Science.gov

Sample records for pathogenicity comparative phylogenetic

  1. Phylogenetic Comparative Assembly

    NASA Astrophysics Data System (ADS)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  2. Phylogenetic position and virulence apparatus of the pear flower necrosis pathogen Erwinia piriflorinigrans CFBP 5888T as assessed by comparative genomics.

    PubMed

    Smits, Theo H M; Rezzonico, Fabio; López, María M; Blom, Jochen; Goesmann, Alexander; Frey, Jürg E; Duffy, Brion

    2013-10-01

    Erwinia piriflorinigrans is a necrotrophic pathogen of pear reported from Spain that destroys flowers but does not progress further into the host. We sequenced the complete genome of the type strain CFBP 5888(T) clarifying its phylogenetic position within the genus Erwinia, and indicating a position between its closest relative, the epiphyte Erwinia tasmaniensis and other plant pathogenic Erwinia spp. (i.e., the fire blight pathogen E. amylovora and the Asian pear pathogen E. pyrifoliae). Common features are the type III and type VI secretion systems, amylovoran biosynthesis and desferrioxamine production. The E. piriflorinigrans genome also provided the first evidence for production of the siderophore chrysobactin within the genus Erwinia sensu stricto, which up to now was mostly associated with phytopathogenic, soft-rot Dickeya and Pectobacterium species. Plasmid pEPIR37, reported in this strain, is closely related to small plasmids found in the fire blight pathogen E. amylovora and E. pyrifoliae. The genome of E. piriflorinigrans also gives detailed insights in evolutionary genomics of pathoadapted Erwinia. PMID:23726521

  3. How does cognition evolve? Phylogenetic comparative psychology

    PubMed Central

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  4. Using tree diversity to compare phylogenetic heuristics

    PubMed Central

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-01-01

    Background Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Results Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Conclusion Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees—especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest. PMID:19426451

  5. Chitinase modifying proteins from phylogenetically distinct lineages of Brassica pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chitinase modifying proteins (CMPs) are secreted fungal proteases that truncate specific plant class IV chitinases by cleaving peptide bonds in their amino termini. We recently identified a CMP from the Zea mays (maize) pathogen Fusarium verticillioides and found that it is a member of the fungalysi...

  6. Comparing Ontogenetic and Phylogenetic Stages of Human Development

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2005-01-01

    This paper will present evidence to support ontogenetic and phylogenetic parallels and draw from these comparisons to further illuminate our understanding of micro and macro human development. Individual and collective stages of physical, psychological and spiritual development will be compared and their homologous structures examined.…

  7. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    SciTech Connect

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  8. Novel genetic markers define a subgroup of pathogenic Escherichia coli strains belonging to the B2 phylogenetic group.

    PubMed

    Deshpande, Nandan P; Wilkins, Marc R; Mitchell, Hazel M; Kaakoush, Nadeem O

    2015-11-01

    The B2 phylogenetic group of Escherichia coli contains important pathogens such as extraintestinal pathogenic, adherent-invasive, and uropathogenic strains. In this study, we used comparative genomics and statistical methods to identify genetic variations that define a subset of pathogenic strains belonging to the B2 phylogenetic group. An initial proof of concept analysis indicated that five of the 62 E. coli strains available in the Kyoto Encyclopedia of Genes and Genomes database showed close association with B2 adherent-invasive E. coli, forming a subgroup within the B2 phylogenetic group. The tool, kSNP which uses a k-mer approach, and the statistical phenotype prediction tool PPFS2 were then employed to identify 29 high-resolution SNPs, which reaffirmed this grouping. PPFS2 analysis also provided indications that the clustering of this subgroup was highly consistent, and thus, could have a strong phenotypic basis rather than being only evolutionary. Protein homology analyses identified three proteins to be conserved across this subgrouping, two CRISPR-Cas proteins and a hypothetical protein. Functional analyses of these genetic and protein variations may provide insights into the phenotype of these strains. PMID:26459886

  9. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans

    PubMed Central

    Käser, Michael; Rondini, Simona; Naegeli, Martin; Stinear, Tim; Portaels, Francoise; Certa, Ulrich; Pluschke, Gerd

    2007-01-01

    Background Comparative genomics has greatly improved our understanding of the evolution of pathogenic mycobacteria such as Mycobacterium tuberculosis. Here we have used data from a genome microarray analysis to explore insertion-deletion (InDel) polymorphism among a diverse strain collection of Mycobacterium ulcerans, the causative agent of the devastating skin disease, Buruli ulcer. Detailed analysis of large sequence polymorphisms in twelve regions of difference (RDs), comprising irreversible genetic markers, enabled us to refine the phylogenetic succession within M. ulcerans, to define features of a hypothetical M. ulcerans most recent common ancestor and to confirm its origin from Mycobacterium marinum. Results M. ulcerans has evolved into five InDel haplotypes that separate into two distinct lineages: (i) the "classical" lineage including the most pathogenic genotypes – those that come from Africa, Australia and South East Asia; and (ii) an "ancestral" M. ulcerans lineage comprising strains from Asia (China/Japan), South America and Mexico. The ancestral lineage is genetically closer to the progenitor M. marinum in both RD composition and DNA sequence identity, whereas the classical lineage has undergone major genomic rearrangements. Conclusion Results of the InDel analysis are in complete accord with recent multi-locus sequence analysis and indicate that M. ulcerans has passed through at least two major evolutionary bottlenecks since divergence from M. marinum. The classical lineage shows more pronounced reductive evolution than the ancestral lineage, suggesting that there may be differences in the ecology between the two lineages. These findings improve the understanding of the adaptive evolution and virulence of M. ulcerans and pathogenic mycobacteria in general and will facilitate the development of new tools for improved diagnostics and molecular epidemiology. PMID:17900363

  10. Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae

    PubMed Central

    2009-01-01

    Background Mycoplasma hyopneumoniae is a highly infectious swine pathogen and is the causative agent of enzootic pneumonia (EP). Following the previous report of a proteomic survey of the pathogenic 7448 strain of swine pathogen, Mycoplasma hyopneumoniae, we performed comparative protein profiling of three M. hyopneumoniae strains, namely the non-pathogenic J strain and the two pathogenic strains 7448 and 7422. Results In 2DE comparisons, we were able to identify differences in expression levels for 67 proteins, including the overexpression of some cytoadherence-related proteins only in the pathogenic strains. 2DE immunoblot analyses allowed the identification of differential proteolytic cleavage patterns of the P97 adhesin in the three strains. For more comprehensive protein profiling, an LC-MS/MS strategy was used. Overall, 35% of the M. hyopneumoniae genome coding capacity was covered. Partially overlapping profiles of identified proteins were observed in the strains with 81 proteins identified only in one strain and 54 proteins identified in two strains. Abundance analysis of proteins detected in more than one strain demonstrates the relative overexpression of 64 proteins, including the P97 adhesin in the pathogenic strains. Conclusions Our results indicate the physiological differences between the non-pathogenic strain, with its non-infective proliferate lifestyle, and the pathogenic strains, with its constitutive expression of adhesins, which would render the bacterium competent for adhesion and infection prior to host contact. PMID:20025764

  11. Comparative analysis of twelve Dothideomycete plant pathogens

    SciTech Connect

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  12. Phylogenetics.

    PubMed

    Sleator, Roy D

    2011-04-01

    The recent rapid expansion in the DNA and protein databases, arising from large-scale genomic and metagenomic sequence projects, has forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet's inhabitants. Advances in phylogenetic analysis have greatly transformed our view of the landscape of evolutionary biology, transcending the view of the tree of life that has shaped evolutionary theory since Darwinian times. Indeed, modern phylogenetic analysis no longer focuses on the restricted Darwinian-Mendelian model of vertical gene transfer, but must also consider the significant degree of lateral gene transfer, which connects and shapes almost all living things. Herein, I review the major tree-building methods, their strengths, weaknesses and future prospects. PMID:21249334

  13. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  14. Phylogenetic Analysis of Lacazia loboi Places This Previously Uncharacterized Pathogen within the Dimorphic Onygenales

    PubMed Central

    Herr, Roger A.; Tarcha, Eric J.; Taborda, Paulo R.; Taylor, John W.; Ajello, Libero; Mendoza, Leonel

    2001-01-01

    Lacazia loboi is the last of the classical fungal pathogens to remain a taxonomic enigma, primarily because it has resisted cultivation and only causes cutaneous and subcutaneous infections in humans and dolphins in the New World tropics. To place it in the evolutionary tree of life, as has been done for the other enigmatic human pathogens Pneumocystis carinii and Rhinosporidium seeberi, we amplified its 18S small-subunit ribosomal DNA (SSU rDNA) and 600 bp of its chitin synthase-2 gene. Our phylogenetic analysis indicated that L. loboi is the sister taxon of the human dimorphic fungal pathogen Paracoccidioides brasiliensis and that both species belong with the other dimorphic fungal pathogens in the order Onygenales. The low nucleotide variation among three P. brasiliensis 18S SSU rDNA sequences contrasts with the surprising amount of nucleotide differences between the two sequences of L. loboi used in this study, suggesting that the nucleic acid epidemiology of this hydrophilic pathogen will be rewarding. PMID:11136789

  15. Comparative Phylogenomics of Pathogenic and Nonpathogenic Species

    PubMed Central

    Whiston, Emily; Taylor, John W.

    2015-01-01

    The Ascomycete Onygenales order embraces a diverse group of mammalian pathogens, including the yeast-forming dimorphic fungal pathogens Histoplasma capsulatum, Paracoccidioides spp. and Blastomyces dermatitidis, the dermatophytes Microsporum spp. and Trichopyton spp., the spherule-forming dimorphic fungal pathogens in the genus Coccidioides, and many nonpathogens. Although genomes for all of the aforementioned pathogenic species are available, only one nonpathogen had been sequenced. Here, we enhance comparative phylogenomics in Onygenales by adding genomes for Amauroascus mutatus, Amauroascus niger, Byssoonygena ceratinophila, and Chrysosporium queenslandicum—four nonpathogenic Onygenales species, all of which are more closely related to Coccidioides spp. than any other known Onygenales species. Phylogenomic detection of gene family expansion and contraction can provide clues to fungal function but is sensitive to taxon sampling. By adding additional nonpathogens, we show that LysM domain-containing proteins, previously thought to be expanding in some Onygenales, are contracting in the Coccidioides-Uncinocarpus clade, as are the self-nonself recognition Het loci. The denser genome sampling presented here highlights nearly 800 genes unique to Coccidiodes, which have significantly fewer known protein domains and show increased expression in the endosporulating spherule, the parasitic phase unique to Coccidioides spp. These genomes provide insight to gene family expansion/contraction and patterns of individual gene gain/loss in this diverse order—both major drivers of evolutionary change. Our results suggest that gene family expansion/contraction can lead to adaptive radiations that create taxonomic orders, while individual gene gain/loss likely plays a more significant role in branch-specific phenotypic changes that lead to adaptation for species or genera. PMID:26613950

  16. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing

    PubMed Central

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  17. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing.

    PubMed

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  18. Phylogenetic and Morphological Identification of the Novel Pathogen of Rheum palmatum Leaf Spot in Gansu, China.

    PubMed

    Wang, Yan; Charkowski, Amy O; Zeng, Cuiyun; Zhu, Tiantian; Wang, Huizhen; Chen, Honggang

    2016-06-01

    A new leaf spot disease was observed on leaves of Rheum palmatum (Chinese rhubarb) in Northwest China (Gansu Province) starting in 2005. A Septoria-like fungus was isolated and completion of Koch's postulates confirmed that the fungus was the casual agent of the leaf spot disease. Morphology and molecular methods were combined to identify the pathogen. The fungus produced conidiomata pycnidia and the conidia were 2~5 septate, 61.2~134.1 µm in length and 3.53~5.3 µm in width, which is much larger than the known Spetoria species that infects Polygonaceae species. Phylogenic analysis of the internal transcribed spacer region confirmed that this Spetoria-like fungus is within the Spetoria genus but distinct from known Spetoria species. Together, these morphological and phylogenetic data support that the R. palmatum infecting Spetoria strain is a newly-described plant pathogenic species. PMID:27433119

  19. Phylogenetic and Morphological Identification of the Novel Pathogen of Rheum palmatum Leaf Spot in Gansu, China

    PubMed Central

    Charkowski, Amy O.; Zeng, Cuiyun; Zhu, Tiantian; Wang, Huizhen; Chen, Honggang

    2016-01-01

    A new leaf spot disease was observed on leaves of Rheum palmatum (Chinese rhubarb) in Northwest China (Gansu Province) starting in 2005. A Septoria-like fungus was isolated and completion of Koch's postulates confirmed that the fungus was the casual agent of the leaf spot disease. Morphology and molecular methods were combined to identify the pathogen. The fungus produced conidiomata pycnidia and the conidia were 2~5 septate, 61.2~134.1 µm in length and 3.53~5.3 µm in width, which is much larger than the known Spetoria species that infects Polygonaceae species. Phylogenic analysis of the internal transcribed spacer region confirmed that this Spetoria-like fungus is within the Spetoria genus but distinct from known Spetoria species. Together, these morphological and phylogenetic data support that the R. palmatum infecting Spetoria strain is a newly-described plant pathogenic species. PMID:27433119

  20. Comparative metabolic systems analysis of pathogenic Burkholderia.

    PubMed

    Bartell, Jennifer A; Yen, Phillip; Varga, John J; Goldberg, Joanna B; Papin, Jason A

    2014-01-01

    Burkholderia cenocepacia and Burkholderia multivorans are opportunistic drug-resistant pathogens that account for the majority of Burkholderia cepacia complex infections in cystic fibrosis patients and also infect other immunocompromised individuals. While they share similar genetic compositions, B. cenocepacia and B. multivorans exhibit important differences in pathogenesis. We have developed reconciled genome-scale metabolic network reconstructions of B. cenocepacia J2315 and B. multivorans ATCC 17616 in parallel (designated iPY1537 and iJB1411, respectively) to compare metabolic abilities and contextualize genetic differences between species. The reconstructions capture the metabolic functions of the two species and give insight into similarities and differences in their virulence and growth capabilities. The two reconstructions have 1,437 reactions in common, and iPY1537 and iJB1411 have 67 and 36 metabolic reactions unique to each, respectively. After curating the extensive reservoir of metabolic genes in Burkholderia, we identified 6 genes essential to growth that are unique to iPY1513 and 13 genes uniquely essential to iJB1411. The reconstructions were refined and validated by comparing in silico growth predictions to in vitro growth capabilities of B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans ATCC 17616 on 104 carbon sources. Overall, we identified functional pathways that indicate B. cenocepacia can produce a wider array of virulence factors compared to B. multivorans, which supports the clinical observation that B. cenocepacia is more virulent than B. multivorans. The reconciled reconstructions provide a framework for generating and testing hypotheses on the metabolic and virulence capabilities of these two related emerging pathogens. PMID:24163337

  1. Comparative Metabolic Systems Analysis of Pathogenic Burkholderia

    PubMed Central

    Bartell, Jennifer A.; Yen, Phillip; Varga, John J.; Goldberg, Joanna B.

    2014-01-01

    Burkholderia cenocepacia and Burkholderia multivorans are opportunistic drug-resistant pathogens that account for the majority of Burkholderia cepacia complex infections in cystic fibrosis patients and also infect other immunocompromised individuals. While they share similar genetic compositions, B. cenocepacia and B. multivorans exhibit important differences in pathogenesis. We have developed reconciled genome-scale metabolic network reconstructions of B. cenocepacia J2315 and B. multivorans ATCC 17616 in parallel (designated iPY1537 and iJB1411, respectively) to compare metabolic abilities and contextualize genetic differences between species. The reconstructions capture the metabolic functions of the two species and give insight into similarities and differences in their virulence and growth capabilities. The two reconstructions have 1,437 reactions in common, and iPY1537 and iJB1411 have 67 and 36 metabolic reactions unique to each, respectively. After curating the extensive reservoir of metabolic genes in Burkholderia, we identified 6 genes essential to growth that are unique to iPY1513 and 13 genes uniquely essential to iJB1411. The reconstructions were refined and validated by comparing in silico growth predictions to in vitro growth capabilities of B. cenocepacia J2315, B. cenocepacia K56-2, and B. multivorans ATCC 17616 on 104 carbon sources. Overall, we identified functional pathways that indicate B. cenocepacia can produce a wider array of virulence factors compared to B. multivorans, which supports the clinical observation that B. cenocepacia is more virulent than B. multivorans. The reconciled reconstructions provide a framework for generating and testing hypotheses on the metabolic and virulence capabilities of these two related emerging pathogens. PMID:24163337

  2. Phylogenetic comparative methods complement discriminant function analysis in ecomorphology.

    PubMed

    Barr, W Andrew; Scott, Robert S

    2014-04-01

    In ecomorphology, Discriminant Function Analysis (DFA) has been used as evidence for the presence of functional links between morphometric variables and ecological categories. Here we conduct simulations of characters containing phylogenetic signal to explore the performance of DFA under a variety of conditions. Characters were simulated using a phylogeny of extant antelope species from known habitats. Characters were modeled with no biomechanical relationship to the habitat category; the only sources of variation were body mass, phylogenetic signal, or random "noise." DFA on the discriminability of habitat categories was performed using subsets of the simulated characters, and Phylogenetic Generalized Least Squares (PGLS) was performed for each character. Analyses were repeated with randomized habitat assignments. When simulated characters lacked phylogenetic signal and/or habitat assignments were random, <5.6% of DFAs and <8.26% of PGLS analyses were significant. When characters contained phylogenetic signal and actual habitats were used, 33.27 to 45.07% of DFAs and <13.09% of PGLS analyses were significant. False Discovery Rate (FDR) corrections for multiple PGLS analyses reduced the rate of significance to <4.64%. In all cases using actual habitats and characters with phylogenetic signal, correct classification rates of DFAs exceeded random chance. In simulations involving phylogenetic signal in both predictor variables and predicted categories, PGLS with FDR was rarely significant, while DFA often was. In short, DFA offered no indication that differences between categories might be explained by phylogenetic signal, while PGLS did. As such, PGLS provides a valuable tool for testing the functional hypotheses at the heart of ecomorphology. PMID:24382658

  3. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food

    PubMed Central

    2012-01-01

    Background Toxin-antitoxin (TA) systems are commonly found in bacteria and Archaea, and it is the most common mechanism involved in bacterial programmed cell death or apoptosis. Recently, MazF, the toxin component of the toxin-antitoxin module, has been categorized as an endoribonuclease, or it may have a function similar to that of a RNA interference enzyme. Results In this paper, with comparative data and phylogenetic analyses, we are able to identify several potential MazF-conserved motifs in limited subsets of foodborne pathogens and probiotic strains and further provide a molecular basis for the development of engineered/synthetic probiotic strains for the mitigation of foodborne illnesses. Our findings also show that some probiotic strains, as fit as many bacterial foodborne pathogens, can be genetically categorized into three major groups based on phylogenetic analysis of MazF. In each group, potential functional motifs are conserved in phylogenetically distant species, including foodborne pathogens and probiotic strains. Conclusion These data provide important knowledge for the identification and computational prediction of functional motifs related to programmed cell death. Potential implications of these findings include the use of engineered probiotic interventions in food or use of a natural probiotic cocktail with specificity for controlling targeted foodborne pathogens. PMID:23186337

  4. Phylogenetic and Pathogenic Analyses of Avian Influenza A H5N1 Viruses Isolated from Poultry in Vietnam

    PubMed Central

    Li, Yanbing; Jiang, Yongping; Liu, Liling; Chen, Hualan

    2012-01-01

    Despite great efforts to control the infection of poultry with H5N1 viruses, these pathogens continue to evolve and spread in nature, threatening public health. Elucidating the characteristics of H5N1 avian influenza virus will benefit disease control and pandemic preparation. Here, we sequenced the genomes of 15 H5N1 avian influenza viruses isolated in Vietnam in 2006 and 2007 and performed phylogenetic analyses to compare these sequences with those of other viruses available in the public databases. Molecular characterization of the H5N1 viruses revealed that seven genetically distinct clades of H5N1 viruses have appeared in Vietnam. Clade 2.3.4 viruses existed in Vietnam as early as 2005. Fifteen viruses isolated during 2006 and 2007 belonged to clade 1 and clade 2.3.4, and were divided into five genotypes. Reassortants between the clade 1 and clade 2.3.4 viruses were detected in both North and South Vietnam. We also assessed the replication and pathogenicity of these viruses in mice and found that these isolates replicated efficiently and exhibited distinct virulence in mice. Our results provide important information regarding the diversity of H5N1 viruses in nature. PMID:23226433

  5. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil.

    PubMed

    Kobayashi, Renata K T; Aquino, Ivani; Ferreira, Ana Lívia da S; Vidotto, Marilda C

    2011-05-01

    Escherichia coli strains designated as avian pathogenic E. coli (APEC) are responsible for avian colibacillosis, an acute and largely systemic disease that promotes significant economic losses in poultry industry worldwide because of mortality increase, medication costs, and condemnation of carcasses. APEC is a subgroup of extraintestinal pathogenic E. coli pathotype, which includes uropathogenic E. coli, neonatal meningitis E. coli, and septicemic E. coli. We isolated E. coli from commercial chicken carcasses in a Brazilian community and compared by polymerase chain reaction-defined phylogenetic group (A, B1, B2, or D) with APEC strains isolated from sick chickens from different poultry farms. A substantial number of strains assigned to phylogenetic E. coli reference collection group B2, which is known to harbor potent extraintestinal human and animal E. coli pathogens, were identified as APEC (26.0%) in both commercial chicken carcasses and retail poultry meat (retail poultry E. coli [RPEC]) (21.25%). The majority of RPEC were classified as group A (35%), whereas the majority of APEC were groups B1 (30.8) and A (27.6%). APEC and RPEC presented the genes pentaplex, iutA, hly, iron, ompT, and iss, but with different virulence profiles. The similarity between APEC and RPEC indicates RPEC as potentially pathogenic strains and supports a possible zoonotic risk for humans. PMID:21254888

  6. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  7. Comparing Phylogenetic Codivergence between Polyomaviruses and Their Hosts

    PubMed Central

    Pérez-Losada, Marcos; Christensen, Ryan G.; McClellan, David A.; Adams, Byron J.; Viscidi, Raphael P.; Demma, James C.; Crandall, Keith A.

    2006-01-01

    Seventy-two full genomes corresponding to nine mammalian (67 strains) and two avian (5 strains) polyomavirus species were analyzed using maximum likelihood and Bayesian methods of phylogenetic inference. Our fully resolved and well-supported (bootstrap proportions > 90%; posterior probabilities = 1.0) trees separate the bird polyomaviruses (avian polyomavirus and goose hemorrhagic polyomavirus) from the mammalian polyomaviruses, which supports the idea of spitting the genus into two subgenera. Such a split is also consistent with the different viral life strategies of each group. Simian (simian virus 40, simian agent 12 [Sa12], and lymphotropic polyomavirus) and rodent (hamster polyomavirus, mouse polyomavirus, and murine pneumotropic polyomavirus [MPtV]) polyomaviruses did not form monophyletic groups. Using our best hypothesis of polyomavirus evolutionary relationships and established host phylogenies, we performed a cophylogenetic reconciliation analysis of codivergence. Our analyses generated six optimal cophylogenetic scenarios of coevolution, including 12 codivergence events (P < 0.01), suggesting that Polyomaviridae coevolved with their avian and mammal hosts. As individual lineages, our analyses showed evidence of host switching in four terminal branches leading to MPtV, bovine polyomavirus, Sa12, and BK virus, suggesting a combination of vertical and horizontal transfer in the evolutionary history of the polyomaviruses. PMID:16731904

  8. Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits

    PubMed Central

    Goudenège, David; Labreuche, Yannick; Krin, Evelyne; Ansquer, Dominique; Mangenot, Sophie; Calteau, Alexandra; Médigue, Claudine; Mazel, Didier; Polz, Martin F; Le Roux, Frédérique

    2013-01-01

    Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo. PMID:23739050

  9. Cyber-infrastructure for Fusarium (CiF): Three integrated platforms supporting strain identification, phylogenetics, comparative genomics, and knowledge sharing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on ...

  10. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    PubMed Central

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  11. Phylogenetics and Taxonomy of the Fungal Vascular Wilt Pathogen Verticillium, with the Descriptions of Five New Species

    PubMed Central

    Inderbitzin, Patrik; Bostock, Richard M.; Davis, R. Michael; Usami, Toshiyuki; Platt, Harold W.; Subbarao, Krishna V.

    2011-01-01

    Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen

  12. Distribution of lipopolysaccharide core types among avian pathogenic Escherichia coli in relation to the major phylogenetic groups.

    PubMed

    Dissanayake, D R A; Wijewardana, T G; Gunawardena, G A; Poxton, I R

    2008-12-10

    Five distinct lipopolysaccharide (LPS) core types, namely R1-R4 and K12 have been identified in Escherichia coli. The aims of this study were to determine, primarily by means of PCR, the distribution of those oligosaccharide core types among avian pathogenic E. coli and their relationship to phylogenetic groups. To identify putative avian pathogenic E. coli, serum resistance and the presence of three virulence genes encoding temperature sensitive haemagglutinin (tsh), increased serum survival (iss) and colicin V (cvaC) were determined. Of the 143 clinical isolates examined 62% possessed the R1 core, 22% were R3, 13% were R4 and 3% were R2. Fifty commensal isolates consisted of 58% with R1 core, 38% with R3 core, 4% with R4 core, and none with R2. None of the isolates were of K12 core type. The distribution of core oligosaccharide types in clinical and commensal isolates were not statistically significant (P=0.51). Three genes, tsh, iss and cvaC were found in E. coli of all four core types. The genes tsh (P<0.001) and iss (P=0.03412) were significantly associated with the R4 core oligosaccharide type. The isolates containing R4 core type LPS were mainly confined to phylogenetic group D. The widespread R1 core type showed less ability to possess virulence genes and 83% were in the phylogenetic group A. Results of this study indicated that E. coli with R1, R2, R3 and R4 were important in causing infections in chickens and further, the E. coli with R4 core type were less common among commensals, possessed more virulence genes and were related to phylogenetic groups pathogenic for poultry. PMID:18597955

  13. Comparative Genomics of Pathogens Causing Brown Spot Disease of Tobacco: Alternaria longipes and Alternaria alternata

    PubMed Central

    Wan, Wenting; Long, Ni; Zhang, Jing; Tan, Yuntao; Duan, Shengchang; Zeng, Yan; Dong, Yang

    2016-01-01

    The genus Alternaria is a group of infectious/contagious pathogenic fungi that not only invade a wide range of crops but also induce severe allergic reactions in a part of the human population. In this study, two strains Alternaria longipes cx1 and Alternaria alternata cx2 were isolated from different brown spot lesions on infected tobacco leaves. Their complete genomes were sequenced, de novo assembled, and comparatively analyzed. Phylogenetic analysis revealed that A. longipes cx1 and A. alternata cx2 diverged 3.3 million years ago, indicating a recent event of speciation. Seventeen non-ribosomal peptide synthetase (NRPS) genes and 13 polyketide synthase (PKS) genes in A. longipes cx1 and 13 NRPS genes and 12 PKS genes in A. alternata cx2 were identified in these two strains. Some of these genes were predicted to participate in the synthesis of non-host specific toxins (non-HSTs), such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). By comparative genome analysis, we uncovered that A. longipes cx1 had more genes putatively involved in pathogen-plant interaction, more carbohydrate-degrading enzymes and more secreted proteins than A. alternata cx2. In summary, our results demonstrate the genomic distinction between A. longipes cx1 and A. altenata cx2. They will not only improve the understanding of the phylogenetic relationship among genus Alternaria, but more importantly provide valuable genomic resources for the investigation of plant-pathogen interaction. PMID:27159564

  14. Comparative Genomics of Pathogens Causing Brown Spot Disease of Tobacco: Alternaria longipes and Alternaria alternata.

    PubMed

    Hou, Yujie; Ma, Xiao; Wan, Wenting; Long, Ni; Zhang, Jing; Tan, Yuntao; Duan, Shengchang; Zeng, Yan; Dong, Yang

    2016-01-01

    The genus Alternaria is a group of infectious/contagious pathogenic fungi that not only invade a wide range of crops but also induce severe allergic reactions in a part of the human population. In this study, two strains Alternaria longipes cx1 and Alternaria alternata cx2 were isolated from different brown spot lesions on infected tobacco leaves. Their complete genomes were sequenced, de novo assembled, and comparatively analyzed. Phylogenetic analysis revealed that A. longipes cx1 and A. alternata cx2 diverged 3.3 million years ago, indicating a recent event of speciation. Seventeen non-ribosomal peptide synthetase (NRPS) genes and 13 polyketide synthase (PKS) genes in A. longipes cx1 and 13 NRPS genes and 12 PKS genes in A. alternata cx2 were identified in these two strains. Some of these genes were predicted to participate in the synthesis of non-host specific toxins (non-HSTs), such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). By comparative genome analysis, we uncovered that A. longipes cx1 had more genes putatively involved in pathogen-plant interaction, more carbohydrate-degrading enzymes and more secreted proteins than A. alternata cx2. In summary, our results demonstrate the genomic distinction between A. longipes cx1 and A. altenata cx2. They will not only improve the understanding of the phylogenetic relationship among genus Alternaria, but more importantly provide valuable genomic resources for the investigation of plant-pathogen interaction. PMID:27159564

  15. The Diaporthe sojae species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops.

    PubMed

    Udayanga, Dhanushka; Castlebury, Lisa A; Rossman, Amy Y; Chukeatirote, Ekachai; Hyde, Kevin D

    2015-05-01

    Phytopathogenic species of Diaporthe are associated with a number of soybean diseases including seed decay, pod and stem blight and stem canker and lead to considerable crop production losses worldwide. Accurate morphological identification of the species that cause these diseases has been difficult. In this study, we determined the phylogenetic relationships and species boundaries of Diaporthe longicolla, Diaporthe phaseolorum, Diaporthe sojae and closely related taxa. Species boundaries for this complex were determined based on combined phylogenetic analysis of five gene regions: partial sequences of calmodulin (CAL), beta-tubulin (TUB), histone-3 (HIS), translation elongation factor 1-α (EF1-α), and the nuclear ribosomal internal transcribed spacers (ITS). Phylogenetic analyses revealed that this large complex of taxa is comprised of soybean pathogens as well as species associated with herbaceous field crops and weeds. Diaporthe arctii, Diaporthe batatas, D. phaseolorum and D. sojae are epitypified. The seed decay pathogen D. longicolla was determined to be distinct from D. sojae. D. phaseolorum, originally associated with stem and leaf blight of Lima bean, was not found to be associated with soybean. A new species, Diaporthe ueckerae on Cucumis melo, is introduced with description and illustrations. PMID:25937066

  16. Phylogenetic Analysis Reveals a Cryptic Species Blastomyces gilchristii, sp. nov. within the Human Pathogenic Fungus Blastomyces dermatitidis

    PubMed Central

    Brown, Elizabeth M.; McTaggart, Lisa R.; Zhang, Sean X.; Low, Donald E.; Stevens, David A.; Richardson, Susan E.

    2013-01-01

    Background Analysis of the population genetic structure of microbial species is of fundamental importance to many scientific disciplines because it can identify cryptic species, reveal reproductive mode, and elucidate processes that contribute to pathogen evolution. Here, we examined the population genetic structure and geographic differentiation of the sexual, dimorphic fungus Blastomyces dermatitidis, the causative agent of blastomycosis. Methodology/Principal Findings Criteria for Genealogical Concordance Phylogenetic Species Recognition (GCPSR) applied to seven nuclear loci (arf6, chs2, drk1, fads, pyrF, tub1, and its-2) from 78 clinical and environmental isolates identified two previously unrecognized phylogenetic species. Four of seven single gene phylogenies examined (chs2, drk1, pyrF, and its-2) supported the separation of Phylogenetic Species 1 (PS1) and Phylogenetic Species 2 (PS2) which were also well differentiated in the concatenated chs2-drk1-fads-pyrF-tub1-arf6-its2 genealogy with all isolates falling into one of two evolutionarily independent lineages. Phylogenetic species were genetically distinct with interspecific divergence 4-fold greater than intraspecific divergence and a high Fst value (0.772, P<0.001) indicative of restricted gene flow between PS1 and PS2. Whereas panmixia expected of a single freely recombining population was not observed, recombination was detected when PS1 and PS2 were assessed separately, suggesting reproductive isolation. Random mating among PS1 isolates, which were distributed across North America, was only detected after partitioning isolates into six geographic regions. The PS2 population, found predominantly in the hyper-endemic regions of northwestern Ontario, Wisconsin, and Minnesota, contained a substantial clonal component with random mating detected only among unique genotypes in the population. Conclusions/Significance These analyses provide evidence for a genetically divergent clade within Blastomyces

  17. Comparative endocrinology of leptin: Assessing function in a phylogenetic context

    PubMed Central

    Londraville, Richard L.; Macotela, Yazmin; Duff, Robert J.; Easterling, Marietta R.; Liu, Qin; Crespi, Erica J.

