O:3, O:8, and O:9 were separated into three distinct blocks. Nonpathogenic Y. enterocolitica STs were more heterogeneous, reflecting genetic diversity through evolution. By providing a better and effective MLST procedure for use with the Yersinia community, valuable information and insights into the genetic evolutionary differences of these pathogens were obtained. PMID:24131695

  19. Antimicrobials for staphylococcal pathogens that are refractory to resistance development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages are viruses exclusively infecting bacteria and therefore offer suitable tools for their detection and control. At the end of their multiplication cycle, most phages lyse their hosts from within by means of an endolysin (peptidoglycan hydrolase), thereby enabling release of the phage p...

  20. Ophiocordyceps halabalaensis: a new species of Ophiocordyceps pathogenic to Camponotus gigas in Hala Bala Wildlife Sanctuary, Southern Thailand.

    PubMed

    Luangsa-Ard, J Jennifer; Ridkaew, Rungpet; Tasanathai, Kanoksri; Thanakitpipattana, Donnaya; Hywel-Jones, Nigel

    2011-07-01

    Several fungal pathogens of ants have been reported as members of the family Ophiocordycipitaceae in the order Hypocreales. Surveys in the south of Thailand have shown specimens showing characteristics that are morphologically similar to Ophiocordyceps unilateralis, a very common ant pathogen, by producing a lateral pad on one side of the stroma and producing whole ascospores. Phylogenetic analyses of the partial elongation factor tef1-α and the internal transcribed spacer regions ITS1-5.8S-ITS2 rDNA have shown that this is a distinct species from O. unilateralis. The morphological characters of Ophiocordyceps halabalaensis differs from O. unilateralis in the possession of bigger perithecia and ascospores, and molecular analyses have shown that this ant-specific fungus is sufficiently different from O. unilateralis, deserving the naming of a new species. Aspects of morphology, host association/host-specificity, and taxonomic position are discussed. PMID:21724166

  1. Human pathogenic Mycoplasma species induced cytokine gene expression in Epstein-Barr virus (EBV)-positive lymphoblastoid cell lines.

    PubMed

    Schäffner, E; Opitz, O; Pietsch, K; Bauer, G; Ehlers, S; Jacobs, E

    1998-04-01

    We addressed the question whether the in vitro interaction of two Epstein-Barr virus (EBV)-genome-positive B cell lines (EB-3 and HilB-gamma) with either Mycoplasma pneumoniae or M. hominis, with the mycoplasma species (M. fermentans, M. fermentans subsp. incognitus, M. penetrans, M. genitalium) or with mycoplasma species known to be mere commensals of the respiratory tract (M. orale and M. salivarium) would result in expression of mRNAs for IL-2, IL-2R, IL-4 and IL-6 as determined by reverse transcriptase (RT)-PCR after 4 and 24 h of cocultivation. The pattern of cytokine gene expression observed depended on (i) the origin of the transformed cell line, (ii) the pathogenicity of the Mycoplasma species, and (iii) the length of cocultivation. The EBV-immortalized lymphoblastoid cell line HilB-gamma showed mRNA expression for IL-2, IL-2-receptor, IL-4 and IL-6 peaking 24 h after stimulation with M. pneumoniae and all AIDS-related mycoplasma species tested. The Burkitt lymphoma cell line EB-3 showed a distinct and isolated strong II-2/IL-2 R-mRNA expression within 4 h after contact with the pathogenic and all of the AIDS related mycoplasma species. In neither EBV-containing cell line cytokine was gene expression detectable after stimulation with the commensal mycoplasma species, M. orale and M. salivarium, indicating species differences in the ability of mycoplasmas to interact with and stimulate B-cell lines. Our data suggest that some mcyoplasma species may act as immunomodulatory cofactors by eliciting inappropriate cytokine gene expression in B cells latently infected with EBV. Therefore, this cultivation model may prove useful in evaluating the pathogenetic potential of novel isolated mycoplasma species. PMID:9533897

  2. DETECTION AND IDENTIFICATION OF PATHOGENIC CANDIDA SPECIES IN WATER USING FLOW CYTOMETRY COUPLED WITH TAQMAN PCR

    EPA Science Inventory

    As the incidence of human fungal infection increases, the ability to detect and identify pathogenic fungi in potential environmental reservoirs becomes increasingly important for disease control. PCR based assays are widely used for diagnostic purposes, but may be inadequate for...

