Science.gov

Sample records for patient whole-body phantoms

  1. Whole-body voxel phantoms of paediatric patients--UF Series B.

    PubMed

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L; Bolch, Wesley E

    2006-09-21

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm x 0.86 mm x 3.0 mm, 0.90 mm x 0.90 mm x 5.0 mm, 1.16 mm x 1.16 mm x 6.0 mm, 0.94 mm x 0.94 mm x 6.00 mm and 1.18 mm x 1.18 mm x 6.72 mm, respectively. PMID:16953048

  2. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L.; Lee, Choonik; Bolch, Wesley E.

    2007-07-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images—the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  3. Whole-body voxel phantoms of paediatric patients—UF Series B

    NASA Astrophysics Data System (ADS)

    Lee, Choonik; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2006-09-01

    Following the previous development of the head and torso voxel phantoms of paediatric patients for use in medical radiation protection (UF Series A), a set of whole-body voxel phantoms of paediatric patients (9-month male, 4-year female, 8-year female, 11-year male and 14-year male) has been developed through the attachment of arms and legs from segmented CT images of a healthy Korean adult (UF Series B). Even though partial-body phantoms (head-torso) may be used in a variety of medical dose reconstruction studies where the extremities are out-of-field or receive only very low levels of scatter radiation, whole-body phantoms play important roles in general radiation protection and in nuclear medicine dosimetry. Inclusion of the arms and legs is critical for dosimetry studies of paediatric patients due to the presence of active bone marrow within the extremities of children. While the UF Series A phantoms preserved the body dimensions and organ masses as seen in the original patients who were scanned, comprehensive adjustments were made for the Series B phantoms to better match International Commission on Radiological Protection (ICRP) age-interpolated reference body masses, body heights, sitting heights and internal organ masses. The CT images of arms and legs of a Korean adult were digitally rescaled and attached to each phantom of the UF series. After completion, the resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year and 14-year were set at 0.86 mm × 0.86 mm × 3.0 mm, 0.90 mm × 0.90 mm × 5.0 mm, 1.16 mm × 1.16 mm × 6.0 mm, 0.94 mm × 0.94 mm × 6.00 mm and 1.18 mm × 1.18 mm × 6.72 mm, respectively.

  4. Whole-body CT in polytrauma patients: The effect of arm position on abdominal image quality when using a human phantom

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Kim, Hee-Joung; Lee, Chang-Lae; Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Su

    2012-06-01

    For a considerable number of emergency computed tomography (CT) scans, patients are unable to position their arms above their head due to traumatic injuries. The arms-down position has been shown to reduce image quality with beam-hardening artifacts in the dorsal regions of the liver, spleen, and kidneys, rendering these images non-diagnostic. The purpose of this study was to evaluate the effect of arm position on the image quality in patients undergoing whole-body CT. We acquired CT scans with various acquisition parameters at voltages of 80, 120, and 140 kVp and an increasing tube current from 200 to 400 mAs in 50 mAs increments. The image noise and the contrast assessment were considered for quantitative analyses of the CT images. The image noise (IN), the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and the coefficient of variation (COV) were evaluated. Quantitative analyses of the experiments were performed with CT scans representative of five different arm positions. Results of the CT scans acquired at 120 kVp and 250 mAs showed high image quality in patients with both arms raised above the head (SNR: 12.4, CNR: 10.9, and COV: 8.1) and both arms flexed at the elbows on the chest (SNR: 11.5, CNR: 10.2, and COV: 8.8) while the image quality significantly decreased with both arms in the down position (SNR: 9.1, CNR: 7.6, and COV: 11). Both arms raised, one arm raised, and both arms flexed improved the image quality compared to arms in the down position by reducing beam-hardening and streak artifacts caused by the arms being at the side of body. This study provides optimal methods for achieving higher image quality and lower noise in abdominal CT for trauma patients.

  5. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  6. A DXA Whole Body Composition Cross-Calibration Experience: Evaluation With Humans, Spine, and Whole Body Phantoms.

    PubMed

    Krueger, Diane; Libber, Jessie; Sanfilippo, Jennifer; Yu, Hui Jing; Horvath, Blaine; Miller, Colin G; Binkley, Neil

    2016-01-01

    BMD and BMC agreement, did not detect substantial lean and fat differences observed using BBCP and in vivo assessments. Consequently, spine phantoms are inadequate for dual-energy X-ray absorptiometry whole body composition cross-calibration. PMID:26071169

  7. Comparison of two anthropomorphic phantoms as a calibration tool for whole-body counter using Monte Carlo simulations.

    PubMed

    Manohari, M; Mathiyarasu, R; Rajagopal, V; Venkatraman, B

    2015-04-01

    The whole-body counting facility at the Indira Gandhi Centre for Atomic Research uses an in-house built Masonite cut-sheet phantom for the calibration of whole-body monitors. Recently, an Indian Adult BOMAB phantom was procured as an additional utility to augment the facility. The present study is to generate full-energy peak efficiencies (FEPE) of the shielded chair (SC) whole-body counting system using the new BOMAB phantom through Monte Carlo (MC) simulations. The values are compared with that of the Masonite phantom. First, the SC was modelled along with the Masonite phantom to estimate the FEPE values and Compton scattering factors (CSFs) for different energies. The simulated values were validated against the measurements using the Masonite cut-sheet phantom (Masonite phantom). The validated SC model was used along with the Indian adult BOMAB phantom to estimate the FEPEs and the CSFs. The simulated BOMAB phantom values were compared with the simulated Masonite phantom values. The maximum deviation for both the FEPEs and CSFs was ±10% validating the use of the Masonite phantom as a calibration tool representing an Indian adult. PMID:25406363

  8. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter J.; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-10-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  9. Application of voxel phantoms in whole-body counting for the validation of calibration phantoms and the assessment of uncertainties.

    PubMed

    de Carlan, L; Roch, P; Blanchardon, E; Franck, D

    2007-01-01

    This article is dedicated to the application of voxel phantoms in whole-body counting calibration. The first study was performed to validate this approach using IGOR, a physical phantom dedicated to fission and activation product (FAP) measurement, and a graphical user interface, developed at the IRSN internal dose assessment laboratory, called OEDIPE (French acronym for the tool for personalised internal dose assessment) associated with the Monte Carlo code MCNP. The method was validated by comparing the results of real measurements and simulations using voxel phantoms obtained from CT scan images of IGOR. To take this application further, two studies were carried out and are presented in this article. First, a comparison was made between the IGOR voxel based phantom (IGOVOX) and a voxel human body (Zubal Phantom) to confirm whether IGOR could be considered as a realistic representation of a human. Second, the errors made when considering sources homogeneously distributed in the body were assessed against real contamination by taking into account the biokinetic behaviour of the radioactive material for two modes of exposure: the ingestion of 137Cs in soluble form and the inhalation of insoluble 60Co several days after acute incorporation. PMID:17018545

  10. A Monte Carlo calibration of a whole body counter using the ICRP computational phantoms.

    PubMed

    Nilsson, Jenny; Isaksson, Mats

    2015-03-01

    A fast and versatile calibration of a whole body counter (WBC) is presented. The WBC, consisting of four large plastic scintillators, is to be used for measurements after accident or other incident involving ionising radiation. The WBC was calibrated using Monte Carlo modelling and the ICRP computational phantoms. The Monte Carlo model of the WBC was made in GATE, v6.2 (Geant4 Application for Tomographic Emission) and MATLAB. The Monte Carlo model was verified by comparing simulated energy spectrum and simulated counting efficiency with experimental energy spectrum and experimental counting efficiency for high-energy monoenergetic gamma-emitting point sources. The simulated results were in good agreement with experimental results except when compared with experimental results from high dead-time (DT) measurements. The Monte Carlo calibration was made for a heterogeneous source distribution of (137)Cs and (40)K, respectively, inside the ICRP computational phantoms. The source distribution was based on the biokinetic model for (137)Cs. PMID:25147249

  11. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy

    NASA Astrophysics Data System (ADS)

    Moteabbed, Maryam; Geyer, Amy; Drenkhahn, Robert; Bolch, Wesley E.; Paganetti, Harald

    2012-01-01

    Secondary neutron fluence created during proton therapy can be a significant source of radiation exposure in organs distant from the treatment site, especially in pediatric patients. Various published studies have used computational phantoms to estimate neutron equivalent doses in proton therapy. In these simulations, whole-body patient representations were applied considering either generic whole-body phantoms or generic age- and gender-dependent phantoms. No studies to date have reported using patient-specific geometry information. The purpose of this study was to estimate the effects of patient-phantom matching when using computational pediatric phantoms. To achieve this goal, three sets of phantoms, including different ages and genders, were compared to the patients’ whole-body CT. These sets consisted of pediatric age-specific reference, age-adjusted reference and anatomically sculpted phantoms. The neutron equivalent dose for a subset of out-of-field organs was calculated using the GEANT4 Monte Carlo toolkit, where proton fields were used to irradiate the cranium and the spine of all phantoms and the CT-segmented patient models. The maximum neutron equivalent dose per treatment absorbed dose was calculated and found to be on the order of 0 to 5 mSv Gy-1. The relative dose difference between each phantom and their respective CT-segmented patient model for most organs showed a dependence on how close the phantom and patient heights were matched. The weight matching was found to have much smaller impact on the dose accuracy except for very heavy patients. Analysis of relative dose difference with respect to height difference suggested that phantom sculpting has a positive effect in terms of dose accuracy as long as the patient is close to the 50th percentile height and weight. Otherwise, the benefit of sculpting was masked by inherent uncertainties, i.e. variations in organ shapes, sizes and locations. Other sources of uncertainty included errors associated

  12. Comparison of whole-body phantom designs to estimate organ equivalent neutron doses for secondary cancer risk assessment in proton therapy.

    PubMed

    Moteabbed, Maryam; Geyer, Amy; Drenkhahn, Robert; Bolch, Wesley E; Paganetti, Harald

    2012-01-21

    Secondary neutron fluence created during proton therapy can be a significant source of radiation exposure in organs distant from the treatment site, especially in pediatric patients. Various published studies have used computational phantoms to estimate neutron equivalent doses in proton therapy. In these simulations, whole-body patient representations were applied considering either generic whole-body phantoms or generic age- and gender-dependent phantoms. No studies to date have reported using patient-specific geometry information. The purpose of this study was to estimate the effects of patient–phantom matching when using computational pediatric phantoms. To achieve this goal, three sets of phantoms, including different ages and genders, were compared to the patients' whole-body CT. These sets consisted of pediatric age specific reference, age-adjusted reference and anatomically sculpted phantoms. The neutron equivalent dose for a subset of out-of-field organs was calculated using the GEANT4 Monte Carlo toolkit, where proton fields were used to irradiate the cranium and the spine of all phantoms and the CT-segmented patient models. The maximum neutron equivalent dose per treatment absorbed dose was calculated and found to be on the order of 0 to 5 mSv Gy(-1). The relative dose difference between each phantom and their respective CT-segmented patient model for most organs showed a dependence on how close the phantom and patient heights were matched. The weight matching was found to have much smaller impact on the dose accuracy except for very heavy patients. Analysis of relative dose difference with respect to height difference suggested that phantom sculpting has a positive effect in terms of dose accuracy as long as the patient is close to the 50th percentile height and weight. Otherwise, the benefit of sculpting was masked by inherent uncertainties, i.e. variations in organ shapes, sizes and locations.Other sources of uncertainty included errors associated

  13. New method of voxel phantom creation: application for whole-body counting calibration and perspectives in individual internal dose assessment.

    PubMed

    de Carlan, L; Roch, P; Blanchardon, E; Franck, D

    2005-01-01

    The purpose of this work is to present an innovative approach for the creation and application of voxel phantoms associated with the Monte Carlo calculation (MCNP) for the calibration of whole-body counting systems dedicated to the measurement of fission and activation products. The new method is based on a graphical user interface called 'OEDIPE' that allows to simulate a whole measurement process using all measurement parameters, the final goal being to approach a numerical calibration of the facilities. The creation of voxel phantoms and validation of the method are presented in this paper using the IGOR phantom. Finally, the efficiency of the method is discussed, in particular, with the perspective of validating IGOR as a suitable human-equivalent phantom and for the assessment of uncertainties in dose estimation due to the inhomogeneous distribution of activity in the body, correlated to the bio-kinetic behaviour of the radionuclides. PMID:16604619

  14. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data.

    PubMed

    Shypailo, R J; Ellis, K J

    2011-05-21

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of (40)K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration. PMID:21490381

  15. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    NASA Astrophysics Data System (ADS)

    Shypailo, R. J.; Ellis, K. J.

    2011-05-01

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration.

  16. Monte Carlo simulation of shielded chair whole body counting system with Masonite cut sheet phantom

    NASA Astrophysics Data System (ADS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Venkatraman, B.

    2015-05-01

    The shielded chair wholebody counting system used at IGCAR is calibrated experimentally using Masonite cut sheet phantom loaded with single radionuclide of known activity. Multiple point sources of a particular radionuclide are distributed at mid-thickness in each segment of the phantom during calibration. Though the detector can be used for the measurement of gamma photons upto 3000 keV, the experimental calibration is done only upto 1500 keV according to the requirement of measurement of fission and activation products, which emits gamma energies predominantly in the regions below 1500 keV. The expertize in numerical Monte Carlo simulation was utilized to obtain the efficiency values above 1500 keV. This paper focuses on the validation of the shielded chair counting system model using the Masonite cut sheet phantom measurements and applying the validated model to extend the energy range of the calibration upto 3 MeV. A good agreement of the theoretically simulated and experimental 137Cs spectrum with respect to the spectral shape, counts in all the energy regions and the photopeak efficiency validated the modeling of the counting system. A mathematical function to fit the counting efficiencies with photon energies was developed and a set of fitting parameters were established so that the efficiency value of any energy upto 3 MeV can be obtained without performing experimental efficiency calibration. The efficiency values obtained from the fit were compared with experimental ones and found to be in agreement, i.e., within 8% for the 250-1500 keV energy range. The Compton scattering factors (CSFs) at different low energies due to high energy photons were also simulated. The theoretical and experimental CSFs were compared and found to be matching within ±20%. Simulations with uniform source distribution inside the Masonite phantom has shown that the current source distribution followed at IGCAR gives efficiency values within ±5% compared to that of uniform

  17. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients.

    PubMed Central

    Nair, K S; Ford, G C; Ekberg, K; Fernqvist-Forbes, E; Wahren, J

    1995-01-01

    To elucidate the mechanism of insulin's anticatabolic effect in humans, protein dynamics were evaluated in the whole-body, splanchnic, and leg tissues in six C-peptide-negative type I diabetic male patients in the insulin-deprived and insulin-treated states using two separate amino acid models (leucine and phenylalanine). L-(1-13C,15N)leucine, L-(ring-2H5)phenylalanine, and L-(ring-2H2) tyrosine were infused intravenously, and isotopic enrichments of [1-13C,15N]-leucine, (13C)leucine, (13C)ketoisocaproate, (2H5)phenylalanine, [2H4]tyrosine, (2H2)tyrosine, and 13CO2 were measured in arterial, hepatic vein, and femoral vein samples. Whole-body leucine flux, phenylalanine flux, and tyrosine flux were decreased (< 0.01) by insulin treatment, indicating an inhibition of protein breakdown. Moreover, insulin decreased (< 0.05) the rates of leucine oxidation and leucine transamination (P < 0.01), but the percent rate of ketoisocaproate oxidation was increased by insulin (P < 0.01). Insulin also reduced (< 0.01) whole-body protein synthesis estimated from both the leucine model (nonoxidative leucine disposal) and the phenylalanine model (disposal of phenylalanine not accounted by its conversion to tyrosine). Regional studies demonstrated that changes in whole body protein breakdown are accounted for by changes in both splanchnic and leg tissues. The changes in whole-body protein synthesis were not associated with changes in skeletal muscle (leg) protein synthesis but could be accounted for by the splanchnic region. We conclude that though insulin decreases whole-body protein breakdown in patients with type I diabetes by inhibition of protein breakdown in splanchnic and leg tissues, it selectively decreases protein synthesis in splanchnic tissues, which accounted for the observed decrease in whole-body protein synthesis. Insulin also augmented anabolism by decreasing leucine transamination. Images PMID:7769135

  18. Patient-specific biomechanical model as whole-body CT image registration tool.

    PubMed

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-05-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  19. Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool

    PubMed Central

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-01-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and movements of body organs/tissues and skeletal structures for whole-body CT image registration using patient-specific non-linear biomechanical modelling. Unlike the conventional biomechanical modelling, our approach for building the biomechanical models does not require time-consuming segmentation of CT scans to divide the whole body into non-overlapping constituents with different material properties. Instead, a Fuzzy C-Means (FCM) algorithm is used for tissue classification to assign the constitutive properties automatically at integration points of the computation grid. We use only very simple segmentation of the spine when determining vertebrae displacements to define loading for biomechanical models. We demonstrate the feasibility and accuracy of our approach on CT images of seven patients suffering from cancer and aortic disease. The results confirm that accurate whole-body CT image registration can be achieved using a patient-specific non-linear biomechanical model constructed without time-consuming segmentation of the whole-body images. PMID:25721296

  20. Uncertainty budget for a whole body counter in the scan geometry and computer simulation of the calibration phantoms.