    2014-01-01

    As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans. PMID:24525452

  18. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes.

    PubMed

    Boysen, Anders; Borch, Jonas; Krogh, Thøger Jensen; Hjernø, Karin; Møller-Jensen, Jakob

    2015-09-01

    Comparative studies of pathogenic bacteria and their non-pathogenic counterparts has led to the discovery of important virulence factors thereby generating insight into mechanisms of pathogenesis. Protein-based antigens for vaccine development are primarily selected among unique virulence-related factors produced by the pathogen of interest. However, recent work indicates that proteins that are not unique to the pathogen but instead selectively expressed compared to its non-pathogenic counterpart could also be vaccine candidates or targets for drug development. Modern methods in quantitative proteome analysis have the potential to discover both classes of proteins and hence form an important tool for discovering therapeutic targets. Adherent-invasive Escherichia coli (AIEC) and Enterotoxigenic E. coli (ETEC) are pathogenic variants of E. coli which cause intestinal disease in humans. AIEC is associated with Crohn's disease (CD), a chronic inflammatory condition of the gastrointestinal tract whereas ETEC is the major cause of human diarrhea which affects hundreds of millions annually. In spite of the disease burden associated with these pathogens, effective vaccines conferring long-term protection are still needed. In order to identify proteins with therapeutic potential, we have used mass spectrometry-based Stable Isotope Labeling with Amino acids in Cell culture (SILAC) quantitative proteomics method which allows us to compare the proteomes of pathogenic strains to commensal E. coli. In this study, we grew the pathogenic strains ETEC H10407, AIEC LF82 and the non-pathogenic reference strain E. coli K-12 MG1655 in parallel and used SILAC to compare protein levels in OMVs and culture supernatant. We have identified well-known virulence factors from both AIEC and ETEC, thus validating our experimental approach. In addition we find proteins that are not unique to the pathogenic strains but expressed at levels different from the commensal strain, including the

  19. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China

    PubMed Central

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  20. Determining the Phylogenetic and Phylogeographic Origin of Highly Pathogenic Avian Influenza (H7N3) in Mexico

    PubMed Central

    Lu, Lu; Lycett, Samantha J.; Leigh Brown, Andrew J.

    2014-01-01

    Highly pathogenic (HP) avian influenza virus (AIV) H7N3 outbreaks occurred 3 times in the Americas in the past 10 years and caused severe economic loss in the affected regions. In June/July 2012, new HP H7N3 outbreaks occurred at commercial farms in Jalisco, Mexico. Outbreaks continued to be identified in neighbouring states in Mexico till August 2013. To explore the origin of this outbreak, time resolved phylogenetic trees were generated from the eight segments of full-length AIV sequences in North America using BEAST. Location, subtype, avian host species and pathogenicity were modelled as discrete traits upon the trees using continuous time Markov chains. A further joint analysis among segments was performed using a hierarchical phylogenetic model (HPM) which allowed trait rates (location, subtype, host species) to be jointly inferred across different segments. The complete spatial diffusion process was visualised through virtual globe software. Our result indicated the Mexico HP H7N3 originated from the large North America low pathogenicity AIV pool through complicated reassortment events. Different segments were contributed by wild waterfowl from different N. American flyways. Five of the eight segments (HA, NA, NP, M, NS) were introduced from wild birds migrating along the central North American flyway, and PB2, PB1 and PA were introduced via the western North American flyway. These results highlight a potential role for Mexico as a hotspot of virus reassortment as it is where wild birds from different migration routes mix during the winter. PMID:25226523

  1. Phylogenetic analysis and pathogenicity of H3 subtype avian influenza viruses isolated from live poultry markets in China.

    PubMed

    Cui, Hongrui; Shi, Ying; Ruan, Tao; Li, Xuesong; Teng, Qiaoyang; Chen, Hongjun; Yang, Jianmei; Liu, Qinfang; Li, Zejun

    2016-01-01

    H3 subtype influenza A virus is one of the main subtypes that threats both public and animal health. However, the evolution and pathogenicity of H3 avian influenza virus (AIV) circulating in domestic birds in China remain largely unclear. In this study, seven H3 AIVs (four H3N2 and three H3N8) were isolated from poultry in live poultry market (LPM) in China. Phylogenetic analyses of full genomes showed that all viruses were clustered into Eurasian lineage, except N8 genes of two H3N8 isolates fell into North American lineage. Intriguingly, the N8 gene of one H3N8 and PB2, PB1, NP and NS of two H3N2 isolates have close relationship with those of the highly pathogenic H5N8 viruses circulating in Korea and United States, suggesting that the H3-like AIV may contribute internal genes to the highly pathogenic H5N8 viruses. Phylogenetic tree of HA gene and antigenic cross-reactivity results indicated that two antigenically different H3 viruses are circulating in LPM in China. Most of the H3 viruses replicated in mice lung and nasal turbinate without prior adaptation, and the representative H3 viruses infected chickens without causing clinical signs. The reassortment of H3 subtype influenza viruses warrants continuous surveillance in LPM in China. PMID:27270298

  2. Comparative Genomic Analysis Reveals a Possible Novel Non-Tuberculous Mycobacterium Species with High Pathogenic Potential

    PubMed Central

    Choo, Siew Woh; Dutta, Avirup; Wong, Guat Jah; Wee, Wei Yee; Ang, Mia Yang; Siow, Cheuk Chuen

    2016-01-01

    Mycobacteria have been reported to cause a wide range of human diseases. We present the first whole-genome study of a Non-Tuberculous Mycobacterium, Mycobacterium sp. UM_CSW (referred to hereafter as UM_CSW), isolated from a patient diagnosed with bronchiectasis. Our data suggest that this clinical isolate is likely a novel mycobacterial species, supported by clear evidence from molecular phylogenetic, comparative genomic, ANI and AAI analyses. UM_CSW is closely related to the Mycobacterium avium complex. While it has characteristic features of an environmental bacterium, it also shows a high pathogenic potential with the presence of a wide variety of putative genes related to bacterial virulence and shares very similar pathogenomic profiles with the known pathogenic mycobacterial species. Thus, we conclude that this possible novel Mycobacterium species should be tightly monitored for its possible causative role in human infections. PMID:27035710

  3. Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species

    PubMed Central

    Szekely, Adrien; Johnson, Elizabeth M.

    2016-01-01

    ABSTRACT Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show

  4. Comparative Pathogenicity of United Kingdom Isolates of the Emerging Pathogen Candida auris and Other Key Pathogenic Candida Species.

    PubMed

    Borman, Andrew M; Szekely, Adrien; Johnson, Elizabeth M

    2016-01-01

    Candida auris, first described in 2009, has since emerged as an important, multidrug-resistant, nosocomial agent of candidemia, with large outbreaks reported worldwide and high mortality rates associated with therapeutic failure. The current study employed C. auris isolates from a variety of centers in the United Kingdom to evaluate the pathogenicity of this emerging pathogen compared to that of other common pathogenic yeast species in the invertebrate Galleria mellonella infection model. We showed that C. auris isolates differ in their growth characteristics in vitro, with a proportion of isolates failing to release daughter cells after budding, resulting in the formation of large aggregates of cells that cannot be physically disrupted. Our results also demonstrate strain-specific differences in the behavior of C. auris in G. mellonella, with the aggregate-forming isolates exhibiting significantly less pathogenicity than their nonaggregating counterparts. Importantly, the nonaggregating isolates exhibited pathogenicity comparable to that of C. albicans, which is currently accepted as the most pathogenic member of the genus, despite the fact that C. auris isolates do not produce hyphae and produce only rudimentary pseudohyphae either in vitro or in G. mellonella. IMPORTANCE The incidence of invasive candidiasis, which includes candidemia and deep tissue infections, continues to rise and is associated with considerable mortality rates. Candida albicans remains the most common cause of invasive candidiasis, although the prevalence of non-albicans species has increased over recent years. Since its first description in 2009, Candida auris has emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide. However, despite receiving considerable attention, little is known concerning the pathogenicity of this emerging fungal pathogen. Here, using the Galleria mellonella insect systemic infection model, we show strain

  5. Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis.

    PubMed

    Becker, Matthew H; Walke, Jenifer B; Murrill, Lindsey; Woodhams, Douglas C; Reinert, Laura K; Rollins-Smith, Louise A; Burzynski, Elizabeth A; Umile, Thomas P; Minbiole, Kevin P C; Belden, Lisa K

    2015-04-01

    The introduction of next-generation sequencing has allowed for greater understanding of community composition of symbiotic microbial communities. However, determining the function of individual members of these microbial communities still largely relies on culture-based methods. Here, we present results on the phylogenetic distribution of a defensive functional trait of cultured symbiotic bacteria associated with amphibians. Amphibians are host to a diverse community of cutaneous bacteria and some of these bacteria protect their host from the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) by secreting antifungal metabolites. We cultured over 450 bacterial isolates from the skins of Panamanian amphibian species and tested their interactions with Bd using an in vitro challenge assay. For a subset of isolates, we also completed coculture experiments and found that culturing isolates with Bd had no effect on inhibitory properties of the bacteria, but it significantly decreased metabolite secretion. In challenge assays, approximately 75% of the bacterial isolates inhibited Bd to some extent and these inhibitory isolates were widely distributed among all bacterial phyla. Although there was no clear phylogenetic signal of inhibition, three genera, Stenotrophomonas, Aeromonas and Pseudomonas, had a high proportion of inhibitory isolates (100%, 77% and 73%, respectively). Overall, our results demonstrate that antifungal properties are phylogenetically widespread in symbiotic microbial communities of Panamanian amphibians and that some functional redundancy for fungal inhibition occurs in these communities. We hope that these findings contribute to the discovery and development of probiotics for amphibians that can mitigate the threat of chytridiomycosis. PMID:25737297

  6. Deep sequencing increases hepatitis C virus phylogenetic cluster detection compared to Sanger sequencing.

    PubMed

    Montoya, Vincent; Olmstead, Andrea; Tang, Patrick; Cook, Darrel; Janjua, Naveed; Grebely, Jason; Jacka, Brendan; Poon, Art F Y; Krajden, Mel

    2016-09-01

    Effective surveillance and treatment strategies are required to control the hepatitis C virus (HCV) epidemic. Phylogenetic analyses are powerful tools for reconstructing the evolutionary history of viral outbreaks and identifying transmission clusters. These studies often rely on Sanger sequencing which typically generates a single consensus sequence for each infected individual. For rapidly mutating viruses such as HCV, consensus sequencing underestimates the complexity of the viral quasispecies population and could therefore generate different phylogenetic tree topologies. Although deep sequencing provides a more detailed quasispecies characterization, in-depth phylogenetic analyses are challenging due to dataset complexity and computational limitations. Here, we apply deep sequencing to a characterized population to assess its ability to identify phylogenetic clusters compared with consensus Sanger sequencing. For deep sequencing, a sample specific threshold determined by the 50th percentile of the patristic distance distribution for all variants within each individual was used to identify clusters. Among seven patristic distance thresholds tested for the Sanger sequence phylogeny ranging from 0.005-0.06, a threshold of 0.03 was found to provide the maximum balance between positive agreement (samples in a cluster) and negative agreement (samples not in a cluster) relative to the deep sequencing dataset. From 77 HCV seroconverters, 10 individuals were identified in phylogenetic clusters using both methods. Deep sequencing analysis identified an additional 4 individuals and excluded 8 other individuals relative to Sanger sequencing. The application of this deep sequencing approach could be a more effective tool to understand onward HCV transmission dynamics compared with Sanger sequencing, since the incorporation of minority sequence variants improves the discrimination of phylogenetically linked clusters. PMID:27282472

  7. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach.

    PubMed

    Erickson, David L; Jones, Frank A; Swenson, Nathan G; Pei, Nancai; Bourg, Norman A; Chen, Wenna; Davies, Stuart J; Ge, Xue-Jun; Hao, Zhanqing; Howe, Robert W; Huang, Chun-Lin; Larson, Andrew J; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D; Fang-Sun, I; Wright, S Joseph; Wolf, Amy T; Ye, W; Xing, Dingliang; Zimmerman, Jess K; Kress, W John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  8. Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    PubMed Central

    Klassen, Jonathan L.

    2010-01-01

    Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This

  9. The Independent Evolution Method Is Not a Viable Phylogenetic Comparative Method

    PubMed Central

    2015-01-01

    Phylogenetic comparative methods (PCMs) use data on species traits and phylogenetic relationships to shed light on evolutionary questions. Recently, Smaers and Vinicius suggested a new PCM, Independent Evolution (IE), which purportedly employs a novel model of evolution based on Felsenstein’s Adaptive Peak Model. The authors found that IE improves upon previous PCMs by producing more accurate estimates of ancestral states, as well as separate estimates of evolutionary rates for each branch of a phylogenetic tree. Here, we document substantial theoretical and computational issues with IE. When data are simulated under a simple Brownian motion model of evolution, IE produces severely biased estimates of ancestral states and changes along individual branches. We show that these branch-specific changes are essentially ancestor-descendant or “directional” contrasts, and draw parallels between IE and previous PCMs such as “minimum evolution”. Additionally, while comparisons of branch-specific changes between variables have been interpreted as reflecting the relative strength of selection on those traits, we demonstrate through simulations that regressing IE estimated branch-specific changes against one another gives a biased estimate of the scaling relationship between these variables, and provides no advantages or insights beyond established PCMs such as phylogenetically independent contrasts. In light of our findings, we discuss the results of previous papers that employed IE. We conclude that Independent Evolution is not a viable PCM, and should not be used in comparative analyses. PMID:26683838

  10. Phylogenetic characterization and prevalence of "Spirobacillus cienkowskii," a red-pigmented, spiral-shaped bacterial pathogen of freshwater Daphnia species.

    PubMed

    Rodrigues, Jorge L M; Duffy, Meghan A; Tessier, Alan J; Ebert, Dieter; Mouton, Laurence; Schmidt, Thomas M

    2008-03-01

    Microscopic examination of the hemolymph from diseased daphniids in 17 lakes in southwestern Michigan and five rock pools in southern Finland revealed the presence of tightly coiled bacteria that bore striking similarities to the drawings of a morphologically unique pathogen, "Spirobacillus cienkowskii," first described by Elya Metchnikoff more than 100 years ago. The uncultivated microbe was identified as a deeply branching member of the Deltaproteobacteria through phylogenetic analyses of two conserved genes: the 16S rRNA-encoding gene (rrs) and the beta-subunit of topoisomerase (gyrB). Fluorescence in situ hybridization confirmed that the rRNA gene sequence originated from bacteria with the tightly coiled morphology. Microscopy and PCR amplification with pathogen-specific primers confirmed infections by this bacterium in four species of Daphnia: Daphnia dentifera, D. magna, D. pulicaria, and D. retrocurva. Extensive field surveys reveal that this bacterium is widespread geographically and able to infect many different cladoceran species. In a survey of populations of D. dentifera in lakes in Michigan, we found the bacterium in 17 of 18 populations studied. In these populations, 0 to 12% of the individuals were infected, with an average of 3% during mid-summer and early autumn. Infections were less common in rock pool populations of D. magna in southern Finland, where the pathogen was found in 5 of 137 populations. The broad geographic distribution, wide host range, and high virulence of S. cienkowskii suggest it plays an important role in the ecology and evolution of daphniids. PMID:18192404

  11. Dissecting the fungal biology of Bipolaris papendorfii: from phylogenetic to comparative genomic analysis

    PubMed Central

    Kuan, Chee Sian; Yew, Su Mei; Toh, Yue Fen; Chan, Chai Ling; Ngeow, Yun Fong; Lee, Kok Wei; Na, Shiang Ling; Yee, Wai-Yan; Hoh, Chee-Choong; Ng, Kee Peng

    2015-01-01

    Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential. PMID:25922537

  12. Phylogenetic classification of the frog pathogen Amphibiothecum (Dermosporidium) penneri based on small ribosomal subunit sequencing

    USGS Publications Warehouse

    Feldman, S.H.; Wimsatt, J.H.; Green, D.E.

    2005-01-01

    We determined 1,600 base pairs of DNA sequence in the 18S small ribosomal subunit from two geographically distinct isolates of Dermosporidium penneri. Maximum likelihood and parsimony analysis of these sequences place D. penneri in the order Dermocystida of the class Mesomycetozoea. The 18S rRNA sequences from these two isolates only differ within a single region of 16 contiguous nucleotides. Based on the distant phylogenetic relationship of these organisms to Amphibiocystidium ranae and similarity to Sphaerothecum destruens we propose the organism be renamed Amphibiothecum penneri.

  13. The Fusarium graminearum species complex comprises at least 16 phylogenetically distinct head blight pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) or scab of cereals is one of the most economically devastating plant diseases in the world today. FHB outbreaks and epidemics of wheat and barley cause significant reduction in yields; these pathogens also frequently contaminate grain with deoxynivalenol or nivalenol trich...

  14. Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

    PubMed Central

    Timme, Ruth E.; Pettengill, James B.; Allard, Marc W.; Strain, Errol; Barrangou, Rodolphe; Wehnes, Chris; Van Kessel, JoAnn S.; Karns, Jeffrey S.; Musser, Steven M.; Brown, Eric W.

    2013-01-01

    The enteric pathogen Salmonella enterica is one of the leading causes of foodborne illness in the world. The species is extremely diverse, containing more than 2,500 named serovars that are designated for their unique antigen characters and pathogenicity profiles—some are known to be virulent pathogens, while others are not. Questions regarding the evolution of pathogenicity, significance of antigen characters, diversity of clustered regularly interspaced short palindromic repeat (CRISPR) loci, among others, will remain elusive until a strong evolutionary framework is established. We present the first large-scale S. enterica subsp. enterica phylogeny inferred from a new reference-free k-mer approach of gathering single nucleotide polymorphisms (SNPs) from whole genomes. The phylogeny of 156 isolates representing 78 serovars (102 were newly sequenced) reveals two major lineages, each with many strongly supported sublineages. One of these lineages is the S. Typhi group; well nested within the phylogeny. Lineage-through-time analyses suggest there have been two instances of accelerated rates of diversification within the subspecies. We also found that antigen characters and CRISPR loci reveal different evolutionary patterns than that of the phylogeny, suggesting that a horizontal gene transfer or possibly a shared environmental acquisition might have influenced the present character distribution. Our study also shows the ability to extract reference-free SNPs from a large set of genomes and then to use these SNPs for phylogenetic reconstruction. This automated, annotation-free approach is an important step forward for bacterial disease tracking and in efficiently elucidating the evolutionary history of highly clonal organisms. PMID:24158624

  15. Phylogenetic and pathogenic characterization of novel adenoviruses isolated from long-tailed ducks (Clangula hyemalis).

    PubMed

    Counihan, Katrina L; Skerratt, Lee F; Franson, J Christian; Hollmén, Tuula E

    2015-11-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections. PMID:26342465

  16. Merging and comparing three mitochondrial markers for phylogenetic studies of Eurasian reindeer (Rangifer tarandus).

    PubMed

    Kvie, Kjersti S; Heggenes, Jan; Røed, Knut H

    2016-07-01

    Phylogenetic analyses provide information that can be useful in the conservation of genetic variation by identifying intraspecific genetic structure. Reconstruction of phylogenetic relationships requires the use of markers with the appropriate amount of variation relative to the timeframe and purpose of the study. Here, genetic structure and clustering are inferred from comparative analyses of three widely used mitochondrial markers, the CR, cytb and the COI region, merged and separately, using Eurasian reindeer as a model. A Bayesian phylogeny and a MJ network, both based on the merged dataset, indicate several distinct maternal haplotype clusters within Eurasian reindeer. In addition to confirm previously described clusters, two new subclusters were found. When comparing the results from the merged dataset with the results from analyses of the three markers separately, similar clustering was found in the CR and COI phylogenies, whereas the cytb region showed poor resolution. Phylogenetic analyses of the merged dataset and the CR revealed congruent results, implying that single sequencing analysis of the CR is an applicable method for studying the haplotype structure in Eurasian reindeer. PMID:27386080

  17. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components. PMID:25631025

  18. Investigation of vital pathogenic target orotate phosphoribosyltransferases (OPRTase) from Thermus thermophilus HB8: Phylogenetic and molecular modeling approach.

    PubMed

    Surekha, Kanagarajan; Prabhu, Damodharan; Richard, Mariadasse; Nachiappan, Mutharasappan; Biswal, Jayashree; Jeyakanthan, Jeyaraman

    2016-06-01

    Biosynthesis pathways of pyrimidine and purine are shown to play an important role in regular cellular activities. The biosynthesis can occur either through de novo or salvage pathways based on the requirement of the cell. The pyrimidine biosynthesis pathway has been linked to several disorders and various autoimmune diseases. Orotate phosphoribosyl transferase (OPRTase) is an important enzyme which catalyzes the conversion of orotate to orotate monophosphate in the fifth step of pyrimidine biosynthesis. Phylogenetic analysis of 228 OPRTase sequences shows the distribution of proteins across different living forms of life. High structural similarities between Thermusthermophilus and other organisms kindled us to concentrate on OPRTase as an anti-pathogenic target. In this study, a homology model of OPRTase was constructed using 2P1Z as a template. About 100 ns molecular dynamics simulation was performed to investigate the conformational stability and dynamic patterns of the protein. The amino acid residues (Met1, Asp2, Glu43, Ala44, Glu47, Lys51, Ala157 and Leu158) lining in the binding site were predicted using SiteMap. Further, structure based virtual screening was performed on the predicted binding site using ChemBridge, Asinex, Binding, NCI, TosLab and Zinc databases. Compounds retrieved from the screening collections were manually clustered. The resultant protein-ligand complexes were subjected to molecular dynamics simulations, which further validates the binding modes of the hits. The study may provide better insight for designing potent anti-pathogenic agent. PMID:26861612

  19. Phylogenetic, Morphological, and Pathogenic Characterization of Alternaria Species Associated with Fruit Rot of Blueberry in California.

    PubMed

    Zhu, X Q; Xiao, C L

    2015-12-01

    Fruit rot caused by Alternaria spp. is one of the most important factors affecting the postharvest quality and shelf life of blueberry fruit. The aims of this study were to characterize Alternaria isolates using morphological and molecular approaches and test their pathogenicity to blueberry fruit. Alternaria spp. isolates were collected from decayed blueberry fruit in the Central Valley of California during 2012 and 2013. In total, 283 isolates were obtained and five species of Alternaria, including Alternaria alternata, A. tenuissima, A. arborescens, A. infectoria, and A. rosae, were identified based on DNA sequences of the plasma membrane ATPase, Alt a1 and Calmodulin gene regions in combination with morphological characters of the culture and sporulation. Of the 283 isolates, 61.5% were identified as A. alternata, 32.9% were A. arborescens, 5.0% were A. tenuissima, and only one isolate of A. infectoria and one isolate of A. rosae were found. These fungi were able to grow at temperatures from 0 to 35°C, and mycelial growth was arrested at 40°C. Optimal radial growth occurred between 20 to 30°C. Pathogenicity tests showed that all five Alternaria spp. were pathogenic on blueberry fruit at 0, 4, and 20°C, with A. alternata, A. arborescens, and A. tenuissima being the most virulent species, followed by A. infectoria and A. rosae. Previously A. tenuissima has been reported to be the primary cause of Alternaria fruit rot of blueberry worldwide. Our results indicated that the species composition of Alternaria responsible for Alternaria fruit rot in blueberry can be dependent on geographical region. A. alternata, A. arborescens, A. infectoria, and A. rosae are reported for the first time on blueberry in California. This is also the first report of A. infectoria and A. rosae infecting blueberry fruit. PMID:26267542

  20. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi

    PubMed Central

    2011-01-01

    Background Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. Results 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. Conclusions Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens. PMID:21247460

  1. Comparative genomics of a cannabis pathogen reveals insight into the evolution of pathogenicity in Xanthomonas

    PubMed Central

    Jacobs, Jonathan M.; Pesce, Céline; Lefeuvre, Pierre; Koebnik, Ralf

    2015-01-01

    Pathogenic bacteria in the genus Xanthomonas cause diseases on over 350 plant species, including cannabis (Cannabis sativa L.). Because of regulatory limitations, the biology of the Xanthomonas-cannabis pathosystem remains largely unexplored. To gain insight into the evolution of Xanthomonas strains pathogenic to cannabis, we sequenced the genomes of two geographically distinct Xanthomonas strains, NCPPB 3753 and NCPPB 2877, which were previously isolated from symptomatic plant tissue in Japan and Romania. Comparative multilocus sequence analysis of housekeeping genes revealed that they belong to Group 2, which comprises most of the described species of Xanthomonas. Interestingly, both strains lack the Hrp Type III secretion system and do not contain any of the known Type III effectors. Yet their genomes notably encode two key Hrp pathogenicity regulators HrpG and HrpX, and hrpG and hrpX are in the same genetic organization as in the other Group 2 xanthomonads. Promoter prediction of HrpX-regulated genes suggests the induction of an aminopeptidase, a lipase and two polygalacturonases upon plant colonization, similar to other plant-pathogenic xanthomonads. Genome analysis of the distantly related Xanthomonas maliensis strain 97M, which was isolated from a rice leaf in Mali, similarly demonstrated the presence of HrpG, HrpX, and a HrpX-regulated polygalacturonase, and the absence of the Hrp Type III secretion system and known Type III effectors. Given the observation that some Xanthomonas strains across distinct taxa do not contain hrpG and hrpX, we speculate a stepwise evolution of pathogenicity, which involves (i) acquisition of key regulatory genes and cell wall-degrading enzymes, followed by (ii) acquisition of the Hrp Type III secretion system, which is ultimately accompanied by (iii) successive acquisition of Type III effectors. PMID:26136759

  2. Examining Relationships Among Several Oyster Pathogens in the Genus Bonamia Using Molecular Data, in Phylogenetic Analyses

    NASA Astrophysics Data System (ADS)

    White, D.; Burreson, E.

    2006-12-01

    Bonamiasis is a disease that affects oyster stocks around the world and is caused by intracellular protozoan parasites. Bonamia species can rapidly spread through oyster stocks and cause clinical disease in the host. The type species in the genus, Bonamia ostreae, was described from the European flat oyster Ostrea edulis. Since that time, several bonamia-like species have been observed in the following oyster hosts: Crassostrea ariakensis deployed in North Carolina, USA, Ostrea pulchana from Argentina, Ostrea chilensis from Chile, and in Ostrea angasi from Australia. There is, however, much debate over the species identity of these undescribed Bonamia parasites. An hypothesis that I will test is whether the species of Bonamia that occurs in the aforementioned oysters are representative of one species of Bonamia, Bonamia exitiosa, or are representative of different, currently undescribed, species of Bonamia. To test this hypothesis, molecular techniques to include the polymerase chain reaction (PCR) and simultaneous bi-directional sequencing (SBS) reactions were utilized to target the internal transcribed spacer (ITS) region of the ribosomal RNA gene complex for each of the undescribed Bonamia species and for Bonamia exitiosa. Phylogenetic analysis of the sequenced data in addition to pertinent morphological data, geographic distribution information, and possible host dispersals are included in this study to provide additional information for testing hypotheses developed based on molecular data.

  3. Phylogenetic Relationships of Varieties and Geographical Groups of the Human Pathogenic Fungus Histoplasma capsulatum Darling

    PubMed Central

    Kasuga, Takao; Taylor, John W.; White, Thomas J.

    1999-01-01

    The phylogeny of 46 geographically diverse Histoplasma capsulatum isolates representing the three varieties capsulatum, duboisii, and farciminosum was evaluated using partial DNA sequences of four protein coding genes. Parsimony and distance analysis of the separate genes were generally congruent and analysis of the combined data identified six clades: (i) class 1 North American H. capsulatum var. capsulatum, (ii) class 2 North American H. capsulatum var. capsulatum, (iii) Central American H. capsulatum var. capsulatum, (iv) South American H. capsulatum var. capsulatum group A, (v) South American H. capsulatum var. capsulatum group B, and (vi) H. capsulatum var. duboisii. Although the clades were generally well supported, the relationships among them were not resolved and the nearest outgroups (Blastomyces and Paracoccidioides) were too distant to unequivocally root the H. capsulatum tree. H. capsulatum var. farciminosum was found within the South American H. capsulatum var. capsulatum group A clade. With the exception of the South American H. capsulatum var. capsulatum group A clade, genetic distances within clades were an order of magnitude lower than those between clades, and each clade was supported by a number of shared derived nucleotide substitutions, leading to the conclusion that each clade was genetically isolated from the others. Under a phylogenetic species concept based on possession of multiple shared derived characters, as well as concordance of four gene genealogies, H. capsulatum could be considered to harbor six species instead of three varieties. PMID:9986828

  4. Phylogenetic and pathogenic characterization of novel adenoviruses from long-tailed ducks (Clangula hyemalis)

    USGS Publications Warehouse

    Counihan, Katrina; Skerratt, Lee; Franson, J. Christian; Hollmen, Tuula E.

    2015-01-01

    Novel adenoviruses were isolated from a long-tailed duck (Clangula hyemalis) mortality event near Prudhoe Bay, Alaska in 2000. The long-tailed duck adenovirus genome was approximately 27 kb. A 907 bp hexon gene segment was used to design primers specific for the long-tailed duck adenovirus. Nineteen isolates were phylogenetically characterized based on portions of their hexon gene and 12 were most closely related to Goose adenovirus A. The remaining 7 shared no hexon sequences with any known adenoviruses. Experimental infections of mallards with a long-tailed duck reference adenovirus caused mild lymphoid infiltration of the intestine and paint brush hemorrhages of the mucosa and dilation of the intestine. This study shows novel adenoviruses from long-tailed ducks are diverse and provides further evidence that they should be considered in cases of morbidity and mortality in sea ducks. Conserved and specific primers have been developed that will help screen sea ducks for adenoviral infections.

  5. The taxonomy and phylogenetics of the human and animal pathogen Rhinosporidium seeberi: a critical review.

    PubMed

    Vilela, Raquel; Mendoza, Leonel

    2012-01-01

    Rhinosporidum seeberi is the etiologic agent of rhinosporidiosis, a disease of mucous membranes and infrequent of the skin and other tissues of humans and animals. Because it resists culture, for more than 100 years true taxonomic identity of R. seeberi has been controversial. Three hypotheses in a long list of related views have been recently introduced: 1) a prokaryote cyanobacterium in the genus Microcystis is the etiologic agent of rhinosporidiosis, 2) R. seeberi is a eukaryote pathogen in the Mesomycetozoa and 3) R. seeberi is a fungus. The reviewed literature on the electron microscopic, the histopathological and more recently the data from several molecular studies strongly support the view that R. seeberi is a eukaryote pathogen, but not a fungus. The suggested morphological resemblance of R. seeberi with the genera Microcystis (bacteria), Synchytrium and Colletotrichum (fungi) by different teams is merely hypothetical and lacked the scientific rigor needed to validate the proposed systems. A fundamental aspect against the prokaryote theory is the presence of nuclei reported by numerous authors and updated in this review. Moreover, Microcystis's and Synchytrium's ultra-structural and key cell cycle traits cannot be found in R. seeberi parasitic phase. The PCR amplification of a cyanobacteria 16S rDNA sequence from cases of rhinosporidiosis, while intriguing, will be viewed here as an anomaly due to contamination with environmental Microcystis or perhaps as an endosymbiotic acquisition of plastids from cyanobacteria ancestors. Thus, even if R. seeberi possesses prokaryote DNA, this does not prove that R. seeberi is a cyanobacterium. The placement of R. seeberi within the fungi is scientifically untenable. The isolation and the DNA analysis performed in a fungal strain, and the lack of appropriate controls are the main problems of this claim. Further studies are needed to validate R. seeberi's acquisition of prokaryote plastids and other issues that still

  6. Molecular Phylogenetic Diversity of Dermatologic and Other Human Pathogenic Fusarial Isolates from Hospitals in Northern and Central Italy▿

    PubMed Central

    Migheli, Quirico; Balmas, Virgilio; Harak, Henry; Sanna, Silvana; Scherm, Barbara; Aoki, Takayuki; O'Donnell, Kerry

    2010-01-01

    Fifty-eight fusaria isolated from 50 Italian patients between 2004 and 2007 were subject to multilocus DNA sequence typing to characterize the spectrum of species and circulating sequence types (STs) associated with dermatological infections, especially onychomycoses and paronychia, and other fusarioses in northern and central Italy. Sequence typing revealed that the isolates were nearly evenly divided among the Fusarium solani species complex (FSSC; n = 18), the F. oxysporum species complex (FOSC; n = 20), and the Gibberella (Fusarium) fujikuroi species complex (GFSC; n = 20). The three-locus typing scheme used for members of the FSSC identified 18 novel STs distributed among six phylogenetically distinct species, yielding an index of discrimination of 1.0. Phylogenetic analysis of the FOSC two-locus data set identified nine STs, including four which were novel, and nine isolates of ST 33, the previously described widespread clonal lineage. With the inclusion of eight epidemiologically unrelated ST 33 isolates, the FOSC typing scheme scored a discrimination index of 0.787. The two-locus GFSC typing scheme, which was primarily designed to identify species, received the lowest discrimination index, with a score of 0.492. The GFSC scheme, however, was used to successfully identify 17 isolates as F. verticillioides, 2 as F. sacchari, and 1 as F. guttiforme. This is the first report that F. guttiforme causes a human mycotic infection, which was supported by detailed morphological analysis. In addition, the results of a pathogenicity experiment revealed that the human isolate of F. guttiforme was able to induce fusariosis of pineapple, heretofore its only known host. PMID:20107100

  7. [Comparative analysis of total cell protein electrophoregram of pathogenic Burkholderia].