  3. The iron-regulated staphylococcal lipoproteins

    PubMed Central

    Sheldon, Jessica R.; Heinrichs, David E.

    2012-01-01

    Lipoproteins fulfill diverse roles in antibiotic resistance, adhesion, protein secretion, signaling and sensing, and many also serve as the substrate binding protein (SBP) partner to ABC transporters for the acquisition of a diverse array of nutrients including peptides, sugars, and scarcely abundant metals. In the staphylococci, the iron-regulated SBPs are significantly upregulated during iron starvation and function to sequester and deliver iron into the bacterial cell, enabling staphylococci to circumvent iron restriction imposed by the host environment. Accordingly, this subset of lipoproteins has been implicated in staphylococcal pathogenesis and virulence. Lipoproteins also activate the host innate immune response, triggered through Toll-like receptor-2 (TLR2) and, notably, the iron-regulated subset of lipoproteins are particularly immunogenic. In this review, we discuss the iron-regulated staphylococcal lipoproteins with regard to their biogenesis, substrate specificity, and impact on the host innate immune response. PMID:22919632

  4. Natural Variation in the Pto Pathogen Resistance Gene Within Species of Wild Tomato (Lycopersicon). I. Functional Analysis of Pto Alleles

    PubMed Central

    Rose, Laura E.; Langley, Charles H.; Bernal, Adriana J.; Michelmore, Richard W.

    2005-01-01

    Disease resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) in the cultivated tomato, Lycopersicon esculentum, and the closely related L. pimpinellifolium is triggered by the physical interaction between plant disease resistance protein, Pto, and the pathogen avirulence protein, AvrPto. To investigate the extent to which variation in the Pto gene is responsible for naturally occurring variation in resistance to Pst, we determined the resistance phenotype of 51 accessions from seven species of Lycopersicon to isogenic strains of Pst differing in the presence of avrPto. One-third of the plants displayed resistance specifically when the pathogen expressed AvrPto, consistent with a gene-for-gene interaction. To test whether this resistance in these species was conferred specifically by the Pto gene, alleles of Pto were amplified and sequenced from 49 individuals and a subset (16) of these alleles was tested in planta using Agrobacterium-mediated transient assays. Eleven alleles conferred a hypersensitive resistance response (HR) in the presence of AvrPto, while 5 did not. Ten amino acid substitutions associated with the absence of AvrPto recognition and HR were identified, none of which had been identified in previous structure-function studies. Additionally, 3 alleles encoding putative pseudogenes of Pto were isolated from two species of Lycopersicon. Therefore, a large proportion, but not all, of the natural variation in the reaction to strains of Pst expressing AvrPto can be attributed to sequence variation in the Pto gene. PMID:15944360

  5. Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species

    PubMed Central

    Stukenbrock, Eva Holtgrewe; Christiansen, Freddy Bugge; Hansen, Troels Toftebjerg; Dutheil, Julien Yann; Schierup, Mikkel Heide