    PubMed

    Schlagbauer, M; Hrnecek, E; Rollet, S; Fischer, H; Brandl, A; Kindl, P

    2007-01-01

    At the Austrian Research Centers Seibersdorf (ARCS), a whole body counter (WBC) in the scan geometry is used to perform routine measurements for the determination of radioactive intake of workers. The calibration of the WBC is made using bottle phantoms with a homogeneous activity distribution. The same calibration procedures have been simulated using Monte Carlo N-Particle (MCNP) code and FLUKA and the results of the full energy peak efficiencies for eight energies and five phantoms have been compared with the experimental results. The deviation between experiment and simulation results is within 10%. Furthermore, uncertainty budget evaluations have been performed to find out which parameters make substantial contributions to these differences. Therefore, statistical errors of the Monte Carlo simulation, uncertainties in the cross section tables and differences due to geometrical considerations have been taken into account. Comparisons between these results and the one with inhomogeneous distribution, for which the activity is concentrated only in certain parts of the body (such as head, lung, arms and legs), have been performed. The maximum deviation of 43% from the homogeneous case has been found when the activity is concentrated on the arms. PMID:17656442

  1. Generating and using patient-specific whole-body models for organ dose estimates in CT with increased accuracy: feasibility and validation.

    PubMed

    Kalender, Willi A; Saltybaeva, Natalia; Kolditz, Daniel; Hupfer, Martin; Beister, Marcel; Schmidt, Bernhard

    2014-12-01

    The estimation of patient dose using Monte Carlo (MC) simulations based on the available patient CT images is limited to the length of the scan. Software tools for dose estimation based on standard computational phantoms overcome this problem; however, they are limited with respect to taking individual patient anatomy into account. The purpose of this study was to generate whole-body patient models in order to take scattered radiation and over-scanning effects into account. Thorax examinations were performed on three physical anthropomorphic phantoms at tube voltages of 80 kV and 120 kV; absorbed dose was measured using thermoluminescence dosimeters (TLD). Whole-body voxel models were built as a combination of the acquired CT images appended by data taken from widely used anthropomorphic voxel phantoms. MC simulations were performed both for the CT image volumes alone and for the whole-body models. Measured and calculated dose distributions were compared for each TLD chip position; additionally, organ doses were determined. MC simulations based only on CT data underestimated dose by 8%-15% on average depending on patient size with highest underestimation values of 37% for the adult phantom at the caudal border of the image volume. The use of whole-body models substantially reduced these errors; measured and simulated results consistently agreed to better than 10%. This study demonstrates that combined whole-body models can provide three-dimensional dose distributions with improved accuracy. Using the presented concept should be of high interest for research studies which demand high accuracy, e.g. for dose optimization efforts. PMID:25288527

  2. Whole-body MRI for the staging and follow-up of patients with metastasis.

    PubMed

    Schmidt, Gerwin P; Reiser, Maximilian F; Baur-Melnyk, Andrea

    2009-06-01

    The advent of whole-body MRI (WB-MRI) has introduced tumor imaging with a systemic approach compared to established sequential, multi-modal diagnostic algorithms. Hardware innovations, such as the introduction of multi-receiver channel whole-body scanners at 1.5 T and recently 3T, combined with acquisition acceleration techniques, have made high resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution and contrast media dynamics can be combined with whole-body anatomic coverage in a multi-planar imaging approach. More flexible protocols, e.g. including T1-weighted TSE- and STIR-imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen can be performed within less than 45 min. For initial tumor staging PET-CT as a competing whole-body modality in oncologic imaging has proved more accurate for the definition of T-stage and lymph node assessment, using the additional metabolic information of PET for the assessment of tumor viability and therapy response. However, new applications, such as MR-whole-body diffusion imaging, may significantly increase sensitivity in near future. WB-MRI has shown advantages for the detection of distant metastatic disease, especially from tumors frequently spreading to the liver or brain and it is especially useful as a radiation-free alternative for the surveillance of tumor patients with multiple follow-up exams. Furthermore, it has been introduced as a whole-body bone marrow screening application. Within this context WB-MRI is highly accurate for the detection of skeletal metastases and staging of hematologic diseases, such as multiple myeloma or lymphoma. This article summarizes recent developments and applications of WB-MRI and highlights its performance within the scope of systemic oncologic staging and surveillance. PMID:19457631

  3. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    PubMed Central

    Collado-Mateo, Daniel; Adsuar, Jose C.; Olivares, Pedro R.; del Pozo-Cruz, Borja; Parraca, Jose A.; del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  4. Benefits of whole body vibration training in patients hospitalised for COPD exacerbations - a randomized clinical trial

    PubMed Central

    2014-01-01

    Background Patients with stable COPD show improvements in exercise capacity and muscular function after the application of whole body vibration. We aimed to evaluate whether this modality added to conventional physiotherapy in exacerbated hospitalised COPD patients would be safe and would improve exercise capacity and quality of life. Methods 49 hospitalised exacerbated COPD patients were randomized (1:1) to undergo physiotherapy alone or physiotherapy with the addition of whole body vibration. The primary endpoint was the between-group difference of the 6-minute walking test (day of discharge – day of admission). Secondary assessments included chair rising test, quality of life, and serum marker analysis. Results Whole body vibration did not cause procedure-related adverse events. Compared to physiotherapy alone, it led to significantly stronger improvements in 6-minute walking test (95.55 ± 76.29 m vs. 6.13 ± 81.65 m; p = 0.007) and St. Georges Respiratory Questionnaire (-6.43 ± 14.25 vs. 5.59 ± 19.15, p = 0.049). Whole body vibration increased the expression of the transcription factor peroxisome proliferator receptor gamma coactivator-1-α and serum levels of irisin, while it decreased serum interleukin-8. Conclusion Whole body vibration during hospitalised exacerbations did not cause procedure-related adverse events and induced clinically significant benefits regarding exercise capacity and health-related quality of life that were associated with increased serum levels of irisin, a marker of muscle activity. Trial registration German Clinical Trials Register DRKS00005979. Registered 17 March 2014. PMID:24725369

  5. Evaluation of radiation dose and image quality of CT scan for whole-body pediatric PET/CT: A phantom study

    SciTech Connect

    Yang, Ching-Ching; Liu, Shu-Hsin; Mok, Greta S. P.; Wu, Tung-Hsin

    2014-09-15

    Purpose: This study aimed to tailor the CT imaging protocols for pediatric patients undergoing whole-body PET/CT examinations with appropriate attention to radiation exposure while maintaining adequate image quality for anatomic delineation of PET findings and attenuation correction of PET emission data. Methods: The measurements were made by using three anthropomorphic phantoms representative of 1-, 5-, and 10-year-old children with tube voltages of 80, 100, and 120 kVp, tube currents of 10, 40, 80, and 120 mA, and exposure time of 0.5 s at 1.75:1 pitch. Radiation dose estimates were derived from the dose-length product and were used to calculate risk estimates for radiation-induced cancer. The influence of image noise on image contrast and attenuation map for CT scans were evaluated based on Pearson's correlation coefficient and covariance, respectively. Multiple linear regression methods were used to investigate the effects of patient age, tube voltage, and tube current on radiation-induced cancer risk and image noise for CT scans. Results: The effective dose obtained using three anthropomorphic phantoms and 12 combinations of kVp and mA ranged from 0.09 to 4.08 mSv. Based on our results, CT scans acquired with 80 kVp/60 mA, 80 kVp/80 mA, and 100 kVp/60 mA could be performed on 1-, 5-, and 10-year-old children, respectively, to minimize cancer risk due to CT scans while maintaining the accuracy of attenuation map and CT image contrast. The effective doses of the proposed protocols for 1-, 5- and 10-year-old children were 0.65, 0.86, and 1.065 mSv, respectively. Conclusions: Low-dose pediatric CT protocols were proposed to balance the tradeoff between radiation-induced cancer risk and image quality for patients ranging in age from 1 to 10 years old undergoing whole-body PET/CT examinations.

  6. Whole body massage for reducing anxiety and stabilizing vital signs of patients in cardiac care unit

    PubMed Central

    Adib-Hajbaghery, Mohsen; Abasi, Ali; Rajabi-Beheshtabad, Rahman

    2014-01-01

    Background: Patients admitted in coronary care units face various stressors. Ambiguity of future life conditions and unawareness of caring methods intensifies the patients’ anxiety and stress. This study was conducted to assess the effects of whole body massage on anxiety and vital signs of patients with acute coronary disorders. Methods: A randomized controlled trial was conducted on 120 patients. Patients were randomly allocated into two groups. The intervention group received a session of whole body massage and the control group received routine care. The levels of State, Trait and overall anxiety and vital signs were assessed in both groups before and after intervention. Independent sample t-test, paired t-test, Chi-square and Fischer exact tests were used for data analysis. Results: The baseline overall mean score of anxiety was 79.43±29.34 in the intervention group and was decreased to 50.38±20.35 after massage therapy (p=0.001). However, no significant changes were occurred in the overall mean anxiety in the control group during the study. The baseline diastolic blood pressure was 77.05±8.12 mmHg and was decreased to 72.18±9.19 mmHg after the intervention (p=0.004). Also, significant decreases were occurred in heart rate and respiration rate of intervention group after massage therapy (p=0.001). However, no significant changes were occurred in vital signs of the control group during the study. Conclusion: The results suggest that whole body massage was effective in reducing anxiety and stabilizing vital signs of patients with acute coronary disorders. PMID:25405113

  7. Growth hormone and insulin reverse net whole body and skeletal muscle protein catabolism in cancer patients.

    PubMed Central

    Wolf, R F; Pearlstone, D B; Newman, E; Heslin, M J; Gonenne, A; Burt, M E; Brennan, M F

    1992-01-01

    The authors examined the effect of recombinant-human growth hormone (r-hGH) and insulin (INS) administration on protein kinetics in cancer patients. Twenty-eight cancer patients either received r-hGH for 3 days (GH group, n = 12, weight loss = 6 +/- 2%) or were not treated (control [CTL] group, n = 16, weight loss = 11 +/- 2%) before metabolic study. Recombinant-human growth hormone dose was 0.1 mg/kg/day (n = 6) or 0.2 mg/kg/day (n = 6). Patients then underwent measurement of baseline protein kinetics (GH/B, CTL/B) followed by a 2-hour euglycemic insulin infusion (1 mU/kg/minute) and repeat kinetic measurements (GH/INS,CTL/INS). Whole-body protein net balance (mumol leucine/kg/minute) was higher (p less than 0.05) in GH/INS (0.20 +/- 0.06) than in CTL/INS (0.06 +/- 0.03) or GH/B (-0.19 +/- 0.03). Skeletal muscle protein net balance (nmol phenylalanine/100 g/minute) in GH/INS (25 +/- 6) and CTL/INS (19 +/- 5) was higher than CTL/B (-18 +/- 3). Recombinant-human growth hormone and insulin reduce whole-body and skeletal muscle protein loss in cancer patients. Simultaneous use of these agents during nutritional therapy may benefit the cancer patient. PMID:1417177

  8. Estimation of radiation dose to patients from 18FDG whole body PET/CT investigations using dynamic PET scan protocol

    PubMed Central

    Kaushik, Aruna; Jaimini, Abhinav; Tripathi, Madhavi; D’Souza, Maria; Sharma, Rajnish; Mondal, Anupam; Mishra, Anil K.; Dwarakanath, Bilikere S.

    2015-01-01

    Background & objectives: There is a growing concern over the radiation exposure of patients from undergoing 18FDG PET/CT (18F-fluorodeoxyglucose positron emission tomography/computed tomography) whole body investigations. The aim of the present study was to study the kinetics of 18FDG distributions and estimate the radiation dose received by patients undergoing 18FDG whole body PET/CT investigations. Methods: Dynamic PET scans in different regions of the body were performed in 49 patients so as to measure percentage uptake of 18FDG in brain, liver, spleen, adrenals, kidneys and stomach. The residence time in these organs was calculated and radiation dose was estimated using OLINDA software. The radiation dose from the CT component was computed using the software CT-Expo and measured using computed tomography dose index (CTDI) phantom and ionization chamber. As per the clinical protocol, the patients were refrained from eating and drinking for a minimum period of 4 h prior to the study. Results: The estimated residence time in males was 0.196 h (brain), 0.09 h (liver), 0.007 h (spleen), 0.0006 h (adrenals), 0.013 h (kidneys) and 0.005 h (stomach) whereas it was 0.189 h (brain), 0.11 h (liver), 0.01 h (spleen), 0.0007 h (adrenals), 0.02 h (kidneys) and 0.004 h (stomach) in females. The effective dose was found to be 0.020 mSv/MBq in males and 0.025 mSv/MBq in females from internally administered 18FDG and 6.8 mSv in males and 7.9 mSv in females from the CT component. For an administered activity of 370 MBq of 18FDG, the effective dose from PET/CT investigations was estimated to be 14.2 mSv in males and 17.2 mSv in females. Interpretation & conclusions: The present results did not demonstrate significant difference in the kinetics of 18FDG distribution in male and female patients. The estimated PET/CT doses were found to be higher than many other conventional diagnostic radiology examinations suggesting that all efforts should be made to clinically justify and

  9. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During construction of the whole body counter (WBC) at the Children’s Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Car...

  10. Whole body vibration training in patients with COPD: A systematic review.

    PubMed

    Gloeckl, Rainer; Heinzelmann, Inga; Kenn, Klaus

    2015-08-01

    In recent years, several studies have shown that whole body vibration training (WBVT) may be a beneficial training mode in a variety of chronic diseases and conditions such as osteoporosis, fibromyalgia, multiple sclerosis, or chronic low back pain. However, a systematic review on the effects of WBVT in patients with chronic obstructive pulmonary disease (COPD) has not been performed yet. An extensive literature search was performed using various electronic databases (PubMed, Embase, LILACS, and PEDro). They were searched from inception until September 20, 2014, using key words like "COPD" and "whole body vibration training." A total of 91 studies could be identified and were screened for relevance by two independent reviewers. Six studies were included in a qualitative analysis. Trials studied either the effects of WBVT versus an inactive control group, versus sham WBVT, during an acute COPD exacerbation or as a modality on top of conventional endurance and strength training. All randomized trials reported a significantly superior benefit on exercise capacity (6-minute walking distance) in favor of the WBVT group. Although there are only few studies available, there is some preliminary evidence that WBVT may be an effective exercise modality to improve functional exercise capacity in patients with COPD. PMID:25904085

  11. Whole body vibration may have immediate adverse effects on the postural sway of stroke patients

    PubMed Central

    Hwang, Ki Jin; Ryu, Young Uk

    2016-01-01

    [Purpose] This study applied whole body vibration (WBV) at different vibration frequencies to chronic stroke patients and examined its immediate effect on their postural sway. [Subjects and Methods] A total of 14 (5 males, 9 females) stroke patients participated. The subjects were randomly assigned to one of the two vibration frequency groups (10 Hz and 40 Hz). Right before and after the application of WBV, the subjects performed quiet standing for 30 seconds, and COP parameters (range, total distance, and mean velocity) were analyzed. [Results] The 10 Hz WBV did not affect the postural sway of stroke patients. The 40 Hz WBV increased postural sway in the ML direction. [Conclusion] The results suggest that WBV application to stroke patients in the clinical field may have adverse effects and therefore caution is necessary. PMID:27064678

  12. Whole body vibration may have immediate adverse effects on the postural sway of stroke patients.

    PubMed

    Hwang, Ki Jin; Ryu, Young Uk

    2016-01-01

    [Purpose] This study applied whole body vibration (WBV) at different vibration frequencies to chronic stroke patients and examined its immediate effect on their postural sway. [Subjects and Methods] A total of 14 (5 males, 9 females) stroke patients participated. The subjects were randomly assigned to one of the two vibration frequency groups (10 Hz and 40 Hz). Right before and after the application of WBV, the subjects performed quiet standing for 30 seconds, and COP parameters (range, total distance, and mean velocity) were analyzed. [Results] The 10 Hz WBV did not affect the postural sway of stroke patients. The 40 Hz WBV increased postural sway in the ML direction. [Conclusion] The results suggest that WBV application to stroke patients in the clinical field may have adverse effects and therefore caution is necessary. PMID:27064678

  13. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  14. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis

    PubMed Central

    Ebrahimi, Ali; Eftekhari, Elham; Etemadifar, Masoud

    2015-01-01

    Background & objectives: Multiple sclerosis (MS) is a neurodegenerative disease, which affects the patients’ mobility, and exercise training is considered to be beneficial for these patients. The aim of this study was to determine the effects of 10 wk of low intensity exercise and whole body vibration (WBV) training on fatigue, quality of life, functional and physical indices, and serum levels of ghrelin, leptin, and testosterone in MS patients. Methods: Thirty four MS patients with mild to moderate disability were recruited and randomly divided into two groups, the training group (n=17) and control group (n=17). Patients in the training group did low intensity exercise and WBV training programme three times a week for 10 wk. The control group continued their routine life. Intended variables like expanded disability status scale (EDSS), fatigue, quality of life, functional and physical indices consisted of balance, walking speed, functional mobility, functional muscle endurance, and walking endurance, and serum levels of ghrelin, leptin, and testosterone were measured before and after the protocol. Results: Thirty subjects completed the study (23 females, 7 males; mean age =38.80 ± 9.50 yr). Statistical analysis demonstrated that EDSS in the WBV training group was significantly decreased (P=0.01), balance (P=0.01), and walking endurance significantly increased (P=0.01) in MS patients (P<0.05). Interpretation & conclusions: The results suggest that low intensity exercise and WBV training have some beneficial impact on functional and physical indices of MS patients. PMID:26609037

  15. Model based predictive design of post patient collimation for whole body CT scanners

    NASA Astrophysics Data System (ADS)

    Prakash, Prakhar; Boudry, John

    2015-03-01

    Scatter presents as a significant source of image artifacts in cone beam CT (CBCT) and considerable effort has been devoted to measuring the magnitude and influence of scatter. Scatter management includes both rejection and correction approaches, with anti-scatter grids (ASGs) commonly employed as a scatter rejection strategy. This work employs a Geant41,2 driven Monte Carlo model to investigate the impact of different ASG designs on scatter rejection performance across a range of scanner coverage along the patient axis. Scatter rejection is quantified in terms of scatter to primary ratio (SPR). One-dimensional (1D) ASGs (grid septa running parallel to patient axis) are compared across a range of septa height, septa width and septa material. Results indicate for a given septa width and patient coverage, SPR decreases with septa height but demonstrates diminishing returns for larger height values. For shorter septa heights, higher Z materials (e.g., Tungsten) exhibit superior scatter rejection to relatively lower Z materials (e.g., Molybdenum). For taller septa heights, the material difference is not as significant. SPR has a relatively weak dependence on septa width, with thicker septa giving lower SPR values at a given scanner coverage. The results are intended to serve as guide for designing post patient collimation for whole body CT scanners. Since taller grids with high Z materials pose a significant manufacturing cost, it is necessary to evaluate optimal ASG designs to minimize material and machining costs and to meet scatter rejection specifications at given patient coverage.