    PubMed

    Budchenko, A A; Iliukhin, V I; Viktorov, D V

    2005-01-01

    Whole-cell proteins of 22 strain of Burkhoderia pseudomallei, including 13 B. mallei, 5 B. cepacia strains and 14 strains of opportunistically pathogenic Pseudomonas defined by 1D SDC-PAAG electrophoresis. Electrophoregrams contained 35 to 45 protein fractions sized 19 to 130 kDa, which were highly reproductive. On the basis of computer-aided comparative analysis of protein patterns the interspecies and intraspecies grouping of studied microorganisms was made. The cluster analysis of the similarity matrix of protein spectra made it possible to allocate two groups of strains at the level of similarity of 78%. Group I was formed by Burkholderia species that previously belonged to the II RNA-DNA homology group of Pseudomonas: B. pseudomallei, B. mallei, B. cepacia. All Pseudomonas species were added to the 2nd Group: P. aeruginosa, P. stutzeri, P. testosterone, P. fluorescens, P. putida, P. mendocina. Four phenons were isolated among the strains of B. pseudomallei and 2 phenons--among the strains of B. mallei at the threshold similarity level (89%). The authors conclude that the comparative analysis of electrophoregrams of whole-cell proteins can be useful in the identification and typing of pathogenic Burkholderia. PMID:15954473

  8. Comparative analysis of two emerging rice seed bacterial pathogens.

    PubMed

    Fory, P A; Triplett, L; Ballen, C; Abello, J F; Duitama, J; Aricapa, M G; Prado, G A; Correa, F; Hamilton, J; Leach, J E; Tohme, J; Mosquera, G M

    2014-05-01

    Seed sterility and grain discoloration limit rice production in Colombia and several Central American countries. In samples of discolored rice seed grown in Colombian fields, the species Burkholderia glumae and B. gladioli were isolated, and field isolates were compared phenotypically. An artificial inoculation assay was used to determine that, although both bacterial species cause symptoms on rice grains, B. glumae is a more aggressive pathogen, causing yield reduction and higher levels of grain sterility. To identify putative virulence genes differing between B. glumae and B. gladioli, four previously sequenced genomes of Asian and U.S. strains of the two pathogens were compared with each other and with two draft genomes of Colombian B. glumae and B. gladioli isolates generated for this study. Whereas previously characterized Burkholderia virulence factors are highly conserved between the two species, B. glumae and B. gladioli strains are predicted to encode distinct groups of genes encoding type VI secretion systems, transcriptional regulators, and membrane-sensing proteins. This study shows that both B. glumae and B. gladioli can threaten grain quality, although only one species affects yield. Furthermore, genotypic differences between the two strains are identified that could contribute to disease phenotypic differences. PMID:24261408

  9. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics.

    PubMed

    Harrison, Nicola; Harrison, Richard J; Kidner, Catherine A

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864

  10. Comparative Analysis of Begonia Plastid Genomes and Their Utility for Species-Level Phylogenetics

    PubMed Central

    Harrison, Nicola; Harrison, Richard J.

    2016-01-01

    Recent, rapid radiations make species-level phylogenetics difficult to resolve. We used a multiplexed, high-throughput sequencing approach to identify informative genomic regions to resolve phylogenetic relationships at low taxonomic levels in Begonia from a survey of sixteen species. A long-range PCR method was used to generate draft plastid genomes to provide a strong phylogenetic backbone, identify fast evolving regions and provide informative molecular markers for species-level phylogenetic studies in Begonia. PMID:27058864

  11. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B

    2015-10-01

    A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. PMID:26374400

  12. Comparative study of notoungulate (Placentalia, Mammalia) bony labyrinths and new phylogenetically informative inner ear characters

    PubMed Central

    Macrini, Thomas E; Flynn, John J; Ni, Xijun; Croft, Darin A; Wyss, André R

    2013-01-01

    The phylogenetic relationships of notoungulates, an extinct group of predominantly South American herbivores, remain poorly resolved with respect to both other placental mammals and among one another. Most previous phylogenetic analyses of notoungulates have not included characters of the internal cranium, not least because few such features, including the bony labyrinth, have been described for members of the group. Here we describe the inner ears of the notoungulates Altitypotherium chucalensis (Mesotheriidae), Pachyrukhos moyani (Hegetotheriidae) and Cochilius sp. (Interatheriidae) based on reconstructions of bony labyrinths obtained from computed tomography imagery. Comparisons of the bony labyrinths of these taxa with the basally diverging notoungulate Notostylops murinus (Notostylopidae), an isolated petrosal from Itaboraí, Brazil, referred to Notoungulata, and six therian outgroups, yielded an inner ear character matrix of 25 potentially phylogenetically informative characters, 14 of them novel to this study. Two equivocally optimized character states potentially support a pairing of Mesotheriidae and Hegetotheriidae, whereas four others may be diagnostic of Notoungulata. Three additional characters are potentially informative for diagnosing more inclusive clades: one for crown Placentalia; another for a clade containing Kulbeckia, Zalambdalestes, and Placentalia; and a third for Eutheria (crown Placentalia plus stem taxa). Several other characters are apomorphic for at least one notoungulate in our study and are of potential interest for broader taxonomic sampling within Notoungulata to clarify currently enigmatic interrelationships. Measures of the semicircular canals were used to infer agility (e.g. capable of quick movements vs. lethargic movements) of these taxa. Agility scores calculated from these data generally corroborate interpretations based on postcranial remains of these or closely related species. We provide estimates of the low

  13. Comparative and phylogenetic analysis of the mitochondrial genomes in basal hymenopterans

    PubMed Central

    Song, Sheng-Nan; Tang, Pu; Wei, Shu-Jun; Chen, Xue-Xin

    2016-01-01

    The Symphyta is traditionally accepted as a paraphyletic group located in a basal position of the order Hymenoptera. Herein, we conducted a comparative analysis of the mitochondrial genomes in the Symphyta by describing two newly sequenced ones, from Trichiosoma anthracinum, representing the first mitochondrial genome in family Cimbicidae, and Asiemphytus rufocephalus, from family Tenthredinidae. The sequenced lengths of these two mitochondrial genomes were 15,392 and 14,864 bp, respectively. Within the sequenced region, trnC and trnY were rearranged to the upstream of trnI-nad2 in T. anthracinum, while in A. rufocephalus all sequenced genes were arranged in the putative insect ancestral gene arrangement. Rearrangement of the tRNA genes is common in the Symphyta. The rearranged genes are mainly from trnL1 and two tRNA clusters of trnI-trnQ-trnM and trnW-trnC-trnY. The mitochondrial genomes of Symphyta show a biased usage of A and T rather than G and C. Protein-coding genes in Symphyta species show a lower evolutionary rate than those of Apocrita. The Ka/Ks ratios were all less than 1, indicating purifying selection of Symphyta species. Phylogenetic analyses supported the paraphyly and basal position of Symphyta in Hymenoptera. The well-supported phylogenetic relationship in the study is Tenthredinoidea + (Cephoidea + (Orussoidea + Apocrita)). PMID:26879745

  14. Comparative phylogenetic analyses uncover the ancient roots of Indo-European folktales.

    PubMed

    da Silva, Sara Graça; Tehrani, Jamshid J

    2016-01-01

    Ancient population expansions and dispersals often leave enduring signatures in the cultural traditions of their descendants, as well as in their genes and languages. The international folktale record has long been regarded as a rich context in which to explore these legacies. To date, investigations in this area have been complicated by a lack of historical data and the impact of more recent waves of diffusion. In this study, we introduce new methods for tackling these problems by applying comparative phylogenetic methods and autologistic modelling to analyse the relationships between folktales, population histories and geographical distances in Indo-European-speaking societies. We find strong correlations between the distributions of a number of folktales and phylogenetic, but not spatial, associations among populations that are consistent with vertical processes of cultural inheritance. Moreover, we show that these oral traditions probably originated long before the emergence of the literary record, and find evidence that one tale ('The Smith and the Devil') can be traced back to the Bronze Age. On a broader level, the kinds of stories told in ancestral societies can provide important insights into their culture, furnishing new perspectives on linguistic, genetic and archaeological reconstructions of human prehistory. PMID:26909191

  15. Comparative phylogenetic analyses uncover the ancient roots of Indo-European folktales

    PubMed Central

    da Silva, Sara Graça; Tehrani, Jamshid J.

    2016-01-01

    Ancient population expansions and dispersals often leave enduring signatures in the cultural traditions of their descendants, as well as in their genes and languages. The international folktale record has long been regarded as a rich context in which to explore these legacies. To date, investigations in this area have been complicated by a lack of historical data and the impact of more recent waves of diffusion. In this study, we introduce new methods for tackling these problems by applying comparative phylogenetic methods and autologistic modelling to analyse the relationships between folktales, population histories and geographical distances in Indo-European-speaking societies. We find strong correlations between the distributions of a number of folktales and phylogenetic, but not spatial, associations among populations that are consistent with vertical processes of cultural inheritance. Moreover, we show that these oral traditions probably originated long before the emergence of the literary record, and find evidence that one tale (‘The Smith and the Devil’) can be traced back to the Bronze Age. On a broader level, the kinds of stories told in ancestral societies can provide important insights into their culture, furnishing new perspectives on linguistic, genetic and archaeological reconstructions of human prehistory. PMID:26909191

  16. Comparative Analysis of Mitochondrial Genomes of Five Aphid Species (Hemiptera: Aphididae) and Phylogenetic Implications

    PubMed Central

    Wang, Yuan; Huang, Xiao-Lei; Qiao, Ge-Xia

    2013-01-01

    Insect mitochondrial genomes (mitogenomes) are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes. PMID:24147014

  17. Linking Biomarker and Comparative Omics to Pathogens in Legumes.

    PubMed

    Diapari, Marwan

    2016-01-01

    It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind. In this paper I provide an overview of genomics and proteomics and their use in legume crops, including the use of comparative genomics to identify homologous markers within legume crops. PMID:26364313

  18. Phylogenetic Analysis and Comparative Genomics of Purine Riboswitch Distribution in Prokaryotes

    PubMed Central

    Singh, Payal; Sengupta, Supratim

    2012-01-01

    Riboswitches are regulatory RNA that control gene expression by undergoing conformational changes on ligand binding. Using phylogenetic analysis and comparative genomics we have been able to identify the class of genes/operons regulated by the purine riboswitch and obtain a high-resolution map of purine riboswitch distribution across all bacterial groups. In the process, we are able to explain the absence of purine riboswitches upstream to specific genes in certain genomes. We also identify the point of origin of various purine riboswitches and argue that not all purine riboswitches are of primordial origin, and that some purine riboswitches must have originated after the divergence of certain Firmicute orders in the course of evolution. Our study also reveals the role of horizontal transfer events in accounting for the presence of purine riboswitches in some gammaproteobacterial species. Our work provides significant insights into the origin, distribution and regulatory role of purine riboswitches in prokaryotes. PMID:23170063

  19. Prevalence of serogroups, virulence genotypes, antimicrobial resistance, and phylogenetic background of avian pathogenic Escherichia coli in south of China.

    PubMed

    Wang, Xiu-Mei; Liao, Xiao-Ping; Zhang, Wan-Jiang; Jiang, Hong-Xia; Sun, Jian; Zhang, Mei-Jun; He, Xue-Fang; Lao, Dong-Xing; Liu, Ya-Hong

    2010-09-01

    Avian pathogenic Escherichia coli (APEC) is an important respiratory pathogen of poultry. A variety of virulence-associated genes and serogroups are associated with avian colibacillosis caused by APEC strains. One hundred forty-eight E. coli isolates recovered from diagnosed cases of avian colibacillosis from Guangdong province between 2005 and 2008 were serotyped, and characterized for virulence-associated genes, phylogenetic backgrounds, antibiotic susceptibility, and genetic relatedness. Associations between virulence-associated genes and antimicrobial resistance were further analyzed. Although 148 APEC isolates belonged to 21 different serogroups, 81% were of one of eight serogroups: O65 (27%), O78 (10%), O8 (9%), O120 (9%), O2 (7%), O92 (6%), O108 (5%), and O26 (5%). Polymerase chain reaction analysis showed that the most prevalent gene was traT (90%), followed by iroN (63%), fimH (58%), hlyF (55%), cvaC (54%), and sitA (51%). The APEC strains mainly belonged to groups A (73%) and D (14%). Multiple antimicrobial-resistant phenotypes (greater than or equal to three antimicrobials) were detected in all E. coli isolates, with the majority of isolates displaying resistance to tetracycline (97%), sulfamethoxazole (93%) and fluoroquinolones (87% for ciprofloxacin and 84% for enrofloxacin), chloramphenicol (74%), and florfenicol (66%). All E. coli isolates were further genetically characterized by pulsed-field gel electrophoresis. A total of 125 different pulsed-field gel electrophoresis profiles were obtained, implying that the multiresistant E. coli isolates carrying virulence-associated genes and belonging to multiple serogroups were not derived from a specific clone, but represented a wide variety of chromosomal backgrounds. Statistical analysis showed that several virulence-associated genes were significantly present in APEC isolates susceptibility to multiple antimicrobials. The findings demonstrate that a wide variety of serogroups and potential virulence

  20. Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation

    NASA Astrophysics Data System (ADS)

    Pagel, Mark; Lutzoni, Francois

    We describe the application of Markov Chain Monte Carlo (MCMC) methods to two fundamental problems in evolutionary biology. Evolutionary biologists frequently wish to investigate the evolution of traits across a range of species. This is known as a comparative study. Comparative studies require constructing a phylogeny of the species and then investigating the evolutionary transitions in the trait on that phylogeny. A difficulty with this approach is that phylogenies themselves are sel dom known with certainty and different phylogenies can give different answers to the comparative hypotheses. MCMC methods make it possible to avoid both of these problems by constructing a random sample of phylogenies from the universe of possible phylogenetic trees for a given data set. Once this sample is obtained the comparative hypotheses can be investigated separately in each tree in the MCMC sample. Given the statistical properties of the sample of trees - trees are sampled in proportion to the probab ility under a model of evolution - the combined results across trees can be interpreted as being independent of the underlying phylogeny. Thus, investigators can test comparative hypotheses without the real concern that results are valid only for the particular tree used in the investigation. We illustrate these ideas with an example from the evolution of lichen formation in fungi.

  1. Phylogenetic Reconstruction of the Legionella pneumophila Philadelphia-1 Laboratory Strains through Comparative Genomics

    PubMed Central

    Ensminger, Alexander W.

    2013-01-01

    Over 20 years ago, two groups independently domesticated Legionella pneumophila from a clinical isolate of bacteria collected during the first recognized outbreak of Legionnaires’ disease (at the 1976 American Legion’s convention in Philadelphia). These two laboratory strains, JR32 and Lp01, along with their derivatives, have been disseminated to a number of laboratories around the world and form the cornerstone of much of the research conducted on this important pathogen to date. Nevertheless, no exhaustive examination of the genetic distance between these strains and their clinical progenitor has been performed thus far. Such information is of paramount importance for making sense of several phenotypic differences observed between these strains. As environmental replication of L. pneumophila is thought to exclusively occur within natural protozoan hosts, retrospective analysis of the domestication and axenic culture of the Philadelphia-1 progenitor strain by two independent groups also provides an excellent opportunity to uncover evidence of adaptation to the laboratory environment. To reconstruct the phylogenetic relationships between the common laboratory strains of L. pneumophila Philadelphia-1 and their clinical ancestor, we performed whole-genome Illumina resequencing of the two founders of each laboratory lineage: JR32 and Lp01. As expected from earlier, targeted studies, Lp01 and JR32 contain large deletions in the lvh and tra regions, respectively. By sequencing additional strains derived from Lp01 (Lp02 and Lp03), we retraced the phylogeny of these strains relative to their reported ancestor, thereby reconstructing the evolutionary dynamics of each laboratory lineage from genomic data. PMID:23717549

  2. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi.

    PubMed

    Nadimi, Maryam; Daubois, Laurence; Hijri, Mohamed

    2016-05-01

    Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'. PMID:26868331

  3. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen

    PubMed Central

    2014-01-01

    Background Traditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common. Results Coalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia. Conclusions The number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to

  4. How does the phylogenetic species concept correlate with biological characteristics of the pathogenic species in Aspergillus section Fumigati?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phylogenetic analysis confirmed A. fumigatus, A. lentulus, and A. viridinutans are phylogenetically distinct and also showed that the Aspergillus unsp. isolates form an independent clade, apart from the other three Aspergilli. All isolates were able to grow at temperatures ranging from 25 to 42oC ex...

  5. Comparative Genomic Indexing Reveals the Phylogenomics of Escherichia coli Pathogens

    PubMed Central

    Anjum, Muna F.; Lucchini, Sacha; Thompson, Arthur; Hinton, Jay C. D.; Woodward, Martin J.

    2003-01-01

    The Escherichia coli O26 serogroup includes important food-borne pathogens associated with human and animal diarrheal disease. Current typing methods have revealed great genetic heterogeneity within the O26 group; the data are often inconsistent and focus only on verotoxin (VT)-positive O26 isolates. To improve current understanding of diversity within this serogroup, the genomic relatedness of VT-positive and -negative O26 strains was assessed by comparative genomic indexing. Our results clearly demonstrate that irrespective of virulence characteristics and pathotype designation, the O26 strains show greater genomic similarity to each other than to any other strain included in this study. Our data suggest that enteropathogenic and VT-expressing E. coli O26 strains represent the same clonal lineage and that VT-expressing E. coli O26 strains have gained additional virulence characteristics. Using this approach, we established the core genes which are central to the E. coli species and identified regions of variation from the E. coli K-12 chromosomal backbone. PMID:12874348

  6. Muscles of facial expression in the chimpanzee (Pan troglodytes): descriptive, comparative and phylogenetic contexts

    PubMed Central

    Burrows, Anne M; Waller, Bridget M; Parr, Lisa A; Bonar, Christopher J

    2006-01-01

    Facial expressions are a critical mode of non-vocal communication for many mammals, particularly non-human primates. Although chimpanzees (Pan troglodytes) have an elaborate repertoire of facial signals, little is known about the facial expression (i.e. mimetic) musculature underlying these movements, especially when compared with some other catarrhines. Here we present a detailed description of the facial muscles of the chimpanzee, framed in comparative and phylogenetic contexts, through the dissection of preserved faces using a novel approach. The arrangement and appearance of muscles were noted and compared with previous studies of chimpanzees and with prosimians, cercopithecoids and humans. The results showed 23 mimetic muscles in P. troglodytes, including a thin sphincter colli muscle, reported previously only in adult prosimians, a bi-layered zygomaticus major muscle and a distinct risorius muscle. The presence of these muscles in such definition supports previous studies that describe an elaborate and highly graded facial communication system in this species that remains qualitatively different from that reported for other non-human primate species. In addition, there are minimal anatomical differences between chimpanzees and humans, contrary to conclusions from previous studies. These results amplify the importance of understanding facial musculature in primate taxa, which may hold great taxonomic value. PMID:16441560

  7. Insights into the environmental reservoir of pathogenic Vibrio parahaemolyticus using comparative genomics

    PubMed Central

    Hazen, Tracy H.; Lafon, Patricia C.; Garrett, Nancy M.; Lowe, Tiffany M.; Silberger, Daniel J.; Rowe, Lori A.; Frace, Michael; Parsons, Michele B.; Bopp, Cheryl A.; Rasko, David A.; Sobecky, Patricia A.

    2015-01-01

    Vibrio parahaemolyticus is an aquatic halophilic bacterium that occupies estuarine and coastal marine environments, and is a leading cause of seafood-borne food poisoning cases. To investigate the environmental reservoir and potential gene flow that occurs among V. parahaemolyticus isolates, the virulence-associated gene content and genome diversity of a collection of 133 V. parahaemolyticus isolates were analyzed. Phylogenetic analysis of housekeeping genes, and pulsed-field gel electrophoresis, demonstrated that there is genetic similarity among V. parahaemolyticus clinical and environmental isolates. Whole-genome sequencing and comparative analysis of six representative V. parahaemolyticus isolates was used to identify genes that are unique to the clinical and environmental isolates examined. Comparative genomics demonstrated an O3:K6 environmental isolate, AF91, which was cultured from sediment collected in Florida in 2006, has significant genomic similarity to the post-1995 O3:K6 isolates. However, AF91 lacks the majority of the virulence-associated genes and genomic islands associated with these highly virulent post-1995 O3:K6 genomes. These findings demonstrate that although they do not contain most of the known virulence-associated regions, some V. parahaemolyticus environmental isolates exhibit significant genetic similarity to clinical isolates. This highlights the dynamic nature of the V. parahaemolyticus genome allowing them to transition between aquatic and host-pathogen states. PMID:25852665

  8. Comparative genomic and phylogenetic investigation of the xenobiotic metabolizing arylamine N-acetyltransferase enzyme family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arylamine N-acetyltransferases (NATs) are xenobiotic metabolizing enzymes characterized in several bacteria and eukaryotic organisms. We report a comprehensive phylogenetic analysis employing an exhaustive dataset of NAT-homologous sequences recovered through inspection of 2445 genomes. We describe ...

  9. A comparative fine structural and phylogenetic analysis of resting cysts in oligotrich and hypotrich Spirotrichea (Ciliophora)

    PubMed Central

    Foissner, Wilhelm; Müller, Helga; Agatha, Sabine

    2010-01-01

    So far, neither morphology nor gene sequences have provided a reliable classification of halteriid and hypotrichid spirotrichs. Thus, we performed a comparative study on the fine structure of the resting cysts in some representative species, viz., the oligotrichs Halteria grandinella and Pelagostrombidium fallax and the oxytrichid hypotrichs Laurentiella strenua, Steinia sphagnicola, and Oxytricha granulifera. Main results include: (i) there are three different, very likely non-homologous cyst surface ornamentations, viz., spines (generated by the ectocyst), thorns (generated by the mesocyst), and lepidosomes (produced in the cytoplasm); (ii) Halteria has a perilemma; (iii) Halteria, Meseres and Pelagostrombidium have fibrous lepidosomes, while those of Oxytricha are tubular; (iv) the cyst wall structure of Pelagostrombidium and Strombidium is distinctly different from that of halteriids and oxytrichids, which are rather similar in this respect; (v) cyst ornamentation does not provide a reliable phylogenetic signal in oxytrichid hypotrichs because ectocyst spines occur in both flexible and rigid genera. The new observations and literature data were used to investigate the phylogeny of the core Spirotrichea. The Hennigian argumentation scheme and computer algorithms showed that the spirotrichs are bound together by the macronuclear reorganization band, the subepiplasmic microtubule basket, and the apokinetal stomatogenesis. The Hypotrichida and Oligotrichida are united by a very strong synapomorphy, viz., the perilemma, not found in any other member of the phylum. Halteriid and oligotrichid spirotrichs form a sister group supported by as many as 13 apomorphies. Thus, the molecular data, which classify the halteriids within the core hypotrichs, need to be reconsidered. PMID:17766095

  10. Comparative phylogenetic analysis of male alternative reproductive tactics in ray-finned fishes.

    PubMed

    Mank, Judith E; Avise, John C

    2006-06-01

    Using comparative phylogenetic analysis, we analyzed the evolution of male alternative reproductive tactics (MARTs) in ray-finned fishes (Actinopterygii). Numerous independent origins for each type of MART (involving sneaker males, female mimics, pirates, and satellite males) indicate that these behaviors have been highly labile across actinopterygiian evolution, consistent with a previous notion that convergent selection in fishes can readily mold the underlying suites of reproductive hormones into similar behaviors. The evolutionary appearance of MARTs was significantly correlated with the presence of sexually selected traits in bourgeois males (P = 0.001) but not with the presence of male parental care. This suggests that MARTs often arise from selection on some males to circumvent bourgeois male investment in mate monopolization, rather than to avoid male brood care per se. We found parsimony evidence for an evolutionary progression of MARTs wherein sneaking is usually the evolutionary precursor to the presumably more complex MARTs of female mimicry and cooperative satellite behavior. Nest piracy appears not to be part of this evolutionary progression, possibly because its late onset in the life cycle of most ray-finned fishes reduces the effects of selection on this reproductive tactic. PMID:16892981

  11. Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species.

    PubMed

    Pride, Harrison; Yu, Zhen; Sunchu, Bharath; Mochnick, Jillian; Coles, Alexander; Zhang, Yiqiang; Buffenstein, Rochelle; Hornsby, Peter J; Austad, Steven N; Pérez, Viviana I

    2015-02-20

    Our previous studies have shown that the liver from Naked Mole Rats (NMRs), a long-lived rodent, has increased proteasome activity and lower levels of protein ubiquitination compared to mice. This suggests that protein quality control might play a role in assuring species longevity. To determine whether enhanced proteostasis is a common mechanism in the evolution of other long-lived species, here we evaluated the major players in protein quality control including autophagy, proteasome activity, and heat shock proteins (HSPs), using skin fibroblasts from three phylogenetically-distinct pairs of short- and long-lived mammals: rodents, marsupials, and bats. Our results indicate that in all cases, macroautophagy was significantly enhanced in the longer-lived species, both at basal level and after induction by serum starvation. Similarly, basal levels of most HSPs were elevated in all the longer-lived species. Proteasome activity was found to be increased in the long-lived rodent and marsupial but not in bats. These observations suggest that long-lived species may have superior mechanisms to ensure protein quality, and support the idea that protein homeostasis might play an important role in promoting longevity. PMID:25615820

  12. Verticillium comparative genomics--understanding pathogenicity and diversity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium dahliae is the primary causal agent of Verticillium wilt that causes billions of dollars in annual losses worldwide. This soil-borne fungal pathogen exhibits extraordinary genetic plasticity, capable of colonizing a broad range of hosts in diverse ecological niches. Moreover, V. dahlia...

  13. Comparative mitochondrial genome analysis of Pythium insidiosum and related oomycete species provides new insights into genetic variation and phylogenetic relationships.

    PubMed

    Tangphatsornruang, Sithichoke; Ruang-Areerate, Panthita; Sangsrakru, Duangjai; Rujirawat, Thidarat; Lohnoo, Tassanee; Kittichotirat, Weerayuth; Patumcharoenpol, Preecha; Grenville-Briggs, Laura J; Krajaejun, Theerapong

    2016-01-01

    Oomycetes are eukaryotic microorganisms, which are phylogenetically distinct from the true-fungi, which they resemble morphologically. While many oomycetes are pathogenic to plants, Pythium insidiosum is capable of infecting humans and animals. Mitochondrial (mt) genomes are valuable genetic resources for exploring the evolution of eukaryotes. During the course of 454-based nuclear genome sequencing, we identified a complete 54.9 kb mt genome sequence, containing 2 large inverted repeats, from P. insidiosum. It contains 65 different genes (including 2 ribosomal RNA genes, 25 transfer RNA genes and 38 genes encoding NADH dehydrogenases, cytochrome b, cytochrome c oxidases, ATP synthases, and ribosomal proteins). Thirty-nine of the 65 genes have two copies, giving a total of 104 genes. A set of 30 conserved protein-coding genes from the mt genomes of P. insidiosum, 11 other oomycetes, and 2 diatoms (outgroup) were used for phylogenetic analyses. The oomycetes can be classified into 2 phylogenetic groups, in relation to their taxonomic lineages: Saprolegnialean and Peronosporalean. P. insidiosum is more closely related to Pythium ultimum than other oomycetes. In conclusion, the complete mt genome of P. insidiosum was successfully sequenced, assembled, and annotated, providing a useful genetic resource for exploring the biology and evolution of P. insidiosum and other oomycetes. PMID:26299654

  14. Chelatococcus thermostellatus sp. nov., a new thermophile for bioplastic synthesis: comparative phylogenetic and physiological study.

    PubMed

    Ibrahim, Mohammad H A; Lebbe, Liesbeth; Willems, Anne; Steinbüchel, Alexander

    2016-12-01

    The poly(3-hydroxybutyrate), PHB, accumulating thermophilic strain MW9(T), isolated from an aerobic organic waste treatment plant, was characterized by detailed physiological and phylogenetic studies. The strain is a Gram-stain-negative, rod shaped, non-spore forming member of Alphaproteobacteria. It shows optimum growth at 50 °C. Based on 16S rRNA gene sequence similarity, the strain together with five very similar isolates, was affiliated to the genus Chelatococcus (Ibrahim et al. in J Appl Microbiol 109:1579-1590, 2010). Rep-PCR genomic fingerprints and partial dnaK gene sequence also revealed that these isolates are very similar, but differ from other Chelatococcus type strains. The major fatty acids were similar to those of other strains of the genus Chelatococcus. DNA-DNA hybridization of strain MW9(T) with Chelatococcus species type strains revealed 11.0-47.7 % relatedness. G+C content of DNA was 67.1 mol%, which is comparable with the other strains of Chelatococcus species. The physiological and phenotypic characteristics of the new strain MW9(T) are sufficient to differentiate it from previously described species in the genus Chelatococcus. Strain MW9(T) is considered to represent a novel species of the genus Chelatococcus, for which the name Chelatococcus thermostellatus is proposed. The type strain is MW9(T) (=LMG 27009(T) = DSM 28244(T)). Compared to known Chelatococcus strains, strain MW9(T) could be a potent candidate for bioplastic production at elevated temperature. PMID:27277080

  15. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    PubMed

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry. PMID:25187685

  16. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    PubMed Central

    Desjardins, Christopher A.; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailão, Alexandre M.; Brigido, Marcelo Macedo; Ferreira, Márcia Eliana da Silva; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; León-Narváez, Henry; Longo, Larissa V. G.; Ma, Li-Jun; Malavazi, Iran; Matsuo, Alisson L.; Morais, Flavia V.; Pereira, Maristela; Rodríguez-Brito, Sabrina; Sakthikumar, Sharadha; Salem-Izacc, Silvia M.; Sykes, Sean M.; Teixeira, Marcus Melo; Vallejo, Milene C.; Walter, Maria Emília Machado Telles; Yandava, Chandri; Young, Sarah; Zeng, Qiandong; Zucker, Jeremy; Felipe, Maria Sueli; Goldman, Gustavo H.; Haas, Brian J.; McEwen, Juan G.; Nino-Vega, Gustavo; Puccia, Rosana; San-Blas, Gioconda; Soares, Celia Maria de Almeida; Birren, Bruce W.; Cuomo, Christina A.

    2011-01-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of

  17. Comparative Transcriptional Analysis of Homologous Pathogenic and Non-Pathogenic Lawsonia intracellularis Isolates in Infected Porcine Cells

    PubMed Central

    Vannucci, Fabio A.; Foster, Douglas N.; Gebhart, Connie J.

    2012-01-01

    Lawsonia intracellularis is the causative agent of proliferative enteropathy. This disease affects various animal species, including nonhuman primates, has been endemic in pigs, and is an emerging concern in horses. Non-pathogenic variants obtained through multiple passages in vitro do not induce disease, but bacterial isolates at low passage induce clinical and pathological changes. We hypothesize that genes differentially expressed between pathogenic (passage 10) and non-pathogenic (passage 60) L. intracellularis isolates encode potential bacterial virulence factors. The present study used high-throughput sequencing technology to characterize the transcriptional profiling of a pathogenic and a non-pathogenic homologous L. intracellularis variant during in vitro infection. A total of 401 genes were exclusively expressed by the pathogenic variant. Plasmid-encoded genes and those involved in membrane transporter (e.g. ATP-binding cassette), adaptation and stress response (e.g. transcriptional regulators) were the categories mostly responsible for this wider transcriptional landscape. The entire gene repertoire of plasmid A was repressed in the non-pathogenic variant suggesting its relevant role in the virulence phenotype of the pathogenic variant. Of the 319 genes which were commonly expressed in both pathogenic and non-pathogenic variants, no significant difference was observed by comparing their normalized transcription levels (fold change±2; p<0.05). Unexpectedly, these genes demonstrated a positive correlation (r2 = 0.81; p<0.05), indicating the involvement of gene silencing (switching off) mechanisms to attenuate virulence properties of the pathogenic variant during multiple cell passages. Following the validation of these results by reverse transcriptase-quantitative PCR using ten selected genes, the present study represents the first report characterizing the transcriptional profile of L. intracellularis. The complexity of the virulence phenotype was

  18. Comparative transcriptional analysis of homologous pathogenic and non-pathogenic Lawsonia intracellularis isolates in infected porcine cells.