    2012-01-01

    In a genome alignment of five individuals of the ascomycete fungus Zymoseptoria pseudotritici, a close relative of the wheat pathogen Z. tritici (synonym Mycosphaerella graminicola), we observed peculiar diversity patterns. Long regions up to 100 kb without variation alternate with similarly long regions of high variability. The variable segments in the genome alignment are organized into two main haplotype groups that have diverged ∼3% from each other. The genome patterns in Z. pseudotritici are consistent with a hybrid speciation event resulting from a cross between two divergent haploid individuals. The resulting hybrids formed the new species without backcrossing to the parents. We observe no variation in 54% of the genome in the five individuals and estimate a complete loss of variation for at least 30% of the genome in the entire species. A strong population bottleneck following the hybridization event caused this loss of variation. Variable segments in the Z. pseudotritici genome exhibit the two haplotypes contributed by the parental individuals. From our previously estimated recombination map of Z. tritici and the size distribution of variable chromosome blocks untouched by recombination we estimate that the hybridization occurred ∼380 sexual generations ago. We show that the amount of lost variation is explained by genetic drift during the bottleneck and by natural selection, as evidenced by the correlation of presence/absence of variation with gene density and recombination rate. The successful spread of this unique reproductively isolated pathogen highlights the strong potential of hybridization in the emergence of pathogen species with sexual reproduction. PMID:22711811

  6. A Reservoir Species for the Emerging Amphibian Pathogen Batrachochytrium dendrobatidis Thrives in a Landscape Decimated by Disease

    PubMed Central

    Reeder, Natalie M. M.; Pessier, Allan P.; Vredenburg, Vance T.

    2012-01-01

    Chytridiomycosis, a disease caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), is driving amphibian declines and extinctions in protected areas globally. The introduction of invasive reservoir species has been implicated in the spread of Bd but does not explain the appearance of the pathogen in remote protected areas. In the high elevation (>1500 m) Sierra Nevada of California, the native Pacific chorus frog, Pseudacris regilla, appears unaffected by chytridiomycosis while sympatric species experience catastrophic declines. We investigated whether P. regilla is a reservoir of Bd by comparing habitat occupancy before and after a major Bd outbreak and measuring infection in P. regilla in the field, monitoring susceptibility of P. regilla to Bd in the laboratory, examining tissues with histology to determine patterns of infection, and using an innovative soak technique to determine individual output of Bd zoospores in water. Pseudacris regilla persists at 100% of sites where a sympatric species has been extirpated from 72% in synchrony with a wave of Bd. In the laboratory, P. regilla carried loads of Bd as much as an order of magnitude higher than loads found lethal to sympatric species. Histology shows heavy Bd infection in patchy areas next to normal skin, a possible mechanism for tolerance. The soak technique was 77.8% effective at detecting Bd in water and showed an average output of 68 zoospores per minute per individual. The results of this study suggest P. regilla should act as a Bd reservoir and provide evidence of a tolerance mechanism in a reservoir species. PMID:22428071

  7. The Occurrence of Two Species of Entomophthorales (Entomophthoromycota), Pathogens of Sitobion avenae and Myzus persicae (Hemiptera: Aphididae), in Tunisia

    PubMed Central

    Boukhris-Bouhachem, Sonia; Eilenberg, Jørgen; Allagui, Mohamed Bechir; Jensen, Annette Bruun

    2013-01-01

    The natural occurrence of entomophthoralean fungi pathogenic towards aphids on cereal and potato crops was investigated in the years 2009, 2010, and 2011. Infected aphids were sampled in three bioclimatic zones in Tunisia (Beja, Cap bon, and Kairouan) and fungal species were determined based on morphological characters such as shape, size, and number of nuclei in the primary conidia. Polymerase Chain Reaction (PCR) on the internal transcribed spacer 1 region (ITS1) was used to verify morphological determination. Both methods gave consistent results and we documented for the first time the natural occurrence of two fungal species from the order Entomophthorales (phylum Entomophthoromycota), Pandora neoaphidis and Entomophthora planchoniana. Both fungi were recorded on the aphid species Sitobion avenae and Myzus persicae on barley ears and potato leaves, respectively. Moreover, natural mixed infections by both species (P. neoaphidis and E. planchoniana) were documented on the target aphids. This investigation provides basic information of entomopathogenic fungi infecting economically important aphids in Tunisia. PMID:23862158

  8. Detection and Identification of Bartonella Species Pathogenic for Humans by PCR Amplification Targeting the Riboflavin Synthase Gene (ribC)

    PubMed Central

    Johnson, G.; Ayers, M.; McClure, S. C. C.; Richardson, S. E.; Tellier, R.

