Science.gov

Sample records for patient skin dose

  1. [Patient skin dose in interventional radiology using radiochromic dosimetry film].

    PubMed

    Amano, Masafumi; Nishitani, Hiromu; Kohno, Shingo; Yasutomo, Motokatsu; Miyoshi, Hirokazu; Yagi, Hirofumi

    2003-01-01

    Various types of X-ray examinations are currently being carried out for the purpose of diagnosis. However, since dose limits for contamination by medical examinations have not been set, management of dose measurements and contamination records is called for. With increasing use of the IVR technique, reports of radiation injury and the symptoms associated with it have become more common. To advance our understanding of this situation and to reduce contamination, it is necessary to carry out contamination management. The reflection film on which colors are formed by irradiating X-rays has recently come into use. Dose measurement is possible with the use of this film, and, because effective results can be obtained as a result of performing fundamental examinations, the film actually provides dose measurements for the IVR technique. Another benefit is that maximum patient skin dose and dose distribution can be determined in addition to dose measurement. Moreover, since various methods were examined in this study, the method of dose evaluation is also reported for those wishing to employ it in the clinical setting. PMID:12577009

  2. Measurement and comparison of skin dose using OneDose MOSFET and Mobile MOSFET for patients with acute lymphoblastic leukemia

    PubMed Central

    Mattar, Essam H.; Hammad, Lina F.; Al-Mohammed, Huda I.

    2011-01-01

    Summary Background Total body irradiation is a protocol used to treat acute lymphoblastic leukemia in patients prior to bone marrow transplant. It is involved in the treatment of the whole body using a large radiation field with extended source-skin distance. Therefore measuring and monitoring the skin dose during the treatment is important. Two kinds of metal oxide semiconductor field effect transistor (OneDose MOSFET and mobile MOSEFT) dosimeter are used during the treatment delivery to measure the skin dose to specific points and compare it with the target prescribed dose. The objective of this study was to compare the variation of skin dose in patients with acute lymphatic leukemia (ALL) treated with total body irradiation (TBI) using OneDose MOSFET detectors and Mobile MOSFET, and then compare both results with the target prescribed dose. Material/Methods The measurements involved 32 patient’s (16 males, 16 females), aged between 14–30 years, with an average age of 22.41 years. One-Dose MOSFET and Mobile MOSFET dosimetry were performed at 10 different anatomical sites on every patient. Results The results showed there was no variation between skin dose measured with OneDose MOSFET and Mobile MOSFET in all patients. Furthermore, the results showed for every anatomical site selected there was no significant difference in the dose delivered using either OneDose MOSFET detector or Mobile MOSFET as compared to the prescribed dose. Conclusions The study concludes that One-Dose MOSFET detectors and Mobile MOSFET both give a direct read-out immediately after the treatment; therefore both detectors are suitable options when measuring skin dose for total body irradiation treatment. PMID:21709641

  3. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy.

    PubMed

    Kinhikar, Rajesh A; Murthy, Vedang; Goel, Vineeta; Tambe, Chandrashekar M; Dhote, Dipak S; Deshpande, Deepak D

    2009-09-01

    The purpose of this work was to estimate skin dose for the patients treated with tomotherapy using metal oxide semiconductor field-effect transistors (MOSFETs) and thermoluminescent dosimeters (TLDs). In vivo measurements were performed for two head and neck patients treated with tomotherapy and compared to TLD measurements. The measurements were subsequently carried out for five days to estimate the inter-fraction deviations in MOSFET measurements. The variation between skin dose measured with MOSFET and TLD for first patient was 2.2%. Similarly, the variation of 2.3% was observed between skin dose measured with MOSFET and TLD for second patient. The tomotherapy treatment planning system overestimated the skin dose as much as by 10-12% when compared to both MOSFET and TLD. However, the MOSFET measured patient skin doses also had good reproducibility, with inter-fraction deviations ranging from 1% to 1.4%. MOSFETs may be used as a viable dosimeter for measuring skin dose in areas where the treatment planning system may not be accurate. PMID:19369084

  4. In vivo evaluating skin doses for lung cancer patients undergoing volumetric modulated arc therapy treatment.

    PubMed

    Tseng, Hsien-Chun; Pan, Lung-Kang; Chen, Hsin-Yu; Liu, Wen-Shan; Hsu, Chang-Chieh; Chen, Chien-Yi

    2015-01-01

    This study is the first to use 10- to 90-kg tissue-equivalent phantoms as patient surrogates to measure peripheral skin doses (Dskin) in lung cancer treatment through Volumetric Modulated Arc Therapy of the Axesse linac. Five tissue-equivalent and Rando phantoms were used to simulate lung cancer patients using the thermoluminescent dosimetry (TLD-100H) approach. TLD-100H was calibrated using 6 MV photons coming from the Axesse linac. Then it was inserted into phantom positions that closely corresponded with the position of the represented organs and tissues. TLDs were measured using the Harshaw 3500 TLD reader. The ICRP 60 evaluated the mean Dskin to the lung cancer for 1 fraction (7 Gy) undergoing VMAT. The Dskin of these phantoms ranged from 0.51±0.08 (10-kg) to 0.22±0.03 (90-kg) mSv/Gy. Each experiment examined the relationship between the Dskin and the distance from the treatment field. These revealed strong variations in positions close to the tumor center. The correlation between Dskin and body weight was Dskin (mSv) = -0.0034x + 0.5296, where x was phantom's weight in kg. R2 is equal to 0.9788. This equation can be used to derive an equation for lung cancer in males. Finally, the results are compared to other published research. These findings are pertinent to patients, physicians, radiologists, and the public. PMID:26405934

  5. Visual and numerical methods to measure patient skin doses in interventional procedures using radiochromic XR-RV2 films.

    PubMed

    Sánchez, R; Vano, E; Fernández, J M; Machado, A; Roas, N

    2011-09-01

    Radiochromic XR-RV2 films are considered as one of the best dosemeters to measure patient skin doses in fluoroscopy-guided interventional procedures. To fulfil this purpose, they need to be calibrated with diagnostic energies and doses beyond several Gray. The vendor provides a visual calibration strip to estimate the absorbed dose. Differences between visual dose estimation versus film digitisation were investigated. The influence of backscatter radiation on film sensitivity was also investigated and the sources of uncertainty were analysed when skin doses were measured with these films. When based on the visual comparison with the strip, the estimation of the dose resulted in an error of 50 % (2 Gy in the region around 4 Gy). However, when using numerical methods after film digitisation, the uncertainty in dose measurement fell to 7-14 % in the dose range of interest. Calibration under backscatter conditions demonstrates that the  'in air' calibration underestimates the doses by 7 %. When the dose was measured with a calibration method based on 16 bits grey digitisation, uncertainty was twice higher than when the red channel from red, green, blue digitised images was used. PMID:21757442

  6. Skin dose mapping for fluoroscopically guided interventions

    SciTech Connect

    Johnson, Perry B.; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2011-10-15

    Purpose: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. Methods: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient's skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Results: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior-posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in

  7. Skin dose mapping for fluoroscopically guided interventions

    PubMed Central

    Johnson, Perry B.; Borrego, David; Balter, Stephen; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2011-01-01

    Purpose: To introduce a new skin dose mapping software system for interventional fluoroscopy dose assessment and to analyze the benefits and limitations of patient-phantom matching. Methods: In this study, a new software system was developed for visualizing patient skin dose during interventional fluoroscopy procedures. The system works by translating the reference point air kerma to the location of the patient’s skin, which is represented by a computational model. In order to orient the model with the x-ray source, geometric parameters found within the radiation dose structured report (RDSR) are used along with a limited number of in-clinic measurements. The output of the system is a visual indication of skin dose mapped onto an anthropomorphic model at a resolution of 5 mm. In order to determine if patient-dependent and patient-sculpted models increase accuracy, peak skin dose was calculated for each of 26 patient-specific models and compared with doses calculated using an elliptical stylized model, a reference hybrid model, a matched patient-dependent model and one patient-sculpted model. Results were analyzed in terms of a percent difference using the doses calculated using the patient-specific model as the true standard. Results: Anthropometric matching, including the use of both patient-dependent and patient-sculpted phantoms, was shown most beneficial for left lateral and anterior–posterior projections. In these cases, the percent difference using a reference model was between 8 and 20%, using a patient-dependent model between 7 and 15%, and using a patient-sculpted model between 3 and 7%. Under the table tube configurations produced errors less than 5% in most situations due to the flattening affects of the table and pad, and the fact that table height is the main determination of source-to-skin distance for these configurations. In addition to these results, several skin dose maps were produced and a prototype display system was placed on the in

  8. Dose estimation for different skin models in interstitial breast brachytherapy

    PubMed Central

    Kabacińska, Renata; Makarewicz, Roman

    2014-01-01

    Purpose Skin is a major organ at risk in breast-conserving therapy (BCT). The American Brachytherapy Society (ABS) recommendations require monitoring of maximum dose received, however, there is no unambiguous way of skin contouring provided. The purpose of this study was to compare the doses received by the skin in different models. Material and methods Standard treatment plans of 20 patients who underwent interstitial breast brachytherapy were analyzed. Every patient had a new treatment plan prepared according to Paris system and had skin contoured in three different ways. The first model, Skin 2 mm, corresponds to the dermatological breast skin thickness and is reaching 2 mm into an external patient contour. It was rejected in a further analysis, because of distinct discontinuities in contouring. The second model, Skin 4 mm, replaced Skin 2 mm, and is reaching 2 mm inside and 2 mm outside of the External contour. The third model, Skin EXT, is created on the External contour and it expands 4 mm outside. Doses received by the most exposed 0.1 cc, 1 cc, 2 cc, and the maximum doses for Skin 4 mm and Skin EXT were compared. Results Mean, median, maximum, and standard deviation of percentage dose difference between Skin EXT and Skin 4 mm for the most exposed 0.1 cc (D0.1cc) of skin were 18.01%, 17.20%, 27.84%, and 4.01%, respectively. All differences were statistically significant (p < 0.05). Conclusions Monitoring of doses received by skin is necessary to avoid complications and obtain a satisfactory cosmetic effect. It is difficult to assess the compatibility of treatment plans with recommendations, while there is no unambiguous way of skin contouring. Especially, if a mean difference of doses between two models of skin contouring is 18% for the most exposed 0.1 cc and can reach almost 28% in some cases. Differences of this magnitude can result in skin complications during BCT. PMID:25097562

  9. In vivo skin dose measurement in breast conformal radiotherapy

    PubMed Central

    Soleymanifard, Shokouhozaman; Noghreiyan, Atefeh Vejdani; Ghorbani, Mahdi; Jamali, Farideh; Davenport, David

    2016-01-01

    Aim of the study Accurate skin dose assessment is necessary during breast radiotherapy to assure that the skin dose is below the tolerance level and is sufficient to prevent tumour recurrence. The aim of the current study is to measure the skin dose and to evaluate the geometrical/anatomical parameters that affect it. Material and methods Forty patients were simulated by TIGRT treatment planning system and treated with two tangential fields of 6 MV photon beam. Wedge filters were used to homogenise dose distribution for 11 patients. Skin dose was measured by thermoluminescent dosimeters (TLD-100) and the effects of beam incident angle, thickness of irradiated region, and beam entry separation on the skin dose were analysed. Results Average skin dose in treatment course of 50 Gy to the clinical target volume (CTV) was 36.65 Gy. The corresponding dose values for patients who were treated with and without wedge filter were 35.65 and 37.20 Gy, respectively. It was determined that the beam angle affected the average skin dose while the thickness of the irradiated region and the beam entry separation did not affect dose. Since the skin dose measured in this study was lower than the amount required to prevent tumour recurrence, application of bolus material in part of the treatment course is suggested for post-mastectomy advanced breast radiotherapy. It is more important when wedge filters are applied to homogenize dose distribution. PMID:27358592

  10. Skin dose from radionuclide contamination on clothing

    SciTech Connect

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by proper weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.

  11. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    SciTech Connect

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D

    2015-06-15

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant.

  12. Pharmacokinetic/pharmacodynamic analysis to evaluate ceftaroline fosamil dosing regimens for the treatment of community-acquired bacterial pneumonia and complicated skin and skin-structure infections in patients with normal and impaired renal function.

    PubMed

    Canut, A; Isla, A; Rodríguez-Gascón, A

    2015-04-01

    In this study, the probability of pharmacokinetic/pharmacodynamic target attainment (PTA) of ceftaroline against clinical isolates causing community-acquired bacterial pneumonia (CABP) and complicated skin and skin-structure infection (cSSSI) in Europe was evaluated. Three dosing regimens were assessed: 600 mg every 12 h (q12 h) as a 1-h infusion (standard dose) or 600 mg every 8 h (q8 h) as a 2-h infusion in virtual patients with normal renal function; and 400 mg q12 h as a 1-h infusion in patients with moderate renal impairment. Pharmacokinetic and microbiological data were obtained from the literature. The PTA and the cumulative fraction of response (CFR) were calculated by Monte Carlo simulation. In patients with normal renal function, the ceftaroline standard dose (600 mg q12 h as a 1-h infusion) can be sufficient to treat CABP due to ceftazidime-susceptible (CAZ-S) Escherichia coli, CAZ-S Klebsiella pneumoniae, meticillin-susceptible Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis (CFR>90%). However, against meticillin-resistant S. aureus (MRSA), the CFR was 72%. In cSSSI, the CFR was also <80% for MRSA. Administration of ceftaroline 600 mg q8 h as a 2-h infusion or 400 mg q12 h as a 1-h infusion in patients with moderate renal insufficiency provided a high probability of treatment success (CFR ca. 100%) for most micro-organisms causing CABP and cSSSI, including MRSA and penicillin-non-susceptible S. pneumoniae. These results suggest that in patients with normal renal function, ceftaroline 600 mg q8 h as a 2-h infusion may be a better option than the standard dose, especially if the MRSA rate is high. PMID:25700566

  13. Patient skin dose measurements using a cable free system MOSFETs based in fluoroscopically guided percutaneous vertebroplasty, percutaneous disc decompression, radiofrequency medial branch neurolysis, and endovascular critical limb ischemia.

    PubMed

    Falco, Maria D; Masala, Salvatore; Stefanini, Matteo; Fiori, Roberto; Gandini, Roberto; Bagalà, Paolo; Morosetti, Daniele; Calabria, Eros; Tonnetti, Alessia; Verona-Rinati, Gianluca; Santoni, Riccardo; Simonetti, Giovanni

    2015-01-01

    The purpose of this work has been to dosimetrically investigate four fluoroscopically guided interventions: the percutaneous vertebroplasty (PVP), the percutaneous disc decompression (PDD), the radiofrequency medial branch neurolysis (RF) (hereafter named spine procedures), and the endovascular treatment for the critical limb ischemia (CLI). The X-ray equipment used was a Philips Integris Allura Xper FD20 imaging system provided with a dose-area product (DAP) meter. The parameters investigated were: maximum skin dose (MSD), air kerma (Ka,r), DAP, and fluoroscopy time (FT). In order to measure the maximum skin dose, we employed a system based on MOSFET detectors. Before using the system on patients, a calibration factor Fc and correction factors for energy (CkV) and field size (CFD) dependence were determined. Ka,r, DAP, and FT were extrapolated from the X-ray equipment. The analysis was carried out on 40 patients, 10 for each procedure. The average fluoroscopy time and DAP values were compared with the reference levels (RLs) proposed in literature. Finally, the correlations between MSD, FT, Ka,r, and DAP values, as well as between DAP and FT values, were studied in terms of Pearson's product-moment coefficients for spine procedures only. An Fc value of 0.20 and a very low dependence of CFD on field size were found. A third-order polynomial function was chosen for CkV. The mean values of MSD ranged from 2.3 to 10.8cGy for CLI and PVP, respectively. For these procedures, the DAP and FT values were within the proposed RL values. The statistical analysis showed little correlation between the investigated parameters. The interventional procedures investigated were found to be both safe with regard to deterministic effects and optimized for stochastic ones. In the spine procedures, the observed correlations indicated that the estimation of MSD from Ka,r or DAP was not accurate and a direct measure of MSD is therefore recommended. PMID:25679159

  14. Evaluation the consistency of location of moist desquamation and skin high dose area for breast cancer patients receiving adjuvant radiotherapy after breast conservative surgery

    PubMed Central

    2013-01-01

    Background To evaluate whether the location of moist desquamation matches high dose area for breast cancer patients receiving adjuvant radiotherapy (RT) after breast conservative surgery. Methods One hundred and nine breast cancer patients were enrolled to this study. Their highest skin dose area (the hot spot) was estimated from the treatment planning. We divided the irradiated field into breast; sternal/parasternal; axillary; and inframammary fold areas. The location for moist desquamation was recorded to see if it matches the hot spot. We also analyzed other possible risk factors which may be related to the moist desquamation. Results Forty-eight patients with 65 locations developed moist desquamation during the RT course. Patients with larger breast sizes and easy to sweat are two independent risk factors for moist desquamation. The distribution of moist desquamation occurred most in the axillary area. All nine patients with the hot spots located at the axillary area developed moist desquamation at the axillary area, and six out of seven patients with the hot spots located at the inframammary fold developed moist desquamation there. The majority of patients with moist desquamation over the breast or sternal/parasternal areas had the hot spots located at these areas. Conclusions For a patient with moist desquamation, if a hot spot is located at the axillary or inframammary fold areas, it is very likely to have moist desquamation occur there. On the other hand, if moist desquamation occurs over the breast or sternal/parasternal areas, we can highly expect these two areas are also the hot spot locations. PMID:23497574

  15. Skin dose differences between intensity-modulated radiation therapy and volumetric-modulated arc therapy and between boost and integrated treatment regimens for treating head and neck and other cancer sites in patients.

    PubMed

    Penoncello, Gregory P; Ding, George X

    2016-01-01

    The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, and 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2cm(3) for head and neck plans and brain plans and a contiguous volume of 5cm(3) for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens. PMID:26764180

  16. Image perception by expert readers as a function of patient skin entrance dose levels in digital radiography

    NASA Astrophysics Data System (ADS)

    Lehnert, T.; Korkusuz, H.; Khan, F.; Vogl, T. J.; Mack, M. G.

    2008-03-01

    In this study, image quality was based on required clinical criteria, in order to investigate to what degree entrance dose could be lowered and what kind of added filtration can be used without impinging on radiologist confidence levels in diagnosing. Images were taken of extremities from a cadaver using stepwise decreasing dose levels and variation of added filtration (no filtration, aluminum, aluminum/copper) under digital projection radiography (Kodak DirectView DR7500). The starting point dose level for all body parts imaged was the current x-ray technique. Two experienced and two resident radiologists were presented the images in a blinded fashion and rated each with an image quality score from 1 to 9 indicated very satisfied and 1 as very unsatisfied indicating loss of diagnostic value. The readers were not aware of which dose level and added filtration corresponded to which image. Dose levels considered were 100%, 75%, 50% and 25% of the normal and customary x-ray techniques used for the particular body part and projection. Images were reviewed on a clinical diagnostic workstation with no time limits imposed. Readers were also able to change the image presentation by adjusting the window width and level. Without added filtration image quality mean score was rated with 6.3 (dose level 100%), 6.2 (dose level 75%), 5.3 (dose level 50%) and with 4.4 (dose level 25%). An added aluminum filtration induced an image quality mean score of 6.3 (dose level 100%), 6.0 (dose level 75%), 5.1 (dose level 50%) and of 4.2 (dose level 25%). Using aluminum/copper filtration image quality mean score was rated with 6.0 (dose level 100%), 6.1 (dose level 75%), 5.0 (dose level 50%) and with 3.8 (dose level 25%). Regardless of the added filtration a differentiation between dose levels 100% and 75% was possible in 38.9%, between dose levels 75% and 50% in 66.7%, and between dose levels 50% and 25% in 70.0% of the cases. It is possible, in the case of extremities, to lower entrance

  17. UV doses and skin effects during psoriasis climate therapy

    NASA Astrophysics Data System (ADS)

    Randeberg, Lise L.; Hernandez-Palacios, Julio; Lilleeng, Mila; Nilsen, Lill Tove; Krogstad, Anne-Lene

    2011-03-01

    Psoriasis is a common autoimmune disease with inflammatory symptoms affecting skin and joints. One way of dealing with psoriasis is by controlled solar UV exposure treatment. However, this treatment should be optimized to get the best possible treatment effect and to limit negative side effects such as erythema and an increased risk of skin cancer. In this study 24 patients at Valle Marina Treatment Center in Gran Canaria were monitored throughout a treatment period of three weeks starting at the beginning of November. The total UV dose to the location was monitored by UV-meters placed on the roof of the treatment centere, and the patients wore individual film dosimeters throughout the treatment period. Skin parameters were accessed by reflection spectroscopy (400-850nm). This paper presents preliminary findings from the skin measurements in the visible part of the spectrum, such as blood oxygenation, erythema and melanin indexes. Reflection spectroscopy was found to be a good tool for such treatment monitoring.

  18. Estimation of absorbed dose in the covering skin of human melanoma treated by neutron capture therapy

    SciTech Connect

    Fukuda, H.; Kobayashi, T.; Hiratsuka, J.; Karashima, H.; Honda, C.; Yamamura, K.; Ichihashi, M.; Kanda, K.; Mishima, Y. )

    1989-07-01

    A patient with malignant melanoma was treated by thermal neutron capture therapy using 10B-paraboronophenylalanine. The compound was injected subcutaneously into ten locations in the tumor-surrounding skin, and the patient was then irradiated with thermal neutrons from the Musashi Reactor at reactor power of 100 KW and neutron flux of 1.2 X 10(9) n/cm{sup 2}/s. Total absorbed dose to the skin was 11.7-12.5 Gy in the radiation field. The dose equivalents of these doses were estimated as 21.5 and 24.4 Sv, respectively. Early skin reaction after irradiation was checked from day 1 to day 60. The maximum and mean skin scores were 2.0 and 1.5, respectively, and the therapy was safely completed as far as skin reaction was concerned. Some factors influencing the absorbed dose and dose equivalent to the skin are discussed.

  19. Non-melanoma skin cancer treated with high-dose-rate brachytherapy and Valencia applicator in elderly patients: a retrospective case series

    PubMed Central

    Laliscia, Concetta; Manfredi, Bruno; Ursino, Stefano; Pasqualetti, Francesco; Lombardo, Ezio; Perrone, Franco; Morganti, Riccardo; Paiar, Fabiola; Fabrini, Maria Grazia

    2015-01-01

    Purpose The incidence of non-melanoma skin cancer (NMSC) has been increasing over the past 30 years. Basal cell carcinoma and squamous cell carcinoma are the two most common subtypes of NMSC. The aim of this study was to estimate tumour control, toxicity, and aesthetic events in elderly patients treated with high-dose-rate (HDR) brachytherapy (BT) using Valencia applicator. Material and methods From January 2012 to May 2015, 57 lesions in 39 elderly eligible patients were enrolled. All the lesions had a diameter ≤ 25 mm (median: 12.5 mm) and a depth ≤ 4 mm. The appropriate Valencia applicator, 2 or 3 cm in diameter was used. The prescribed dose was 40 Gy in 8 fractions (5 Gy/fraction) in 48 lesions (group A), and 50 Gy in 10 fractions (5 Gy/fraction) in 9 lesions (group B), delivered 2/3 times a week. The biological effective dose (BED) was 60 Gy and 75 Gy, respectively. Results After median follow-up of 12 months, 96.25% lesions showed a complete response and only two cases presented partial remission. Radiation Therapy Oncology Group – European Organization for Research and Treatment of Cancer (RTOG/EORTC) G 1-2 acute toxicities were observed in 63.2% of the lesions: 56.3% in group A and 77.7% in group B. Late G1-G2 toxicities was observed in 19.3% of the lesions: 18.8% in group A and 22.2% in group B, respectively. No G3 or higher acute or late toxicities occurred. In 86% of the lesions, an excellent cosmetic result was observed (87.5% in group A and 77.8% in group B). Six lesions had a good cosmetic outcome and only 2.3% presented a fair cosmetic impact. Conclusions The treatment of NMSC with HDR-BT using Valencia surface applicator is effective with excellent and good cosmetics results in elderly patients. The hypofractionated course appears effective and no statistical differences were observed between the two groups analysed. PMID:26816500

  20. Verification of Calculated Skin Doses in Postmastectomy Helical Tomotherapy

    SciTech Connect

    Ito, Shima; Parker, Brent C.; Levine, Renee; Sanders, Mary Ella; Fontenot, Jonas; Gibbons, John; Hogstrom, Kenneth

    2011-10-01

    Purpose: To verify the accuracy of calculated skin doses in helical tomotherapy for postmastectomy radiation therapy (PMRT). Methods and Materials: In vivo thermoluminescent dosimeters (TLDs) were used to measure the skin dose at multiple points in each of 14 patients throughout the course of treatment on a TomoTherapy Hi.Art II system, for a total of 420 TLD measurements. Five patients were evaluated near the location of the mastectomy scar, whereas 9 patients were evaluated throughout the treatment volume. The measured dose at each location was compared with calculations from the treatment planning system. Results: The mean difference and standard error of the mean difference between measurement and calculation for the scar measurements was -1.8% {+-} 0.2% (standard deviation [SD], 4.3%; range, -11.1% to 10.6%). The mean difference and standard error of the mean difference between measurement and calculation for measurements throughout the treatment volume was -3.0% {+-} 0.4% (SD, 4.7%; range, -18.4% to 12.6%). The mean difference and standard error of the mean difference between measurement and calculation for all measurements was -2.1% {+-} 0.2% (standard deviation, 4.5%: range, -18.4% to 12.6%). The mean difference between measured and calculated TLD doses was statistically significant at two standard deviations of the mean, but was not clinically significant (i.e., was <5%). However, 23% of the measured TLD doses differed from the calculated TLD doses by more than 5%. Conclusions: The mean of the measured TLD doses agreed with TomoTherapy calculated TLD doses within our clinical criterion of 5%.

  1. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    SciTech Connect

    Granero, Domingo; Perez-Calatayud, Jose; Vijande, Javier; Ballester, Facundo; Rivard, Mark J.

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  2. How accurately can the peak skin dose in fluoroscopy be determined using indirect dose metrics?

    SciTech Connect

    Jones, A. Kyle; Ensor, Joe E.; Pasciak, Alexander S.

    2014-07-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that result in skin reactions can be reached during these procedures. There is no consensus as to whether or not indirect skin dosimetry is sufficiently accurate for fluoroscopically-guided interventions. However, measuring PSD with film is difficult and the decision to do so must be madea priori. The purpose of this study was to assess the accuracy of different types of indirect dose estimates and to determine if PSD can be calculated within ±50% using indirect dose metrics for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures at two sites. Indirect dose metrics from the procedures were collected, including reference air kerma. Four different estimates of PSD were calculated from the indirect dose metrics and compared along with reference air kerma to the measured PSD for each case. The four indirect estimates included a standard calculation method, the use of detailed information from the radiation dose structured report, and two simplified calculation methods based on the standard method. Indirect dosimetry results were compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the different indirect estimates were examined. Results: When using the standard calculation method, calculated PSD were within ±35% for all 41 procedures studied. Calculated PSD were within ±50% for a simplified method using a single source-to-patient distance for all calculations. Reference air kerma was within ±50% for all but one procedure. Cases for which reference air kerma or calculated PSD exhibited large (±35%) differences from the measured PSD were analyzed, and two main causative factors were identified: unusually small or large source-to-patient distances and large contributions to reference air kerma from cone

  3. Measurement of entrance skin dose and estimation of organ dose during pediatric chest radiography.

    PubMed

    Kumaresan, M; Kumar, Rajesh; Biju, K; Choubey, Ajay; Kantharia, S

    2011-06-01

    Entrance skin dose (ESD) was measured to calculate the organ doses from the anteroposterior (AP) and posteroanterior (PA) chest x-ray projections for pediatric patients in an Indian hospital. High sensitivity tissue-equivalent thermoluminescent dosimeters (TLD, LiF: Mg, Cu, P chips) were used for measuring entrance skin dose. The respective organ doses were calculated using the Monte Carlo method (MCNP 3.1) to simulate the examination set-up and a three-dimensional mathematical phantom for representing an average 5-y-old Indian child. Using this method, conversion coefficients were derived for translating the measured ESD to organ doses. The average measured ESDs for the chest AP and PA projections were 0.305 mGy and 0.171 mGy, respectively. The average calculated organ doses in the AP and the PA projections were 0.196 and 0.086 mSv for the thyroid, 0.167 and 0.045 mSv for the trachea, 0.078 and 0.043 mSv for the lungs, 0.110 and 0.013 mSv for the liver, 0.002 and 0.016 mSv for the bone marrow, 0.024 and 0.002 mSv for the kidneys, and 0.109 and 0.023 mSv for the heart, respectively. The ESD and organ doses can be reduced significantly with the proper radiological technique. According to these results, the chest PA projection should be preferred over the AP projection in pediatric patients. The estimated organ doses for the chest AP and PA projections can be used for the estimation of the associated risk. PMID:22004934

  4. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer.

    PubMed

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Chang, Gia-Hsin; Tsao, Min-Jen

    2016-01-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT. PMID:27158022

  5. Clinical implementation of total skin electron irradiation treatment with a 6 MeV electron beam in high-dose total skin electron mode

    NASA Astrophysics Data System (ADS)

    Lucero, J. F.; Rojas, J. I.

    2016-07-01

    Total skin electron irradiation (TSEI) is a special treatment technique offered by modern radiation oncology facilities, given for the treatment of mycosis fungoides, a rare skin disease, which is type of cutaneous T-cell lymphoma [1]. During treatment the patient's entire skin is irradiated with a uniform dose. The aim of this work is to present implementation of total skin electron irradiation treatment using IAEA TRS-398 code of practice for absolute dosimetry and taking advantage of the use of radiochromic films.

  6. A Comparison of Skin and Chest Wall Dose Delivered With Multicatheter, Contura Multilumen Balloon, and MammoSite Breast Brachytherapy

    SciTech Connect

    Cuttino, Laurie W.; Todor, Dorin; Rosu, Mihaela; Arthur, Douglas W.

    2011-01-01

    Purpose: Skin and chest wall doses have been correlated with toxicity in patients treated with breast brachytherapy . This investigation compared the ability to control skin and chest wall doses between patients treated with multicatheter (MC), Contura multilumen balloon (CMLB), and MammoSite (MS) brachytherapy. Methods and Materials: 43 patients treated with the MC technique, 45 patients treated with the CMLB, and 83 patients treated with the MS were reviewed. The maximum doses delivered to the skin and chest wall were calculated for all patients. Results: The mean maximum skin doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.2 Gy per fraction (94% of prescription dose), respectively. Although the skin distances were similar (p = 0.23) for the two balloon techniques, the mean skin dose with the CMLB was significantly lower than with the MS (p = 0.05). The mean maximum rib doses for the MC, CMLB, and MS were 2.3 Gy (67% of prescription dose), 2.8 Gy (82% of prescription dose), and 3.6 Gy per fraction (105% of prescription dose), respectively. Again, the mean rib dose with the CMLB was significantly lower than with the MS (p = 0.002). Conclusion: The MC and CMLB techniques are associated with significantly lower mean skin and rib doses than is the MS. Treatment with the MS was associated with significantly more patients receiving doses to the skin or rib in excess of 125% of the prescription. Treatment with the CMLB may prove to yield less normal tissue toxicity than treatment with the MS.

  7. Skin cancer in patients with chronic radiation dermatitis

    SciTech Connect

    Davis, M.M.; Hanke, C.W.; Zollinger, T.W.; Montebello, J.F.; Hornback, N.B.; Norins, A.L.

    1989-04-01

    The cases of 76 patients with chronic radiation dermatitis resulting from low-dose ionizing radiation for benign disease were reviewed retrospectively for risk factors leading to the development of neoplasia. The patients were studied with respect to original hair color, eye color, sun reactive skin type, benign disease treated, area treated, age at treatment, and age at development of first skin cancer. Analysis of data showed 37% of patients had sun-reactive skin type I, 27% had type II, and 36% had type III. Types IV through VI were not represented. There appeared to be an overrepresentation of types I and II. Increased melanin pigmentation may therefore be either directly or indirectly protective against the development of skin cancers in patients who have received low-dose superficial ionizing radiation for benign disease. The sun-reactive skin type of patients with chronic radiation dermatitis may be used as a predictor of skin cancer risk when the total dose of ionizing radiation is not known.

  8. A system to track skin dose for neuro-interventional cone-beam computed tomography (CBCT)

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Xiong, Zhenyu; Rudin, Stephen; Bednarek, Daniel R.

    2016-03-01

    The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.

  9. A practical method for skin dose estimation in interventional cardiology based on fluorographic DICOM information.

    PubMed

    Matthews, Lucy; Dixon, Matthew; Rowles, Nick; Stevens, Greg

    2016-03-01

    A practical method for skin dose estimation for interventional cardiology patients has been developed to inform pre-procedure planning and post-procedure patient management. Absorbed dose to the patient skin for certain interventional radiology procedures can exceed thresholds for deterministic skin injury, requiring documentation within the patient notes and appropriate patient follow-up. The primary objective was to reduce uncertainty associated with current methods, particularly surrounding field overlap. This was achieved by considering rectangular field geometry incident on a spherical patient model in a polar coordinate system. The angular size of each field was quantified at surface of the sphere, i.e. the skin surface. Computer-assisted design software enabled the modelling of a sufficient dataset that was subsequently validated with radiochromic film. Modelled overlap was found to agree with overlap measured using film to within 2.2° ± 2.0°, showing that the overall error associated with the model was < 1 %. Mathematical comparison against exposure data extracted from procedural Digital Imaging and Communication in Medicine files was used to generate a graphical skin dose map, demonstrating the dose distribution over a sphere centred at the interventional reference point. Dosimetric accuracy of the software was measured as between 3.5 and 17 % for different variables. PMID:25994848

  10. Accurate skin dose measurements using radiochromic film in clinical applications

    SciTech Connect

    Devic, S.; Seuntjens, J.; Abdel-Rahman, W.; Evans, M.; Olivares, M.; Podgorsak, E.B.; Vuong, Te; Soares, Christopher G.

    2006-04-15

    Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 {mu}. We used the new GAFCHROMIC[reg] dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 {mu}. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 {mu} to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10x10 cm{sup 2} increases from 14% to 43%. For the three GAFCHROMIC[reg] dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC[reg] films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC[reg] film model. Finally, a procedure that uses EBT model GAFCHROMIC[reg] film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.

  11. Patient dose management in digital radiography

    PubMed Central

    Vano, E; Fernandez Soto, JM

    2007-01-01

    Purpose: To present the experience in patient dose management and the development of an online audit tool for digital radiography. Materials and methods: Several tools have been developed to extract the information contained in the DICOM header of digital images, collect radiographic parameters, calculate patient entrance doses and other related parameters, and audit image quality. Results: The tool has been used for mammography, and includes images from over 25,000 patients, over 75,000 chest images, 100,000 computed radiography procedures and more than 1,000 interventional radiology procedures. Examples of calculation of skin dose distribution in interventional cardiology based upon information of DICOM header and the results of dosimetric parameters for cardiology procedures in 2006 are presented. Conclusion: Digital radiology has great advantages for imaging and patient dose management. Dose reports, QCONLINE systems and the MPPS DICOM service are good tools to optimise procedures and to manage patient dosimetry data. The implementation of the ongoing IEC-DICOM standard for patient dose structured reports will improve dose management in digital radiology. PMID:21614273

  12. Bone marrow aplasia and severe skin rash after a single low dose of methotrexate.

    PubMed

    Copur, S; Dahut, W; Chu, E; Allegra, C J

    1995-02-01

    A 64 year old man with recurrent metastatic squamous cell carcinoma of the head and neck developed severe skin rash and bone marrow aplasia 4 and 7 days, respectively, following a single dose of 40 mg/m2 methotrexate (MTX). Skin rash involved regions of the face, lower abdomen, back, buttocks and both upper thighs. Biopsy of the skin rash demonstrated superficial perivascular lymphocytic infiltrate and was consistent with a drug reaction. Peripheral blood count revealed pancytopenia and a bone marrow biopsy was consistent with aplasia. Blood counts returned to normal 6 days after institution of granulocyte colony stimulating factor therapy. In the absence of mucositis or diarrhea, severe dermatologic toxicity following a single low dose of the drug suggests an 'allergic' or acute hypersensitivity reaction to MTX in this patient. Development of an extensive skin rash following a single dose of MTX may be an early warning sign for life-threatening bone marrow aplasia. PMID:7538828

  13. Skin Prick Test in Patients with Chronic Allergic Skin Disorders

    PubMed Central

    Bains, Pooja; Dogra, Alka

    2015-01-01

    Background: Chronic allergic skin disorders are the inflammatory and proliferative conditions in which both genetic and environmental factors play important roles. Chronic idiopathic urticaria (CIU) and atopic dermatitis (AD) are among the most common chronic allergic skin disorders. These can be provoked by various food and aeroallergens. Skin prick tests (SPTs) represent the cheapest and most effective method to diagnose type I hypersensitivity. Positive skin tests with a history suggestive of clinical sensitivity strongly incriminate the allergen as a contributor to the disease process. Aims and Objectives: To determine the incidence of positive SPT in patients with chronic allergic skin disorders and to identify the various allergens implicated in positive SPT. Methods: Fifty patients of chronic allergic disorders were recruited in this study. They were evaluated by SPT with both food and aeroallergens. Results: In our study, SPT positivity in patients of CIU was 63.41% and in AD was 77.78%. Out of the 41 patients of CIU, the most common allergen groups showing SPT positivity were dust and pollen, each comprising 26.83% patients. SPT reaction was positive with food items (21.6%), insects (17.07%), fungus (12.20%), and Dermatophagoides farinae, that is, house dust mite (HDM) (7.32%). The allergen which showed maximum positivity was grain dust wheat (19.51%). Among nine patients of AD, maximum SPT positivity was seen with Dermatophagoides farinae, pollen Amaranthus spinosus, grain dust wheat, and cotton mill dust; each comprising 22.22% of patients. Conclusion: Our study showed that a significant number of patients of CIU and AD showed sensitivity to dust, pollen, insects, Dermatophagoides farinae, and fungi on SPT. Thus, it is an important tool in the diagnosis of CIU and AD. PMID:25814704

  14. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing

    SciTech Connect

    Yang Yun; Rivard, Mark J.

    2010-11-15

    Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while

  15. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  16. Patient selection for skin-tightening procedures.

    PubMed

    Northington, Marian

    2014-09-01

    Noninvasive skin-tightening devices have become increasingly popular over the last decade to improve skin laxity with minimal risk and recovery time. Proper patient selection improves patient outcomes and satisfaction. There are many devices available for tightening including monopolar radiofrequency, bipolar radiofrequency, fractional radiofrequency devices, infrared devices, combined light and bipolar radiofrequency devices, and intense focused ultrasound devices. There have been shortcomings with tightening devices including inconsistent clinical outcomes. The question arises, why are there inconsistent results and variability among patient outcomes? Variability could be related to different devices, treatment protocols, body area treated, and patient selection. Patient age, degree of laxity, history of smoking, ethnicity, body mass index, and individual patient pain threshold could all possibly contribute to patient response to tightening devices. The literature does not elucidate consistently, which variables are the most important in predicting best patient response. Included is a review of the literature discussing skin tightening and patient selection. PMID:25196688

  17. A real-time skin dose tracking system for biplane neuro-interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay K.; Rudin, Stephen R.; Bednarek, Daniel R.