    PubMed

    Vannucci, Fabio A; Foster, Douglas N; Gebhart, Connie J

    2012-01-01

    Lawsonia intracellularis is the causative agent of proliferative enteropathy. This disease affects various animal species, including nonhuman primates, has been endemic in pigs, and is an emerging concern in horses. Non-pathogenic variants obtained through multiple passages in vitro do not induce disease, but bacterial isolates at low passage induce clinical and pathological changes. We hypothesize that genes differentially expressed between pathogenic (passage 10) and non-pathogenic (passage 60) L. intracellularis isolates encode potential bacterial virulence factors. The present study used high-throughput sequencing technology to characterize the transcriptional profiling of a pathogenic and a non-pathogenic homologous L. intracellularis variant during in vitro infection. A total of 401 genes were exclusively expressed by the pathogenic variant. Plasmid-encoded genes and those involved in membrane transporter (e.g. ATP-binding cassette), adaptation and stress response (e.g. transcriptional regulators) were the categories mostly responsible for this wider transcriptional landscape. The entire gene repertoire of plasmid A was repressed in the non-pathogenic variant suggesting its relevant role in the virulence phenotype of the pathogenic variant. Of the 319 genes which were commonly expressed in both pathogenic and non-pathogenic variants, no significant difference was observed by comparing their normalized transcription levels (fold change±2; p<0.05). Unexpectedly, these genes demonstrated a positive correlation (r(2) = 0.81; p<0.05), indicating the involvement of gene silencing (switching off) mechanisms to attenuate virulence properties of the pathogenic variant during multiple cell passages. Following the validation of these results by reverse transcriptase-quantitative PCR using ten selected genes, the present study represents the first report characterizing the transcriptional profile of L. intracellularis. The complexity of the virulence phenotype was

  19. Novel organisms: comparing invasive species, GMOs, and emerging pathogens.

    PubMed

    Jeschke, Jonathan M; Keesing, Felicia; Ostfeld, Richard S

    2013-09-01

    Invasive species, range-expanding species, genetically modified organisms (GMOs), synthetic organisms, and emerging pathogens increasingly affect the human environment. We propose a framework that allows comparison of consecutive stages that such novel organisms go through. The framework provides a common terminology for novel organisms, facilitating knowledge exchange among researchers, managers, and policy makers that work on, or have to make effective decisions about, novel organisms. The framework also indicates that knowledge about the causes and consequences of stage transitions for the better studied novel organisms, such as invasive species, can be transferred to more poorly studied ones, such as GMOs and emerging pathogens. Finally, the framework advances understanding of how climate change can affect the establishment, spread, and impacts of novel organisms, and how biodiversity affects, and is affected by, novel organisms. PMID:23456779

  20. Phylogenetic Analysis of Downy Mildew Pathogens of Opium Poppy and PCR-Based In Planta and Seed Detection of Peronospora arborescens.

    PubMed

    Landa, Blanca B; Montes-Borrego, Miguel; Muñoz-Ledesma, Francisco J; Jiménez-Díaz, Rafael M

    2007-11-01

    ABSTRACT Severe downy mildew diseases of opium poppy (Papaver somniferum) can be caused by Peronospora arborescens and P. cristata, but differentiating between the two pathogens is difficult because they share morphological features and a similar host range. In Spain, where severe epidemics of downy mildew of opium poppy have occurred recently, the pathogen was identified as P. arborescens on the basis of morphological traits. In this current study, sequence homology and phylogenetic analyses of the internal transcribed spacer regions (ITS) of the ribosomal DNA (rDNA) were carried out with DNA from P. arborescens and P. cristata from diverse geographic origins, which suggested that only P. arborescens occurs in cultivated Papaver somniferum in Spain. Moreover, analyses of the rDNA ITS region from 27 samples of downy-mildew-affected tissues from all opium-poppy-growing regions in Spain showed that genetic diversity exists within P. arborescens populations in Spain and that these are phylogenetically distinct from P. cristata. P. cristata instead shares a more recent, common ancestor with a range of Peronospora species that includes those found on host plants that are not members of the Papaveraceae. Species-specific primers and a PCR assay protocol were developed that differentiated P. arborescens and P. cristata and proved useful for the detection of P. arborescens in symptomatic and asymptomatic opium poppy plant parts. Use of these primers demonstrated that P. arborescens can be transmitted in seeds and that commercial seed stocks collected from crops with high incidence of the disease were frequently infected. Field experiments conducted in microplots free from P. arborescens using seed stocks harvested from infected capsules further demonstrated that transmission from seedborne P. arborescens to opium poppy plants can occur. Therefore, the specific-PCR detection protocol developed in this study can be of use for epidemiological studies and diagnosing the

  1. Comparative Genomics and the Evolution of Pathogenicity in Human Pathogenic Fungi ▿

    PubMed Central

    Moran, Gary P.; Coleman, David C.; Sullivan, Derek J.

    2011-01-01

    Because most fungi have evolved to be free-living in the environment and because the infections they cause are usually opportunistic in nature, it is often difficult to identify specific traits that contribute to fungal pathogenesis. In recent years, there has been a surge in the number of sequenced genomes of human fungal pathogens, and comparison of these sequences has proved to be an excellent resource for exploring commonalities and differences in how these species interact with their hosts. In order to survive in the human body, fungi must be able to adapt to new nutrient sources and environmental stresses. Therefore, genes involved in carbohydrate and amino acid metabolism and transport and genes encoding secondary metabolites tend to be overrepresented in pathogenic species (e.g., Aspergillus fumigatus). However, it is clear that human commensal yeast species such as Candida albicans have also evolved a range of specific factors that facilitate direct interaction with host tissues. The evolution of virulence across the human pathogenic fungi has occurred largely through very similar mechanisms. One of the most important mechanisms is gene duplication and the expansion of gene families, particularly in subtelomeric regions. Unlike the case for prokaryotic pathogens, horizontal transfer of genes between species and other genera does not seem to have played a significant role in the evolution of fungal virulence. New sequencing technologies promise the prospect of even greater numbers of genome sequences, facilitating the sequencing of multiple genomes and transcriptomes within individual species, and will undoubtedly contribute to a deeper insight into fungal pathogenesis. PMID:21076011

  2. Phylogenetic relationships of the soybean sudden death syndrome pathogen Fusarium solani f. sp. phaseoli inferred from rDNA sequence data and PCR primers for its identification.

    PubMed

    O'Donnell, K; Gray, L E

    1995-01-01

    Phylogenetic relationships of several species within the Fusarium solani-complex were investigated using characters from the nuclear ribosomal DNA. Genetic variation within 24 isolates, including 5 soybean sudden death syndrome (SDS) strains, was assessed using rDNA sequence data and restriction fragment length polymorphic markers. By these techniques, the causal agent of soybean SDS was identified as F. solani f. sp. phaseoli. In separate cladistic analyses, Plectosphaerella cucumerina and Nectria cinnabarina or F. ventricosum were used for rooting purposes. Monophyly of the F. solani-complex was strongly supported by bootstrap and decay analyses. Parsimony analysis indicates that this complex is composed of a number of phylogenetically distinct species, including Neocosmospora vasinfecta, F. solani f. sp. phaseoli, and biological species designated as MPI, MPV, and MPVI of N. haematococca. The results demonstrate complete congruence between biological and phylogenetic species within the N. haematococca-complex. In addition, DNA sequence data were used to design a PCR primer pair which could specifically amplify DNA from isolates of the SDS pathogen from infected plants. PMID:7579615

  3. Molecular diagnostics, field validation, and phylogenetic analysis of Quahog Parasite Unknown (QPX), a pathogen of the hard clam Mercenaria mercenaria.

    PubMed

    Stokes, N A; Ragone Calvo, L M; Reece, K S; Burreson, E M

    2002-12-10

    Quahog Parasite Unknown (QPX) is a protistan parasite that causes disease and mortality in the hard clam Mercenaria mercenaria. PCR primers and DNA oligonucleotide probes were designed and evaluated for sensitivity and specificity for the QPX organism specifically and for the phylum Labyrinthulomycota in general. The best performing QPX-specific primer pair amplified a 665 bp region of the QPX small-subunit ribosomal DNA (SSU rDNA) and detected as little as 1 fg cloned QPX SSU rDNA and 20 fg QPX genomic DNA. The primers did not amplify DNA of uninfected hard clams M. mercenaria or of the thraustochytrids Schizochytrium aggregatum, Thraustochytrium aureum, and T. striatum. The general labyrinthulomycete primers, which were designed to offer broader specificity than the QPX primers, amplified a 435 bp region of SSU rDNA from QPX, and a 436 to 437 bp region of SSU rDNA from S. aggregatum, T. aureum, and T. striatum, but did not amplify that of the clam M. mercenaria. Field validation of the QPX-specific primer pair, through comparative sampling of 224 clams collected over a 16 mo period from a QPX endemic site in Virginia, USA, indicated that the PCR assay is equivalent to histological diagnosis if initially negative PCR products are reamplified. Oligonucleotide DNA probes specific for QPX and the phylum Labyrinthulomycota were evaluated for in situ hybridization assays of cell smears or paraffin-embedded tissues. Two DNA probes for QPX offered limited sensitivity when used independently; however, when used together as a probe cocktail, sensitivity was greatly enhanced. The probe cocktail hybridized to putative QPX organisms in tissues of hard clams collected from Virginia, New Jersey, Massachusetts and Canada, suggesting that the QPX organisms in these areas are either very closely related or the same species. The QPX probe cocktail did not hybridize with clam tissue or with the thraustochytrids S. aggregatum, T. aureum, and T. striatum. The labyrinthulomycete DNA

  4. Comparative phylogenetic microarray analysis of microbial communities in TCE-contaminated soils.

    PubMed

    Nemir, Audra; David, Maude M; Perrussel, Ronan; Sapkota, Amy; Simonet, Pascal; Monier, Jean-Michel; Vogel, Timothy M

    2010-07-01

    The arrival of chemicals in a soil or groundwater ecosystem could upset the natural balance of the microbial community. Since soil microorganisms are the first to be exposed to the chemicals released into the soil environment, we evaluated the use of a phylogenetic microarray as a bio-indicator of community perturbations due to the exposure to trichloroethylene (TCE). The phylogenetic microarray, which measures the presence of different members of the soil community, was used to evaluate unpolluted soils exposed to TCE as well as to samples from historically TCE polluted sites. We were able to determine an apparent threshold at which the microbial community structure was significantly affected (about 1ppm). In addition, the members of the microbial community most affected were identified. This approach could be useful for assessing environmental impact of chemicals on the biosphere as well as important members of the microbial community involved in TCE degradation. PMID:20444493

  5. Comparative Analysis of Mitochondrial Genomes in Diplura (Hexapoda, Arthropoda): Taxon Sampling Is Crucial for Phylogenetic Inferences

    PubMed Central

    Chen, Wan-Jun; Koch, Markus; Mallatt, Jon M.; Luan, Yun-Xia

    2014-01-01

    Two-pronged bristletails (Diplura) are traditionally classified into three major superfamilies: Campodeoidea, Projapygoidea, and Japygoidea. The interrelationships of these three superfamilies and the monophyly of Diplura have been much debated. Few previous studies included Projapygoidea in their phylogenetic considerations, and its position within Diplura still is a puzzle from both morphological and molecular points of view. Until now, no mitochondrial genome has been sequenced for any projapygoid species. To fill in this gap, we determined and annotated the complete mitochondrial genome of Octostigma sinensis (Octostigmatidae, Projapygoidea), and of three more dipluran species, one each from the Campodeidae, Parajapygidae, and Japygidae. All four newly sequenced dipluran mtDNAs encode the same set of genes in the same gene order as shared by most crustaceans and hexapods. Secondary structure truncations have occurred in trnR, trnC, trnS1, and trnS2, and the reduction of transfer RNA D-arms was found to be taxonomically correlated, with Campodeoidea having experienced the most reduction. Partitioned phylogenetic analyses, based on both amino acids and nucleotides of the protein-coding genes plus the ribosomal RNA genes, retrieve significant support for a monophyletic Diplura within Pancrustacea, with Projapygoidea more closely related to Campodeoidea than to Japygoidea. Another key finding is that monophyly of Diplura cannot be recovered unless Projapygoidea is included in the phylogenetic analyses; this explains the dipluran polyphyly found by past mitogenomic studies. Including Projapygoidea increased the sampling density within Diplura and probably helped by breaking up a long-branch-attraction artifact. This finding provides an example of how proper sampling is significant for phylogenetic inference. PMID:24391151

  6. Comparative cytogenetic analysis of some species of the Dendropsophus microcephalus group (Anura, Hylidae) in the light of phylogenetic inferences

    PubMed Central

    2013-01-01

    Background Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses. Results The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes. Conclusions We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also

  7. Comparative Morphology of Premolar Foramen in Lagomorphs (Mammalia: Glires) and Its Functional and Phylogenetic Implications

    PubMed Central

    Fostowicz-Frelik, Łucja; Meng, Jin

    2013-01-01

    Lagomorphs (a group that consists of pikas, hares, rabbits and allies) are notable for their conservative morphology retained for most of their over 50 million years evolutionary history. On the other hand, their remarkable morphological uniformity partly stems from a considerable number of homoplasies in cranial and dental structures that hamper phylogenetic analyses. The premolar foramen, an opening in the palate of lagomorphs, has been characterized as an important synapomorphy of one clade, Ochotonidae (pikas). Within Lagomorpha, however, its phylogenetic distribution is much wider, the foramen being present not only in all ochotonids but also in leporids and stem taxa; its morphology and incidence also varies considerably across the order, even intraspecifically. In this study, we provide a broad survey of the taxonomic distribution of the premolar foramen in extant and fossil Lagomorpha and describe in detail the morphological variation of this character within the group. Micro-computed tomography was used to examine the hard palate and infraorbital groove morphology in Poelagus (Leporidae) and Ochotona. Scans revealed the course and contacts of the canal behind the premolar foramen and structural differences between the two crown clades. We propose that the premolar foramen has evolved independently in several lineages of Lagomorpha, and we discuss development and function of this foramen in the lagomorph skull. This study shows the importance of comprehensive studies on phylogenetically informative non-dental characters in Lagomorpha. PMID:24278178

  8. A species independent universal bio-detection microarray for pathogen forensics and phylogenetic classification of unknown microorganisms

    PubMed Central

    2011-01-01

    Background The ability to differentiate a bioterrorist attack or an accidental release of a research pathogen from a naturally occurring pandemic or disease event is crucial to the safety and security of this nation by enabling an appropriate and rapid response. It is critical in samples from an infected patient, the environment, or a laboratory to quickly and accurately identify the precise pathogen including natural or engineered variants and to classify new pathogens in relation to those that are known. Current approaches for pathogen detection rely on prior genomic sequence information. Given the enormous spectrum of genetic possibilities, a field deployable, robust technology, such as a universal (any species) microarray has near-term potential to address these needs. Results A new and comprehensive sequence-independent array (Universal Bio-Signature Detection Array) was designed with approximately 373,000 probes. The main feature of this array is that the probes are computationally derived and sequence independent. There is one probe for each possible 9-mer sequence, thus 49 (262,144) probes. Each genome hybridized on this array has a unique pattern of signal intensities corresponding to each of these probes. These signal intensities were used to generate an un-biased cluster analysis of signal intensity hybridization patterns that can easily distinguish species into accepted and known phylogenomic relationships. Within limits, the array is highly sensitive and is able to detect synthetically mixed pathogens. Examples of unique hybridization signal intensity patterns are presented for different Brucella species as well as relevant host species and other pathogens. These results demonstrate the utility of the UBDA array as a diagnostic tool in pathogen forensics. Conclusions This pathogen detection system is fast, accurate and can be applied to any species. Hybridization patterns are unique to a specific genome and these can be used to decipher the identity of

  9. Genome Based Phylogeny and Comparative Genomic Analysis of Intra-Mammary Pathogenic Escherichia coli

    PubMed Central

    Richards, Vincent P.; Lefébure, Tristan; Pavinski Bitar, Paulina D.; Dogan, Belgin; Simpson, Kenneth W.; Schukken, Ynte H.; Stanhope, Michael J.

    2015-01-01

    Escherichia coli is an important cause of bovine mastitis and can cause both severe inflammation with a short-term transient infection, as well as less severe, but more chronic inflammation and infection persistence. E. coli is a highly diverse organism that has been classified into a number of different pathotypes or pathovars, and mammary pathogenic E. coli (MPEC) has been proposed as a new such pathotype. The purpose of this study was to use genome sequence data derived from both transient and persistent MPEC isolates (two isolates of each phenotype) to construct a genome-based phylogeny that places MPEC in its phylogenetic context with other E. coli pathovars. A subsidiary goal was to conduct comparative genomic analyses of these MPEC isolates with other E. coli pathovars to provide a preliminary perspective on loci that might be correlated with the MPEC phenotype. Both concatenated and consensus tree phylogenies did not support MPEC monophyly or the monophyly of either transient or persistent phenotypes. Three of the MPEC isolates (ECA-727, ECC-Z, and ECA-O157) originated from within the predominately commensal clade of E. coli, referred to as phylogroup A. The fourth MPEC isolate, of the persistent phenotype (ECC-1470), was sister group to an isolate of ETEC, falling within the E. coli B1 clade. This suggests that the MPEC phenotype has arisen on numerous independent occasions and that this has often, although not invariably, occurred from commensal ancestry. Examination of the genes present in the MPEC strains relative to the commensal strains identified a consistent presence of the type VI secretion system (T6SS) in the MPEC strains, with only occasional representation in commensal strains, suggesting that T6SS may be associated with MPEC pathogenesis and/or as an inter-bacterial competitive attribute and therefore could represent a useful target to explore for the development of MPEC specific inhibitors. PMID:25807497

  10. Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms

    PubMed Central

    2011-01-01

    Background Microorganisms produce cell-wall-degrading enzymes as part of their strategies for plant invasion/nutrition. Among these, pectin lyases (PNLs) catalyze the depolymerization of esterified pectin by a β-elimination mechanism. PNLs are grouped together with pectate lyases (PL) in Family 1 of the polysaccharide lyases, as they share a conserved structure in a parallel β-helix. The best-characterized fungal pectin lyases are obtained from saprophytic/opportunistic fungi in the genera Aspergillus and Penicillium and from some pathogens such as Colletotrichum gloeosporioides. The organism used in the present study, Colletotrichum lindemuthianum, is a phytopathogenic fungus that can be subdivided into different physiological races with different capacities to infect its host, Phaseolus vulgaris. These include the non-pathogenic and pathogenic strains known as races 0 and 1472, respectively. Results Here we report the isolation and sequence analysis of the Clpnl2 gene, which encodes the pectin lyase 2 of C. lindemuthianum, and its expression in pathogenic and non-pathogenic races of C. lindemuthianum grown on different carbon sources. In addition, we performed a phylogenetic analysis of the deduced amino acid sequence of Clpnl2 based on reported sequences of PNLs from other sources and compared the three-dimensional structure of Clpnl2, as predicted by homology modeling, with those of other organisms. Both analyses revealed an early separation of bacterial pectin lyases from those found in fungi and oomycetes. Furthermore, two groups could be distinguished among the enzymes from fungi and oomycetes: one comprising enzymes from mostly saprophytic/opportunistic fungi and the other formed mainly by enzymes from pathogenic fungi and oomycetes. Clpnl2 was found in the latter group and was grouped together with the pectin lyase from C. gloeosporioides. Conclusions The Clpnl2 gene of C. lindemuthianum shares the characteristic elements of genes coding for pectin

  11. Comparative Genomics of Sibling Fungal Pathogenic Taxa Identifies Adaptive Evolution without Divergence in Pathogenicity Genes or Genomic Structure

    PubMed Central

    Sillo, Fabiano; Garbelotto, Matteo; Friedman, Maria; Gonthier, Paolo

    2015-01-01

    It has been estimated that the sister plant pathogenic fungal species Heterobasidion irregulare and Heterobasidion annosum may have been allopatrically isolated for 34–41 Myr. They are now sympatric due to the introduction of the first species from North America into Italy, where they freely hybridize. We used a comparative genomic approach to 1) confirm that the two species are distinct at the genomic level; 2) determine which gene groups have diverged the most and the least between species; 3) show that their overall genomic structures are similar, as predicted by the viability of hybrids, and identify genomic regions that instead are incongruent; and 4) test the previously formulated hypothesis that genes involved in pathogenicity may be less divergent between the two species than genes involved in saprobic decay and sporulation. Results based on the sequencing of three genomes per species identified a high level of interspecific similarity, but clearly confirmed the status of the two as distinct taxa. Genes involved in pathogenicity were more conserved between species than genes involved in saprobic growth and sporulation, corroborating at the genomic level that invasiveness may be determined by the two latter traits, as documented by field and inoculation studies. Additionally, the majority of genes under positive selection and the majority of genes bearing interspecific structural variations were involved either in transcriptional or in mitochondrial functions. This study provides genomic-level evidence that invasiveness of pathogenic microbes can be attained without the high levels of pathogenicity presumed to exist for pathogens challenging naïve hosts. PMID:26527650

  12. Comparative Genomics of the Staphylococcus intermedius Group of Animal Pathogens

    PubMed Central

    Ben Zakour, Nouri L.; Beatson, Scott A.; van den Broek, Adri H. M.; Thoday, Keith L.; Fitzgerald, J. Ross

    2012-01-01

    The Staphylococcus intermedius group consists of three closely related coagulase-positive bacterial species including S. intermedius, Staphylococcus pseudintermedius, and Staphylococcus delphini. S. pseudintermedius is a major skin pathogen of dogs, which occasionally causes severe zoonotic infections of humans. S. delphini has been isolated from an array of different animals including horses, mink, and pigeons, whereas S. intermedius has been isolated only from pigeons to date. Here we provide a detailed analysis of the S. pseudintermedius whole genome sequence in comparison to high quality draft S. intermedius and S. delphini genomes, and to other sequenced staphylococcal species. The core genome of the SIG was highly conserved with average nucleotide identity (ANI) between the three species of 93.61%, which is very close to the threshold of species delineation (95% ANI), highlighting the close-relatedness of the SIG species. However, considerable variation was identified in the content of mobile genetic elements, cell wall-associated proteins, and iron and sugar transporters, reflecting the distinct ecological niches inhabited. Of note, S. pseudintermedius ED99 contained a clustered regularly interspaced short palindromic repeat locus of the Nmeni subtype and S. intermedius contained both Nmeni and Mtube subtypes. In contrast to S. intermedius and S. delphini and most other staphylococci examined to date, S. pseudintermedius contained at least nine predicted reverse transcriptase Group II introns. Furthermore, S. pseudintermedius ED99 encoded several transposons which were largely responsible for its multi-resistant phenotype. Overall, the study highlights extensive differences in accessory genome content between closely related staphylococcal species inhabiting distinct host niches, providing new avenues for research into pathogenesis and bacterial host-adaptation. PMID:22919635

  13. The phylogenetic placement of hypocrealean insect pathogens in the genus Polycephalomyces: an application of One Fungus One Name.

    PubMed

    Kepler, Ryan; Ban, Sayaka; Nakagiri, Akira; Bischoff, Joseph; Hywel-Jones, Nigel; Owensby, Catherine Alisha; Spatafora, Joseph W

    2013-09-01

    Understanding the systematics and evolution of clavicipitoid fungi has been greatly aided by the application of molecular phylogenetics. They are now classified in three families, largely driven by reevaluation of the morphologically and ecologically diverse genus Cordyceps. Although reevaluation of morphological features of both sexual and asexual states were often found to reflect the structure of phylogenies based on molecular data, many species remain of uncertain placement due to a lack of reliable data or conflicting morphological characters. A rigid, darkly pigmented stipe and the production of a Hirsutella-like anamorph in culture were taken as evidence for the transfer of the species Cordyceps cuboidea, Cordyceps prolifica, and Cordyceps ryogamiensis to the genus Ophiocordyceps. Data from ribosomal DNA supported these species as a single group, but were unable to infer deeper relationships in Hypocreales. Here, molecular data for ribosomal and protein coding DNA from specimens of Ophiocordyceps cuboidea, Ophiocordyceps ryogamiensis, Ophiocordyceps paracuboidea, Ophiocordyceps prolifica, Cordyceps ramosopulvinata, Cordyceps nipponica, and isolates of Polycephalomyces were combined with a broadly sampled dataset of Hypocreales. Phylogenetic analyses of these data revealed that these species represent a clade distinct from the other clavicipitoid genera. Applying the recently adopted single system of nomenclature, new taxonomic combinations are proposed for these species in the genus Polycephalomyces, which has been historically reserved for asexual or anamorphic taxa. PMID:24012301

  14. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    PubMed

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders. PMID:25180466

  15. Phylogenetic and pathogenic analysis of a novel H6N2 avian influenza virus isolated from a green peafowl in a wildlife park.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Ma, Jianzhang; Li, D Yanbing; Chen, Hualan

    2014-12-01

    H6 subtype avian influenza virus, which has been circulating among different species, causes considerable concern for both veterinary medicine and public health. We isolated a strain of H6N2 avian influenza virus from healthy green peafowl (Pavo muticus) in Qinghuangdao Wildlife Park in Hebei Province, China, in 2012. A phylogenetic analysis indicated that the isolated H6N2 strain had the same gene constellation as southern China strains, which were predominantly isolated from waterfowl distributed in Shantou, Guangxi, and Hunan in 2001-2010. The isolate showed no and low pathogenicity in chickens and ducks, respectively. However, it replicated efficiently in the lungs and turbinate of infected mice, resulting in thickened alveolar septa and moderate interstitial pneumonia. This finding raises concerns that the H6N2 subtype maybe evolve into a novel endemic avian influenza virus. Therefore, periodical surveillance of avian influenza viruses must be undertaken to monitor the advent of novel viruses. PMID:25619010

  16. Virulence genotypes, antibiotic resistance and the phylogenetic background of extraintestinal pathogenic Escherichia coli isolated from urinary tract infections of dogs and cats in Brazil.

    PubMed

    Osugui, L; de Castro, A F Pestana; Iovine, R; Irino, K; Carvalho, V M

    2014-06-25

    Urinary tract infection (UTI) is a frequent disease of humans and pets and has extra-intestinal pathogenic Escherichia coli (ExPEC) strains as one of the main etiologic agent. ExPEC are characterized by specific virulence factors and are related to a heterogeneous group of human and animal disorders, besides to be a relevant participant in the dissemination of antimicrobial resistance. The purpose of this study was to characterize E. coli strains isolated from UTI of dogs and cats for serotypes, virulence markers, phylogenetic groups and sensitivity to antimicrobial drugs. E. coli was identified as the etiologic agent of UTI in urine samples of 43 pets (7 cats and 36 dogs). Serogroups O2, O4 and O6 corresponded to more than one third of the isolates, being 62% of the total strains classified as B2, 18% as D, 16% as B1 and 4% as A. The iucD (22%), fyuA (80%), traT (51%) and cvaC (20%) genes were distributed among the four phylogenetic groups, whereas the papC/papEF (47%) and malX (67%) genes were found only in groups B2 and D. There were a high number of resistant strains, with 76% of the strains belonging to groups A, B1 and D characterized as multidrug resistant (MDR), whereas only 21% had this phenotype in the group B2. The ExPEC strains isolated in this study displayed pathotypic and phylogenetic similarities with human isolates and high percentages of drug resistance. The finding of MDR ExPEC strains suggests implications for animal and public health and deserves more investigations. PMID:24742952

  17. Is horizontal transmission really a problem for phylogenetic comparative methods? A simulation study using continuous cultural traits

    PubMed Central

    Currie, Thomas E.; Greenhill, Simon J.; Mace, Ruth

    2010-01-01

    Phylogenetic comparative methods (PCMs) provide a potentially powerful toolkit for testing hypotheses about cultural evolution. Here, we build on previous simulation work to assess the effect horizontal transmission between cultures has on the ability of both phylogenetic and non-phylogenetic methods to make inferences about trait evolution. We found that the mode of horizontal transmission of traits has important consequences for both methods. Where traits were horizontally transmitted separately, PCMs accurately reported when trait evolution was not correlated even at the highest levels of horizontal transmission. By contrast, linear regression analyses often incorrectly concluded that traits were correlated. Where simulated trait evolution was not correlated and traits were horizontally transmitted as a pair, both methods inferred increased levels of positive correlation with increasing horizontal transmission. Where simulated trait evolution was correlated, increasing rates of separate horizontal transmission led to decreasing levels of inferred correlation for both methods, but increasing rates of paired horizontal transmission did not. Furthermore, the PCM was also able to make accurate inferences about the ancestral state of traits. These results suggest that under certain conditions, PCMs can be robust to the effects of horizontal transmission. We discuss ways that future work can investigate the mode and tempo of horizontal transmission of cultural traits. PMID:21041214

  18. Proteomics and phylogenetic analysis of the cathepsin L protease family of the helminth pathogen Fasciola hepatica: expansion of a repertoire of virulence-associated factors.

    PubMed

    Robinson, Mark W; Tort, Jose F; Lowther, Jonathan; Donnelly, Sheila M; Wong, Emily; Xu, Weibo; Stack, Colin M; Padula, Matthew; Herbert, Ben; Dalton, John P

    2008-06-01

    Cathepsin L proteases secreted by the helminth pathogen Fasciola hepatica have functions in parasite virulence including tissue invasion and suppression of host immune responses. Using proteomics methods alongside phylogenetic studies we characterized the profile of cathepsin L proteases secreted by adult F. hepatica and hence identified those involved in host-pathogen interaction. Phylogenetic analyses showed that the Fasciola cathepsin L gene family expanded by a series of gene duplications followed by divergence that gave rise to three clades associated with mature adult worms (Clades 1, 2, and 5) and two clades specific to infective juvenile stages (Clades 3 and 4). Consistent with these observations our proteomics studies identified representatives from Clades 1, 2, and 5 but not from Clades 3 and 4 in adult F. hepatica secretory products. Clades 1 and 2 account for 67.39 and 27.63% of total secreted cathepsin Ls, respectively, suggesting that their expansion was positively driven and that these proteases are most critical for parasite survival and adaptation. Sequence comparison studies revealed that the expansion of cathepsin Ls by gene duplication was followed by residue changes in the S2 pocket of the active site. Our biochemical studies showed that these changes result in alterations in substrate binding and suggested that the divergence of the cathepsin L family produced a repertoire of enzymes with overlapping and complementary substrate specificities that could cleave host macromolecules more efficiently. Although the cathepsin Ls are produced as zymogens containing a prosegment and mature domain, all secreted enzymes identified by MS were processed to mature active enzymes. The prosegment region was highly conserved between the clades except at the boundary of prosegment and mature enzyme. Despite the lack of conservation at this section, sites for exogenous cleavage by asparaginyl endopeptidases and a Leu-Ser[downward arrow]His motif for

  19. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both Monocots and Dicots

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Sequencing multiple strains of the same pathogen further reveals information concerning pathogen diversity and the molecular basis of vi...

  20. Correlation of Metabolic Variables with the Number of ORFs in Human Pathogenic and Phylogenetically Related Non- or Less-Pathogenic Bacteria.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Garcia-Guevara, Jose Fernando; Rodríguez-Vázquez, Katya

    2016-06-01

    To date, a few works have performed a correlation of metabolic variables in bacteria; however specific correlations with these variables have not been reported. In this work, we included 36 human pathogenic bacteria and 18 non- or less-pathogenic-related bacteria and obtained all metabolic variables, including enzymes, metabolic pathways, enzymatic steps and specific metabolic pathways, and enzymatic steps of particular metabolic processes, from a reliable metabolic database (KEGG). Then, we correlated the number of the open reading frames (ORF) with these variables and with the proportions of these variables, and we observed a negative correlation with the proportion of enzymes (r = -0.506, p < 0.0001), metabolic pathways (r = -0.871, p < 00.0001), enzymatic reactions (r = -0.749, p < 00.0001), and with the proportions of central metabolism variables as well as a positive correlation with the proportions of multistep reactions (r = 0.650, p < 00.0001) and secondary metabolism variables. The proportion of multifunctional reactions (r: -0.114, p = 0.41) and the proportion of enzymatic steps (r: -0.205, p = 0.14) did not present a significant correlation. These correlations indicate that as the size of a genome (measured in the number of ORFs) increases, the proportion of genes that encode enzymes significantly diminishes (especially those related to central metabolism), suggesting that when essential metabolic pathways are complete, an increase in the number of ORFs does not require a similar increase in the metabolic pathways and enzymes, but only a slight increase is sufficient to cope with a large genome. PMID:26920870

  1. Comparative behavior of root pathogens in stems and roots of southeastern Pinus species.

    PubMed

    Matusick, George; Nadel, Ryan L; Walker, David M; Hossain, Mohammad J; Eckhardt, Lori G

    2016-04-01

    Root diseases are expected to become a greater threat to trees in the future due to accidental pathogen introductions and predicted climate changes, thus there is a need for accurate and efficient pathogenicity tests. For many root pathogens, these tests have been conducted in stems instead of roots. It, however, remains unclear whether stem and root inoculations are comparable for most fungal species. In this study we compared the growth and damage caused by five root pathogens (Grosmannia huntii, Grosmannia alacris, Leptographium procerum, Leptographium terebrantis, and Heterobasidion irregulare) in root and stem tissue of two Pinus species by inoculating mature trees and tissue amended agar in the laboratory. Most fungal species tested caused greater damage in roots of both pine hosts following inoculation. The relationship between root and stem damage was, however, similar when most combinations of pathogens were compared. These results suggest that although stem inoculations are not suitable for determining the actual damage potential of a given species, they may be viewed as a useful surrogate for root inoculations when comparing the relative pathogenicity of multiple species. When grown on amended agar, fungal species generally had greater growth in stem tissue, contrasting with the findings from tree inoculations. PMID:27020149

  2. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare)WRKY transcription factor family reveals putatively retained functions betweenmonocots and dicots

    SciTech Connect

    Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.; Kolukisaoglu, Uner; Harter, Klaus; Jansson, Christer; Wanke, Dierk

    2008-02-01

    WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 to 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.