  16. Effect of training with whole body vibration on the sitting balance of stroke patients.

    PubMed

    Choi, Sung-Jin; Shin, Won-Seob; Oh, Bok-Kyun; Shim, Jae-Kwang; Bang, Dae-Hyouk

    2014-09-01

    [Purpose] The purpose of this study was to determine the effects of task-oriented training with whole body vibration (WBV) on the sitting balance of stroke patients. [Subjects] The subjects were 30 stroke patients who were randomly divided into experimental (n1=15) and control (n2=15) groups. [Methods] Subjects in both groups received general training five times per week. Subjects in the experimental group practiced an additional task-oriented training program with WBV, which was performed for 15 minutes, five times per week, for four weeks. The center of pressure (COP) path length and average velocity were used to assess subjects static sitting balance, and the Modified Functional Reach Test (MFRT) was used to assess their dynamic sitting balance. The paired t-test was performed to test the significance of differences between before and after the intervention. The independent t-test was conducted to test the significance of differences between the groups. [Results] Following the intervention, the experimental group showed a significant change in MFRT. [Conclusion] The results of this study suggest that task-oriented training with WBV is feasible and efficacious for stroke patients. PMID:25276025

  17. Effect of Training with Whole Body Vibration on the Sitting Balance of Stroke Patients

    PubMed Central

    Choi, Sung-Jin; Shin, Won-Seob; Oh, Bok-Kyun; Shim, Jae-Kwang; Bang, Dae-Hyouk

    2014-01-01

    [Purpose] The purpose of this study was to determine the effects of task-oriented training with whole body vibration (WBV) on the sitting balance of stroke patients. [Subjects] The subjects were 30 stroke patients who were randomly divided into experimental (n1=15) and control (n2=15) groups. [Methods] Subjects in both groups received general training five times per week. Subjects in the experimental group practiced an additional task-oriented training program with WBV, which was performed for 15 minutes, five times per week, for four weeks. The center of pressure (COP) path length and average velocity were used to assess subjects static sitting balance, and the Modified Functional Reach Test (MFRT) was used to assess their dynamic sitting balance. The paired t-test was performed to test the significance of differences between before and after the intervention. The independent t-test was conducted to test the significance of differences between the groups. [Results] Following the intervention, the experimental group showed a significant change in MFRT. [Conclusion] The results of this study suggest that task-oriented training with WBV is feasible and efficacious for stroke patients. PMID:25276025

  18. Whole body vibration exercises and the improvement of the flexibility in patient with metabolic syndrome.

    PubMed

    Sá-Caputo, Danúbia da Cunha; Ronikeili-Costa, Pedro; Carvalho-Lima, Rafaelle Pacheco; Bernardo, Luciana Camargo; Bravo-Monteiro, Milena Oliveira; Costa, Rebeca; de Moraes-Silva, Janaina; Paiva, Dulciane Nunes; Machado, Christiano Bittencourt; Mantilla-Giehl, Paula; Arnobio, Adriano; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2014-01-01

    Vibrations produced in oscillating/vibratory platform generate whole body vibration (WBV) exercises, which are important in sports, as well as in treating diseases, promoting rehabilitation, and improving the quality of life. WBV exercises relevantly increase the muscle strength, muscle power, and the bone mineral density, as well as improving the postural control, the balance, and the gait. An important number of publications are found in the PubMed database with the keyword "flexibility" and eight of the analyzed papers involving WBV and flexibility reached a level of evidence II. The biggest distance between the third finger of the hand to the floor (DBTFF) of a patient with metabolic syndrome (MS) was found before the first session and was considered to be 100%. The percentages to the other measurements in the different sessions were determined to be related to the 100%. It is possible to see an immediate improvement after each session with a decrease of the %DBTFF. As the presence of MS is associated with poorer physical performance, a simple and safe protocol using WBV exercises promoted an improvement of the flexibility in a patient with MS. PMID:25276434

  19. Whole Body Vibration Exercises and the Improvement of the Flexibility in Patient with Metabolic Syndrome

    PubMed Central

    Sá-Caputo, Danúbia da Cunha; Ronikeili-Costa, Pedro; Carvalho-Lima, Rafaelle Pacheco; Bernardo, Luciana Camargo; Bravo-Monteiro, Milena Oliveira; Costa, Rebeca; de Moraes-Silva, Janaina; Paiva, Dulciane Nunes; Machado, Christiano Bittencourt; Mantilla-Giehl, Paula; Arnobio, Adriano; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2014-01-01

    Vibrations produced in oscillating/vibratory platform generate whole body vibration (WBV) exercises, which are important in sports, as well as in treating diseases, promoting rehabilitation, and improving the quality of life. WBV exercises relevantly increase the muscle strength, muscle power, and the bone mineral density, as well as improving the postural control, the balance, and the gait. An important number of publications are found in the PubMed database with the keyword “flexibility” and eight of the analyzed papers involving WBV and flexibility reached a level of evidence II. The biggest distance between the third finger of the hand to the floor (DBTFF) of a patient with metabolic syndrome (MS) was found before the first session and was considered to be 100%. The percentages to the other measurements in the different sessions were determined to be related to the 100%. It is possible to see an immediate improvement after each session with a decrease of the %DBTFF. As the presence of MS is associated with poorer physical performance, a simple and safe protocol using WBV exercises promoted an improvement of the flexibility in a patient with MS. PMID:25276434

  20. Counting efficiency of whole-body monitoring system using BOMAB and ANSI/IAEA thyroid phantom due to internal contamination of 131I.

    PubMed

    Ghare, V P; Patni, H K; Akar, D K; Rao, D D

    2014-12-01

    In this study, the effect of Indian reference BOttle MAnnikin aBsorber (BOMAB) neck with axial cavity and American National Standards Institute (ANSI)/International Atomic Energy Agency (IAEA) thyroid phantom using pencil sources of (133)Ba ((131)I simulant) on counting efficiency (CE) is seen experimentally in static geometry for whole-body monitoring system comprising 10.16-cm diameter and 7.62-cm-thick NaI(Tl) detector. The CE estimated using the neck part of BOMAB phantom is 50.2% lower in comparison with ANSI phantom. In rest of the studies FLUKA code is used for Monte Carlo simulations using ANSI/IAEA thyroid phantom. The simulation results are validated in static geometries with experimental CE and the differences are within 1.3%. It is observed that CE for pencil source distribution is 3.97% higher for (133)Ba in comparison with CE of (131)I source. Simulated CE for pencil source distribution is 4.7% lower in comparison with uniform source distribution in the volume of thyroid for (131)I. Since the radiation workers are of different physique; overlying tissue thickness (OTT) and neck-to-detector distance play an important role in the calculation of activity in thyroid. The CE decreases with increase in OTT and is found to be 5.5% lower if OTT is changed from 1.1 to 2 cm. Finally, the simulations are carried out to estimate the variation in CE due to variation in the neck-to-detector distance. The CE is 6.2% higher if the neck surface-to-detector distance is decreased from 21.4 to 20.4 cm and it goes on increasing up to 61.9% if the distance is decreased to 15.4 cm. In conclusion, the calibration of whole-body monitoring system for (131)I should be carried out with ANSI/IAEA thyroid phantom, the neck-to-detector distance controlled or the CE corrected for this, and the CE should be corrected for OTT. PMID:24179144

  1. Long-term whole-body vibration training in two late-onset Pompe disease patients.

    PubMed

    Montagnese, Federica; Thiele, Simone; Wenninger, Stephan; Schoser, Benedikt

    2016-08-01

    The treatment of late-onset Pompe disease (LOPD) relies on enzyme replacement therapy (ERT) and physiotherapy but the most appropriate exercise program is not yet established. Whole-body vibration training (WBVT) has showed promising results, improving motor performances in various populations. Our aim is to assess the effects of WBVT performed by two LOPD patients in addition to ERT and physiotherapy. A side-alternating WBVT lasting 2 years; clinical assessments included: manual muscle testing (MRC sumscore), knee extension and arm flection isometric strength (multi-muscle tester M3diagnos), timed function tests (10 m walking, standing-up from chair, ascending 4-steps), 6 min walking (6 MWT), motor disability (Walton Gardner-Medwin scale), pulmonary function. Follow-up evaluations performed for 9 years since ERT start (pre-WBVT and post-WBVT) are reported for comparison. MRC sumscore improved in both patients (Pt.1:41 → 48, Pt.2:42 → 47) as isometric strength of knee extension (Pt.1: + 62 %, Pt.2: + 26 %) and arm flection (Pt.1: + 88 %, Pt.2: + 66 %), 6 MWT improved in Pt.1 (+75 m). Timed function tests did not greatly change. Patients reported no significant CK elevation or WBVT-related complaints. WBVT may be safely used in LOPD and seems to moderately boost muscle strength in patients receiving ERT and physiotherapy for more than 3 years. Larger cohorts should be studied to better assess WBVT potential as adjunctive exercise tool in LOPD. PMID:27193587

  2. Whole-Body CT in Haemodynamically Unstable Severely Injured Patients – A Retrospective, Multicentre Study

    PubMed Central

    Huber-Wagner, Stefan; Biberthaler, Peter; Häberle, Sandra; Wierer, Matthias; Dobritz, Martin; Rummeny, Ernst; van Griensven, Martijn; Kanz, Karl-Georg; Lefering, Rolf

    2013-01-01

    Background The current common and dogmatic opinion is that whole-body computed tomography (WBCT) should not be performed in major trauma patients in shock. We aimed to assess whether WBCT during trauma-room treatment has any effect on the mortality of severely injured patients in shock. Methods In a retrospective multicenter cohort study involving 16719 adult blunt major trauma patients we compared the survival of patients who were in moderate, severe or no shock (systolic blood pressure 90–110,<90 or >110 mmHg) at hospital admission and who received WBCT during resuscitation to those who did not. Using data derived from the 2002–2009 version of TraumaRegister®, we determined the observed and predicted mortality and calculated the standardized mortality ratio (SMR) as well as logistic regressions. Findings 9233 (55.2%) of the 16719 patients received WBCT. The mean injury severity score was 28.8±12.1. The overall mortality rate was 17.4% (SMR  = 0.85, 95%CI 0.81–0.89) for patients with WBCT and 21.4% (SMR = 0.98, 95%CI 0.94–1.02) for those without WBCT (p<0.001). 4280 (25.6%) patients were in moderate shock and 1821 (10.9%) in severe shock. The mortality rate for patients in moderate shock with WBCT was 18.1% (SMR 0.85, CI95% 0.78–0.93) compared to 22.6% (SMR 1.03, CI95% 0.94–1.12) to those without WBCT (p<0.001, p = 0.002 for the SMRs). The mortality rate for patients in severe shock with WBCT was 42.1% (SMR 0.99, CI95% 0.92–1.06) compared to 54.9% (SMR 1.10, CI95% 1.02–1.16) to those without WBCT (p<0.001, p = 0.049 for the SMRs). Adjusted logistic regression analyses showed that WBCT is an independent predictor for survival that significantly increases the chance of survival in patients in moderate shock (OR = 0.73; 95%CI 0.60–0.90, p = 0.002) as well as in severe shock (OR = 0.67; 95%CI 0.52–0.88, p = 0.004). The number needed to scan related to survival was 35 for all patients, 26 for those in moderate shock

  3. Effect of Whole Body Massage by Patient's Companion on the Level of Blood Cortisol in Coronary Patients

    PubMed Central

    Adib-Hajbaghery, Mohsen; Rajabi-Beheshtabad, Rahman; Abasi, Ali

    2013-01-01

    Background: Inconsistent results have been reported on the effect of massage therapy on the blood cortisol levels. Also, no study is available about the effect of massage done by patient's companions on the level of blood cortisol in patients hospitalized at CCU. Objective: The present study aimed to evaluate the effect of whole body massage performed by patient's companion on the level of blood cortisol among the patients admitted in CCU. Patients and Methods: A randomized controlled trial was conducted on 60 patients admitted to a CCU ward. Patients were randomly placed into two groups of massage performed by patient's companion and the control group. In the intervention group, whole body massage was administered. The control group did not receive massage. Data analysis was performed using the SPSS 11.5 software. Independent sample and Paired samples t-test, Chi Square and Fisher's Exact tests were used to analyze the data. Results: The mean age for the patients was 58.90 ± 15.63 years. None of them had the history of massage therapy. In the group massaged by the patients' companions, the mean of blood cortisol was 323.6 ± 162.6 nanomoles which decreased to 268.4 ± 141.1 after the intervention (P < 0.102). The mean of blood cortisol in the control group did not change significantly. Conclusions: Massage therapy lowered the level of cortisol in the group massaged by the patients' companions. It can be recommended that massage therapy be used in patients admitted in CCU. PMID:25414870

  4. Relationship between whole-body tumor burden, clinical phenotype, and quality of life in patients with neurofibromatosis.

    PubMed

    Merker, Vanessa L; Bredella, Miriam A; Cai, Wenli; Kassarjian, Ara; Harris, Gordon J; Muzikansky, Alona; Nguyen, Rosa; Mautner, Victor F; Plotkin, Scott R

    2014-06-01

    Patients with neurofibromatosis 1 (NF1), NF2, and schwannomatosis share a predisposition to develop multiple nerve sheath tumors. Previous studies have demonstrated that patients with NF1 and NF2 have reduced quality of life (QOL), but no studies have examined the relationship between whole-body tumor burden and QOL in these patients. We administered a QOL questionnaire (the SF-36) and a visual analog pain scale (VAS) to a previously described cohort of adult neurofibromatosis patients undergoing whole-body MRI. One-sample t-tests were used to compare norm-based SF-36 scores to weighted population means. Spearman correlation coefficients and multiple linear regression analyses controlling for demographic and disease-specific clinical variable were used to relate whole-body tumor volume to QOL scales. Two hundred forty-five patients (142 NF1, 53 NF2, 50 schwannomatosis) completed the study. Subjects showed deficits in selected subscales of the SF-36 compared to adjusted general population means. In bivariate analysis, increased tumor volume was significantly associated with pain in schwannomatosis patients, as measured by the SF-36 bodily pain subscale (rho = -0.287, P = 0.04) and VAS (rho = 0.34, P = 0.02). Regression models for NF2 patients showed a positive relationship between tumor burden and increased pain, as measured by the SF-36 (P = 0.008). Patients with NF1, NF2, and schwannomatosis suffer from reduced QOL, although only pain shows a clear relationship to patient's overall tumor burden. These findings suggest that internal tumor volume is not a primary contributor to QOL and emphasize the need for comprehensive treatment approaches that go beyond tumor-focused therapies such as surgery by including psychosocial interventions. PMID:24664633

  5. Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase

    PubMed Central

    Di Gioia, D; Stieber, P; Schmidt, G P; Nagel, D; Heinemann, V; Baur-Melnyk, A

    2015-01-01

    Background: Follow-up care in breast cancer is still an issue of debate. Diagnostic methods are more sensitive, and more effective therapeutic options are now available. The risk of recurrence is not only influenced by tumour stage but also by the different molecular subtypes. This study was performed to evaluate the use of whole-body imaging combined with tumour marker monitoring for the early detection of asymptomatic metastatic breast cancer (MBC). Methods: This analysis was performed as part of a follow-up study evaluating 813 patients with a median follow-up of 63 months. After primary therapy, all patients underwent tumour marker monitoring for CEA, CA 15-3 and CA 125 at 6-week intervals within an intensified diagnostic aftercare algorithm. A reproducible previously defined increase was considered as a strong indicator of MBC. From 2007 to 2010, 44 patients with tumour marker increase underwent whole-body magnetic resonance imaging and/or an FDG-PET/CT scan. Histological clarification and/or imaging follow-up were done. Results: Metastases were detected in 65.9% (29/44) of patients, 13.6% (6/44) had secondary malignancies besides breast cancer and 20.5% (9/44) had no detectable malignancy. Limited disease was found in 24.1% (7/29) of patients. Median progression-free survival of MBC was 9.2 months and median overall survival was 41.1 months. The 3- and 5-year survival rates were 64.2% and 40.0%, respectively. Conclusions: A reproducible tumour marker increase followed by whole-body imaging is highly effective for early detection. By consequence, patients might benefit from earlier detection and improved therapeutic options with a prolonged survival. PMID:25647014

  6. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems

    SciTech Connect

    Boellaard, Ronald; Rausch, Ivo; Beyer, Thomas; Delso, Gaspar; Yaqub, Maqsood; Quick, Harald H.; Sattler, Bernhard