    2015-03-01

    A biplane dose-tracking system (Biplane-DTS) that provides a real-time display of the skin-dose distribution on a 3D-patient graphic during neuro-interventional fluoroscopic procedures was developed. Biplane-DTS calculates patient skin dose using geometry and exposure information for the two gantries of the imaging system acquired from the digital system bus. The dose is calculated for individual points on the patient graphic surface for each exposure pulse and cumulative dose for both x-ray tubes is displayed as color maps on a split screen showing frontal and lateral projections of a 3D-humanoid graphic. Overall peak skin dose (PSD), FOV-PSD and current dose rates for the two gantries are also displayed. Biplane- TS uses calibration files of mR/mAs for the frontal and lateral tubes measured with and without the table in the beam at the entrance surface of a 20 cm thick PMMA phantom placed 15 cm tube-side of the isocenter. For neuro-imaging, conversion factors are applied as a function of entrance field area to scale the calculated dose to that measured with a Phantom Laboratory head phantom which contains a human skull to account for differences in backscatter between PMMA and the human head. The software incorporates inverse-square correction to each point on the skin and corrects for angulation of the beam through the table. Dose calculated by Biplane DTS and values measured by a 6-cc ionization chamber placed on the head phantom at multiple points agree within a range of -3% to +7% with a standard deviation for all points of less than 3%.

  18. Verification of the VARSKIN beta skin dose calculation computer code.

    PubMed

    Sherbini, Sami; DeCicco, Joseph; Gray, Anita Turner; Struckmeyer, Richard

    2008-06-01

    The computer code VARSKIN is used extensively to calculate dose to the skin resulting from contaminants on the skin or on protective clothing covering the skin. The code uses six pre-programmed source geometries, four of which are volume sources, and a wide range of user-selectable radionuclides. Some verification of this code had been carried out before the current version of the code, version 3.0, was released, but this was limited in extent and did not include all the source geometries that the code is capable of modeling. This work extends this verification to include all the source geometries that are programmed in the code over a wide range of beta radiation energies and skin depths. Verification was carried out by comparing the doses calculated using VARSKIN with the doses for similar geometries calculated using the Monte Carlo radiation transport code MCNP5. Beta end-point energies used in the calculations ranged from 0.3 MeV up to 2.3 MeV. The results showed excellent agreement between the MCNP and VARSKIN calculations, with the agreement being within a few percent for point and disc sources and within 20% for other sources with the exception of a few cases, mainly at the low end of the beta end-point energies. The accuracy of the VARSKIN results, based on the work in this paper, indicates that it is sufficiently accurate for calculation of skin doses resulting from skin contaminations, and that the uncertainties arising from the use of VARSKIN are likely to be small compared with other uncertainties that typically arise in this type of dose assessment, such as those resulting from a lack of exact information on the size, shape, and density of the contaminant, the depth of the sensitive layer of the skin at the location of the contamination, the duration of the exposure, and the possibility of the source moving over various areas of the skin during the exposure period if the contaminant is on protective clothing. PMID:18469586

  19. MR-guided breast radiotherapy: feasibility and magnetic-field impact on skin dose

    NASA Astrophysics Data System (ADS)

    van Heijst, Tristan C. F.; den Hartogh, Mariska D.; Lagendijk, Jan J. W.; Desirée van den Bongard, H. J. G.; van Asselen, Bram

    2013-09-01

    The UMC Utrecht MRI/linac (MRL) design provides image guidance with high soft-tissue contrast, directly during radiotherapy (RT). Breast cancer patients are a potential group to benefit from better guidance in the MRL. However, due to the electron return effect, the skin dose can be increased in presence of a magnetic field. Since large skin areas are generally involved in breast RT, the purpose of this study is to investigate the effects on the skin dose, for whole-breast irradiation (WBI) and accelerated partial-breast irradiation (APBI). In ten patients with early-stage breast cancer, targets and organs at risk (OARs) were delineated on postoperative CT scans co-registered with MRI. The OARs included the skin, comprising the first 5 mm of ipsilateral-breast tissue, plus extensions. Three intensity-modulated RT techniques were considered (2× WBI, 1× APBI). Individual beam geometries were used for all patients. Specially developed MRL treatment-planning software was used. Acceptable plans were generated for 0 T, 0.35 T and 1.5 T, using a class solution. The skin dose was augmented in WBI in the presence of a magnetic field, which is a potential drawback, whereas in APBI the induced effects were negligible. This opens possibilities for developing MR-guided partial-breast treatments in the MRL.

  20. Interplanetary crew doses and dose equivalents: variations among different bone marrow and skin sites.

    PubMed

    Hoff, J L; Townsend, L W; Zapp, E N

    2004-01-01

    Previously, calculations of bone marrow dose from the large solar particle event (SPE) of July 2000 were carried out using the BRYNTRN space radiation transport code and the computerized anatomical man (CAM) model. Results indicated that the dose for a bone marrow site in the mid-thigh might be twice as large as the dose for a site in the pelvis. These large variations may be significant for space radiation protection purposes, which traditionally use an average of many (typically 33) sites throughout the body. Other organs that cover large portions of the body, such as the skin, may also exhibit similar variations with doses differing from site to site. The skin traditionally uses an average of 32 sites throughout the body. Variations also occur from site to site among the dose equivalents, which may be important in determining stochastic effects. In this work, the magnitudes of dose and dose equivalent variations from site to site are investigated. The BRYNTRN and HZETRN transport codes and the CAM model are used to estimate bone marrow and skin doses and dose equivalents as a function of position in the body for several large solar particle events and annual galactic cosmic ray spectra from throughout the space era. These position-specific results are compared with the average values usually used for radiation protection purposes. Various thicknesses of aluminum shielding, representative of nominal spacecraft, are used in the analyses. PMID:15880922

  1. Incidence of malignant skin tumors in 14,140 patients after grenz-ray treatment for benign skin disorders

    SciTech Connect

    Lindeloef, B.E.; Eklund, G.

    1986-12-01

    During the years 1949 to 1975, 14,237 patients received therapeutic doses of grenz rays for the treatment of benign skin disorders such as chronic eczema, psoriasis, and warts. The records of 14,140 of these patients (99.3%) formed the basis for an epidemiologic study of the incidence of skin malignancies in this population. Information about the patients, diagnoses, doses, and sites of treatment was obtained from separate records. The follow-up time was 15 years on the average. We searched the Swedish Cancer Registry, Stockholm, for records reporting the incidence of malignant skin tumors in the study population (incidences of basal cell carcinoma are not registered). The expected number of malignancies was calculated on the basis of age- and sex-standardized incidence data from the Swedish Cancer Registry. In 58 patients, a malignant skin tumor was diagnosed more than five years after grenz-ray therapy had first been administered. Nineteen patients had malignant melanomas, and 39 patients had other malignant skin tumors. The expected number of melanomas was 17.8, and that of other malignant skin tumors was 26.9. None of the patients with melanomas, and only eight of the patients with other malignant skin tumors, had received grenz-ray therapy at the site of the tumor. Six of these eight patients had also been exposed to other known carcinogens. Four hundred eighty-one patients had received an accumulated high dose of grenz rays (greater than or equal to 10 000 rad (greater than or equal to 100 Gy)) on one and the same area. No malignancies were found on those areas. Although we cannot exclude grenz-ray therapy as a risk factor in the development of nonmelanoma skin malignancies, this risk, if any, is small, if recommendations for therapy are followed.

  2. Dose metrics in the acquisition of skin sensitization: thresholds and importance of dose per unit area.

    PubMed

    Kimber, Ian; Dearman, Rebecca J; Basketter, David A; Ryan, Cindy A; Gerberick, G Frank; McNamee, Pauline M; Lalko, Jon; Api, Anne Marie

    2008-10-01

    Allergic contact dermatitis is a common occupational and environmental health problem and many hundreds of chemicals have been implicated as skin sensitizers. Sensitization is acquired following topical exposure to a contact allergen and induction of a cutaneous immune response of an appropriate magnitude. For effective assessment and management of human health risks there is a need to appreciate the dose metrics that drive the induction of skin sensitization. The available evidence suggests that under most normal conditions of exposure it is the dose per unit area of chemical that has over-riding impact on the effectiveness of sensitization. The exception to this rule is when the area of the application site drops below a certain critical level. Here we review in detail the evidence which supports dose per unit area as being the critical exposure metric in the induction of skin sensitization, and the mechanistic bases for this relationship. PMID:18423821

  3. A Prospective, Open-Label Study of Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    SciTech Connect

    Kamstrup, Maria R.; Specht, Lena; Skovgaard, Gunhild L.; Gniadecki, Robert

    2008-07-15

    Purpose: To determine the effect of low-dose (4 Gy) total skin electron beam therapy as a second-line treatment of Stage IB-II mycosis fungoides in a prospective, open-label study. Methods and Materials: Ten patients (6 men, 4 women, average age 68.7 years [range, 55-82 years]) with histopathologically confirmed mycosis fungoides T2-T4 N0-N1 M0 who did not achieve complete remission or relapsed within 4 months after treatment with psoralen plus ultraviolet-A were included. Treatment consisted of low-dose total skin electron beam therapy administered at a total skin dose of 4 Gy given in 4 fractions over 4 successive days. Results: Two patients had a complete clinical response but relapsed after 3.5 months. Six patients had partial clinical responses, with a mean duration of 2.0 months. One patient had no clinical response. Median time to relapse was 2.7 months. One patient died of unrelated causes and did not complete treatment. Acute side effects included desquamation, xerosis, and erythema of the skin. No severe side effects were observed. Conclusion: Low-dose total skin electron beam therapy can induce complete and partial responses in Stage IB-II mycosis fungoides; however, the duration of remission is short. Low-dose total skin electron beam therapy may find application in palliative treatment of mycosis fungoides because of limited toxicity and the possibility of repeating treatments for long-term disease control.

  4. Comparative evaluation of 2 g single dose versus conventional dose azithromycin in uncomplicated skin and skin structure infections

    PubMed Central

    Dey, Sudipta Kumar; Das, Amal Kanti; Sen, Sumit; Hazra, Avijit

    2015-01-01

    Objectives: Uncomplicated skin and skin structure infections (uSSSIs) are a common clinical problem. Majority are caused by staphylococci and streptococci. Different oral antibiotics are used for uSSSI, with comparable efficacy but varying treatment duration, cost, and adverse event profile. Azithromycin is used in uSSSI in adults conventionally in a dose of 500 mg once for 5 days. The extensive tissue distribution of the drug and its long elimination half-life prompted us to explore whether a single 2 g dose of the drug would produce a response in uSSSI comparable to conventional dosing. Materials and Methods: We conducted a parallel group, open-label, randomized, controlled trial (CTRI/2015/07/005969) with subjects of either sex, ≥12 years of age, presenting with uSSSI to the dermatology outpatient department. One group (n = 146) received 2 g single supervised dose while the other (n = 146) received conventional dose of 500 mg once daily for 5 days. Subjects were followed up on day 4 and day 8. Complete clinical cure implied complete healing of lesions, without residual signs or symptoms, within 7 days. Results: High cure rate was observed in both arms (97.97% and 98.63%, respectively) along with noticeable improvement in symptom profile from baseline but without statistically significant difference between groups. However, excellent adherence (defined as no tablets missed) was better in single dosing arm (98.65% vs. 86.30%). Tolerability was also comparable between groups with the majority of adverse events encountered being gastrointestinal in nature and mild. Conclusions: Single 2 g azithromycin dose achieved the same result as conventional azithromycin dosing in uSSSI with comparable tolerability but with the advantage of assured adherence. This dose can, therefore, be recommended as an alternative and administration supervised if feasible. PMID:26288467

  5. Dose evaluation for skin and organ in hepatocellular carcinoma during angiographic procedure

    PubMed Central

    2013-01-01

    Purpose The purpose of this study is to evaluate the radiation dose in patients undergoing liver angiographic procedure and verify the usefulness of different dose measurements to prevent deterministic effects. Gafchromic film, MicroMOSFET data and DIAMENTOR device of the X-ray system were used to characterize the examined interventional radiology (IR) procedure. Materials and methods A liver embolization procedure, the SIRT (Selective Internal Radiation Therapy), was investigated. The exposure parameters from the DIAMENTOR as well as patient and geometrical data were registered. Entrance skin dose map obtained using Gafchromic film (ESDGAF) in a standard phantom as well as in 12 patients were used to calculate the maximum skin dose (MSDGAF). MicroMOSFETs were used to assess ESD in relevant points/areas. Moreover, the maximum value of five MicroMOSFETs array, due to the extension of treated area and to the relative distance of 2–3 cm of two adjacent MicroMOSFETs, was useful to predict the MSD without interfering with the clinical practice. PCXMC vers.1.5 was used to calculate effective dose (E) and equivalent dose (H). Results The mean dose-area product (DAPDIAMENTOR) for SIRT procedures was 166 Gycm2, although a wide range was observed. The mean MSDGAF for SIRT procedures was 1090 mGy, although a wide range was experienced. A correlation was found between the MSDGAF measured on a patient and the DAPDIAMENTOR value for liver embolizations. MOSFET and Gafchromic data were in agreement within 5% in homogeneous area and within 20% in high dose gradient regions. The mean equivalent dose in critical organs was 89.8 mSv for kidneys, 22.9 mSv for pancreas, 20.2 mSv for small intestine and 21.0 mSv for spleen. Whereas the mean E was 3.7 mSv (range: 0.5-13.7). Conclusions Gafchromic films result useful to study patient exposure and determine localization and amplitude of high dose skin areas to better predict the skin injuries. Then, DAPDIAMENTOR or MOSFET data

  6. Using a thermoluminescent dosimeter to evaluate the location reliability of the highest–skin dose area detected by treatment planning in radiotherapy for breast cancer

    SciTech Connect

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Meng, Fan-Yun; Lu, Tsung-Hsien; Tsao, Min-Jen

    2014-01-01

    Acute skin reaction during adjuvant radiotherapy for breast cancer is an inevitable process, and its severity is related to the skin dose. A high–skin dose area can be speculated based on the isodose distribution shown on a treatment planning. To determine whether treatment planning can reflect high–skin dose location, 80 patients were collected and their skin doses in different areas were measured using a thermoluminescent dosimeter to locate the highest–skin dose area in each patient. We determined whether the skin dose is consistent with the highest-dose area estimated by the treatment planning of the same patient. The χ{sup 2} and Fisher exact tests revealed that these 2 methods yielded more consistent results when the highest-dose spots were located in the axillary and breast areas but not in the inframammary area. We suggest that skin doses shown on the treatment planning might be a reliable and simple alternative method for estimating the highest skin doses in some areas.

  7. Measurement of skin dose in primary irradiation of maxillary sinus carcinoma

    SciTech Connect

    Janjan, N.A.; Zellmer, D.; Gillin, M.; Kengchon, W.; Campbell, B. )

    1991-03-01

    Subcutaneous involvement frequently occurs in maxillary sinus carcinoma. Radical resection does not include removal of the skin at risk. In standard postoperative wedge-pair treatment plans, the surface dose is dependent upon beam weighting, beam energy, and patient contour. Thermoluminescent dosimetry (TLD) measurements were performed to evaluate the surface dose of patients undergoing postoperative irradiation of maxillary sinus carcinoma following primary resection. When 60 Gy was delivered to isocenter with a 45 degrees wedge pair and 6 MV photons with 1 cm bolus, the subcutaneous tissues at risk received {approximately} 30 Gy. Based upon presented TLD measurements, supplemental electron beam therapy to the subcutaneous tissues if primarily involved should be considered.

  8. Use of skin substitutes in pediatric patients.

    PubMed

    Ozerdem, Omer R; Wolfe, S Anthony; Marshall, Deirdre

    2003-07-01

    There are various artificial skin substitutes available commercially. The authors have used Integra, cultured epithelium, and Apligraf in their clinic. In the present report, they present their experiences based on two case reports. The first patient was a 12-year-old boy with widespread skin defects and left axillary contracture due to epidermolysis bullosa (EB). Apligraf was used to cover the skin defects on the trunk and face and to manage ectropion and axillary contracture. The second patient was a 6-year-old boy who suffered neurocutaneous melanosis. Partial excision of a pigmented lesion on the back created a large defect. Integra application followed by repair with cultured autologous skin was accomplished, and the results were satisfactory. Skin substitute products 1) are commercially immediately available; 2) are effective for management of contractures, chronic wounds, and chronic skin illnesses; 3) decrease or avoid the risk of donor area morbidity, which is more difficult to treat in children; 4) provide long-term coverage of the wound; and 5) can be used in conjunction with autologous tissue (e.g., Integra followed by cultured epithelium applications). PMID:12867866

  9. Skin Dose Impact from Vacuum Immobilization Device and Carbon Fiber Couch in Intensity Modulated Radiation Therapy for Prostate Cancer

    SciTech Connect

    Lee, K.-W.; Wu, J.-K.; Jeng, S.-C.; Hsueh Liu Yen-Wan; Cheng, Jason Chia-Hsien

    2009-10-01

    To investigate the unexpected skin dose increase from intensity-modulated radiation therapy (IMRT) on vacuum cushions and carbon-fiber couches and then to modify the dosimetric plan accordingly. Eleven prostate cancer patients undergoing IMRT were treated in prone position with a vacuum cushion. Two under-couch beams scattered the radiation from the vacuum cushion and carbon-fiber couch. The IMRT plans with both devices contoured were compared with the plans not contouring them. The skin doses were measured using thermoluminescent dosimeters (TLDs) placed on the inguinal regions in a single IMRT fraction. Tissue equivalent thickness was transformed for both devices with the relative densities. The TLD-measured skin doses (59.5 {+-} 9.5 cGy and 55.6 {+-} 5.9 cGy at left and right inguinal regions, respectively) were significantly higher than the calculated doses (28.7 {+-} 4.7 cGy; p = 2.2 x 10{sup -5} and 26.2 {+-} 4.3 cGy; p = 1.5 x 10{sup -5}) not contouring the vacuum cushion and carbon-fiber couch. The calculated skin doses with both devices contoured (59.1 {+-} 8.8 cGy and 55.5 {+-} 5.7 cGy) were similar to the TLD-measured doses. In addition, the calculated skin doses using the vacuum cushion and a converted thickness of the simulator couch were no different from the TLD-measured doses. The recalculated doses of rectum and bladder did not change significantly. The dose that covered 95% of target volume was less than the prescribed dose in 4 of 11 patients, and this problem was solved after re-optimization applying the corrected contours. The vacuum cushion and carbon-fiber couch contributed to increased skin doses. The tissue-equivalent-thickness method served as an effective way to correct the dose variations.

  10. Dose Distribution Calculation in Skin Cancer Treatment Using Leipzig Applicator

    NASA Astrophysics Data System (ADS)

    Mowlawi, Ali Asghar; Yazdani, Majed

    The combination of 192Ir seed with the Leipzig applicators is used in a considerable number of clinical trials for skin cancer treatment. As is known, the beneficial effects of ionizing radiation for tumor treatment depends on the dosimetry accuracy. Nowadays, dosimetry calculations are supported by the characteristics provided by the manufacturer, which have been obtained from measurements with an ionization chamber in a phantom. Despite their benefit, the experimental data involves errors related to the positioning, energy, and angular dependence of the detectors. Thus, in order to get a detailed and more accurate dosimetry, the Monte Carlo code MCNP4C2 — Monte Carlo Neutron Particle, 4C2 version — has been employed to analyze the dose distribution in depth and at the surface in the skin cancer treatment using Leipzig applicators. On the other hand, some different measurements have been taken to validate the method and compare results. The results for this material of phantom (the skin with 0.5 cm thick over infinite soft tissue) can be used in treatment planning systems and also for computation of model dependent parameters like anisotropy dose function.

  11. Characterization of a MOSkin detector for in vivo skin dose measurements during interventional radiology procedures

    SciTech Connect

    Safari, M. J.; Wong, J. H. D.; Ng, K. H.; Jong, W. L.; Cutajar, D. L.; Rosenfeld, A. B.

    2015-05-15

    Purpose: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. Methods: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. Results: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (±1%), field size (±1%), frame rate (±3%), or beam energy (±5%). The detector angular dependence was within ±5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ±3%. Conclusions: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.

  12. VARSKIN MOD 2 and SADDE MOD2: Computer codes for assessing skin dose from skin contamination

    SciTech Connect

    Durham, J.S. )

    1992-12-01

    The computer code VARSKIN has been modified to calculate dose to skin from three-dimensional sources, sources separated from the skin by layers of protective clothing, and gamma dose from certain radionuclides correction for backscatter has also been incorporated for certain geometries. This document describes the new code, VARSKIN Mod 2, including installation and operation instructions, provides detailed descriptions of the models used, and suggests methods for avoiding misuse of the code. The input data file for VARSKIN Mod 2 has been modified to reflect current physical data, to include the contribution to dose from internal conversion and Auger electrons, and to reflect a correction for low-energy electrons. In addition, the computer code SADDE: Scaled Absorbed Dose Distribution Evaluator has been modified to allow the generation of scaled absorbed dose distributions for mixtures of radionuclides and intereat conversion and Auger electrons. This new code, SADDE Mod 2, is also described in this document. Instructions for installation and operation of the code and detailed descriptions of the models used in the code are provided.

  13. TLD skin dose measurements and acute and late effects after lumpectomy and high-dose-rate brachytherapy only for early breast cancer

    SciTech Connect

    Perera, Francisco . E-mail: francisco.perera@lrcc.on.ca; Chisela, Frank; Stitt, Larry; Engel, Jay; Venkatesan, Varagur

    2005-08-01

    Purpose: This report examines the relationships between measured skin doses and the acute and late skin and soft tissue changes in a pilot study of lumpectomy and high-dose-rate brachytherapy only for breast cancer. Methods and Materials: Thirty-seven of 39 women enrolled in this pilot study of high-dose-rate brachytherapy (37.2 Gy in 10 fractions b.i.d.) each had thermoluminescent dosimetry (TLD) at 5 points on the skin of the breast overlying the implant volume. Skin changes at TLD dose points and fibrosis at the lumpectomy site were documented every 6 to 12 months posttreatment using a standardized physician-rated cosmesis questionnaire. The relationships between TLD dose and acute skin reaction, pigmentation, or telangiectasia at 5 years were analyzed using the GEE algorithm and the GENMOD procedure in the SAS statistical package. Fisher's exact test was used to determine whether there were any significant associations between acute skin reaction and late pigmentation or telangiectasia or between the volumes encompassed by various isodoses and fibrosis or fat necrosis. Results: The median TLD dose per fraction (185 dose points) multiplied by 10 was 9.2 Gy. In all 37 patients, acute skin reaction Grade 1 or higher was observed at 5.9% (6 of 102) of dose points receiving 10 Gy or less vs. 44.6% (37 of 83) of dose points receiving more than 10 Gy (p < 0.0001). In 25 patients at 60 months, 1.5% telangiectasia was seen at dose points receiving 10 Gy or less (1 of 69) vs. 18% (10 of 56) telangiectasia at dose points receiving more than 10 Gy (p 0.004). Grade 1 or more pigmentation developed at 1.5% (1 of 69) of dose points receiving less than 10 Gy vs. 25% (14 of 56) of dose points receiving more than 10 Gy (p < 0.001). A Grade 1 or more acute skin reaction was also significantly associated with development of Grade 1 or more pigmentation or telangiectasia at 60 months. This association was most significant for acute reaction and telangiectasia directly over the

  14. Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro

    2014-03-01

    Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.

  15. Expected skin complaints of the geriatric patient.

    PubMed

    Walther, R R; Harber, L C

    1984-12-01

    Increased exposure to systemic medications in older patients makes drug reactions a likely cause of skin eruptions. Efforts to increase return of venous blood to the heart is the primary therapeutic and preventive measure in stasis dermatitis. If there is a suggestion of infection, antibiotics are indicated. The dermatitis can be treated with standard therapies. PMID:6238868

  16. Comparison of measured and estimated maximum skin doses during CT fluoroscopy lung biopsies

    SciTech Connect

    Zanca, F.; Jacobs, A.; Crijns, W.; De Wever, W.

    2014-07-15

    Purpose: To measure patient-specific maximum skin dose (MSD) associated with CT fluoroscopy (CTF) lung biopsies and to compare measured MSD with the MSD estimated from phantom measurements, as well as with the CTDIvol of patient examinations. Methods: Data from 50 patients with lung lesions who underwent a CT fluoroscopy-guided biopsy were collected. The CT protocol consisted of a low-kilovoltage (80 kV) protocol used in combination with an algorithm for dose reduction to the radiology staff during the interventional procedure, HandCare (HC). MSD was assessed during each intervention using EBT2 gafchromic films positioned on patient skin. Lesion size, position, total fluoroscopy time, and patient-effective diameter were registered for each patient. Dose rates were also estimated at the surface of a normal-size anthropomorphic thorax phantom using a 10 cm pencil ionization chamber placed at every 30°, for a full rotation, with and without HC. Measured MSD was compared with MSD values estimated from the phantom measurements and with the cumulative CTDIvol of the procedure. Results: The median measured MSD was 141 mGy (range 38–410 mGy) while the median cumulative CTDIvol was 72 mGy (range 24–262 mGy). The ratio between the MSD estimated from phantom measurements and the measured MSD was 0.87 (range 0.12–4.1) on average. In 72% of cases the estimated MSD underestimated the measured MSD, while in 28% of the cases it overestimated it. The same trend was observed for the ratio of cumulative CTDIvol and measured MSD. No trend was observed as a function of patient size. Conclusions: On average, estimated MSD from dose rate measurements on phantom as well as from CTDIvol of patient examinations underestimates the measured value of MSD. This can be attributed to deviations of the patient's body habitus from the standard phantom size and to patient positioning in the gantry during the procedure.

  17. Radiation doses of patients and urologists during percutaneous nephrolithotomy.

    PubMed

    Safak, M; Olgar, T; Bor, D; Berkmen, G; Gogus, C

    2009-09-01

    Renal stones can be treated either by extracorporeal shock wave lithotripsy (ESWL) or percutaneous nephrolithotomy (PCNL). Increasing use of fluoroscopic exposure for access and to detect stone location during PCNL make the measurement of patient and staff doses important. The main objective of this work was to assess patient and urologist doses for the PCNL examination. We used the tube output technique for determination of patient doses (n = 20) and lithium fluoride thermoluminescent dosimeter (TLD) chips for urologist dose measurements. The TLD technique was also used for some patient dose measurements (n = 7) for comparison with the tube output technique. Mean entrance skin doses of 191 and 117 mGy were measured by the tube output technique for anterior-posterior (AP) and right anterior oblique (RAO) 30 degrees /left anterior oblique (LAO) 30 degrees projections, respectively. The mean urologist doses for eye, finger and collar were measured as 26, 33.5 and 48 microGy per procedure, respectively. The mean effective dose per procedure for the urologist was 12.7 microSv. None of the individual skin dose results approach deterministic levels. PMID:19690355

  18. Method for preparing dosimeter for measuring skin dose

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1982-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with neutron-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  19. Dosimeter for measuring skin dose and more deeply penetrating radiation

    DOEpatents

    Jones, Donald E.; Parker, DeRay; Boren, Paul R.

    1981-01-01

    A personnel dosimeter includes a plurality of compartments containing thermoluminescent dosimeter phosphors for registering radiation dose absorbed in the wearer's sensitive skin layer and for registering more deeply penetrating radiation. Two of the phosphor compartments communicate with thin windows of different thicknesses to obtain a ratio of shallowly penetrating radiation, e.g. beta. A third phosphor is disposed within a compartment communicating with a window of substantially greater thickness than the windows of the first two compartments for estimating the more deeply penetrating radiation dose. By selecting certain phosphors that are insensitive to neutrons and by loading the holder material with netruon-absorbing elements, energetic neutron dose can be estimated separately from other radiation dose. This invention also involves a method of injection molding of dosimeter holders with thin windows of consistent thickness at the corresponding compartments of different holders. This is achieved through use of a die insert having the thin window of precision thickness in place prior to the injection molding step.

  20. Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design

    NASA Astrophysics Data System (ADS)

    Keyvanloo, A.; Burke, B.; St. Aubin, J.; Baillie, D.; Wachowicz, K.; Warkentin, B.; Steciw, S.; Fallone, B. G.

    2016-05-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient entrance skin dose. Also, the increased SSD of linac-MR systems reduces the maximum achievable dose rate. To accurately quantify the changes in entrance skin dose, the authors use EGSnrc Monte Carlo calculations that incorporate 3D magnetic field of the Alberta 0.5 T longitudinal linac-MR system. The Varian 600C linac head geometry assembled on the MRI components is used in the BEAMnrc simulations for 6 MV and 10 MV beam models and skin doses are calculated at an average depth of 70 μm using DOSXYZnrc. 3D modeling shows that magnetic fringe fields decay rapidly and are small at the linac head. SSDs between 100 and 120 cm result in skin-dose increases of between ~6%–19% and ~1%–9% for the 6 and 10 MV beams, respectively. For 6 MV, skin dose increases from ~10.5% to ~1.5% for field-size increases of 5  ×  5 cm2 to 20  ×  20 cm2. For 10 MV, skin dose increases by ~6% for a 5  ×  5 cm2 field, and decreases by ~1.5% for a 20  ×  20 cm2 field. Furthermore, the proposed reshaped flattening filter increases the dose rate from the current 355 MU min‑1 to 529 MU min‑1 (6 MV) or 604 MU min‑1 (10 MV), while the skin-dose increases by only an additional ~2.6% (all percent increases in skin dose are relative to D max). This study suggests that there is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. The even lower skin dose increase at 10 MV offers further advantages in future designs of linac-MR prototypes.

  1. Minimal skin dose increase in longitudinal rotating biplanar linac-MR systems: examination of radiation energy and flattening filter design.

    PubMed

    Keyvanloo, A; Burke, B; St Aubin, J; Baillie, D; Wachowicz, K; Warkentin, B; Steciw, S; Fallone, B G

    2016-05-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient entrance skin dose. Also, the increased SSD of linac-MR systems reduces the maximum achievable dose rate. To accurately quantify the changes in entrance skin dose, the authors use EGSnrc Monte Carlo calculations that incorporate 3D magnetic field of the Alberta 0.5 T longitudinal linac-MR system. The Varian 600C linac head geometry assembled on the MRI components is used in the BEAMnrc simulations for 6 MV and 10 MV beam models and skin doses are calculated at an average depth of 70 μm using DOSXYZnrc. 3D modeling shows that magnetic fringe fields decay rapidly and are small at the linac head. SSDs between 100 and 120 cm result in skin-dose increases of between ~6%-19% and ~1%-9% for the 6 and 10 MV beams, respectively. For 6 MV, skin dose increases from ~10.5% to ~1.5% for field-size increases of 5  ×  5 cm(2) to 20  ×  20 cm(2). For 10 MV, skin dose increases by ~6% for a 5  ×  5 cm(2) field, and decreases by ~1.5% for a 20  ×  20 cm(2) field. Furthermore, the proposed reshaped flattening filter increases the dose rate from the current 355 MU min(-1) to 529 MU min(-1) (6 MV) or 604 MU min(-1) (10 MV), while the skin-dose increases by only an additional ~2.6% (all percent increases in skin dose are relative to D max). This study suggests that there is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. The even lower skin dose increase at 10 MV offers further advantages in future designs of linac-MR prototypes. PMID:27050044

  2. Inflammatory Bowel Disease and Skin Cancer: An Assessment of Patient Risk Factors, Knowledge, and Skin Practices

    PubMed Central

    Kimmel, Jessica N.; Taft, Tiffany H.; Keefer, Laurie

    2016-01-01

    Objective. Patients with inflammatory bowel disease (IBD) are at increased risk from skin cancer. Aims include assessing IBD patients' risk factors and knowledge of skin cancer and current skin protection practices to identify gaps in patient education regarding skin cancer prevention in IBD. Methods. IBD patients ≥ 18 years were recruited to complete an online survey. Results. 164 patients (mean age 43.5 years, 63% female) with IBD (67% Crohn's disease, 31% ulcerative colitis, and 2% indeterminate colitis) were included. 12% (n = 19) of patients had a personal history and 34% (n = 55) had a family history of skin cancer. Females scored better on skin protection (16.94/32 versus 14.53/32, P ≤ 0.03) and awareness (35.16/40 versus 32.98/40, P ≤ 0.03). Patients over 40 years old scored better on prevention (17.45/28 versus 15.35/28, P = 0.03). Patients with skin cancer scored better on prevention (20.56/28 versus 15.75/28, P ≤ 0.001) and skin protection (21.47/32 versus 15.33/32, P ≤ 0.001). 61% of patients recognized the link between skin cancer and IBD. Conclusions. The majority of IBD patients are aware of the link between skin cancer and IBD; however, skin protection practices are suboptimal. This emphasizes the role of healthcare professionals in providing further education for skin cancer prevention in the IBD population. PMID:27034838

  3. Measurement of skin and target dose in post-mastectomy radiotherapy using 4 and 6 MV photon beams

    PubMed Central

    2013-01-01

    Background For patients with high risk breast cancer and mastectomy, radiotherapy is the treatment of choice to improve survival and local control. Target dose is mainly limited due to skin reactions. The feasibility of using 4 MV beams for chest wall treatment was studied and compared to standard 6 MV bolus radiotherapy. Methods Post-mastectomy IMRT was planned on an Alderson-phantom using 4 and 6 MV photon beams without/with a 0.5 cm thick bolus. Dose was measured using TLDs placed at 8 locations in 1 and 3 mm depth to represent skin and superficial target dose, respectively. Results 4 MV and 6 MV beams with bolus perform equally regarding target coverage. The minimum and mean superficial target dose for the 6 MV and 4 MV were 93.0% and 94.7%, and 93.1% and 94.4%, respectively. Regarding skin dose the 4 MV photon beam was advantageous. The minimum and mean skin dose for the 6 MV and 4 MV was 76.7% and 81.6%, and 69.4% and 72.9%, respectively. The TPS was able to predict dose in the build-up region with a precision of around 5%. Conclusions The use of 4 MV photon beams are a good alternative for treating the thoracic wall without the need to place a bolus on the patient. The main limitation of 4 MV beams is the limited dose rate. PMID:24238366

  4. Antimicrobial Dose in Obese Patient

    PubMed Central

    Kassab, Sawsan; Syed Sulaiman, Syed Azhar; Abdul Aziz, Noorizan

    2007-01-01

    Introduction Obesity is a chronic disease that has become one of major public health issue in Malaysia because of its association with other disease states including cardiovascular disease and diabetes. Despite continuous efforts to educate the public about the health risks associated with obesity, prevalence of the disease continues to increase. Dosing of many medications are based on weight, limited data are available on how antimicrobial agents should be dosed in obesity. The aim of this case presentation is to discuss dose of antibiotic in obese patient. Case report: Patient: GMN, Malay, Female, 45 year old, 150kg, transferred from medical ward to ICU with problems of fever, orthopnea, sepsis secondary to nosocomial pneumonia. She was admitted to hospital a week ago for SOB on exertion, cyanosis, mildly dyspneic, somasthenia, bilateral ankle swelling. There was no fever, cough, chest pain, clubbing, flapping tremor. Her grand father has pre-morbid history of obesity, HPT, DM and asthma. She was non alcoholic, smoker, and not on diet control. The diagnosis Pickwickian syndrome was made. Patient was treated with IV Dopamine 11mcg/kg/min, IV Morphine 4mg/h. IV GTN 15mcg/min, IV Ca gluconate 10g/24h for 3/7, IV Zantac 50mg tds, IV Augmentin 1.2g tds, IV Lasix 40mg od, IV Plasil 10mg tds, S.c heparin 5000IU bd. patient become stable and moved to medical ward to continue her treatment. Discussion: The altered physiologic function seen in obese patients is a concern in patients receiving antimicrobial agents because therapeutic outcomes depend on achieving a minimum inhibitory concentration (MIC). The therapeutic effect of any drug can be altered when any of the 4 pharmacokinetic processes (absorption, distribution, metabolism, or elimination) are altered. Decreased blood flow rates and increased renal clearance in obese patients can affect drug distribution and elimination. Changes in serum protein levels can change the metabolism and distribution of drugs that are

  5. Approach to skin ulcers in older patients.

    PubMed Central

    Frank, Christopher

    2004-01-01

    OBJECTIVE: To provide family physicians with an approach to managing skin ulcers in older patients. SOURCES OF INFORMATION: Clinical practice guidelines and best practice guidelines were summarized to describe an evidence-based approach. MAIN MESSAGE; Preventing ulcers is important in frail older patients. Using guidelines can help prevent ulcers in institutions. Clarifying the cause and contributing factors is the first step in management. Pressure and venous ulcers are common in elderly people. Poor nutrition, edema, arterial insufficiency, and anemia often impair wound healing. Adequate debridement is important to decrease risk of infection and to promote healing. There are guidelines for cleaning ulcers. Choice of dressings depends on the circumstances of each wound, but dressings should provide a moist environment. Options for dressings are summarized. CONCLUSION: Family physicians can manage skin ulcers effectively by applying basic principles and using readily available guidelines. PMID:15648380

  6. Boron neutron capture therapy (BNCT) for malignant melanoma with special reference to absorbed doses to the normal skin and tumor.

    PubMed

    Fukuda, H; Hiratsuka, J; Kobayashi, T; Sakurai, Y; Yoshino, K; Karashima, H; Turu, K; Araki, K; Mishima, Y; Ichihashi, M

    2003-09-01

    Twenty-two patients with malignant melanoma were treated with boron neutron capture therapy (BNCT) using 10B-p-boronophenylalanine (BPA). The estimation of absorbed dose and optimization of treatment dose based on the pharmacokinetics of BPA in melanoma patients is described. The doses of gamma-rays were measured using small TLDs of Mg2SiO4 (Tb) and thermal neutron fluence was measured using gold foil and wire. The total absorbed dose to the tissue from BNCT was obtained by summing the primary and capture gamma-ray doses and the high LET radiation doses from 10B(n, alpha)7Li and 14N(n,p)14C reactions. The key point of the dose optimization is that the skin surrounding the tumour is always irradiated to 18 Gy-Eq, which is the maximum tolerable dose to the skin, regardless of the 10B-concentration in the tumor. The neutron fluence was optimized as follows. (1) The 10B concentration in the blood was measured 15-40 min after the start of neutron irradiation. (2) The 10B-concentration in the skin was estimated by multiplying the blood 10B value by a factor of 1.3. (3) The neutron fluence was calculated. Absorbed doses to the skin ranged from 15.7 to 37.1 Gy-Eq. Among the patients, 16 out of 22 patients exhibited tolerable skin damage. Although six patients showed skin damage that exceeded the tolerance level, three of them could be cured within a few months after BNCT and the remaining three developed severe skin damage requiring skin grafts. The absorbed doses to the tumor ranged from 15.7 to 68.5 Gy-Eq and the percentage of complete response was 73% (16/22). When BNCT is used in the treatment of malignant melanoma, based on the pharmacokinetics of BPA and radiobiological considerations, promising clinical results have been obtained, although many problems and issues remain to be solved. PMID:14626847

  7. Improved-resolution real-time skin-dose mapping for interventional fluoroscopic procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.