  3. Your place or mine? A phylogenetic comparative analysis of marital residence in Indo-European and Austronesian societies.

    PubMed

    Fortunato, Laura; Jordan, Fiona

    2010-12-12

    Accurate reconstruction of prehistoric social organization is important if we are to put together satisfactory multidisciplinary scenarios about, for example, the dispersal of human groups. Such considerations apply in the case of Indo-European and Austronesian, two large-scale language families that are thought to represent Neolithic expansions. Ancestral kinship patterns have mostly been inferred through reconstruction of kin terminologies in ancestral proto-languages using the linguistic comparative method, and through geographical or distributional arguments based on the comparative patterns of kin terms and ethnographic kinship 'facts'. While these approaches are detailed and valuable, the processes through which conclusions have been drawn from the data fail to provide explicit criteria for systematic testing of alternative hypotheses. Here, we use language trees derived using phylogenetic tree-building techniques on Indo-European and Austronesian vocabulary data. With these trees, ethnographic data and Bayesian phylogenetic comparative methods, we statistically reconstruct past marital residence and infer rates of cultural change between different residence forms, showing Proto-Indo-European to be virilocal and Proto-Malayo-Polynesian uxorilocal. The instability of uxorilocality and the rare loss of virilocality once gained emerge as common features of both families. PMID:21041215

  4. Your place or mine? A phylogenetic comparative analysis of marital residence in Indo-European and Austronesian societies

    PubMed Central

    Fortunato, Laura; Jordan, Fiona

    2010-01-01

    Accurate reconstruction of prehistoric social organization is important if we are to put together satisfactory multidisciplinary scenarios about, for example, the dispersal of human groups. Such considerations apply in the case of Indo-European and Austronesian, two large-scale language families that are thought to represent Neolithic expansions. Ancestral kinship patterns have mostly been inferred through reconstruction of kin terminologies in ancestral proto-languages using the linguistic comparative method, and through geographical or distributional arguments based on the comparative patterns of kin terms and ethnographic kinship ‘facts’. While these approaches are detailed and valuable, the processes through which conclusions have been drawn from the data fail to provide explicit criteria for systematic testing of alternative hypotheses. Here, we use language trees derived using phylogenetic tree-building techniques on Indo-European and Austronesian vocabulary data. With these trees, ethnographic data and Bayesian phylogenetic comparative methods, we statistically reconstruct past marital residence and infer rates of cultural change between different residence forms, showing Proto-Indo-European to be virilocal and Proto-Malayo-Polynesian uxorilocal. The instability of uxorilocality and the rare loss of virilocality once gained emerge as common features of both families. PMID:21041215

  5. Morphological and phylogenetic analysis of Nosema sp. HR (Microsporidia, Nosematidae): a new microsporidian pathogen of Histia rhodope Cramer (Lepidoptera, Zygaenidae).

    PubMed

    Liu, Handeng; Ding, Songtao; Qin, Qizhong; Tang, Jun; Liu, Li; Peng, Huimin

    2015-03-01

    A new microsporidium was isolated from Histia rhodope Cramer (Lepidoptera, Zygaenidae), a pest of Bischofia javanica BL. in China. The morphology and molecular systematic of this novel microsporidian isolate had been described in this study. The spores were long oval and measured 3.1 × 1.9 μm on fresh smears. Ultrastructure of the spores was characteristic for the genus Nosema: 14-15 polar filament coils, posterior vacuole, and a diplokaryon. The sequenced rRNA gene of this isolate is 4309 bp long. The organization of the rRNA gene is 5'-LSU rRNA-ITS-SSU rRNA-IGS-5S-3', which is similar to that of other Nosema species (such as Nosema bombycis). Phylogenetic analysis based on LSU rRNA gene and SSU rRNA gene both revealed that this novel micorsporidian which isolated from H. rhodope had close relationship to the genus Nosema. Additionally, this isolate can also cause systemic infection of Bombyx mori. So, we should pay attention not only to N. bombycis, but also to other microsporidian (such as Nosema sp. HR) in sericulture in the future. PMID:25538023

  6. Comparative ribosomal protein sequence analyses of a phylogenetically defined genus, Pseudomonas, and its relatives.

    PubMed

    Ochi, K

    1995-04-01

    I analyzed various families of ribosomal proteins obtained from selected species belonging to the genus Pseudomonas sensu stricto and allied organisms which were previously classified in the genus Pseudomonas. Partial amino acid sequencing of L30 preparations revealed that the strains which I examined could be divided into three clusters. The first cluster, which was assigned to the genus Pseudomonas sensu stricto, included Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas mendocina, and Pseudomonas fluorescens. The second cluster included Burkholderia pickettii and Burkholderia plantarii. The third cluster, which was a deeply branching cluster in the stem of gram-negative bacteria, included Brevundimonas diminuta and Brevundimonas vesicularis. Despite the different levels of conservation of the N-terminal sequences of ribosomal protein families (the highest level of similarity was 74% for L27 proteins and the lowest level of similarity was 42% for L30 proteins), similar phylogenetic trees were constructed by using data obtained from sequence analyses of various ribosomal protein families, including the S20, S21, L27, L29, L31, L32, and L33 protein families. Thus, I demonstrated the efficacy of ribosomal protein analysis in bacterial taxonomy. PMID:7727274

  7. Complete Plastid Genome Sequencing of Four Tilia Species (Malvaceae): A Comparative Analysis and Phylogenetic Implications

    PubMed Central

    Cai, Jie; Ma, Peng-Fei; Li, Hong-Tao; Li, De-Zhu

    2015-01-01

    Tilia is an ecologically and economically important genus in the family Malvaceae. However, there is no complete plastid genome of Tilia sequenced to date, and the taxonomy of Tilia is difficult owing to frequent hybridization and polyploidization. A well-supported interspecific relationships of this genus is not available due to limited informative sites from the commonly used molecular markers. We report here the complete plastid genome sequences of four Tilia species determined by the Illumina technology. The Tilia plastid genome is 162,653 bp to 162,796 bp in length, encoding 113 unique genes and a total number of 130 genes. The gene order and organization of the Tilia plastid genome exhibits the general structure of angiosperms and is very similar to other published plastid genomes of Malvaceae. As other long-lived tree genera, the sequence divergence among the four Tilia plastid genomes is very low. And we analyzed the nucleotide substitution patterns and the evolution of insertions and deletions in the Tilia plastid genomes. Finally, we build a phylogeny of the four sampled Tilia species with high supports using plastid phylogenomics, suggesting that it is an efficient way to resolve the phylogenetic relationships of this genus. PMID:26566230

  8. Comparative mitogenomics of Braconidae (Insecta: Hymenoptera) and the phylogenetic utility of mitochondrial genomes with special reference to Holometabolous insects

    PubMed Central

    2010-01-01

    Background Animal mitochondrial genomes are potential models for molecular evolution and markers for phylogenetic and population studies. Previous research has shown interesting features in hymenopteran mitochondrial genomes. Here, we conducted a comparative study of mitochondrial genomes of the family Braconidae, one of the largest families of Hymenoptera, and assessed the utility of mitochondrial genomic data for phylogenetic inference at three different hierarchical levels, i.e., Braconidae, Hymenoptera, and Holometabola. Results Seven mitochondrial genomes from seven subfamilies of Braconidae were sequenced. Three of the four sequenced A+T-rich regions are shown to be inverted. Furthermore, all species showed reversal of strand asymmetry, suggesting that inversion of the A+T-rich region might be a synapomorphy of the Braconidae. Gene rearrangement events occurred in all braconid species, but gene rearrangement rates were not taxonomically correlated. Most rearranged genes were tRNAs, except those of Cotesia vestalis, in which 13 protein-coding genes and 14 tRNA genes changed positions or/and directions through three kinds of gene rearrangement events. Remote inversion is posited to be the result of two independent recombination events. Evolutionary rates were lower in species of the cyclostome group than those of noncyclostomes. Phylogenetic analyses based on complete mitochondrial genomes and secondary structure of rrnS supported a sister-group relationship between Aphidiinae and cyclostomes. Many well accepted relationships within Hymenoptera, such as paraphyly of Symphyta and Evaniomorpha, a sister-group relationship between Orussoidea and Apocrita, and monophyly of Proctotrupomorpha, Ichneumonoidea and Aculeata were robustly confirmed. New hypotheses, such as a sister-group relationship between Evanioidea and Aculeata, were generated. Among holometabolous insects, Hymenoptera was shown to be the sister to all other orders. Mecoptera was recovered as the

  9. Comparative morphology of porpoise (Cetacea: Phocoenidae) pterygoid sinuses: phylogenetic and functional implications.

    PubMed

    Racicot, Rachel A; Berta, Annalisa

    2013-01-01

    High-resolution X-ray computed tomographic scans were used to examine pterygoid sinus morphology within extant porpoise species and one delphinid (Tursiops truncatus), in order to consider: 1) intraspecific and interspecific variation among the studied species; 2) the most parsimonious sequence of character acquisition; and 3) the potential functional roles of the preorbital lobes of the sinuses in sound reflection. Scans revealed that the pterygoid/palatine regions are mediolaterally broader in the earliest diverging phocoenid (Neophocaena phocaenoides) and Tursiops truncatus than the dorsoventrally elongated sinuses observed in other species. Rostrocaudal lengths of the sphenoidal regions of the sinuses in all individuals studied are proportionally similar, indicating conservatism in this region across species. The neonate Phocoena phocoena has shorter preorbital lobes than adults, but they are still proportionally longer than Neophocaena phocaenoides and Phocoena spinipinnis. The preorbital lobes broaden mediolaterally to varying degrees across species; in particular, Phocoenoides dalli has the largest dorsal and lateral expansion of this region. Assuming the highest pulse frequency produced by porpoises is 150 kHz, all regions of the preorbital lobes are thick enough to reflect the wavelengths produced. In addition, the neonate preorbital lobes are not as elongated as they are in adults, and the dorsal third of this region may not reflect sound to the same extent. This study reinforces the importance of using nondestructive methods to quantify variation in endocranial anatomy and the value of CT data for recovering phylogenetically useful information, as well as functional roles sinuses play in concert with the soft tissue head anatomy for biosonar. PMID:22965565

  10. Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya

    2016-06-01

    DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria. PMID:27570304

  11. Comparative Analysis of Glycoside Hydrolases Activities from Phylogenetically Diverse Marine Bacteria of the Genus Arenibacter

    PubMed Central

    Bakunina, Irina; Nedashkovskaya, Olga; Balabanova, Larissa; Zvyagintseva, Tatyana; Rasskasov, Valery; Mikhailov, Valery

    2013-01-01

    A total of 16 marine strains belonging to the genus Arenibacter, recovered from diverse microbial communities associated with various marine habitats and collected from different locations, were evaluated in degradation of natural polysaccharides and chromogenic glycosides. Most strains were affiliated with five recognized species, and some presented three new species within the genus Arenibacter. No strains contained enzymes depolymerizing polysaccharides, but synthesized a wide spectrum of glycosidases. Highly active β-N-acetylglucosaminidases and α-N-acetylgalactosaminidases were the main glycosidases for all Arenibacter. The genes, encoding two new members of glycoside hydrolyses (GH) families, 20 and 109, were isolated and characterized from the genomes of Arenibacter latericius. Molecular genetic analysis using glycosidase-specific primers shows the absence of GH27 and GH36 genes. A sequence comparison with functionally-characterized GH20 and GH109 enzymes shows that both sequences are closest to the enzymes of chitinolytic bacteria Vibrio furnissii and Cellulomonas fimi of marine and terrestrial origin, as well as human pathogen Elisabethkingia meningoseptica and simbionts Akkermansia muciniphila, gut and non-gut Bacteroides, respectively. These results revealed that the genus Arenibacter is a highly taxonomic diverse group of microorganisms, which can participate in degradation of natural polymers in marine environments depending on their niche and habitat adaptations. They are new prospective candidates for biotechnological applications due to their production of unique glycosidases. PMID:23752354

  12. The Evolution of Body Size, Antennal Size and Host Use in Parasitoid Wasps (Hymenoptera: Chalcidoidea): A Phylogenetic Comparative Analysis

    PubMed Central

    Symonds, Matthew R. E.; Elgar, Mark A.

    2013-01-01

    Chalcidoid wasps represent one of the most speciose superfamilies of animals known, with ca. 23,000 species described of which many are parasitoids. They are extremely diverse in body size, morphology and, among the parasitoids, insect hosts. Parasitic chalcidoids utilise a range of behavioural adaptations to facilitate exploitation of their diverse insect hosts, but how host use might influence the evolution of body size and morphology is not known in this group. We used a phylogenetic comparative analysis of 126 chalcidoid species to examine whether body size and antennal size showed evolutionary correlations with aspects of host use, including host breadth (specificity), host identity (orders of insects parasitized) and number of plant associates. Both morphological features and identity of exploited host orders show strong phylogenetic signal, but host breadth does not. Larger body size in these wasps was weakly associated with few plant genera, and with more specialised host use, and chalcidoid wasps that parasitize coleopteran hosts tend to be larger. Intriguingly, chalcidoid wasps that parasitize hemipteran hosts are both smaller in size in the case of those parasitizing the suborder Sternorrhyncha and have relatively larger antennae, particularly in those that parasitize other hemipteran suborders. These results suggest there are adaptations in chalcidoid wasps that are specifically associated with host detection and exploitation. PMID:24205189

  13. The Comparative Method, Hypothesis Testing and Phylogenetic Analysis--An Introductory Laboratory.

    ERIC Educational Resources Information Center

    Singer, Fred; Hagen, Joel B.; Sheehy, Robert R.

    2001-01-01

    Presents a laboratory sequence that allows students to use traditional comparative methods, scientific methodology, and modern molecular data bases to test hypotheses of evolutionary relationships. (Contains 13 references.) (ASK)

  14. Characterization and phylogenetic analysis of a highly pathogenic avian influenza H5N1 virus isolated from diseased ostriches (Struthio camelus) in the Kingdom of Saudi Arabia.

    PubMed

    Ismail, Mahmoud Moussa; El-Sabagh, I M; Al-Ankari, Abdul-Rahman

    2014-06-01

    During 2007, two outbreaks of avian influenza virus (AIV) in backyard and commercial ostrich flocks were first reported in the Kingdom of Saudi Arabia (KSA). The infected ostriches suffered from depression, anorexia, and diarrhea and some exhibited sudden death. A rapid AIV-group antigen detection and real-time reverse-transcription PCR (rtRT-PCR) were initially performed on cloacal and tracheal swabs collected from diseased birds. Pools from positive-tested swabs for each flock were utilized for virus isolation in specific-pathogen-free embryonating chicken eggs. H5N1 AIV was identified in the harvested allantoic fluids by hemagglutination followed by hemagglutination inhibition and rtRT-PCR. The viruses responsible for these two outbreaks were sequenced and characterized as HPAIV H5N1 (A/ostrich/Saudi Arabia/6732-3/2007 and A/ostrich/Saudi Arabia/3489-73VIR08/ 2007) from backyard and commercial flocks, respectively. Phylogenetic analysis of both isolates revealed that the two viruses belong to clade 2.2 sublineage II and cluster with the HPAIV H5N1 isolated from falcons and turkeys during 2007 in KSA. PMID:25055639

  15. Molecular cloning of large alternative transcripts based on comparative phylogenetic analysis and exploration of an EST database.

    PubMed

    Ji, Jiabing; Wang, Rongfu

    2012-05-15

    In animals, a gene may be 50 kb or over and contain multiple alternative transcripts with sequences that are not experimentally validated. Under these special circumstances, PCR-based cloning may become very difficult. Here a simple cloning strategy is described using the mNLRC5 gene as an example. We performed comparative phylogenetic analysis between murine and human NLR protein families to anchor the translation start codon, searched an EST database with the 3' end of the genomic DNA sequence to obtain ESTs from the farthest 3' end of the gene, and isolated the full-length CDS of the mNLRC5 of about 6 kb through conventional RT-PCR and 3' RACE. PMID:22387390

  16. Comparing Luminex NxTAG-Respiratory Pathogen Panel and RespiFinder-22 for multiplex detection of respiratory pathogens.

    PubMed

    Beckmann, Christiane; Hirsch, Hans H

    2016-08-01

    Respiratory tract infection (RTI) involves a variety of viruses and bacteria, which can be conveniently detected by multiplex nucleic acid amplification testing (NAT). To compare the novel Luminex-based NxTAG-Respiratory Pathogen Panel (NxTAG-RPP) with the routine multiplex-ligation-NAT based RespiFinder-22® (RF-22), 282 respiratory specimens including nasopharyngeal swabs (71%), broncho-alveolar lavage (27%), throat swabs, tracheal secretions, and sputum (2%) from 116 children and 155 adults were extracted using a Corbett CAS1200 (Qiagen), and analyzed in parallel by the routine RF-22 and NxTAG-RPP. Concordant results were obtained in 263 (93.3%) cases consisting of concordant positives in 167 (59.2%) and concordant negatives in 96 (34%). Results were discordant in 19 (6.7%) consisting of 15 positive:negative, and 4 negative:positive results by NxTAG-RPP versus RF-22, respectively. Co-infections were observed in 10.3% with NxTAG-RPP and in 5.9% with RF-22. Most additional viral pathogens identified by the NxTAG-RPP involved dual infections with rhinovirus and RSV. Discordant samples were mainly due to low genome signals of Ct less than 36, when retested by QNAT suggesting a higher sensitivity of the NxTAG-RPP, also when detecting multiple infections. Hands-on time after extraction for 24 and 96 samples was 0.25 and <0.5 hr for the NxTAG-RPP, and 2 and 4 hr for the RF-22, respectively. The median turn-around time was 6 hr (range 5-7 hr) for NxTAG-RPP and 12 hr (range 8-16 hr) for RF-22. The NxTAG-RPP showed comparable detection rates for most respiratory pathogens, while hands-on and turn-around time were considerably shorter. The clinical significance of detecting multiple viruses needs further clinical evaluation. J. Med. Virol. 88:1319-1324, 2016. © 2016 Wiley Periodicals, Inc. PMID:26856438

  17. Comparative Genomic and Phylogenetic Analysis of the First Usutu Virus Isolate from a Human Patient Presenting with Neurological Symptoms

    PubMed Central

    Gaibani, Paolo; Cavrini, Francesca; Gould, Ernest A.; Rossini, Giada; Pierro, Anna; Landini, Maria Paola; Sambri, Vittorio

    2013-01-01

    Usutu virus (USUV) is a mosquito-borne flavivirus, belonging to the Japanese encephalitis antigenic complex, that circulates among mosquitoes and birds. We describe and analyze the complete genome sequence of the first USUV strain isolated from an immunocompromised patient with neuroinvasive disease. This USUV isolate showed an overall nucleotide identity of 99% and 96%, respectively, with the genomes of isolates from Europe and Africa. Comparison of the human USUV complete polyprotein sequence with bird-derived strains, showed two unique amino acid substitutions. In particular, one substitution (S595G) was situated in the DIII domain of the viral Envelope protein that is recognized by flavivirus neutralizing antibodies. An additional amino acid substitution (D3425E) was identified in the RNA-dependent RNA polymerase (RdRp) domain of the NS5 protein. This substitution is remarkable since E3425 is highly conserved among the other USUV isolates that were not associated with human infection. However, a similar substitution was observed in Japanese encephalitis and in West Nile viruses isolated from humans. Phylogenetic analysis of the human USUV strain revealed a close relationship with an Italian strain isolated in 2009. Analysis of synonymous nucleotide substitutions (SNSs) among the different USUV genomes showed a specific evolutionary divergence among different countries. In addition, 15 SNSs were identified as unique in the human isolate. We also identified four specific nucleotide substitutions in the 5′ and 3′ untranslated regions (UTRs) in the human isolate that were not present in the other USUV sequences. Our analyses provide the basis for further experimental studies aimed at defining the effective role of these mutations in the USUV genome, their potential role in the development of viral variants pathogenic for humans and their evolution and dispersal out of Africa. PMID:23741387

  18. How Often Do They Have Sex? A Comparative Analysis of the Population Structure of Seven Eukaryotic Microbial Pathogens

    PubMed Central

    Tomasini, Nicolás; Lauthier, Juan José; Ayala, Francisco José; Tibayrenc, Michel; Diosque, Patricio

    2014-01-01

    The model of predominant clonal evolution (PCE) proposed for micropathogens does not state that genetic exchange is totally absent, but rather, that it is too rare to break the prevalent PCE pattern. However, the actual impact of this “residual” genetic exchange should be evaluated. Multilocus Sequence Typing (MLST) is an excellent tool to explore the problem. Here, we compared online available MLST datasets for seven eukaryotic microbial pathogens: Trypanosoma cruzi, the Fusarium solani complex, Aspergillus fumigatus, Blastocystis subtype 3, the Leishmania donovani complex, Candida albicans and Candida glabrata. We first analyzed phylogenetic relationships among genotypes within each dataset. Then, we examined different measures of branch support and incongruence among loci as signs of genetic structure and levels of past recombination. The analyses allow us to identify three types of genetic structure. The first was characterized by trees with well-supported branches and low levels of incongruence suggesting well-structured populations and PCE. This was the case for the T. cruzi and F. solani datasets. The second genetic structure, represented by Blastocystis spp., A. fumigatus and the L. donovani complex datasets, showed trees with weakly-supported branches but low levels of incongruence among loci, whereby genetic structuration was not clearly defined by MLST. Finally, trees showing weakly-supported branches and high levels of incongruence among loci were observed for Candida species, suggesting that genetic exchange has a higher evolutionary impact in these mainly clonal yeast species. Furthermore, simulations showed that MLST may fail to show right clustering in population datasets even in the absence of genetic exchange. In conclusion, these results make it possible to infer variable impacts of genetic exchange in populations of predominantly clonal micro-pathogens. Moreover, our results reveal different problems of MLST to determine the genetic

  19. Comparative Genomics Reveals Insight into Virulence Strategies of Plant Pathogenic Oomycetes

    PubMed Central

    Adhikari, Bishwo N.; Hamilton, John P.; Zerillo, Marcelo M.; Tisserat, Ned; Lévesque, C. André; Buell, C. Robin

    2013-01-01

    The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence. PMID:24124466

  20. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes.

    PubMed

    Adhikari, Bishwo N; Hamilton, John P; Zerillo, Marcelo M; Tisserat, Ned; Lévesque, C André; Buell, C Robin

    2013-01-01

    The kingdom Stramenopile includes diatoms, brown algae, and oomycetes. Plant pathogenic oomycetes, including Phytophthora, Pythium and downy mildew species, cause devastating diseases on a wide range of host species and have a significant impact on agriculture. Here, we report comparative analyses on the genomes of thirteen straminipilous species, including eleven plant pathogenic oomycetes, to explore common features linked to their pathogenic lifestyle. We report the sequencing, assembly, and annotation of six Pythium genomes and comparison with other stramenopiles including photosynthetic diatoms, and other plant pathogenic oomycetes such as Phytophthora species, Hyaloperonospora arabidopsidis, and Pythium ultimum var. ultimum. Novel features of the oomycete genomes include an expansion of genes encoding secreted effectors and plant cell wall degrading enzymes in Phytophthora species and an over-representation of genes involved in proteolytic degradation and signal transduction in Pythium species. A complete lack of classical RxLR effectors was observed in the seven surveyed Pythium genomes along with an overall reduction of pathogenesis-related gene families in H. arabidopsidis. Comparative analyses revealed fewer genes encoding enzymes involved in carbohydrate metabolism in Pythium species and H. arabidopsidis as compared to Phytophthora species, suggesting variation in virulence mechanisms within plant pathogenic oomycete species. Shared features between the oomycetes and diatoms revealed common mechanisms of intracellular signaling and transportation. Our analyses demonstrate the value of comparative genome analyses for exploring the evolution of pathogenesis and survival mechanisms in the oomycetes. The comparative analyses of seven Pythium species with the closely related oomycetes, Phytophthora species and H. arabidopsidis, and distantly related diatoms provide insight into genes that underlie virulence. PMID:24124466

  1. Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

    PubMed Central

    Klosterman, Steven J.; Subbarao, Krishna V.; Kang, Seogchan; Veronese, Paola; Gold, Scott E.; Thomma, Bart P. H. J.; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D.; Barbara, Dez J.; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G.; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J.; Heiman, David I.; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A.; Dobinson, Katherine F.; Ma, Li-Jun

    2011-01-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and

  2. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics?

    PubMed

    Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo

    2014-01-01

    In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). PMID:24286763

  3. LAMP Detection Assays for Boxwood Blight Pathogens: A Comparative Genomics Approach

    PubMed Central

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; Marra, Robert E.; Crouch, Jo Anne

    2016-01-01

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well as three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. This comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens. PMID:27199028

  4. LAMP detection assays for boxwood blight pathogens: A comparative genomics approach

    DOE PAGESBeta

    Malapi-Wight, Martha; Demers, Jill E.; Veltri, Daniel; Marra, Robert E.; Crouch, Jo Anne

    2016-05-20

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well asmore » three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. In conclusion, this comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens.« less

  5. LAMP Detection Assays for Boxwood Blight Pathogens: A Comparative Genomics Approach.

    PubMed

    Malapi-Wight, Martha; Demers, Jill E; Veltri, Daniel; Marra, Robert E; Crouch, Jo Anne

    2016-01-01

    Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity and where genetic resources are limited. The objective of this study was to use comparative genomics datasets to find unique target regions suitable for the diagnosis of two fungal species causing a newly emergent blight disease of boxwood. Candidate marker regions for loop-mediated isothermal amplification (LAMP) assays were identified from draft genomes of Calonectria henricotiae and C. pseudonaviculata, as well as three related species not associated with this disease. To increase the probability of identifying unique targets, we used three approaches to mine genome datasets, based on (i) unique regions, (ii) polymorphisms, and (iii) presence/absence of regions across datasets. From a pool of candidate markers, we demonstrate LAMP assay specificity by testing related fungal species, common boxwood pathogens, and environmental samples containing 445 diverse fungal taxa. This comparative-genomics-based approach to the development of LAMP diagnostic assays is the first of its kind for fungi and could be easily applied to diagnostic marker development for other newly emergent plant pathogens. PMID:27199028

  6. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.

    PubMed

    Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H

    2011-12-01

    Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine. PMID:21968538

  7. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation

    PubMed Central

    2013-01-01

    VNTR numbers that occurred over the course of one year. Conclusions The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens. PMID:24341328

  8. Comparative genomic analysis identifies divergent genomic features of pathogenic Enterococcus cecorum including a type IC CRISPR-Cas system, a capsule locus, an epa-like locus, and putative host tissue binding proteins.

    PubMed

    Borst, Luke B; Suyemoto, M Mitsu; Scholl, Elizabeth H; Fuller, Fredrick J; Barnes, H John

    2015-01-01

    Enterococcus cecorum (EC) is the dominant enteric commensal of adult chickens and contributes to the gut consortia of many avian and mammalian species. While EC infection is an uncommon zoonosis, like other enterococcal species it can cause life-threating nosocomial infection in people. In contrast to other enterococci which are considered opportunistic pathogens, emerging pathogenic strains of EC cause outbreaks of musculoskeletal disease in broiler chickens. Typical morbidity and mortality is comparable to other important infectious diseases of poultry. In molecular epidemiologic studies, pathogenic EC strains were found to be genetically clonal. These findings suggested acquisition of specific virulence determinants by pathogenic EC. To identify divergent genomic features and acquired virulence determinants in pathogenic EC; comparative genomic analysis was performed on genomes of 3 pathogenic and 3 commensal strains of EC. Pathogenic isolates had smaller genomes with a higher GC content, and they demonstrated large regions of synteny compared to commensal isolates. A molecular phylogenetic analysis demonstrated sequence divergence in pathogenic EC genomes. At a threshold of 98% identity, 414 predicted proteins were identified that were highly conserved in pathogenic EC but not in commensal EC. Among these, divergent CRISPR-cas defense loci were observed. In commensal EC, the type IIA arrangement typical for enterococci was present; however, pathogenic EC had a type IC locus, which is novel in enterococci but commonly observed in streptococci. Potential mediators of virulence identified in this analysis included a polysaccharide capsular locus similar to that recently described for E. faecium, an epa-like locus, and cell wall associated proteins which may bind host extracellular matrix. This analysis identified specific genomic regions, coding sequences, and predicted proteins which may be related to the divergent evolution and increased virulence of emerging

  9. Comparative Genomic Analysis Identifies Divergent Genomic Features of Pathogenic Enterococcus cecorum Including a Type IC CRISPR-Cas System, a Capsule Locus, an epa-Like Locus, and Putative Host Tissue Binding Proteins

    PubMed Central

    Borst, Luke B.; Suyemoto, M. Mitsu; Scholl, Elizabeth H.; Fuller, Fredrick J.; Barnes, H. John

    2015-01-01

    Enterococcus cecorum (EC) is the dominant enteric commensal of adult chickens and contributes to the gut consortia of many avian and mammalian species. While EC infection is an uncommon zoonosis, like other enterococcal species it can cause life-threating nosocomial infection in people. In contrast to other enterococci which are considered opportunistic pathogens, emerging pathogenic strains of EC cause outbreaks of musculoskeletal disease in broiler chickens. Typical morbidity and mortality is comparable to other important infectious diseases of poultry. In molecular epidemiologic studies, pathogenic EC strains were found to be genetically clonal. These findings suggested acquisition of specific virulence determinants by pathogenic EC. To identify divergent genomic features and acquired virulence determinants in pathogenic EC; comparative genomic analysis was performed on genomes of 3 pathogenic and 3 commensal strains of EC. Pathogenic isolates had smaller genomes with a higher GC content, and they demonstrated large regions of synteny compared to commensal isolates. A molecular phylogenetic analysis demonstrated sequence divergence in pathogenic EC genomes. At a threshold of 98% identity, 414 predicted proteins were identified that were highly conserved in pathogenic EC but not in commensal EC. Among these, divergent CRISPR-cas defense loci were observed. In commensal EC, the type IIA arrangement typical for enterococci was present; however, pathogenic EC had a type IC locus, which is novel in enterococci but commonly observed in streptococci. Potential mediators of virulence identified in this analysis included a polysaccharide capsular locus similar to that recently described for E. faecium, an epa-like locus, and cell wall associated proteins which may bind host extracellular matrix. This analysis identified specific genomic regions, coding sequences, and predicted proteins which may be related to the divergent evolution and increased virulence of emerging

  10. Highly Pathogenic Avian Influenza Virus Subtype H5N1 in Africa: A Comprehensive Phylogenetic Analysis and Molecular Characterization of Isolates

    PubMed Central

    Cattoli, Giovanni; Monne, Isabella; Fusaro, Alice; Joannis, Tony M.; Lombin, Lami H.; Aly, Mona M.; Arafa, Abdel S.; Sturm-Ramirez, Katharine M.; Couacy-Hymann, Emmanuel; Awuni, Joseph A.; Batawui, Komla B.; Awoume, Kodzo A.; Aplogan, Gilbert L.; Sow, Adama; Ngangnou, Andrè C.; El Nasri Hamza, Iman M.; Gamatié, Djibo; Dauphin, Gwenaelle; Domenech, Joseph M.; Capua, Ilaria

    2009-01-01

    Highly pathogenic avian influenza virus A/H5N1 was first officially reported in Africa in early 2006. Since the first outbreak in Nigeria, this virus spread rapidly to other African countries. From its emergence to early 2008, 11 African countries experienced A/H5N1 outbreaks in poultry and human cases were also reported in three of these countries. At present, little is known of the epidemiology and molecular evolution of A/H5N1 viruses in Africa. We have generated 494 full gene sequences from 67 African isolates and applied molecular analysis tools to a total of 1,152 A/H5N1 sequences obtained from viruses isolated in Africa, Europe and the Middle East between 2006 and early 2008. Detailed phylogenetic analyses of the 8 gene viral segments confirmed that 3 distinct sublineages were introduced, which have persisted and spread across the continent over this 2-year period. Additionally, our molecular epidemiological studies highlighted the association between genetic clustering and area of origin in a majority of cases. Molecular signatures unique to strains isolated in selected areas also gave us a clearer picture of the spread of A/H5N1 viruses across the continent. Mutations described as typical of human influenza viruses in the genes coding for internal proteins or associated with host adaptation and increased resistance to antiviral drugs have also been detected in the genes coding for transmembrane proteins. These findings raise concern for the possible human health risk presented by viruses with these genetic properties and highlight the need for increased efforts to monitor the evolution of A/H5N1 viruses across the African continent. They further stress how imperative it is to implement sustainable control strategies to improve animal and public health at a global level. PMID:19290041

  11. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    PubMed Central

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2013-01-01

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes. PMID:23316438

  12. Comparative Genomics of a Plant-Pathogenic Fungus, Pyrenophora tritici-repentis, Reveals Transduplication and the Impact of Repeat Elements on Pathogenicity and Population Divergence

    SciTech Connect

    Manning, Viola A.; Pandelova, Iovanna; Dhillon, Braham; Wilhelm, Larry J.; Goodwin, Stephen B.; Berlin, Aaron M.; Figueroa, Melania; Freitag, Michael; Hane, James K.; Henrissat, Bernard; Holman, Wade H.; Kodira, Chinnappa D.; Martin, Joel; Oliver, Richard P.; Robbertse, Barbara; Schackwitz, Wendy; Schwartz, David C.; Spatafora, Joseph W.; Turgeon, B. Gillian; Yandava, Chandri; Young, Sarah; Zhou, Shiguo; Zeng, Qiandong; Grigoriev, Igor V.; Ma, Li-Jun; Ciuffetti, Lynda M.