    2015-10-15

    Purpose: Integrated positron emission tomography/magnetic resonance (PET/MR) systems derive the PET attenuation correction (AC) from dedicated MR sequences. While MR-AC performs reasonably well in clinical patient imaging, it may fail for phantom-based quality control (QC). The authors assess the applicability of different protocols for PET QC in multicenter PET/MR imaging. Methods: The National Electrical Manufacturers Association NU 2 2007 image quality phantom was imaged on three combined PET/MR systems: a Philips Ingenuity TF PET/MR, a Siemens Biograph mMR, and a GE SIGNA PET/MR (prototype) system. The phantom was filled according to the EANM FDG-PET/CT guideline 1.0 and scanned for 5 min over 1 bed. Two MR-AC imaging protocols were tested: standard clinical procedures and a dedicated protocol for phantom tests. Depending on the system, the dedicated phantom protocol employs a two-class (water and air) segmentation of the MR data or a CT-based template. Differences in attenuation- and SUV recovery coefficients (RC) are reported. PET/CT-based simulations were performed to simulate the various artifacts seen in the AC maps (μ-map) and their impact on the accuracy of phantom-based QC. Results: Clinical MR-AC protocols caused substantial errors and artifacts in the AC maps, resulting in underestimations of the reconstructed PET activity of up to 27%, depending on the PET/MR system. Using dedicated phantom MR-AC protocols, PET bias was reduced to −8%. Mean and max SUV RC met EARL multicenter PET performance specifications for most contrast objects, but only when using the dedicated phantom protocol. Simulations confirmed the bias in experimental data to be caused by incorrect AC maps resulting from the use of clinical MR-AC protocols. Conclusions: Phantom-based quality control of PET/MR systems in a multicenter, multivendor setting may be performed with sufficient accuracy, but only when dedicated phantom acquisition and processing protocols are used for

  7. Non-osseous incidental findings in low-dose whole-body CT in patients with multiple myeloma

    PubMed Central

    Bach, A G; Tcherkes, A; Schramm, D

    2014-01-01

    Objective: The purpose of this study was to identify the frequency and grading of non-osseous incidental findings (NOIF) in non-contrast whole-body low-dose CT (LDCT) in patients with multiple myeloma. Methods: In the time period from 2010 to 2013, 93 patients with multiple myeloma were staged by non-contrast whole-body LDCT at our radiological department. LDCT images were analysed retrospectively for NOIF, which also included unsuspected extramedullary manifestation of multiple myeloma. All NOIF were classified as major or clinically significant, moderate or possibly clinically significant and minor or not clinically significant. Medical records were analysed regarding further investigation and follow-up of the identified NOIF. Results: In the 93 patients, 295 NOIF were identified (on average, 3.2 NOIF per patient). Most of the NOIF (52.4%) were not clinically significant, 25.8% of the NOIF were possibly clinically significant and 21.8% of the NOIF were clinically significant. Clinically significant NOIF were investigated further by CT after intravenous administration of contrast medium and/or by ultrasound or MRI. In 34 of these cases, extramedullary relapse of myeloma, occult carcinoma or infectious/septic incidental findings were diagnosed (11.5% of all NOIF). In the remaining 10.3% of the NOIF classified as clinically significant, various benign lesions were diagnosed. Conclusion: LDCT detected various non-osseous lesions in patients with multiple myeloma. 36.6% of the patients had clinically significant NOIF. Therefore, LDCT examinations in patients with multiple myeloma should be evaluated carefully for the presence of NOIF. Advances in knowledge: LDCT identified several NOIF. A total of 36.6% of patients with multiple myeloma had clinically significant NOIF. Radiologists should analyse LDCT examinations in patients with multiple myeloma not only for bone lesions, but also for lesions in other organs. PMID:25004949

  8. Feasibility of using whole body vibration as a means for controlling spasticity in post-stroke patients: a pilot study.

    PubMed

    Miyara, Kodai; Matsumoto, Shuji; Uema, Tomohiro; Hirokawa, Takuya; Noma, Tomokazu; Shimodozono, Megumi; Kawahira, Kazumi

    2014-02-01

    To examine the feasibility of adapting whole body vibration (WBV) in the hemiplegic legs of post-stroke patients and to investigate the anti-spastic effects, and the improvement of motor function and walking ability. Twenty-five post-stroke patients with lower-limb spasticity were enrolled in the study. Each subject sat with hip joint angles to approximately 90° of flexion, and with knee joint angles to 0° of extension. WBV was applied at 30 Hz (4-8 mm amplitude) for 5 min on hamstrings, gastrocnemius and soleus muscles. The modified Ashworth scale was significantly decreased, active and passive range of motion (A-ROM, P-ROM) for ankle dorsiflexion and straight leg raising increased, and walking speed and cadence both improved during the 5-min intervention. Our proposed therapeutic approach could therefore be a novel neuro-rehabilitation strategy among patients with various severities. PMID:24439649

  9. Is there a role of whole-body bone scan in patients with esophageal squamous cell carcinoma

    PubMed Central

    2012-01-01

    Background Correct detection of bone metastases in patients with esophageal squamous cell carcinoma is pivotal for prognosis and selection of an appropriate treatment regimen. Whole-body bone scan for staging is not routinely recommended in patients with esophageal squamous cell carcinoma. The aim of this study was to investigate the role of bone scan in detecting bone metastases in patients with esophageal squamous cell carcinoma. Methods We retrospectively evaluated the radiographic and scintigraphic images of 360 esophageal squamous cell carcinoma patients between 1999 and 2008. Of these 360 patients, 288 patients received bone scan during pretreatment staging, and sensitivity, specificity, positive predictive value, and negative predictive value of bone scan were determined. Of these 360 patients, surgery was performed in 161 patients including 119 patients with preoperative bone scan and 42 patients without preoperative bone scan. Among these 161 patients receiving surgery, 133 patients had stages II + III disease, including 99 patients with preoperative bone scan and 34 patients without preoperative bone scan. Bone recurrence-free survival and overall survival were compared in all 161 patients and 133 stages II + III patients, respectively. Results The diagnostic performance for bone metastasis was as follows: sensitivity, 80%; specificity, 90.1%; positive predictive value, 43.5%; and negative predictive value, 97.9%. In all 161 patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0.009, univariately). In multivariate comparison, absence of preoperative bone scan (P = 0.012, odds ratio: 5.053) represented the independent adverse prognosticator for bone recurrence-free survival. In 133 stages II + III patients receiving surgery, absence of preoperative bone scan was significantly associated with inferior bone recurrence-free survival (P = 0

  10. Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: What radiologists should know.

    PubMed

    Albano, Domenico; La Grutta, Ludovico; Grassedonio, Emanuele; Patti, Caterina; Lagalla, Roberto; Midiri, Massimo; Galia, Massimo

    2016-09-01

    The technological advances in radiological imaging and the relevance of a diagnostic tool that may reduce radiation-induced long-term effects have led to a widespread use of whole body magnetic resonance imaging (WB-MRI) with diffusion weighted imaging for oncologic patients. A lot of studies demonstrated the feasibility and reliability of WB-MRI as an alternative technique for lymphoma staging and response assessment during and after treatment. In this paper, taking advantage of our 2years of experience using WB-MRI for lymphoma, we discuss the main pitfalls and artifacts radiologists should know examining a WB-MRI performed on this typology of patients in order to avoid images misinterpretation. PMID:27114337

  11. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    PubMed Central

    2011-01-01

    Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques. PMID:22004072

  12. Assessment of degree of hydration in dialysis patients using whole body and calf bioimpedance analysis

    NASA Astrophysics Data System (ADS)

    Zhu, F.; Kotanko, P.; Handelman, G. J.; Raimann, J.; Liu, L.; Carter, M.; Kuhlmann, M. K.; Siebert, E.; Leonard, E. F.; Levin, N. W.

    2010-04-01

    Prescription of an appropriate post hemodialysis (HD) dialysis target weight requires accurate evaluation of the degree of hydration. The aim of this study was to investigate whether a state of normal hydration as defined by calf bioimpedance spectroscopy (cBIS) could be characterized in HD and normal subjects (NS). cBIS was performed in 62 NS (33 m/29 f) and 30 HD patients (16 m /14 f) pre- and post-dialysis to measure extracellular resistance. Normalized calf resistivity at 5 kHz (ρN,5) was defined as resistivity divided by body mass index. Measurements were made at baseline (BL) and at a state of normal hydration (NH) established following the progressive reduction of post-HD weight over successive dialysis treatments until the ρN,5 was in the range of NS. Blood pressures were measured pre- and post-HD treatment. ρN,5 in males and females differed significantly in NS (20.5±1.99 vs 21.7±2.6 10-2 Ωm3/kg, p>0.05). In patients, ρN,5 notably increased and reached NH range due to progressive decrease in body weight, and systolic blood pressure (SBP) significantly decreased pre- and post-HD between BL and NBH respectively. This establishes the use of ρN,5 as a new comparator allowing the clinician to incrementally monitor the effect of removal of extracellular fluid from patients over a course of dialysis treatments.

  13. Extremity Radioactive Iodine Uptake on Post-therapeutic Whole Body Scan in Patients with Differentiated Thyroid Cancer

    PubMed Central

    Wakabayashi, Hiroshi; Taki, Junichi; Inaki, Anri; Toratani, Ayane; Kayano, Daiki; Kinuya, Seigo

    2015-01-01

    Objective(s): We investigated a frequency of lower extremity uptake on the radioactive iodine (RAI) whole body scan (WBS) after RAI treatment in patients with differentiated thyroid cancer, in order to retrospectively examine whether or not the frequency was pathological. Methods: This retrospective study included 170 patients with thyroid cancer, undergoing RAI treatment. Overall, 99(58%) and 71(42%) patients received single and multiple RAI treatments, respectively. Post-therapeutic WBS was acquired after 3 days of RAI administration. For patients with multiple RAI treatments, the WBS of their last RAI treatment was evaluated. Lower extremity uptake on post-therapeutic WBS was classified into 3 categories: bilateral femoral uptake (type A), bilateral femoral and tibia uptake (type B), and uptake in bilateral upper and lower extremities (type C). Then, the patients with RAI uptake in the lower extremities on WBS were analyzed with clinical parameters. Results: Overall, 99 patients (58%) had the extremity uptake on their posttherapeutic RAI WBS. As the results indicated, 42, 53, and 4 patients had type A, type B, and type C uptakes, respectively. Lower extremity uptake was significantly associated with younger age, not only in subjects with multiple RAI treatments but also in all the patients (P<0.05). Accumulation in patients with multiple RAI treatments was more frequent than patients with single RAI treatment (P<0.05). Lower extremity uptake was not associated with counts of the white blood cell count, hemoglobin level, platelet count, estimated glomerular filtration rate, effective half-time of RAI, serum TSH level, and anti-Tg concentration. Conclusion: About half of the patients had lower extremity uptake on the posttherapeutic RAI WBS, especially younger patients and those with multiple courses of RAI treatment. Bilateral lower extremity’s RAI uptake on the posttherapeutic WBS should be considered as physiological RAI distribution in bone marrow.

  14. Whole body bone scan. Case report

    SciTech Connect

    Nagle, C.E.; Morayati, S.J.; Carichner, S.; Winkes, B.; Cassisi, R.; McGraw, R.; Schane, E.

    1988-03-01

    The authors present the case example of a patient whose bone scan did not reveal an ulnar abnormality because the ulnae were not included on the whole body scan image. This interesting case demonstrates the importance of positioning the patient for the whole body scan to include the entire skeleton or obtaining additional spot views of the appendicular or axial skeleton not included on whole body images.

  15. Effect of whole-body vibration exercise in a sitting position prior to therapy on muscle tone and upper extremity function in stroke patients

    PubMed Central

    Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients. PMID:27065354

  16. Effect of whole-body vibration exercise in a sitting position prior to therapy on muscle tone and upper extremity function in stroke patients.

    PubMed

    Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients. PMID:27065354

  17. Whole-Body muscle MRI in a series of patients with congenital myopathy related to TPM2 gene mutations.

    PubMed

    Jarraya, Mohamed; Quijano-Roy, Susana; Monnier, Nicole; Béhin, Anthony; Avila-Smirnov, Daniela; Romero, Norma Beatriz; Allamand, Valérie; Richard, Pascale; Barois, Annie; May, Adrien; Estournet, Brigitte; Mercuri, Eugenio; Carlier, Pierre G; Carlier, Robert-Yves

    2012-10-01

    Beta-tropomyosin 2 (TPM2) gene mutations are a rare cause of congenital myopathy with variable clinical and histological features. We describe muscle involvement using Whole-Body muscle Magnetic Resonance Imaging (WBMRI) in 8 individuals with genetically proven TPM2 mutations and different clinical and histological features (nemaline myopathy, 'cap disease', Bethlem-like phenotype, arthrogryposis). Most patients shared a recognizable MRI pattern with the involvement of masticatory and distal lower leg muscles. The lower leg showed constant soleus muscle involvement, and often also involvement of peroneus, tibialis anterior, and toe flexor muscles. Pelvic and shoulder girdles, and upper limbs muscles were quite spared. Two adult subjects (a patient and a paucisymptomatic parent) had a more diffuse involvement with striking fat infiltration of the rectus femoris muscle. Two children showed variant findings: one presented with masseter involvement associated with severe axial fat infiltration, the second had masticatory and distal leg muscle involvement (soleus and gastrocnemius muscles). Our study suggests that, independently of the clinical and histological presentation, most patients with TPM2 mutations show a predominant involvement of masticatory and distal leg muscles with the other regions relatively spared. More spread involvement may be observed. This cephalic-distal MRI pattern is not frequent in other known myopathies. PMID:22980765

  18. Whole-Body MR Imaging for Staging of Malignant Tumors in Pediatric Patients: Results of the American College of Radiology Imaging Network 6660 Trial

    PubMed Central

    Acharyya, Suddhasatta; Hoffer, Frederic A.; Wyly, J. Brad; Friedmann, Alison M.; Snyder, Bradley S.; Babyn, Paul S.; Khanna, Geetika; Siegel, Barry A.

    2013-01-01

    Purpose: To compare whole-body magnetic resonance (MR) imaging with conventional imaging for detection of distant metastases in pediatric patients with common malignant tumors. Materials and Methods: This institutional review board–approved, HIPAA-compliant, multicenter prospective cohort study included 188 patients (109 male, 79 female; mean age, 10.2 years; range, < 1 to 21 years) with newly diagnosed lymphoma, neuroblastoma, or soft-tissue sarcoma. Informed consent was obtained and all patients underwent noncontrast material–enhanced whole-body MR imaging and standard-practice conventional imaging. All images were reviewed centrally by 10 pairs of readers. An independent panel verified the presence or absence of distant metastases. Detection of metastasis with whole-body MR and conventional imaging was quantified by using the area under the receiver operating characteristic curve (AUC). The effects of tumor subtype, patient age, and distant skeletal and pulmonary disease on diagnostic accuracy were also analyzed. Results: Of the 134 eligible patients, 66 (33 positive and 33 negative for metastasis) were selected for image review and analysis. Whole-body MR imaging did not meet the noninferiority criterion for accuracy when compared with conventional imaging for detection of metastasis (difference between average AUCs was −0.03 [95% confidence interval: −0.10, 0.04]); however, the average AUC for solid tumors was significantly higher than that for lymphomas (P = .006). More skeletal metastases were detected by using whole-body MR imaging than by using conventional imaging (P = .03), but fewer lung metastases were detected (P < .001). Patient age did not affect accuracy. Conclusion: The noninferior accuracy for diagnosis of distant metastasis in patients with common pediatric tumors was not established for the use of whole-body MR imaging compared with conventional methods. However, improved accuracy was seen with whole-body MR imaging in patients with

  19. Evidence of skeletal muscle metabolic reserve during whole body exercise in patients with chronic obstructive pulmonary disease.

    PubMed

    Richardson, R S; Sheldon, J; Poole, D C; Hopkins, S R; Ries, A L; Wagner, P D

    1999-03-01

    When freed from central cardiorespiratory limitations, healthy human skeletal muscle has exhibited a significant metabolic reserve. We studied the existence of this reserve in 10 severely compromised (FEV1 = 0.97 +/- SE 0.01) patients with chronic obstructive pulmonary disease (COPD). To manipulate O2 supply and O2 demand in locomotor and respiratory muscles, subjects performed both maximal conventional two-legged cycle ergometry (large muscle mass) and single-leg knee extensor exercise (KE, small muscle mass) while breathing room air (RA), 100% O2, and 79% helium + 21% O2 (HeO2). With each gas mixture, peak ventilation, peak heart rate, and perceived breathlessness were lower in KE than cycle exercise (p < 0. 05). Arterial O2 saturation and maximal work capacity increased in both exercise modalities while subjects breathed 100% O2 (work: +10% bike, +25% KE, p < 0.05). HeO2 increased maximal work capacity on the cycle (+14%, p < 0.05) but had no effect on KE. HeO2 resulted in the greatest maximum minute ventilation in both bike and KE (p < 0. 05) but had no effect on arterial O2 saturation. Thus, a skeletal muscle metabolic reserve in these patients with COPD is evidenced by: (1) greater muscle mass specific work in KE; (2) greater work rates with higher fraction of inspired oxygen (FIO2); (3) an even greater effect of FIO2 during KE (i.e., when the lungs are less challenged); and (4) the positive effect of HeO2 on bicycle work rate. This skeletal muscle metabolic reserve suggests that reduced whole body exercise capacity in COPD is the result of central restraints rather than peripheral skeletal muscle dysfunction, while the beneficial effect of 100% O2 (with no change in maximum ventilation) suggests that the respiratory system is not the sole constraint to oxygen consumption. PMID:10051266

  20. Monte Carlo simulation of NaI(TL) detector in a shadow-shield scanning bed whole-body monitor for uniform and axial cavity activity distribution in a BOMAB phantom.