    2014-03-01

    We have developed a dose-tracking system (DTS) that provides a real-time display of the skin-dose distribution on a 3D patient graphic during fluoroscopic procedures. Radiation dose to individual points on the skin is calculated using exposure and geometry parameters from the digital bus on a Toshiba C-arm unit. To accurately define the distribution of dose, it is necessary to use a high-resolution patient graphic consisting of a large number of elements. In the original DTS version, the patient graphics were obtained from a library of population body scans which consisted of larger-sized triangular elements resulting in poor congruence between the graphic points and the x-ray beam boundary. To improve the resolution without impacting real-time performance, the number of calculations must be reduced and so we created software-designed human models and modified the DTS to read the graphic as a list of vertices of the triangular elements such that common vertices of adjacent triangles are listed once. Dose is calculated for each vertex point once instead of the number of times that a given vertex appears in multiple triangles. By reformatting the graphic file, we were able to subdivide the triangular elements by a factor of 64 times with an increase in the file size of only 1.3 times. This allows a much greater number of smaller triangular elements and improves resolution of the patient graphic without compromising the real-time performance of the DTS and also gives a smoother graphic display for better visualization of the dose distribution.

  8. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    NASA Astrophysics Data System (ADS)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  9. Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopic procedures.

    PubMed

    Bednarek, Daniel R; Barbarits, Jeffery; Rana, Vijay K; Nagaraja, Srikanta P; Josan, Madhur S; Rudin, Stephen

    2011-02-13

    A tracking system has been developed to provide real-time feedback of skin dose and dose rate during interventional fluoroscopic procedures. The dose tracking system (DTS) calculates the radiation dose rate to the patient's skin using the exposure technique parameters and exposure geometry obtained from the x-ray imaging system digital network (Toshiba Infinix) and presents the cumulative results in a color mapping on a 3D graphic of the patient. We performed a number of tests to verify the accuracy of the dose representation of this system. These tests included comparison of system-calculated dose-rate values with ionization-chamber (6 cc PTW) measured values with change in kVp, beam filter, field size, source-to-skin distance and beam angulation. To simulate a cardiac catheterization procedure, the ionization chamber was also placed at various positions on an Alderson Rando torso phantom and the dose agreement compared for a range of projection angles with the heart at isocenter. To assess the accuracy of the dose distribution representation, Gafchromic film (XR-RV3, ISP) was exposed with the beam at different locations. The DTS and film distributions were compared and excellent visual agreement was obtained within the cm-sized surface elements used for the patient graphic. The dose (rate) values agreed within about 10% for the range of variables tested. Correction factors could be applied to obtain even closer agreement since the variable values are known in real-time. The DTS provides skin-dose values and dose mapping with sufficient accuracy for use in monitoring diagnostic and interventional x-ray procedures. PMID:21731400

  10. Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopic procedures

    NASA Astrophysics Data System (ADS)

    Bednarek, Daniel R.; Barbarits, Jeffery; Rana, Vijay K.; Nagaraja, Srikanta P.; Josan, Madhur S.; Rudin, Stephen

    2011-03-01

    A tracking system has been developed to provide real-time feedback of skin dose and dose rate during interventional fluoroscopic procedures. The dose tracking system (DTS) calculates the radiation dose rate to the patient's skin using the exposure technique parameters and exposure geometry obtained from the x-ray imaging system digital network (Toshiba Infinix) and presents the cumulative results in a color mapping on a 3D graphic of the patient. We performed a number of tests to verify the accuracy of the dose representation of this system. These tests included comparison of system-calculated dose-rate values with ionization-chamber (6 cc PTW) measured values with change in kVp, beam filter, field size, source-to-skin distance and beam angulation. To simulate a cardiac catheterization procedure, the ionization chamber was also placed at various positions on an Alderson Rando torso phantom and the dose agreement compared for a range of projection angles with the heart at isocenter. To assess the accuracy of the dose distribution representation, Gafchromic film (XR-RV3, ISP) was exposed with the beam at different locations. The DTS and film distributions were compared and excellent visual agreement was obtained within the cm-sized surface elements used for the patient graphic. The dose (rate) values agreed within about 10% for the range of variables tested. Correction factors could be applied to obtain even closer agreement since the variable values are known in real-time. The DTS provides skin-dose values and dose mapping with sufficient accuracy for use in monitoring diagnostic and interventional x-ray procedures.

  11. Skin dose rate conversion factors after contamination with radiopharmaceuticals: influence of contamination area, epidermal thickness and percutaneous absorption.

    PubMed

    Covens, P; Berus, D; Caveliers, V; Struelens, L; Vanhavere, F; Verellen, D

    2013-06-01

    Skin contamination with radiopharmaceuticals can occur during biomedical research and daily nuclear medicine practice as a result of accidental spills, after contact with bodily fluids of patients or by inattentively touching contaminated materials. Skin dose assessment should be carried out by repeated quantification to map the course of the contamination together with the use of appropriate skin dose rate conversion factors. Contamination is generally characterised by local spots on the palmar surface of the hand and complete decontamination is difficult as a result of percutaneous absorption. This specific issue requires special consideration as to the skin dose rate conversion factors as a measure for the absorbed dose rate to the basal layer of the epidermis. In this work we used Monte Carlo simulations to study the influence of the contamination area, the epidermal thickness and the percutaneous absorption on the absorbed skin dose rate conversion factors for a set of 39 medical radionuclides. The results show that the absorbed dose to the basal layer of the epidermis can differ by up to two orders of magnitude from the operational quantity Hp(0.07) when using an appropriate epidermal thickness in combination with the effect of percutaneous absorption. PMID:23519114

  12. Assessing patient dose in interventional fluoroscopy using patient-dependent hybrid phantoms

    NASA Astrophysics Data System (ADS)

    Johnson, Perry Barnett

    Interventional fluoroscopy uses ionizing radiation to guide small instruments through blood vessels or other body pathways to sites of clinical interest. The technique represents a tremendous advantage over invasive surgical procedures, as it requires only a small incision, thus reducing the risk of infection and providing for shorter recovery times. The growing use and increasing complexity of interventional procedures, however, has resulted in public health concerns regarding radiation exposures, particularly with respect to localized skin dose. Tracking and documenting patient-specific skin and internal organ dose has been specifically identified for interventional fluoroscopy where extended irradiation times, multiple projections, and repeat procedures can lead to some of the largest doses encountered in radiology. Furthermore, inprocedure knowledge of localized skin doses can be of significant clinical importance to managing patient risk and in training radiology residents. In this dissertation, a framework is presented for monitoring the radiation dose delivered to patients undergoing interventional procedures. The framework is built around two key points, developing better anthropomorphic models, and designing clinically relevant software systems for dose estimation. To begin, a library of 50 hybrid patient-dependent computational phantoms was developed based on the UF hybrid male and female reference phantoms. These phantoms represent a different type of anthropomorphic model whereby anthropometric parameters from an individual patient are used during phantom selection. The patient-dependent library was first validated and then used in two patient-phantom matching studies focused on cumulative organ and local skin dose. In terms of organ dose, patient-phantom matching was shown most beneficial for estimating the dose to large patients where error associated with soft tissue attenuation differences could be minimized. For small patients, inherent difference

  13. Verification of the performance accuracy of a real-time skin-dose tracking system for interventional fluoroscopic procedures

    PubMed Central

    Bednarek, Daniel R.; Barbarits, Jeffery; Rana, Vijay K.; Nagaraja, Srikanta P.; Josan, Madhur S.; Rudin, Stephen

    2011-01-01

    A tracking system has been developed to provide real-time feedback of skin dose and dose rate during interventional fluoroscopic procedures. The dose tracking system (DTS) calculates the radiation dose rate to the patient’s skin using the exposure technique parameters and exposure geometry obtained from the x-ray imaging system digital network (Toshiba Infinix) and presents the cumulative results in a color mapping on a 3D graphic of the patient. We performed a number of tests to verify the accuracy of the dose representation of this system. These tests included comparison of system–calculated dose-rate values with ionization-chamber (6 cc PTW) measured values with change in kVp, beam filter, field size, source-to-skin distance and beam angulation. To simulate a cardiac catheterization procedure, the ionization chamber was also placed at various positions on an Alderson Rando torso phantom and the dose agreement compared for a range of projection angles with the heart at isocenter. To assess the accuracy of the dose distribution representation, Gafchromic film (XR-RV3, ISP) was exposed with the beam at different locations. The DTS and film distributions were compared and excellent visual agreement was obtained within the cm-sized surface elements used for the patient graphic. The dose (rate) values agreed within about 10% for the range of variables tested. Correction factors could be applied to obtain even closer agreement since the variable values are known in real-time. The DTS provides skin-dose values and dose mapping with sufficient accuracy for use in monitoring diagnostic and interventional x-ray procedures. PMID:21731400

  14. Skin necrosis after a low-dose vasopressin infusion through a central venous catheter for treating septic shock.

    PubMed

    Kim, Eun Hee; Lee, Sae Hwan; Byun, Seung Woon; Kang, Ho Suk; Koo, Dong Hoe; Park, Hyun-Gu; Hong, Sang Bum

    2006-12-01

    This is a report on a case of severe skin necrosis in a vasodilatory septic shock patient after the infusion of low-dose vasopressin through a central venous catheter. An 84-year-old male was hospitalized for edema on both legs at Asan Medical Center, Seoul, Korea. On hospital day 8, the patient began to complain of dyspnea and he subsequently developed severe septic shock caused by E. coli. After being transferred to the medical intensive care unit, his hypotension, which was refractory to norepinephrine, was controlled by an infusion of low-dose vasopressin (0.02 unit/min) through a central venous catheter into the right subclavian vein. After the infusion of low-dose vasopressin, severe skin necrosis with bullous changes developed, necessitating discontinuation of the low-dose vasopressin infusion. The patient expired from refractory septic shock. Although low-dose vasopressin can control hypotension in septic shock patients, low-dose vasopressin must be used with caution because ischemic complications such as skin necrosis can develop even with administration through a central venous catheter. PMID:17249516

  15. Estimating pediatric entrance skin dose from digital radiography examination using DICOM metadata: A quality assurance tool

    SciTech Connect

    Brady, S. L. Kaufman, R. A.

    2015-05-15

    Purpose: To develop an automated methodology to estimate patient examination dose in digital radiography (DR) imaging using DICOM metadata as a quality assurance (QA) tool. Methods: Patient examination and demographical information were gathered from metadata analysis of DICOM header data. The x-ray system radiation output (i.e., air KERMA) was characterized for all filter combinations used for patient examinations. Average patient thicknesses were measured for head, chest, abdomen, knees, and hands using volumetric images from CT. Backscatter factors (BSFs) were calculated from examination kVp. Patient entrance skin air KERMA (ESAK) was calculated by (1) looking up examination technique factors taken from DICOM header metadata (i.e., kVp and mA s) to derive an air KERMA (k{sub air}) value based on an x-ray characteristic radiation output curve; (2) scaling k{sub air} with a BSF value; and (3) correcting k{sub air} for patient thickness. Finally, patient entrance skin dose (ESD) was calculated by multiplying a mass–energy attenuation coefficient ratio by ESAK. Patient ESD calculations were computed for common DR examinations at our institution: dual view chest, anteroposterior (AP) abdomen, lateral (LAT) skull, dual view knee, and bone age (left hand only) examinations. Results: ESD was calculated for a total of 3794 patients; mean age was 11 ± 8 yr (range: 2 months to 55 yr). The mean ESD range was 0.19–0.42 mGy for dual view chest, 0.28–1.2 mGy for AP abdomen, 0.18–0.65 mGy for LAT view skull, 0.15–0.63 mGy for dual view knee, and 0.10–0.12 mGy for bone age (left hand) examinations. Conclusions: A methodology combining DICOM header metadata and basic x-ray tube characterization curves was demonstrated. In a regulatory era where patient dose reporting has become increasingly in demand, this methodology will allow a knowledgeable user the means to establish an automatable dose reporting program for DR and perform patient dose related QA testing for

  16. Revisiting Low-Dose Total Skin Electron Beam Therapy in Mycosis Fungoides

    SciTech Connect

    Harrison, Cameron; Young, James; Navi, Daniel; Riaz, Nadeem; Lingala, Bharathi; Kim, Youn; Hoppe, Richard

    2011-11-15

    Purpose: Total skin electron beam therapy (TSEBT) is a highly effective treatment for mycosis fungoides (MF). The standard course consists of 30 to 36 Gy delivered over an 8- to 10-week period. This regimen is time intensive and associated with significant treatment-related toxicities including erythema, desquamation, anhydrosis, alopecia, and xerosis. The aim of this study was to identify a lower dose alternative while retaining a favorable efficacy profile. Methods and Materials: One hundred two MF patients were identified who had been treated with an initial course of low-dose TSEBT (5-<30 Gy) between 1958 and 1995. Patients had a T stage classification of T2 (generalized patch/plaque, n = 51), T3 (tumor, n = 29), and T4 (erythrodermic, n = 22). Those with extracutaneous disease were excluded. Results: Overall response (OR) rates (>50% improvement) were 90% among patients with T2 to T4 disease receiving 5 to <10 Gy (n = 19). In comparison, OR rates between the 10 to <20 Gy and 20 to <30 Gy subgroups were 98% and 97%, respectively. There was no significant difference in median progression free survival (PFS) in T2 and T3 patients when stratified by dose group, and PFS in each was comparable to that of the standard dose. Conclusions: OR rates associated with low-dose TSEBT in the ranges of 10 to <20 Gy and 20 to <30 Gy are comparable to that of the standard dose ({>=} 30 Gy). Efficacy measures including OS, PFS, and RFS are also favorable. Given that the efficacy profile is similar between 10 and <20 Gy and 20 and <30 Gy, the utility of TSEBT within the lower dose range of 10 to <20 Gy merits further investigation, especially in the context of combined modality treatment.

  17. Buildup region and skin-dose measurements for the Therac 6 linear accelerator for radiation therapy.

    PubMed

    Tannous, N B; Gagnon, W F; Almond, P R

    1981-01-01

    Buildup and surface-dose measurements were taken for the 6 MV photon beam from a Therac 6 linear accelerator manufactured by Atomic Energy of Canada Limited (AECL) with and without a lucite blocking tray in place. Further measurements were made with a copper filter designed to reduce secondary electrons emitted by photon interactions with the Lucite tray. The results are discussed in relation to skin-sparing for radiation therapy patients. The measurements were made with a fixed volume PTW parallel-plate ionization chamber and corrected to zero-chamber volume. The results were found to be consistent with similar measurements taken with a variable volume extrapolation chamber. PMID:6798394

  18. Patient Dose In Diagnostic Radiology: When & How?

    NASA Astrophysics Data System (ADS)

    Lassen, Margit; Gorson, Robert O.

    1980-08-01

    Different situations are discussed in which it is of value to know radiation dose to the patient in diagnostic radiology. Radiation dose to specific organs is determined using the Handbook on Organ Doses published by the Bureau of Radiological Health of the Food and Drug Administration; the method is applied to a specific case. In this example dose to an embryo is calculated in examinations involving both fluoroscopy and radiography. In another example dose is determined to a fetus in late pregnancy using tissue air ratios. Patient inquiries about radiation dose are discussed, and some answers are suggested. The reliability of dose calculations is examined.

  19. Decreased neutrophil skin infiltration after UVB exposure in patients with polymorphous light eruption.

    PubMed

    Schornagel, Ines J; Sigurdsson, Vigfús; Nijhuis, Evert H J; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F

    2004-07-01

    UV radiation, in particular UVB, suppresses the skin immune response. In patients with polymorphous light eruption (PLE) the skin immune response seems activated after UV exposure. Typical PLE skin lesions can occur as early as several hours after UV exposure. In healthy volunteers, neutrophils infiltrate the skin shortly after UV exposure. The kinetics and mechanisms of neutrophil infiltration in the skin of PLE patients after UVB exposure was studied. Skin biopsies at 0, 3, 6, and 18 h were taken from five PLE patients and six healthy controls after irradiation with three minimal erythema dose UVB. Furthermore, neutrophils were isolated from blood of five PLE patients and six healthy controls to test their chemotactic activity. Immunohistochemical analysis showed a significant decreased neutrophil infiltration in PLE skin after UVB irradiation compared with healthy controls (p<0.05). In both healthy controls and PLE patients, after UVB irradiation, ICAM-1 and E-selectin expression on endothelial cells increased at 6 h after irradiation. Blood neutrophil chemotactic response towards IL-8 and C5a, as well as the expression of cell surface markers involved in adhesion and chemotaxis, was not different between PLE patients and healthy controls. In conclusion, PLE is marked by a decreased skin infiltration of neutrophils after UVB irradiation, possibly leading to a diminished neutrophil-induced suppression. PMID:15191561

  20. Support of large breasts during tangential irradiation using a micro-shell and minimizing the skin dose-a pilot study

    SciTech Connect

    Latimer, James G. . E-mail: James.Latimer@swsahs.nsw.gov.au; Beckham, Wayne; West, Mark; Holloway, Lois; Delaney, Geoff

    2005-03-31

    Tangential radiotherapy delivered to women with large breasts can be problematic due to the excessive skin folds and the way that the breast falls into the axilla. This may necessitate excessive lung irradiation to cover the posterior part of the breast volume adequately. Conventional breast rings used to move the breast anteriorly can be very difficult to reproduce and may substantially increase the skin dose and hence skin toxicity due to the bolus effect. An in-house designed microshell device was constructed to improve setup reproducibility and minimize skin dose. Dose comparisons using a phantom were made between this device and 2 other commonly used devices. The microshell successfully reduced the surface dose compared to the other breast rings tested. This device was then investigated on 8 patients under clinical conditions. Skin doses measured on the trial patients were within acceptable limits. During this small pilot study, no patients suffered excessive skin toxicity or required treatment breaks. Due to the microshell's expandable nature, ease of application, which increases patient comfort compared to other breast rings, and the lower surface dose, the microshell is the preferred breast stabilization device for this department when treating patients with large pendulous breasts. We encourage other departments to consider their current method of breast stabilization and compare them to our results.

  1. Facial skin injuries caused by adhesive tapes in a patient receiving cosmetic skin exfoliants.

    PubMed

    Wong, Chau P; Chui, Po T; Karmakar, Manoj K

    2003-11-01

    A 39-yr-old woman underwent general anesthesia for laparoscopic sterilization. We used adhesive tapes to close her eyelids and to secure the tracheal tube. Removal of the tapes caused patchy areas of skin loss. We later discovered that the patient had fragile facial skin from cosmetics containing skin exfoliants. We recommend taking a detailed drug history before anesthesia and avoiding adhesive tapes to the patient's face under general anesthesia. PMID:14570644

  2. Standard or hypofractionated radiotherapy in the postoperative treatment of breast cancer: a retrospective analysis of acute skin toxicity and dose inhomogeneities

    PubMed Central

    2013-01-01

    Background To identify predictive factors of radiation-induced skin toxicity in breast cancer patients by the analysis of dosimetric and clinical factors. Methods 339 patients treated between January 2007 and December 2010 are included in the present analysis. Whole breast irradiation was delivered with Conventional Fractionation (CF) (50Gy, 2.0/day, 25 fractions) and moderate Hypofractionated Schedule (HS) (44Gy, 2.75Gy/day, 16 fractions) followed by tumour bed boost. The impact of patient clinical features, systemic treatments and, in particular, dose inhomogeneities on the occurrence of different levels of skin reaction has been retrospectively evaluated. Results G2 and G3 acute skin toxicity were 42% and 13% in CF patients and 30% and 7.5% in HS patients respectively. The retrieval and revaluation of 200 treatment plans showed a strong correlation between areas close to the skin surface, with inhomogeneities >107% of the prescribed dose, and the desquamation areas as described in the clinical records. Conclusions In our experience dose inhomogeneity underneath G2 – G3 skin reactions seems to be the most important predictor for acute skin damage and in these patients more complex treatment techniques should be considered to avoid skin damage. Genetic polymorphisms too have to be investigated as possible promising candidates for predicting acute skin reactions. PMID:23651532

  3. Patient Radiation Doses in Interventional Cardiology Procedures

    PubMed Central

    Pantos, Ioannis; Patatoukas, Georgios; Katritsis, Demosthenes G; Efstathopoulos, Efstathios

    2009-01-01

    Interventional cardiology procedures result in substantial patient radiation doses due to prolonged fluoroscopy time and radiographic exposure. The procedures that are most frequently performed are coronary angiography, percutaneous coronary interventions, diagnostic electrophysiology studies and radiofrequency catheter ablation. Patient radiation dose in these procedures can be assessed either by measurements on a series of patients in real clinical practice or measurements using patient-equivalent phantoms. In this article we review the derived doses at non-pediatric patients from 72 relevant studies published during the last 22 years in international scientific literature. Published results indicate that patient radiation doses vary widely among the different interventional cardiology procedures but also among equivalent studies. Discrepancies of the derived results are patient-, procedure-, physician-, and fluoroscopic equipmentrelated. Nevertheless, interventional cardiology procedures can subject patients to considerable radiation doses. Efforts to minimize patient exposure should always be undertaken. PMID:20066141

  4. Sunscreens, Skin Cancer, and Your Patient.

    ERIC Educational Resources Information Center

    Davidson, Terence M.; Wolfe, Dana P.

    1986-01-01

    The effects of sunlight on skin are described. The principal types of sunscreens and their properties are discussed. The three types of skin tumors, their cure rates, and treatment methods are examined. (Author/MT)

  5. Estimation of the radiation dose from radiotherapy for skin haemangiomas in childhood: the ICTA software for epidemiology

    NASA Astrophysics Data System (ADS)

    Shamsaldin, A.; Lundell, M.; Diallo, I.; Ligot, L.; Chavaudra, J.; de Vathaire, F.

    2000-12-01

    Radium applicators and pure beta emitters have been widely used in the past to treat skin haemangioma in early childhood. A well defined relationship between the low doses received from these applicators and radiation-induced cancers requires accurate dosimetry. A human-based CT scan phantom has been used to simulate every patient and treatment condition and then to calculate the source-target distance when radium and pure beta applicators were used. The effective transmission factor ϕ(r) for the gamma spectrum emitted by the radium sources applied on the skin surface was modelled using Monte Carlo simulations. The well-known quantization approach was used to calculate gamma doses delivered from radium applicators to various anatomical points. For 32P, 90Sr/90Y applicators and 90Y needles we have used the apparent exponential attenuation equation. The dose calculation algorithm was integrated into the ICTA software (standing for a model that constructs an Individualized phantom based on CT slices and Auxological data), which has been developed for epidemiological studies of cohorts of patients who received radium and beta-treatments for skin haemangioma. The ϕ(r) values obtained for radium skin applicators are in good agreement with the available values in the first 10 cm but higher at greater distances. Gamma doses can be calculated with this algorithm at 165 anatomical points throughout the body of patients treated with radium applicators. Lung heterogeneity and air crossed by the gamma rays are considered. Comparison of absorbed doses in water from a 10 mg equivalent radium source simulated by ICTA with those measured at the Radiumhemmet, Karolinska Hospital (RAH) showed good agreement, but ICTA estimation of organ doses did not always correspond those estimated at the RAH. Beta doses from 32P, 90Sr/90Y applicators and 90Y needles are calculated up to the maximum beta range (11 mm).

  6. C-arm rotation as a method for reducing peak skin dose in interventional cardiology

    PubMed Central

    Pasciak, Alexander S; Bourgeois, Austin C; Jones, A Kyle

    2014-01-01

    Purpose Prolonged interventional cardiology (IC) procedures may result in radiation-induced skin injury, a potentially preventable cause of patient morbidity. Rotating the C-arm during an IC procedure may reduce this risk, although the methods by which the technique can be practically applied remains unexplored. A previous study demonstrated that C-arm rotation often increases peak skin dose (PSD) in interventional radiology procedures. The purpose of this study was to determine whether C-arm rotation reduces the PSD in IC procedures and, if so, under what circumstances. Materials and methods Simulations were performed using a numerical ray-tracing algorithm to analyse the effect of C-arm rotation on PSD across a range of patient sizes, C-arm configurations and procedure types. Specific data from modern fluoroscopes and patient dimensions were used as inputs to the simulations. Results In many cases, modest C-arm rotation angles completely eliminated overlap between X-ray field sites on the skin. When overlap remained, PSD increases were generally small. One exception was craniocaudal rotation, which tended to increase PSD. C-arm rotation was most effective for large patients and small X-ray field sizes. Small patients may not benefit from C-arm rotation as a procedural modification. The use of a prophylactic method where the C-arm was rotated between small opposing oblique angles was effective in reducing PSD. Conclusions With the exception of rotation to steep craniocaudal angles, rotating the C-arm reduces PSD in IC procedures when used as either a procedural modification or a prophylactic strategy. Tight collimation increases the benefit of C-arm rotation. PMID:25568803

  7. Population UV-dose and skin area--do sunbeds rival the sun?

    PubMed

    Wester, U; Boldemann, C; Jansson, B; Ullén, H

    1999-10-01

    From the perspective of skin cancer risks, sunbed tanning may give the population group of Swedish adolescents a yearly total dose in terms of ultraviolet radiant energy to the skin which is comparable to sunlight. For populations, a dosage scheme is applied, where exposed skin area is estimated to be two to ten times larger in tanning units than in outdoor sunlight. The normal dose fluence rate is multiplied by the exposure time and by the exposed body surface area. A study of sunbed use among adolescents was reinvestigated. Skin dose from artificial tanning in that population group is calculated and compared to sun exposure for erythemally effective radiation and for UVA (315-400 nm). Skin doses from tanning units to the adolescent population agree with estimates based on information concerning sunbed lamp sales/year. For the population, the erythemal skin dose from tanning units exceeds an increase in solar ultraviolet radiation to the skin projected from 10% ozone depletion. The dosage scheme might help to interpret data suggesting an increased melanoma risk among young people using sunbeds > or = 10 times per year. Tanning and sunburns in sunbeds and in sunlight is discussed with regard to skin area. PMID:10492351

  8. Skin disorders in peritoneal dialysis patients: An underdiagnosed subject

    PubMed Central

    Gursu, Meltem; Uzun, Sami; Topcuoğlu, Derya; Koc, Leyli Kadriye; Yucel, Lamiye; Sumnu, Abdullah; Cebeci, Egemen; Ozkan, Oktay; Behlul, Ahmet; Koc, Leyla; Ozturk, Savas; Kazancioglu, Rumeyza

    2016-01-01

    AIM: To examine all skin changes in peritoneal dialysis (PD) patients followed up in our unit. METHODS: Patients on PD program for at least three months without any known chronic skin disease were included in the study. Patients with already diagnosed skin disease, those who have systemic diseases that may cause skin lesions, patients with malignancies and those who did not give informed consent were excluded from the study. All patients were examined by the same predetermined dermatologist with all findings recorded. The demographic, clinical and laboratory data including measures of dialysis adequacy of patients were recorded also. Statistical Package for Social Sciences (SPSS) for Windows 16.0 standard version was used for statistical analysis. RESULTS: Among the patients followed up in our PD unit, those without exclusion criteria who gave informed consent, 38 patients were included in the study with male/female ratio and mean age of 26/12 and 50.3 ± 13.7 years, respectively. The duration of CKD was 7.86 ± 4.16 years and the mean PD duration was 47.1 ± 29.6 mo. Primary kidney disease was diabetic nephropathy in 11, nephrosclerosis in six, uropathologies in four, chronic glomerulonephritis in three, chronic pyelonephritis in three, autosomal dominant polycystic kidney disease in three patients while cause was unknown in eight patients. All patients except for one patient had at least one skin lesion. Loss of lunula, onychomycosis and tinea pedis are the most frequent skin disorders recorded in the study group. Diabetic patients had tinea pedis more frequently (P = 0.045). No relationship of skin findings was detected with primary renal diseases, comorbidities and medications that the patients were using. CONCLUSION: Skin abnormalities are common in in PD patients. The most frequent skin pathologies are onychomycosis and tinea pedis which must not be overlooked. PMID:27458566

  9. Patient Radiation Doses from Diagnostic Radiology.

    ERIC Educational Resources Information Center

    Hart, D.

    1996-01-01

    Explains how x-ray doses to patients are measured. Describes how different techniques expose patients to differing amounts of ionizing radiation. Compares these figures with other natural and man-made sources. (Author/MKR)

  10. Other Skin Conditions Often Present in Rosacea Patients

    MedlinePlus

    ... Treatment Survey: Other Skin Conditions Often Present in Rosacea Patients Although rosacea patients often have to cope ... ocular rosacea. arrow Follow us on Facebook arrow Rosacea Review Current Issue Past Issues Index by Topic ...

  11. Patient experiences living with split thickness skin grafts.

    PubMed

    Burnett, L N; Carr, E; Tapp, D; Raffin Bouchal, S; Horch, J D; Biernaskie, J; Gabriel, V

    2014-09-01

    The standard of care for deep burns is autologous split thickness skin grafting. Although adequate to resurface a deep wound, the resulting skin is chronically abnormal. The purpose of this study was to describe the experience of patients with split thickness skin grafts to help guide future investigations related to skin regeneration. In this study, an interpretive description qualitative methodology was employed. Subjects participated in a two-part single patient interview that was recorded and transcribed. A nurse with experience in clinical burn care coded and interpreted the data. Participants were recruited through presentation to a university based outpatient burn clinic for follow up from autologous split thickness skin grafting. Eight male patients and four female patients 20-62 years old ranging 2-29 months post-skin grafting were enrolled in the study. The most significant concerns voiced by patients were identified and organized into five themes: (1) a new normal, (2) split thickness skin graft symptoms, (3) appearance of new skin, (4) coping, and (5) participation in future clinical trials. Participants reported that the abnormalities related to their split thickness skin grafts were significant enough that they would be willing to participate in a future clinical trial investigating new cell-based therapies. PMID:24794227

  12. A computational dosimetry tool for the study of tumor doses and skin toxicities in BNCT.

    PubMed

    Gossio, Sebastián; Carando, Daniel G; González, Sara J

    2009-07-01

    A Matlab-based computational tool, named SPHERE, was developed that helps determining tumor and skin doses in BNCT treatments. It was especially designed for cutaneous melanoma treatments and, among its features, it provides a guide for the location and delineation of tumors and a visual representation of superficial dose distributions (for both tumor and normal tissues). It also generates cumulative dose-volume histograms for different volumes of interest and dose-area histograms for skin. A description of the tool is presented, as well as examples of its application. PMID:19386508

  13. A Randomized Clinical Trial of Single-Dose Versus Weekly Dalbavancin for Treatment of Acute Bacterial Skin and Skin Structure Infection

    PubMed Central

    Dunne, Michael W.; Puttagunta, Sailaja; Giordano, Philip; Krievins, Dainis; Zelasky, Michael; Baldassarre, James

    2016-01-01

    Background. Acute bacterial skin and skin structure infections (ABSSSIs) are a cause of significant morbidity and therapy can be a burden to the healthcare system. New antibiotics that simplify treatment and avoid hospitalization are needed. This study compared the safety and efficacy of a single intravenous infusion of 1500 mg of dalbavancin to the 2-dose regimen. Methods. This study was a randomized, double-blind trial in patients aged >18 years with ABSSSIs. Patients were randomized to dalbavancin 1500 mg either as a single intravenous (IV) infusion or 1000 mg IV on day 1 followed 1 week later by 500 mg IV. The primary endpoint was a ≥20% reduction in the area of erythema at 48–72 hours in the intent-to-treat population. Noninferiority was to be declared if the lower limit of the 95% confidence interval (CI) on the difference in the outcomes was greater than −10%. Clinical outcome was also assessed at days 14 and 28. Results. Six hundred ninety-eight patients were randomized. Demographic characteristics were similar on each regimen, although there were more patients with methicillin-resistant Staphylococcus aureus (MRSA) at baseline on the 2-dose regimen (36/210 [17.1%] vs 61/220 [27.7%]). Dalbavancin delivered as a single dose was noninferior to a 2-dose regimen (81.4% vs 84.2%; difference, −2.9% [95% CI, −8.5% to 2.8%]). Clinical outcomes were also similar at day 14 (84.0% vs 84.8%), day 28 (84.5% vs 85.1%), and day 14 in clinically evaluable patients with MRSA in a baseline culture (92.9% vs 95.3%) in the single- and 2-dose regimens, respectively. Treatment-emergent adverse events occurred in 20.1% of the single-dose patients and 19.9% on the 2-dose regimen. Conclusions. A single 1500-mg infusion of dalbavancin is noninferior to a 2-dose regimen, has a similar safety profile, and removes logistical constraints related to delivery of the second dose. Clinical Trials Registration. NCT02127970. PMID:26611777

  14. Suitability of laser stimulated TLD arrays as patient dose monitors in high dose x-ray imaging.

    PubMed

    Geise, R A; Schueler, B A; Lien, W; Jones, S C

    1997-10-01

    Skin entrance doses of patients undergoing interventional x-ray procedures are capable of causing skin damage and should be monitored routinely. Single TLD chips are not suitable because the location of maximum skin exposure cannot be predicted. Most photographic films are too sensitive at diagnostic x-ray energies for dosimetry, exhibit temporal changes in response, and require special packaging by the user. We have investigated the suitability of laser heated MgB4O7 TLDs in a polyimide binder in the range of 0.2-20 Gy. These are available in radioluscent arrays up to 30 x 30 cm for direct measurement of patient skin dose. Dose response was compared with a calibrated ion chamber dosimeter. Exposures were made at 60, 90, and 120 kVp, at low (fluoroscopy) and high (DSA) dose rates, and at different beam incidence angles. Longitudinal reproducibility and response to temperature changes during exposure were also checked. The dose response is linear below approximately 6 Gy where the slope starts to increase 2% per Gy. Errors were less than +/- 2% over a 0-80 degrees range of beam incidence angles; less than +/- 3% for both dose rate variations and kVp differences between 70 and 120 kVp. The response was unaffected by temperature changes between 20 and 37 degrees C. Reproducibility is current +/- 7%. MgB4O7 TLD arrays are suitable for patient dosimetry in high dose fluoroscopy procedures if appropriate calibrations are used. Uncertainty in skin dose measurement is less than 10%, which is substantially better than film dosimetry. PMID:9350720

  15. Objective biophysical findings in patients with sensitive skin.

    PubMed

    Roussaki-Schulze, A V; Zafiriou, E; Nikoulis, D; Klimi, E; Rallis, E; Zintzaras, E

    2005-01-01

    The term sensitive skin has been used to describe a clinical phenomenon of hyperreactivity of the human skin, which develops exaggerated reactions when exposed to external factors. The aim of this study was to determine objective biophysical findings in patients with sensitive skin compared to those individuals with nonsensitive skin. Thirty-two patients with sensitive skin and 30 healthy volunteers with nonsensitive skin were studied. The testing methods included in vivo and in vitro tests: epicutaneous testing (Patch tests); measurement of sebum and hydration of the skin; alkali resistance test; stinging test with lactic acid; reaction to aqueous solution of methyl nicotinate 0.5%, 1.4% and acetyl-b-methylcholine chloride 1:1000; pH measurement; dermographism; and measurement of total and specific IgE. Significant results were observed in the measurement of sebum (p < 0.01) and hydration (p < 0.05) of the skin, in the alkali resistance test (p < 0.05), in the vascular reaction to methyl nicotinate (p < 0.01) and to acetyl-b-methylcholine chloride (p < 0.01) and in the skin response to allergens of the European standard (p < 0.01) and cosmetic series (p < 0.05). In addition, the subjective findings of stinging test produced significant results (p < 0.001) as was anticipated. Patients with sensitive skin possess very dry skin with low fatness, which leads to a disturbance of the protective skin barrier function. They also present a hyperreaction of the skin blood vessels, increased transcutaneous penetration of water-soluble chemicals, enhanced immune responsiveness, significant decrease of alkali resistance and a heightened neurosensory stimulation. PMID:16444908

  16. Patient-specific dose calculation methods for high-dose-rate iridium-192 brachytherapy

    NASA Astrophysics Data System (ADS)

    Poon, Emily S.

    In high-dose-rate 192Ir brachytherapy, the radiation dose received by the patient is calculated according to the AAPM Task Group 43 (TG-43) formalism. This table-based dose superposition method uses dosimetry parameters derived with the radioactive 192Ir source centered in a water phantom. It neglects the dose perturbations caused by inhomogeneities, such as the patient anatomy, applicators, shielding, and radiographic contrast solution. In this work, we evaluated the dosimetric characteristics of a shielded rectal applicator with an endocavitary balloon injected with contrast solution. The dose distributions around this applicator were calculated by the GEANT4 Monte Carlo (MC) code and measured by ionization chamber and GAFCHROMIC EBT film. A patient-specific dose calculation study was then carried out for 40 rectal treatment plans. The PTRAN_CT MC code was used to calculate the dose based on computed tomography (CT) images. This study involved the development of BrachyGUI, an integrated treatment planning tool that can process DICOM-RT data and create PTRAN_CT input initialization files. BrachyGUI also comes with dose calculation and evaluation capabilities. We proposed a novel scatter correction method to account for the reduction in backscatter radiation near tissue-air interfaces. The first step requires calculating the doses contributed by primary and scattered photons separately, assuming a full scatter environment. The scatter dose in the patient is subsequently adjusted using a factor derived by MC calculations, which depends on the distances between the point of interest, the 192Ir source, and the body contour. The method was validated for multicatheter breast brachytherapy, in which the target and skin doses for 18 patient plans agreed with PTRAN_CT calculations better than 1%. Finally, we developed a CT-based analytical dose calculation method. It corrects for the photon attenuation and scatter based upon the radiological paths determined by ray tracing

  17. Real-time measurement and audit of radiation dose to patients undergoing computed radiography.

    PubMed

    Vano, Eliseo; Fernandez, Jose Miguel; Ten, Jose Ignacio; Guibelalde, Eduardo; Gonzalez, Luciano; Pedrosa, Cesar S A

    2002-10-01

    A real-time patient dose monitoring system for auditing computed radiography is described. Technical data from each exposure and for every examination type are collected and sent by a network to a workstation, which calculates the moving average values of entrance skin dose and dose-area product from the 10 most recently examined patients. Comparison of averages with reference values generates warning messages if reference values are exceeded, prompting corrective action if necessary. PMID:12355017

  18. Skin Biophysical Characteristics in Patients with Keratoconus: A Controlled Study

    PubMed Central

    Robati, Reza M.; Einollahi, Bahram; Einollahi, Hoda; Younespour, Shima; Fadaifard, Shahed

    2016-01-01

    Background. Keratoconus is a relatively common corneal disease causing significant visual disability. Individuals with connective tissue disorders that affect the skin such as Marfan's syndrome and Ehlers-Danlos syndrome or patients with atopic dermatitis show an increased prevalence of keratoconus. It seems that there are some concurrent alterations of skin and cornea in patients with keratoconus. Objective. We plan to compare skin biophysical characteristics in patients with keratoconus and healthy controls. Methods. Forty patients with keratoconus (18 females and 22 males) with mean (SD) age of 33.32 (9.55) years (range 19–56) and 40 healthy controls were recruited to this study. Skin biophysical characteristics including cutaneous resonance running time (CRRT), stratum corneum hydration, and melanin values were measured in patients and controls. Results. The median CRRT, stratum corneum hydration, and melanin measurements were significantly lower in patients with keratoconus in comparison with healthy controls. Conclusion. There are some alterations of skin biophysical properties in patients with keratoconus. Therefore, the assessment of these skin parameters could provide us some clues to the possible common biophysical variations of cornea and skin tissue in diseases such as keratoconus. PMID:27403376

  19. Skin Biophysical Characteristics in Patients with Keratoconus: A Controlled Study.

    PubMed

    Robati, Reza M; Einollahi, Bahram; Einollahi, Hoda; Younespour, Shima; Fadaifard, Shahed

    2016-01-01

    Background. Keratoconus is a relatively common corneal disease causing significant visual disability. Individuals with connective tissue disorders that affect the skin such as Marfan's syndrome and Ehlers-Danlos syndrome or patients with atopic dermatitis show an increased prevalence of keratoconus. It seems that there are some concurrent alterations of skin and cornea in patients with keratoconus. Objective. We plan to compare skin biophysical characteristics in patients with keratoconus and healthy controls. Methods. Forty patients with keratoconus (18 females and 22 males) with mean (SD) age of 33.32 (9.55) years (range 19-56) and 40 healthy controls were recruited to this study. Skin biophysical characteristics including cutaneous resonance running time (CRRT), stratum corneum hydration, and melanin values were measured in patients and controls. Results. The median CRRT, stratum corneum hydration, and melanin measurements were significantly lower in patients with keratoconus in comparison with healthy controls. Conclusion. There are some alterations of skin biophysical properties in patients with keratoconus. Therefore, the assessment of these skin parameters could provide us some clues to the possible common biophysical variations of cornea and skin tissue in diseases such as keratoconus. PMID:27403376

  20. Measurement of maximum skin dose in interventional radiology and cardiology and challenges in the set-up of European alert thresholds.