    2012-08-16

    Pyrenophora tritici-repentis is a necrotrophic fungus causal to the disease tan spot of wheat, whose contribution to crop loss has increased significantly during the last few decades. Pathogenicity by this fungus is attributed to the production of host-selective toxins (HST), which are recognized by their host in a genotype-specific manner. To better understand the mechanisms that have led to the increase in disease incidence related to this pathogen, we sequenced the genomes of three P. tritici-repentis isolates. A pathogenic isolate that produces two known HSTs was used to assemble a reference nuclear genome of approximately 40 Mb composed of 11 chromosomes that encode 12,141 predicted genes. Comparison of the reference genome with those of a pathogenic isolate that produces a third HST, and a nonpathogenic isolate, showed the nonpathogen genome to be more diverged than those of the two pathogens. Examination of gene-coding regions has provided candidate pathogen-specific proteins and revealed gene families that may play a role in a necrotrophic lifestyle. Analysis of transposable elements suggests that their presence in the genome of pathogenic isolates contributes to the creation of novel genes, effector diversification, possible horizontal gene transfer events, identified copy number variation, and the first example of transduplication by DNA transposable elements in fungi. Overall, comparative analysis of these genomes provides evidence that pathogenicity in this species arose through an influx of transposable elements, which created a genetically flexible landscape that can easily respond to environmental changes.

  13. Comparative anatomy of gall development on Gypsophila paniculata induced by bacteria with different mechanisms of pathogenicity.

    PubMed

    Chalupowicz, L; Barash, I; Schwartz, M; Aloni, R; Manulis, S

    2006-07-01

    Galls induced on Gypsophila paniculata by Pantoea agglomerans pv. gypsophilae (Pag) and Agrobacterium tumefaciens (At), bacteria with different mechanisms of pathogenicity, were compared morphologically and anatomically. The pathogenicity of Pag is dependent on the presence of an indigenous plasmid that harbors hrp gene cluster, genes encoding Hop virulence proteins and biosynthetic genes for auxin (IAA) and cytokinins (CKs), whereas that of At involves host transformation. The Pag-induced gall was rough, brittle and exhibited limited growth, in contrast to the smooth, firm appearance and continuous growth of the At-induced gall. Anatomical analysis revealed the presence of cells with enlarged nuclei and multiple nucleoli, giant cells and suberin deposition in Pag that were absent from At-induced galls. Although circular vessels were observed in both gall types, they were more numerous and the vascular system was more organized in At. An aerenchymal tissue was observed in the upper part of the galls. Ethylene emission from Pag galls, recorded 6 days after inoculation, was eight times as great as that from non-infected controls. In contrast, a significant decrease in ethylene production was observed in Gypsophila cuttings infected with Pag mutants deficient in IAA and CK production. The results presented are best accounted for by the two pathogens having distinct pathogenicity mechanisms that lead to their differential recognition by the host as non-self (Pag) and self (At). PMID:16477460

  14. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8.

    PubMed

    Hane, James K; Anderson, Jonathan P; Williams, Angela H; Sperschneider, Jana; Singh, Karam B

    2014-05-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level "hypermutation" of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the R

  15. Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8

    PubMed Central

    Hane, James K.; Anderson, Jonathan P.; Williams, Angela H.; Sperschneider, Jana; Singh, Karam B.

    2014-01-01

    Rhizoctonia solani is a soil-borne basidiomycete fungus with a necrotrophic lifestyle which is classified into fourteen reproductively incompatible anastomosis groups (AGs). One of these, AG8, is a devastating pathogen causing bare patch of cereals, brassicas and legumes. R. solani is a multinucleate heterokaryon containing significant heterozygosity within a single cell. This complexity posed significant challenges for the assembly of its genome. We present a high quality genome assembly of R. solani AG8 and a manually curated set of 13,964 genes supported by RNA-seq. The AG8 genome assembly used novel methods to produce a haploid representation of its heterokaryotic state. The whole-genomes of AG8, the rice pathogen AG1-IA and the potato pathogen AG3 were observed to be syntenic and co-linear. Genes and functions putatively relevant to pathogenicity were highlighted by comparing AG8 to known pathogenicity genes, orthology databases spanning 197 phytopathogenic taxa and AG1-IA. We also observed SNP-level “hypermutation” of CpG dinucleotides to TpG between AG8 nuclei, with similarities to repeat-induced point mutation (RIP). Interestingly, gene-coding regions were widely affected along with repetitive DNA, which has not been previously observed for RIP in mononuclear fungi of the Pezizomycotina. The rate of heterozygous SNP mutations within this single isolate of AG8 was observed to be higher than SNP mutation rates observed across populations of most fungal species compared. Comparative analyses were combined to predict biological processes relevant to AG8 and 308 proteins with effector-like characteristics, forming a valuable resource for further study of this pathosystem. Predicted effector-like proteins had elevated levels of non-synonymous point mutations relative to synonymous mutations (dN/dS), suggesting that they may be under diversifying selection pressures. In addition, the distant relationship to sequenced necrotrophs of the Ascomycota suggests the

  16. Comparative Proteomics Analyses of Two Races of Fusarium oxysporum f. sp. conglutinans that Differ in Pathogenicity

    PubMed Central

    Li, Erfeng; Ling, Jian; Wang, Gang; Xiao, Jiling; Yang, Yuhong; Mao, Zhenchuan; Wang, Xuchu; Xie, Bingyan

    2015-01-01

    Fusarium oxysporum is a soil-inhabiting fungus that induces vascular wilt and root rot in a variety of plants. F. oxysporum f. sp. conglutinans (Foc), which comprises two races, can cause wilt disease in cabbage. Compared with race 1 (52557−TM, R1), race 2 (58385−TM, R2) exhibits much stronger pathogenicity. Here, we provide the first proteome reference maps for Foc mycelium and conidia and identify 145 proteins with different abundances among the two races. Of these proteins, most of the high-abundance proteins in the R2 mycelium and conidia are involved in carbohydrate, amino acid and ion metabolism, which indicates that these proteins may play important roles in isolate R2’s stronger pathogenicity. The expression levels of 20 typical genes demonstrate similarly altered patterns compared to the proteomic analysis. The protein glucanosyltransferase, which is involved in carbohydrate metabolism, was selected for research. We knocked out the corresponding gene (gas1) and found that Foc-∆gas1 significantly reduced growth rate and virulence compared with wild type isolates. These results deepened our understanding of the proteins related to F. oxysporum pathogenicity in cabbage Fusarium wilt and provided new opportunities to control this disease. PMID:26333982

  17. Comparative Mitochondrial Genome Analysis of Eligma narcissus and other Lepidopteran Insects Reveals Conserved Mitochondrial Genome Organization and Phylogenetic Relationships.

    PubMed

    Dai, Li-Shang; Zhu, Bao-Jian; Zhao, Yue; Zhang, Cong-Fen; Liu, Chao-Liang

    2016-01-01

    In this study, we sequenced the complete mitochondrial genome of Eligma narcissus and compared it with 18 other lepidopteran species. The mitochondrial genome (mitogenome) was a circular molecule of 15,376 bp containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and an adenine (A) + thymine (T) - rich region. The positive AT skew (0.007) indicated the occurrence of more As than Ts. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by the CGA sequence, as observed in other lepidopterans. The results of the codon usage analysis indicated that Asn, Ile, Leu, Tyr and Phe were the five most frequent amino acids. All tRNA genes were shown to be folded into the expected typical cloverleaf structure observed for mitochondrial tRNA genes. Phylogenetic relationships were analyzed based on the nucleotide sequences of 13 PCGs from other insect mitogenomes, which confirmed that E. narcissus is a member of the Noctuidae superfamily. PMID:27222440

  18. Comparative Mitochondrial Genome Analysis of Eligma narcissus and other Lepidopteran Insects Reveals Conserved Mitochondrial Genome Organization and Phylogenetic Relationships

    PubMed Central

    Dai, Li-Shang; Zhu, Bao-Jian; Zhao, Yue; Zhang, Cong-Fen; Liu, Chao-Liang

    2016-01-01

    In this study, we sequenced the complete mitochondrial genome of Eligma narcissus and compared it with 18 other lepidopteran species. The mitochondrial genome (mitogenome) was a circular molecule of 15,376 bp containing 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and an adenine (A) + thymine (T) − rich region. The positive AT skew (0.007) indicated the occurrence of more As than Ts. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by the CGA sequence, as observed in other lepidopterans. The results of the codon usage analysis indicated that Asn, Ile, Leu, Tyr and Phe were the five most frequent amino acids. All tRNA genes were shown to be folded into the expected typical cloverleaf structure observed for mitochondrial tRNA genes. Phylogenetic relationships were analyzed based on the nucleotide sequences of 13 PCGs from other insect mitogenomes, which confirmed that E. narcissus is a member of the Noctuidae superfamily. PMID:27222440

  19. The evolution of reproductive diversity in Afrobatrachia: A phylogenetic comparative analysis of an extensive radiation of African frogs.

    PubMed

    Portik, Daniel M; Blackburn, David C

    2016-09-01

    The reproductive modes of anurans (frogs and toads) are the most diverse of terrestrial vertebrates, and a major challenge is identifying selective factors that promote the evolution or retention of reproductive modes across clades. Terrestrialized anuran breeding strategies have evolved repeatedly from the plesiomorphic fully aquatic reproductive mode, a process thought to occur through intermediate reproductive stages. Several selective forces have been proposed for the evolution of terrestrialized reproductive traits, but factors such as water systems and co-evolution with ecomorphologies have not been investigated. We examined these topics in a comparative phylogenetic framework using Afrobatrachian frogs, an ecologically and reproductively diverse clade representing more than half of the total frog diversity found in Africa (∼400 species). We infer direct development has evolved twice independently from terrestrialized reproductive modes involving subterranean or terrestrial oviposition, supporting evolution through intermediate stages. We also detect associations between specific ecomorphologies and oviposition sites, and demonstrate arboreal species exhibit an overall shift toward using lentic water systems for breeding. These results indicate that changes in microhabitat use associated with ecomorphology, which allow access to novel sites for reproductive behavior, oviposition, or larval development, may also promote reproductive mode diversity in anurans. PMID:27402182

  20. Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity

    PubMed Central

    Lang, Daniel; Weiche, Benjamin; Timmerhaus, Gerrit; Richardt, Sandra; Riaño-Pachón, Diego M.; Corrêa, Luiz G. G.; Reski, Ralf; Mueller-Roeber, Bernd; Rensing, Stefan A.

    2010-01-01

    Evolutionary retention of duplicated genes encoding transcription-associated proteins (TAPs, comprising transcription factors and other transcriptional regulators) has been hypothesized to be positively correlated with increasing morphological complexity and paleopolyploidizations, especially within the plant kingdom. Here, we present the most comprehensive set of classification rules for TAPs and its application for genome-wide analyses of plants and algae. Using a dated species tree and phylogenetic comparative (PC) analyses, we define the timeline of TAP loss, gain, and expansion among Viridiplantae and find that two major bursts of gain/expansion occurred, coinciding with the water-to-land transition and the radiation of flowering plants. For the first time, we provide PC proof for the long-standing hypothesis that TAPs are major driving forces behind the evolution of morphological complexity, the latter in Plantae being shaped significantly by polyploidization and subsequent biased paleolog retention. Principal component analysis incorporating the number of TAPs per genome provides an alternate and significant proxy for complexity, ideally suited for PC genomics. Our work lays the ground for further interrogation of the shaping of gene regulatory networks underlying the evolution of organism complexity. PMID:20644220

  1. Comparative Transcriptome Analysis between the Fungal Plant Pathogens Sclerotinia sclerotiorum and S. trifoliorum Using RNA Sequencing.

    PubMed

    Qiu, Dan; Xu, Liangsheng; Vandemark, George; Chen, Weidong

    2016-03-01

    The fungal plant pathogens Sclerotinia sclerotiorum and S. trifoliorum are morphologically similar, but differ considerably in host range. In an effort to elucidate mechanisms of the host range difference, transcriptomes of the 2 species at vegetative growth stage were compared to gain further insight into commonality and uniqueness in gene expression and pathogenic mechanisms of the 2 closely related pathogens. A total of 23133 and 21043 unique transcripts were obtained from S. sclerotiorum and S. trifoliorum, respectively. Approximately 43% of the transcripts were genes with known functions for both species. Among 1411 orthologous contigs, about 10% (147) were more highly (>3-fold) expressed in S. trifoliorum than in S. sclerotiorum, and about 12% (173) of the orthologs were more highly (>3-fold) expressed in S. sclerotiorum than in S. trifoliorum. The expression levels of genes on the supercontig 30 have the highest correlation coefficient value between the 2 species. Twenty-seven contigs were found to be new and unique for S. trifoliorum. Additionally, differences in expressed genes involved in pathogenesis like oxalate biosynthesis and endopolygalacturonases were detected between the 2 species. The analyses of the transcriptomes not only discovered similarities and uniqueness in gene expression between the 2 closely related species, providing additional information for annotation the S. sclerotiorum genome, but also provided foundation for comparing the transcriptomes with host-infecting transcriptomes. PMID:26615185

  2. Sequence and phylogenetic analysis of highly pathogenic avian influenza H5N1 viruses isolated during 2006–2008 outbreaks in Pakistan reveals genetic diversity

    PubMed Central

    2012-01-01

    Background Since the first outbreak recorded in northern areas of Pakistan in early 2006, highly pathogenic avian influenza H5N1 viruses were isolated from commercial poultry and wild/domestic birds from different areas of Pakistan up to July 2008. Different isolates of H5N1 were sequenced to explore the genetic diversity of these viruses. Results Phylogenetic analysis revealed close clustering and highest sequence identity in all 8 genes to HPAI H5N1 isolates belonging to unified H5 clade 2.2, sub-lineage EMA-3 recovered from Afghanistan during the same time period. Two subgroups within Pakistani H5N1 viruses, from domestic and wild birds, were observed on the basis of their sequence homology and mutations. HPAI motif, preferred receptor specificity for α-(2, 3) linkages, potential N-linked glycosylation sites and an additional glycosylation site at the globular head of HA protein of four Pakistani H5N1 isolates. While, the amino acids associated with sensitivities to various antiviral drugs (Oseltamivir, Zanamivir, Amantadine) were found conserved for the Pakistani H5N1 isolates. Conspicuously, some important mutations observed at critical positions of antigenic sites (S141P, D155S, R162I & P181S) and at receptor binding pocket (A185T, R189K & S217P) of HA-1. A high sequence similarity between Pakistani HP H5N1 and LP H9N2 viruses was also observed. Avian like host specific markers with the exception of E627K in PB2, K356R in PA, V33I in NP, I28V in M2 and L107F in NS2 proteins were also observed. Conclusions Various point mutations in different genes of H5 viruses from Pakistan were observed during its circulation in the field. The outbreaks started in Khyber Pakhtoon Khawa (North West) province in 2006 and spread to the Southern regions over a period of time. Though migratory birds may have a role for this continued endemicity of clade 2.2 H5N1 viruses during 2006–2008 in Pakistan, the possibility of their transmission through legal or illegal poultry trade

  3. Nutritional and pathogenic fungi associated with the pine engraver beetle trigger comparable defenses in Scots pine.

    PubMed

    Villari, Caterina; Battisti, Andrea; Chakraborty, Sourav; Michelozzi, Marco; Bonello, Pierluigi; Faccoli, Massimo

    2012-07-01

    Conifer bark beetles are often associated with fungal complexes whose components have different ecological roles. Some associated species are nutritionally obligate fungi, serving as nourishment to the larvae, whereas others are pathogenic blue-stain fungi known to be involved in the interaction with host defenses. In this study we characterized the local and systemic defense responses of Scots pine (Pinus sylvestris L.) against Ophiostoma brunneo-ciliatum Math. (a blue-stain pathogen) and Hyalorhinocladiella macrospora (Franke-Grosm.) Harr. (a nutritional fungus). These fungi are the principal associates of the pine engraver beetle, Ips acuminatus (Gyll.). Host responses were studied following inoculation with the fungi, singly and as a fungal complex, and by identifying and quantifying terpenoids, phenolic compounds and lignin. Although the length of the necrotic lesions differed between control (wound) and fungal treatments, only two compounds (pinosylvin monomethyl ether and (+)-α-pinene) were significantly affected by the presence of the fungi, indicating that Scots pine has a generic, rather than specific, induced response. The fact that both nutritional and blue-stain fungi triggered comparable induced defense responses suggests that even a non-pathogenic fungus may participate in exhausting host plant defenses, indirectly assisting in the beetle establishment process. Our findings contribute to the further development of current theory on the role of associated fungal complexes in bark beetle ecology. PMID:22718525

  4. Comparative Genomic Analysis of Malaria Mosquito Vector-Associated Novel Pathogen Elizabethkingia anophelis

    PubMed Central

    Teo, Jeanette; Tan, Sean Yang-Yi; Liu, Yang; Tay, Martin; Ding, Yichen; Li, Yingying; Kjelleberg, Staffan; Givskov, Michael; Lin, Raymond T.P.; Yang, Liang

    2014-01-01

    Acquisition of Elizabethkingia infections in intensive care units (ICUs) has risen in the past decade. Treatment of Elizabethkingia infections is challenging due to the lack of effective therapeutic regimens, leading to a high mortality rate. Elizabethkingia infections have long been attributed to Elizabethkingia meningoseptica. Recently, we used whole-genome sequencing to reveal that E. anophelis is the pathogenic agent for an Elizabethkingia outbreak at two ICUs. We performed comparative genomic analysis of seven hospital-isolated E. anophelis strains with five available Elizabethkingia spp. genomes deposited in the National Center for Biotechnology Information Database. A pan-genomic approach was applied to identify the core- and pan-genome for the Elizabethkingia genus. We showed that unlike the hospital-isolated pathogen E. meningoseptica ATCC 12535 strain, the hospital-isolated E. anophelis strains have genome content and organization similar to the E. anophelis Ag1 and R26 strains isolated from the midgut microbiota of the malaria mosquito vector Anopheles gambiae. Both the core- and accessory genomes of Elizabethkingia spp. possess genes conferring antibiotic resistance and virulence. Our study highlights that E. anophelis is an emerging bacterial pathogen for hospital environments. PMID:24803570

  5. Comparative pathogenicity of four strains of Aleutian disease virus for pastel and sapphire mink.

    PubMed Central

    Hadlow, W J; Race, R E; Kennedy, R C

    1983-01-01

    Information was sought on the comparative pathogenicity of four North American strains (isolates) of Aleutian disease virus for royal pastel (a non-Aleutian genotype) and sapphire (an Aleutian genotype) mink. The four strains (Utah-1, Ontario [Canada], Montana, and Pullman [Washington]), all of mink origin, were inoculated intraperitoneally and intranasally in serial 10-fold dilutions. As indicated by the appearance of specific antibody (counterimmunoelectrophoresis test), all strains readily infected both color phases of mink, and all strains were equally pathogenic for sapphire mink. Not all strains, however, regularly caused Aleutian disease in pastel mink. Infection of pastel mink with the Utah-1 strain invariably led to fatal disease. Infection with the Ontario strain caused fatal disease nearly as often. The Pullman strain, by contrast, almost never caused disease in infected pastel mink. The pathogenicity of the Montana strain for this color phase was between these extremes. These findings emphasize the need to distinguish between infection and disease when mink are exposed to Aleutian disease virus. The distinction has important implications for understanding the natural history of Aleutian disease virus infection in ranch mink. PMID:6193063

  6. Use of molecular markers to compare Fusarium verticillioides pathogenic strains isolated from plants and humans.

    PubMed

    Chang, S C; Macêdo, D P C; Souza-Motta, C M; Oliveira, N T

    2013-01-01

    Fusarium verticillioides is a pathogen of agriculturally important crops, especially maize. It is considered one of the most important pathogens responsible for fumonisin contamination of food products, which causes severe, chronic, and acute intoxication in humans and animals. Moreover, it is recognized as a cause of localized infections in immunocompetent patients and disseminated infections among severely immunosuppressed patients. Several molecular tools have been used to analyze the intraspecific variability of fungi. The objective of this study was to use molecular markers to compare pathogenic isolates of F. verticillioides and isolates of the same species obtained from clinical samples of patients with Fusarium mycoses. The molecular markers that we used were inter-simple sequence repeat markers (primers GTG5 and GACA4), intron splice site primer (primer EI1), random amplified polymorphic DNA marker (primer OPW-6), and restriction fragment length polymorphism-internal transcribed spacer (ITS) from rDNA. From the data obtained, clusters were generated based on the UPGMA clustering method. The amplification products obtained using primers ITS4 and ITS5 and loci ITS1-5.8-ITS2 of the rDNA yielded fragments of approximately 600 bp for all the isolates. Digestion of the ITS region fragment using restriction enzymes such as EcoRI, DraI, BshI, AluI, HaeIII, HinfI, MspI, and PstI did not permit differentiation among pathogenic and clinical isolates. The inter-simple sequence repeat, intron splice site primer, and random amplified polymorphic DNA markers presented high genetic homogeneity among clinical isolates in contrast to the high variability found among the phytopathogenic isolates of F. verticillioides. PMID:24065642

  7. Comparative Analysis of Protein Glycosylation Pathways in Humans and the Fungal Pathogen Candida albicans

    PubMed Central

    Martínez-Duncker, Iván; Díaz-Jímenez, Diana F.; Mora-Montes, Héctor M.

    2014-01-01

    Protein glycosylation pathways are present in all kingdoms of life and are metabolic pathways found in all the life kingdoms. Despite sharing commonalities in their synthesis, glycans attached to glycoproteins have species-specific structures generated by the presence of different sets of enzymes and acceptor substrates in each organism. In this review, we present a comparative analysis of the main glycosylation pathways shared by humans and the fungal pathogen Candida albicans: N-linked glycosylation, O-linked mannosylation and glycosylphosphatidylinositol-anchorage. The knowledge of similarities and divergences between these metabolic pathways could help find new pharmacological targets for C. albicans infection. PMID:25104959

  8. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    PubMed Central

    2008-01-01

    Background The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU r

  9. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms.

    PubMed

    Raman, Gurusamy; Park, SeonJoo

    2016-01-01

    Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of this study will

  10. The Complete Chloroplast Genome Sequence of Ampelopsis: Gene Organization, Comparative Analysis, and Phylogenetic Relationships to Other Angiosperms

    PubMed Central

    Raman, Gurusamy; Park, SeonJoo

    2016-01-01

    Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of this study will

  11. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation.

    PubMed

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  12. Comparative Resistance of Bacterial Foodborne Pathogens to Non-thermal Technologies for Food Preservation

    PubMed Central

    Cebrián, Guillermo; Mañas, Pilar; Condón, Santiago

    2016-01-01

    In this paper the resistance of bacterial foodborne pathogens to manosonication (MS), pulsed electric fields (PEFs), high hydrostatic pressure (HHP), and UV-light (UV) is reviewed and compared. The influence of different factors on the resistance of bacterial foodborne pathogens to these technologies is also compared and discussed. Only results obtained under harmonized experimental conditions have been considered. This has allowed us to establish meaningful comparisons and draw significant conclusions. Among the six microorganisms here considered, Staphyloccocus aureus is the most resistant foodborne pathogen to MS and HHP and Listeria monocytogenes to UV. The target microorganism of PEF would change depending on the treatment medium pH. Thus, L. monocytogenes is the most PEF resistant microorganism at neutral pH but Gram-negatives (Escherichia coli, Salmonella spp., Cronobacter sakazakii, Campylobacter jejuni) would display a similar or even higher resistance at acidic pH. It should be noted that, in acidic products, the baroresistance of some E. coli strains would be comparable to that of S. aureus. The factors affecting the resistance of bacterial foodborne pathogens, as well as the magnitude of the effect, varied depending on the technology considered. Inter- and intra-specific differences in microbial resistance to PEF and HHP are much greater than to MS and UV. Similarly, both the pH and aw of the treatment medium highly condition microbial resistance to PEF and HHP but no to MS or UV. Growth phase also drastically affected bacterial HHP resistance. Regarding UV, the optical properties of the medium are, by far, the most influential factor affecting its lethal efficacy. Finally, increasing treatment temperature leads to a significant increase in lethality of the four technologies, what opens the possibility of the development of combined processes including heat. The appearance of sublethally damaged cells following PEF and HHP treatments could also be

  13. Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation

    PubMed Central

    Pettengill, Emily A.; Pettengill, James B.; Binet, Rachel

    2016-01-01

    As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogeny are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens. PMID:26834722

  14. Phylogenetic Analyses of Shigella and Enteroinvasive Escherichia coli for the Identification of Molecular Epidemiological Markers: Whole-Genome Comparative Analysis Does Not Support Distinct Genera Designation.

    PubMed

    Pettengill, Emily A; Pettengill, James B; Binet, Rachel

    2015-01-01

    As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogeny are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens. PMID:26834722

  15. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    PubMed Central

    Trantas, Emmanouil A.; Licciardello, Grazia; Almeida, Nalvo F.; Witek, Kamil; Strano, Cinzia P.; Duxbury, Zane; Ververidis, Filippos; Goumas, Dimitrios E.; Jones, Jonathan D. G.; Guttman, David S.; Catara, Vittoria; Sarris, Panagiotis F.

    2015-01-01

    The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor) and P. mediterranea (Pmed), are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for genes that encode proteins involved in commercially important chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of type III secretion system and known type III effector-encoding genes from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes. Genome-mining also revealed the presence of gene clusters for biosynthesis of siderophores, polyketides, non-ribosomal peptides, and hydrogen cyanide. A highly conserved quorum sensing system was detected in all strains, although species specific differences were observed. Our study provides the basis for in-depth investigations regarding the molecular mechanisms underlying virulence strategies in the battle between plants and microbes. PMID:26300874

  16. A phylogenetic comparison of the 16S rRNA sequence of the fish pathogen, Renibacterium salmoninarum, to gram-positive bacteria.

    PubMed

    Gutenberger, S K; Giovannoni, S J; Field, K G; Fryer, J L; Rohovec, J S

    1991-01-15

    The 16S rRNA of Renibacterium salmoninarum, the causative agent of bacterial kidney disease in salmonids, was sequenced by reverse transcriptase to produce a nearly complete sequence (97%) of 1475 nucleotides. Phylogenetic comparisons to seventeen genera and signature sequence analysis indicated that R. salmoninarum was a member of the high G + C Gram-positive eubacterial subdivision although the reported G + C value is only 53%. A phylogenetic tree details the relationship of R. salmoninarum to ten actinomycetes from diverse environments. PMID:1709893

  17. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

    NASA Technical Reports Server (NTRS)

    Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.

    1985-01-01

    The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.

  18. Comparative genomic analysis of bacteriophages specific to the channel catfish pathogen Edwardsiella ictaluri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The bacterial pathogen Edwardsiella ictaluri is a primary cause of mortality in channel catfish raised commercially in aquaculture farms. Additional treatment and diagnostic regimes are needed for this enteric pathogen, motivating the discovery and characterization of bacteriophages spe...

  19. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae.

    PubMed

    Riba, G; Keita, A; Soares, G G; Ferron, P

    1986-12-01

    Mosquito fungal pathogens, Metarhizium anisopliae and Tolypocladium cylindrosporum, were compared with regard to virulence against the larvae of Aedes aegypti, Anopheles stephensi and Culex pipiens. Culex pipiens larvae were much more susceptible to M. anisopliae conidia than An. stephensi or Ae. aegypti. But Ae. aegypti and Cx. pipiens larvae were equally susceptible to T. cylindrosporum propagules which weakly attack An. stephensi. Using a high concentration conidial suspension (10(7) sp/ml) of M. anisopliae no. 139, Ae. aegypti larvae were killed immediately within 1.1 days, before intrahemocoelian invasion; but at lower concentrations (10(6) and 10(5) sp/ml), typical mycosis occurred. However, T. cylindrosporum no. 3 blastospores were much more pathogenic to Ae. aegypti larvae than conidia. Conidial suspension of 10(7) spores/ml killed 68% fourth-instar larvae, relative to the 96% invaded by blastospores under the same conditions. Presoaked conidia virulence appeared still intermediate between conidia and blastospores. At low temperatures, 15 degrees C, virulence of M. anisopliae highly decreased, while at the same temperature, T. cylindrosporum blastospores were still virulent. PMID:2906985

  20. Chronic Bacterial Pathogens: Mechanisms of Persistence

    PubMed Central

    Byndloss, Mariana X.; Tsolis, Renee M

    2015-01-01

    Summary Many bacterial pathogens can cause acute infections that are cleared with onset of adaptive immunity, however a subset of these pathogens can establish persistent, and sometimes lifelong infections. While bacteria causing chronic infections are phylogenetically diverse, they share common features in their interactions with the host that enable a protracted period of colonization. This chapter will compare the persistence strategies of two chronic pathogens from the Proteobacteria, Brucella abortus, and Salmonella enterica serovar Typhi (S. Typhi) to consider how these two pathogens, which are very different at the genomic level, can utilize common strategies to evade immune clearance to cause chronic intracellular infections of the mononuclear phagocyte system. PMID:27227304

  1. Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans

    PubMed Central

    Holland, Linda M.; Schröder, Markus S.; Turner, Siobhán A.; Taff, Heather; Andes, David; Grózer, Zsuzsanna; Gácser, Attila; Ames, Lauren; Haynes, Ken; Higgins, Desmond G.; Butler, Geraldine

    2014-01-01

    Candida parapsilosis and Candida albicans are human fungal pathogens that belong to the CTG clade in the Saccharomycotina. In contrast to C. albicans, relatively little is known about the virulence properties of C. parapsilosis, a pathogen particularly associated with infections of premature neonates. We describe here the construction of C. parapsilosis strains carrying double allele deletions of 100 transcription factors, protein kinases and species-specific genes. Two independent deletions were constructed for each target gene. Growth in >40 conditions was tested, including carbon source, temperature, and the presence of antifungal drugs. The phenotypes were compared to C. albicans strains with deletions of orthologous transcription factors. We found that many phenotypes are shared between the two species, such as the role of Upc2 as a regulator of azole resistance, and of CAP1 in the oxidative stress response. Others are unique to one species. For example, Cph2 plays a role in the hypoxic response in C. parapsilosis but not in C. albicans. We found extensive divergence between the biofilm regulators of the two species. We identified seven transcription factors and one protein kinase that are required for biofilm development in C. parapsilosis. Only three (Efg1, Bcr1 and Ace2) have similar effects on C. albicans biofilms, whereas Cph2, Czf1, Gzf3 and Ume6 have major roles in C. parapsilosis only. Two transcription factors (Brg1 and Tec1) with well-characterized roles in biofilm formation in C. albicans do not have the same function in C. parapsilosis. We also compared the transcription profile of C. parapsilosis and C. albicans biofilms. Our analysis suggests the processes shared between the two species are predominantly metabolic, and that Cph2 and Bcr1 are major biofilm regulators in C. parapsilosis. PMID:25233198

  2. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira.