    PubMed

    Akar, D K; Patni, H K; Nadar, M Y; Ghare, V P; Rao, D D

    2013-07-01

    This study presents the simulation results for 10.16 cm diameter and 7.62 cm thickness NaI(Tl) detector response, which is housed in a partially shielded scanning bed whole-body monitor (WBM), due to activity distributed in the axial cavities provided in the Indian reference BOMAB phantom. Experimental detection efficiency (DE) for axial cavity activity distribution (ACAD) in this phantom for photon emissions of (133)Ba, (137)Cs and (60)Co is used to validate DEs estimated using Monte Carlo code FLUKA. Simulations are also carried out to estimate DEs due to uniform activity distribution (UAD) as in the standard BOMAB phantom. The results show that the DE is ∼3.8 % higher for UAD when compared with ACAD in the case of (40)K (1460 keV) and this relative difference increases to ∼7.0 % for (133)Ba (∼356 keV) photons. The corresponding correction factors for calibration with Indian phantom are provided. DEs are also simulated for activity distributed as a planar disc at the centre of the axial cavity in each part of the BOMAB phantom (PDAD) and the deviations of these DEs are within 1 % of the ACAD results. Thus, PDAD can also be used for ACAD in scanning geometry. An analytical solution for transmitted mono-energetic photons from a two-dimensional slab is provided for qualitative explanation of difference in DEs due to variation in activity distributions in the phantom. The effect on DEs due to different phantom part dimensions is also studied and lower DEs are observed for larger parts. PMID:23390143

  1. Accuracy of single-pass whole-body computed tomography for detection of injuries in patients with major blunt trauma

    PubMed Central

    Stengel, Dirk; Ottersbach, Caspar; Matthes, Gerrit; Weigeldt, Moritz; Grundei, Simon; Rademacher, Grit; Tittel, Anja; Mutze, Sven; Ekkernkamp, Axel; Frank, Matthias; Schmucker, Uli; Seifert, Julia

    2012-01-01

    Background: Contrast-enhanced whole-body computed tomography (also called “pan-scanning”) is considered to be a conclusive diagnostic tool for major trauma. We sought to determine the accuracy of this method, focusing on the reliability of negative results. Methods: Between July 2006 and December 2008, a total of 982 patients with suspected severe injuries underwent single-pass pan-scanning at a metropolitan trauma centre. The findings of the scan were independently evaluated by two reviewers who analyzed the injuries to five body regions and compared the results to a synopsis of hospital charts, subsequent imaging and interventional procedures. We calculated the sensitivity and specificity of the pan-scan for each body region, and we assessed the residual risk of missed injuries that required surgery or critical care. Results: A total of 1756 injuries were detected in the 982 patients scanned. Of these, 360 patients had an Injury Severity Score greater than 15. The median length of follow-up was 39 (interquartile range 7–490) days, and 474 patients underwent a definitive reference test. The sensitivity of the initial pan-scan was 84.6% for head and neck injuries, 79.6% for facial injuries, 86.7% for thoracic injuries, 85.7% for abdominal injuries and 86.2% for pelvic injuries. Specificity was 98.9% for head and neck injuries, 99.1% for facial injuries, 98.9% for thoracic injuries, 97.5% for abdominal injuries and 99.8% for pelvic injuries. In total, 62 patients had 70 missed injuries, indicating a residual risk of 6.3% (95% confidence interval 4.9%–8.0%). Interpretation: We found that the positive results of trauma pan-scans are conclusive but negative results require subsequent confirmation. The pan-scan algorithms reduce, but do not eliminate, the risk of missed injuries, and they should not replace close monitoring and clinical follow-up of patients with major trauma. PMID:22392949

  2. Whole-body CT-based imaging algorithm for multiple trauma patients: radiation dose and time to diagnosis

    PubMed Central

    Gordic, S; Hodel, S; Simmen, H-P; Brueesch, M; Frauenfelder, T; Wanner, G; Sprengel, K

    2015-01-01

    Objective: To determine the number of imaging examinations, radiation dose and the time to complete trauma-related imaging in multiple trauma patients before and after introduction of whole-body CT (WBCT) into early trauma care. Methods: 120 consecutive patients before and 120 patients after introduction of WBCT into the trauma algorithm of the University Hospital Zurich were compared regarding the number and type of CT, radiography, focused assessment with sonography for trauma (FAST), additional CT examinations (defined as CT of the same body regions after radiography and/or FAST) and the time to complete trauma-related imaging. Results: In the WBCT cohort, significantly more patients underwent CT of the head, neck, chest and abdomen (p < 0.001) than in the non-WBCT cohort, whereas the number of radiographic examinations of the cervical spine, chest and pelvis and of FAST examinations were significantly lower (p < 0.001). There were no significant differences between cohorts regarding the number of radiographic examinations of the upper (p = 0.56) and lower extremities (p = 0.30). We found significantly higher effective doses in the WBCT (29.5 mSv) than in the non-WBCT cohort (15.9 mSv; p < 0.001), but fewer additional CT examinations for completing the work-up were needed in the WBCT cohort (p < 0.001). The time to complete trauma-related imaging was significantly shorter in the WBCT (12 min) than in the non-WBCT cohort (75 min; p < 0.001). Conclusion: Including WBCT in the initial work-up of trauma patients results in higher radiation doses, but fewer additional CT examinations are needed, and the time for completing trauma-related imaging is shorter. Advances in knowledge: WBCT in trauma patients is associated with a high radiation dose of 29.5 mSv. PMID:25594105

  3. Whole-Body Magnetic Resonance Angiography at 3 Tesla Using a Hybrid Protocol in Patients with Peripheral Arterial Disease

    SciTech Connect

    Nielsen, Yousef W.; Eiberg, Jonas P.; Logager, Vibeke B.; Schroeder, Torben V.; Just, Sven; Thomsen, Henrik S.

    2009-09-15

    The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different protocols were used for WB-MRA: a standard sequential protocol (n = 13) and a hybrid protocol (n = 13). WB-MRA was performed using a gradient echo sequence, body coil for signal reception, and gadoterate meglumine as contrast agent (0.3 mmol/kg body weight). Two blinded observers evaluated all WB-MRA examinations with regard to presence of stenoses, as well as diagnostic quality and degree of venous contamination in each of the four stations used in WB-MRA. Digital subtraction angiography served as the method of reference. Sensitivity for detecting significant arterial disease (luminal narrowing {>=} 50%) using standard-protocol WB-MRA for the two observers was 0.63 (95%CI: 0.51-0.73) and 0.66 (0.58-0.78). Specificities were 0.94 (0.91-0.97) and 0.96 (0.92-0.98), respectively. In the hybrid protocol WB-MRA sensitivities were 0.75 (0.64-0.84) and 0.70 (0.58-0.8), respectively. Specificities were 0.93 (0.88-0.96) and 0.95 (0.91-0.97). Interobserver agreement was good using both the standard and the hybrid protocol, with {kappa} = 0.62 (0.44-0.67) and {kappa} = 0.70 (0.59-0.79), respectively. WB-MRA quality scores were significantly higher in the lower leg using the hybrid protocol compared to standard protocol (p = 0.003 and p = 0.03, observers 1 and 2). Distal venous contamination scores were significantly lower with the hybrid protocol (p = 0.02 and p = 0.01, observers 1 and 2). In conclusion, hybrid-protocol WB-MRA shows a better diagnostic performance than standard protocol WB-MRA at 3 T in patients with PAD.

  4. Comparison of whole-body specific absorption rate for human phantoms with and without skeletal features. Final report, 1 January-31 December 1985

    SciTech Connect

    Hurt, W.D.

    1986-05-01

    The most common biological effect of overexposure to radiofrequency radiation (RFR) fields may be described as an acute thermal burden. The extent of the effect depends primarily on the time rate of transfer of the energy to the biological specimen. The depth of penetration and the amount of incident energy absorbed varies as a function of the frequency of the incident radiation. As the frequency decreases, the penetration of energy into biological tissue becomes deeper; however, wavelengths in the kilohertz (kHz) and lower megahertz (MHz) regions are so long with respect to the physical dimensions of the human subject that energy absorption is negligible. The purpose of this research was to measure the energy absorption in human phantoms when exposed to high-frequency (HF) band fields.

  5. Early Adolescence: Whole Body Learning.

    ERIC Educational Resources Information Center

    Cannon, Roger K., Jr.; Padilla, Michael J.

    1982-01-01

    "Whole body" denotes using the entire body to sense and experience a concept or idea. Typical whole body learning activities involve use of several senses: muscle sense, temperature, pain, pressure, and sense of equilibrium. Four whole body science activities are described, including identifying trees by touch. (Author/JN)

  6. Combined whole body vibration and balance training using Vibrosphere®: improvement of trunk stability, muscle tone, and postural control in stroke patients during early geriatric rehabilitation.

    PubMed

    Merkert, J; Butz, S; Nieczaj, R; Steinhagen-Thiessen, E; Eckardt, R

    2011-08-01

    Strokes are a leading cause of disability, immobility, and reduced ability to perform activities of daily living (ADLs) among the elderly. Balance and postural control are often affected in stroke patients. Physical therapy for the lower back to improve posture, mobility, and ADLs can be very time consuming. In this randomized, controlled study of 66 geriatric patients (mean age 74.5 years) with stroke-related paresis or hemiplegia, it was demonstrated that stroke patients may benefit more from 3 additional weeks of combined whole body vibration and balance training than from a comprehensive inpatient geriatric rehabilitation program in terms of trunk stability, postural control, and muscle tone. PMID:21505939

  7. Estimating 131I biokinetics and radiation doses to the red marrow and whole body in thyroid cancer patients: probe detection versus image quantification*

    PubMed Central

    Willegaignon, José; Pelissoni, Rogério Alexandre; Lima, Beatriz Christine de Godoy Diniz; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Queiroz, Marcelo Araújo; Buchpiguel, Carlos Alberto

    2016-01-01

    Objective To compare the probe detection method with the image quantification method when estimating 131I biokinetics and radiation doses to the red marrow and whole body in the treatment of thyroid cancer patients. Materials and Methods Fourteen patients with metastatic thyroid cancer, without metastatic bone involvement, were submitted to therapy planning in order to tailor the therapeutic amount of 131I to each individual. Whole-body scans and probe measurements were performed at 4, 24, 48, 72, and 96 h after 131I administration in order to estimate the effective half-life (Teff) and residence time of 131I in the body. Results The mean values for Teff and residence time, respectively, were 19 ± 9 h and 28 ± 12 h for probe detection, compared with 20 ± 13 h and 29 ± 18 h for image quantification. The average dose to the red marrow and whole body, respectively, was 0.061 ± 0.041 mGy/MBq and 0.073 ± 0.040 mGy/MBq for probe detection, compared with 0.066 ± 0.055 mGy/MBq and 0.078 ± 0.056 mGy/MBq for image quantification. Statistical analysis proved that there were no significant differences between the two methods for estimating the Teff (p = 0.801), residence time (p = 0.801), dose to the red marrow (p = 0.708), and dose to the whole body (p = 0.811), even when we considered an optimized approach for calculating doses only at 4 h and 96 h after 131I administration (p > 0.914). Conclusion There is full agreement as to the feasibility of using probe detection and image quantification when estimating 131I biokinetics and red-marrow/whole-body doses. However, because the probe detection method is inefficacious in identifying tumor sites and critical organs during radionuclide therapy and therefore liable to skew adjustment of the amount of 131I to be administered to patients under such therapy, it should be used with caution. PMID:27403014

  8. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.

    2014-11-01

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.

  9. Is there an added clinical value of "true"whole body(18)F-FDG PET/CT imaging in patients with malignant melanoma?

    PubMed

    Tan, Julie C; Chatterton, Barry E

    2012-01-01

    Accurate and reliable staging of disease extent in patients with malignant MM is essential to ensure appropriate treatment planning. The detection of recurrent or residual malignancy after primary treatment is important to allow for early intervention and to optimise patient survival. 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) PET or PET computed tomography (PET/CT) is indicated for surveillance of malignant MM due to its high sensitivity and specificity for soft-tissue or nodal recurrences and metastases. It has been claimed that including lower extremities and skull in addition to 'eyes to thigh' images in PET/CT evaluation of metastatic MM routinely is warranted. We have studied retrospectively the reports of whole-body PET/CT scans in all patients with MM scanned in our Department from April 2005 to December 2010. All PET abnormalities in the brain/scalp and lower extremities were tabulated by location and whether they were 'expected' or 'unexpected'. Findings were correlated with pathology, other imaging studies, and clinical follow-up. In this study, 398 PET/CT examinations in 361 patients with MM were included. Results showed that twelve of the 398 (3%) scans had brain/scalp abnormalities, with only 4 (1.0%) showing unexpected abnormalities. Twenty nine of the 398 (7.2%) scans showed lower extremity abnormalities, with only 5 (1.2%) showing unexpected abnormalities. In no case was an isolated unexpected malignant lesion identified in the brain/scalp or lower extremities. In conclusion, whole body PET/CT scan showed about 1% unexpected primary or metastatic MM lesions involving the head or lower extremities, which seldom offered significant additional clinical benefit and were unlikely to change clinical management. No clinically significant change in staging would have occurred. Routine 'eyes to thighs' images were adequate for this subset of patients. PMID:23106051

  10. Comparison of whole-body computed tomography vs selective radiological imaging on outcomes in major trauma patients: a meta-analysis

    PubMed Central

    2014-01-01

    Introduction The purpose of this meta-analysis was to explore the value of whole-body computed tomography (WBCT) in major trauma patients (MTPs). Methods A comprehensive search for articles from Jan 1, 1980 to Dec 31, 2013 was conducted through PubMed, Cochrane Library database, China biology medical literature database, Web of knowledge, ProQuest, EBSCO, OvidSP, and ClinicalTrials.gov. Studies which compared whole-body CT with conventional imaging protocol (X-ray of the pelvis and chest, trans-abdominal sonography, and/or selective CT) in MTPs were eligible. The primary endpoint was all-cause mortality. The second endpoints included: time spent in the emergency department (ED), the duration of mechanical ventilation, ICU and hospital length of stay (LOS), the incidence of Multiple Organ Dysfunction Syndrome (MODS) /Multiple Organ Failure (MOF). Analysis was performed with Review Manager 5.2.10 and Stata 12.0. Results Eleven trials enrolling 26371 patients were analyzed. In MTPs, the application of WBCT was associated with lower mortality rate (pooled OR: 0.66, 95% CI: 0.52 to 0.85) and a shorter stay in the ED (weighted mean difference (WMD), −27.58 min; 95% CI, −43.04 to −12.12]. There was no effect of WBCT on the length of ICU stay (WMD, 0.95 days; 95% CI: −0.08 to 1.98) and the length of hospital stay (WMD, 0.56 days; 95% CI: −0.03 to 1.15). Patients in the WBCT group had a longer duration of mechanical ventilation (WMD, 0.96 days, 95% CI: 0.32 to 1.61) and higher incidence of MODS/MOF (OR, 1.44, 95% CI: 1.35-1.54; P = 0.00001). Conclusions The present meta-analysis suggests that the application of whole-body CT significantly reduces the mortality rate of MTPs and markedly reduces the time spent in the emergency department. PMID:25178942

  11. Toward a whole-body neuroprosthetic.

    PubMed

    Lebedev, Mikhail A; Nicolelis, Miguel A L

    2011-01-01

    Brain-machine interfaces (BMIs) hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurological diseases, and limb loss. Considerable progress has been achieved in BMIs that enact arm movements, and initial work has been done on BMIs for lower limb and trunk control. These developments put Duke University Center for Neuroengineering in the position to develop the first BMI for whole-body control. This whole-body BMI will incorporate very large-scale brain recordings, advanced decoding algorithms, artificial sensory feedback based on electrical stimulation of somatosensory areas, virtual environment representations, and a whole-body exoskeleton. This system will be first tested in nonhuman primates and then transferred to clinical trials in humans. PMID:21867793

  12. Diagnostic Performance of Whole-Body PET/MRI for Detecting Malignancies in Cancer Patients: A Meta-Analysis

    PubMed Central

    Liu, Bin; Kuang, Anren

    2016-01-01

    Background As an evolving imaging modality, PET/MRI is preliminarily applied in clinical practice. The aim of this study was to assess the diagnostic performance of PET/MRI for tumor staging in patients with various types of cancer. Methods Relevant articles about PET/MRI for cancer staging were systematically searched in PubMed, EMBASE, EBSCO and the Cochrane Library. Two researchers independently selected studies, extracted data and assessed the methodological quality using the QUADAS tool. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated per patient and per lesion. The summary receiver-operating characteristic (SROC) curves were also constructed, and the area under the curve (AUC) and Q* estimates were obtained. Results A total of 38 studies that involved 753 patients and 4234 lesions met the inclusion criteria. On a per-patient level, the pooled sensitivity and specificity with 95% confidence intervals (CIs) were 0.93 (0.90–0.95) and 0.92 (0.89–0.95), respectively. On a per-lesion level, the corresponding estimates were 0.90 (0.88–0.92) and 0.95 (0.94–0.96), respectively. The pooled PLR, NLR and DOR estimates were 6.67 (4.83–9.19), 0.12 (0.07–0.21) and 75.08 (42.10–133.91) per patient and 10.91 (6.79–17.54), 0.13 (0.08–0.19) and 102.53 (59.74–175.97) per lesion, respectively. Conclusion According to our results, PET/MRI has excellent diagnostic potential for the overall detection of malignancies in cancer patients. Large, multicenter and prospective studies with standard scanning protocols are required to evaluate the diagnostic value of PET/MRI for individual cancer types. PMID:27124545

  13. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  14. Benefits of Whole-Body Vibration, as a Component of the Pulmonary Rehabilitation, in Patients with Chronic Obstructive Pulmonary Disease: A Narrative Review with a Suitable Approach.