    2003-01-01

    Several Bartonella species have now been implicated as human pathogens. The recovery of these fastidious organisms in the clinical microbiology laboratory remains difficult, and current methods are still relatively insensitive. Thus, the bartonellae are good candidates for detection by PCR. We have developed a PCR assay which uses a single primer pair targeting the riboflavin synthase gene (ribC) and detected six Bartonella species that have been implicated in human disease, B. henselae, B. quintana, B. bacilliformis, B. clarridgeiae, B. elizabethae, and B. vinsonii subsp. berkhoffii. Species identification is achieved simply by restriction enzyme digestion of the amplicon. This PCR assay appears to be specific for the Bartonella genus because it failed to amplify DNA from several other bacterial species. PMID:12624031

  9. Clinical, Pathological, and Prognostic Characteristics of Glomerulonephritis Related to Staphylococcal Infection

    PubMed Central

    Wang, Si-Yang; Bu, Ru; Zhang, Qi; Liang, Shuang; Wu, Jie; Liu, Xue-Guang Zhang Shu-Wen; Cai, Guang-Yan; Chen, Xiang-Mei

    2016-01-01

    Abstract Staphylococcal infection has become a common cause of postinfectious glomerulonephritis in the past 3 decades. Because few investigations focus on this disease, the demographics and clinicopathological features of glomerulonephritis related to staphylococcal infection are not well characterized. We conducted a pooled analysis of published literature in electronic databases and analyzed the clinical features, laboratory findings, and histopathological changes. The patients were divided into 4 groups based on their prognosis: remission, persistent renal dysfunction, end-stage renal disease (ESRD), or death. A logistic regression model was used to identify the determinants of disease outcome. A total of 83 (64 men) patients with glomerulonephritis related to staphylococcal infection from 31 reports were analyzed. The mean age was 58 years (58 ± 17). Majority of the reports originated from Taiwan, Japan, and the United States. Clinical characteristics of the cases were hematuria (82/83), proteinuria (78/83), and acute kidney injury (75/83). Visceral abscesses (26/83) and skin infections (24/83) were the common sites of infection. Methicillin-resistant Staphylococcus aureus was the most common pathogen. The dominant or codominant deposition of IgA or C3 along the glomeruli was an important feature identified by immunofluorescence. There were 19 patients (22.9%) that progressed to dialysis-dependent ESRD. Twelve patients (14.5%) died. A univariate regression analysis indicated that diabetes mellitus (DM) (odds ratio [OR] 2.96; 95% confidence interval [CI] 1.03–8.48; P = 0.04) and age (OR 4.80; 95% CI 1.84–12.53; P = 0.001) were risk factors for ESRD or death. A multivariate regression analysis also revealed that age (OR 4.90; 95% CI 1.82–13.18; P = 0.002) and DM (OR 3.07; 95% CI 0.98–9.59; P = 0.05) were independent risk factors for unfavorable prognosis. Glomerulonephritis related to staphylococcal infection has different features

  10. Clinical, Pathological, and Prognostic Characteristics of Glomerulonephritis Related to Staphylococcal Infection.

    PubMed

    Wang, Si-Yang; Bu, Ru; Zhang, Qi; Liang, Shuang; Wu, Jie; Liu, Xue-Guang Zhang Shu-Wen; Cai, Guang-Yan; Chen, Xiang-Mei