    PubMed

    Fouts, Derrick E; Matthias, Michael A; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L; Haake, David A; Haft, Daniel H; Hartskeerl, Rudy; Ko, Albert I; Levett, Paul N; Matsunaga, James; Mechaly, Ariel E; Monk, Jonathan M; Nascimento, Ana L T; Nelson, Karen E; Palsson, Bernhard; Peacock, Sharon J; Picardeau, Mathieu; Ricaldi, Jessica N; Thaipandungpanit, Janjira; Wunder, Elsio A; Yang, X Frank; Zhang, Jun-Jie; Vinetz, Joseph M

    2016-02-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade's refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  3. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

    PubMed Central

    Fouts, Derrick E.; Matthias, Michael A.; Adhikarla, Haritha; Adler, Ben; Amorim-Santos, Luciane; Berg, Douglas E.; Bulach, Dieter; Buschiazzo, Alejandro; Chang, Yung-Fu; Galloway, Renee L.; Haake, David A.; Haft, Daniel H.; Hartskeerl, Rudy; Ko, Albert I.; Levett, Paul N.; Matsunaga, James; Mechaly, Ariel E.; Monk, Jonathan M.; Nascimento, Ana L. T.; Nelson, Karen E.; Palsson, Bernhard; Peacock, Sharon J.; Picardeau, Mathieu; Ricaldi, Jessica N.; Thaipandungpanit, Janjira; Wunder, Elsio A.; Yang, X. Frank; Zhang, Jun-Jie; Vinetz, Joseph M.

    2016-01-01

    Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic

  4. Comparative Genomics and Phylogenetic Analyses of Newly Cloned Genomic Regions From the Citrus Huanglongbing (HLB)-associated Bacterium Candidatus Liberibacter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (HLB), or citrus greening disease, caused by Candidatus Liberibacter species, is a serious threat to citrus production worldwide. The pathogen is a gram negative, unculturable, phloem-limited bacterium, with little known genomic information. Here, we report cloning and characterizatio...

  5. The Evolutionary Ecology of Plant Disease: A Phylogenetic Perspective.

    PubMed

    Gilbert, Gregory S; Parker, Ingrid M

    2016-08-01

    An explicit phylogenetic perspective provides useful tools for phytopathology and plant disease ecology because the traits of both plants and microbes are shaped by their evolutionary histories. We present brief primers on phylogenetic signal and the analytical tools of phylogenetic ecology. We review the literature and find abundant evidence of phylogenetic signal in pathogens and plants for most traits involved in disease interactions. Plant nonhost resistance mechanisms and pathogen housekeeping functions are conserved at deeper phylogenetic levels, whereas molecular traits associated with rapid coevolutionary dynamics are more labile at branch tips. Horizontal gene transfer disrupts the phylogenetic signal for some microbial traits. Emergent traits, such as host range and disease severity, show clear phylogenetic signals. Therefore pathogen spread and disease impact are influenced by the phylogenetic structure of host assemblages. Phylogenetically rare species escape disease pressure. Phylogenetic tools could be used to develop predictive tools for phytosanitary risk analysis and reduce disease pressure in multispecies cropping systems. PMID:27359365

  6. A Phylogenetic Comparative Study of Bantu Kinship Terminology Finds Limited Support for Its Co-Evolution with Social Organisation

    PubMed Central

    Guillon, Myrtille; Mace, Ruth

    2016-01-01

    The classification of kin into structured groups is a diverse phenomenon which is ubiquitous in human culture. For populations which are organized into large agropastoral groupings of sedentary residence but not governed within the context of a centralised state, such as our study sample of 83 historical Bantu-speaking groups of sub-Saharan Africa, cultural kinship norms guide all aspects of everyday life and social organization. Such rules operate in part through the use of differing terminological referential systems of familial organization. Although the cross-cultural study of kinship terminology was foundational in Anthropology, few modern studies have made use of statistical advances to further our sparse understanding of the structuring and diversification of terminological systems of kinship over time. In this study we use Bayesian Markov Chain Monte Carlo methods of phylogenetic comparison to investigate the evolution of Bantu kinship terminology and reconstruct the ancestral state and diversification of cousin terminology in this family of sub-Saharan ethnolinguistic groups. Using a phylogenetic tree of Bantu languages, we then test the prominent hypothesis that structured variation in systems of cousin terminology has co-evolved alongside adaptive change in patterns of descent organization, as well as rules of residence. We find limited support for this hypothesis, and argue that the shaping of systems of kinship terminology is a multifactorial process, concluding with possible avenues of future research. PMID:27008364

  7. A Phylogenetic Comparative Study of Bantu Kinship Terminology Finds Limited Support for Its Co-Evolution with Social Organisation.

    PubMed

    Guillon, Myrtille; Mace, Ruth

    2016-01-01

    The classification of kin into structured groups is a diverse phenomenon which is ubiquitous in human culture. For populations which are organized into large agropastoral groupings of sedentary residence but not governed within the context of a centralised state, such as our study sample of 83 historical Bantu-speaking groups of sub-Saharan Africa, cultural kinship norms guide all aspects of everyday life and social organization. Such rules operate in part through the use of differing terminological referential systems of familial organization. Although the cross-cultural study of kinship terminology was foundational in Anthropology, few modern studies have made use of statistical advances to further our sparse understanding of the structuring and diversification of terminological systems of kinship over time. In this study we use Bayesian Markov Chain Monte Carlo methods of phylogenetic comparison to investigate the evolution of Bantu kinship terminology and reconstruct the ancestral state and diversification of cousin terminology in this family of sub-Saharan ethnolinguistic groups. Using a phylogenetic tree of Bantu languages, we then test the prominent hypothesis that structured variation in systems of cousin terminology has co-evolved alongside adaptive change in patterns of descent organization, as well as rules of residence. We find limited support for this hypothesis, and argue that the shaping of systems of kinship terminology is a multifactorial process, concluding with possible avenues of future research. PMID:27008364

  8. Molecular cloning of IgZ heavy chain isotype in Catla catla and comparative expression profile of IgZ and IgM following pathogenic infection.

    PubMed

    Patel, Bhakti; Banerjee, Rajanya; Basu, Madhubanti; Lenka, Saswati; Samanta, Mrinal; Das, Surajit

    2016-08-01

    Immunoglobulins serve as a crucial arm of the adaptive immune system against detrimental pathogenic threats in teleosts. However, whether the novel Ig isotype IgZ is present in the Indian major carp, Catla catla, has not yet been elucidated. The present study reports the presence of IgZ ortholog in C. catla (CcIgZ) and further demonstrates its comparative tissue specific expression with IgM (CcIgM) in response to bacterial and parasitic stimulation. The putative 139 amino acid sequence of IgZ heavy chain cDNA of C. catla showed homology with IgZ constant domains of other teleosts. Phylogenetic analysis of the predicted IgZ transcript sequence clustered with previously identified IgZ heavy chain sequences of Cyprinidae family members. The inductive expression profiles of IgZ and IgM genes were evaluated in immunologically relevant tissues at 24, 48 and 72 hr post infection with Aeromonas hydrophila, Streptococcus uberis and Argulus sp. Both CcIgZ and CcIgM were expressed most strongly in the kidneys of healthy fish. Basal expression of CcIgM transcript was higher than that of CcIgZ in all the examined tissues. Stimulation with bacteria triggered significant increase of IgZ in the intestine (P < 0.001) and spleen (P < 0.01), whereas IgM was relatively up-regulated in blood (P < 0.001) after stimulation with each of the three pathogens assessed. The study is the first to report identification of IgZ in C. catla. Further, it provides insights into the differential expression profiles of IgZ and IgM isotypes against various pathogenic infection in C. catla, which may facilitate better prophylaxis again such infections. PMID:27301776

  9. Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger; Madsen, Lone; Espejo, Romilio; Middelboe, Mathias

    2016-01-01

    Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259-93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and

  10. Comparative Genome Analysis Provides Insights into the Pathogenicity of Flavobacterium psychrophilum

    PubMed Central

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Dalsgaard, Inger; Madsen, Lone; Espejo, Romilio

    2016-01-01

    Flavobacterium psychrophilum is a fish pathogen in salmonid aquaculture worldwide that causes cold water disease (CWD) and rainbow trout fry syndrome (RTFS). Comparative genome analyses of 11 F. psychrophilum isolates representing temporally and geographically distant populations were used to describe the F. psychrophilum pan-genome and to examine virulence factors, prophages, CRISPR arrays, and genomic islands present in the genomes. Analysis of the genomic DNA sequences were complemented with selected phenotypic characteristics of the strains. The pan genome analysis showed that F. psychrophilum could hold at least 3373 genes, while the core genome contained 1743 genes. On average, 67 new genes were detected for every new genome added to the analysis, indicating that F. psychrophilum possesses an open pan genome. The putative virulence factors were equally distributed among isolates, independent of geographic location, year of isolation and source of isolates. Only one prophage-related sequence was found which corresponded to the previously described prophage 6H, and appeared in 5 out of 11 isolates. CRISPR array analysis revealed two different loci with dissimilar spacer content, which only matched one sequence in the database, the temperate bacteriophage 6H. Genomic Islands (GIs) were identified in F. psychrophilum isolates 950106-1/1 and CSF 259–93, associated with toxins and antibiotic resistance. Finally, phenotypic characterization revealed a high degree of similarity among the strains with respect to biofilm formation and secretion of extracellular enzymes. Global scale dispersion of virulence factors in the genomes and the abilities for biofilm formation, hemolytic activity and secretion of extracellular enzymes among the strains suggested that F. psychrophilum isolates have a similar mode of action on adhesion, colonization and destruction of fish tissues across large spatial and temporal scales of occurrence. Overall, the genomic characterization and

  11. Comparative proteomic analysis of extracellular secreted proteins expressed by two pathogenic Acanthamoeba castellanii clinical isolates and a non-pathogenic ATCC strain.

    PubMed

    Huang, Jian-Ming; Lin, Wei-Chen; Li, Sung-Chou; Shih, Min-Hsiu; Chan, Wen-Ching; Shin, Jyh-Wei; Huang, Fu-Chin

    2016-07-01

    Acanthamoeba keratitis (AK) is a serious ocular disease caused by pathogenic Acanthamoeba gaining entry through wounds in the corneal injury; generally, patients at risk for contracting AK wear contact lenses, usually over a long period of time. Moreover, pathogenic Acanthamoeba causes serious consequences: it makes the cornea turbid and difficult to operate on, including procedures such as enucleation of the eyeball. At present, diagnosis of this disease is not straightforward, and treatment is very demanding. We have established the comparative transcriptome and extracellular secreted proteomic database according to the non-pathogenic strain ATCC 30010 and the pathogenic strains NCKU_B and NCKU_D. We identified 44 secreted proteins successfully, 10 consensus secreted proteins and 34 strain-specific secreted proteins. These proteins may provide targets for therapy and immuno-diagnosis of Acanthamoeba infections. This study shows a suitable approach to identify secreted proteins in Acanthamoeba and provides new perspectives for the study of molecules potentially involved in the AK. PMID:26995533

  12. A Proteomic approach to discover and compare interacting partners of Papillomavirus E2 proteins from diverse phylogenetic groups

    PubMed Central

    Jang, Moon Kyoo; Anderson, D. Eric; van Doorslaer, Koenraad; McBride, Alison A.

    2015-01-01

    Papillomaviruses are a very successful group of viruses that replicate persistently in localized regions of the stratified epithelium of their specific host. Infection results in pathologies ranging from asymptomatic infection, benign warts, to malignant carcinomas. Despite this diversity, papillomavirus genomes are small (7-8 kbp) and contain at most eight genes. To sustain the complex papillomaviral life cycle, each viral protein has multiple functions and interacts with and manipulates a plethora of cellular proteins. In this study, we use tandem affinity purification and mass spectrometry to identify host factors that interact with eleven different papillomavirus E2 proteins from diverse phylogenetic groups. The E2 proteins function in viral transcription and replication and correspondingly interact with host proteins involved in transcription, chromatin remodeling and modification, replication and RNA processing. PMID:25758368

  13. A proteomic approach to discover and compare interacting partners of papillomavirus E2 proteins from diverse phylogenetic groups.

    PubMed

    Jang, Moon Kyoo; Anderson, D Eric; van Doorslaer, Koenraad; McBride, Alison A

    2015-06-01

    Papillomaviruses are a very successful group of viruses that replicate persistently in localized regions of the stratified epithelium of their specific host. Infection results in pathologies ranging from asymptomatic infection, benign warts, to malignant carcinomas. Despite this diversity, papillomavirus genomes are small (7-8 kbp) and contain at most eight genes. To sustain the complex papillomaviral life cycle, each viral protein has multiple functions and interacts with and manipulates a plethora of cellular proteins. In this study, we use tandem affinity purification and MS to identify host factors that interact with 11 different papillomavirus E2 proteins from diverse phylogenetic groups. The E2 proteins function in viral transcription and replication and correspondingly interact with host proteins involved in transcription, chromatin remodeling and modification, replication, and RNA processing. PMID:25758368

  14. Comparative Proteomic Approaches to Understanding the Responses of Food-borne Pathogens to Environmental Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of how food-borne bacterial pathogens respond to environmental stress conditions enhances the ability to control these pathogens. A popular method for understanding bacterial stress responses is through the measurement of global gene expression under various growth conditions, commo...

  15. Comparative Analysis of Immune Cells Activation and Cytotoxicity upon Exposure Pathogen and Glycoconjugates

    NASA Astrophysics Data System (ADS)

    Saheb, Entsar; Tarasenko, Olga

    2010-04-01

    Peripheral mononuclear cells (PMNC) including macrophages are key players in the immune responses against pathogens. Any infection could be attenuated if PMNC would be activated and capable to kill pathogen on exposure. It was shown that glycoconjugates (GCs) play an important role in adhesion to, activation, and recognition of pathogens. Nitric oxide (NO) is a regulatory molecule released by immune cells against pathogens that include bacteria, protozoa, helminthes, and fungi. NO is a highly reactive and diffusible molecule that controls replication or intracellular killing of pathogens during infection and immune responses against infections caused by pathogens. Avirulent Bacillus anthracis Sterne spores were used as a model in our study. The purpose of this study was two-fold: A) to analyze PMNC activation through NO production and B) to determine the cytotoxicity effect based on lactate dehydrogenase (LDH) upon exposure to pathogen exerted by GCs. The latter were used "prior to," "during," and "following" PMNC exposure to pathogen in order to modulate immune responses to spores during phagocytosis. Post-phagocytosis study involved the assessment of NO and LDH release by macrophages upon exposure to spores. Results have shown that untreated PMNC released low levels of NO. However, in the presence of GCs, PMNC were activated and produced high levels of NO under all experimental conditions. In addition, the results showed that GC1, GC3 are capable of increasing PMNC activity as evidenced by higher NO levels under the "prior," "during" and "following" to pathogen exposure conditions. On the other hand, GCs were capable of controlling cytotoxicity and decreased LDH levels during phagocytosis of spores. Our findings suggest that GCs stimulate NO production by activating PMNC and decrease cytotoxicity caused by pathogens on PMNC.

  16. Comparative genomics of the Fusarium fujikuroi species complex: biosynthetic pathways metabolite production and plant pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium is a huge genus of filamentous fungi causing plant diseases in a wide range of host plants that result in high economic losses to world agriculture every year. Phylogenetic studies have shown that the genus Fusarium consists of different species complexes. One of them is the “Fusarium fujik...

  17. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  18. Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits.

    PubMed

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M; Cubero, Jaime

    2016-01-01

    Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola. PMID:27571391

  19. [Comparative urinary bactericidal activity of oral antibiotics against gram-positive pathogens].

    PubMed

    Bedenić, Branka; Budimir, Ana; Gverić, Ana; Plecko, Vanda; Vranes, Jasmina; Bubonja-Sonje, Marina; Kalenić, Smilja

    2012-01-01

    In routine bacteriological laboratories the antibacterial activity of antibiotics is determined by in vitro testing, usually by disk-diffusion test. However, in vitro testing does not always reflect antibacterial efficiency of antibiotics in vivo. In this investigation, the urine samples obtained in a single oral dose pharmacokinetic study were examined for their bactericidal activity against a range of relevant Gram-positive urinary tract pathogens. Urinary bactericidal activity of linezolid had been previously compared with ciprofloxacin but not with other oral antibiotics such as beta-lactams. Linezolid showed satisfactory urinary bactericidal titres throughout the whole testing period against all Gram-positive cocci. Fluoroquinolones displayed high and persisting levels of urinary bactericidal activity against staphylococci, but their activity against enterococci was weaker. According to the results of ex-vivo testing amoxycillin could be recommended only for infections caused by E. faecalis. Amoxycillin combined with clavulanic acid can be considered as a therapeutic option for infections caused by S. saprophyticus and E. faecalis. Older cephalosporins had high titres only against S. saprophyticus. Their drawback is a short elimination half-time in urine resulting in rapid decrease of urinary bactericidal titers during dosing interval. Furthermore, they do not show activity against enterococci due to their intrinsic resistance to cephalosporins. PMID:22930932

  20. Comparing viral metagenomics methods using a highly multiplexed human viral pathogens reagent

    PubMed Central

    Li, Linlin; Deng, Xutao; Mee, Edward T.; Collot-Teixeira, Sophie; Anderson, Rob; Schepelmann, Silke; Minor, Philip D.; Delwart, Eric

    2014-01-01

    Unbiased metagenomic sequencing holds significant potential as a diagnostic tool for the simultaneous detection of any previously genetically described viral nucleic acids in clinical samples. Viral genome sequences can also inform on likely phenotypes including drug susceptibility or neutralization serotypes. In this study, different variables of the laboratory methods often used to generate viral metagenomics libraries on the efficiency of viral detection and virus genome coverage were compared. A biological reagent consisting of 25 different human RNA and DNA viral pathogens was used to estimate the effect of filtration and nuclease digestion, DNA/RNA extraction methods, pre-amplification and the use of different library preparation kits on the detection of viral nucleic acids. Filtration and nuclease treatment led to slight decreases in the percentage of viral sequence reads and number of viruses detected. For nucleic acid extractions silica spin columns improved viral sequence recovery relative to magnetic beads and Trizol extraction. Pre-amplification using random RT-PCR while generating more viral sequence reads resulted in detection of fewer viruses, more overlapping sequences, and lower genome coverage. The ScriptSeq library preparation method retrieved more viruses and a greater fraction of their genomes than the TruSeq and Nextera methods. Viral metagenomics sequencing was able to simultaneously detect up to 22 different viruses in the biological reagent analyzed including all those detected by qPCR. Further optimization will be required for the detection of viruses in biologically more complex samples such as tissues, blood, or feces. PMID:25497414

  1. Comparative Genomics Suggests That the Human Pathogenic Fungus Pneumocystis jirovecii Acquired Obligate Biotrophy through Gene Loss

    PubMed Central

    Cissé, Ousmane H.; Pagni, Marco; Hauser, Philippe M.

    2014-01-01

    Pneumocystis jirovecii is a fungal parasite that colonizes specifically humans and turns into an opportunistic pathogen in immunodeficient individuals. The fungus is able to reproduce extracellularly in host lungs without eliciting massive cellular death. The molecular mechanisms that govern this process are poorly understood, in part because of the lack of an in vitro culture system for Pneumocystis spp. In this study, we explored the origin and evolution of the putative biotrophy of P. jirovecii through comparative genomics and reconstruction of ancestral gene repertoires. We used the maximum parsimony method and genomes of related fungi of the Taphrinomycotina subphylum. Our results suggest that the last common ancestor of Pneumocystis spp. lost 2,324 genes in relation to the acquisition of obligate biotrophy. These losses may result from neutral drift and affect the biosyntheses of amino acids and thiamine, the assimilation of inorganic nitrogen and sulfur, and the catabolism of purines. In addition, P. jirovecii shows a reduced panel of lytic proteases and has lost the RNA interference machinery, which might contribute to its genome plasticity. Together with other characteristics, that is, a sex life cycle within the host, the absence of massive destruction of host cells, difficult culturing, and the lack of virulence factors, these gene losses constitute a unique combination of characteristics which are hallmarks of both obligate biotrophs and animal parasites. These findings suggest that Pneumocystis spp. should be considered as the first described obligate biotrophs of animals, whose evolution has been marked by gene losses. PMID:25062922

  2. Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria.

    PubMed

    Green, Keith D; Pricer, Rachel E; Stewart, Megan N; Garneau-Tsodikova, Sylvie

    2015-06-12

    Antibiotic resistance is a growing problem worldwide. Of particular importance is the resistance of Mycobacterium tuberculosis (Mtb) to currently available antibiotics used in the treatment of infected patients. Up-regulation of an aminoglycoside (AG) acetyltransferase, the enhanced intracellular survival (Eis) protein of Mtb (Eis_Mtb), is responsible for resistance to the second-line injectable drug kanamycin A in a number of Mtb clinical isolates. This acetyltransferase is known to modify AGs, not at a single position, as usual for this type of enzyme, but at multiple amine sites. We identified, using in silico techniques, 22 homologues from a wide variety of bacteria, that we then cloned, purified, and biochemically studied. From the selected Eis homologues, 7 showed the ability to modify AGs to various degrees and displayed both similarities and differences when compared to Eis_Mtb. In addition, an inhibitor proved to be active against all homologues tested. Our findings show that this family of acetyltransferase enzymes exists in both mycobacteria and non-mycobacteria and in both pathogenic and nonpathogenic species. The bacterial strains described herein should be monitored for rising resistance rates to AGs. PMID:27622743

  3. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics

    PubMed Central

    Pang, Maoda; Jiang, Jingwei; Xie, Xing; Wu, Yafeng; Dong, Yuhao; Kwok, Amy H. Y.; Zhang, Wei; Yao, Huochun; Lu, Chengping; Leung, Frederick C.; Liu, Yongjie

    2015-01-01

    Outbreaks in fish of motile Aeromonad septicemia (MAS) caused by Aeromonas hydrophila have caused a great concern worldwide. Here, for the first time, we provide two complete genomes of epidemic A. hydrophila strains isolated in China. To gain an insight into the pathogenicity of epidemic A. hydrophila, we performed comparative genomic analyses of five epidemic strains belonging to sequence type (ST) 251, together with the environmental strain ATCC 7966T. We found that the known virulence factors, including a type III secretion system, a type VI secretion system and lateral flagella, are not required for the high virulence of the ST251 clonal group. Additionally, our work identifies three utilization pathways for myo-inositol, sialic acid and L-fucose providing clues regarding the factors that underlie the epidemic and virulent nature of ST251 A. hydrophila. Based on the geographical distribution and biological resources of the ST251 clonal group, we conclude that ST251 is a high-risk clonal group of A. hydrophila which may be responsible for the MAS outbreaks in China and the southeastern United States. PMID:26014286

  4. Comparative Methylome Analysis of the Occasional Ruminant Respiratory Pathogen Bibersteinia trehalosi.

    PubMed

    Anton, Brian P; Harhay, Gregory P; Smith, Timothy P L; Blom, Jochen; Roberts, Richard J

    2016-01-01

    We examined and compared both the methylomes and the modification-related gene content of four sequenced strains of Bibersteinia trehalosi isolated from the nasopharyngeal tracts of Nebraska cattle with symptoms of bovine respiratory disease complex. The methylation patterns and the encoded DNA methyltransferase (MTase) gene sets were different between each strain, with the only common pattern being that of Dam (GATC). Among the observed patterns were three novel motifs attributable to Type I restriction-modification systems. In some cases the differences in methylation patterns corresponded to the gain or loss of MTase genes, or to recombination at target recognition domains that resulted in changes of enzyme specificity. However, in other cases the differences could be attributed to differential expression of the same MTase gene across strains. The most obvious regulatory mechanism responsible for these differences was slipped strand mispairing within short sequence repeat regions. The combined action of these evolutionary forces allows for alteration of different parts of the methylome at different time scales. We hypothesize that pleiotropic transcriptional modulation resulting from the observed methylomic changes may be involved with the switch between the commensal and pathogenic states of this common member of ruminant microflora. PMID:27556252

  5. Comparative Methylome Analysis of the Occasional Ruminant Respiratory Pathogen Bibersteinia trehalosi

    PubMed Central

    Smith, Timothy P. L.; Blom, Jochen; Roberts, Richard J.

    2016-01-01

    We examined and compared both the methylomes and the modification-related gene content of four sequenced strains of Bibersteinia trehalosi isolated from the nasopharyngeal tracts of Nebraska cattle with symptoms of bovine respiratory disease complex. The methylation patterns and the encoded DNA methyltransferase (MTase) gene sets were different between each strain, with the only common pattern being that of Dam (GATC). Among the observed patterns were three novel motifs attributable to Type I restriction-modification systems. In some cases the differences in methylation patterns corresponded to the gain or loss of MTase genes, or to recombination at target recognition domains that resulted in changes of enzyme specificity. However, in other cases the differences could be attributed to differential expression of the same MTase gene across strains. The most obvious regulatory mechanism responsible for these differences was slipped strand mispairing within short sequence repeat regions. The combined action of these evolutionary forces allows for alteration of different parts of the methylome at different time scales. We hypothesize that pleiotropic transcriptional modulation resulting from the observed methylomic changes may be involved with the switch between the commensal and pathogenic states of this common member of ruminant microflora. PMID:27556252

  6. Comparative pathogenicity of three genetically distinct Trypanosoma congolense-types in inbred Balb/c mice.

    PubMed

    Bengaly, Z; Sidibe, I; Boly, H; Sawadogo, L; Desquesnes, M

    2002-04-30

    Inbred Balb/c mice were infected with three clones of Trypanosoma congolense (Sam.28.1, Dind.3.1 and K60.1A) corresponding, respectively, to the three genetically distinct types (savannah, forest and kilifi) defined within this species, for the purpose of comparing their pathogenicity for a better understanding of the epidemiology of African trypanosomosis. Another clone of savannah type, IL 3000, was also tested simultaneously to study a probable strain variation. Both the clones of savannah type were found of extreme virulence with loss of appetite, rough hair, rapid respiration, lethargy, and all mice died within a week. Parasitaemias evolved rapidly to the first peak by day 3-5 post-inoculation without any remission and the course of disease was correlated positively with the prepatent period. The clones of the forest type and the kilifi type were of low virulence with chronic infection and symptoms progressively less patent throughout the infection; only one mouse died in each experimental group. PMID:11900925

  7. The broader evolutionary lessons to be learned from a comparative and phylogenetic analysis of primate muscle morphology.

    PubMed

    Diogo, Rui; Wood, Bernard

    2013-11-01

    The present publication reviews the broader evolutionary implications of our long-term study of primate musculature. It summarizes the implications of the study for our understanding of the use of myological characters for phylogenetic reconstruction, for assessing the importance of homoplasy and reversions in evolution, and for our understanding of Dollo's law, the notion of 'direction' in evolution, the common myth of human complexity, the tempo and mode of primate and human evolutionary history, adaptive radiations, the notion that 'common' equals 'primitive' and the influence of morphogenesis on the variability of head, neck, pectoral and upper limb muscles. Among other results our study shows that myological characters are useful for phylogenetic reconstruction. The results also stress the importance of homoplasy and of evolutionary reversions in morphological evolution, and they provide examples of reversions that violate Dollo's law due to the retention of ancestral developmental pathways. They also show that contrary to the idea of a 'general molecular slow-down of hominoids' the rates of muscle evolution at the nodes leading to and within the hominoid clade are higher than those in most other primate clades. However, there is no evidence of a general trend or 'directionality' towards an increasing complexity during the evolutionary history of hominoids and of modern humans in particular, at least regarding the number of muscles or of muscle bundles. The rates of muscle evolution at the major euarchontan and primate nodes are different, but within each major primate clade (Strepsirrhini, Platyrrhini, Cercopithecidae and Hominoidea) the rates at the various nodes, and particularly at the nodes leading to the higher groups (i.e. those including more than one genus) are strikingly similar. Our results also support, in general terms, the assumption that 'common is primitive' and they lend some support for the 'vertebrate-specific model' in the sense that during

  8. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases

    PubMed Central

    Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca2+-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65°C and retained ≥ 97% activity after incubation at 50°C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  9. Analysis of Comparative Sequence and Genomic Data to Verify Phylogenetic Relationship and Explore a New Subfamily of Bacterial Lipases.

    PubMed

    Masomian, Malihe; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Basri, Mahiran

    2016-01-01

    Thermostable and organic solvent-tolerant enzymes have significant potential in a wide range of synthetic reactions in industry due to their inherent stability at high temperatures and their ability to endure harsh organic solvents. In this study, a novel gene encoding a true lipase was isolated by construction of a genomic DNA library of thermophilic Aneurinibacillus thermoaerophilus strain HZ into Escherichia coli plasmid vector. Sequence analysis revealed that HZ lipase had 62% identity to putative lipase from Bacillus pseudomycoides. The closely characterized lipases to the HZ lipase gene are from thermostable Bacillus and Geobacillus lipases belonging to the subfamily I.5 with ≤ 57% identity. The amino acid sequence analysis of HZ lipase determined a conserved pentapeptide containing the active serine, GHSMG and a Ca(2+)-binding motif, GCYGSD in the enzyme. Protein structure modeling showed that HZ lipase consisted of an α/β hydrolase fold and a lid domain. Protein sequence alignment, conserved regions analysis, clustal distance matrix and amino acid composition illustrated differences between HZ lipase and other thermostable lipases. Phylogenetic analysis revealed that this lipase represented a new subfamily of family I of bacterial true lipases, classified as family I.9. The HZ lipase was expressed under promoter Plac using IPTG and was characterized. The recombinant enzyme showed optimal activity at 65 °C and retained ≥ 97% activity after incubation at 50 °C for 1h. The HZ lipase was stable in various polar and non-polar organic solvents. PMID:26934700

  10. Phylogenetic analysis of a novel H6N6 avian influenza virus isolated from a green peafowl in China and its pathogenic potential in mice.

    PubMed

    Fan, Zhaobin; Ci, Yanpeng; Ma, Yixin; Liu, Liling; Wang, Deli; Ma, Jianzhang; Li, Yanbing; Chen, Hualan

    2014-12-01

    To explore the ecology of the H6 subtype avian influenza viruses in Hebei Province, China, a long-term surveillance was conducted in 2012 among domestic poultry and birds in a wildlife park. In this study, we report the characterization of a novel H6N6 avian influenza virus isolated from a healthy green peafowl in Qinghuangdao Wildlife Park in 2012. A phylogenetic analysis indicated that the isolated H6N6 strain has the same gene constellation as the ST3367-like strains, which are mainly distributed in southern and eastern China. A mouse experiment showed that the isolate replicated efficiently in the lungs and turbinates of infected mice without previous adaptation, resulting in locally thickened alveolar septa and interstitial pneumonia. Further studies of the H6 subtype viruses are required to clarify their evolutionary pattern in north China, which will benefit disease control and pandemic preparedness for novel viruses. PMID:25220620

  11. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  12. Comparative molecular analyses of Borrelia burgdorferi sensu stricto strains B31 and N40D10/E9 and determination of their pathogenicity

    PubMed Central

    2012-01-01

    Background Lyme disease in the United States is caused primarily by B. burgdorferi sensu stricto while other species are also prevalent in Europe. Genetic techniques have identified several chromosomal and plasmid-borne regulatory and virulence factors involved in Lyme pathogenesis. B31 and N40 are two widely studied strains of B. burgdorferi, which belong to two different 16 S-23 S rRNA spacer types (RST) and outer surface protein C (OspC) allelic groups. However, the presence of several known virulence factors in N40 has not been investigated. This is the first comprehensive study that compared these two strains both in vitro and using the mouse model of infection. Results Phylogenetic analyses predict B31 to be more infectious. However, our studies here indicate that N40D10/E9 is more infectious than the B31 strain at lower doses of inoculation in the susceptible C3H mice. Based-upon a careful analyses of known adhesins of these strains, it is predicted that the absence of a known fibronectin-glycosaminoglycan binding adhesin, bbk32, in the N40 strain could at least partially be responsible for reduction in its binding to Vero cells in vitro. Nevertheless, this difference does not affect the infectivity of N40D10/E9 strain. The genes encoding known regulatory and virulence factors critical for pathogenesis were detected in both strains. Differences in the protein profiles of these B. burgdorferi strains in vitro suggest that the novel, differentially expressed molecules may affect infectivity of B. burgdorferi. Further exacerbation of these molecular differences in vivo could affect the pathogenesis of spirochete strains. Conclusion Based upon the studies here, it can be predicted that N40D10/E9 disseminated infection at lower doses may be enhanced by its lower binding to epithelial cells at the site of inoculation due to the absence of BBK32. We suggest that complete molecular analyses of virulence factors followed by their evaluation using the mouse infection

  13. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    PubMed

    Thomson, Nicholas R; Howard, Sarah; Wren, Brendan W; Holden, Matthew T G; Crossman, Lisa; Challis, Gregory L; Churcher, Carol; Mungall, Karen; Brooks, Karen; Chillingworth, Tracey; Feltwell, Theresa; Abdellah, Zahra; Hauser, Heidi; Jagels, Kay; Maddison, Mark; Moule, Sharon; Sanders, Mandy; Whitehead, Sally; Quail, Michael A; Dougan, Gordon; Parkhill, Julian; Prentice, Michael B

    2006-12-15

    The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the

  14. Comparing wastewater chemicals, indicator bacteria concentrations, and bacterial pathogen genes as fecal pollution indicators

    USGS Publications Warehouse

    Haack, S.K.; Duris, J.W.; Fogarty, L.R.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Meyer, M.T.