    PubMed

    Sá-Caputo, Danubia; Gonçalves, Cintia Renata; Morel, Danielle Soares; Marconi, Eloá Moreira; Fróes, Patrícia; Rufino, Rogério; Costa, Cláudia Henrique; Lopes, Agnaldo José; Arnóbio, Adriano; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Furness, Trentham; Bernardo-Filho, Mario

    2016-01-01

    Background. Appropriate management, including pulmonary rehabilitation, associated with correct diagnosis of chronic obstructive pulmonary disease (COPD) in patients can contribute to improving clinical conditions of these patients. Physical activity is recommended for COPD patients. Whole-body vibration (WBV) is a modality of physical activity. Putting together the biological effects and safe use of WBV, it may be a potentially feasible intervention to add to pulmonary rehabilitation. The purpose of this investigation was to systematically review studies regarding the effects of WBV, as a component of the pulmonary rehabilitation, in patients with COPD. Results. A total of six publications met inclusion for review. There was evidence to support the beneficial use of WBV to improve functional performance of the lower limbs and quality of life. However, the appropriateness of and descriptors of WBV methods were poorly described. Conclusions. The results of this review support the use of WBV as a component of pulmonary rehabilitation to assist management of patients with COPD. However, future research should examine the dose-response curve and optimal dosing regimen of WBV according to standard reporting recommendations for people with COPD. Such an approach will allow comparison among studies and the potential of meta-analysis of randomized controlled trials. PMID:27190529

  15. Benefits of Whole-Body Vibration, as a Component of the Pulmonary Rehabilitation, in Patients with Chronic Obstructive Pulmonary Disease: A Narrative Review with a Suitable Approach

    PubMed Central

    Sá-Caputo, Danubia; Gonçalves, Cintia Renata; Morel, Danielle Soares; Marconi, Eloá Moreira; Fróes, Patrícia; Rufino, Rogério; Costa, Cláudia Henrique; Lopes, Agnaldo José; Arnóbio, Adriano; Asad, Nasser Ribeiro; Marin, Pedro Jesus; Furness, Trentham; Bernardo-Filho, Mario

    2016-01-01

    Background. Appropriate management, including pulmonary rehabilitation, associated with correct diagnosis of chronic obstructive pulmonary disease (COPD) in patients can contribute to improving clinical conditions of these patients. Physical activity is recommended for COPD patients. Whole-body vibration (WBV) is a modality of physical activity. Putting together the biological effects and safe use of WBV, it may be a potentially feasible intervention to add to pulmonary rehabilitation. The purpose of this investigation was to systematically review studies regarding the effects of WBV, as a component of the pulmonary rehabilitation, in patients with COPD. Results. A total of six publications met inclusion for review. There was evidence to support the beneficial use of WBV to improve functional performance of the lower limbs and quality of life. However, the appropriateness of and descriptors of WBV methods were poorly described. Conclusions. The results of this review support the use of WBV as a component of pulmonary rehabilitation to assist management of patients with COPD. However, future research should examine the dose-response curve and optimal dosing regimen of WBV according to standard reporting recommendations for people with COPD. Such an approach will allow comparison among studies and the potential of meta-analysis of randomized controlled trials. PMID:27190529

  16. In Thyroidectomized Thyroid Cancer Patients, False-Positive I-131 Whole Body Scans Are Often Caused by Inflammation Rather Than Thyroid Cancer

    PubMed Central

    Garger, Yana Basis; Winfeld, Mathew; Friedman, Kent; Blum, Manfred

    2016-01-01

    Objective. To show that I-131 false-positive results on whole-body scans (WBSs) after thyroidectomy for thyroid cancer may be a result of inflammation unassociated with the cancer. Methods. We performed a retrospective image analysis of our database of thyroid cancer patients who underwent WBS from January 2008 to January 2012 to identify and stratify false positives. Results. A total of 564 patients underwent WBS during the study period; 96 patients were referred for 99 I-131 single-photon emission computed tomography (SPECT/CT) scans to better interpret cryptic findings. Among them, 73 scans were shown to be falsely positive; 40/73 or 54.7% of false-positive findings were a result of inflammation. Of the findings, 17 were in the head, 1 in the neck, 4 in the chest, 3 in the abdomen, and 14 in the pelvis; 1 had a knee abscess. Conclusions. In our series, inflammation caused the majority of false-positive WBSs. I-131 SPECT/CT is powerful in the differentiation of inflammation from thyroid cancer. By excluding metastatic disease, one can properly prognosticate outcome and avoid unnecessary, potentially harmful treatment of patients with thyroid cancer. PMID:26977418

  17. Ultrasound Phantoms to Protect Patients from Novices

    PubMed Central

    2016-01-01

    With the growing use of ultrasound for pain management, we are interested in how to teach and practice ultrasound-guided procedures. Ethically, we should not insert a needle in a patient until after much practice on a phantom. Several types of phantoms have been introduced for ultrasound training, including water, agar/gelatin, elastomeric rubber, and meat phantoms and cadavers. The ideal phantom is similar to human tissue, is readily available and inexpensive, can be used repeatedly, provides tactile feedback, will hold a needle in place, does not generate needle tracks, and is not a health hazard. Several studies have shown the effectiveness of phantoms for improving the proficiency of novices. We hope that the application of phantoms in education leads to improved proficiency and increased patient safety. PMID:27103961

  18. Utility of 99mTc-Hynic-TOC in 131I Whole-Body Scan Negative Thyroid Cancer Patients with Elevated Serum Thyroglobulin Levels

    PubMed Central

    Shinto, Ajit S.; Kamaleshwaran, K. K.; Mallia, Madhav; Korde, Aruna; Samuel, Grace; Banerjee, Sharmila; Velayutham, Pavanasam; Damodharan, Suresh; Sairam, Madhu

    2015-01-01

    Several studies have reported on the expression of somatostatin receptors (SSTRs) in patients with differentiated thyroid cancer (DTC). The aim of this study was to evaluate the imaging abilities of a recently developed Technetium-99m labeled somatostatin analog, 99mTc-Hynic-TOC, in terms of precise localization of the disease. The study population consisted of 28 patients (16 men, 12 women; age range: 39-72 years) with histologically confirmed DTC, who presented with recurrent or persistent disease as indicated by elevated serum thyroglobulin (Tg) levels after initial treatment (serum Tg > 10 ng/ml off T4 suppression for 4-6 weeks). All patients were negative on the Iodine-131 posttherapy whole-body scans. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) was performed in all patients. SSTR scintigraphy was true positive in 23 cases (82.1%), true negative in two cases (7.1%) and false negative in three cases (10.7%) which resulted in a sensitivity of 88.46%, specificity of 100% and an accuracy of 89.2%. Sensitivity of 99mTc-Hynic-TOC scan was higher (93.7%) for patients with advanced stages, that is stages III and IV. 18F-FDG showed a sensitivity of 93.7%, a specificity of 50% and an accuracy of 89.3%. 18F-FDG PET was found to be more sensitive, with lower specificity due to false positive results in 2 patients. Analysis on a lesion basis demonstrated substantial agreement between the two imaging techniques with a Cohen's kappa of 0.66. Scintigraphy with 99mTc-Hynic-TOC might be a promising tool for treatment planning; it is easy to perform and showed sufficient accuracy for localization diagnostics in thyroid cancer patients with recurrent or metastatic disease. PMID:26097420

  19. Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    PubMed Central

    Moss, Robert; Grosse, Thibault; Marchant, Ivanny; Lassau, Nathalie; Gueyffier, François; Thomas, S. Randall

    2012-01-01

    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models. PMID:22761561

  20. Clinical significance of discordant findings between pre-therapy (123)I and post-therapy (131)I whole body scan in patients with thyroid cancer.

    PubMed

    Bravo, Paco E; Goudarzi, Behnaz; Rana, Uzma; Filho, Paulo Togni; Castillo, Raymond; Rababy, Christopher; Ewertz, Marjorie; Ziessman, Harvey A; Cooper, David S; Ladenson, Paul W; Wahl, Richard L

    2013-01-01

    Radioactive therapy with (131)I (RAI) is commonly used during the management of patients with differentiated thyroid cancer (DTC). The aim of this study was to determine the clinical significance of discordant findings between pre-RAI whole body scan (WBS) with (123)I and post-RAI WBS in the management of DTC. We retrospectively evaluated 342 individuals between 2002 and 2008 who had a diagnosis of DTC and underwent RAI. All had WBS one day before RAI and WBS one week after RAI. Patients were divided into 3 groups: 1) RAI-naive subjects without known distant metastatic disease (M1); 2) patients with history of prior RAI and persistent disease (except M1); and 3) patients with known M1. In Group 1 (n=311), 7% of patients (n=22) had discordant scans, but in only 4 of these cases did this represent true disease (3 unsuspected lung and 1 mediastinal node metastasis). In the remaining 18 patients, discordant findings corresponded to physiologic or other benign causes. In group 2 (n=23), 7 subjects (30%) had discordant findings and all of the discrepant sites consisted of loco-regional nodal disease in the neck/upper mediastinum (n=6) and M1 in lung (n=1). In group 3 (n=8), 5 patients (62%) showed discordant uptake in lung and bone which corresponded to the locations of known M1. A total of 12 patients with iodine-avid M1 were identified on post-RAI WBS (3.5% of entire cohort). Pre-RAI WBS was only concordant in 3 of these cases (25%). In conclusion, the significance of pre and post-RAI WBS is highly influenced by the clinical setting. Unsuspected distant metastatic disease is infrequent in RAI-naive patients without known M1, where most discordant findings are usually due to benign explanations, and represent false positive findings in this group. In contrast, in patients with history of previous RAI or known M1, discordant results likely correspond to true disease. In our study, pre-RAI scans showed a low yield to detect iodine-avid distant metastatic disease when

  1. The effects of whole body vibration in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Robinson, Caroline C.; Barreto, Rodrigo P. G.; Sbruzzi, Graciele; Plentz, Rodrigo D. M.

    2015-01-01

    Background: Whole body vibration (WBV) has been used to increase physical activity levels in patients with type 2 diabetes mellitus (T2DM). Objective: To carry out a systematic review of the effects of WBV on the glycemic control, cardiovascular risk factors, and physical and functional capacity of patients with T2DM. Method: MEDLINE, LILACS, PEDro, and Cochrane Central Register of Controlled Trials were searched up to June 1st, 2015. Randomized controlled trials investigating the effects of WBV, compared to control or other intervention, on blood glucose levels, blood and physical cardiovascular risk factors, and physical and functional capacity in adult individuals with T2DM. Two independent reviewers extracted the data regarding authors, year of publication, number of participants, gender, age, WBV parameters and description of intervention, type of comparison, and mean and standard deviation of pre and post assessments. Results: Out of 585 potentially eligible articles, two studies (reported in four manuscripts) were considered eligible. WBV interventions provided a significant reduction of 25.7 ml/dl (95% CI:-45.3 to -6.1; I2: 19%) in 12 hours fasting blood glucose compared with no intervention. Improvements in glycated hemoglobin, cardiovascular risk factors, and physical and functional capacity were found only at 12 weeks after WBV intervention in comparison with no intervention. Conclusion: WBV combined with exercise seems to improve glycemic control slightly in patients with T2DM in an exposure-dependent way. Large and well-designed trials are still needed to establish the efficacy and understand whether the effects were attributed to vibration, exercise, or a combination of both. PMID:26578253

  2. L-carnitine as an ergogenic aid for patients with chronic obstructive pulmonary disease submitted to whole-body and respiratory muscle training programs.

    PubMed

    Borghi-Silva, A; Baldissera, V; Sampaio, L M M; Pires-DiLorenzo, V A; Jamami, M; Demonte, A; Marchini, J S; Costa, D

    2006-04-01

    The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 +/- 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 +/- 16 and 36 +/- 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 +/- 14 vs 14 +/- 5 cmH2O, and 87 +/- 30 vs 34 +/- 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 +/- 0.7 vs 2.3 +/- 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production. PMID:16612469

  3. Development of the voxel computational phantoms of pediatric patients and their application to organ dose assessment

    NASA Astrophysics Data System (ADS)

    Lee, Choonik

    A series of realistic voxel computational phantoms of pediatric patients were developed and then used for the radiation risk assessment for various exposure scenarios. The high-resolution computed tomographic images of live patients were utilized for the development of the five voxel phantoms of pediatric patients, 9-month male, 4-year female, 8-year female, 11-year male, and 14-year male. The phantoms were first developed as head and torso phantoms and then extended into whole body phantoms by utilizing computed tomographic images of a healthy adult volunteer. The whole body phantom series was modified to have the same anthropometrics with the most recent reference data reported by the international commission on radiological protection. The phantoms, named as the University of Florida series B, are the first complete set of the pediatric voxel phantoms having reference organ masses and total heights. As part of the dosimetry study, the investigation on skeletal tissue dosimetry methods was performed for better understanding of the radiation dose to the active bone marrow and bone endosteum. All of the currently available methodologies were inter-compared and benchmarked with the paired-image radiation transport model. The dosimetric characteristics of the phantoms were investigated by using Monte Carlo simulation of the broad parallel beams of external phantom in anterior-posterior, posterior-anterior, left lateral, right lateral, rotational, and isotropic angles. Organ dose conversion coefficients were calculated for extensive photon energies and compared with the conventional stylized pediatric phantoms of Oak Ridge National Laboratory. The multi-slice helical computed tomography exams were simulated using Monte Carlo simulation code for various exams protocols, head, chest, abdomen, pelvis, and chest-abdomen-pelvis studies. Results have found realistic estimates of the effective doses for frequently used protocols in pediatric radiology. The results were very

  4. Whole-body vibration improves functional capacity and quality of life in patients with severe chronic obstructive pulmonary disease (COPD): a pilot study

    PubMed Central

    Braz Júnior, Donato S; Dornelas de Andrade, Arméle; Teixeira, Andrei S; Cavalcanti, Cléssyo A; Morais, André B; Marinho, Patrícia EM

    2015-01-01

    Background Exercise intolerance is a common development in patients with chronic obstructive pulmonary disease (COPD). There is little data on the use of an isolated program using vibration platform training on functional capacity in these patients, which is an area that deserves investigation. Aim To investigate the effect of training on a vibrating platform (whole-body vibration [WBV]) on functional performance and quality of life of subjects with COPD. Methods A randomized controlled crossover pilot study with eleven subjects with COPD (forced expiratory volume in 1 second [FEV1]% predicted =14.63±11.14; forced vital capacity [FVC]% predicted =48.84±15.21; FEV1/FVC =47.39±11.63) underwent a 12-week WBV training program. Participants were randomized into the intervention group (IG) undergoing three sessions per week for a total of 12 weeks and control group (CG) without intervention. We evaluated the 6-minute walk test (6MWT), distance walked (DW), duration of the walk (TW), and index of perceived exertion (IPE), quality of life using St George’s Respiratory Questionnaire (SGRQ) and developed a 12-week program of training on a vibrating platform. Results The mean age was 62.91±8.82 years old (72.7% male). The DW increased at the end of training with a difference between groups of 75 m; all domains of the SGRQ improved at the end of training. The effect size Cohen’s d ranged from small to large for all the measured results. Conclusion These preliminary results suggest that WBV may potentially be a safe and feasible way to improve functional capacity in the 6MWT of patients with COPD undergoing a training program on the vibrating platform as well as in all domains of the SGRQ quality of life. However, further studies with a larger number of patients are needed to establish the long-term effect on functional capacity and quality of life in these patients. PMID:25624756

  5. Human whole body cold adaptation

    PubMed Central

    Daanen, Hein A.M.; Van Marken Lichtenbelt, Wouter D.

    2016-01-01

    ABSTRACT Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  6. Human whole body cold adaptation.

    PubMed

    Daanen, Hein A M; Van Marken Lichtenbelt, Wouter D

    2016-01-01

    Reviews on whole body human cold adaptation generally do not distinguish between population studies and dedicated acclimation studies, leading to confusing results. Population studies show that indigenous black Africans have reduced shivering thermogenesis in the cold and poor cold induced vasodilation in fingers and toes compared to Caucasians and Inuit. About 40,000 y after humans left Africa, natives in cold terrestrial areas seems to have developed not only behavioral adaptations, but also physiological adaptations to cold. Dedicated studies show that repeated whole body exposure of individual volunteers, mainly Caucasians, to severe cold results in reduced cold sensation but no major physiological changes. Repeated cold water immersion seems to slightly reduce metabolic heat production, while repeated exposure to milder cold conditions shows some increase in metabolic heat production, in particular non-shivering thermogenesis. In conclusion, human cold adaptation in the form of increased metabolism and insulation seems to have occurred during recent evolution in populations, but cannot be developed during a lifetime in cold conditions as encountered in temperate and arctic regions. Therefore, we mainly depend on our behavioral skills to live in and survive the cold. PMID:27227100

  7. Whole body vibration and cerebral palsy: a systematic review

    PubMed Central

    Duquette, Sean A.; Guiliano, Anthony M.; Starmer, David J.

    2015-01-01

    Purpose: The goal of this review is to evaluate the effects of whole body vibration on outcomes in patients with cerebral palsy. The findings in this review may help clinicians make evidence informed decisions on the use of whole body vibration for cerebral palsy. Methods: A systematic search was conducted on April 29, 2014.The following search terms were used to search of several databases: (whole body vibration OR whole-body vibration OR whole body-vibration OR WBV) AND (cerebral palsy). Articles that met the inclusion criteria were assessed using the Scottish intercollegiate guidelines network (SIGN) rating system to assess the methodology and bias of the articles for randomized control trials. Results: The search produced 25 articles, of which 12 duplicates were identified and removed. Another seven articles were not considered since they did not fit the inclusion criteria, leaving a total of five studies for review. Four of the articles analyzed the effects of WBV in children while the other study focused on adults with cerebral palsy. There was one low quality article, four acceptable quality articles and one high quality article when assessed using the SIGN criteria. Conclusions: It appears that whole body vibration has the potential to provide symptomatic relief for patients with cerebral palsy. Whole body vibration may improve spasticity, muscle strength and coordination. There is a lack of research to conclusively determine whether it does alter bone mineral density. PMID:26500358

  8. Whole-Body Magnetic Resonance Angiography with Additional Steady-State Acquisition of the Infragenicular Arteries in Patients with Peripheral Arterial Disease

    SciTech Connect

    Nielsen, Yousef W.; Eiberg, Jonas P.; Logager, Vibeke B.; Just, Sven; Schroeder, Torben V.; Thomsen, Henrik S.