    PubMed

    Farah, J; Trianni, A; Carinou, E; Ciraj-Bjelac, O; Clairand, I; Dabin, J; De Angelis, C; Domienik, J; Jarvinen, H; Kopec, R; Majer, M; Malchair, F; Negri, A; Novák, L; Siiskonen, T; Vanhavere, F; Knežević, Ž

    2015-04-01

    To help operators acknowledge patient dose during interventional procedures, EURADOS WG-12 focused on measuring patient skin dose using XR-RV3 gafchromic films, thermoluminescent detector (TLD) pellets or 2D TL foils and on investigating possible correlation to the on-line dose indicators such as fluoroscopy time, Kerma-area product (KAP) and cumulative air Kerma at reference point (CK). The study aims at defining non-centre-specific European alert thresholds for skin dose in three interventional procedures: chemoembolization of the liver (CE), neuroembolization (NE) and percutaneous coronary interventions (PCI). Skin dose values of >3 Gy (ICRP threshold for skin injuries) were indeed measured in these procedures confirming the need for dose indicators that correlate with maximum skin dose (MSD). However, although MSD showed fairly good correlation with KAP and CK, several limitations were identified challenging the set-up of non-centre-specific European alert thresholds. This paper presents preliminary results of this wide European measurement campaign and focuses on the main challenges in the definition of European alert thresholds. PMID:25316909

  1. Skin care of the pediatric patient.

    PubMed

    Pallija, G; Mondozzi, M; Webb, A A

    1999-04-01

    Several factors influence the chronically ill child's susceptibility for skin breakdown. Nurses are an integral part of the care team that has the responsibility for identification of these factors, as well as pressure ulcer prevention and early intervention. An important aspect of this responsibility is identification of individuals at risk. This article provides a guide for assessment and early intervention for skin breakdown in chronically ill children. A care plan and consultation recommendations are included. PMID:10337118

  2. Yeasts in a hospital for patients with skin diseases

    PubMed Central

    Somerville, Dorothy A.

    1972-01-01

    The incidence and acquisition of Candida albicans and other yeasts in two wards of a skin hospital is described. Carriage rates on the skin in hospital patients is higher than is generally supposed, and cutaneous sites may act as sources of infection with these organisms. PMID:4567312

  3. Measuring the skin dose protection afforded by protective apparel with a beta spectrometer

    SciTech Connect

    Martz, D.E.; Rich, B.L.; Johnson, L.O. )

    1986-10-01

    This paper reports that the protective apparel worn by radiation workers to avoid skin contamination also provides measurable protection against external beta sources. The beta contribution to the skin dose rate depends on the residual energy spectrum of the beta particles after they have penetrated the protective apparel. The shift in the beta energy spectra and consequent reduction in the shallow dose rates afforded by various items of protective apparel were investigated for a few laboratory beta sources using a beta spectrometer that is capable of dose calculations. The results presented here indicate that significant dose rates to the skin can occur despite the presence of protective apparel if high energy beta emitting isotopes are present.

  4. Dental orthopantomography: survey of patient dose

    SciTech Connect

    Bartolotta, A.; Calenda, E.; Calicchia, A.; Indovina, P.L.

    1983-03-01

    Absorbed dose to specific regions of the head and neck during dental orthopantomography with various commercial units was assessed using a Rando ''standard man'' phantom and TLD-100 LiF dosimeters. Relevance to patient protection is discussed.

  5. Incorporating corrections for the head-holder and compensation filter when calculating skin dose during fluoroscopically guided interventions

    NASA Astrophysics Data System (ADS)

    Vijayan, Sarath; Rana, Vijay K.; Rudin, Stephen; Bednarek, Daniel R.

    2015-03-01

    The skin dose tracking system (DTS) that we developed provides a color-coded illustration of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures for immediate feedback to the interventionist. To improve the accuracy of dose calculation, we now have incorporated two additional important corrections (1) for the holder used to immobilize the head in neuro-interventions and (2) for the built-in compensation filters used for beam equalization. Both devices have been modeled in the DTS software so that beam intensity corrections can be made. The head-holder is modeled as two concentric hemi-cylindrical surfaces such that the path length between those surfaces can be determined for rays to individual points on the skin surface. The head-holder on the imaging system we used was measured to attenuate the primary x-rays by 10 to 20% for normal incidence, and up to 40% at non-normal incidence. In addition, three compensation filters of different shape are built into the collimator apparatus and were measured to have attenuation factors ranging from 58% to 99%, depending on kVp and beam filtration. These filters can translate and rotate in the beam and their motion is tracked by the DTS using the digital signal from the imaging system. When it is determined that a ray to a given point on the skin passes through the compensation filter, the appropriate attenuation correction is applied. These corrections have been successfully incorporated in the DTS software to provide a more accurate determination of skin dose.

  6. Skin Biopsy and Patient-Specific Stem Cell Lines

    PubMed Central

    Li, Yao; Nguyen, Huy V.; Tsang, Stephen H.

    2016-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells permits the development of next-generation patient-specific systems biology models reflecting personalized genomics profiles to better understand pathophysiology. In this chapter, we describe how to create a patient-specific iPS cell line. There are three major steps: (1) performing a skin biopsy procedure on the patient; (2) extracting human fibroblast cells from the skin biopsy tissue; and (3) reprogramming patient-specific fibroblast cells into the pluripotent stem cell stage. PMID:26141312

  7. Skin dose calculations for uranium fuel particles below 500 microns in diameter.

    PubMed

    Pöllänen, R; Toivonen, H

    1995-03-01

    Two different methods for skin dose calculations, VARSKIN Mod 2 and PSS are compared for a spherical uranium fuel particle (diameter 1-500 microns) deposited on the skin. Nuclide-specific beta dose rate at different skin depths for a particle of unit activity is determined as a function of particle size. Both methods show that the effects of self-shielding must be included in the dose calculations for low and medium energy beta emitters. Skin dose rate is drastically overestimated when point source approximation is used. For high energy beta emitters (e.g., 90Y, 106Rh, and 144Pr) the volume source can be approximated as a point source. The difference in doses is then below 20% for particles up to 100 microns in diameter. The models give equal results deep in the skin (in terms of range of the beta particles). The reason is that the correction due to the diminished backscattering in air-tissue interface is insignificant at large distances. For three-dimensional sources the backscattering correction should be introduced in the VARSKIN Mod 2. PMID:7860313

  8. Oritavancin Population Pharmacokinetics in Healthy Subjects and Patients with Complicated Skin and Skin Structure Infections or Bacteremia▿

    PubMed Central

    Rubino, Christopher M.; Van Wart, Scott A.; Bhavnani, Sujata M.; Ambrose, Paul G.; McCollam, Jill S.; Forrest, Alan

    2009-01-01

    Oritavancin is a novel glycopeptide antimicrobial agent with potent in vitro activity against a wide variety of gram-positive bacteria, including multidrug-resistant strains of staphylococci and enterococci. A population pharmacokinetic model was developed to describe the disposition of oritavancin with data from a pooled population of phase 1 healthy subjects and phase 2 and 3 patients with complicated skin and skin structure infections or Staphylococcus aureus bacteremia. In addition, the potential influence of factors such as the subject's age, gender, and clinical laboratory measures on oritavancin disposition was evaluated. Oritavancin was administered as both single- and multiple-dose intravenous (i.v.) infusions in fixed doses ranging from 100 to 800 mg or weight-based doses ranging from 0.02 to 10 mg/kg of body weight, with infusion durations ranging from 0.13 to 6.5 h across all studies. The most robust fit to the data (n = 6,290 oritavancin plasma concentrations from 560 subjects) was obtained using a three-compartment model with zero-order i.v. infusion and first-order elimination. The model was parameterized using total clearance (CL), volume of central compartment (Vc), distributional clearances from the central to both the first and second peripheral compartments, and volumes of distribution for both the first and second peripheral compartments. Weight and study phase (phase 1 versus phase 2/3) were identified as significant predictors of the interindividual variability in CL, while body surface area and age were significant for Vc. These results suggest that dose modification may be warranted in patients weighing >110 kg. However, the mild nature of the observed relationships for Vc suggest that dosing adjustments are not necessary for elderly patients. PMID:19635952

  9. Patient perspectives on radiation dose.

    PubMed

    Graff, Joyce

    2014-03-01

    People with genetic cancer syndromes have a special interest in imaging. They also have special risk factors with respect to radiation. They need to utilize the potential of imaging while keeping in mind concerns about cumulative radiation exposure. Before imaging, early detection of problems was limited. With imaging, issues can be identified when they are small and a good plan of action can be developed early. Operations can be planned and metastatic cancer avoided. The positive contribution of imaging to the care of these patients can be profound. However, this additional surveillance is not without cost. An average patient with 1 of these syndromes will undergo 100 or more scans in their lifetime. Imaging professionals should be able to describe the risks and benefits of each scan in terms that the patient and the ordering physician can understand to make smart decisions about the ordering of scans. Why CT versus MRI? When are x-ray or ultrasound appropriate, and when are they not? What are the costs and the medical risks for the patient? What value does this picture add for the physician? Is there a way to answer the medical question with a test other than a scan? Medicine is a team sport, and the patient is an integral member of the team. PMID:24589397

  10. Patient radiation doses during coronary interventions in four Croatian hospitals: 4-y comparison.

    PubMed

    Krpan, Tomislav; Faj, Dario; Brnić, Zoran; Baraban, Vedrana; Mišir, Mihael

    2015-07-01

    The number of coronary interventions increased substantially in the recent years. Although of great benefit to patients, these procedures can subject patients to considerable radiation doses. There is a legal framework for patient dose measurements in Croatia during radiological procedures, but in practice, it applies only occasionally. A quality control manual, established at the University Hospital Osijek, was accepted by other major cardiology centres in Croatia; besides checking the technical characteristics of the device, it provides constant measurement and analysis of patient doses in interventional cardiology. It also includes patient examination for radiation skin injuries in case of dose of >2 Gy. The aim of the study was to determine and compare patient radiation doses during cardiological interventions measured within 4 y in four major cardiology centres with the values proposed by the European Commission and other professional bodies. The local reference dose levels were also set. PMID:25848111

  11. Variation of patient dose in head CT.

    PubMed

    Smith, A; Shah, G A; Kron, T

    1998-12-01

    CT dose varies with both equipment related and operator dependent factors. Thermoluminescence dosimetry (TLD) was employed in two phantoms to investigate the variation in absorbed dose for head CT scans, using a cylindrical head CT dose phantom. Dose profiles were plotted and the computed tomography dose index (CTDI) calculated for a single 10 mm thick slice on 14 CT scanners. An anthropomorphic head phantom was also scanned from the base-of-skull to the vertex using 10/10 mm slices. The absorbed dose measured at the centre of the scan series is reported (Dmid). The mean CTDIw for the 14 scanners was 60.0 mGy, while the mean Dmid was 45.8 mGy. Dmid better represents the absorbed dose in human tissues. The CTDIw and Dmid normalized to mAs varied by up to a factor of 2.2 for the different scanners. Equipment related factors contribute to such variations. However, variations due to operator dependent factors such as the choice of exposure factors, scanning protocol and positioning technique must also be considered. When such factors are taken into account the absorbed dose received by the patient can vary considerably, by as much as 16.2 for lens dose. Increased awareness of the factors influencing CT dose and the standardization of scanning protocols is recommended. PMID:10319004

  12. Malignant skin tumours in patients with inherited ichthyosis.

    PubMed

    Natsuga, K; Akiyama, M; Shimizu, H

    2011-08-01

    Inherited ichthyoses are rare genodermatoses caused by mutations in the genes involved in epidermal development. Although there have been case reports on patients with ichthyosis who developed skin malignancies, it is still unknown whether or not patients with ichthyosis have an increased risk of skin malignancies. Here, we review case series of skin malignancies in patients with ichthyosis and show biological findings which might lead to cancer susceptibility. A survey of the literature revealed 28 cases of inherited ichthyoses with skin malignancy, including 12 cases of keratitis-ichthyosis-deafness (KID) syndrome, seven of autosomal recessive congenital ichthyosis, three of Netherton syndrome and six of miscellaneous ichthyosis. Twenty-four of the 28 cases developed single or multiple squamous cell carcinomas (SCCs). The age at diagnosis of the first skin malignancy ranged from 15 to 54 years. As patients with these particular subtypes of ichthyosis seem to be prone to skin malignancies, including SCC, at an unusually young age, routine cancer surveillance of these patients is strongly recommended. PMID:21517795

  13. Patient Dose Management: Focus on Practical Actions.

    PubMed

    Park, Michael Yong; Jung, Seung Eun

    2016-02-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  14. Patient Dose Management: Focus on Practical Actions

    PubMed Central

    2016-01-01

    Medical radiation is a very important part of modern medicine, and should be only used when needed and optimized. Justification and optimization of radiation examinations must be performed. The first step of reduction of medical exposure is to know the radiation dose in currently performed examinations. This review covers radiation units, how various imaging modalities report dose, and the current status of radiation dose reports and legislation. Also, practical tips that can be applied to clinical practice are introduced. Afterwards, the importance of radiology exposure related education is emphasized and the current status of education for medical personal and the public is explained, and appropriate education strategies are suggested. Commonly asked radiation dose related example questions and answers are provided in detail to allow medical personnel to answer patients. Lastly, we talk about computerized programs that can be used in medical facilities for managing patient dose. While patient dose monitoring and management should be used to decrease and optimize overall radiation dose, it should not be used to assess individual cancer risk. One must always remember that medically justified examinations should always be performed, and unneeded examinations should be avoided in the first place. PMID:26908988

  15. Pharmacokinetic-pharmacodynamic analysis for efficacy of ceftaroline fosamil in patients with acute bacterial skin and skin structure infections.

    PubMed

    Bhavnani, Sujata M; Hammel, Jeffrey P; Van Wart, Scott A; Rubino, Christopher M; Reynolds, Daniel K; Forrest, Alan; Drusano, George L; Khariton, Tatiana; Friedland, H David; Riccobene, Todd A; Ambrose, Paul G

    2015-01-01

    Ceftaroline is a cephalosporin with broad-spectrum in vitro activity against pathogens commonly associated with acute bacterial skin and skin structure infections (ABSSSI), including methicillin-resistant Staphylococcus aureus. Ceftaroline fosamil, the prodrug of ceftaroline, is approved for the treatment of patients with ABSSSI. Using data from the microbiologically evaluable population from two phase 2 and two phase 3 randomized, multicenter, double-blind studies of patients with ABSSSI, an analysis examining the relationship between drug exposure, as measured by the percentage of time during the dosing interval that free-drug steady-state concentrations remain above the MIC (f%T>MIC), and clinical and microbiological responses was undertaken. The analysis population included 526 patients, of whom 423 had infections associated with S. aureus. Clinical and microbiological success percentages were 94.7 and 94.5%, respectively, among all of the patients and 95.3 and 95.7%, respectively, among those with S. aureus infections. Univariable analysis based on data from all of the patients and those with S. aureus infections demonstrated significant relationships between f%T>MIC and microbiological response (P < 0.001 and P = 0.026, respectively). Multivariable logistic regression analyses demonstrated other patient factors in addition to f%T>MIC to be significant predictors of microbiological response, including age and infection type for all of the patients evaluated and age, infection type, and the presence of diabetes mellitus for patients with S. aureus infections. Results of these analyses confirm that a ceftaroline fosamil dosing regimen of 600 mg every 12 h provides exposures associated with the upper plateau of the pharmacokinetic-pharmacodynamic relationship for efficacy. PMID:25367904

  16. Pharmacokinetic-Pharmacodynamic Analysis for Efficacy of Ceftaroline Fosamil in Patients with Acute Bacterial Skin and Skin Structure Infections

    PubMed Central

    Hammel, Jeffrey P.; Van Wart, Scott A.; Rubino, Christopher M.; Reynolds, Daniel K.; Forrest, Alan; Drusano, George L.; Khariton, Tatiana; Friedland, H. David; Riccobene, Todd A.; Ambrose, Paul G.

    2014-01-01

    Ceftaroline is a cephalosporin with broad-spectrum in vitro activity against pathogens commonly associated with acute bacterial skin and skin structure infections (ABSSSI), including methicillin-resistant Staphylococcus aureus. Ceftaroline fosamil, the prodrug of ceftaroline, is approved for the treatment of patients with ABSSSI. Using data from the microbiologically evaluable population from two phase 2 and two phase 3 randomized, multicenter, double-blind studies of patients with ABSSSI, an analysis examining the relationship between drug exposure, as measured by the percentage of time during the dosing interval that free-drug steady-state concentrations remain above the MIC (f%T>MIC), and clinical and microbiological responses was undertaken. The analysis population included 526 patients, of whom 423 had infections associated with S. aureus. Clinical and microbiological success percentages were 94.7 and 94.5%, respectively, among all of the patients and 95.3 and 95.7%, respectively, among those with S. aureus infections. Univariable analysis based on data from all of the patients and those with S. aureus infections demonstrated significant relationships between f%T>MIC and microbiological response (P < 0.001 and P = 0.026, respectively). Multivariable logistic regression analyses demonstrated other patient factors in addition to f%T>MIC to be significant predictors of microbiological response, including age and infection type for all of the patients evaluated and age, infection type, and the presence of diabetes mellitus for patients with S. aureus infections. Results of these analyses confirm that a ceftaroline fosamil dosing regimen of 600 mg every 12 h provides exposures associated with the upper plateau of the pharmacokinetic-pharmacodynamic relationship for efficacy. PMID:25367904

  17. WE-E-18A-03: How Accurately Can the Peak Skin Dose in Fluoroscopy Be Determined Using Indirect Dose Metrics?

    SciTech Connect

    Jones, A; Pasciak, A

    2014-06-15

    Purpose: Skin dosimetry is important for fluoroscopically-guided interventions, as peak skin doses (PSD) that Result in skin reactions can be reached during these procedures. The purpose of this study was to assess the accuracy of different indirect dose estimates and to determine if PSD can be calculated within ±50% for embolization procedures. Methods: PSD were measured directly using radiochromic film for 41 consecutive embolization procedures. Indirect dose metrics from procedures were collected, including reference air kerma (RAK). Four different estimates of PSD were calculated and compared along with RAK to the measured PSD. The indirect estimates included a standard method, use of detailed information from the RDSR, and two simplified calculation methods. Indirect dosimetry was compared with direct measurements, including an analysis of uncertainty associated with film dosimetry. Factors affecting the accuracy of the indirect estimates were examined. Results: PSD calculated with the standard calculation method were within ±50% for all 41 procedures. This was also true for a simplified method using a single source-to-patient distance (SPD) for all calculations. RAK was within ±50% for all but one procedure. Cases for which RAK or calculated PSD exhibited large differences from the measured PSD were analyzed, and two causative factors were identified: ‘extreme’ SPD and large contributions to RAK from rotational angiography or runs acquired at large gantry angles. When calculated uncertainty limits [−12.8%, 10%] were applied to directly measured PSD, most indirect PSD estimates remained within ±50% of the measured PSD. Conclusions: Using indirect dose metrics, PSD can be determined within ±50% for embolization procedures, and usually to within ±35%. RAK can be used without modification to set notification limits and substantial radiation dose levels. These results can be extended to similar procedures, including vascular and interventional oncology

  18. SU-E-CAMPUS-I-04: Automatic Skin-Dose Mapping for An Angiographic System with a Region-Of-Interest, High-Resolution Detector

    SciTech Connect

    Vijayan, S; Rana, V; Setlur Nagesh, S; Ionita, C; Rudin, S; Bednarek, D

    2014-06-15

    Purpose: Our real-time skin dose tracking system (DTS) has been upgraded to monitor dose for the micro-angiographic fluoroscope (MAF), a high-resolution, small field-of-view x-ray detector. Methods: The MAF has been mounted on a changer on a clinical C-Arm gantry so it can be used interchangeably with the standard flat-panel detector (FPD) during neuro-interventional procedures when high resolution is needed in a region-of-interest. To monitor patient skin dose when using the MAF, our DTS has been modified to automatically account for the change in scatter for the very small MAF FOV and to provide separated dose distributions for each detector. The DTS is able to provide a color-coded mapping of the cumulative skin dose on a 3D graphic model of the patient. To determine the correct entrance skin exposure to be applied by the DTS, a correction factor was determined by measuring the exposure at the entrance surface of a skull phantom with an ionization chamber as a function of entrance beam size for various beam filters and kVps. Entrance exposure measurements included primary radiation, patient backscatter and table forward scatter. To allow separation of the dose from each detector, a parameter log is kept that allows a replay of the procedure exposure events and recalculation of the dose components.The graphic display can then be constructed showing the dose distribution from the MAF and FPD separately or together. Results: The DTS is able to provide separate displays of dose for the MAF and FPD with field-size specific scatter corrections. These measured corrections change from about 49% down to 10% when changing from the FPD to the MAF. Conclusion: The upgraded DTS allows identification of the patient skin dose delivered when using each detector in order to achieve improved dose management as well as to facilitate peak skin-dose reduction through dose spreading. Research supported in part by Toshiba Medical Systems Corporation and NIH Grants R43FD0158401, R44FD

  19. Iron deposition in skin of patients with haemochromatosis

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Silva, J. N.; Alves, L. C.; Filipe, P.

    2003-09-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix.

  20. The radiation dose from a proposed measurement of arsenic and selenium in human skin

    NASA Astrophysics Data System (ADS)

    Gherase, Mihai R.; Mader, Joanna E.; Fleming, David E. B.

    2010-09-01

    Dose measurements following 10 min irradiations with a portable x-ray fluorescence spectrometer composed of a miniature x-ray tube and a silicon PiN diode detector were performed using thermoluminescent dosimeters consisting of LiF:Mg,Ti chips of 3 mm diameter and 0.4 mm thickness. The table-top setup of the spectrometer was used for all measurements. The setup included a stainless steel lid which served as a radiation shield. Two rectangular polyethylene skin/soft tissue phantoms with two cylindrical plaster of Paris bone phantoms were used to study the effect of x-ray beam attenuation and backscatter on the measured dose. Eight different irradiation experiments were performed. The average dose rate values measured with TLD chips within a 1 × 1 cm2 area were between 4.8 and 12.8 mGy min-1. The equivalent dose for a 1 × 1 cm2 skin area was estimated to be 13.2 mSv. The maximum measured dose rate values with a single TLD chip were between 7.5 and 25.1 mGy min-1. The effective dose corresponding to a proposed arsenic/selenium skin measurement was estimated to be 0.13 µSv for a 2 min irradiation.

  1. Determination of half-dose depth in skin for soft x-rays

    SciTech Connect

    Harley, N.H.; Kolber, A.B.; Altman, S.M.; Gladstein, A.H.; Buchanan, S.; Marx, J.; Grisewood, E.; Kopf, A.

    1982-09-01

    Unlike superficial x-rays, the soft x-rays normally used in dermatologic practice spare unaffected underlying organs during treatment of cutaneous malignancies. However, since the dose with depth from soft x-rays varies markedly, it is important to know this relationship for optimal therapeutic results. The peak kilovoltage, and thus the energy of the beam, is generally selected so that the dose to the base of the lesion is one-half the surface dose. An absorbed dose of 3,400 rads to the surface and a dose of about one-half this amount to the base of most malignant lesions is one standard protocol for optimal therapeutic results. An accurate value of half-depth dose in skin is therefore necessary and is readily obtained from ordinary half-value layer measurements using the technic described.

  2. Reduction of Radiation Doses to Patients and Staff During Endoscopic Retrograde Cholangiopancreatography

    PubMed Central

    Sulieman, Abdelmoneim; Paroutoglou, Georgios; Kapsoritakis, Andreas; Kapatenakis, Anargeyros; Potamianos, Spiros; Vlychou, Marianna; Theodorou, Kiki

    2011-01-01

    Background/Aim: Endoscopic retrograde cholangiopancreatography (ERCP) is associated with a considerable radiation exposure for patients and staff. While optimization of the radiation dose is recommended, few studies have been published. The purpose of this study has been to measure patient and staff radiation dose, to estimate the effective dose and radiation risk using digital fluoroscopic images. Entrance skin dose (ESD), organ and effective doses were estimated for patients and staff. Materials and Methods: Fifty-seven patients were studied using digital X-ray machine and thermoluminescent dosimeters (TLD) to measure ESD at different body sites. Organ and surface dose to specific radiosensitive organs was carried out. The mean, median, minimum, third quartile and the maximum values are presented due to the asymmetry in data distribution. Results: The mean ESD, exit and thyroid surface dose were estimated to be 75.6 mGy, 3.22 mGy and 0.80 mGy, respectively. The mean effective dose for both gastroenterologist and assistant is 0.01 mSv. The mean patient effective dose was 4.16 mSv, and the cancer risk per procedure was estimated to be 2 × 10-5 Conclusion: ERCP with fluoroscopic technique demonstrate improved dose reduction, compared to the conventional radiographic based technique, reducing the surface dose by a factor of 2, without compromising the diagnostic findings. The radiation absorbed doses to the different organs and effective doses are relatively low. PMID:21196649

  3. Increased Skin Dose With the Use of a Custom Mattress for Prone Breast Radiotherapy

    SciTech Connect

    Becker, Stewart J. Patel, Rakesh R.; Mackie, Thomas R.

    2007-10-01

    The purpose of this study was to measure and compare the loss of buildup to the skin of the breast in the prone position due to 2 different positioning systems during tangential external beam irradiation. Two experiments were performed; one with a standard nylon-covered foam support and another with a novel helium-filled Mylar bag support. The choice of helium-filled Mylar was to reduce the contamination to as low as possible. The experiments were designed to allow a surface dose measurement and a depth dose profile with the pads placed in the path of the beam in front of the detector. All measurements were taken using a Capintec PS-033 thin-window parallel plate ionization chamber. The standard nylon-covered foam pad caused the surface dose to rise as it got closer to the skin. When the pad was directly touching the surface, the surface dose increased by 300% compared to the result when no pad was present. This loss of buildup to the surface was similar to that of a custom bolus material. The opposite effect occurred with the use of the helium-filled Mylar bag, namely the surface dose gradually decreased as the pad got closer to the phantom. When the Mylar pad was directly touching the phantom, the surface dose was decreased by 7% compared to when no pad was present. The use of a foam pad could potentially result in a significant higher dose to the skin, resulting in an enhanced acute skin reaction. Therefore, special care should be taken in this clinical scenario and further investigation of an air- or helium-based mylar support pad should be investigated in the context of definitive breast radiation treatment.

  4. Estimating peak skin and eye lens dose from neuroperfusion examinations: Use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values

    PubMed Central

    Zhang, Di; Cagnon, Chris H.; Villablanca, J. Pablo; McCollough, Cynthia H.; Cody, Dianna D.; Zankl, Maria; Demarco, John J.; McNitt-Gray, Michael F.

    2013-01-01

    Purpose: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Methods: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. Results: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%–65%, and overestimated eye lens dose by 33%–106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%–82% relative to voxelized model simulations. Conclusions: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still

  5. Patient Satisfaction after Treatment of Nonmelanoma Skin Cancer

    PubMed Central

    Asgari, Maryam M.; Bertenthal, Daniel; Sen, Saunak; Sahay, Anju; Chren, Mary-Margaret

    2009-01-01

    Background Patient satisfaction is an important aspect of patient-centered care, but has not been systematically studied after treatment of nonmelanoma skin cancer (NMSC), the most prevalent cancer. Objective To compare patient satisfaction after treatment for NMSC and to determine factors associated with better satisfaction. Methods We prospectively measured patient, tumor and care characteristics in 834 consecutive patients at two centers before and after destruction, excision and Mohs surgery. We evaluated factors associated with short-term and long-term satisfaction. Results In all treatment groups, patients were more satisfied with the interpersonal manners of the staff, communication, and financial aspects of their care, than with the technical quality, time with the clinician, and accessibility of their care (p<0.05). Short-term satisfaction did not differ across treatment groups. In multivariable regression models adjusting for patient, tumor, and care characteristics, higher long-term satisfaction was independently associated with younger age, better pre-treatment mental health and skin-related quality of life, and treatment with Mohs surgery (p<0.05). Conclusions Long-term patient satisfaction after treatment of NMSC is related to pre-treatment patient characteristics (mental health, skin-related quality of life) as well as treatment type (Mohs) but not related to tumor characteristics. These results can guide informed decision-making for treatment of NMSC. PMID:19438672

  6. High and Low Doses of Ionizing Radiation Induce Different Secretome Profiles in a Human Skin Model

    SciTech Connect

    Zhang, Qibin; Matzke, Melissa M.; Schepmoes, Athena A.; Moore, Ronald J.; Webb-Robertson, Bobbie-Jo M.; Hu, Zeping; Monroe, Matthew E.; Qian, Weijun; Smith, Richard D.; Morgan, William F.

    2014-03-18

    It is postulated that secreted soluble factors are important contributors of bystander effect and adaptive responses observed in low dose ionizing radiation. Using multidimensional liquid chromatography-mass spectrometry based proteomics, we quantified the changes of skin tissue secretome – the proteins secreted from a full thickness, reconstituted 3-dimensional skin tissue model 48 hr after exposure to 3, 10 and 200 cGy of X-rays. Overall, 135 proteins showed statistical significant difference between the sham (0 cGy) and any of the irradiated groups (3, 10 or 200 cGy) on the basis of Dunnett adjusted t-test; among these, 97 proteins showed a trend of downregulation and 9 proteins showed a trend of upregulation with increasing radiation dose. In addition, there were 21 and 8 proteins observed to have irregular trends with the 10 cGy irradiated group either having the highest or the lowest level among all three radiated doses. Moreover, two proteins, carboxypeptidase E and ubiquitin carboxyl-terminal hydrolase isozyme L1 were sensitive to ionizing radiation, but relatively independent of radiation dose. Conversely, proteasome activator complex subunit 2 protein appeared to be sensitive to the dose of radiation, as rapid upregulation of this protein was observed when radiation doses were increased from 3, to 10 or 200 cGy. These results suggest that different mechanisms of action exist at the secretome level for low and high doses of ionizing radiation.

  7. Assessment of skin dose for breast chest wall radiotherapy as a function of bolus material

    NASA Astrophysics Data System (ADS)

    Hsu, Shu-Hui; Roberson, Peter L.; Chen, Yu; Marsh, Robin B.; Pierce, Lori J.; Moran, Jean M.

    2008-05-01

    Skin dose assessment for chest wall radiotherapy is important to ensure sufficient dose to the surface target volume without excessive skin reaction. This study quantified changes to the surface doses as a function of bolus material for conventional and intensity modulated radiation therapy (IMRT) tangential fields. Three types of bolus materials (2 mm solid, 2 mm fine mesh and 3.2 mm large mesh Aquaplast) were compared with Superflab. Surface dose measurements were performed using an Attix parallel plate chamber in a flat solid water phantom at 0°, 45° and 70° incident angles. Over-response correction factors were applied to the Attix chamber results for different incident angles. Surface dose measurements on an anthropomorphic phantom were done using a thermoluminescent dosimeter extrapolation method. Dose characteristics of Superflab and solid Aquaplast were within 2% of solid water material. No significant differences (within 3%) in the surface dose were found between conventional and IMRT tangential techniques. The bolus effect was large for chest wall tangential radiotherapy, with up to an 82% increase using 2 mm fine mesh Aquaplast. The dosimetric effect of different Aquaplast materials has been quantified in this work. These materials can be used to create a custom bolus with potentially better reproducibility of placement.

  8. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer

    NASA Astrophysics Data System (ADS)

    Wen, Ning; Guan, Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T.; Li, Shidong; Movsas, Benjamin

    2007-04-01

    With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was ~4.0 cGy, which was ~40% higher than the Rt Lat dose of ~2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm × 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370° scan rotation (10° scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of ~10-11 cGy while the right hip received ~6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than ~12% to the table-drop setup.

  9. Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer.

    PubMed

    Wen, Ning; Guan, Huaiqun; Hammoud, Rabih; Pradhan, Deepak; Nurushev, T; Li, Shidong; Movsas, Benjamin

    2007-04-21

    With the increased use of cone beam CT (CBCT) for daily patient setup, the accumulated dose from CBCT may be significantly higher than that from simulation CT or portal imaging. The objective of this work is to measure the dose from daily pelvic scans with fixed technical settings and collimations. CBCT scans were acquired in half-fan mode using a half bowtie and x-rays were delivered in pulsed-fluoro mode. The skin doses for seven prostate patients were measured on an IRB-approved protocol. TLD capsules were placed on the patient's skin at the central axis of three beams: AP, left lateral (Lt Lat) and right lateral (Rt Lat). To avoid the ring artefacts centred in the prostate, the treatment couch was dropped 3 cm from the patient's tattoo (central axis). The measured AP skin doses ranged 3-6 cGy for 20-33 cm separation. The larger the patient size the less the AP skin dose. Lateral doses did not change much with patient size. The Lt Lat dose was approximately 4.0 cGy, which was approximately 40% higher than the Rt Lat dose of approximately 2.6 cGy. To verify this dose asymmetry, surface doses on an IMRT QA phantom (oval shaped, 30 cm x 20 cm) were measured at the same three sites using TLD capsules with 3 cm table-drop. The dose asymmetry was due to: (1) kV source rotation which always starts from the patient's Lt Lat and ends at Lt Lat. Gantry rotation gets much slower near the end of rotation but dose rate stays constant and (2) 370 degrees scan rotation (10 degrees scan overlap on the Lt Lat side). In vivo doses were measured inside a Rando pelvic heterogeneous phantom using TLDs. The left hip (femoral head and neck) received the highest doses of approximately 10-11 cGy while the right hip received approximately 6-7 cGy. The surface and in vivo doses were also measured for phantoms at the central-axis setup. The difference was less than approximately 12% to the table-drop setup. PMID:17404468

  10. Radiation Dose Estimation for Pediatric Patients Undergoing Cardiac Catheterization

    NASA Astrophysics Data System (ADS)

    Wang, Chu

    correction factors for the MOSFET organ dose measurements in the following studies. Minor angular dependence (< +/-20% at all angles tested, < +/-10% at clinically relevant angles in cardiac catheterization) was observed. Second, the cardiac dose for common fluoroscopic imaging techniques for pediatric patients in the two age groups was measured. Imaging technique settings with variations of individual key imaging parameters were tested to observe the quantitative effect of imaging optimization or lack thereof. Along with each measurement, the two standard system output indices, the Air Kerma (AK) and Dose-Area Product (DAP), were also recorded and compared to the measured cardiac and skin doses -- the lack of correlation between the indices and the organ doses shed light to the substantial limitation of the indices in representing patient radiation dose, at least within the scope of this dissertation. Third, the effective dose (ED) for Posterior-Anterior and Lateral fluoroscopic imaging techniques for pediatric patients in the two age groups was determined. In addition, the dosimetric effect of removing the anti-scatter grid was studied, for which a factor-of-two ED rate reduction was observed for the imaging techniques. The Clinical Component involved analytical research to develop a validated retrospective cardiac dose reconstruction formulation and to propose the new Optimization Index which evaluates the level of optimization of the clinician's imaging usage during a procedure; and small sample group of actual procedures were used to demonstrate applicability of these formulations. In its entirety, the research represents a first-of-its-kind comprehensive approach in radiation dosimetry for pediatric cardiac catheterization; and separately, it is also modular enough that each individual section can serve as study templates for small-scale dosimetric studies of similar purposes. The data collected and algorithmic formulations developed can be of use in areas of

  11. Patient radiation dose audits for fluoroscopically guided interventional procedures

    SciTech Connect

    Balter, Stephen; Rosenstein, Marvin; Miller, Donald L.; Schueler, Beth; Spelic, David

    2011-03-15

    Purpose: Quality management for any use of medical x-ray imaging should include monitoring of radiation dose. Fluoroscopically guided interventional (FGI) procedures are inherently clinically variable and have the potential for inducing deterministic injuries in patients. The use of a conventional diagnostic reference level is not appropriate for FGI procedures. A similar but more detailed quality process for management of radiation dose in FGI procedures is described. Methods: A method that takes into account both the inherent variability of FGI procedures and the risk of deterministic injuries from these procedures is suggested. The substantial radiation dose level (SRDL) is an absolute action level (with regard to patient follow-up) below which skin injury is highly unlikely and above which skin injury is possible. The quality process for FGI procedures collects data from all instances of a given procedure from a number of facilities into an advisory data set (ADS). An individual facility collects a facility data set (FDS) comprised of all instances of the same procedure at that facility. The individual FDS is then compared to the multifacility ADS with regard to the overall shape of the dose distributions and the percent of instances in both the ADS and the FDS that exceed the SRDL. Results: Samples of an ADS and FDS for percutaneous coronary intervention, using the dose metric of reference air kerma (K{sub a,r}) (i.e., the cumulative air kerma at the reference point), are used to illustrate the proposed quality process for FGI procedures. Investigation is warranted whenever the FDS is noticeably different from the ADS for the specific FGI procedure and particularly in two circumstances: (1) When the facility's local median K{sub a,r} exceeds the 75th percentile of the ADS and (2) when the percent of instances where K{sub a,r} exceeds the facility-selected SRDL is greater for the FDS than for the ADS. Conclusions: Analysis of the two data sets (ADS and FDS) and

  12. 'Perfect skin', the media and patients with skin disease: a qualitative study of patients with acne, psoriasis and atopic eczema.