    2009-01-01

    The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL-1, human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. The Predicted Secretome of the Plant Pathogenic Fungus Fusarium graminearum: A Refined Comparative Analysis

    PubMed Central

    Brown, Neil A.; Antoniw, John; Hammond-Kosack, Kim E.

    2012-01-01

    The fungus Fusarium graminearum forms an intimate association with the host species wheat whilst infecting the floral tissues at anthesis. During the prolonged latent period of infection, extracellular communication between live pathogen and host cells must occur, implying a role for secreted fungal proteins. The wheat cells in contact with fungal hyphae subsequently die and intracellular hyphal colonisation results in the development of visible disease symptoms. Since the original genome annotation analysis was done in 2007, which predicted the secretome using TargetP, the F. graminearum gene call has changed considerably through the combined efforts of the BROAD and MIPS institutes. As a result of the modifications to the genome and the recent findings that suggested a role for secreted proteins in virulence, the F. graminearum secretome was revisited. In the current study, a refined F. graminearum secretome was predicted by combining several bioinformatic approaches. This strategy increased the probability of identifying truly secreted proteins. A secretome of 574 proteins was predicted of which 99% was supported by transcriptional evidence. The function of the annotated and unannotated secreted proteins was explored. The potential role(s) of the annotated proteins including, putative enzymes, phytotoxins and antifungals are discussed. Characterisation of the unannotated proteins included the analysis of Pfam domains and features associated with known fungal effectors, for example, small size, cysteine-rich and containing internal amino acid repeats. A comprehensive comparative genomic analysis involving 57 fungal and oomycete genomes revealed that only a small number of the predicted F. graminearum secreted proteins can be considered to be either species or sequenced strain specific. PMID:22493673

  16. The Complete Genome Sequence and Comparative Genome Analysis of the High Pathogenicity Yersinia enterocolitica Strain 8081

    PubMed Central

    Thomson, Nicholas R; Howard, Sarah; Wren, Brendan W; Holden, Matthew T. G; Crossman, Lisa; Challis, Gregory L; Churcher, Carol; Mungall, Karen; Brooks, Karen; Chillingworth, Tracey; Feltwell, Theresa; Abdellah, Zahra; Hauser, Heidi; Jagels, Kay; Maddison, Mark; Moule, Sharon; Sanders, Mandy; Whitehead, Sally; Quail, Michael A; Dougan, Gordon; Parkhill, Julian; Prentice, Michael B

    2006-01-01

    The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B) and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common themes in the

  17. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions.

    PubMed

    Tesei, Donatella; Marzban, Gorji; Marchetti-Deschmann, Martina; Tafer, Hakim; Arcalis, Elsa; Sterflinger, Katja

    2015-12-01

    In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis - based on cellular process GO terms - was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in "Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis" by Tesei et al. (2015) [1]. PMID:26958594

  18. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Marchetti-Deschmann, Martina; Tafer, Hakim; Arcalis, Elsa; Sterflinger, Katja

    2015-01-01

    In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis – based on cellular process GO terms – was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in “Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis” by Tesei et al. (2015) [1]. PMID:26958594

  19. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation

    PubMed Central

    Cesbron, Sophie; Briand, Martial; Essakhi, Salwa; Gironde, Sophie; Boureau, Tristan; Manceau, Charles; Fischer-Le Saux, Marion; Jacques, Marie-Agnès

    2015-01-01

    The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment. PMID:26734033

  20. Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus

    PubMed Central

    Nolden, Tobias; Banyard, Ashley C.; Finke, Stefan; Fooks, Anthony R.; Hanke, Dennis; Höper, Dirk; Horton, Daniel L.; Mettenleiter, Thomas C.; Müller, Thomas; Teifke, Jens P.

    2014-01-01

    Bokeloh bat lyssavirus (BBLV), a novel lyssavirus, was isolated from a Natterer’s bat (Myotis nattererii), a chiropteran species with a widespread and abundant distribution across Europe. As a novel lyssavirus, the risks of BBLV to animal and human health are unknown and as such characterization both in vitro and in vivo was required to assess pathogenicity and vaccine protection. Full genome sequence analysis and antigenic cartography demonstrated that the German BBLV isolates are most closely related to European bat lyssavirus type 2 (EBLV-2) and Khujand virus and can be characterized within phylogroup I. In vivo characterization demonstrated that BBLV was pathogenic in mice when inoculated peripherally causing clinical signs typical for rabies encephalitis, with higher pathogenicity observed in juvenile mice. A limited vaccination-challenge experiment in mice was conducted and suggested that current vaccines would afford some protection against BBLV although further studies are warranted to determine a serological cut-off for protection. PMID:24828330

  1. [Comparative analysis of the antibiotic sensitivity determination methods of conventionally pathogenic bacteria--agents of human opportunistic infections].

    PubMed

    Kulia, A F; Sabo, Iu; Koval', H M; Boĭko, N V

    2011-01-01

    Investigation of biological properties of pathogenic bacteria and, first of all, their sensitivity to antibiotics is the key to successful treatment of human opportunistic infections and to selection of appropriate tactics of their prevention. This paper is devoted to the comparative characteristic of modem and classical approaches to determination of sensitivities to antibiotics of conventionally pathogenic bacteria: methods applied in Ukraine and recommendations proposed by European Committee aimed to unify all the methods of testing sensitivity to antimicrobial agents (EUCAST). The major differences of the above-mentioned methods of testing sensitivity of clinical and non-clinical isolates of potentially pathogenic bacteria to antibiotics have been examined in order to confirm the feasibility of usage and permanent updating the EUCAST database and to promote creation of the appropriate unifield national electronic resource. PMID:22164699

  2. Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments.

    PubMed

    Flood, B E; Bailey, J V; Biddle, J F

    2014-03-01

    Wrinkle structures are sedimentary features that are produced primarily through the trapping and binding of siliciclastic sediments by mat-forming micro-organisms. Wrinkle structures and related sedimentary structures in the rock record are commonly interpreted to represent the stabilizing influence of cyanobacteria on sediments because cyanobacteria are known to produce similar textures and structures in modern tidal flat settings. However, other extant bacteria such as filamentous representatives of the family Beggiatoaceae can also interact with sediments to produce sedimentary features that morphologically resemble many of those associated with cyanobacteria-dominated mats. While Beggiatoa spp. and cyanobacteria are metabolically and phylogenetically distant, genomic analyses show that the two groups share hundreds of homologous genes, likely as the result of horizontal gene transfer. The comparative genomics results described here suggest that some horizontally transferred genes may code for phenotypic traits such as filament formation, chemotaxis, and the production of extracellular polymeric substances that potentially underlie the similar biostabilizing influences of these organisms on sediments. We suggest that the ecological utility of certain basic life modes such as the construction of mats and biofilms, coupled with the lateral mobility of genes in the microbial world, introduces an element of uncertainty into the inference of specific phylogenetic origins from gross morphological features preserved in the ancient rock record. PMID:24382125

  3. Comparative Genome Analysis and Phylogenetic Relationship of Order Liliales Insight from the Complete Plastid Genome Sequences of Two Lilies (Lilium longiflorum and Alstroemeria aurea)

    PubMed Central

    Kim, Jung Sung; Kim, Joo-Hwan

    2013-01-01

    Monocots are one of the most diverse, successful and economically important clades of angiosperms. We attempt to analyse the complete plastid genome sequences of two lilies and their lengths were 152,793bp in Liliumlongiflorum (Liliaceae) and 155,510bp in Alstroemeriaaurea (Alstroemeriaceae). Phylogenetic analyses were performed for 28 taxa including major lineages of monocots using the sequences of 79 plastid genes for clarifying the phylogenetic relationship of the order Liliales. The sister relationship of Liliales and Asparagales-commelinids was improved with high resolution. Comparative analyses of inter-familial and inter-specific sequence variation were also carried out among three families of Liliaceae, Smilacaceae, and Alstroemeriaceae, and between two Lilium species of L. longflorum and L. superbum. Gene content and order were conserved in the order Liliales except infA loss in Smilax and Alstroemeria. IR boundaries were similar in IRa, however, IRb showed different extension patterns as JLB of Smilax and JSB in Alstroemeria. Ka/Ks ratio was high in matK among the pair-wise comparison of three families and the most variable genes were psaJ, ycf1, rpl32, rpl22, matK, and ccsA among the three families and rps15, rpoA, matK, and ndhF between Lilium. PMID:23950788

  4. Comparative genome analysis and phylogenetic relationship of order Liliales insight from the complete plastid genome sequences of two Lilies (Lilium longiflorum and Alstroemeria aurea).

    PubMed

    Kim, Jung Sung; Kim, Joo-Hwan

    2013-01-01

    Monocots are one of the most diverse, successful and economically important clades of angiosperms. We attempt to analyse the complete plastid genome sequences of two lilies and their lengths were 152,793bp in Lilium longiflorum (Liliaceae) and 155,510bp in Alstroemeria aurea (Alstroemeriaceae). Phylogenetic analyses were performed for 28 taxa including major lineages of monocots using the sequences of 79 plastid genes for clarifying the phylogenetic relationship of the order Liliales. The sister relationship of Liliales and Asparagales-commelinids was improved with high resolution. Comparative analyses of inter-familial and inter-specific sequence variation were also carried out among three families of Liliaceae, Smilacaceae, and Alstroemeriaceae, and between two Lilium species of L. longflorum and L. superbum. Gene content and order were conserved in the order Liliales except infA loss in Smilax and Alstroemeria. IR boundaries were similar in IRa, however, IRb showed different extension patterns as JLB of Smilax and JSB in Alstroemeria. Ka/Ks ratio was high in matK among the pair-wise comparison of three families and the most variable genes were psaJ, ycf1, rpl32, rpl22, matK, and ccsA among the three families and rps15, rpoA, matK, and ndhF between Lilium. PMID:23950788

  5. Comparative genomic analysis of a neurotoxigenic Clostridium species using partial genome sequence: Phylogenetic analysis of a few conserved proteins involved in cellular processes and metabolism.

    PubMed

    Alam, Syed Imteyaz; Dixit, Aparna; Tomar, Arvind; Singh, Lokendra

    2010-04-01

    Clostridial organisms produce neurotoxins, which are generally regarded as the most potent toxic substances of biological origin and potential biological warfare agents. Clostridium tetani produces tetanus neurotoxin and is responsible for the fatal tetanus disease. In spite of the extensive immunization regimen, the disease is an important cause of death especially among neonates. Strains of C. tetani have not been genetically characterized except the complete genome sequencing of strain E88. The present study reports the genetic makeup and phylogenetic affiliations of an environmental strain of this bacterium with respect to C. tetani E88 and other clostridia. A shot gun library was constructed from the genomic DNA of C. tetani drde, isolated from decaying fish sample. Unique clones were sequenced and sequences compared with its closest relative C. tetani E88. A total of 275 clones were obtained and 32,457 bases of non-redundant sequence were generated. A total of 150 base changes were observed over the entire length of sequence obtained, including, additions, deletions and base substitutions. Of the total 120 ORFs detected, 48 exhibited closest similarity to E88 proteins of which three are hypothetical proteins. Eight of the ORFs exhibited similarity with hypothetical proteins from other organisms and 10 aligned with other proteins from unrelated organisms. There is an overall conservation of protein sequences among the two strains of C. tetani and. Selected ORFs involved in cellular processes and metabolism were subjected to phylogenetic analysis. PMID:19527791

  6. Phylogenetic relationships of Phytophthora andina, a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans.

    PubMed

    Gómez-Alpizar, Luis; Hu, Chia-Hui; Oliva, Ricardo; Forbes, Gregory; Ristaino, Jean Beagle

    2008-01-01

    Phylogenetic relationships of Phytophthora infestans sensu lato in the Andean highlands of South America were examined. Three clonal lineages (US-1, EC-1, EC-3) and one heterogeneous lineage (EC-2) were found in association with different host species in genus Solanum. The EC-2 lineage includes two mitochondrial (mtDNA) haplotypes, Ia and Ic. Isolates of P. infestans sensu lato EC-2 fit the morphological description of P. infestans but are different from any genotypes of P. infestans described to date. All isolates of P. infestans sensu lato from Ecuador were amplified by a P. infestans specific primer (PINF), and restriction fragment length patterns were identical in isolates amplified with ITS primers 4 and 5. The EC-1 clonal lineage of P. infestans sensu lato from S. andreanum, S. columbianum, S. paucijugum, S. phureja, S. regularifolium, S. tuberosum and S. tuquerense was confirmed to be P. infestans based on sequences of the cytochrome oxidase I (cox I) gene and intron 1 of ras gene. The EC-2 isolates with the Ic haplotype formed a distinct branch in the same clade with P. infestans and P. mirabilis, P. phaseoli and P. ipomoeae for both cox I and ras intron 1 phylogenies and were identified as the newly described species P. andina. Ras intron 1 sequence data suggests that P. andina might have arisen via hybridization between P. infestans and P. mirabilis. PMID:18833752

  7. Comparative antimicrobial activity of tannin extracts from perennial plants on mastitis pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of pathogenic bacteria were treated with condensed tannins (CT) purified from eight different woody plant species to investigate their inhibition effect on the growth of these bacteria in vitro. Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were tested against low...

  8. Comparative susceptibility of avian species to low pathogenic avian influenza viruses of the H13 subtype

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gulls are widely recognized reservoirs for low pathogenic avian influenza (LPAI) viruses; however, the subtypes maintained in these populations and/or the transmission mechanisms involved are poorly understood. Although, a wide diversity of influenza viruses have been isolated from gulls, two hemag...

  9. Verticillium comparative genomics yields insights into niche adaptation by plant vascular wilt pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual losses. The characteristic vascular wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels. To gain insights into the mechan...

  10. Verticillium comparative genomics yields insights into niche adaptation by plant vascular wilt pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species worldwide, causing recurring crop losses estimated in the billions of dollars annually. Plant pathogenic Verticillium species are soilborne, and produce dormant structures that enable survival for years in ...

  11. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmola...

  12. PLEXdb: Plant and Pathogen Expression Database and Tools for Comparative and Functional Genomics Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLEXdb is a plant expression database that supports all Affymetrix microarray designs for plants and plant pathogens. PLEXdb provides annotation and hand-curated microarray data. Experiments deposited in PLEXdb are checked for MIAME/Plant compliance and completeness, then processed by normalizing th...

  13. Capacity building efforts and perceptions for wildlife surveillance to detect zoonotic pathogens: comparing stakeholder perspectives

    PubMed Central

    2014-01-01

    Background The capacity to conduct zoonotic pathogen surveillance in wildlife is critical for the recognition and identification of emerging health threats. The PREDICT project, a component of United States Agency for International Development’s Emerging Pandemic Threats program, has introduced capacity building efforts to increase zoonotic pathogen surveillance in wildlife in global ‘hot spot’ regions where zoonotic disease emergence is likely to occur. Understanding priorities, challenges, and opportunities from the perspectives of the stakeholders is a key component of any successful capacity building program. Methods A survey was administered to wildlife officials and to PREDICT-implementing in-country project scientists in 16 participating countries in order to identify similarities and differences in perspectives between the groups regarding capacity needs for zoonotic pathogen surveillance in wildlife. Results Both stakeholder groups identified some human-animal interfaces (i.e. areas of high contact between wildlife and humans with the potential risk for disease transmission), such as hunting and markets, as important for ongoing targeting of wildlife surveillance. Similarly, findings regarding challenges across stakeholder groups showed some agreement in that a lack of sustainable funding across regions was the greatest challenge for conducting wildlife surveillance for zoonotic pathogens (wildlife officials: 96% and project scientists: 81%). However, the opportunity for improving zoonotic pathogen surveillance capacity identified most frequently by wildlife officials as important was increasing communication or coordination among agencies, sectors, or regions (100% of wildlife officials), whereas the most frequent opportunities identified as important by project scientists were increasing human capacity, increasing laboratory capacity, and the growing interest or awareness regarding wildlife disease or surveillance programs (all identified by 69% of

  14. Comparative Evaluation of Two Commercial Multiplex Panels for Detection of Gastrointestinal Pathogens by Use of Clinical Stool Specimens

    PubMed Central

    Khare, Reeti; Espy, Mark J.; Cebelinski, Elizabeth; Boxrud, David; Sloan, Lynne M.; Cunningham, Scott A.; Pritt, Bobbi S.; Patel, Robin

    2014-01-01

    The detection of pathogens associated with gastrointestinal disease may be important in certain patient populations, such as immunocompromised hosts, the critically ill, or individuals with prolonged disease that is refractory to treatment. In this study, we evaluated two commercially available multiplex panels (the FilmArray gastrointestinal [GI] panel [BioFire Diagnostics, Salt Lake City, UT] and the Luminex xTag gastrointestinal pathogen panel [GPP] [Luminex Corporation, Toronto, Canada]) using Cary-Blair stool samples (n = 500) submitted to our laboratory for routine GI testing (e.g., culture, antigen testing, microscopy, and individual real-time PCR). At the time of this study, the prototype (non-FDA-cleared) FilmArray GI panel targeted 23 pathogens (14 bacterial, 5 viral, and 4 parasitic), and testing of 200 μl of Cary-Blair stool was recommended. In contrast, the Luminex GPP assay was FDA cleared for the detection of 11 pathogens (7 bacterial, 2 viral, and 2 parasitic), but had the capacity to identify 4 additional pathogens using a research-use-only protocol. Importantly, the Luminex assay was FDA cleared for 100 μl raw stool; however, 100 μl Cary-Blair stool was tested by the Luminex assay in this study. Among 230 prospectively collected samples, routine testing was positive for one or more GI pathogens in 19 (8.3%) samples, compared to 76 (33.0%) by the FilmArray and 69 (30.3%) by the Luminex assay. Clostridium difficile (12.6 to 13.9% prevalence) and norovirus genogroup I (GI)/GII (5.7 to 13.9% prevalence) were two of the pathogens most commonly detected by both assays among prospective samples. Sapovirus was also commonly detected (5.7% positive rate) by the FilmArray assay. Among 270 additional previously characterized samples, both multiplex panels demonstrated high sensitivity (>90%) for the majority of targets, with the exception of several pathogens, notably Aeromonas sp. (23.8%) by FilmArray and Yersinia enterocolitica (48.1%) by the Luminex

  15. Comparative evaluation of two commercial multiplex panels for detection of gastrointestinal pathogens by use of clinical stool specimens.

    PubMed

    Khare, Reeti; Espy, Mark J; Cebelinski, Elizabeth; Boxrud, David; Sloan, Lynne M; Cunningham, Scott A; Pritt, Bobbi S; Patel, Robin; Binnicker, Matthew J

    2014-10-01

    The detection of pathogens associated with gastrointestinal disease may be important in certain patient populations, such as immunocompromised hosts, the critically ill, or individuals with prolonged disease that is refractory to treatment. In this study, we evaluated two commercially available multiplex panels (the FilmArray gastrointestinal [GI] panel [BioFire Diagnostics, Salt Lake City, UT] and the Luminex xTag gastrointestinal pathogen panel [GPP] [Luminex Corporation, Toronto, Canada]) using Cary-Blair stool samples (n = 500) submitted to our laboratory for routine GI testing (e.g., culture, antigen testing, microscopy, and individual real-time PCR). At the time of this study, the prototype (non-FDA-cleared) FilmArray GI panel targeted 23 pathogens (14 bacterial, 5 viral, and 4 parasitic), and testing of 200 μl of Cary-Blair stool was recommended. In contrast, the Luminex GPP assay was FDA cleared for the detection of 11 pathogens (7 bacterial, 2 viral, and 2 parasitic), but had the capacity to identify 4 additional pathogens using a research-use-only protocol. Importantly, the Luminex assay was FDA cleared for 100 μl raw stool; however, 100 μl Cary-Blair stool was tested by the Luminex assay in this study. Among 230 prospectively collected samples, routine testing was positive for one or more GI pathogens in 19 (8.3%) samples, compared to 76 (33.0%) by the FilmArray and 69 (30.3%) by the Luminex assay. Clostridium difficile (12.6 to 13.9% prevalence) and norovirus genogroup I (GI)/GII (5.7 to 13.9% prevalence) were two of the pathogens most commonly detected by both assays among prospective samples. Sapovirus was also commonly detected (5.7% positive rate) by the FilmArray assay. Among 270 additional previously characterized samples, both multiplex panels demonstrated high sensitivity (>90%) for the majority of targets, with the exception of several pathogens, notably Aeromonas sp. (23.8%) by FilmArray and Yersinia enterocolitica (48.1%) by the Luminex

  16. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis.

    PubMed

    Jadhav, Ankush; Shanmugham, Buvaneswari; Rajendiran, Anjana; Pan, Archana

    2014-10-01

    Food and waterborne diseases are a growing concern in terms of human morbidity and mortality worldwide, even in the 21st century, emphasizing the need for new therapeutic interventions for these diseases. The current study aims at prioritizing broad-spectrum antibacterial targets, present in multiple food and waterborne bacterial pathogens, through a comparative genomics strategy coupled with a protein interaction network analysis. The pathways unique and common to all the pathogens under study (viz., methane metabolism, d-alanine metabolism, peptidoglycan biosynthesis, bacterial secretion system, two-component system, C5-branched dibasic acid metabolism), identified by comparative metabolic pathway analysis, were considered for the analysis. The proteins/enzymes involved in these pathways were prioritized following host non-homology analysis, essentiality analysis, gut flora non-homology analysis and protein interaction network analysis. The analyses revealed a set of promising broad-spectrum antibacterial targets, present in multiple food and waterborne pathogens, which are essential for bacterial survival, non-homologous to host and gut flora, and functionally important in the metabolic network. The identified broad-spectrum candidates, namely, integral membrane protein/virulence factor (MviN), preprotein translocase subunits SecB and SecG, carbon storage regulator (CsrA), and nitrogen regulatory protein P-II 1 (GlnB), contributed by the peptidoglycan pathway, bacterial secretion systems and two-component systems, were also found to be present in a wide range of other disease-causing bacteria. Cytoplasmic proteins SecG, CsrA and GlnB were considered as drug targets, while membrane proteins MviN and SecB were classified as vaccine targets. The identified broad-spectrum targets can aid in the design and development of antibacterial agents not only against food and waterborne pathogens but also against other pathogens. PMID:25128740

  17. Draft Genomes, Phylogenetic Reconstruction, and Comparative Genomics of Two Novel Cohabiting Bacterial Symbionts Isolated from Frankliniella occidentalis

    PubMed Central

    Facey, Paul D.; Méric, Guillaume; Hitchings, Matthew D.; Pachebat, Justin A.; Hegarty, Matt J.; Chen, Xiaorui; Morgan, Laura V.A.; Hoeppner, James E.; Whitten, Miranda M.A.; Kirk, William D.J.; Dyson, Paul J.; Sheppard, Sam K.; Sol, Ricardo Del

    2015-01-01

    Obligate bacterial symbionts are widespread in many invertebrates, where they are often confined to specialized host cells and are transmitted directly from mother to progeny. Increasing numbers of these bacteria are being characterized but questions remain about their population structure and evolution. Here we take a comparative genomics approach to investigate two prominent bacterial symbionts (BFo1 and BFo2) isolated from geographically separated populations of western flower thrips, Frankliniella occidentalis. Our multifaceted approach to classifying these symbionts includes concatenated multilocus sequence analysis (MLSA) phylogenies, ribosomal multilocus sequence typing (rMLST), construction of whole-genome phylogenies, and in-depth genomic comparisons. We showed that the BFo1 genome clusters more closely to species in the genus Erwinia, and is a putative close relative to Erwinia aphidicola. BFo1 is also likely to have shared a common ancestor with Erwinia pyrifoliae/Erwinia amylovora and the nonpathogenic Erwinia tasmaniensis and genetic traits similar to Erwinia billingiae. The BFo1 genome contained virulence factors found in the genus Erwinia but represented a divergent lineage. In contrast, we showed that BFo2 belongs within the Enterobacteriales but does not group closely with any currently known bacterial species. Concatenated MLSA phylogenies indicate that it may have shared a common ancestor to the Erwinia and Pantoea genera, and based on the clustering of rMLST genes, it was most closely related to Pantoea ananatis but represented a divergent lineage. We reconstructed a core genome of a putative common ancestor of Erwinia and Pantoea and compared this with the genomes of BFo bacteria. BFo2 possessed none of the virulence determinants that were omnipresent in the Erwinia and Pantoea genera. Taken together, these data are consistent with BFo2 representing a highly novel species that maybe related to known Pantoea. PMID:26185096

  18. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    PubMed

    Qhanya, Lehlohonolo Benedict; Matowane, Godfrey; Chen, Wanping; Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  19. Comparative analysis of the Photorhabdus luminescens and the Yersinia enterocolitica genomes: uncovering candidate genes involved in insect pathogenicity

    PubMed Central

    Heermann, Ralf; Fuchs, Thilo M

    2008-01-01

    Background Photorhabdus luminescens and Yersinia enterocolitica are both enteric bacteria which are associated with insects. P. luminescens lives in symbiosis with soil nematodes and is highly pathogenic towards insects but not to humans. In contrast, Y. enterocolitica is widely found in the environment and mainly known to cause gastroenteritis in men, but has only recently been shown to be also toxic for insects. It is expected that both pathogens share an overlap of genetic determinants that play a role within the insect host. Results A selective genome comparison was applied. Proteins belonging to the class of two-component regulatory systems, quorum sensing, universal stress proteins, and c-di-GMP signalling have been analysed. The interorganismic synopsis of selected regulatory systems uncovered common and distinct signalling mechanisms of both pathogens used for perception of signals within the insect host. Particularly, a new class of LuxR-like regulators was identified, which might be involved in detecting insect-specific molecules. In addition, the genetic overlap unravelled a two-component system that is unique for the genera Photorhabdus and Yersinia and is therefore suggested to play a major role in the pathogen-insect relationship. Our analysis also highlights factors of both pathogens that are expressed at low temperatures as encountered in insects in contrast to higher (body) temperature, providing evidence that temperature is a yet under-investigated environmental signal for bacterial adaptation to various hosts. Common degradative metabolic pathways are described that might be used to explore nutrients within the insect gut or hemolymph, thus enabling the proliferation of P. luminescens and Y. enterocolitica in their invertebrate hosts. A strikingly higher number of genes encoding insecticidal toxins and other virulence factors in P. luminescens compared to Y. enterocolitica correlates with the higher virulence of P. luminescens towards insects

  20. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  1. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus

    PubMed Central

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the “harmful” internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  2. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs. PMID:26973600

  3. The Phylogenetic Diversity of Metagenomes

    PubMed Central

    Kembel, Steven W.; Eisen, Jonathan A.; Pollard, Katherine S.; Green, Jessica L.

    2011-01-01

    Phylogenetic diversity—patterns of phylogenetic relatedness among organisms in ecological communities—provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context. PMID:21912589

  4. Comparative analysis of pathogenic organisms in cockroaches from different community settings in Edo State, Nigeria.

    PubMed

    Isaac, Clement; Orue, Philip Ogbeide; Iyamu, Mercy Itohan; Ehiaghe, Joy Imuetiyan; Isaac, Osesojie

    2014-04-01

    Cockroaches are abundant in Nigeria and are seen to harbour an array of pathogens. Environmental and sanitary conditions associated with demographic/socio-economic settings of an area could contribute to the prevalence of disease pathogens in cockroaches. A total of 246 cockroaches (Periplaneta americana) in urban (Benin, n=91), semi-urban (Ekpoma, n=75) and rural (Emuhi, n=70) settings in Edo State, Nigeria were collected within and around households. The external body surfaces and alimentary canal of these cockroaches were screened for bacterial, fungal, and parasitological infections. Bacillus sp. and Escherichia coli were the most common bacteria in cockroaches. However, Enterococcus faecalis could not be isolated in cockroaches trapped from Ekpoma and Emuhi. Aspergillus niger was the most prevalent fungus in Benin and Ekpoma, while Mucor sp. was predominant in Emuhi. Parasitological investigations revealed the preponderance of Ascaris lumbricoides in Benin and Emuhi, while Trichuris trichura was the most predominant in Ekpoma. The prevalence and burden of infection in cockroaches is likely to be a reflection of the sanitary conditions of these areas. Also, cockroaches in these areas making incursions in homes may increase the risk of human infections with these disease agents. PMID:24850961

  5. Comparative Analysis of Pathogenic Organisms in Cockroaches from Different Community Settings in Edo State, Nigeria

    PubMed Central

    Orue, Philip Ogbeide; Iyamu, Mercy Itohan; Ehiaghe, Joy Imuetiyan; Isaac, Osesojie

    2014-01-01

    Cockroaches are abundant in Nigeria and are seen to harbour an array of pathogens. Environmental and sanitary conditions associated with demographic/socio-economic settings of an area could contribute to the prevalence of disease pathogens in cockroaches. A total of 246 cockroaches (Periplaneta americana) in urban (Benin, n=91), semi-urban (Ekpoma, n=75) and rural (Emuhi, n=70) settings in Edo State, Nigeria were collected within and around households. The external body surfaces and alimentary canal of these cockroaches were screened for bacterial, fungal, and parasitological infections. Bacillus sp. and Escherichia coli were the most common bacteria in cockroaches. However, Enterococcus faecalis could not be isolated in cockroaches trapped from Ekpoma and Emuhi. Aspergillus niger was the most prevalent fungus in Benin and Ekpoma, while Mucor sp. was predominant in Emuhi. Parasitological investigations revealed the preponderance of Ascaris lumbricoides in Benin and Emuhi, while Trichuris trichura was the most predominant in Ekpoma. The prevalence and burden of infection in cockroaches is likely to be a reflection of the sanitary conditions of these areas. Also, cockroaches in these areas making incursions in homes may increase the risk of human infections with these disease agents. PMID:24850961

  6. A comparative analysis of the 'other roles' of transcriptional factors from pathogenic organisms.

    PubMed

    Bagchi, Angshuman

    2016-07-25

    Transcription factors are the proteins that regulate gene expressions by binding to the promoter DNA regions of the corresponding genes. There are a number of different transcription factors and all of them have DNA-binding signature sequences. Transcription factors are structurally classified as belonging to different families on the basis of the distribution of their secondary structural patterns. The amino acid sequences of the DNA-binding regions of the transcription factors belonging to the same family should therefore be identical. But careful analyses of these sequences reveal the presence of different mutations in them. On further analyses, the mutations are found to create new domains in the transcription factors thereby conferring them with some new functionality in addition to their regulatory roles. Here, an attempt has been made to analyze the mutations present in the transcription factors of pathogenic organisms. The possible effects of these mutations have been identified and correlated with the mechanisms of disease pathogenesis. So far this is the first report that predicts the presence of the new functionality of the transcription factors, which also can augment disease propagation by the pathogens. This analysis would therefore be beneficial to future genetic studies to identify the effects of the mutations in the transcription factors for disease propagation. PMID:27083770

  7. The Impact of Plant Enemies Shows a Phylogenetic Signal

    PubMed Central

    Gilbert, Gregory S.; Briggs, Heather M.; Magarey, Roger

    2015-01-01

    The host ranges of plant pathogens and herbivores are phylogenetically constrained, so that closely related plant species are more likely to share pests and pathogens. Here we conducted a reanalysis of data from published experimental studies to test whether the severity of host-enemy interactions follows a similar phylogenetic signal. The impact of herbivores and pathogens on their host plants declined steadily with phylogenetic distance from the most severely affected focal hosts. The steepness of this phylogenetic signal was similar to that previously measured for binary-response host ranges. Enemy behavior and development showed similar, but weaker phylogenetic signal, with oviposition and growth rates declining with evolutionary distance from optimal hosts. Phylogenetic distance is an informative surrogate for estimating the likely impacts of a pest or pathogen on potential plant hosts, and may be particularly useful in early assessing risk from emergent plant pests, where critical decisions must be made with incomplete host records. PMID:25893581

  8. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes

    PubMed Central

    Sharma, Rahul; Xia, Xiaojuan; Riess, Kai; Bauer, Robert; Thines, Marco

    2015-01-01

    Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle. PMID:26314305

  9. Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.

    PubMed

    Sharma, Rahul; Xia, Xiaojuan; Riess, Kai; Bauer, Robert; Thines, Marco

    2015-09-01

    Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle. PMID:26314305

  10. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    PubMed

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. PMID:26866873