    2010-06-15

    The purpose of this investigation was to determine if addition of infragenicular steady-state (SS) magnetic resonance angiography (MRA) to first-pass imaging improves diagnostic performance compared with first-pass imaging alone in patients with peripheral arterial disease (PAD) undergoing whole-body (WB) MRA. Twenty consecutive patients with PAD referred to digital-subtraction angiography (DSA) underwent WB-MRA. Using a bolus-chase technique, first-pass WB-MRA was performed from the supra-aortic vessels to the ankles. The blood-pool contrast agent gadofosveset trisodium was used at a dose of 0.03 mmol/kg body weight. Ten minutes after injection of the contrast agent, high-resolution (0.7-mm isotropic voxels) SS-MRA of the infragenicular arteries was performed. Using DSA as the 'gold standard,' sensitivities and specificities for detecting significant arterial stenoses ({>=}50% luminal narrowing) with first-pass WB-MRA, SS-MRA, and combined first-pass and SS-MRA were calculated. Kappa statistics were used to determine intermodality agreement between MRA and DSA. Overall sensitivity and specificity for detecting significant arterial stenoses with first-pass WB-MRA was 0.70 (95% confidence interval 0.61 to 0.78) and 0.97 (0.94 to 0.99), respectively. In first-pass WB-MRA, the lowest sensitivity was in the infragenicular region, with a value of 0.42 (0.23 to 0.63). Combined analysis of first-pass WB-MRA and SS-MRA increased sensitivity to 0.81 (0.60 to 0.93) in the infragenicular region, with specificity of 0.94 (0.88 to 0.97). Sensitivity and specificity for detecting significant arterial stenoses with isolated infragenicular SS-MRA was 0.47 (0.27 to 0.69) and 0.86 (0.78 to 0.91), respectively. Intermodality agreement between MRA and DSA in the infragenicular region was moderate for first-pass WB-MRA ({kappa} = 0.49), fair for SS-MRA ({kappa} = 0.31), and good for combined first-pass/SS-MRA ({kappa} = 0.71). Addition of infragenicular SS-MRA to first-pass WB MRA

  9. Unusual False Positive Radioiodine Uptake on 131I Whole Body Scintigraphy in Three Unrelated Organs with Different Pathologies in Patients of Differentiated Thyroid Carcinoma: A Case Series

    PubMed Central

    Ranade, Rohit; Pawar, Shwetal; Mahajan, Abhishek; Basu, Sandip

    2016-01-01

    Three cases with unusual false positive radioiodine uptake in three different organs and pathologies (infective old fibrotic lesion in the lung, simple liver cyst, and benign breast lesion) on iodine-131 (131I) whole body scintigraphy. Clinicoradiological correlation was undertaken in all three cases and the pathologies were ascertained. In all the three cases, single-photon emission computerized tomography-computed tomography (SPECT-CT) and ancillary imaging modalities were employed and were helpful in arriving at the final diagnosis. PMID:27134566

  10. Dose esclation in radioimmunotherapy based on projected whole body dose

    SciTech Connect

    Wahl, R.L.; Kaminski, M.S.; Regan, D.

    1994-05-01

    A variety of approaches have been utilized in conducting phase I radioimmunotherapy dose-escalation trials. Escalation of dose has been based on graded increases in administered mCi; mCi/kg; or mCi/m2. It is also possible to escalate dose based on tracer-projected marrow, blood or whole body radiation dose. We describe our results in performing a dose-escalation trial in patients with non-Hodgkin lymphoma based on escalating administered whole-body radiation dose. The mCi dose administered was based on a patient-individualized tracer projected whole-body dose. 25 patients were entered on the study. RIT with 131 I anti-B-1 was administered to 19 patients. The administered dose was prescribed based on the projected whole body dose, determined from patient-individualized tracer studies performed prior to RIT. Whole body dose estimates were based on the assumption that the patient was an ellipsoid, with 131 antibody kinetics determined using a whole-body probe device acquiring daily conjugate views of 1 minute duration/view. Dose escalation levels proceeded with 10 cGy increments from 25 cGy whole-body and continues, now at 75 cGy. The correlation among potential methods of dose escalation and toxicity was assessed. Whole body radiation dose by probe was strongly correlated with the blood radiation dose determined from sequential blood sampling during tracer studies (r=.87). Blood radiation dose was very weakly correlated with mCi dose (r=.4) and mCi/kg (r=.45). Whole body radiation dose appeared less well-correlated with injected dose in mCi (r=.6), or mCi/kg (r=.64). Toxicity has been infrequent in these patients, but appears related to increasing whole body dose. Non-invasive determination of whole-body radiation dose by gamma probe represents a non-invasive method of estimating blood radiation dose, and thus of estimating bone marrow radiation dose.

  11. Whole-Body Muscle MRI in Patients with Hyperkalemic Periodic Paralysis Carrying the SCN4A Mutation T704M: Evidence for Chronic Progressive Myopathy with Selective Muscle Involvement

    PubMed Central

    Lee, Young Han; Lee, Hyung-Soo; Lee, Hyo Eun; Hahn, Seok; Nam, Tai-Seung; Choi, Young-Chul; Kim, Seung Min

    2015-01-01

    Background and Purpose Hyperkalemic periodic paralysis (hyperKPP) is a muscle sodium-ion channelopathy characterized by recurrent paralytic attacks. A proportion of affected individuals develop fixed or chronic progressive weakness that results in significant disability. However, little is known about the pathology of hyperKPP-induced fixed weakness, including the pattern of muscle involvement. The aim of this study was to characterize the patterns of muscle involvement in hyperKPP by whole-body magnetic resonance imaging (MRI). Methods We performed whole-body muscle MRI in seven hyperKPP patients carrying the T704M mutation in the SCN4A skeletal sodium-channel gene. Muscle fat infiltration, suggestive of chronic progressive myopathy, was analyzed qualitatively using a grading system and was quantified by the two-point Dixon technique. Results Whole-body muscle MRI analysis revealed muscle atrophy and fatty infiltration in hyperKPP patients, especially in older individuals. Muscle involvement followed a selective pattern, primarily affecting the posterior compartment of the lower leg and anterior thigh muscles. The muscle fat fraction increased with patient age in the anterior thigh (r=0.669, p=0.009), in the deep posterior compartment of the lower leg (r=0.617, p=0.019), and in the superficial posterior compartment of the lower leg (r=0.777, p=0.001). Conclusions Our whole-body muscle MRI findings provide evidence for chronic progressive myopathy in hyperKPP patients. The reported data suggest that a selective pattern of muscle involvement-affecting the posterior compartment of the lower leg and the anterior thigh-is characteristic of chronic progressive myopathy in hyperKPP. PMID:26256659

  12. High bone turnover assessed by 18F-fluoride PET/CT in the spine and sacroiliac joints of patients with ankylosing spondylitis: comparison with inflammatory lesions detected by whole body MRI

    PubMed Central

    2012-01-01

    Background This study compares the frequency and distribution of increased activity on 18 F-fluoride PET/CT with the presence of bone marrow edema on whole-body MR imaging in the spine and sacroiliac joints (SIJ) of patients with active ankylosing spondylitis (AS). Methods Ten patients (6 men and 4 women), between 30 and 58 years old (median 44) with active AS, were prospectively examined with both whole-body MRI and 18 F-fluoride PET/CT. Patients fulfilled modified NY criteria and had a Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) of at least 4. Increased radiotracer uptake in PET/CT and bone marrow edema in whole-body MRI of spine and SIJ was evaluated independently by two blinded observers for each modality. Kappa statistics were used to compare interobserver agreement as well as scores of consensus reading of the two imaging modalities. Results Analysis of interobserver agreement for PET/CT yielded a kappa value of 0.68 for spinal lesions and of 0.88 for SIJ lesions. The corresponding kappa values for the MRI modality were 0.64 and 0.93, respectively. More spinal lesions were detected by MRI in comparison to PET/CT (68 vs. 38), whereas a similar number of SIJ quadrants scored positive in both modalities (19 vs. 17). Analysis of agreement of lesion detection between both imaging modalities yielded a kappa value of only 0.25 for spinal lesions and of 0.64 for SIJ lesions. Conclusion Increased 18 F-fluoride uptake in PET/CT is only modestly associated with bone marrow edema on MRI in the spine and SIJ of patients with AS, suggesting different aspects of bone involvement in AS. PMID:22788874

  13. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  14. Fingertip and whole body exposure to nuclear medicine personnel

    SciTech Connect

    Lis, G.A.; Zu'bi, S.M.; Brahmavar, S.M.

    1981-06-01

    We calculate radiation exposure to the nuclear medicine technologist for all common sources of exposure. Special attention is given to exposure received by fingertips. We include typical exposure rates for patient injections, reagent preparations, generator handling and elution, patient positioning, and other phases of nuclear medicine. The cumulative exposure to fingertips and whole body is estimated. When every precaution is taken to minimize exposure in our laboratory, the unavoidable annual exposure to the fingertips is 11 R; to the whole body it is 1 R from all sources. When precautions are not taken, the annual exposure to the fingertips may exceed 170 R and the whole body dose may then approach 2 R. Our nuclear medicine laboratory averages about 1000 injections per technologist per year.

  15. Use of prediction equations to determine the accuracy of whole-body fat and fat-free mass and appendicular skeletal muscle mass measurements from a single abdominal image using computed tomography in advanced cancer patients.

    PubMed

    Kilgour, Robert D; Cardiff, Katrina; Rosenthall, Leonard; Lucar, Enriqueta; Trutschnigg, Barbara; Vigano, Antonio

    2016-01-01

    Measurements of body composition using dual-energy X-ray absorptiometry (DXA) and single abdominal images from computed tomography (CT) in advanced cancer patients (ACP) have important diagnostic and prognostic value. The question arises as to whether CT scans can serve as surrogates for DXA in terms of whole-body fat-free mass (FFM), whole-body fat mass (FM), and appendicular skeletal muscle (ASM) mass. Predictive equations to estimate body composition for ACP from CT images have been proposed (Mourtzakis et al. 2008; Appl. Physiol. Nutr. Metabol. 33(5): 997-1006); however, these equations have yet to be validated in an independent cohort of ACP. Thus, this study evaluated the accuracy of these equations in estimating FFM, FM, and ASM mass using CT images at the level of the third lumbar vertebrae and compared these values with DXA measurements. FFM, FM, and ASM mass were estimated from the prediction equations proposed by Mourtzakis and colleagues (2008) using single abdominal CT images from 43 ACP and were compared with whole-body DXA scans using Spearman correlations and Bland-Altman analyses. Despite a moderate to high correlation between the actual (DXA) and predicted (CT) values for FM (rho = 0.93; p ≤ 0.001), FFM (rho = 0.78; p ≤ 0.001), and ASM mass (rho = 0.70; p ≤ 0.001), Bland-Altman analyses revealed large range-of-agreement differences between the 2 methods (29.39 kg for FFM, 15.47 kg for FM, and 3.99 kg for ASM mass). Based on the magnitude of these differences, we concluded that prediction equations using single abdominal CT images have poor accuracy, cannot be considered as surrogates for DXA, and may have limited clinical utility. PMID:26695688

  16. Atypical supernumerary phantom limb and phantom limb pain in two patients with pontine hemorrhage.

    PubMed

    Yoo, Seung Don; Kim, Dong Hwan; Jeong, Yong Seol; Chon, Jinmann; Bark, Jihea

    2011-06-01

    Phantom limbs are usually observed after amputation of extremities. In patients after a stroke, a similar but rarely occurring phenomenon consisting of the patient experiencing the presence of an additional limb has been described. This phenomenon, generally called supernumerary phantom limb (SPL), may be caused by lesions in the right or left cerebral hemisphere, but has been predominantly reported in patients who have had a right hemispheric stroke. We report two cases of atypical SPL and phantom limb pain (PLP) after pontine hemorrhage. The patients were treated conservatively and their symptoms lasted more than 1 month. This is the first report of SPLs after left pontine hemorrhage, and phantom perception and pain lasted longer than those in previously observed cases. Our results indicate that SPL may be more common than reported; therefore, thorough examinations are essential for the care of stroke patients. PMID:21655076

  17. Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population

    NASA Astrophysics Data System (ADS)

    Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.

    2010-11-01

    In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.

  18. WHOLE BODY COUNTING AND NEUTRON ACTIVATION ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition of the human body can be described using a number of different models. The most basic is the atomic model. This chapter describes several nuclear-based techniques that have been used to obtain direct in vivo chemical assays of the whole body of humans. In particular, the body's co...

  19. Practice Trends in Patients with Persistent Detectable Thyroglobulin and Negative Diagnostic Radioiodine Whole Body Scans: A Survey of American Thyroid Association Members

    PubMed Central

    Diehl, Nancy; Bernet, Victor

    2014-01-01

    Background: Management of patients with thyroglobulin (Tg)-positive/scan-negative thyroid cancer remains challenging. American Thyroid Association (ATA) guidelines recommend potential use of empiric 131I therapy and various scanning modalities, but no standard for managing such cases exists. Methods: We surveyed ATA members to assess current practice in management of patients with Tg-positive/scan-negative disease. Members participated in a web-based survey of six case scenarios of Tg elevations but iodine scan negativity. Results: A total of 288 ATA members (80% male) participated. Patient age, sex, and basal and stimulated Tg varied between the cases. Respondents were asked their opinion regarding empiric 131I therapy use, including 131I dose, use and duration of low-iodine diet, thyroxine withdrawal or recombinant human thyrotropin (rhTSH), and utilization of additional imaging (neck ultrasound (US) or positron emission tomography/computed tomography (PET/CT)) and reconsideration of 131I therapy. Between 16% and 51% recommended initial use of empiric 131I for the various scenarios. The majority chose a 131I dose between 75 and 150 mCi, and 73% employed a low-iodine diet for two or more weeks. Preference between thyroxine withdrawal versus rhTSH was evenly split. More than 98% obtained a neck US if empiric 131I was not given; 52–89% would proceed to PET/CT if US was negative. Only 44% used rhTSH stimulation in PET scan preparation. 131I use was more common with stimulated Tg significantly >10 ng/mL. 131I therapy was slightly more likely with PET-positive (56%) than PET-negative status (45%). Respondents were split regarding empiric 131I if basal and stimulated Tg increased ≥150% over two years. Providers in North America less commonly utilized 131I treatment than those from other areas. In the face of possible heterophilic antibody interference in the Tg assay, the majority did not recommend 131I therapy. Conclusions: Empiric 131I therapy is still utilized

  20. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  1. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID

  2. Can Whole-Body Cryotherapy with Subsequent Kinesiotherapy Procedures in Closed Type Cryogenic Chamber Improve BASDAI, BASFI, and Some Spine Mobility Parameters and Decrease Pain Intensity in Patients with Ankylosing Spondylitis?

    PubMed Central

    Stanek, Agata; Cholewka, Armand; Gadula, Jolanta; Drzazga, Zofia; Sieron, Aleksander; Sieron-Stoltny, Karolina

    2015-01-01

    The present study investigated whether whole-body cryotherapy (WBC) procedures could potentially have more beneficial effects on index of BASDAI and BASFI, pain intensity, and spine mobility parameters: Ott test, modified Schober test, chest expansion in ankylosing spondylitis (AS) patients, than kinesiotherapy procedures used separately. AS patients were exposed to a cycle of WBC procedures lasting 3 minutes a day, with a subsequent 60 minutes of kinesiotherapy or 60 minutes of kinesiotherapy only, for 10 consecutive days excluding weekend. After the completion of the cycle of WBC procedures with subsequent kinesiotherapy in the AS patients, BASDAI index decreased about 40% in comparison with the input value, whereas in the group of patients who received only kinesiotherapy it decreased only about 15% in comparison with the input value. After the completion of the treatment in the WBC group, BASFI index decreased about 30% in comparison with the input value, whereas in the kinesiotherapy group it only decreased about 16% in comparison with the input value. The important conclusion was that, in WBC group with subsequent kinesiotherapy, we observed on average about twice better results than in the group treated only by kinesiotherapy. PMID:26273618

  3. Non-Contrast-Enhanced Whole-Body Magnetic Resonance Imaging in the General Population: The Incidence of Abnormal Findings in Patients 50 Years Old and Younger Compared to Older Subjects

    PubMed Central

    Cieszanowski, Andrzej; Maj, Edyta; Kulisiewicz, Piotr; Grudzinski, Ireneusz P.; Jakoniuk-Glodala, Karolina; Chlipala-Nitek, Irena; Kaczynski, Bartosz; Rowinski, Olgierd