    2016-04-01

    Staphylococcal infection has become a common cause of postinfectious glomerulonephritis in the past 3 decades. Because few investigations focus on this disease, the demographics and clinicopathological features of glomerulonephritis related to staphylococcal infection are not well characterized.We conducted a pooled analysis of published literature in electronic databases and analyzed the clinical features, laboratory findings, and histopathological changes. The patients were divided into 4 groups based on their prognosis: remission, persistent renal dysfunction, end-stage renal disease (ESRD), or death. A logistic regression model was used to identify the determinants of disease outcome.A total of 83 (64 men) patients with glomerulonephritis related to staphylococcal infection from 31 reports were analyzed. The mean age was 58 years (58 ± 17). Majority of the reports originated from Taiwan, Japan, and the United States. Clinical characteristics of the cases were hematuria (82/83), proteinuria (78/83), and acute kidney injury (75/83). Visceral abscesses (26/83) and skin infections (24/83) were the common sites of infection. Methicillin-resistant Staphylococcus aureus was the most common pathogen. The dominant or codominant deposition of IgA or C3 along the glomeruli was an important feature identified by immunofluorescence. There were 19 patients (22.9%) that progressed to dialysis-dependent ESRD. Twelve patients (14.5%) died. A univariate regression analysis indicated that diabetes mellitus (DM) (odds ratio [OR] 2.96; 95% confidence interval [CI] 1.03-8.48; P = 0.04) and age (OR 4.80; 95% CI 1.84-12.53; P = 0.001) were risk factors for ESRD or death. A multivariate regression analysis also revealed that age (OR 4.90; 95% CI 1.82-13.18; P = 0.002) and DM (OR 3.07; 95% CI 0.98-9.59; P = 0.05) were independent risk factors for unfavorable prognosis.Glomerulonephritis related to staphylococcal infection has different features than typical

  11. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    PubMed

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi. PMID:24310522

  12. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines.

    PubMed

    Babič, Monika Novak; Zalar, Polona; Ženko, Bernard; Schroers, Hans-Josef; Džeroski, Sašo; Gunde-Cimerman, Nina

    2015-03-01

    Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed. PMID:25749362

  13. Comparison of biotyping methods as alternative identification tools to molecular typing of pathogenic Cryptococcus species in sub-Saharan Africa.

    PubMed

    Nyazika, Tinashe K; Robertson, Valerie J; Nherera, Brenda; Mapondera, Prichard T; Meis, Jacques F; Hagen, Ferry

    2016-03-01

    Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. C. gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with AFLP genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. PMID:26661484

  14. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field

    PubMed Central

    Al-Sheikh, Hashem

    2010-01-01

    During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions. PMID:23961096

  15. Phylogenetic characterization and prevalence of "Spirobacillus cienkowskii," a red-pigmented, spiral-shaped bacterial pathogen of freshwater Daphnia species.

    PubMed

    Rodrigues, Jorge L M; Duffy, Meghan A; Tessier, Alan J; Ebert, Dieter; Mouton, Laurence; Schmidt, Thomas M

    2008-03-01

    Microscopic examination of the hemolymph from diseased daphniids in 17 lakes in southwestern Michigan and five rock pools in southern Finland revealed the presence of tightly coiled bacteria that bore striking similarities to the drawings of a morphologically unique pathogen, "Spirobacillus cienkowskii," first described by Elya Metchnikoff more than 100 years ago. The uncultivated microbe was identified as a deeply branching member of the Deltaproteobacteria through phylogenetic analyses of two conserved genes: the 16S rRNA-encoding gene (rrs) and the beta-subunit of topoisomerase (gyrB). Fluorescence in situ hybridization confirmed that the rRNA gene sequence originated from bacteria with the tightly coiled morphology. Microscopy and PCR amplification with pathogen-specific primers confirmed infections by this bacterium in four species of Daphnia: Daphnia dentifera, D. magna, D. pulicaria, and D. retrocurva. Extensive field surveys reveal that this bacterium is widespread geographically and able to infect many different cladoceran species. In a survey of populations of D. dentifera in lakes in Michigan, we found the bacterium in 17 of 18 populations studied. In these populations, 0 to 12% of the individuals were infected, with an average of 3% during mid-summer and early autumn. Infections were less common in rock pool populations of D. magna in southern Finland, where the pathogen was found in 5 of 137 populations. The broad geographic distribution, wide host range, and high virulence of S. cienkowskii suggest it plays an important role in the ecology and evolution of daphniids. PMID:18192404

  16. Epidemiological survey of zoonotic pathogens in feral pigeons (Columba livia var. domestica) and sympatric zoo species in Southern Spain.