    PubMed

    Magin, Parker; Adams, Jon; Heading, Gaynor; Pond, Dimity

    2011-01-01

    The relationship of skin disease with societal ideals of beauty, and the role of the media in this relationship, has not previously been researched. The overall objective of this study was to explore the psychological effects of skin disease. The theme of the ideal of perfect skin and the role of the media in generating this ideal arose via an inductive study methodology and was explored in the context of respondents' psychological morbidity. A qualitative study, 62 semi-structured interviews were conducted with respondents with acne, eczema or psoriasis recruited from both general practice and specialist dermatology practice in an Australian regional city. Interviews were audiotaped, transcribed and subjected to thematic analysis employing a process of constant comparison in which data collection and analysis were cumulative and concurrent. The themes of perfect skin, societal ideals and media influence emerged from this iterative process. Respondents identified a societal ideal of flawless skin, largely mediated by media portrayals of perfection. Failure to meet this ideal precipitated psychological morbidity in female, but not male, respondents. An appreciation of the pervasive pressures of society and media upon females with skin disease may inform management strategies, particularly psychological management strategies, in patients with skin disease. PMID:21645475

  13. Potent response of QS-21 as a vaccine adjuvant in the skin when delivered with the Nanopatch, resulted in adjuvant dose sparing

    PubMed Central

    Ng, Hwee-Ing; Fernando, Germain J. P.; Depelsenaire, Alexandra C. I.; Kendall, Mark A. F.

    2016-01-01

    Adjuvants play a key role in boosting immunogenicity of vaccines, particularly for subunit protein vaccines. In this study we investigated the induction of antibody response against trivalent influenza subunit protein antigen and a saponin adjuvant, QS-21. Clinical trials of QS-21 have demonstrated the safety but, also a need of high dose for optimal immunity, which could possibly reduce patient acceptability. Here, we proposed the use of a skin delivery technology – the Nanopatch – to reduce both adjuvant and antigen dose but also retain its immune stimulating effects when compared to the conventional needle and syringe intramuscular (IM) delivery. We have demonstrated that Nanopatch delivery to skin requires only 1/100th of the IM antigen dose to induce equivalent humoral response. QS-21 enhanced humoral response in both skin and muscle route. Additionally, Nanopatch has demonstrated 30-fold adjuvant QS-21 dose sparing while retaining immune stimulating effects compared to IM. QS-21 induced localised, controlled cell death in the skin, suggesting that the danger signals released from dead cells contributed to the enhanced immunogenicity. Taken together, these findings demonstrated the suitability of reduced dose of QS-21 and the antigen using the Nanopatch to enhance humoral responses, and the potential to increase patient acceptability of QS-21 adjuvant. PMID:27404789

  14. Potent response of QS-21 as a vaccine adjuvant in the skin when delivered with the Nanopatch, resulted in adjuvant dose sparing.

    PubMed

    Ng, Hwee-Ing; Fernando, Germain J P; Depelsenaire, Alexandra C I; Kendall, Mark A F

    2016-01-01

    Adjuvants play a key role in boosting immunogenicity of vaccines, particularly for subunit protein vaccines. In this study we investigated the induction of antibody response against trivalent influenza subunit protein antigen and a saponin adjuvant, QS-21. Clinical trials of QS-21 have demonstrated the safety but, also a need of high dose for optimal immunity, which could possibly reduce patient acceptability. Here, we proposed the use of a skin delivery technology - the Nanopatch - to reduce both adjuvant and antigen dose but also retain its immune stimulating effects when compared to the conventional needle and syringe intramuscular (IM) delivery. We have demonstrated that Nanopatch delivery to skin requires only 1/100(th) of the IM antigen dose to induce equivalent humoral response. QS-21 enhanced humoral response in both skin and muscle route. Additionally, Nanopatch has demonstrated 30-fold adjuvant QS-21 dose sparing while retaining immune stimulating effects compared to IM. QS-21 induced localised, controlled cell death in the skin, suggesting that the danger signals released from dead cells contributed to the enhanced immunogenicity. Taken together, these findings demonstrated the suitability of reduced dose of QS-21 and the antigen using the Nanopatch to enhance humoral responses, and the potential to increase patient acceptability of QS-21 adjuvant. PMID:27404789

  15. Patient doses from CT examinations in Turkey

    PubMed Central

    Ataç, Gökçe Kaan; Parmaksız, Aydın; İnal, Tolga; Bulur, Emine; Bulgurlu, Figen; Öncü, Tolga; Gündoğdu, Sadi

    2015-01-01

    PURPOSE We aimed to establish the first diagnostic reference levels (DRLs) for computed tomography (CT) examinations in adult and pediatric patients in Turkey and compare these with international DRLs. METHODS CT performance information and examination parameters (for head, chest, high-resolution CT of the chest [HRCT-chest], abdominal, and pelvic protocols) from 1607 hospitals were collected via a survey. Dose length products and effective doses for standard patient sizes were calculated from the reported volume CT dose index (CTDIvol). RESULTS The median number of protocols reported from the 167 responding hospitals (10% response rate) was 102 across five different age groups. Third quartile CTDIvol values for adult pelvic and all pediatric body protocols were higher than the European Commission standards but were comparable to studies conducted in other countries. CONCLUSION The radiation dose indicators for adult patients were similar to those reported in the literature, except for those associated with head protocols. CT protocol optimization is necessary for adult head and pediatric chest, HRCT-chest, abdominal, and pelvic protocols. The findings from this study are recommended for use as national DRLs in Turkey. PMID:26133189

  16. A spatially encoded dose difference maximal intensity projection map for patient dose evaluation: A new first line patient quality assurance tool

    SciTech Connect

    Hu Weigang; Graff, Pierre; Boettger, Thomas; Pouliot, Jean; and others

    2011-04-15

    Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generated based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.

  17. Sildenafil attenuates the fibrotic phenotype of skin fibroblasts in patients with systemic sclerosis.

    PubMed

    Higuchi, Tomoaki; Kawaguchi, Yasushi; Takagi, Kae; Tochimoto, Akiko; Ota, Yuko; Katsumata, Yasuhiro; Ichida, Hisae; Hanaoka, Masanori; Kawasumi, Hidenaga; Tochihara, Mari; Yamanaka, Hisashi

    2015-12-01

    Systemic sclerosis (SSc) is a multi-organ fibrotic disease that affects the skin and various internal organs. Therapeutic strategies for tissue fibrosis have not been established; however, aberrantly activated fibroblasts in affected lesions are key targets for modulating fibrosis. Recently, increased intracellular cyclic GMP (cGMP) levels were demonstrated to improve fibrosis levels in various diseases. The purpose of this study was to assess the anti-fibrotic properties of cGMP in cultured fibroblasts from patients with SSc. The phosphodiesterase (PDE) 5 inhibitor sildenafil increased the intracellular cGMP levels in skin fibroblasts in a dose-dependent manner. Sildenafil treatment also significantly decreased the expression of several pro-fibrotic factors that were upregulated by TGF-β1 treatment in SSc skin fibroblasts. These inhibitory effects occurred via non-canonical TGF-β signaling. Our findings revealed that sildenafil might be a novel strategy to treat tissue fibrosis and vasculopathy in SSc. PMID:26387628

  18. Patient doses from fluoroscopically guided cardiac procedures in pediatrics

    NASA Astrophysics Data System (ADS)

    Martinez, L. C.; Vano, E.; Gutierrez, F.; Rodriguez, C.; Gilarranz, R.; Manzanas, M. J.

    2007-08-01

    Infants and children are a higher risk population for radiation cancer induction compared to adults. Although some values on pediatric patient doses for cardiac procedures have been reported, data to determine reference levels are scarce, especially when compared to those available for adults in diagnostic and therapeutic procedures. The aim of this study is to make a new contribution to the scarce published data in pediatric cardiac procedures and help in the determination of future dose reference levels. This paper presents a set of patient dose values, in terms of air kerma area product (KAP) and entrance surface air kerma (ESAK), measured in a pediatric cardiac catheterization laboratory equipped with a biplane x-ray system with dynamic flat panel detectors. Cardiologists were properly trained in radiation protection. The study includes 137 patients aged between 10 days and 16 years who underwent diagnostic catheterizations or therapeutic procedures. Demographic data and technical details of the procedures were also gathered. The x-ray system was submitted to a quality control programme, including the calibration of the transmission ionization chamber. The age distribution of the patients was 47 for <1 year; 52 for 1-<5 years; 25 for 5-<10 years and 13 for 10-<16 years. Median values of KAP were 1.9, 2.9, 4.5 and 15.4 Gy cm2 respectively for the four age bands. These KAP values increase by a factor of 8 when moving through the four age bands. The probability of a fatal cancer per fluoroscopically guided cardiac procedure is about 0.07%. Median values of ESAK for the four age bands were 46, 50, 56 and 163 mGy, which lie far below the threshold for deterministic effects on the skin. These dose values are lower than those published in previous papers.

  19. A dose-response analysis of skin cancer from inorganic arsenic in drinking water

    SciTech Connect

    Brown, K.G.; Boyle, K.E.; Chen, C.W.; Gibb, H.J. )

    1989-12-01

    A study of the prevalence of skin cancer among 40,421 persons consuming arsenic-contaminated drinking water in Taiwan was used for a cancer dose-response assessment of ingested arsenic. The numbers of persons at risk over three dose intervals and four exposure durations were estimated from the data in order to apply the method of maximum likelihood to a multistage-Weibull time/dose-response model. A constant exposure level since birth for each of the exposure categories was assumed. It was found that the cumulative hazard increases as a power of three in age, and is linear or quadratic (with a linear coefficient) in dose. Observations from a smaller epidemiologic survey in Mexico were similar to what would be predicted from the model of the Taiwan data. Assuming that the skin cancer risk from ingested arsenic in the American population would also be similar to the Taiwan population, an American male would have a lifetime risk of developing skin cancer of 1.3 x 10(-3) (3.0 x 10(-3)) if exposed to 1 microgram/kg/day for a 76-year lifespan (median lifespan in the U.S.).

  20. Topical review: skin infections in the foot and ankle patient.

    PubMed

    Hsu, Andrew R; Hsu, Jessica W

    2012-07-01

    There are numerous cutaneous disorders that affect the foot, but of these conditions skin infections have the most significant impact on overall patient morbidity and clinical outcome. Skin infections in foot and ankle patients are common, with often devastating consequences if left unrecognized and untreated in both surgical and nonsurgical cases. There is a diverse array of infectious dermatoses that afflict the foot and ankle patient including tinea pedis, onychomycosis, paronychia, pitted keratolysis, verruca, folliculitis, and erysipelas. Prompt diagnosis, treatment, and surveillance of these common infectious conditions are critical in managing these dermatoses that can potentially progress to form deep abscesses and osteomyelitis. Infections can be managed with a combination of ventilated shoewear and synthetic substances to keep the feet dry, topical and oral antimicrobial agents, and patient education regarding preventative hygiene measures. The purpose of this review is to aid foot and ankle surgeons and other physicians in the diagnosis and treatment of infectious dermatoses affecting the foot. PMID:22835400

  1. Estimation of the Dose of Radiation Received by Patient and Physician During a Videofluoroscopic Swallowing Study.

    PubMed

    Morishima, Yoshiaki; Chida, Koichi; Watanabe, Hiroshi

    2016-08-01

    Videofluoroscopic swallowing study (VFSS) is considered the standard diagnostic imaging technique to investigate swallowing disorders and dysphagia. Few studies have been reported concerning the dose of radiation a patient receives and the scattering radiation dose received by a physician during VFSS. In this study, we investigated the dose of radiation (entrance skin dose, ESD) estimated to be received by a patient during VFSS using a human phantom (via a skin-dose monitor sensor placed on the neck of the human phantom). We also investigated the effective dose (ED) and dose equivalent (DE) received by a physician (wearing two personal dosimeters) during an actual patient procedure. One dosimeter (whole body) was worn under a lead apron at the chest, and the other (specially placed to measure doses received by the lens of the eye) outside the lead apron on the neck collar to monitor radiation doses in parts of the body not protected by the lead apron. The ESD for the patient was 7.8 mGy in 5 min. We estimated the average patient dose at 12.79 mGy per VFSS procedure. The physician ED and DE during VFSS were 0.9 mSv/year and 2.3 mSv/year, respectively. The dose of radiation received by the physician in this study was lower than regulatory dose limits. However, in accordance with the principle that radiation exposure should be as low as reasonably achievable, every effort should be made (e.g., wearing lead glasses) to reduce exposure doses. PMID:27318941

  2. Low-Dose (10-Gy) Total Skin Electron Beam Therapy for Cutaneous T-Cell Lymphoma: An Open Clinical Study and Pooled Data Analysis

    SciTech Connect

    Kamstrup, Maria R.; Gniadecki, Robert; Iversen, Lars; Skov, Lone; Petersen, Peter Meidahl; Loft, Annika; Specht, Lena

    2015-05-01

    Purpose: Cutaneous T-cell lymphomas (CTCLs) are dominated by mycosis fungoides (MF) and Sézary syndrome (SS), and durable disease control is a therapeutic challenge. Standard total skin electron beam therapy (TSEBT) is an effective skin-directed therapy, but the possibility of retreatments is limited to 2 to 3 courses in a lifetime due to skin toxicity. This study aimed to determine the clinical effect of low-dose TSEBT in patients with MF and SS. Methods and Materials: In an open clinical study, 21 patients with MF/SS stages IB to IV were treated with low-dose TSEBT over <2.5 weeks, receiving a total dose of 10 Gy in 10 fractions. Data from 10 of these patients were published previously but were included in the current pooled data analysis. Outcome measures were response rate, duration of response, and toxicity. Results: The overall response rate was 95% with a complete cutaneous response or a very good partial response rate (<1% skin involvement with patches or plaques) documented in 57% of the patients. Median duration of overall cutaneous response was 174 days (5.8 months; range: 60-675 days). TSEBT-related acute adverse events (grade 1 or 2) were observed in 60% of patients. Conclusions: Low-dose (10-Gy) TSEBT offers a high overall response rate and is relatively safe. With this approach, reirradiation at times of relapse or progression is likely to be less toxic than standard dose TSEBT. It remains to be established whether adjuvant and combination treatments can prolong the beneficial effects of low-dose TSEBT.

  3. Patient radiation doses in the most common interventional cardiology procedures in Croatia: first results.

    PubMed

    Brnić, Z; Krpan, T; Faj, D; Kubelka, D; Ramac, J Popić; Posedel, D; Steiner, R; Vidjak, V; Brnić, V; Visković, K; Baraban, V

    2010-02-01

    Apart from its benefits, the interventional cardiology (IC) is known to generate high radiation doses to patients and medical staff involved. The European Union Medical Exposures Directive 97/43/Euroatom strongly recommend patient dosimetry in interventional radiology, including IC. IC patient radiation doses in four representative IC rooms in Croatia were investigated. Setting reference levels for these procedures have difficulties due to the large difference in procedure complexity. Nevertheless, it is important that some guideline values are available as a benchmark to guide the operators during these potentially high-dose procedures. Local and national diagnostic reference levels (DRLs) were proposed as a guidance. A total of 138 diagnostic (coronary angiography, CA) and 151 therapeutic (PTCA, stenting) procedures were included. Patient irradiation was measured in terms of kerma-area product (KAP), fluoroscopy time (FT) and number of cine-frames (F). KAP was recorded using calibrated KAP-meters. DRLs of KAP, FT and F were calculated as third quartile values rounded up to the integer. Skin doses were assessed on a selected sample of high skin dose procedures, using radiochromic films, and peak skin doses (PSD) were presented. A relative large range of doses in IC was detected. National DRLs were proposed as follows: 32 Gy cm(2), 6.6 min and 610 frames for CA and 72 Gy cm(2), 19 min and 1270 frames for PTCA. PSD <1 Gy were measured in 72 % and PSD >2 Gy in 8 % of selected patients. Measuring the patient doses in radiological procedures is required by law, but rarely implemented in Croatia. The doses recorded in the study are acceptable when compared with the literature, but optimisation is possible. The preliminary DRL values proposed may be used as a guideline for local departments, and should be a basis for radiation reduction measures and quality assurance programmes in IC in Croatia. PMID:19880413

  4. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran

    PubMed Central

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-01-01

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised. PMID:26156930

  5. Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran.

    PubMed

    Aliasgharzadeh, Akbar; Mihandoost, Ehsan; Masoumbeigi, Mahboubeh; Salimian, Morteza; Mohseni, Mehran

    2015-01-01

    The knowledge of the radiation dose received by the patient during the radiological examination is essential to prevent risks of exposures. The aim of this work is to study patient doses for common diagnostic radiographic examinations in hospitals affiliated to Kashan University of Medical sciences, Iran. The results of this survey are compared with those published by some national and international values. Entrance surface dose (ESD) was measured based on the exposure parameters used for the actual examination and effective dose (ED) was calculated by use of conversion coefficients calculated by Monte Carlo methods. The mean entrance surface dose and effective dose for examinations of the chest (PA, Lat), abdomen (AP), pelvis (AP), lumbar spine (AP, Lat) and skull (AP, Lat) are 0.37, 0.99, 2.01, 1.76, 2.18, 5.36, 1.39 and 1.01 mGy, and 0.04, 0.1, 0.28, 0,28, 0.23, 0.13, 0.01 and 0.01 mSv, respectively. The ESDs and EDs reported in this study, except for examinations of the chest, are generally lower than comparable reference dose values published in the literature. On the basis of the results obtained in this study can conclude that use of newer equipment and use of the proper radiological parameter can significantly reduce the absorbed dose. It is recommended that radiological parameter in chest examinations be revised. PMID:26156930

  6. Efficacy of a single high dose versus multiple low doses of LLLT on wounded skin fibroblasts

    NASA Astrophysics Data System (ADS)

    Hawkins, Denise H.; Abrahamse, Heidi

    2007-07-01

    Background/purpose: In vivo studies have demonstrated that phototherapy accelerates wound healing in the clinical environment; however the exact mechanism is still not completely understood. The main focus of this study was to use in vitro laboratory results to establish an effective treatment regimen that may be practical and applicable to the clinical environment. This in vitro study aimed to compare the cellular responses of wounded fibroblasts following a single exposure of 5 J/cm2 or multiple exposures of low doses (2.5 J/cm2 or 5 J/cm2) on one day of the week to a single application of a higher dose (16 J/cm2) on day 1 and day 4. Methodology: Cellular responses to Helium-Neon (632.8 nm) laser irradiation were evaluated by measuring changes in cell morphology, cell viability, cell proliferation, membrane integrity and DNA damage. Results: Wounded cells exposed to 5 J/cm2 on day 1 and day 4 showed an increase in cell viability, increase in the release of bFGF, increase in cell density, decrease in ALP enzyme activity and decrease in caspase 3/7 activity indicating a stimulatory effect. Wounded cells exposed to three doses of 5 J/cm2 on day 1 showed a decrease in cell viability and cell proliferation and an increase in LDH cytotoxicity and DNA damage indicating an inhibitory effect. Conclusion: Results indicate that cellular responses are influenced by the combination of dose administered, number of exposures and time between exposures. Single doses administered with sufficient time between exposures is more beneficial to restoring cell function than multiple doses within a short period. Although this work confirms previous reports on the cumulative effect of laser irradiation it provides essential information for the initiation of in vivo clinical studies.

  7. Patient doses in interventional cardiology in Bosnia and Herzegovina: first results.

    PubMed

    Beganović, Adnan; Kulić, Mehmed; Spuzić, Muhamed; Gazdić-Santić, Maja; Skopljak-Beganović, Amra; Drljević, Advan; Dzanić, Suad; Basić, Begzada; Lincender, Lidija

    2010-01-01

    Cardiologists at the Cardiac Centre of the Clinical Centre of Sarajevo University performed invasive cardiology procedures in one room equipped with a Siemens Coroskop (Siemens Healthcare, Erlangen, Germany) unit with the possibility of digital cine imaging. The number of procedures performed with this unit is 1126 per year. The number of adults performing only diagnostic procedures is 816, therapeutic procedures 62 and both diagnostic and therapeutic 228. Twenty diagnostic examinations but no therapeutic procedure are performed on children per year. The workload is increasing year by year, with an average increase of 26 % per year. The X-ray system does not have a kerma area product (KAP) meter installed; therefore an external KAP meter was mounted on the X-ray tube. Gafchromic dosimetry films (International Specialty Products, Wayne, USA) were placed under the patient to record the skin dose distribution. The peak skin dose (PSD) was calculated from the maximum optical density of the dosimetry films. Dose measurements were performed on 51 patients undergoing therapeutic procedures (percutaneous transluminal coronary angioplasty and stent placement). Two patients received doses (KAP) larger than 100 Gycm(2). The PSD was higher than 1 Gy in 3 out of 16 evaluations, and one of these patients received a skin dose >2 Gy. No deterministic skin effects were recorded. The dosimetry results are similar to results reported in other countries. Invasive cardiac procedures deliver high doses to the skin that could cause deterministic effects (erythema). Physicians performing these procedures should be aware of these risks. More efforts should be put into the training of cardiologists in radiation protection. PMID:20223846

  8. Radiologic exposure conditions and resultant skin doses in application of xeroradiography to the orthodontic diagnosis

    SciTech Connect

    Nakasima, A.; Nakata, S.; Shimizu, K.; Takahama, Y.

    1980-12-01

    Xeroradiography is the recording of radiologic image by a photoelectric process rather than the photochemical one used in conventional radiography. In order to investigate the advantages and disadvantages of xeroradiography in the orthodontic field, minimum xeroradiologic exposure conditions for skull projections, joint projections, and hand projections were established by thirteen examiners and the relationship between the image production and x-ray radiation was compared with conventional film techniques. The advantages of xeroradiograph were finer and clear images caused by the edge effect and wide latitude of xeroradiography; the main hazard was the unavoidable larger skin dose required by the projection procedures. The skin doses with xeroradiography were 2.4 to 16.2 times larger than those with conventional film techniques.

  9. Measurement of radiotherapy x-ray skin dose on a chest wall phantom.

    PubMed

    Quach, K Y; Morales, J; Butson, M J; Rosenfeld, A B; Metcalfe, P E

    2000-07-01

    Sufficient skin dose needs to be delivered by a radiotherapy chest wall treatment regimen to ensure the probability of a near surface tumor recurrence is minimized. To simulate a chest wall treatment a hemicylindrical solid water phantom of 7.5 cm radius was irradiated with 6 MV x-rays using 20x20 cm2 and 10x20 cm2 fields at 100 cm source surface distance (SSD) to the base of the phantom. A surface dose profile was obtained from 0 to 180 degrees, in 10 degrees increments around the circumference of the phantom. Dosimetry results obtained from radiochromic film (effective depth of 0.17 mm) were used in the investigation, the superficial doses were found to be 28% (of Dmax) at the 0 degrees beam entry position and 58% at the 90 degrees oblique beam position. Superficial dose results were also obtained using extra thin thermoluminescent dosimeters (TLD) (effective depth 0.14 mm) of 30% at 0 degrees, 57% at 90 degrees, and a metal oxide semiconductor field effect transistor (MOSFET) detector (effective depth 0.5 mm) of 43% at 0 degrees, 62% at 90 degrees. Because the differences in measured superficial doses were significant and beyond those related to experimental error, these differences are assumed to be mostly attributable to the effective depth of measurement of each detector. We numerically simulated a bolus on/bolus off technique and found we could increase the coverage to the skin. Using an alternate "bolus on," "bolus off" regimen, the skin would receive 36.8 Gy at 0 degrees incidence and 46.4 Gy at 90 degrees incidence for a prescribed midpoint dose of 50 Gy. From this work it is evident that, as the circumference of the phantom is traversed the SSD increases and hence there is an inverse square fluence fall-off, this is more than offset by the increase in skin dose due to surface curvature to a plateau at about 90 degrees. Beyond this angle it is assumed that beam attenuation through the phantom and inverse square fall-off is causing the surface dose to

  10. Management of skin disease in patients with lupus erythematosus.

    PubMed

    Callen, Jeffrey P

    2002-04-01

    Skin disease in patients with lupus erythematosus may be subdivided into two broad categories - those represented by a 'specific' histopathology, the interface dermatitis, and those with changes that are not specific to lupus erythematosus, for example, vasculitis, mucin infiltration, etc. The specific skin lesions that are most common are discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE). Evaluation will allow the treating physician to assign a prognosis. Cutaneous lesions can generally be managed with standard therapies. Patients with discoid LE and subacute cutaneous LE are generally photosensitive, and therefore sunscreens, protective clothing and behavioural alteration should be discussed with all patients. Topical corticosteroids are a standard form of therapy, but 'newer' agents such as retinoids, calcipotriene and tacrolimus might be effective. Antimalarial agents are generally effective. Attempts to reduce or stop smoking may aid in the control of cutaneous LE. The choice of alternative therapy is personal, and discussions of the risks and benefits should be carefully documented. PMID:12041952

  11. Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or alpha-tocopherol applied on human skin models or human skin ex vivo at finite doses.

    PubMed

    Dreher, Frank; Fouchard, Frédéric; Patouillet, Claire; Andrian, Michèle; Simonnet, Jean-Thierry; Benech-Kieffer, Florence

    2002-01-01

    The use of human skin models for performing cutaneous bioavailability studies has been little investigated. For instance, only few studies have been reported on human skin models dealing with vehicle effects on percutaneous penetration. The present study aimed at evaluating the influence on caffeine's and alpha-tocopherol's cutaneous bioavailability of cosmetic vehicles such as a water-in-oil emulsion, an oil-in-water emulsion, a liposome dispersion and a hydrogel applied at finite dose using the reconstructed human skin models EpiDerm and Episkin. The results were compared with those obtained in human skin ex vivo using similar experimental conditions. It was demonstrated that the rank order of solute permeability could be correctly predicted when the preparation was applied at a finite dose in human skin models, at least when solutes with far different physicochemical properties such as caffeine and alpha-tocopherol were used. If only slight effects of cosmetic vehicle on skin bioavailability were observed in human skin ex vivo, they were less predictable using skin models. Especially, alcohol-containing vehicles seemed to behave differently in EpiDerm as well as in Episkin than on human skin ex vivo. Stratum corneum intercellular lipid composition and organization of human skin models differ to some extent from that of human stratum corneum ex vivo, which contributes to less pronounced barrier properties, together with the increased hydration of the outermost stratum corneum layers of the models. These features, as well as still unknown factors, may explain the differences observed in vehicle effects in human skin ex vivo versus human skin models. PMID:12476008

  12. Estimated UV doses to psoriasis patients during climate therapy at Gran Canaria in March 2006

    NASA Astrophysics Data System (ADS)

    Nilsen, L. T. N.; Søyland, E.; Krogstad, A. L.

    2008-01-01

    Psoriasis is a chronic inflammatory disease involving about 2-3% of the Norwegian population. Sun exposure has a positive effect on most psoriasis lesions, but ultraviolet (UV) radiation also causes a direct DNA damage in the skin cells and comprises a carcinogenic potential. UV exposure on the skin causes a local as well as a systemic immune suppressive effect, but the relation between sun exposure and these biological effects is not well known. In March 2006 a study was carried out to investigate possible therapeutic outcome mechanisms in 20 psoriasis patients receiving climate therapy at Gran Canaria. This paper presents estimates of their individual skin UV-doses based on UV measurements and the patients' diaries with information on time spent in the sun. On the first day of exposure the patients received on average 5.1 Standard Erythema Doses (SED: median=4.0 SED, range 2.6-10.3 SED) estimated to the skin. During the 15 days study they received 165.8 SED (range 104.3-210.1 SED). The reduction in PASI score was 72.8% on average, but there was no obvious relation between the improvement and the UV dose. The UV doses were higher than those found from climate therapy studies at other locations. It seems beneficial to use more strict exposure schedules that consider the available UV irradiance, depending on time of the day, time of the year and weather conditions.

  13. Fluence to local skin absorbed dose and dose equivalent conversion coefficients for monoenergetic positrons using Monte-Carlo code MCNP6.

    PubMed

    Bourgois, L; Antoni, R

    2016-01-01

    Conversion coefficients fluence to local skin equivalent dose, as introduced in ICRP Publication 116, 2010, are calculated for positrons of energies ranging from 10 keV to 10 MeV using the code MCNP6. Fluence to dose equivalent conversion coefficients H'(0.07,0°)/Φ are calculated for positrons of energy ranging between 20 keV and 10 MeV. A comparison between operational dose quantity H'(0.07,0°) and the Local-Skin equivalent Dose shows an overall good agreement between these two quantities, except between 60 keV and 100 keV. PMID:26623930

  14. Persistent DNA Damage after High Dose In Vivo Gamma Exposure of Minipig Skin

    PubMed Central

    Ahmed, Emad A.; Agay, Diane; Schrock, Gerrit; Drouet, Michel; Meineke, Viktor; Scherthan, Harry

    2012-01-01

    Background Exposure to high doses of ionizing radiation (IR) can lead to localized radiation injury of the skin and exposed cells suffer dsDNA breaks that may elicit cell death or stochastic changes. Little is known about the DNA damage response after high-dose exposure of the skin. Here, we investigate the cellular and DNA damage response in acutely irradiated minipig skin. Methods and Findings IR-induced DNA damage, repair and cellular survival were studied in 15 cm2 of minipig skin exposed in vivo to ∼50 Co-60 γ rays. Skin biopsies of control and 4 h up to 96 days post exposure were investigated for radiation-induced foci (RIF) formation using γ-H2AX, 53BP1, and active ATM-p immunofluorescence. High-dose IR induced massive γ-H2AX phosphorylation and high 53BP1 RIF numbers 4 h, 20 h after IR. As time progressed RIF numbers dropped to a low of <1% of keratinocytes at 28–70 days. The latter contained large RIFs that included ATM-p, indicating the accumulation of complex DNA damage. At 96 days most of the cells with RIFs had disappeared. The frequency of active-caspase-3-positive apoptotic cells was 17-fold increased 3 days after IR and remained >3-fold elevated at all subsequent time points. Replicating basal cells (Ki67+) were reduced 3 days post IR followed by increased proliferation and recovery of epidermal cellularity after 28 days. Conclusions Acute high dose irradiation of minipig epidermis impaired stem cell replication and induced elevated apoptosis from 3 days onward. DNA repair cleared the high numbers of DBSs in skin cells, while RIFs that persisted in <1% cells marked complex and potentially lethal DNA damage up to several weeks after exposure. An elevated frequency of keratinocytes with persistent RIFs may thus serve as indicator of previous acute radiation exposure, which may be useful in the follow up of nuclear or radiological accident scenarios. PMID:22761813

  15. Functional and morphological changes in pig skin after single or fractionated doses in x rays

    SciTech Connect

    Young, C.M.A.; Hopewell, J.W.

    1982-09-01

    The flank skin of pigs has been treated with either single or fractionated doses of x-irradiation. A single dose (2070 cGy) was compared with treatment given as 6 fractions in 18 days (6f/18 days; 3780 cGy) or 30 fractions in 39 days (30f/39 days; 8000 cGy). The doses were selected on the basis that similar levels of late tissue damage would result. Radiation induced changes in the skin were assessed by observing the skin reactions and by the measurement of isotope clearance (functional study), relative field contraction, dermal and epidermal thickness and dermal vascular density (morphological studies). In the three treatment groups the early radiation reaction varied considerably. In the first wave reaction (3 to 6 weeks after treatment) bright red erythema was recorded in many fields but moist desquamation developed only in the 30f/39 days treatment group. The second wave (10-16 weeks) was characterized by an ischemic mauve/dusky reaction. Dermal necrosis developed in 50% of the single dose fields. In the 30f/39 days regimen persistent moist desquamation progressed to dermal necrosis. Neither desquamation nor necrosis developed after 6f/18 days. Different levels of vascular damage in the dermis were assessed using an isotope clearance technique; for example in the early reaction significant changes were recorded in the papillary dermis (faster clearance) prior to the development of moist desquamation (30f/39 days) and in the reticular dermis (slower clearance) before necrosis (single dose). Changes in clearance rates have been correlated with changes in the vascular density and thickness of the dermis. Between 26 and 52 weeks (the late reaction) relative field contraction was slightly greater in the 30f/39 days group than in the other treatment groups.

  16. Quantitative Proteomic Profiling of Low Dose Ionizing Radiation Effects in a Human Skin Model

    SciTech Connect

    Hengel, Shawna; Aldrich, Joshua T.; Waters, Katrina M.; Pasa-Tolic, Ljiljana; Stenoien, David L.

    2014-07-29

    To assess molecular responses to low doses of radiation that may be encountered during medical diagnostic procedures, nuclear accidents, or terrorist acts, a quantitative global proteomic approach was used to identify protein alterations in a reconstituted human skin tissue treated with 10 cGy of ionizing radiation. Subcellular fractionation was employed to remove highly abundant structural proteins and provide insight on radiation induced alterations in protein abundance and localization. In addition, peptides were post-fractionated using high resolution 2-dimensional liquid chromatography to increase the dynamic range of detection of protein abundance and translocation changes. Quantitative data was obtained by labeling peptides with 8-plex isobaric iTRAQ tags. A total of 207 proteins were detected with statistically significant alterations in abundance and/or subcellular localization compared to sham irradiated tissues. Bioinformatics analysis of the data indicated that the top canonical pathways affected by low dose radiation are related to cellular metabolism. Among the proteins showing alterations in abundance, localization and proteolytic processing was the skin barrier protein filaggrin which is consistent with our previous observation that ionizing radiation alters profilaggrin processing with potential effects on skin barrier functions. In addition, a large number of proteases and protease regulators were affected by low dose radiation exposure indicating that altered proteolytic activity may be a hallmark of low dose radiation exposure. While several studies have demonstrated altered transcriptional regulation occurs following low dose radiation exposures, the data presented here indicates post-transcriptional regulation of protein abundance, localization, and proteolytic processing play an important role in regulating radiation responses in complex human tissues.

  17. The effective dose equivalent and effective dose for hot particles on the skin.

    PubMed

    Xu, X George

    2005-07-01

    Whole body exposure from photon-emitting hot particles is a relatively new problem. Until recently, the U.S. Nuclear Regulatory Commission required the use of deep dose equivalent (DDE) to estimate and report whole body exposures from hot particles. In this study, effective dose equivalent (EDE) and effective dose (ED) were calculated for point sources with photon energies between 0.1 MeV to 2.0 MeV for 74 locations covering the entire body surface, using the MCNP code and the MIRD-type stylized phantoms. Tabulated data show that the sources located near the upper chest and the lower waist have the highest EDE and ED, while sources near the top of head and feet yielded the smallest. The calculated DDE values are much higher than the EDE values. For an exposure of 75 microCi h(-1) to a 60Co source located at the center upper chest area, the EDE is 36.5 microSv (3.65 mrem), which is a factor of 240 smaller than the corresponding DDE. EDE and ED data are tabulated for quick reference by users in nuclear power plants. PMID:15951692

  18. Hair loss in patients with skin of color.

    PubMed

    Semble, Ashley L; McMichael, Amy J

    2015-06-01

    Hair loss in skin of color patients can vary from the very simplest of diagnoses to a unique diagnostic challenge requiring extensive knowledge of historical symptoms, haircare practices, and previous treatments. There are several disorders in the literature that are noted to be more common in patients of African descent as compared to Caucasian populations. These disorders include central centrifugal cicatricial alopecia, dissecting cellulitis, discoid lesions of lupus erythematosus, traction alopecia, seborrheic dermatitis, and hair breakage. While there is no definitive prevalence data for the various forms of hair loss in the skin of color population, it is clear that these disorders are a concern for many patients in this population along with common hair loss concerns, such as telogen effluvium and pattern hair loss. A careful detailed clinical examination, history, and potential histopathology will guide the clinician to appropriate management. Hair disorders in skin of color patients may present unique challenges to the clinician, and knowledge of accurate clinical presentation and treatment approaches is essential to providing quality care. PMID:26176285

  19. SU-E-T-233: Modeling Linac Couch Effects On Attenuation and Skin Dose

    SciTech Connect

    Xiong, L; Halvorsen, P

    2014-06-01

    Purpose: Treatment couch tops in medical LINAC rooms lead to attenuation to beams penetrating them, plus higher skin dose which can become a significant concern with the high fraction doses associated with Stereotactic Body Radiation Therapy. This work measures the attenuation and shallow depth dose due to a BrainLab couch, and studies the modeling of the couch top in our treatment planning system (TPS) as a uniform solid material with homogeneous density. Methods: LINAC photon beams of size 10×10 cm and nominal energy 6 MV were irradiated from different gantry angles on a stack of solid water. Depth dose were measured with two types of parallel plate chambers, MPPK and Markus. In the Philips Pinnacle TPS, the couch was modeled as a slab with varying thickness and density. A digital phantom of size 30×30×10 cm with density 1 g/cc was created to simulate the measurement setup. Both the attenuation and skin dose effects due to the couch were studied. Results: An orthogonal attenuation rate of 3.2% was observed with both chamber measurements. The attenuation can be modeled by couch models of varying thicknesses. Once the orthogonal attenuation was modeled well, the oblique beam attenuation in TPS agreed with measurement within 1.5%. The depth dose at shallow depth (0.5 cm) was also shown to be modeled correctly within 1.5% of the measurement using a 12 mm thick couch model with density of 0.9 g/cc. Agreement between calculation and measurement diverges at very shallow depths (≤1 mm) but remains acceptable (<5%) with the aforementioned couch model parameters. Conclusion: Modeling the couch top as a uniform solid in a treatment planning system can predict both the attenuation and surface dose simultaneously well within clinical tolerance in the same model.

  20. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    SciTech Connect

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  1. Patient doses in {gamma}-intracoronary radiotherapy: The Radiation Burden Assessment Study

    SciTech Connect

    Thierens, Hubert . E-mail: hubert.thierens@Ughent.be; Reynaert, Nick; Bacher, Klaus; Eijkeren, Marc van; Taeymans, Yves

    2004-10-01

    Purpose: To determine accurately the radiation burden of both patients and staff from intracoronary radiotherapy (IRT) with {sup 192}Ir and to investigate the importance of IRT in the patient dose compared with interventional X-rays. Methods and materials: The Radiation Burden Assessment Study (RABAS) population consisted of 9 patients undergoing {gamma}-IRT after percutaneous transluminal coronary angioplasty and 14 patients undergoing percutaneous transluminal coronary angioplasty only as the control group. For each patient, the dose to the organs and tissues from the internal and external exposure was determined in detail by Monte Carlo N-particle simulations. Patient skin dose measurements with thermoluminescence dosimeters served as verification. Staff dosimetry was performed with electronic dosimeters, thermoluminescence dosimeters, and double film badge dosimetry. Results: With respect to the patient dose from IRT, the critical organs are the thymus (58 mGy), lungs (31 mGy), and esophagus (27 mGy). The mean effective dose from IRT was 8 mSv. The effective dose values from interventional X-rays showed a broad range (2-28 mSv), with mean values of 8 mSv for the IRT patients and 13 mSv for the control group. The mean dose received by the radiotherapist from IRT was 4 {mu}Sv/treatment. The doses to the other staff members were completely negligible. Conclusion: Our results have shown that the patient and personnel doses in {gamma}-IRT remain at an acceptable level. The patient dose from IRT was within the variations in dose from the accompanying interventional X-rays.

  2. Weight-based antibiotic dosing in a real-world European study of complicated skin and soft-tissue infections due to methicillin-resistant Staphylococcus aureus.

    PubMed

    Lawson, W; Nathwani, D; Eckmann, C; Corman, S; Stephens, J; Solem, C; Macahilig, C; Li, J; Baillon-Plot, N; Charbonneau, C; Haider, S

    2015-09-01

    We aimed to characterize real-world dosing of weight-based intravenous (IV) antibiotic therapy in patients hospitalized for methicillin-resistant Staphylococcus aureus (MRSA) complicated skin and soft-tissue infections (cSSTIs). This was a subgroup analysis of a retrospective chart review that captured data from 12 European countries. The study included patients ≥18 years old, hospitalized with an MRSA cSSTI between 1 July 2010 and 30 June 2011 and discharged alive by 31 July 2011. Patients treated with IV vancomycin, teicoplanin or daptomycin at any stage during hospitalization were included in this analysis. Analyses were conducted at the regimen level (dosing in mg/kg or in mg, frequency, and total daily dose (TDD)), with potentially multiple regimens per patient, and the patient level, categorizing patients into low, standard (labelled) and high dosing groups according to their initial MRSA-targeted regimen. Among the 1502 patients in the parent study, 998 patients contributed a total of 1050 daptomycin, teicoplanin or vancomycin regimens. Across all regimens, the mean initial TDDs were 6.3 ± 1.9 mg/kg for daptomycin, 10.5 ± 4.9 mg/kg for teicoplanin and 28.5 ± 11.5 mg/kg for vancomycin. A total of 789 patients received first-line therapy with one of the above antibiotics. The majority of patients receiving first-line teicoplanin and daptomycin (96% and 80%, respectively) received higher than labelled cSSTI doses, whereas vancomycin doses were lower than labelled doses in >40% of patients. These real-world data reveal significant deviation from labelled antibiotic dosing in 12 European countries and the potential for suboptimal outcomes in patients with MRSA cSSTIs. PMID:26206621

  3. Evaluation of selenium in biological sample of arsenic exposed female skin lesions and skin cancer patients with related to non-exposed skin cancer patients.

    PubMed

    Kolachi, Nida F; Kazi, Tasneem G; Wadhwa, Sham K; Afridi, Hassan I; Baig, Jameel A; Khan, Sumaira; Shah, Faheem

    2011-08-01

    The antagonistic effects between selenium (Se) and arsenic (As) suggest that low Se status plays an important role in arsenism development. The objective of present study was to assess Se contents in biological samples of As exposed females have skin lesions and cancer with related to non-exposed skin cancer patients. The biological samples (blood and scalp hair) of As exposed group comprises, female skin cancer (ESC) patients admitted in cancer hospitals have skin lesions (ESL) and exposed referents have not both diseases (ER), belongs to As exposed area of Pakistan. For comparative purposes, age matched female skin cancerous patient (RP) and non-cancerous females (NER) belong to non-exposed areas were also selected. The As and Se in acid digests of biological samples were pre-concentrated by complexing with chelating agent (ammonium pyrrolidinedithiocarbamate), and resulted complexes were extracted into non-ionic extractant (Triton X-114), prior to analysis by electrothermal atomic absorption spectrometry. The enhancement factor of about 25 was obtained by pre-concentrating 10 mL of sample solutions. The accuracy of the optimized procedure was evaluated by using certified reference material (BCR 397) with certified values for Se and As and standard addition method at three concentration levels in real samples. No significant differences was observed (p>0.05) when comparing the values obtained by the proposed method, added and certified values of both elements. The biological samples of ESC patients had 2-3 folds higher As and lower Se levels as compared to RP (p<0.001). Understudied exposed referents have high level of As and lower Se contents as compared to referents subjects of non-exposed area (p<0.01). The higher concentration of As and lower levels of Se in biological samples of cancerous patients are consisted with reported studies. PMID:21624640

  4. High dose intravenous ciprofloxacin in febrile neutropenic patients.

    PubMed

    Johnson, P R; Yin, J A; Tooth, J A

    1990-12-01

    We have evaluated the use of high-dose intravenous ciprofloxacin as monotherapy in the empirical therapy of febrile episodes in neutropenic patients during the course of a randomized trial comparing ciprofloxacin with a standard combination regimen. Sixty-four episodes of fever were studied in a high risk population of 42 patients mostly undergoing intensive chemotherapy for leukaemia. Ciprofloxacin achieved clinical responses as follows: completely successful in 39%, partially successful in 20%, and unsuccessful in 41%. Infections were microbiologically documented in 37 (58%), with Gram-positive bacteria (of which 37% were coagulase negative staphylococci and 34% were streptococci) accounting for 81% of all organisms cultured. Responses in documented infections were as follows; completely successful in 32%, partially successful in 27%, and unsuccessful in 41%. One infection-related death occurred 30 h after starting ciprofloxacin, and a further three patients died before the resolution of neutropenia. The early death was caused by fulminant infection with a ciprofloxacin-resistant Pseudomonas aeruginosa. No other ciprofloxacin resistance was seen amongst eight Gram-negative isolates. There was no evidence of emerging ciprofloxacin resistance during the course of the study. Ciprofloxacin was associated with a low incidence of adverse events with skin rash (five cases) and nausea (one case) being reported as possibly or probably related to ciprofloxacin. We conclude that high-dose intravenous ciprofloxacin may be safely employed as monotherapy in the empirical treatment of febrile episodes in neutropenic patients. It has the additional advantages of twice daily administration, the availability of intravenous and oral presentations, and absence of cross-allergy in beta-lactam antibiotic hypersensitive patients. PMID:2292537

  5. Autologous hematopoietic stem cell transplantation reverses skin fibrosis but does not change skin vessel density in patients with systemic sclerosis.

    PubMed

    Daikeler, T; Kump, E; Stern, M; Hügle, T; Hij, A; Haeuserman, P; Farge, D

    2015-09-01

    Hematopoetic stem cell transplantation (HSCT) improves survival in patients with severe systemic sclerosis (SSc) by resetting the immune system. We studied how HSCT acts on the key SSc skin pathology findings (fibrosis and vascularization). In mean, 3 skin punch biopsies per patient (range 2-6) were analyzed from 13 patients (5 females) with severe diffuse SSc before and up to 96 months after HSCT. Fibrosis of the four skin layers was graded semi-quantitatively and an overall fibrosis score was then calculated. Vessel numbers and calibers were assessed in the superficial and deeper dermis after immune-staining for endothelial antigens (CD31, VE-cadherin and vWF). The median age of patients at HSCT was 47 (24-64) years. The overall median modified Rodnan skin score decreased from 24 to 10 (P=0.003) at first follow-up within a median of 9 (6-36) months after HSCT as did the histological skin score (P=0.03). The modified Rodnan skin score and the fibrosis score correlated positively (r=0.589, P<0.001). The vessels density did not significantly change after HSCT nor did the expression of the tested endothelial markers. Although improving skin fibrosis in patients with SSc, HSCT does not alter vessel density within skin biopsies. PMID:26300240

  6. Dose-survival relationship for epithelial cells of human skin after multifraction irradiation: evaluation by a quantitative method in vivo

    SciTech Connect

    Arcangeli, G.; Mauro, F.; Nervi, C.; Withers, H.R.

    1980-07-01

    The dose-survival relationship for normal epithelial cells after single and fractionated radiation exposures has been established by Withers for the mouse, but it is not available for humans according to a strict criterion for survival of single cell reproductive integrity. In an attempt to obtain such a quantitative estimation, 2 patients requiring radical radiation therapy to the chest wall were treated according to particular Multiple Daily Fractionation (MDF) protocols: i) 250 + 150 + 150 rad/day, 4 hr interval, 5 days/week; and ii) 150 + 150 + 150 + 150 rad/day, 3.5 hr interval, 5 days/week. In both cases, different strips of skin received different total doses: 6300, 6850, and 7150 rad, and 6300, 6750, and 7200 rad, respectively. In case (i), moist desquamation appeared and thereafter repopulating colonies of epithelium could be recognized and counted. Using these counts a survival curve having a D/sub o/ value of 490 +- 150 rad was estimated according to the formula proposed by Withers. In case (ii), no moist desquamation was reached at the doses delivered. The difference observed may imply that the initial region of the survival curve deviates appreciably from exponential between doses of 150 and 250 rad. If such is the case, a /sub 1/D/sub o/ value of 490 rad may represent an underestimate. These results are discussed from the point of view of both the shape of the survival curve and the effectiveness of nonconventional fractionation courses.

  7. [Expression of bioinformatically identified genes in skin of psoriasis patients].

    PubMed

    Sobolev, V V; Nikol'skaia, T A; Zolotarenko, A D; Piruzian, E S; Bruskin, S A

    2013-10-01

    Gene expression analysis for EPHA2 (EPH receptor A2), EPHB2 (EPH receptor B2), S100A9 (S100 calcium binding protein A9), PBEF(nicotinamide phosphoribosyltransferase), LILRB2 (leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2), PLAUR (plasminogen activator, urokinase receptor), LTB (lymphotoxin beta (TNF superfamily, member 3)), WNT5A (wingless-type MMTV integration site family, member 5A) has been conducted using real-time polymerase chain reaction in specimens affected by psoriasis versus visually intact skin in 18 patients. It was revealed that the expression of the nine examined genes was upregulated in the affected by psoriasis compared to visually intact skin specimens. The highest expression was observed for S100A9, S100AS, PBEF, WNT5A2, and EPHB2 genes. S100A9 and S100A8 gene expression in the affected by psoriasis skin was 100-fold higher versus visually intact skin while PBEF, WNT5A, and EPHB2 gene expression was upregulated more than five-fold. We suggested that the high expression of these genes might be associated with the state of the pathological process in psoriasis. Moreover, the transcriptional activity of these genes might serve a molecular indicator of the efficacy of treatment in psoriasis. PMID:25474898

  8. [Expression of bioinformatically identified genes in skin of psoriasis patients].

    PubMed

    2013-10-01

    Gene expression analysis for EPHA2 (EPH receptor A2), EPHB2 (EPH receptor B2), S100A9 (S100 calcium binding protein A9), PBEF(nicotinamide phosphoribosyltransferase), LILRB2 (leukocyte immunoglobulin-like receptor, subfamily B (with TM and ITIM domains), member 2), PLAUR (plasminogen activator, urokinase receptor), LTB (lymphotoxin beta (TNF superfamily, member 3)), WNT5A (wingless-type MMTV integration site family, member 5A) has been conducted using real-time polymerase chain reaction in specimens affected by psoriasis versus visually intact skin in 18 patients. It was revealed that the expression of the nine examined genes was upregulated in the affected by psoriasis compared to visually intact skin specimens. The highest expression was observed for S100A9, S100AS, PBEF, WNT5A2, and EPHB2 genes. S100A9 and S100A8 gene expression in the affected by psoriasis skin was 100-fold higher versus visually intact skin while PBEF, WNT5A, and EPHB2 gene expression was upregulated more than five-fold. We suggested that the high expression of these genes might be associated with the state of the pathological process in psoriasis. Moreover, the transcriptional activity of these genes might serve a molecular indicator of the efficacy of treatment in psoriasis. PMID:25508677

  9. Patient and staff doses for some complex x-ray examinations.

    PubMed

    Olgar, T; Bor, D; Berkmen, G; Yazar, T

    2009-09-01

    The aim of this study was to measure patient and staff doses simultaneously for some complex x-ray examinations. Measurements of dose-area product (DAP) and entrance skin dose (ESD) were carried out in a sample of 107 adult patients who underwent different x-ray examinations such as double contrast barium enema (DCBE), single contrast barium enema (SCBE), barium swallow, endoscopic retrograde cholangiopancreatography (ERCP) and percutaneous transhepatic cholangiography (PTC), and various orthopaedic surgical procedures. Dose measurements were made separately for each projection, and DAP, thermoluminescent dosimetry (TLD), film dosimetry and tube output measurement techniques were used. Staff doses were measured simultaneously with patient doses for these examinations, with the exception of barium procedures. The measured mean DAP values were found to be 8.33, 90.24, 79.96 Gy cm(2) for barium swallow, SCBE and DCBE procedures with the fluoroscopy times of 3.1, 4.43 and 5.86 min, respectively. The calculated mean DAP was 26.33 Gy cm(2) for diagnostic and 89.76 Gy cm(2) therapeutic ERCP examinations with the average fluoroscopy times of 1.9 and 5.06 min respectively. Similarly, the calculated mean DAP was 97.53 Gy cm(2) with a corresponding fluoroscopy time of 6.1 min for PTC studies. The calculated mean entrance skin dose (ESD) was 172 mGy for the orthopaedic surgical studies. Maximum skin doses were measured as 324, 891, 1218, 750, 819 and 1397 mGy for barium swallow, SCBE, DCBE, ERCP, PTC and orthopaedic surgical procedures, respectively. The high number of radiographs taken during barium enema examinations, and the high x-ray outputs of the fluoroscopic units used in ERCP, were the main reasons for high doses, and some corrective actions were immediately taken. PMID:19690354

  10. Patient-specific organ dose estimation during transcatheter arterial embolization using Monte Carlo method and adaptive organ segmentation

    NASA Astrophysics Data System (ADS)

    Tsai, Hui-Yu; Lin, Yung-Chieh; Tyan, Yeu-Sheng

    2014-11-01

    The purpose of this study was to evaluate organ doses for individual patients undergoing interventional transcatheter arterial embolization (TAE) for hepatocellular carcinoma (HCC) using measurement-based Monte Carlo simulation and adaptive organ segmentation. Five patients were enrolled in this study after institutional ethical approval and informed consent. Gafchromic XR-RV3 films were used to measure entrance surface dose to reconstruct the nonuniform fluence distribution field as the input data in the Monte Carlo simulation. XR-RV3 films were used to measure entrance surface doses due to their lower energy dependence compared with that of XR-RV2 films. To calculate organ doses, each patient's three-dimensional dose distribution was incorporated into CT DICOM images with image segmentation using thresholding and k-means clustering. Organ doses for all patients were estimated. Our dose evaluation system not only evaluated entrance surface doses based on measurements, but also evaluated the 3D dose distribution within patients using simulations. When film measurements were unavailable, the peak skin dose (between 0.68 and 0.82 of a fraction of the cumulative dose) can be calculated from the cumulative dose obtained from TAE dose reports. Successful implementation of this dose evaluation system will aid radiologists and technologists in determining the actual dose distributions within patients undergoing TAE.

  11. Patient dose, gray level and exposure index with a computed radiography system

    NASA Astrophysics Data System (ADS)

    Silva, T. R.; Yoshimura, E. M.

    2014-02-01

    Computed radiography (CR) is gradually replacing conventional screen-film system in Brazil. To assess image quality, manufactures provide the calculation of an exposure index through the acquisition software of the CR system. The objective of this study is to verify if the CR image can be used as an evaluator of patient absorbed dose too, through a relationship between the entrance skin dose and the exposure index or the gray level values obtained in the image. The CR system used for this study (Agfa model 30-X with NX acquisition software) calculates an exposure index called Log of the Median (lgM), related to the absorbed dose to the IP. The lgM value depends on the average gray level (called Scan Average Level (SAL)) of the segmented pixel value histogram of the whole image. A Rando male phantom was used to simulate a human body (chest and head), and was irradiated with an X-ray equipment, using usual radiologic techniques for chest exams. Thermoluminescent dosimeters (LiF, TLD100) were used to evaluate entrance skin dose and exit dose. The results showed a logarithm relation between entrance dose and SAL in the image center, regardless of the beam filtration. The exposure index varies linearly with the entrance dose, but the angular coefficient is beam quality dependent. We conclude that, with an adequate calibration, the CR system can be used to evaluate the patient absorbed dose.

  12. The maximal cumulative solar UVB dose allowed to maintain healthy and young skin and prevent premature photoaging.

    PubMed

    Ichihashi, Masamitsu; Ando, Hideya

    2014-10-01

    The young facial skin of children with a smooth healthy appearance changes over time to photoaged skin having mottled pigmentation, solar lentigines, wrinkles, dry and rough skin, leathery texture, and benign and malignant tumors after exposure to chronic, repeated solar radiation. The first sign of photoaging in Japanese subjects is usually solar lentigines appearing around 20 years of age on the face. Fine wrinkles can then appear after 30 years of age, and benign skin tumors, seborrhoeic keratoses, can occur after 35 years of age in sun-exposed skin. We theoretically calculated the maximal daily exposure time to solar radiation, which could prevent the development of photoaged skin until 60 and 80 years of age, based on published data of personal solar UVB doses in sun-exposed skin. One MED (minimal erythema dose) was determined to be 20 mJ/cm(2) , and 200 MED was used as the average yearly dose of Japanese children. Further, we hypothesized that the annual dose of Japanese adults is the same as that of the children. The cumulative UVB dose at 20 years of age was thus calculated to be 4000 MED, and 22 MED was used as the maximal daily UVB dose based on data measured in Kobe, located in the central area of Japan. We used the solar UVB dose from 10:00 a.m. to 14:00 p.m. which occupies 60% of the total daily UV dose, to obtain the maximal UVB per hour in a day, and calculated the maximal daily UV exposure time that would delay the onset of solar lentigines until 60 or 80 years of age. The mean daily sun exposure time to maintain healthy skin until 80 years of age in the summer was calculated to be 2.54 min (0.14 MED) for unprotected skin and 127 min with the use of a sunscreen of SPF (sun protection factor) of 50. In this study, we did not evaluate the photoaging effect of UVA radiation, but findings of the adverse effects of UVA radiation on the skin have accumulated in the last decade. Therefore, it will be important to estimate the maximal dose of solar

  13. Patient-specific Monte Carlo dose calculations for 103Pd breast brachytherapy

    NASA Astrophysics Data System (ADS)

    Miksys, N.; Cygler, J. E.; Caudrelier, J. M.; Thomson, R. M.

    2016-04-01

    This work retrospectively investigates patient-specific Monte Carlo (MC) dose calculations for 103Pd permanent implant breast brachytherapy, exploring various necessary assumptions for deriving virtual patient models: post-implant CT image metallic artifact reduction (MAR), tissue assignment schemes (TAS), and elemental tissue compositions. Three MAR methods (thresholding, 3D median filter, virtual sinogram) are applied to CT images; resulting images are compared to each other and to uncorrected images. Virtual patient models are then derived by application of different TAS ranging from TG-186 basic recommendations (mixed adipose and gland tissue at uniform literature-derived density) to detailed schemes (segmented adipose and gland with CT-derived densities). For detailed schemes, alternate mass density segmentation thresholds between adipose and gland are considered. Several literature-derived elemental compositions for adipose, gland and skin are compared. MC models derived from uncorrected CT images can yield large errors in dose calculations especially when used with detailed TAS. Differences in MAR method result in large differences in local doses when variations in CT number cause differences in tissue assignment. Between different MAR models (same TAS), PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} each vary by up to 6%. Basic TAS (mixed adipose/gland tissue) generally yield higher dose metrics than detailed segmented schemes: PTV {{D}90} and skin {{D}1~\\text{c{{\\text{m}}3}}} are higher by up to 13% and 9% respectively. Employing alternate adipose, gland and skin elemental compositions can cause variations in PTV {{D}90} of up to 11% and skin {{D}1~\\text{c{{\\text{m}}3}}} of up to 30%. Overall, AAPM TG-43 overestimates dose to the PTV ({{D}90} on average 10% and up to 27%) and underestimates dose to the skin ({{D}1~\\text{c{{\\text{m}}3}}} on average 29% and up to 48%) compared to the various MC models derived using the post-MAR CT images studied

  14. SU-E-I-22: Dependence On Calibration Phantom and Field Area of the Conversion Factor Used to Calculate Skin Dose During Neuro-Interventional Fluoroscopic Procedures

    SciTech Connect

    Rana, V K; Vijayan, S; Rudin, S R; Bednarek, D R

    2014-06-01

    Purpose: To determine the appropriate calibration factor to use when calculating skin dose with our real-time dose-tracking system (DTS) during neuro-interventional fluoroscopic procedures by evaluating the difference in backscatter from different phantoms and as a function of entrance-skin field area. Methods: We developed a dose-tracking system to calculate and graphically display the cumulative skin-dose distribution in real time. To calibrate the DTS for neuro-interventional procedures, a phantom is needed that closely approximates the scattering properties of the head. We compared the x-ray backscatter from eight phantoms: 20-cm-thick solid water, 16-cm diameter water-filled container, 16-cm CTDI phantom, modified-ANSI head phantom, 20-cm-thick PMMA, Kyoto-Kagaku PBU- 50 head, Phantom-Labs SK-150 head, and RSD RS-240T head. The phantoms were placed on the patient table with the entrance surface at 15 cm tube-side from the isocenter of a Toshiba Infinix C-arm, and the entrance-skin exposure was measured with a calibrated 6-cc PTW ionization chamber. The measurement included primary radiation, backscatter from the phantom and forward scatter from the table and pad. The variation in entrance-skin exposure was also measured as a function of the skin-entrance area for a 30x30 cm by 20-cm-thick PMMA phantom and the SK-150 head phantom using four different added beam filters. Results: The entranceskin exposure values measured for eight different phantoms differed by up to 12%, while the ratio of entrance exposure of all phantoms relative to solid water showed less than 3% variation with kVp. The change in entrance-skin exposure with entrance-skin area was found to differ for the SK-150 head compared to the 20-cm PMMA phantom and the variation with field area was dependent on the added beam filtration. Conclusion: To accurately calculate skin dose for neuro-interventional procedures with the DTS, the phantom for calibration should be carefully chosen since different

  15. Evaluation of two-dimensional bolus effect of immobilization/support devices on skin doses: A radiochromic EBT film dosimetry study in phantom

    SciTech Connect

    Chiu-Tsao, Sou-Tung; Chan, Maria F.

    2010-07-15

    Purpose: In this study, the authors have quantified the two-dimensional (2D) perspective of skin dose increase using EBT film dosimetry in phantom in the presence of patient immobilization devices during conventional and IMRT treatments. Methods: For 6 MV conventional photon field, the authors evaluated and quantified the 2D bolus effect on skin doses for six different common patient immobilization/support devices, including carbon fiber grid with Mylar sheet, Orfit carbon fiber base plate, balsa wood board, Styrofoam, perforated AquaPlast sheet, and alpha-cradle. For 6 and 15 MV IMRT fields, a stack of two film layers positioned above a solid phantom was exposed at the air interface or in the presence of a patient alpha-cradle. All the films were scanned and the pixel values were converted to doses based on an established calibration curve. The authors determined the 2D skin dose distributions, isodose curves, and cross-sectional profiles at the surface layers with or without the immobilization/support device. The authors also generated and compared the dose area histograms (DAHs) and dose area products from the 2D skin dose distributions. Results: In contrast with 20% relative dose [(RD) dose relative to d{sub max} on central axis] at 0.0153 cm in the film layer for 6 MV 10x10 cm{sup 2} open field, the average RDs at the same depth in the film layer were 71%, 69%, 55%, and 57% for Orfit, balsa wood, Styrofoam, and alpha-cradle, respectively. At the same depth, the RDs were 54% under a strut and 26% between neighboring struts of a carbon fiber grid with Mylar sheet, and between 34% and 56% for stretched perforated AquaPlast sheet. In the presence of the alpha-cradle for the 6 MV (15 MV) IMRT fields, the hot spot doses at the effective measurement depths of 0.0153 and 0.0459 cm were 140% and 150% (83% and 89%), respectively, of the isocenter dose. The enhancement factor was defined as the ratio of a given DAH parameter (minimum dose received in a given area) with

  16. Skin zinc concentrations in patients with varicose ulcers

    SciTech Connect

    Ackerman, Z.; Loewenthal, E.; Seidenbaum, M.; Rubinow, A.; Gorodetsky, R. )

    1990-06-01

    The concentration of zinc in the skin has been determined noninvasively in patients with varicose vein ulcers. The examinations were performed with the use of diagnostic x-ray spectrometry, a method based on x-ray fluorescence for in vivo noninvasive evaluation of trace elements. Four skin foci were examined: at the periphery of the ulcer and control areas in a nonulcerated area in the diseased leg, in the noninvolved leg, and in the proximal inner surface of the arm. Zinc levels around the ulcer (mean +/- SD, 9.8 +/- 4.0 micrograms of zinc in 1 g of wet tissue) were higher than those in the nonulcerated skin in the diseased leg (6.9 +/- 3.0 micrograms/g, p greater than 0.05) and those in the noninvolved leg (5.4 +/- 2.0 micrograms/g, p less than 0.01). The concentration of zinc in the inner proximal surface of the arm (9.8 +/- 2.8 micrograms/g) was significantly higher than those of a control group (5.3 +/- 1.9 micrograms/g, p less than 0.01). These results suggest a defect of zinc distribution in patients with varicose vein ulcers.

  17. Risk of skin cancer in patients with diabetes mellitus

    PubMed Central

    Tseng, Hui-Wen; Shiue, Yow-Ling; Tsai, Kuo-Wang; Huang, Wei-Chun; Tang, Pei-Ling; Lam, Hing-Chung

    2016-01-01

    Abstract Increasing evidence suggests that certain types of cancers are more common in people with diabetes mellitus (DM). This study aimed to investigate the risk of skin cancer in patients with DM in Taiwan. In this retrospective cohort study using data from the Taiwan Longitudinal Health Insurance Research Database, the risk of developing overall skin cancer, including nonmelanoma skin cancer (NMSC) and melanoma, was compared by Poisson regression analysis and Cox regression analysis between the DM and non-DM cohorts. The DM cohort with newly diagnosed DM (n = 41,898) and a non-DM cohort were one-to-one matched by age, sex, index date, and comorbidities (coronary artery disease, hyperlipidemia, hypertension, chronic kidney disease, chronic obstructive pulmonary disease, and obesity). Compared with non-DM cohort statistically, for the people with DM aged ≥60 years, the incidence rates of overall skin cancer and NMSC were significantly higher (overall: DM/non-DM: number [n] = 99/76, incidence rate ratio [IRR] = 1.44, P = 0.02; NMSC: DM/non-DM: n = 94/66, IRR = 1.57, P = 0.005). By Cox regression analysis, the risk of developing overall skin cancer or NMSC was significantly higher after adjusting for sex, comorbidities, and overall diseases with immunosuppression status (overall: adjusted hazard ratio [AHR] = 1.46, P = 0.01; NMSC: AHR = 1.6, P = 0.003). Other significant risk factors were older males for skin cancer (overall: AHR = 1.68, P = 0.001; NMSC: AHR = 1.59, P = 0.004; melanoma: AHR = 3.25, P = 0.04), chronic obstructive pulmonary disease for NMSC (AHR = 1.44, P = 0.04), and coronary artery disease for melanoma (AHR = 4.22, P = 0.01). The risk of developing melanoma was lower in the DM cohort than in the non-DM cohort, but without significance (AHR = 0.56, P = 0.28; DM/non-DM: n = 5/10). The incidence rate and risk of developing overall skin cancer, including NMSC, was significantly higher in older adults with DM. Other significant risk factors for older

  18. Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin

    PubMed Central

    Artibani, Mara; Kobos, Katarzyna; Colautti, Paolo; Negri, Rodolfo; Amendola, Roberto

    2011-01-01

    Background Tissue response to irradiation is not easily recapitulated by cell culture studies. The objective of this investigation was to characterize, the transcriptional response and the onset of regenerative processes in mouse skin irradiated with different doses of fast neutrons. Methodology/Principal Findings To monitor general response to irradiation and individual animal to animal variation, we performed gene and protein expression analysis with both pooled and individual mouse samples. A high-throughput gene expression analysis, by DNA oligonucleotide microarray was done with three months old C57Bl/6 mice irradiated with 0.2 and 1 Gy of mono-energetic 14 MeV neutron compared to sham irradiated controls. The results on 440 irradiation modulated genes, partially validated by quantitative real time RT-PCR, showed a dose-dependent up-regulation of a sub-class of keratin and keratin associated proteins, and members of the S100 family of Ca2+-binding proteins. Immunohistochemistry confirmed mRNA expression data enabled mapping of protein expression. Interestingly, proteins up-regulated in thickening epidermis: keratin 6 and S100A8 showed the most significant up-regulation and the least mouse-to-mouse variation following 0.2 Gy irradiation, in a concerted effort toward skin tissue regeneration. Conversely, mice irradiated at 1 Gy showed most evidence of apoptosis (Caspase-3 and TUNEL staining) and most 8-oxo-G accumulation at 24 h post-irradiation. Moreover, no cell proliferation accompanied 1 Gy exposure as shown by Ki67 immunohistochemistry. Conclusions/Significance The dose-dependent differential gene expression at the tissue level following in vivo exposure to neutron radiation is reminiscent of the onset of re-epithelialization and wound healing and depends on the proportion of cells carrying multiple chromosomal lesions in the entire tissue. Thus, this study presents in vivo evidence of a skin regenerative program exerted independently from DNA repair

  19. Metabolomic Response of Human Skin Tissue to Low Dose Ionizing Radiation

    SciTech Connect

    Hu, Zeping; Kim, Young-Mo; Sowa, Marianne B.; Robinson, Robert J.; Gao, Xiaoli; Metz, Thomas O.; Morgan, William F.; Zhang, Qibin

    2012-05-18

    Understanding how human organs respond to ionizing radiation (IR) at a systems biology level and identifying biomarkers for IR exposure at low doses can help provide a scientific basis for establishing radiation protection standards. Little is known regarding the physiological responses to low dose IR at the metabolite level, which represents the end-point of biochemical processes inside cells. Using a full thickness human skin tissue model and GC-MS-based metabolomics analysis, we examined the metabolic perturbations at three time points (3, 24 and 48 hr) after exposure to 3, 10 and 200 cGy of X-rays. PLS-DA score plots revealed dose- and time-dependent clustering between sham and irradiated groups. Importantly, a comparable number of metabolites were detected to have significant change 48 hr after exposure to 3 and 10 cGy of irradiation, when compared with the high dose of 200 cGy. Biochemical pathway analysis showed perturbations to DNA/RNA damage and repair, lipid and energy metabolisms, even at low doses of IR.

  20. Skin prick testing in patients using beta-blockers: a retrospective analysis

    PubMed Central

    2010-01-01

    Rationale The use of beta-blockers is a relative contraindication in allergen skin testing yet there is a paucity of literature on adverse events in this circumstance. We examined a population of skin tested patients on beta-blockers to look for any adverse effects. Methods Charts from 2004-2008 in a single allergy clinic were reviewed for any patients taking a beta-blocker when skin tested. Data was examined for skin test reactivity, type of skin test, concomitant asthma diagnosis, allergens tested, and adverse events. Results One hundred and ninety-one patients were taking beta-blockers when skin testing occurred. Seventy-two patients had positive skin tests. No tests resulted in an adverse event. Conclusions This data demonstrates the relative safety of administrating of skin prick tests to patients on beta-blocker treatment. Larger prospective studies are needed to substantiate the findings of this study. PMID:20298514

  1. Impaired skin vasomotor reflexes in patients with erythromelalgia.

    PubMed

    Littleford, R C; Khan, F; Belch, J J

    1999-05-01

    Erythromelalgia (EM) is a chronic disorder characterized by intermittent burning pain, warmth and erythema of the extremities. Increasing the local temperature and dependency of the affected limb(s) precipitates the symptoms, whereas direct cooling and elevation of the limb(s) can provide partial relief. Our previous findings showed that patients with EM have enhanced cutaneous vascular tone at rest and during stimulation, which may be due to an increase in sympathetic neural activity. To test this, we measured skin vasoconstrictor responses to contralateral arm cold challenge (CC) and inspiratory gasp (IG) using laser Doppler flowmetry at the toe pulp and fingertip. These areas were chosen because of their dense sympathetic innervation. An index of the vasoconstrictor response (between 0 and 1) was calculated from the change in skin perfusion from baseline following CC and IG. In control subjects, vasoconstrictor responses to CC at the toe and fingertip were both 0. 70+/-0.02 (mean+/-S.E.M.), which were significantly greater (P<0. 001) than corresponding values in patients with EM (0.37+/-0.04 and 0.45+/-0.04 respectively). Similarly, vasoconstrictor responses to IG were significantly greater (P<0.001) at the toe and fingertip in control subjects (0.70+/-0.03 and 0.70+/-0.02 respectively) compared with values in EM patients (0.27+/-0.03 and 0.45+/-0.15 respectively). These data show that, in contrast with control subjects, patients with EM have diminished sympathetic vasoconstrictor responses to both CC and IG. Denervation supersensitivity may play a part by increasing vasoconstrictor responses to circulating catecholamines, leading to a reduction in skin blood flow. Therefore an interplay between neural and vasoactive agents may be involved in the pathophysiology of EM. PMID:10209083

  2. Estimation of beta-ray skin dose from exposure to fission fallout from the Hiroshima atomic bomb.

    PubMed

    Endo, Satoru; Tanaka, Kenichi; Shizuma, Kiyoshi; Hoshi, Masaharu; Imanaka, Tetsuji

    2012-03-01

    Beta-ray skin dose due to the fission fallout from the Hiroshima atomic bomb is potentially related to the epilation in the black rain area. The absorbed dose to the skin from beta-rays emitted by fission fallout has been estimated for an initial ¹³⁷Cs deposition of 1 kBq m⁻² on the ground at 0.5 h after the explosion. The estimated skin dose takes into account both external exposure from fission fallout radionuclides uniformly distributed in 1 mm of soil on the surface of the ground and from a 26 μm thickness of contaminated soil on the skin, using the Monte Carlo radiation transport code MCNP-4C. The cumulative skin dose for 1 month after the explosion is taken as the representative value. The estimated skin dose for an initial ¹³⁷Cs deposition of 1 kBq m⁻² was determined to be about 500 mSv. PMID:22042969

  3. Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic

    PubMed Central

    Tseng, Wen-Ping

    1977-01-01

    In a limited area on the southwest coast of Taiwan, where artesian well water with a high concentration of arsenic has been used for more than 60 years, a high prevalence of chronic arsenicism has been observed in recent years. The total population of this “endemic” area is approximately 100,000. A general survey of 40,421 inhabitants and follow-up of 1,108 patients with blackfoot disease were made. Blackfoot disease, so-termed locally, is a peripheral vascular disorder resulting in gangrene of the extremities, especially the feet. The overall prevalence rates for skin cancer was 10.6 per 1000, and for blackfoot disease 8.9 per 1000. Generally speaking, the prevalence increased steadily with age in both diseases. The prevalence rates for skin cancer and blackfoot disease increased with the arsenic content of well water, i.e., the higher the arsenic content, the more patients with skin cancer and blackfoot disease. A dose–response relationship between blackfoot disease and the duration of water intake was also noted. Furthermore, the degree of permanent impairment of function in the patient was directly related to duration of intake of arsenical water and to duration of such intake at the time of onset. The most common cause of death in the patients with skin cancer and blackfoot disease was carcinoma of various sites. The 5-year survival rate after the onset of blackfoot disease was 76.3%; the 10-year survival rate was 63.3% and 15-year survival rate, 52.2%. The 50% survival point was 16 years after onset of the disease. ImagesFIGURE 1.FIGURE 2. PMID:908285

  4. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    SciTech Connect

    Walters, Jerri; Ryan, Stewart; Harmon, Joseph F.

    2012-07-01

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of this study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data

  5. Patient dose measurements in diagnostic radiology procedures in Korea.

    PubMed

    Kim, You-hyun; Choi, Jong-hak; Kim, Chang-kyun; Kim, Jung-min; Kim, Sung-soo; Oh, Yu-whan; Lee, Chang-yeap; Kang, Dae-hyun; Lee, Young-bae; Cho, Pyong-kon; Kim, Hyung-chul; Kim, Chel-min

    2007-01-01

    This study is the first nationwide investigation aimed at estimating the patient dose for radiographic examinations in Korea including gastrointestinal studies, computed tomography and mammography. The survey data from 161 hospitals and the dose data from 32 hospitals were analysed. The third quartile entrance surface dose, dose area product (DAP), weighted CT dose index (CTDIw) and mean glandular dose (MGD) were reported. All the estimated doses were less than the stated International Atomic Energy Agency (IAEA) reference levels for radiographic examinations. However, DAPs for the fluoroscopic examinations had higher dose values than the IAEA reference levels. In addition, the CTDIw and MGD were lower than the IAEA reference levels. PMID:17223642

  6. Skin nodules in a patient with acute lymphoblastic leukaemia

    PubMed Central

    Le Clech, Lenaïg; Hutin, Pascal; Le Gal, Solène; Guillerm, Gaëlle

    2014-01-01

    Opportunistic infections cause a significant morbidity and mortality in immunocompromised patients. We describe the case of a patient with skin fusariosis and a probable cerebral toxoplasmosis after UCB stem cell transplantation for B-cell acute lymphoblastic leukaemia. Fusarium species (spp) infections are difficult to treat. To date, there has been no consensus on the treatment of fusariosis and the management of its side effects. Given the negative pretransplant Toxoplasma serology in this case, identifying the origin of the Toxoplasma infection was challenging. All usual transmission routes were screened for and ruled out. The patient's positive outcome was not consistent with that of the literature reporting 60% mortality due to each infection. PMID:24408938

  7. Skin wound trauma, following high-dose radiation exposure, amplifies and prolongs skeletal tissue loss.

    PubMed

    Swift, Joshua M; Swift, Sibyl N; Smith, Joan T; Kiang, Juliann G; Allen, Matthew R

    2015-12-01

    The present study investigated the detrimental effects of non-lethal, high-dose (whole body) γ-irradiation on bone, and the impact that radiation combined with skin trauma (i.e. combined injury) has on long-term skeletal tissue health. Recovery of bone after an acute dose of radiation (RI; 8 Gy), skin wounding (15-20% of total body skin surface), or combined injury (RI+Wound; CI) was determined 3, 7, 30, and 120 days post-irradiation in female B6D2F1 mice and compared to non-irradiated mice (SHAM) at each time-point. CI mice demonstrated long-term (day 120) elevations in serum TRAP 5b (osteoclast number) and sclerostin (bone formation inhibitor), and suppression of osteocalcin levels through 30 days as compared to SHAM (p<0.05). Radiation-induced reductions in distal femur trabecular bone volume fraction and trabecular number through 120 days post-exposure were significantly greater than non-irradiated mice (p<0.05) and were exacerbated in CI mice by day 30 (p<0.05). Negative alterations in trabecular bone microarchitecture were coupled with extended reductions in cancellous bone formation rate in both RI and CI mice as compared to Sham (p<0.05). Increased osteoclast surface in CI animals was observed for 3 days after irradiation and remained elevated through 120 days (p<0.01). These results demonstrate a long-term, exacerbated response of bone to radiation when coupled with non-lethal wound trauma. Changes in cancellous bone after combined trauma were derived from extended reductions in osteoblast-driven bone formation and increases in osteoclast activity. PMID:26335157

  8. Photosensitivity of murine skin greatly depends on the genetic background: clinically relevant dose as a new measure to replace minimal erythema dose in mouse studies.