    PubMed

    Cano-Terriza, David; Guerra, Rafael; Lecollinet, Sylvie; Cerdà-Cuéllar, Marta; Cabezón, Oscar; Almería, Sonia; García-Bocanegra, Ignacio

    2015-12-01

    A cross-sectional study was carried out to determine the prevalence of pathogenic zoonotic agents (flaviviruses, avian influenza viruses (AIVs), Salmonella spp. and Toxoplasma gondii) in feral pigeons and sympatric zoo animals from Córdoba (Southern Spain) between 2013 and 2014. Antibodies against flaviviruses were detected in 7.8% out of 142 (CI95%: 3.7-11.8) pigeons, and 8.2% of 49 (CI95%: 0.9-15.4) of zoo animals tested. Antibodies with specificity against West Nile virus (WNV) and Usutu virus (USUV) were confirmed both in pigeons and in zoo birds. Even though seropositivity to AIVs was not detected in any of the analyzed pigeons, 17.9% of 28 (CI95%: 3.7-32.0) zoo birds tested showed positive results. Salmonella spp. was not isolated in any of 152 fecal samples collected from pigeons, while 6.8% of 44 zoo animals were positive. Antibodies against T. gondii were found in 9.2% of 142 (CI95%: 4.8-13.6) feral pigeons and 26.9% of 108 (CI95%: 19.6-34.1) zoo animals. This is the first study on flaviviruses and T. gondii in feral pigeons and captive zoo species in Spain. Antibodies against WNV and USUV detected in non-migratory pigeons and captive zoo animals indicate local circulation of these emerging pathogens in the study area. T. gondii was widespread in species analyzed. This finding could be of importance for Public Health and Conservation of endangered species present in zoo parks. Pigeons and zoo animals may be included as sentinel species for monitoring zoonotic pathogens in urban areas. PMID:26616657

  17. Staphylococcal phage 2638a endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain cryptic translational start site.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus, a notorious pathogen with a propensity for developing resistance to virtually all antibiotics. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for Staphylococcus aureus when exposed externally, making it a new candidate antimicrobial. It sha...

  18. Draft Genome Sequences of Two Species of "Difficult-to-Identify" Human-Pathogenic Corynebacteria: Implications for Better Identification Tests.

    PubMed

    Pacheco, Luis G C; Mattos-Guaraldi, Ana L; Santos, Carolina S; Veras, Adonney A O; Guimarães, Luis C; Abreu, Vinícius; Pereira, Felipe L; Soares, Siomar C; Dorella, Fernanda A; Carvalho, Alex F; Leal, Carlos G; Figueiredo, Henrique C P; Ramos, Juliana N; Vieira, Veronica V; Farfour, Eric; Guiso, Nicole; Hirata, Raphael; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J

    2015-01-01

    Non-diphtheriae Corynebacterium species have been increasingly recognized as the causative agents of infections in humans. Differential identification of these bacteria in the clinical microbiology laboratory by the most commonly used biochemical tests is challenging, and normally requires additional molecular methods. Herein, we present the annotated draft genome sequences of two isolates of "difficult-to-identify" human-pathogenic corynebacterial species: C. xerosis and C. minutissimum. The genome sequences of ca. 2.7 Mbp, with a mean number of 2,580 protein encoding genes, were also compared with the publicly available genome sequences of strains of C. amycolatum and C. striatum. These results will aid the exploration of novel biochemical reactions to improve existing identification tests as well as the development of more accurate molecular identification methods through detection of species-specific target genes for isolate's identification or drug susceptibility profiling. PMID:26516374

  19. Antimicrobial Activity of neo-Clerodane Diterpenoids isolated from Lamiaceae Species against Pathogenic and Food Spoilage Microorganisms.

    PubMed

    Bozov, Petko; Girova, Tania; Prisadova, Natalia; Hristova, Yana; Gochev, Velizar

    2015-11-01

    Antimicrobial activity of nineteen neo-clerodane diterpenoids, isolated from the acetone extracts of the aerial parts of Scutellaria and Salvia species (Lamiaceae) were tested against thirteen strains belonging to nine different species of pathogenic and food spoilage bacteria Aeromonas hydrophila, Bacillus cereus, Escherichia coli, Listeria monocytogenes, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella abony and Staphylococcus aureus as well as against two yeast strains belonging to species Candida albicans. Seven of the evaluated compounds scutalpin A, scutalpin E, scutalpin F, salviarin, splenolide A, splenolide B and splendidin demonstrated antimicrobial activity against used test microbial strains, the rest of the compounds were inactive within the studied concentration range. Among all of the tested compounds the highest antimicrobial activity was detected for scutalpin A against Staphylococcus aureus (MIC 25 µg/mL). PMID:26749799

  20. Tomato response traits to pathogenic Pseudomonas species: Does nitrogen limitation matter?

    PubMed

    Royer, Mathilde; Larbat, Romain; Le Bot, Jacques; Adamowicz, Stéphane; Nicot, Philippe C; Robin, Christophe

    2016-03-01

    Induced chemical defence is a cost-efficient protective strategy, whereby plants induce the biosynthesis of defence-related compounds only in the case of pest attack. Plant responses that are pathogen specific lower the cost of defence, compared to constitutive defence. As nitrogen availability (N) in the root zone is one of the levers mediating the concentration of defence-related compounds in plants, we investigated its influence on response traits of tomato to two pathogenic bacteria, growing plants hydroponically at low or high N supply. Using two sets of plants for each level of N supply, we inoculated one leaf of one set of plants with Pseudomonas syringae, and inoculated the stem of other set of plants with Pseudomonas corrugata. Tomato response traits (growth, metabolites) were investigated one and twelve days after inoculation. In infected areas, P. syringae decreased carbohydrate concentrations whereas they were increased by P. corrugata. P. syringae mediated a redistribution of carbon within the phenylpropanoid pathway, regardless of N supply: phenolamides, especially caffeoylputrescine, were stimulated, impairing defence-related compounds such as chlorogenic acid. Inoculation of P. syringae produced strong and sustainable systemic responses. By contrast, inoculation of P. corrugata induced local and transient responses. The effects of pathogens on plant growth and leaf gas exchanges appeared to be independant of N supply. This work shows that the same genus of plant pathogens with different infection strategies can mediate contrasted plant responses. PMID:26810453

  1. Susceptibility of avian species to north american H13 low pathogenic avian influenza viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  2. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  3. The Fusarium graminearum species complex comprises at least 16 phylogenetically distinct head blight pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) or scab of cereals is one of the most economically devastating plant diseases in the world today. FHB outbreaks and epidemics of wheat and barley cause significant reduction in yields; these pathogens also frequently contaminate grain with deoxynivalenol or nivalenol trich...

  4. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex

    PubMed Central

    Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph

    2016-01-01

    RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory. PMID:26943821

  5. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China

    PubMed Central

    Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun

    2016-01-01

    The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065

  6. Prevalence of Bovine Mastitis Pathogens in Bulk Tank Milk in China.

    PubMed

    Bi, Yanliang; Wang, Ya Jing; Qin, Yun; Guix Vallverdú, Roger; Maldonado García, Jaime; Sun, Wei; Li, Shengli; Cao, Zhijun