    PubMed

    Gyöngyösi, Nóra; Lőrincz, Kende; Keszeg, András; Haluszka, Dóra; Bánvölgyi, András; Tátrai, Erika; Kárpáti, Sarolta; Wikonkál, Norbert M

    2016-07-01

    Artificial UV irradiation of murine skin is a frequently used method for testing photosensitivity, study carcinogenesis and photoprotective effects of different compounds. However, doses of UV radiation and mouse strains used in experiments vary greatly. The genetic background of mice may influence the photosensitivity as melanin content, pigmentation and hair cycle parameters are dissimilar. Doses of UV are often expressed in relation to the minimal erythema dose (MED) that was not necessarily determined for the given strain. We set out to standardize the method of measuring photosensitivity in three commonly used mouse strains, C57BL/6N, Balb/c and SKH-1. We found that MED may not be determined for some strains as erythema development in mice with diverse genotypes differs greatly. We measured the oedema response in vivo and ex vivo by using OCT. Given the strain-specific variability of erythema, we introduced Clinically Relevant Dose (CRD) as a new term to replace MED in experiments, to describe the lowest dose that triggers a perceptible skin reaction in mice. Not only the CRD but the proportion of erythema and oedema were different in strains examined. C57BL/6N mice display skin reactions at the lowest UVB dose, while SKH-1 hairless mice show changes, mostly oedema, after higher doses of UVB. The cellular composition and skin thickness were examined by histopathology. IL-1beta and IL-6 levels in skin correlated with the increasing doses of UVB. Despite the variations in the degree of erythema and oedema, no major differences in cytokine expressions were seen among various strains of mice. PMID:26910301

  9. Wrinkled skin and fat pads in patients with ALG8-CDG: revisiting skin manifestations in congenital disorders of glycosylation.

    PubMed

    Kouwenberg, Dorus; Gardeitchik, Thatjana; Mohamed, Miski; Lefeber, Dirk J; Morava, Eva

    2014-01-01

    Glycosylation is the posttranslational coupling of sugar chains to proteins or lipids. Proper glycosylation is essential for normal protein structure, function, and trafficking. Mutations in the glycosylation pathway lead to a phenotypically heterogeneous group of metabolic disorders, the congenital disorders of glycosylation (CDG). Some of these conditions, including PMM2-CDG, frequently present with recognizable skin abnormalities such as abnormal fat distribution, skin wrinkling, or peau d'orange, whereas others, such as COG7-CDG and ATP6V0A2-CDG, have been described in association with cutis laxa: wrinkled, inelastic, and sagging skin. Ichthyosis is also common in several types of CDG. ALG8-CDG is a severe disorder characterized by dysmorphic features, failure to thrive, protein-losing enteropathy, neurologic and ophthalmologic problems, and developmental delay. We reviewed the clinical features in all nine previously reported patients diagnosed with ALG8-CDG with a special focus on their skin signs. Three of the nine patients had abnormal fat distribution and skin wrinkling. As the spectrum of CDG presenting with skin signs expands further, we suggest screening for CDG in all patients presenting with any type of central nervous involvement and wrinkled skin, cutis laxa, severe ichthyosis, or abnormal fat distribution. PMID:24555185

  10. Estimation of doses received by patients undergoing radiological examinations in Greece.

    PubMed

    Papageorgiou, E; Vardalaki, E; Hourdakis, C J; Dimitriou, P

    2001-01-01

    This study deals with the estimation of doses received by patients undergoing radiological examinations in order to establish diagnostic reference levels (DRLs) within the process of optimisation of patients' exposure in Greece. Six large hospitals in Athens were selected and 385 patients made up the sample. The entrance surface doses (ESDs) to patients undertaking five common X ray examinations (chest, cervical spine, lumbar spine AP and LAT, pelvis) were estimated using both thermoluminescence dosemeters (TLDs) attached to the patient's skin and an ionisation chamber for air kerma measurements. Exposure settings and patient's data were recorded. Results concerning the kilovoltage and focus-to-film-distance (FFD) settings and the ESD values were analysed and compared to those recommended by the EU. Discrepancies in the patient doses and techniques used for the examinations studied were found among the different hospitals denoting the importance of establishing a national quality assurance programme and examination protocols to ensure patient doses are kept as low as possible. All the examinations studied fulfilled the EU recommendations except that for the chest where the doses were considerably higher due to the use of low kVP settings. PMID:11548324

  11. Simulated solar light-induced p53 mutagenesis in SKH-1 mouse skin: a dose-response assessment.

    PubMed

    Verkler, Tracie L; Delongchamp, Robert R; Miller, Barbara J; Webb, Peggy J; Howard, Paul C; Parsons, Barbara L

    2008-08-01

    Sunlight and ultraviolet-induced mutation of the p53 gene is a frequent, possibly obligate step in skin cancer development, making quantitative measurement of p53 mutation an ideal biomarker for sunlight-induced skin carcinogenesis. To understand how the appearance of p53 mutation relates to skin tumor development, SKH-1 hairless mice were exposed 5 d per week to one of four different doses of simulated solar light (SSL; 0, 6.85, 13.70, 20.55 mJ x CIE/cm(2)) previously characterized for their tumorigenic potential. Allele-specific competitive blocker-PCR (ACB-PCR) was used to measure levels of p53 codon 270 CGT to TGT mutation within DNA isolated from dorsal skin of exposed mice. For each dose, p53 mutant fraction (MF) was measured after 4, 16, and 28 wk of exposure. Significant dose- and time-dependent increases in p53 MF were identified. All p53 MF measurements were integrated by relating the observed p53 MF to the cumulative dose of SSL. The increase in the logarithm of p53 MF was described by the linear function: log(10) MF = alpha + 0.0016 x d, where alpha is the spontaneous log(10) MF after a particular time point and d is the dose of SSL in mJ x CIE/cm(2). The p53 MF induced in nontumor bearing skin by 28 wk of exposure at the high dose of SSL was significantly lower than that found in skin tumors induced by approximately 32 wk of exposure to the same dose of SSL. p53 MF showed a strong negative correlation with tumor latency, suggesting this quantitative biomarker has the potential to predict tumorigenicity. PMID:18314877

  12. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model.

    PubMed

    von Neubeck, Claere; Geniza, Matthew J; Kauer, Paula M; Robinson, R Joe; Chrisler, William B; Sowa, Marianne B

    2015-05-01

    Outside the protection of Earth's atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin's barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts. PMID:25839759

  13. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  14. Warfarin skin necrosis mimicking calciphylaxis in a patient with secondary hyperparathyroidism undergoing peritoneal dialysis.

    PubMed

    Park, Jee Eun; Byeon, Seonggyu; Kim, Hee Kyung; Moon, Seong Mi; Moon, Ji Hoon; Jang, Kee-Taek; Lee, Byung-Jae; Jang, Hye Ryoun; Huh, Wooseong; Kim, Dae Joong; Kim, Yoon-Goo; Oh, Ha Young; Lee, Jung Eun

    2016-03-01

    Warfarin skin necrosis (WSN) is an infrequent complication of warfarin treatment and is characterized by painful ulcerative skin lesions that appear a few days after the start of warfarin treatment. Calciphylaxis also appears as painful skin lesions caused by tissue injury resulting from localized ischemia caused by calcification of small- to medium-sized vessels in patients with end-stage renal disease. We report on a patient who presented with painful skin ulcers on the lower extremities after the administration of warfarin after a valve operation. Calciphylaxis was considered first because of the host factors; eventually, the skin lesions were diagnosed as WSN by biopsy. The skin lesions improved after warfarin discontinuation and short-term steroid therapy. Most patients with end-stage renal disease have some form of cardiovascular disease and some require temporary or continual warfarin treatment. It is important to differentiate between WSN and calciphylaxis in patients with painful skin lesions. PMID:27069859

  15. Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: a dose-response study.

    PubMed Central

    Burns, Fredric J; Uddin, Ahmed N; Wu, Feng; Nádas, Arthur; Rossman, Toby G

    2004-01-01

    The present study was designed to establish the form of the dose-response relationship for dietary sodium arsenite as a co-carcinogen with ultraviolet radiation (UVR) in a mouse skin model. Hairless mice (strain Skh1) were fed sodium arsenite continuously in drinking water starting at 21 days of age at concentrations of 0.0, 1.25, 2.5, 5.0, and 10 mg/L. At 42 days of age, solar spectrum UVR exposures were applied three times weekly to the dorsal skin at 1.0 kJ/m2 per exposure until the experiment ended at 182 days. Untreated mice and mice fed only arsenite developed no tumors. In the remaining groups a total of 322 locally invasive squamous carcinomas occurred. The carcinoma yield in mice exposed only to UVR was 2.4 +/- 0.5 cancers/mouse at 182 days. Dietary arsenite markedly enhanced the UVR-induced cancer yield in a pattern consistent with linearity up to a peak of 11.1 +/- 1.0 cancers/mouse at 5.0 mg/L arsenite, representing a peak enhancement ratio of 4.63 +/- 1.05. A decline occurred to 6.8 +/- 0.8 cancers/mouse at 10.0 mg/L arsenite. New cancer rates exhibited a consistent-with-linear dependence on time beginning after initial cancer-free intervals ranging between 88 and 95 days. Epidermal hyperplasia was elevated by arsenite alone and UVR alone and was greater than additive for the combined exposures as were growth rates of the cancers. These results demonstrate the usefulness of a new animal model for studying the carcinogenic action of dietary arsenite on skin exposed to UVR and should contribute to understanding how to make use of animal data for assessment of human cancer risks in tissues exposed to mixtures of carcinogens and cancer-enhancing agents. PMID:15064167

  16. Development and Comparison of Warfarin Dosing Algorithms in Stroke Patients

    PubMed Central

    Cho, Sun-Mi; Lee, Kyung-Yul; Choi, Jong Rak

    2016-01-01

    Purpose The genes for cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) have been identified as important genetic determinants of warfarin dosing and have been studied. We developed warfarin algorithm for Korean patients with stroke and compared the accuracy of warfarin dose prediction algorithms based on the pharmacogenetics. Materials and Methods A total of 101 patients on stable maintenance dose of warfarin were enrolled. Warfarin dosing algorithm was developed using multiple linear regression analysis. The performance of all the algorithms was characterized with coefficient of determination, determined by linear regression, and the mean of percent deviation was used to predict doses from the actual dose. In addition, we compared the performance of the algorithms using percentage of predicted dose falling within ±20% of clinically observed doses and dividing the patients into a low-dose group (≤3 mg/day), an intermediate-dose group (3–7 mg/day), and high-dose group (≥7 mg/day). Results A new developed algorithms including the variables of age, body weight, and CYP2C9 and VKORC1 genotype. Our algorithm accounted for 51% of variation in the warfarin stable dose, and performed best in predicting dose within 20% of actual dose and intermediate-dose group. Conclusion Our warfarin dosing algorithm may be useful for Korean patients with stroke. Further studies to elucidate clinical utility of genotype-guided dosing and find the additional genetic association are necessary. PMID:26996562

  17. Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.; Keall, P. J.

    2012-02-15

    Purpose: In recent times, longitudinal field MRI-linac systems have been proposed for 6 MV MRI-guided radiotherapy (MRIgRT). The magnetic field is parallel with the beam axis and so will alter the transport properties of any electron contamination particles. The purpose of this work is to provide a first investigation into the potential effects of the MR and fringe magnetic fields on the electron contamination as it is transported toward a phantom, in turn, providing an estimate of the expected patient skin dose changes in such a modality. Methods: Geant4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam were performed. Longitudinal magnetic fields of strengths between 0 and 3 T were applied to a 30 x 30 x 20 cm{sup 3} phantom. Surrounding the phantom there is a region where the magnetic field is at full MRI strength, consistent with clinical MRI systems. Beyond this the fringe magnetic field entering the collimation system is also modeled. The MRI-coil thickness, fringe field properties, and isocentric distance are varied and investigated. Beam field sizes of 5 x 5, 10 x 10, 15 x 15 and 20 x 20 cm{sup 2} were simulated. Central axis dose, 2D virtual entry skin dose films, and 70 {mu}m skin depth doses were calculated using high resolution scoring voxels. Results: In the presence of a longitudinal magnetic field, electron contamination from the linear accelerator is encouraged to travel almost directly toward the patient surface with minimal lateral spread. This results in a concentration of electron contamination within the x-ray beam outline. This concentration is particularly encouraged if the fringe field encompasses the collimation system. Skin dose increases of up to 1000% were observed for certain configurations and increases above Dmax were common. In nonmagnetically shielded cases, electron contamination generated from the jaw faces and air column is trapped and propagated almost directly to the phantom entry region, giving rise to

  18. [Reasons of non-radical surgery for patients with primary skin melanoma].

    PubMed

    Gerasimova, A A; Gafmon, G I; Anisimov, V V; Semiletova, Iu V

    2014-01-01

    It was found that up to now a significant number of patients with primary skin melanoma continued to have non-radical surgery. Based on the analysis of clinical and morphological data on 288 of these patients it was revealed that most non-radical treatment was performed for patients who had had primary skin melanoma of linear dimensions of 1 cm and a pink color. It was proved that patients with tumors of the skin should first be examined by the oncologist. A lack of knowledge of semiotics of primary skin melanoma was revealed among doctors. Widely used diagnostic biopsy of the primary tumor with subsequent cytology is recommended. PMID:24919268

  19. Sensitivity and specificity of dosing alerts for dosing errors among hospitalized pediatric patients

    PubMed Central

    Stultz, Jeremy S; Porter, Kyle; Nahata, Milap C

    2014-01-01

    Objectives To determine the sensitivity and specificity of a dosing alert system for dosing errors and to compare the sensitivity of a proprietary system with and without institutional customization at a pediatric hospital. Methods A retrospective analysis of medication orders, orders causing dosing alerts, reported adverse drug events, and dosing errors during July, 2011 was conducted. Dosing errors with and without alerts were identified and the sensitivity of the system with and without customization was compared. Results There were 47 181 inpatient pediatric orders during the studied period; 257 dosing errors were identified (0.54%). The sensitivity of the system for identifying dosing errors was 54.1% (95% CI 47.8% to 60.3%) if customization had not occurred and increased to 60.3% (CI 54.0% to 66.3%) with customization (p=0.02). The sensitivity of the system for underdoses was 49.6% without customization and 60.3% with customization (p=0.01). Specificity of the customized system for dosing errors was 96.2% (CI 96.0% to 96.3%) with a positive predictive value of 8.0% (CI 6.8% to 9.3). All dosing errors had an alert over-ridden by the prescriber and 40.6% of dosing errors with alerts were administered to the patient. The lack of indication-specific dose ranges was the most common reason why an alert did not occur for a dosing error. Discussion Advances in dosing alert systems should aim to improve the sensitivity and positive predictive value of the system for dosing errors. Conclusions The dosing alert system had a low sensitivity and positive predictive value for dosing errors, but might have prevented dosing errors from reaching patients. Customization increased the sensitivity of the system for dosing errors. PMID:24496386

  20. Skin Autofluorescence and Mortality in Patients on Peritoneal Dialysis

    PubMed Central

    Mácsai, Emília; Benke, Attila; Kiss, István

    2015-01-01

    Abstract Skin autofluorescence (SAF) is a proven prognostic factor of mortality in hemodialysis patients. Traditional and nontraditional risk factors are almost equivalent in peritoneal dialysis (PD), and cardiovascular disease (CVD) is the leading cause of death. Moreover, peritoneal glucose absorption accelerates the degenerative processes of connective tissues as in diabetes. In our study, we examined the predictive value of SAF for total mortality in the PD population. Data were collected from 198 prevalently adult Caucasian PD patients. One hundred twenty-six patients (mean age 66.2 y, men [n = 73], diabetes ratio 75/126) had anamnestic CVD (coronary heart disease, cerebrovascular disease, peripheral arterial disease). Initially, we evaluated factors affecting SAF and CVD by multivariate linear regression. Survival rates were estimated by recording clinical and demographic data associated with mortality during a 36-month follow-up using the Kaplan–Meier method. Analyses were further stratified based on the presence or absence of CVD and SAF levels above or below the upper tercile 3.61 arbitrary units. Skin autofluorescence was influenced by CVD (P < 0.01, 95% confidence interval [CI] 0.1–0.5) and white blood cell counts (P < 0.001, 95% CI 0.031–0.117). According to the Spearman correlation, SAF correlated with peritoneal cumulative glucose exposure (P = 0.02) and elapsed time in PD (P = 0.008). CVD correlated with age (P < 0.001, 95% CI 1.24–1.65) and diabetes (P < 0.001, 95% CI 2.58–10.66). More deaths were observed in the high SAF group than in the low SAF group (34/68 vs 44/130; P = 0.04). Comparing the CVD(−) low SAF group survival (mean 33.9 mos, standard error [SE] 1.39) to CVD(+) low SAF (mean 30.5 mos, SE 1.37, P = 0.03) and to CVD(+) high SAF group (mean 27.1 mos, SE 1.83, P = 0.001), the difference was significant. In conclusion, among PD patients, SAF values over 3.61 arbitrary units seem to be a

  1. Poster — Thur Eve — 10: Partial kV CBCT, complete kV CBCT and EPID in breast treatment: a dose comparison study for skin, breasts, heart and lungs

    SciTech Connect

    Roussin, E; Archambault, L K; Wierzbicki, W

    2014-08-15

    The advantages of kilovoltage cone beam CT (kV CBCT) imaging over electronic portal imaging device (EPID) such as accurate 3D anatomy, soft tissue visualization, fast rigid registration and enhanced precision on patient positioning has lead to its increasing use in clinics. The benefits of this imaging technique are at the cost of increasing the dose to healthy surrounding organs. Our center has moved toward the use of daily partial rotation kV CBCT to restrict the dose to healthy tissues. This study aims to better quantify radiation doses from different image-guidance techniques such as tangential EPID, complete and partial kV CBCT for breast treatments. Cross-calibrated ionization chambers and kV calibrated Gafchromic films were used to measure the dose to the heart, lungs, breasts and skin. It was found that performing partial kV CBCT decreases the heart dose by about 36%, the lungs dose by 31%, the contralateral breast dose by 41% and the ipsilateral breast dose by 43% when compared to a full rotation CBCT. The skin dose measured for a full rotation CBCT was about 0.8 cGy for the contralateral breast and about 0.3 cGy for the ipsilateral breast. The study is still ongoing and results on skin doses for partial rotation kV CBCT as well as for tangential EPID images are upcoming.

  2. Skin uptake, distribution, and elimination of antimony following administration of sodium stibogluconate to patients with cutaneous leishmaniasis.

    PubMed Central

    al Jaser, M; el-Yazigi, A; Kojan, M; Croft, S L

    1995-01-01

    We examined in this study the pharmacokinetics of Sb in the affected skin and normal skin of patients treated with sodium stibogluconate for cutaneous leishmaniasis and compared the results with those for the blood. The procedure was fully explained, and a written consent was obtained from each of nine patients. After a dose of sodium stibogluconate equivalent to 600 mg of Sb was administered intramuscularly, small skin biopsies were collected under local anesthesia at different time intervals from the circumferences of the lesions and simultaneously from normal skin. Antimony was measured in these biopsies after suitable ashing and processing by flameless atomic absorption spectrophotometry. The means (with standard errors of the means in parentheses) of the peak concentration, time to peak concentration, area under the curve, half-life, and mean residence time in lesions were 5.02 (1.43) micrograms/g, 2.1 (0.4) h, 32.8 (6.1) micrograms.h/g, 6.88 (0.54) h, and 10.4 (1.2) h, respectively, and those in normal skin were 6.56 (2.01) micrograms/g, 2.6 (0.8) h, 44.0 (15.8) micrograms.h/g, 5.44 (0.83) h, and 8.08 (1.34) h, respectively. There was no significant difference in any of these parameters between lesions and normal skin, whereas the differences in peak concentration, half-life, and mean residence time between lesions and whole blood were significant (P < or = 0.05). The penetration of Sb into skin, either affected or normal, as measured by the skin/blood area under the curve ratio appears to be complete, but the disposition is slow compared with that from the blood. PMID:7726524

  3. Patient and operator dose during fluoroscopic examination of swallow mechanism.

    PubMed

    Crawley, M T; Savage, P; Oakley, F

    2004-08-01

    Dose-area product (DAP) measurements were made for 21 patients undergoing a modified barium swallow. The procedures were performed by a radiologist and speech and language therapist, to characterize swallowing disorders in patients with head or spinal injury, stroke, other neurological conditions or simple globus symptoms, in order to inform feeding strategies. The DAP values were used to estimate effective dose to the patient, in order to provide a measure of the radiation risk associated with the procedure. Whole body doses to operators, together with equivalent doses to extremities and eyes were also measured to inform the employer's risk assessment. Median DAP for the series was 3.5 (3.1-5.2) Gycm(2) with a corresponding effective dose to the patient of 0.85 (0.76-1.3) mSv, and a low associated risk, mainly of cancer induction, of about 1 in 16 000. The organ receiving the greatest dose was the thyroid, with a calculated median equivalent dose of 13.9 (12.3-20.7) mSv. Median screening time was 3.7 (2.5-4.3) min. Mean operator doses were 0.5 mSv equivalent dose (eyes), 0.9 mSv (extremities), and less than 0.3 mSv whole body dose. Extrapolating for an annual workload of 50 patients per year, this work will lead to annual operator doses of less than 0.6 mSv whole body dose, and approximately 1 mSv equivalent dose (eyes) and 1.8 mSv (extremities), against corresponding legal dose limits of 20 mSv, 150 mSv and 500 mSv, respectively. PMID:15326042

  4. Patient-specific dose estimation for pediatric chest CT

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for

  5. Comparison of Medical Adhesive Tapes in Patients at Risk of Facial Skin Trauma under Anesthesia

    PubMed Central

    Lie, Sui An; Chong, Shin Yuet

    2016-01-01

    Introduction. Adhesive tapes are used for taping eyelids closed and securing endotracheal tubes during general anesthesia. These tapes can cause facial skin injury. We compared the incidence of facial skin injury and patient satisfaction with different tapes used. Methods. A total of 60 adult patients at risk of skin trauma were randomized to use 3M™ Kind Removal Silicone Tape or standard acrylate tapes: 3M Durapore (endotracheal tube) and Medipore (eyelids). Patients were blinded to tape used. Postoperatively, a blinded recovery nurse assessed erythema, edema, and denudation of skin. Anesthesiologist in charge also assessed skin injury. On postoperative day 1, patients rated satisfaction with the condition of their skin over the eyelids and face on a 5-point Likert scale. Results. More patients had denudation of skin with standard tapes, 4 (13.3%) versus 0 with silicone tape (p = 0.026) and in anesthesiologist-evaluated skin injury 11 (37%) with standard versus 1 (3%) with silicone (p = 0.002). No significant differences were found in erythema and edema. Patient satisfaction score was higher with silicone tape: over eyelids: mean 3.83 (standard) versus 4.53 (silicone), Mann-Whitney U test, p < 0.001; over face: mean 3.87 (standard) versus 4.57 (silicone) (p < 0.001). Conclusion. Silicone tape use had less skin injury and greater patient satisfaction than standard acrylate tapes. PMID:27382368

  6. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    SciTech Connect

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.; Robinson, Joseph E.; Chrisler, William B.; Sowa, Marianne B.

    2015-05-01

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  7. Effect of Photofrin on skin reflection of basal cell nevus syndrome patients

    NASA Astrophysics Data System (ADS)

    Grossweiner, Leonard I.; Jones, Linda R.; Koehler, Irmgard K.; Bilgin, Mehmet D.

    1996-04-01

    Skin reflection spectra were measured before and 24 hours after administration of Photofrin (Reg. TM) to basal cell nevus syndrome (BCNS) patients. The drug reduced the reflectivity of uninvolved BCNS skin and increased the reflectivity of basal cell cancers. Photofrin (Reg. TM) absorption in normal rat skin and uninvolved BCNS skin was resolved by the diffusion approximation. Optical constants calculated with a two-layer skin model indicate that the drug increased light scattering in tumor tissues. The possible use of reflection spectra for PDT light dosimetry is discussed.

  8. Patient release criteria for low dose rate brachytherapy implants.

    PubMed

    Boyce, Dale E; Sheetz, Michael A

    2013-04-01

    A lack of consensus regarding a model governing the release of patients following sealed source brachytherapy has led to a set of patient release policies that vary from institution to institution. The U.S. Nuclear Regulatory Commission has issued regulatory guidance on patient release in NUREG 1556, Volume 9, Rev. 2, Appendix U, which allows calculation of release limits following implant brachytherapy. While the formalism presented in NUREG is meaningful for the calculation of release limits in the context of relatively high energy gamma emitters, it does not estimate accurately the effective dose equivalent for the common low dose rate brachytherapy sources Cs, I, and Pd. NUREG 1556 states that patient release may be based on patient-specific calculations as long as the calculation is documented. This work is intended to provide a format for patient-specific calculations to be used for the consideration of patients' release following the implantation of certain low dose rate brachytherapy isotopes. PMID:23439145

  9. Patient doses from hybrid SPECT-CT procedures.

    PubMed

    Avramova-Cholakova, S; Dimcheva, M; Petrova, E; Garcheva, M; Dimitrova, M; Palashev, Y; Vassileva, J

    2015-07-01

    The aim of this work is to estimate patient doses from hybrid single-photon emission computed tomography (SPECT) and computed tomography (CT) procedures. The study involved all four SPECT-CT systems in Bulgaria. Effective dose was estimated for about 100 patients per system. Ten types of examinations were considered, representing all diagnostic procedures performed in the SPECT-CT systems. Effective doses from the SPECT component were calculated applying the ICRP 53 and ICRP 80 conversion coefficients. Computed tomography dose index and dose length product were retrospectively obtained from the archives of the systems, and effective doses from the CT component were calculated with CT-Expo software. Parallel estimation of CT component contribution with the National Radiological Protection Board (NRPB) conversion coefficients was performed where applicable. Large variations were found in the current practice of SPECT-CT imaging. Optimisation actions and diagnostic reference levels were proposed. PMID:25862537

  10. Absence of induction of enhanced reactivation of herpes simplex virus in cells from xeroderma pigmentosum patients without skin cancer

    SciTech Connect

    Abrahams, P.J.; van der Kleij, A.A.; Schouten, R.; van der Eb, A.J.

    1988-11-01

    The time course of appearance of enhanced reactivation (ER) and enhanced mutagenesis (EM) of herpes simplex virus type 1 were studied in UV-irradiated stationary cultures of xeroderma pigmentosum (XP) fibroblasts. In some of the XP cells EM followed similar kinetics of appearance as ER. Maximal activities occurred when infection was delayed 1 or 2 days after cell treatment. However, in certain XP cells only induction of the EM response was observed, whereas ER was absent. Interestingly, the latter XP cells had been obtained from patients who had not yet developed skin cancer at the time they were described in the literature, whereas the former XP patients had already developed skin tumors. This suggests that the ER response may somehow be involved in the process of oncogenic transformation. Dose-response studies of ER in XP cells from tumor-bearing patients showed that ER is maximally induced with a UV dose of 40 Jm-2 given to the virus. Normal levels of ER were observed in 14 different normal human skin fibroblasts, indicating that the ER- phenotype does not occur in normal cells or at least more rarely than in XP cells.

  11. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients.

    PubMed

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F; Long, Daniel J; Bolch, Wesley E; Liu, Bob; Xu, X George

    2015-07-21

    This paper describes the development and testing of VirtualDose--a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the 'software as a service (SaaS)' delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose's functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT-two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations. PMID:26134511

  12. Overall measurements of dose to patients in common interventional cardiology procedures.

    PubMed

    Wang, Weipeng; Zhang, Menglong; Zhang, Yi

    2013-12-01

    This study was designed to measure peak skin dose (PSD), dose-area product (DAP), cumulative dose (CD) and fluoroscopy time (FT) for interventional cardiology procedures and to evaluate whether patient doses were higher than that in other published data. Three cardiac procedure types, including coronary angiography (CAG), percutaneous transluminal coronary angioplasty (PTCA) and radio frequency (RF) ablation, were entered into the study. Data of four special metrics (PSD, DAP, CD and FT) for these procedures were collected and measured. A total of 238 patients who underwent interventional radiology procedures participated in this study. For every procedure, data about PSD were resulted from six TLD arrays and DAP, CD and FT were collected from the displayed monitor. The mean, standard deviation (SD), range and third quartile of the distribution of PSD, DAP, CD and FT recorded and measured on spot were calculated for all procedures. High-dose cases were specifically recorded. There was wide variation in the doses observed for different instances of the same procedure. PSD for PTCA and RF ablation ranged from 0.1 Gy to more than 3 Gy. Of 238 instances, there were 22 (9.2 %) with PSDs greater than 2 Gy and 4 (1.7 %) than 3 Gy. The third quartile of the distribution for PTCA had exceeded the DIMOND preliminary reference levels by 41.1 % in DAP and 25.0 % in FT. Mean DAP was in the range of reported values for CAG procedure, but higher than all data obtained in literatures for PTCA. Data from this study are in the range of most reported values for CAG and RF ablation procedure, while higher than that obtained in some literatures for PTCA. In case of a constant delivering of high doses to patient and physician himself, thorough training of interventionalists and staff is necessary, and the legislation has to be revised and set dose constrains especially for the interventional high-dose procedures. PMID:23770572

  13. Dosimetry for quantitative analysis of low dose ionizing radiation effects on humans in radiation therapy patients

    SciTech Connect

    Lehmann, J; Stern, R L; Daly, T P; Schwieter, C W; Jones, G E; Arnold, M L; Hartmann-Siantar, C L; Goldberg, Z

    2004-04-20

    We have successfully developed a practical approach to predicting the location of skin surface dose at potential biopsy sites that receive 1 cGy and 10 cGy, respectively, in support of in vivo biologic dosimetry in humans. This represents a significant technical challenge as the sites lie on the patient surface out side the radiation fields. The PEREGRINE Monte Carlo simulation system was used to model radiation dose delivery and TLDs were used for validation on a phantom and confirmation during patient treatment. In the developmental studies the Monte Carlo simulations consistently underestimated the dose at the biopsy site by approximately 15% for a realistic treatment configuration, most likely due to lack of detail in the simulation of the linear accelerator outside the main beam line. Using a single, thickness-independent correction factor for the clinical calculations, the average of 36 measurements for the predicted 1 cGy point was 0.985 cGy (standard deviation: 0.110 cGy) despite patient breathing motion and other real world challenges. Since the 10 cGy point is situated in the region of high dose gradient at the edge of the field, patient motion had a greater effect and the six measured points averaged 5.90 cGy (standard deviation: 1.01 cGy), a difference that is equivalent to approximately a 6 mm shift on the patient's surface.

  14. Providing quality skin and wound care for the bariatric patient: an overview of clinical challenges.

    PubMed

    Beitz, Janice M

    2014-01-01

    Obesity, (defined as body mass index [BMI] ≥30), and especially morbid obesity (defined as BMI ≥40), has a profound impact on the health and integrity of the patient's integumentary system and on the caregivers who strive to provide care for larger, heavy patients. The purpose of this overview is to address some common skin and wound care issues faced by bariatric patients in order to inform clinicians, patients, and caregivers and enable them to optimize care. For bariatric patients, extra attention must be paid to skin care, cleanliness, skin fold management, perigenital care, odor management, and effective pressure redistribution. Despite these interventions, the multifactorial challenges presented by morbid obesity increase patient risk for serious skin diseases and wound conditions. Implications for practice include how best to educate patients and caregivers for optimal problem prevention. Future research should target improving bariatric care equipment and decreasing risk indices. PMID:24434162

  15. Blue-Violet Light Irradiation Dose Dependently Decreases Carotenoids in Human Skin, Which Indicates the Generation of Free Radicals

    PubMed Central

    Vandersee, Staffan; Beyer, Marc; Lademann, Juergen; Darvin, Maxim E.

    2015-01-01

    In contrast to ultraviolet and infrared irradiation, which are known to facilitate cutaneous photoaging, immunosuppression, or tumour emergence due to formation of free radicals and reactive oxygen species, potentially similar effects of visible light on the human skin are still poorly characterized. Using a blue-violet light irradiation source and aiming to characterize its potential influence on the antioxidant status of the human skin, the cutaneous carotenoid concentration was measured noninvasively in nine healthy volunteers using resonance Raman spectroscopy following irradiation. The dose-dependent significant degradation of carotenoids was measured to be 13.5% and 21.2% directly after irradiation at 50 J/cm² and 100 J/cm² (P < 0.05). The irradiation intensity was 100 mW/cm². This is above natural conditions; the achieved doses, though, are acquirable under natural conditions. The corresponding restoration lasted 2 and 24 hours, respectively. The degradation of cutaneous carotenoids indirectly shows the amount of generated free radicals and especially reactive oxygen species in human skin. In all volunteers the cutaneous carotenoid concentration dropped down in a manner similar to that caused by the infrared or ultraviolet irradiations, leading to the conclusion that also blue-violet light at high doses could represent a comparably adverse factor for human skin. PMID:25741404

  16. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  17. Chemical Peels for Melasma in Dark-Skinned Patients

    PubMed Central

    Sarkar, Rashmi; Bansal, Shuchi; Garg, Vijay K

    2012-01-01

    Melasma is a common disorder of hyperpigmentation, which has a severe impact on the quality of life. Inspite of tremendous research, the treatment remains frustrating both to the patient and the treating physician. Dark skin types (Fitzpatrick types IV to VI) are especially difficult to treat owing to the increased risk of post-inflammatory hyperpigmentation (PIH). The treatment ranges from a variety of easily applied topical therapies to agents like lasers and chemical peels. Peels are a well-known modality of treatment for melasma, having shown promising results in many clinical trials. However, in darker races, the choice of the peeling agent becomes relatively limited; so, there is the need for priming agents and additional maintenance peels. Although a number of new agents have come up, there is little published evidence supporting their use in day-to -day practice. The traditional glycolic peels prove to be the best both in terms of safety as well as efficacy. Lactic acid peels being relatively inexpensive and having shown equally good results in a few studies, definitely need further experimentation. We also recommend the use of a new peeling agent, the easy phytic solution, which does not require neutralisation unlike the traditional alpha-hydroxy peels. The choice of peeling agent, the peel concentration as well as the frequency and duration of peels are all important to achieve optimum results. PMID:23378706

  18. Outcomes for split-thickness skin transplantation in high-risk patients using octenidine.

    PubMed

    Matiasek, J; Djedovic, G; Unger, L; Beck, H; Mattesich, M; Pierer, G; Koller, R; Rieger, U M

    2015-06-01

    Skin transplantation is a commonly used surgical technique; however, the complication rate, including postoperative infection and delayed wound healing due to inefficient perfusion, is significantly higher in patients suffering from comorbidities. Hence, a subsequent repeat procedure is often necessary. In this report, two case studies are presented in which an octenidine-based antiseptic is used with a tie-over dressing (TOD) instead of povidone iodine (PVP-iodine), following a split-thickness skin graft. The two patients selected were deemed to be at high risk of impaired wound healing due to comorbidities. The first patient, a confirmed smoker with diabetes, presented with a nodular melanoma that was resected and covered with a split-thickness skin graft. After 5 days of negative pressure wound therapy as a TOD, in combination with PVP-iodine, the graft became necrotic. A second split-thickness skin graft was performed and an antiseptic regimen with octenidine in combination with the same TOD resulted in a completely healed transplant. The second patient, also a confirmed smoker with diabetes and receiving oral corticosteroid treatment, was diagnosed with a skin necrosis on her leg. Following the split-thickness skin graft, octenidine and TOD were applied. The patient's skin graft completely healed without any adverse events. These two case studies indicate that the combination of octenidine and TOD following split-thickness skin transplantation is safe, well-tolerated and appears to have positive benefits in the reconstruction of defects in patients with impaired wound healing. PMID:26075514

  19. Diagnostic Value of PCR for Detection of Borrelia burgdorferi in Skin Biopsy and Urine Samples from Patients with Skin Borreliosis

    PubMed Central

    Brettschneider, S.; Bruckbauer, H.; Klugbauer, N.; Hofmann, H.

    1998-01-01

    Skin biopsies of 36 patients with erythema migrans and acrodermatitis chronica atrophicans (ACA) before therapy and those of 8 patients after therapy were examined for Borrelia burgdorferi DNA by PCR. Skin biopsies of 27 patients with dermatological diseases other than Lyme borreliosis and those of 10 healthy persons were examined as controls. Two different primer sets targeting 23S rRNA (PCR I) and 66-kDa protein (PCR II) genes were used. PCR was performed with freshly frozen tissue (FFT) and paraffin-embedded tissue (PET). For FFT specimens of erythema migrans, 73% were positive by PCR I, 79% were positive by PCR II, and 88% were positive by combining PCR I and II. For PET specimens, PCR was less sensitive (PCR I, 44%; PCR II, 52%). For FFT specimens of ACA, PCR I was positive for two of five patients and PCR II was positive for four of five patients. B. burgdorferi was cultured from 79% of the erythema migrans specimens but not from any of the ACA lesions. Elevated B. burgdorferi antibodies were detected in sera of 74% of erythema migrans patients and 100% of ACA patients. All urine samples were negative by PCR II, whereas PCR I was positive for 27%. However, hybridization of these amplicons was negative. Sequencing of three amplicons identified nonborrelial DNA. In conclusion, urine PCR is not suitable for the diagnosis of skin borreliosis. A combination of two different primer sets achieves high sensitivity with skin biopsies. In early erythema migrans infection, culture and PCR are more sensitive than serology. PMID:9705410

  20. Organ doses to adult patients for chest CT

    SciTech Connect

    Huda, Walter; Sterzik, Alexander; Tipnis, Sameer; Schoepf, U. Joseph

    2010-02-15

    Purpose: The goal of this study was to estimate organ doses for chest CT examinations using volume computed tomography dose index (CTDI{sub vol}) data as well as accounting for patient weight. Methods: A CT dosimetry spreadsheet (ImPACT CT patient dosimetry calculator) was used to compute organ doses for a 70 kg patient undergoing chest CT examinations, as well as volume computed tomography dose index (CTDI{sub vol}) in a body CT dosimetry phantom at the same CT technique factors. Ratios of organ dose to CTDI{sub vol} (f{sub organ}) were generated as a function of anatomical location in the chest for the breasts, lungs, stomach, red bone marrow, liver, thyroid, liver, and thymus. Values of f{sub organ} were obtained for x-ray tube voltages ranging from 80 to 140 kV for 1, 4, 16, and 64 slice CT scanners from two vendors. For constant CT techniques, we computed ratios of dose in water phantoms of differing diameter. By modeling patients of different weights as equivalent water cylinders of different diameters, we generated factors that permit the estimation of the organ doses in patients weighing between 50 and 100 kg who undergo chest CT examinations relative to the corresponding organ doses received by a 70 kg adult. Results: For a 32 cm long CT scan encompassing the complete lungs, values of f{sub organ} ranged from 1.7 (thymus) to 0.3 (stomach). Organs that are directly in the x-ray beam, and are completely irradiated, generally had f{sub organ} values well above 1 (i.e., breast, lung, heart, and thymus). Organs that are not completely irradiated in a total chest CT scan generally had f{sub organ} values that are less than 1 (e.g., red bone marrow, liver, and stomach). Increasing the x-ray tube voltage from 80 to 140 kV resulted in modest increases in f{sub organ} for the heart (9%) and thymus (8%), but resulted in larger increases for the breast (19%) and red bone marrow (21%). Adult patient chests have been modeled by water cylinders with diameters between

  1. ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia.