    2016-01-01

    The objectives of this study were to estimate the herd prevalence of major mastitis pathogens in bulk tank milk (BTM) in China dairy herds, to determine the relationship between the presence of mastitis pathogens and bulk tank milk somatic cell counts (BTSCC), and to investigate the impact of different dairy cattle farming modes and region on bacterial species. BTM samples collected from 894 dairy herds in China were examined for the presence of mastitis pathogens. The Flinders Technology Associates (FTA) cards were used for BTM sample collection, storage, and transportation and bacterial DNA amplification by real-time PCR. Among contagious pathogens, Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae were detected in 50.1, 92.2, and 72.3% of the 894 BTM samples, respectively. Among environmental pathogens, E. coli, Streptococcus uberis, Enterococcus spp., Klebsiella spp., Serratia marcescens, Corynebacterium bovis, and Arcanobacterium pyogenes were detected in 28.6, 8.9, 35.7, 20.0, 1.3, 17.0, and 67.2% of the BTM samples, respectively. Staphylococcal β-lactamase gene was detected in 61.7% of the BTM samples. The presence of Staphylococcus aureus and Arcanobacterium pyogenes were significantly associated with high BTSCC, respectively. Significant differences were found in presence of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in BTM sampled from the small household farms, dairy-farming communities, and large-scaled dairy farms. There were significant differences in the presence of Streptococcus agalactiae, Streptococcus dysgalactiae, Arcanobacterium pyogenes, staphylococcal β-lactamase gene, Staphylococcus spp., Klebsiella spp., Enterococcus spp., and Streptococcus uberis in BTM among Inner Mongolia, Heilongjiang, and Hebei province. In conclusion, contagious mammary pathogens are predominated among pathogens in BTM samples in China. PMID:27187065

  7. Phytophthora species recovered from irrigation reservoirs in Mississippi and Alabama nurseries and pathogenicity of three new species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From a survey of containment ponds for Phytophthora spp. at one nursery each in Alabama and Mississippi, eight species and one taxon were recovered with P. gonapodyides dominant in cooler months and P. hydropathica in warmer months, accounting for 39.6% and 46.6% overall recovery, respectively. Amo...

  8. Phytophthora species recovered from irrigation reservoirs in Mississippi and Alabama nurseries and pathogenicity of three new species.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From a survey of containment ponds for Phytophthora spp. at one nursery each in Alabama and Mississippi, eight species and one taxon were recovered with P. gonapodyides dominant in cooler months and P. hydropathica in warmer months, accounting for 39.6% and 46.6% overall recovery, respectively. Amo...

  9. Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections.

    PubMed

    Kahl, Barbara C; Becker, Karsten; Löffler, Bettina

    2016-04-01

    Small colony variants (SCVs) were first described more than 100 years ago for Staphylococcus aureus and various coagulase-negative staphylococci. Two decades ago, an association between chronic staphylococcal infections and the presence of SCVs was observed. Since then, many clinical studies and observations have been published which tie recurrent, persistent staphylococcal infections, including device-associated infections, bone and tissue infections, and airway infections of cystic fibrosis patients, to this special phenotype. By their intracellular lifestyle, SCVs exhibit so-called phenotypic (or functional) resistance beyond the classical resistance mechanisms, and they can often be retrieved from therapy-refractory courses of infection. In this review, the various clinical infections where SCVs can be expected and isolated, diagnostic procedures for optimized species confirmation, and the pathogenesis of SCVs, including defined underlying molecular mechanisms and the phenotype switch phenomenon, are presented. Moreover, relevant animal models and suggested treatment regimens, as well as the requirements for future research areas, are highlighted. PMID:26960941

  10. An outbreak of low pathogenic avian influenza in a mixed-species aviculture unit in Dubai in 2005.

    PubMed

    Kent, Jo; Bailey, Tom; Silvanose, Christu-Das; McKeown, Sean; Wernery, Ulrich; Kinne, Joerg; Manvell, Ruth

    2006-09-01

    This case describes an outbreak of low pathogenic hemagglutinin 9 neuraminidase 2 avian influenza virus (AIV) in two white-bellied bustards (Eupodotis senegalensis), one stone curlew (Burhinus oedicnemius), and a blacksmith plover (Antibyx armatus) in a private zoologic collection in Dubai, United Arab Emirates. The four birds showed signs of respiratory disease, and all died as a result of disease or euthanasia. Attention has been paid to the diagnostic process and common differential diagnosis for upper respiratory tract disease in bustards, curlews, and plovers. To the knowledge of the authors, AIV has not been previously described in these species. PMID:16931369