    PubMed

    Hamilton, S G; Warburton, J; Bhattacharjee, A; Ward, J; McMahon, S B

    2000-06-01

    Despite the considerable interest in the possibility that ATP may function as a peripheral pain mediator, there has been little quantitative study of the pain-producing effects of ATP in humans. Here we have used iontophoresis to deliver ATP to the forearm skin of volunteers who rated the magnitude of the evoked pain on a visual analogue scale. ATP consistently produced a modest burning pain, which began within 20 s of starting iontophoresis and was maintained for several minutes. Persistent iontophoresis of ATP led to desensitization within 12 min but recovery from this was almost complete 1 h later. Different doses of ATP were delivered using different iontophoretic driving currents. Iontophoresis of ATP produced a higher pain rating than saline, indicating that the pain was specifically caused by ATP. The average pain rating for ATP, but not saline, increased with increasing current. Using an 0.8 mA current, subjects reported pain averaging 27.7 +/- 2.8 (maximum possible = 100). Iontophoresis of ATP caused an increase in blood flow, as assessed using a laser Doppler flow meter. The increase in blood flow was significantly greater using ATP than saline in both the iontophoresed skin (P < 0.01) and in the surrounding skin, 3 mm outside the iontophoresed area (P < 0.05). The pain produced by ATP was dependent on capsaicin-sensitive sensory neurons, since in skin treated repeatedly with topical capsaicin pain was reduced to less than 25% of that elicited on normal skin (2.1 +/- 0.4 compared with 9.3 +/- 1.5 on normal skin). Conversely, the pain-producing effects of ATP were greatly potentiated in several models of hyperalgesia. Thus, with acute capsaicin treatment when subjects exhibited touch-evoked hyperalgesia but no ongoing pain, there was a threefold increase in the average pain rating during ATP iontophoresis (22.7 +/- 3.1) compared with pre-capsaicin treatment (7.8 +/- 2.6). Moreover, ATP iontophoresed into skin 24 h after solar simulated radiation (2 x

  2. EFFECTIVE DOSE TO PATIENTS FROM THORACIC SPINE EXAMINATIONS WITH TOMOSYNTHESIS.

    PubMed

    Svalkvist, Angelica; Söderman, Christina; Båth, Magnus

    2016-06-01

    The purposes of the present work were to calculate the average effective dose to patients from lateral tomosynthesis examinations of the thoracic spine, compare the results with the corresponding conventional examination and to determine a conversion factor between dose-area product (DAP) and effective dose for the tomosynthesis examination. Thoracic spine examinations from 17 patients were included in the study. The registered DAP and information about the field size for each projection radiograph were, together with patient height and mass, used to calculate the effective dose for each projection radiograph. The total effective doses for the tomosynthesis examinations were obtained by adding the effective doses from the 60 projection radiographs included in the examination. The mean effective dose was 0.47 mSv (range 0.24-0.81 mSv) for the tomosynthesis examinations and 0.20 mSv (range 0.07-0.29 mSv) for the corresponding conventional examinations (anteroposterior + left lateral projection). For the tomosynthesis examinations, a conversion factor between total DAP and effective dose of 0.092 mSv Gycm(-2) was obtained. PMID:26675145

  3. Monte Carlo characterization of skin doses in 6 MV transverse field MRI-linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus

    SciTech Connect

    Oborn, B. M.; Metcalfe, P. E.; Butson, M. J.; Rosenfeld, A. B.

    2010-10-15

    Purpose: The main focus of this work is to continue investigations into the Monte Carlo predicted skin doses seen in MRI-guided radiotherapy. In particular, the authors aim to characterize the 70 {mu}m skin doses over a larger range of magnetic field strength and x-ray field size than in the current literature. The effect of surface orientation on both the entry and exit sides is also studied. Finally, the use of exit bolus is also investigated for minimizing the negative effects of the electron return effect (ERE) on the exit skin dose. Methods: High resolution GEANT4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam (Varian 2100C) have been performed. Transverse magnetic fields of strengths between 0 and 3 T have been applied to a 30x30x20 cm{sup 3} phantom. This phantom is also altered to have variable entry and exit surfaces with respect to the beam central axis and they range from -75 deg. to +75 deg. The exit bolus simulated is a 1 cm thick (water equivalent) slab located on the beam exit side. Results: On the entry side, significant skin doses at the beam central axis are reported for large positive surface angles and strong magnetic fields. However, over the entry surface angle range of -30 deg. to -60 deg., the entry skin dose is comparable to or less than the zero magnetic field skin dose, regardless of magnetic field strength and field size. On the exit side, moderate to high central axis skin dose increases are expected except at large positive surface angles. For exit bolus of 1 cm thickness, the central axis exit skin dose becomes an almost consistent value regardless of magnetic field strength or exit surface angle. This is due to the almost complete absorption of the ERE electrons by the bolus. Conclusions: There is an ideal entry angle range of -30 deg. to -60 deg. where entry skin dose is comparable to or less than the zero magnetic field skin dose. Other than this, the entry skin dose increases are significant, especially at

  4. Evaluation of the stepwise collimation method for the reduction of the patient dose in full spine radiography

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Lee, Sunyoung; Yang, Injeong; Yoon, Myeonggeun

    2014-05-01

    The purpose of this study is to evaluate the dose reduction when using the stepwise collimation method for scoliosis patients undergoing full spine radiography. A Monte Carlo simulation was carried out to acquire dose vs. volume data for organs at risk (OAR) in the human body. While the effective doses in full spine radiography were reduced by 8, 15, 27 and 44% by using four different sizes of the collimation, the doses to the skin were reduced by 31, 44, 55 and 66%, indicating that the reduction of the dose to the skin is higher than that to organs inside the body. Although the reduction rates were low for the gonad, being 9, 14, 18 and 23%, there was more than a 30% reduction in the dose to the heart, suggesting that the dose reduction depends significantly on the location of the OARs in the human body. The reduction rate of the secondary cancer risk based on the excess absolute risk (EAR) varied from 0.6 to 3.4 per 10,000 persons, depending on the size of the collimation. Our results suggest that the stepwise collimation method in full spine radiography can effectively reduce the patient dose and the radiation-induced secondary cancer risk.

  5. Skin dose measurements using radiochromic films, TLDS and ionisation chamber and comparison with Monte Carlo simulation.

    PubMed

    Alashrah, Saleh; Kandaiya, Sivamany; Maalej, Nabil; El-Taher, A

    2014-12-01

    Estimation of the surface dose is very important for patients undergoing radiation therapy. The purpose of this study is to investigate the dose at the surface of a water phantom at a depth of 0.007 cm as recommended by the International Commission on Radiological Protection and International Commission on Radiation Units and Measurement with radiochromic films (RFs), thermoluminescent dosemeters and an ionisation chamber in a 6-MV photon beam. The results were compared with the theoretical calculation using Monte Carlo (MC) simulation software (MCNP5, BEAMnrc and DOSXYZnrc). The RF was calibrated by placing the films at a depth of maximum dose (d(max)) in a solid water phantom and exposing it to doses from 0 to 500 cGy. The films were scanned using a transmission high-resolution HP scanner. The optical density of the film was obtained from the red component of the RGB images using ImageJ software. The per cent surface dose (PSD) and percentage depth dose (PDD) curve were obtained by placing film pieces at the surface and at different depths in the solid water phantom. TLDs were placed at a depth of 10 cm in a solid water phantom for calibration. Then the TLDs were placed at different depths in the water phantom and were exposed to obtain the PDD. The obtained PSD and PDD values were compared with those obtained using a cylindrical ionisation chamber. The PSD was also determined using Monte Carlo simulation of a LINAC 6-MV photon beam. The extrapolation method was used to determine the PSD for all measurements. The PSD was 15.0±3.6% for RF. The TLD measurement of the PSD was 16.0±5.0%. The (0.6 cm(3)) cylindrical ionisation chamber measurement of the PSD was 50.0±3.0%. The theoretical calculation using MCNP5 and DOSXYZnrc yielded a PSD of 15.0±2.0% and 15.7±2.2%. In this study, good agreement between PSD measurements was observed using RF and TLDs with the Monte Carlo calculation. However, the cylindrical chamber measurement yielded an overestimate of the PSD

  6. Measurement of patient radiation doses in certain urography procedures.

    PubMed

    Sulieman, A; Barakat, H; Zailae, A; Abuderman, A; Theodorou, K

    2015-07-01

    Patients are exposed to significant radiation doses during diagnostic and interventional urologic procedures. This study aimed to measure patient entrance surface air kerma (ESAK) and to estimate the effective dose during intravenous urography (IVU), extracorporeal shock-wave lithotripsy (ESWL), and ascending urethogram (ASU) procedures. ESAK was measured in patients using calibrated thermo luminance dosimeters, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 179 procedures were investigated. 27.9 % of the patients underwent IVU procedures, 27.9 % underwent ESWL procedures and 44.2 % underwent ASU procedures. The mean ESAK was 2.1, 4.18 and 4.9 mGy for IVU, ESWL, and ASU procedures, respectively. Differences in patient ESAK for the same procedure were observed. The mean ESAK values were comparable with those in previous studies. PMID:25899610

  7. Development of the Facial Skin Care Index: A Health-Related Outcomes Index for Skin Cancer Patients

    PubMed Central

    Matthews, B. Alex; Rhee, John S.; Neuburg, Marcy; Burzynski, Mary L.; Nattinger, Ann B.

    2006-01-01

    BACKGROUND Existing health-related quality-of-life (HRQOL) tools do not appear to capture patients' specific skin cancer concerns. OBJECTIVE To describe the conceptual foundation, item generation, reduction process, and reliability testing for the Facial Skin Cancer Index (FSCI), a HRQOL outcomes tool for skin cancer researchers and clinicians. METHODS Participants in Phases I to III consisted of adult patients (N = 134) diagnosed with biopsy-proven nonmelanoma cervicofacial skin cancer. Data were collected via self-report surveys and clinical records. RESULTS Seventy-one distinct items were generated in Phase I and rated for their importance by an independent sample during Phase II; 36 items representing six theoretical HRQOL domains were retained. Test–retest I results indicated that four subscales showed adequate reliability coefficients (α = 0.60 to 0.91). Twenty-six items remained for test–retest II. Results indicated excellent internal consistency for emotional, social, appearance, and modified financial/work subscales (range 0.79 to 0.95); test–retest correlation coefficients were consistent across time (range 0.81 to 0.97; lifestyle omitted). CONCLUSION Pretesting afforded the opportunity to select items that optimally met our a priori conceptual and psychometric criteria for high data quality. Phase IV testing (validity and sensitivity before surgery and 4 months after Mohs micrographic surgery) for the 20-item FSCI is under way. PMID:16875475

  8. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Ding, Aiping; Gao, Yiming; Liu, Haikuan; Caracappa, Peter F.; Long, Daniel J.; Bolch, Wesley E.; Liu, Bob; Xu, X. George

    2015-07-01

    This paper describes the development and testing of VirtualDose—a software for reporting organ doses for adult and pediatric patients who undergo x-ray computed tomography (CT) examinations. The software is based on a comprehensive database of organ doses derived from Monte Carlo (MC) simulations involving a library of 25 anatomically realistic phantoms that represent patients of different ages, body sizes, body masses, and pregnant stages. Models of GE Lightspeed Pro 16 and Siemens SOMATOM Sensation 16 scanners were carefully validated for use in MC dose calculations. The software framework is designed with the ‘software as a service (SaaS)’ delivery concept under which multiple clients can access the web-based interface simultaneously from any computer without having to install software locally. The RESTful web service API also allows a third-party picture archiving and communication system software package to seamlessly integrate with VirtualDose’s functions. Software testing showed that VirtualDose was compatible with numerous operating systems including Windows, Linux, Apple OS X, and mobile and portable devices. The organ doses from VirtualDose were compared against those reported by CT-Expo and ImPACT—two dosimetry tools that were based on the stylized pediatric and adult patient models that were known to be anatomically simple. The organ doses reported by VirtualDose differed from those reported by CT-Expo and ImPACT by as much as 300% in some of the patient models. These results confirm the conclusion from past studies that differences in anatomical realism offered by stylized and voxel phantoms have caused significant discrepancies in CT dose estimations.

  9. Development of a fibre-optic dosemeter to measure the skin dose and percentage depth dose in the build-up region of therapeutic photon beams.

    PubMed

    Kim, K-A; Yoo, W J; Jang, K W; Moon, J; Han, K-T; Jeon, D; Park, J-Y; Cha, E-J; Lee, B

    2013-03-01

    In this study, a fibre-optic dosemeter (FOD) using an organic scintillator with a diameter of 0.5 mm for photon-beam therapy dosimetry was fabricated. The fabricated dosemeter has many advantages, including water equivalence, high spatial resolution, remote sensing and real-time measurement. The scintillating light generated from an organic-dosemeter probe embedded in a solid-water stack phantom is guided to a photomultiplier tube and an electrometer via 20 m of plastic optical fibre. Using this FOD, the skin dose and the percentage depth dose in the build-up region according to the depths of a solid-water stack phantom are measured with 6- and 15-MV photon-beam energies with field sizes of 10 × 10 and 20 × 20 cm(2), respectively. The results are compared with those measured using conventional dosimetry films. It is expected that the proposed FOD can be effectively used in radiotherapy dosimetry for accurate measurement of the skin dose and the depth dose distribution in the build-up region due to its high spatial resolution. PMID:22764176

  10. How to Check Your Skin for Skin Cancer

    MedlinePlus

    ... Home Cancer Types Skin Cancer Skin Cancer Patient Skin Cancer Treatment Melanoma Treatment Merkel Cell Carcinoma Treatment Skin Cancer Prevention Skin Cancer Screening Health Professional Skin Cancer Treatment Melanoma Treatment Merkel Cell Carcinoma Treatment Skin Cancer ...

  11. Infliximab-induced skin manifestations in patients with inflammatory bowel disease.

    PubMed

    Eligius Hellström, Alec; Färkkilä, Martti; Kolho, Kaija-Leena

    2016-05-01

    Objective The use of infliximab in rheumatoid and inflammatory bowel diseases (IBD) has been associated with a variety of adverse skin reactions, including paradoxical psoriatic lesions. The prevalence and possible predictors for these lesions were under observation in our cross-sectional prospective study. Material and methods Nurses screened the skin of 118 adult patients with IBD during infliximab infusions between 4 September 2013 and 30 September 2014 based on the structured questionnaire. Data on skin manifestations, concomitant medications, extraintestinal manifestations and inflammatory markers were collected for analysis. Results Non-infectious skin manifestations were observed in 27 (22.9%) patients during the study period, of which eight (29.6%) were new-onset, eight (29.6%) were exacerbations of existing lesions and 11 (40.7%) were baseline lesions that did not worsen during the study. Scaling eczema was the most commonly described skin manifestation (n = 8; 29.6%), followed by exacerbated atopic eczema (n = 5; 18.5%) and plausible infliximab-induced psoriasiform lesions (n = 5; 18.5%). The strongest associating factor for skin manifestations was Crohn's disease, in nearly 80% of afflicted patients. Conclusions Anti-TNF-α therapy is frequently associated with newly onset skin reactions, most commonly in patients with Crohn's disease. Non-infectious skin manifestations can be treated topically and do not require cessation of anti-TNF-α therapy. PMID:26728295

  12. 77 FR 69863 - Antiseptic Patient Preoperative Skin Preparation Products; Public Hearing; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-21

    ... be sterile. Bacteria can contaminate these products at the time of manufacture or during product use... reduce the number of bacteria on the skin prior to medical procedures or injections. Although they are... activity, patient preoperative skin preparations may become contaminated with bacteria. A number of...

  13. An analysis of skin prick test reactions in 656 asthmatic patients.

    PubMed Central

    Hendrick, D J; Davies, R J; D'Souza, M F; Pepys, J

    1975-01-01

    Of 656 asthmatic patients referred specifically for allergy assessments, 544 (84 percent) gave positive immediate skin prick tests to at least one of 22 common allergens used routinely. Comparison of these skin test positive patients with the 102 (16 percent) who were skin test negative showed a number of significant differences. The majority of the skin test positive patients (52 percent) were less than 10 years old at the time of onset of the asthma, whereas, of the skin test negative patients, 56 percent were aged over 30 years at the time of onset. Seventy per cent report rhinitis compared with 48 per cent of the skin test negative patients, and 29 per cent reported infantile eczema compared with 9 per cent. Symptoms attributed to house dust, pollens, and animals were noted two to three times more frequently by the skin test positive patients, while corticosteroid drugs had been used more commonly by the skin test negative patients (45 percent compared with 35 percent). No significant differences were observed with the other factors studied, namely, history of urticaria or angio-oedema, family history of "allergic" disease, and awareness of sensitivity to foods, aspirin or penicillin. Prick test reactions in the skin test positive patients were most commonly seen to house dust or the acarine mite, Dermatophagoides farinae (82 percent), followed by pollens (66 percent), animal danders (38 percent), foods (16 percent), Aspergillus fumigatus (16 percent), and other moulds (21 percent). There was a highly significant association of positive history with positive prick test for all allergens studied. Images PMID:1168378

  14. An analysis of skin prick test reactions in 656 asthmatic patients.

    PubMed

    Hendrick, D J; Davies, R J; D'Souza, M F; Pepys, J

    1975-02-01

    Of 656 asthmatic patients referred specifically for allergy assessments, 544 (84 percent) gave positive immediate skin prick tests to at least one of 22 common allergens used routinely. Comparison of these skin test positive patients with the 102 (16 percent) who were skin test negative showed a number of significant differences. The majority of the skin test positive patients (52 percent) were less than 10 years old at the time of onset of the asthma, whereas, of the skin test negative patients, 56 percent were aged over 30 years at the time of onset. Seventy per cent report rhinitis compared with 48 per cent of the skin test negative patients, and 29 per cent reported infantile eczema compared with 9 per cent. Symptoms attributed to house dust, pollens, and animals were noted two to three times more frequently by the skin test positive patients, while corticosteroid drugs had been used more commonly by the skin test negative patients (45 percent compared with 35 percent). No significant differences were observed with the other factors studied, namely, history of urticaria or angio-oedema, family history of "allergic" disease, and awareness of sensitivity to foods, aspirin or penicillin. Prick test reactions in the skin test positive patients were most commonly seen to house dust or the acarine mite, Dermatophagoides farinae (82 percent), followed by pollens (66 percent), animal danders (38 percent), foods (16 percent), Aspergillus fumigatus (16 percent), and other moulds (21 percent). There was a highly significant association of positive history with positive prick test for all allergens studied. PMID:1168378

  15. SU-E-I-15: Comparison of Radiation Dose for Radiography and EOS in Adolescent Scoliosis Patients

    SciTech Connect

    Schueler, B; Walz-Flannigan, A

    2014-06-01

    Purpose: To estimate patient radiation dose for whole spine imaging using EOS, a new biplanar slot-scanning radiographic system and compare with standard scoliosis radiography. Methods: The EOS imaging system (EOS Imaging, Paris, France) consists of two orthogonal x-ray fan beams which simultaneously acquire frontal and lateral projection images of a standing patient. The patient entrance skin air kerma was measured for each projection image using manufacturer-recommended exposure parameters for spine imaging. Organ and effective doses were estimated using a commercially-available Monte Carlo simulation program (PCXMC, STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland) for a 15 year old mathematical phantom model. These results were compared to organ and effective dose estimated for scoliosis radiography using computed radiography (CR) with standard exposure parameters obtained from a survey of pediatric radiographic projections. Results: The entrance skin air kerma for EOS was found to be 0.18 mGy and 0.33 mGy for posterior-anterior (PA) and lateral projections, respectively. This compares to 0.76 mGy and 1.4 mGy for CR, PA and lateral projections. Effective dose for EOS (PA and lateral projections combined) is 0.19 mSv compared to 0.51 mSv for CR. Conclusion: The EOS slot-scanning radiographic system allows for reduced patient radiation dose in scoliosis patients as compared to standard CR radiography.

  16. Individualization of piperacillin dosing for critically ill patients: dosing software to optimize antimicrobial therapy.

    PubMed

    Felton, T W; Roberts, J A; Lodise, T P; Van Guilder, M; Boselli, E; Neely, M N; Hope, W W

    2014-07-01

    Piperacillin-tazobactam is frequently used for empirical and targeted therapy of infections in critically ill patients. Considerable pharmacokinetic (PK) variability is observed in critically ill patients. By estimating an individual's PK, dosage optimization Bayesian estimation techniques can be used to calculate the appropriate piperacillin regimen to achieve desired drug exposure targets. The aim of this study was to establish a population PK model for piperacillin in critically ill patients and then analyze the performance of the model in the dose optimization software program BestDose. Linear, with estimated creatinine clearance and weight as covariates, Michaelis-Menten (MM) and parallel linear/MM structural models were fitted to the data from 146 critically ill patients with nosocomial infection. Piperacillin concentrations measured in the first dosing interval, from each of 8 additional individuals, combined with the population model were embedded into the dose optimization software. The impact of the number of observations was assessed. Precision was assessed by (i) the predicted piperacillin dosage and by (ii) linear regression of the observed-versus-predicted piperacillin concentrations from the second 24 h of treatment. We found that a linear clearance model with creatinine clearance and weight as covariates for drug clearance and volume of distribution, respectively, best described the observed data. When there were at least two observed piperacillin concentrations, the dose optimization software predicted a mean piperacillin dosage of 4.02 g in the 8 patients administered piperacillin doses of 4.00 g. Linear regression of the observed-versus-predicted piperacillin concentrations for 8 individuals after 24 h of piperacillin dosing demonstrated an r(2) of >0.89. In conclusion, for most critically ill patients, individualized piperacillin regimens delivering a target serum piperacillin concentration is achievable. Further validation of the dosage

  17. Electrical measurement of moisturizing effect on skin hydration and barrier function in psoriasis patients.

    PubMed

    Rim, J H; Jo, S J; Park, J Y; Park, B D; Youn, J I

    2005-07-01

    Transepidermal water loss (TEWL) in psoriatic skin lesions seems to be related to the severity of the psoriasis, and the electrical capacitance and conductance of the skin are indicators of the hydration level of the stratum corneum. We compared the characteristics of these electrical measurements, in assessing the persistent effect of a moisturizing cream on skin hydration and barrier function in psoriasis patients. Seventeen Korean psoriasis patients were recruited. Their right leg was treated with the moisturizer twice daily for 6 weeks, while their left leg was used as the control site. For each patient, one psoriatic plaque on each leg was selected as the involved psoriatic lesion. Uninvolved psoriatic skin was regarded as the apparently healthy looking skin 4-5 cm away from the periphery of the psoriatic lesion. The TEWL, electrical capacitance and conductance were measured, in order to evaluate the barrier function and hydration level of the stratum corneum. The clinical and biophysical data for each patient were recorded at the start of the study and after 2, 4 and 6 weeks. The degree of skin dryness at the applied area improved progressively. The electrical capacitance at the treated psoriatic lesion increased significantly after 2 weeks, and this improvement was maintained during the entire study period. However, no noticeable change was observed in the electrical conductance. The TEWL showed an inverse pattern to that of the skin capacitance, decreasing during the study period. The skin capacitance and TEWL exhibited good correlation with the visual assessment of skin dryness, but the skin conductance did not. Our data suggest that electrical capacitance and TEWL may be useful in the evaluation of the effect of a moisturizer on the hydration status and barrier function of psoriatic skin. PMID:15953083

  18. Radiation dose estimation of patients undergoing lumbar spine radiography

    PubMed Central

    Gyekye, Prince Kwabena; Simon, Adu; Geoffrey, Emi-Reynolds; Johnson, Yeboah; Stephen, Inkoom; Engmann, Cynthia Kaikor; Samuel, Wotorchi-Gordon

    2013-01-01

    Radiation dose to organs of 100 adult patients undergoing lumbar spine (LS) radiography at a University Hospital have been assessed. Free in air kerma measurement using an ionization chamber was used for the patient dosimetry. Organ and effective dose to the patients were estimated using PCXMC (version 1.5) software. The organs that recorded significant dose due to LS radiography were lungs, stomach, liver, adrenals, kidney, pancreas, spleen, galbladder, and the heart. It was observed that the stomach recorded the highest dose (48.2 ± 1.2 μGy) for LS anteroposterior (AP). The spleen also recorded the highest dose (41.2 ± 0.5 μGy) for LS lateral (LAT). The mean entrance surface air kerma (ESAK) of LS LAT (122.2 μGy) was approximately twice that of LS AP (76.3 μGy), but the effective dose for both examinations were approximately the same (LS LAT = 8.6 μSv and LS AP = 10.4 μSv). The overall stochastic health effect of radiation to patients due to LS radiography in the University Hospital is independent of the projection of the examination (AP or LAT). PMID:24672153

  19. IMPLICATIONS OF PATIENT CENTRING ON ORGAN DOSE IN COMPUTED TOMOGRAPHY.

    PubMed

    Kataria, Bharti; Sandborg, Michael; Althén, Jonas Nilsson

    2016-06-01

    Automatic exposure control (AEC) in computed tomography (CT) facilitates optimisation of dose absorbed by the patient. The use of AEC requires appropriate 'patient centring' within the gantry, since positioning the patient off-centre may affect both image quality and absorbed dose. The aim of this experimental study was to measure the variation in organ and abdominal surface dose during CT examinations of the head, neck/thorax and abdomen. The dose was compared at the isocenter with two off-centre positions-ventral and dorsal to the isocenter. Measurements were made with an anthropomorphic adult phantom and thermoluminescent dosemeters. Organs and surfaces for ventral regions received lesser dose (5.6-39.0 %) than the isocenter when the phantom was positioned +3 cm off-centre. Similarly, organ and surface doses for dorsal regions were reduced by 5.0-21.0 % at -5 cm off-centre. Therefore, correct vertical positioning of the patient at the gantry isocenter is important to maintain optimal imaging conditions. PMID:26743256

  20. DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE

    EPA Science Inventory

    It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...

  1. Skin dose from neutron-activated soil for early entrants following the A-bomb detonation in Hiroshima: contribution from beta and gamma rays.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Imanaka, Tetsuji; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu

    2008-07-01

    Epilation was reported among atomic bomb survivors in Hiroshima and Nagasaki, including "early entrance survivors" who entered the cities after the bombings. The absorbed dose to the skin by neutron-activated soil via beta and gamma rays has been estimated in a preliminary fashion, for these survivors in Hiroshima. Estimation was done for external exposures from activated soil on the ground as well as skin and hair contamination from activated soil particles, using the Monte Carlo radiation transport code MCNP-4C. Assuming 26 mum thickness of activated soil on the skin as an example, the skin dose was estimated to be about 0.8 Gy, for an exposure scenario that includes the first 7 days after the bombing at 1 m above the ground at the hypocenter. In this case, 99% of the total skin dose came from activated radionuclides in the soil, i.e., 0.19 and 0.63 Gy due to beta and gamma rays, respectively. In contrast, contribution to skin dose due to skin contamination with soil particles was found to be about 1%. To make it comparable to the exposure by neutron-activated soil on the ground, a soil thickness on the skin of about 1 mm would be required, which seems to be difficult to keep for a long time. Fifty-five percent of the 7-day skin dose was delivered during the first hour after the bombing. Our estimates of the skin dose are lower than the conventionally reported threshold of 2 Gy for epilation. It should be noted, however, that the possibility of more extreme exposure scenarios for example for entrants who received much heavier soil contamination on their skin cannot be excluded. PMID:18496704

  2. High reactive oxygen species in fibrotic and nonfibrotic skin of patients with diffuse cutaneous systemic sclerosis.

    PubMed

    Bourji, Khalil; Meyer, Alain; Chatelus, Emmanuel; Pincemail, Joël; Pigatto, Erika; Defraigne, Jean-Olivier; Singh, François; Charlier, Corinne; Geny, Bernard; Gottenberg, Jacques-Eric; Punzi, Leonardo; Cozzi, Franco; Sibilia, Jean

    2015-10-01

    Systemic sclerosis (SSc) is a chronic multisystemic connective tissue disease characterized by progressive fibrosis affecting skin and internal organs. Despite serious efforts to unveil the pathogenic mechanisms of SSc, they are still unclear. High levels of reactive oxygen species (ROS) in affected patients have been shown, and ROS are suggested to play a role in fibrosis pathogenesis. In this study we evaluate ROS levels in nonfibrotic and fibrotic skin of patients with SSc and we compare them with those obtained from healthy controls. We enrolled nine SSc patients fulfilling the EULAR/ACR classification criteria and seven healthy controls. Patients included four men and five women with mean age of 46 ± 10 years. Controls were matched by sex and age. All patients were affected by the diffuse cutaneous form of SSc and the ANA pattern anti-Scl70. Mean disease duration was 7.5 ± 5 years. Skin involvement was evaluated by modified Rodnan skin score. Skin samples (4-mm punch biopsy) were taken from fibrotic skin and nonfibrotic skin of patients and from healthy controls as well. To detect ROS, specimens were analyzed immediately after sampling by electron paramagnetic resonance spectroscopy. Blood samples were drawn from all patients and controls to assess oxidative stress biomarkers. ROS levels (expressed as median and range, in nmol/L/min/mg of dry weight) were 24.7 (10.9-47.0) in fibrotic skin, 18.7 (7.3-34.0) in nonfibrotic skin, and 7.7 (3.5-13.6) in healthy control skin. ROS levels in fibrotic and nonfibrotic skin of SSc patients were significantly higher than in healthy controls (p = 0.002 and p = 0.009, respectively). ROS levels in fibrotic skin were raised in comparison to nonfibrotic skin, when samples related to each patient were compared (p = 0.01). ROS levels in fibrotic skin were correlated with forced vital capacity (r = -0.75, p = 0.02) and erythrocyte sedimentation rate (r = 0.70, p = 0.04). All other clinical and lab parameters showed no

  3. Ciprofloxacin utility as antifibrotic in the skin of patients with scleroderma.

    PubMed

    Rubén, Enríquez-Casillas; Manuel, Vázquez-Rodríguez; Agustín, Ochoa-Ramírez; Huerta, Miguel; Antonio, Fraga-Mouret; Iván, Delgado-Enciso

    2010-04-01

    Scleroderma is an autoimmune connective tissue disorder that is characterized by microvascular injury, excessive fibrosis of the skin, and distinctive visceral changes that can involve the lungs, heart, kidneys and gastrointestinal tract. To date, although several drugs have been used to reduce fibrosis in scleroderma, there exists no effective pharmacological treatment. To determine if oral ciprofloxacin reduces the severity of scleroderma, a controlled, double-blind randomized clinical trial, with placebo, was conducted on 32 patients with diffuse and limited scleroderma, who received oral ciprofloxacin (250 mg) or placebo every 12 h. Skin induration and thickness of the patients were clinically evaluated using the modified Rodnan skin score at the beginning and once per month during 6 months of treatment with ciprofloxacin. To monitor progression of the disease, a monthly hematological exam and clinical evaluation was done to explore renal and hepatic function for each patient. Thirty patients completed the study; one from the treatment group was excluded when presenting a skin reaction and another from the placebo group abandoned the study due to an exacerbation of disease. At the sixth month of the study, the ciprofloxacin group of patients showed a diminution in the modified Rodnan skin score (58% vs 18%, P = 0.003), showing no significant alterations in the laboratory assays in either groups of patients. Our results suggest that oral administration of ciprofloxacin for 6 months reduces the severity of symptoms affecting the skin of patients with systemic scleroderma, and does so without important secondary effects. PMID:20507401

  4. Increasing the dose of varenicline in patients who do not respond to the standard dose.

    PubMed

    Jiménez-Ruiz, Carlos A; Barrios, Malena; Peña, Sandra; Cicero, Ana; Mayayo, Marisa; Cristóbal, Maribel; Perera, Lidia

    2013-12-01

    Varenicline is a partial agonist of α4β2 nicotinic acetylcholine receptors. It is effective at dosages of 2 mg/d for 12 weeks, but not for all smokers. It is possible that increasing the dose can increase the drug efficacy. We reviewed the clinical records of consecutive smokers who had been treated in 2 smoking cessation services with varenicline at doses of 3 mg/d. In all cases, the treatment program consisted of a combination of behavioral therapy and drug treatment. Varenicline was prescribed at a standard dosage for 8 weeks. After 8 weeks of treatment, the dose was increased to 3 mg/d if patients tolerated varenicline well and continued smoking or, in spite of not smoking, if they experienced severe withdrawal symptoms. The sample included 73 patients, of whom 52 continued to smoke at 8 weeks and 21 stopped smoking but reported severe withdrawal discomfort. Carbon monoxide-validated continuous abstinence rates from week 9 to week 24 were 40% and 48% in these 2 subgroups, respectively. The increase in dosage was associated with adverse events in 22 patients (30%). These were mostly mild and included nausea, vomiting, abnormal dreams, and insomnia. Only 2 patients discontinued treatment (both because of nausea and vomiting). Thus, we conclude that increasing the varenicline dose in smokers who do not respond to the standard dose after 8 weeks of treatment is associated with limited adverse events and high success rates. PMID:24290118

  5. Comparison of radiation dose exposure in patients undergoing percutaneous coronary intervention vs. peripheral intervention

    PubMed Central

    Bartus, Stanislaw; Rakowski, Tomasz; Bobrowska, Beata; Rutka, Joanna; Zabowka, Anna; Tokarek, Tomasz; Dudek, Dariusz; Dubiel, Jacek

    2014-01-01

    Introduction Most endovascular techniques are associated with patient and personal exposure to radiation during the procedure. Ionising radiation can cause deterministic effects, such as skin injury, as well as stochastic effects, which increase the long-term risk of malignancy. Endovascular operators need to be aware of radiation danger and take all necessary steps to minimise the risk to patients and staff. Some procedures, especially percutaneous peripheral artery revascularisation, are associated with increased radiation dose due to time-consuming operations. There is limited data comparing radiation dose during percutaneous coronary intervention (PCI) with percutaneous transluminal angioplasty (PTA) of peripheral arteries. Aim To compare the radiation dose in percutaneous coronary vs. peripheral interventions in one centre with a uniform system of protection methods. Material and methods A total of 352 patients were included in the study. This included 217 patients undergoing PCI (single and multiple stenting) and 135 patients undergoing PTA (in lower extremities, carotid artery, renal artery, and subclavian artery). Radiation dose, fluoroscopy time, and total procedural time were reviewed. Cumulative radiation dose was measured in gray (Gy) units. Results The total procedural time was significantly higher in PTA (PCI vs. PTA: 60 (45–85) min vs. 75 (50–100) min), p < 0.001. The radiation dose for PCI procedures was significantly higher in comparison to PTA (PCI vs. PTA: 1.36 (0.83–2.23) Gy vs. 0.27 (0.13–0.46) Gy), p < 0.001. There was no significant difference in the fluoroscopy time (PCI vs. PTA: 12.9 (8.2–21.5) min vs. 14.4 (8.0–22.6) min), p = 0.6. The analysis of correlation between radiation dose and fluoroscopy time in PCI and PTA interventions separately shows a strong correlation in PCI group (r = 0.785). However, a weak correlation was found in PTA group (r = 0.317). Conclusions The radiation dose was significantly higher during PCI in

  6. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    SciTech Connect

    Chan, Maria F.; Song, Yulin; Dauer, Lawrence T.; Li Jingdong; Huang, David; Burman, Chandra

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  7. Patient specific tube current modulation for CT dose reduction

    NASA Astrophysics Data System (ADS)

    Jin, Yannan; Yin, Zhye; Yao, Yangyang; Wang, Hui; Wu, Mingye; Kalra, Mannudeep; De Man, Bruno

    2015-03-01

    Radiation exposure during CT imaging has drawn growing concern from academia, industry as well as the general public. Sinusoidal tube current modulation has been available in most commercial products and used routinely in clinical practice. To further exploit the potential of tube current modulation, Sperl et al. proposed a Computer-Assisted Scan Protocol and Reconstruction (CASPAR) scheme [6] that modulates the tube current based on the clinical applications and patient specific information. The purpose of this study is to accelerate the CASPAR scheme to make it more practical for clinical use and investigate its dose benefit for different clinical applications. The Monte Carlo simulation in the original CASPAR scheme was substituted by the dose reconstruction to accelerate the optimization process. To demonstrate the dose benefit, we used the CATSIM package generate the projection data and perform standard FDK reconstruction. The NCAT phantom at thorax position was used in the simulation. We chose three clinical cases (routine chest scan, coronary CT angiography with and without breast avoidance) and compared the dose level with different mA modulation schemes (patient specific, sinusoidal and constant mA) with matched image quality. The simulation study of three clinical cases demonstrated that the patient specific mA modulation could significantly reduce the radiation dose compared to sinusoidal modulation. The dose benefits depend on the clinical application and object shape. With matched image quality, for chest scan the patient specific mA profile reduced the dose by about 15% compared to the sinusoid mA modulation; for the organ avoidance scan the dose reduction to the breast was over 50% compared to the constant mA baseline.

  8. Dialytic dose in pediatric continuous renal replacement therapy patients.

    PubMed

    Ricci, Zaccaria; Guzzi, Francesco; Tuccinardi, Germana; Romagnoli, Stefano

    2016-10-01

    Although universally recognized as a crucial component of renal replacement therapy (RRT), dialytic dose has not been investigated in children with renal failure, differently from the adult population. Consequently, clear indications on the adequacy of continuous RRT in pediatric population is currently missing and wide variations in clinical practice exist worldwide. Fluid balance has been identified as a key factor in affecting outcomes these patients. Nonetheless, the concept and the precise evaluation of the dialytic dose for continuous pediatric RRT seems crucial, especially in light of the small body surface area of neonates and infants that might result into a difficult dose calculation. The present review clearly demonstrates that dialytic dose in pediatric RRT has been underestimated by scientific literature. Nowadays, the absence of any specific dedicated prospective study and the tendency to overlook theoretical basis of pediatric dialytic dose have led to the absence of a standard prescription: worldwide clinical practice ranges from very high doses to lower ones, also depending on different ways of estimating patients' sizes and solutes' volume of distribution. Large structured studies are warranted in order to define a reference dialytic dose for critically ill children, capable to cope an adequate solute control to gentle and safe treatments. PMID:27467103

  9. Doses to patients from diagnostic radiology in France

    SciTech Connect

    Maccia, C.; Benedittini, M.; Lefaure, C.; Fagnani, F.

    1988-04-01

    Reported here are results of a 1982 national survey in France to establish the collective effective dose equivalent associated with the main types of radiological examinations practiced annually in this country (except nuclear medicine, C.T. scans, dental radiology and mass chest screening). This report describes the methodology followed in achieving dose measurements either on an anthropomorphic phantom or directly on the patient, and it highlights the importance of the radiological procedures (number of x-ray films, fluoroscopy screening time, etc.) on the patient organ doses. The estimated collective effective dose equivalent associated with these radiological practices is 86,000 person-Sv, i.e., an individual effective dose equivalent of 1.58 mSv y-1; the genetically significant dose figure is 0.29 mSv and the collective red bone marrow dose due to 45 million x-ray exams practiced in France (1982) is 40,300 person-Sv, i.e. 0.74 mSv per inhabitant.

  10. Preceding Annular Skin Lesions in a Patient with Hemophagocytic Lymphohistiocytosis

    PubMed Central

    Jun, Hee Jin; Kim, Hyung Ok; Lee, Jun Young

    2015-01-01

    The cutaneous manifestations of hemophagocytic lymphohistiocytosis (HLH) are variable and nonspecific. A 42-year-old man presented with multiple annular, erythematous patches on the trunk for 3 months. Two months later, he presented with bullae along with high fever. The laboratory examination showed pancytopenia, hypertriglyceridemia, and hypofibrinogenemia. The bone marrow biopsy specimen showed an active hemophagocytosis. On the basis of these findings, a diagnosis of HLH was concluded. After five cycles of chemotherapy, his skin lesion completely resolved. Taking the results together, we suggest that annular skin lesion can be added to the list of cutaneous manifestations of HLH. PMID:26512177