    2014-01-01

    Purpose To assess and compare the incidence of abnormal findings detected during non-contrast-enhanced whole-body magnetic resonance imaging (WB-MRI) in the general population in two age groups: (1) 50 years old and younger; and (2) over 50 years old. Materials and Methods The analysis included 666 non-contrast-enhanced WB-MRIs performed on a 1.5-T scanner between December 2009 and June 2013 in a private hospital in 451 patients 50 years old and younger and 215 patients over 50 years old. The following images were obtained: T2-STIR (whole body-coronal plane), T2-STIR (whole spine-sagittal), T2-TSE with fat-saturation (neck and trunk-axial), T2-FLAIR (head-axial), 3D T1-GRE (thorax-coronal, axial), T2-TSE (abdomen-axial), chemical shift (abdomen-axial). Detected abnormalities were classified as: insignificant (type I), potentially significant, requiring medical attention (type II), significant, requiring treatment (type III). Results There were 3375 incidental findings depicted in 659 (98.9%) subjects: 2997 type I lesions (88.8%), 363 type II lesions (10.8%) and 15 type III lesions (0.4%), including malignant or possibly malignant lesions in seven subjects. The most differences in the prevalence of abnormalities on WB-MRI between patients 50 years old and younger and over 50 years old concerned: brain infarction (22.2%, 45.0% respectively), thyroid cysts/nodules (8.7%, 18.8%), pulmonary nodules (5.0%, 16.2%), significant degenerative disease of the spine (23.3%, 44.5%), extra-spinal degenerative disease (22.4%, 61.1%), hepatic steatosis (15.8%, 24.9%), liver cysts/hemangiomas (24%, 34.5%), renal cysts (16.9%, 40.6%), prostate enlargement (5.1% of males, 34.2% of males), uterine fibroids (16.3% of females, 37.9% of females). Conclusions Incidental findings were detected in almost all of the subjects. WB-MRI demonstrated that the prevalence of the vast majority of abnormalities increases with age. PMID:25259581

  4. Whole body counter assessment of internal radiocontamination in patients with end-stage renal disease living in areas affected by the Fukushima Daiichi nuclear power plant disaster: a retrospective observational study

    PubMed Central

    Shimmura, Hiroaki; Tsubokura, Masaharu; Kato, Shigeaki; Akiyama, Junichi; Nomura, Shuhei; Mori, Jinichi; Tanimoto, Tetsuya; Abe, Koichiro; Sakai, Shuji; Kawaguchi, Hiroshi; Tokiwa, Michio

    2015-01-01

    Objective To assess internal radiocontamination of patients with end-stage renal disease (ESRD) who were regularly taking haemodialysis (HD) and living in areas affected by the crippled Fukushima Daiichi nuclear plant after the Great East Japan earthquake on 11 March 2011. Methods Internal radiocontamination in 111 patients with ESRD regularly taking HD at Jyoban Hospital in Iwaki city, Fukushima from July 2012 to November 2012 was assessed with a whole body counter (WBC). The maximum annual effective dose was calculated from the detected Cs-137 levels. Interviews concerning patient dietary preferences and outdoor activities were also conducted. Results Among the 111 patients tested, internal radiocontamination with Cs-137 was detected in two participants, but the levels were marginal and just exceeded the detection limit (250 Bq/body). The tentatively calculated maximum annual effective dose ranged from 0.008 to 0.009 mSv/year, which is far below the 1 mSv/year limit set by the government of Japan. Relative to 238 non-ESRD participants, patients with ERSD had significantly more opportunities to consume locally grown produce that was not distributed to the market (p<0.01). However, the percentage of patients with ESRD with detectable Cs (1.8%) was lower than that for non-ESRD participants (3.8%), although this difference was not significant (p=0.51). Conclusions These findings suggest that internal radiocontamination levels and the calculated annual additional effective doses were negligible for patients with ESRD taking HD in areas affected by the crippled Fukushima nuclear plant. Although HD is suggested to promote Cs-137 excretion, continuous inspection of locally grown produce together with WBC screening for radiocontamination should be continued for patients with ESRD regularly taking HD. PMID:26644125

  5. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    SciTech Connect

    Petibon, Yoann; Syrkina, Aleksandra; Huang, Chuan; Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges; Reese, Timothy G.; Chen, Yen-Lin

    2014-04-15

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and{sup 18}F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion

  6. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    PubMed Central

    Petibon, Yoann; Huang, Chuan; Ouyang, Jinsong; Reese, Timothy G.; Li, Quanzheng; Syrkina, Aleksandra; Chen, Yen-Lin; El Fakhri, Georges

    2014-01-01

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and 18F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion at

  7. Efficiency of whole-body counter for various body size calculated by MCNP5 software.

    PubMed

    Krstic, D; Nikezic, D

    2012-11-01

    The efficiency of a whole-body counter for (137)Cs and (40)K was calculated using the MCNP5 code. The ORNL phantoms of a human body of different body sizes were applied in a sitting position in front of a detector. The aim was to investigate the dependence of efficiency on the body size (age) and the detector position with respect to the body and to estimate the accuracy of real measurements. The calculation work presented here is related to the NaI detector, which is available in the Serbian Whole-body Counter facility in Vinca Institute. PMID:22923253

  8. Design and performance evaluation of a whole-body Ingenuity TF PET–MRI system

    PubMed Central

    Zaidi, H; Ojha, N; Morich, M; Griesmer, J; Hu, Z; Maniawski, P; Ratib, O; Izquierdo-Garcia, D; Fayad, Z A; Shao, L

    2014-01-01

    The Ingenuity TF PET–MRI is a newly released whole-body hybrid PET–MR imaging system with a Philips time-of-flight GEMINI TF PET and Achieva 3T X-series MRI system. Compared to PET–CT, modifications to the positron emission tomography (PET) gantry were made to avoid mutual system interference and deliver uncompromising performance which is equivalent to the standalone systems. The PET gantry was redesigned to introduce magnetic shielding for the photomultiplier tubes (PMTs). Stringent electromagnetic noise requirements of the MR system necessitated the removal of PET gantry electronics to be housed in the PET–MR equipment room. We report the standard NEMA measurements for the PET scanner. PET imaging and performance measurements were done at Geneva University Hospital as described in the NEMA Standards NU2-2007 manual. The scatter fraction (SF) and noise equivalent count rate (NECR) measurements with the NEMA cylinder (20 cm diameter) were repeated for two larger cylinders (27 cm and 35 cm diameter), which better represent average and heavy patients. A NEMA/IEC torso phantom was used for overall assessment of image quality. The transverse and axial resolution near the center was 4.7 mm. Timing and energy resolution of the PET–MR system were measured to be 525 ps and 12%, respectively. The results were comparable to PET–CT systems demonstrating that the effect of design modifications required on the PET system to remove the harmful effect of the magnetic field on the PMTs was negligible. The absolute sensitivity of this scanner was 7.0 cps kBq−1, whereas SF was 26%. NECR measurements performed with cylinders having three different diameters, and image quality measurements performed with IEC phantom yielded excellent results. The Ingenuity TF PET–MRI represents the first commercial whole-body hybrid PET–MRI system. The performance of the PET subsystem was comparable to the GEMINI TF PET–CT system using phantom and patient studies. It is conceived

  9. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system.

    PubMed

    Zaidi, H; Ojha, N; Morich, M; Griesmer, J; Hu, Z; Maniawski, P; Ratib, O; Izquierdo-Garcia, D; Fayad, Z A; Shao, L

    2011-05-21

    The Ingenuity TF PET-MRI is a newly released whole-body hybrid PET-MR imaging system with a Philips time-of-flight GEMINI TF PET and Achieva 3T X-series MRI system. Compared to PET-CT, modifications to the positron emission tomography (PET) gantry were made to avoid mutual system interference and deliver uncompromising performance which is equivalent to the standalone systems. The PET gantry was redesigned to introduce magnetic shielding for the photomultiplier tubes (PMTs). Stringent electromagnetic noise requirements of the MR system necessitated the removal of PET gantry electronics to be housed in the PET-MR equipment room. We report the standard NEMA measurements for the PET scanner. PET imaging and performance measurements were done at Geneva University Hospital as described in the NEMA Standards NU 2-2007 manual. The scatter fraction (SF) and noise equivalent count rate (NECR) measurements with the NEMA cylinder (20 cm diameter) were repeated for two larger cylinders (27 cm and 35 cm diameter), which better represent average and heavy patients. A NEMA/IEC torso phantom was used for overall assessment of image quality. The transverse and axial resolution near the center was 4.7 mm. Timing and energy resolution of the PET-MR system were measured to be 525 ps and 12%, respectively. The results were comparable to PET-CT systems demonstrating that the effect of design modifications required on the PET system to remove the harmful effect of the magnetic field on the PMTs was negligible. The absolute sensitivity of this scanner was 7.0 cps kBq(-1), whereas SF was 26%. NECR measurements performed with cylinders having three different diameters, and image quality measurements performed with IEC phantom yielded excellent results. The Ingenuity TF PET-MRI represents the first commercial whole-body hybrid PET-MRI system. The performance of the PET subsystem was comparable to the GEMINI TF PET-CT system using phantom and patient studies. It is conceived that advantages

  10. Whole body radiotherapy: A TBI-guideline

    PubMed Central

    Quast, Ulrich

    2006-01-01

    Total Body Irradiation (TBI) is one main component in the interdisciplinary treatment of widely disseminated malignancies predominantly of haematopoietic diseases. Combined with intensive chemotherapy, TBI enables myeloablative high dose therapy and immuno-ablative conditioning treatment prior to subsequent transplantation of haematopoietic stem cells: bone marrow stem cells or peripheral blood progenitor stem cells. Jointly prepared by DEGRO and DGMP, the German Society of Radio-Oncology, and the German Association of Medical Physicists, this DEGRO/DGMP-Leitlinie Ganzkoerper-Strahlenbehandlung - DEGRO/DGMP Guideline Whole Body Radiotherapy, summarises the concepts, principles, facts and common methods of Total Body Irradiation and poses a set of recommendations for reliable and successful application of high dose large-field radiotherapy as essential part of this interdisciplinary, multi-modality treatment concept. The guideline is geared towards radio-oncologists, medical physicists, haematooncolo-gists, and all contributing to Whole Body Radiotherapy. To guide centres intending to start or actualise TBI criteria are included. The relevant treatment parameters are defined and a sample of a form is given for reporting TBI to international registries. PMID:21206634

  11. The impact of anthropometric patient-phantom matching on organ dose: A hybrid phantom study for fluoroscopy guided interventions

    SciTech Connect

    Johnson, Perry B.; Geyer, Amy; Borrego, David; Ficarrotta, Kayla; Johnson, Kevin; Bolch, Wesley E.

    2011-02-15

    Purpose: To investigate the benefits and limitations of patient-phantom matching for determining organ dose during fluoroscopy guided interventions. Methods: In this study, 27 CT datasets representing patients of different sizes and genders were contoured and converted into patient-specific computational models. Each model was matched, based on height and weight, to computational phantoms selected from the UF hybrid patient-dependent series. In order to investigate the influence of phantom type on patient organ dose, Monte Carlo methods were used to simulate two cardiac projections (PA/left lateral) and two abdominal projections (RAO/LPO). Organ dose conversion coefficients were then calculated for each patient-specific and patient-dependent phantom and also for a reference stylized and reference hybrid phantom. The coefficients were subsequently analyzed for any correlation between patient-specificity and the accuracy of the dose estimate. Accuracy was quantified by calculating an absolute percent difference using the patient-specific dose conversion coefficients as the reference. Results: Patient-phantom matching was shown most beneficial for estimating the dose to heavy patients. In these cases, the improvement over using a reference stylized phantom ranged from approximately 50% to 120% for abdominal projections and for a reference hybrid phantom from 20% to 60% for all projections. For lighter individuals, patient-phantom matching was clearly superior to using a reference stylized phantom, but not significantly better than using a reference hybrid phantom for certain fields and projections. Conclusions: The results indicate two sources of error when patients are matched with phantoms: Anatomical error, which is inherent due to differences in organ size and location, and error attributed to differences in the total soft tissue attenuation. For small patients, differences in soft tissue attenuation are minimal and are exceeded by inherent anatomical differences

  12. The UF series of tomographic computational phantoms of pediatric patients

    SciTech Connect

    Lee, Choonik; Williams, Jonathan L.; Lee, Choonsik; Bolch, Wesley E.

    2005-12-15

    Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvis CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be

  13. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  15. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  16. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  17. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section...

  18. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section...

  19. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section...

  20. Action slips during whole-body vibration.

    PubMed

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S

    2016-07-01

    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition. PMID:26611989

  1. Internal Photon and Electron Dosimetry of the Newborn Patient – A Hybrid Computational Phantom Study

    PubMed Central

    Wayson, Michael; Lee, Choonsik; Sgouros, George; Treves, S. Ted; Frey, Eric; Bolch, Wesley E.

    2013-01-01

    Objective Estimates of radiation absorbed dose to organs of the nuclear medicine patient are a requirement for administered activity optimization and for stochastic risk assessment. Pediatric patients, and in particular the newborn child, represent that portion of the patient population where such optimization studies are most crucial owing to the enhanced tissue radiosensitivities and longer life expectancies of this patient subpopulation. In cases where whole-body CT imaging is not available, phantom-based calculations of radionuclide S values – absorbed dose to a target tissue per nuclear transformation in a source tissue – are required for dose and risk evaluation. In this study, a comprehensive model of electron and photon dosimetry of the reference newborn child is presented based on a high-resolution hybrid-voxel phantom from the University of Florida patient model series. Methods Values of photon specific absorbed fraction (SAF) were assembled for the both the reference male and female newborn using the radiation transport code MCNPX v2.6. Values of electron specific absorbed fraction were assembled in a unique and time-efficient manner whereby the collisional and radiative components of organ dose – for both self and cross dose terms – were computed separately. Dose to the newborn skeletal tissues were assessed via fluence-to-dose response functions reported for the first time in this study. Results Values of photon and electron specific absorbed fractions were used to assemble a complete set of S values for some 16 radionuclides commonly associated with molecular imaging of the newborn. These values were then compared to those available in the OLINDA/EXM software. S value ratios for organ self-dose ranged from 0.46 to 1.42, while similar ratios for organ cross-dose varied from a low of 0.04 to a high of 3.49. These large discrepancies are due in large part to the simplistic organ modeling in the stylized newborn model used in the OLINDA

  2. Whole-body vibration exercise in postmenopausal osteoporosis

    PubMed Central

    Mieszkowski, Jan; Niespodziński, Bartłomiej; Ciechanowska, Katarzyna

    2015-01-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’. PMID:26327887

  3. Whole body protein metabolism in children with cancer.

    PubMed Central

    Daley, S E; Pearson, A D; Craft, A W; Kernahan, J; Wyllie, R A; Price, L; Brock, C; Hetherington, C; Halliday, D; Bartlett, K

    1996-01-01

    Whole body protein synthesis and catabolism were measured using the [ring-2H5]phenylalanine and [1-13C]leucine primed constant infusion technique in 32 paediatric patients with cancer at different stages of treatment. Rates of synthesis (S) and catabolism (C) derived from the [ring-2H5]phenylalanine and [1-13C]leucine models were 4.7 (SD 1.3) (S) and 6.0 (1.5) (C) g/d/kg, and 5.5 (0.8) (S) and 6.8 (1.2) (C) g/d/kg, respectively. These results show that these two tracer techniques give similar results in this study population. Comparison of these values with results previously reported for groups of control children using the [ring-2H5]phenylalanine model (S = 3.69 and 3.93; C = 4.09 and 4.28 g/d/kg) and the [1-13C]leucine model (S = 4.32; C = 4.85 g/d/kg) show that rates of synthesis and catabolism were higher in cancer patients than in controls. Thus whole body protein turnover is increased in children under treatment for cancer. Other indices of metabolism such as plasma amino acids and intermediary metabolites were also measured and showed that, although subjects were in isotopic steady state, there were significant metabolic changes during the course of the primed constant infusions used to measure protein turnover. PMID:8984910

  4. Whole-body MRI in paediatric oncology.

    PubMed

    Nievelstein, Rutger A J; Littooij, Annemieke S

    2016-05-01

    Imaging plays a crucial role in the diagnosis and follow-up of paediatric malignancies. Until recently, computed tomography (CT) has been the imaging technique of choice in children with cancer, but nowadays there is an increasing interest in the use of functional imaging techniques like positron emission tomography and single-photon emission tomography. These later techniques are often combined with CT allowing for simultaneous acquisition of image data on the biological behaviour of tumour, as well as the anatomical localisation and extent of tumour spread. Because of the small but not negligible risk of radiation induced secondary cancers and the significantly improved overall survival rates of children with cancer, there is an increasing interest in the use of alternative imaging techniques that do not use ionising radiation. Magnetic resonance imaging (MRI) is a radiation-free imaging tool that allows for acquiring images with a high spatial resolution and excellent soft tissue contrast throughout the body. Moreover, recent technological advances have resulted in fast diagnostic sequences for whole-body MR imaging (WB-MRI), including functional techniques such as diffusion weighted imaging. In this review, the current status of the technique and major clinical applications of WB-MRI in children with cancer will be discussed. PMID:26631075

  5. The calculation of a size correction factor for a whole-body counter

    NASA Astrophysics Data System (ADS)

    Carinou, E.; Koukouliou, V.; Budayova, M.; Potiriadis, C.; Kamenopoulou, V.

    2007-09-01

    Whole-Body counting techniques use radiation detectors in order to evaluate the internal exposure from radionuclides. The Whole-Body Counter (WBC) of the Greek Atomic Energy Commission (GAEC) is used for in vivo measurements of workers for routine purposes as well as for the public in case of an emergency. The system has been calibrated using the phantom provided by CANBERRA (RMC phantom) in combination with solid and point sources. Furthermore, four bottle phantoms of different sizes have been used to calibrate the system to measure potassium, 40K, for different sized workers. However, the use of different phantoms in combination with different sources is time consuming and expensive. Moreover, the purchase and construction of the reference standards need specific knowledge. An alternative option would be the use of Monte Carlo simulation. In this study, the Monte Carlo technique has been firstly validated using the 40K measurements of the four phantoms. After the validation of the methodology, the Monte Carlo code, MCNP, has been used with the same simulated geometries (phantom detector) and different sources in order to calculate the efficiency of the system for different photon energies in the four phantoms. The simulation energies correspond to the following radionuclides: 131I, 137Cs, 60Co, and 88Y. A size correction calibration factor has been defined in order to correct the efficiency of the system for the different phantoms and energies for uniform distribution. The factors vary from 0.64 to 1.51 depending on the phantom size and photon energy.

  6. Characterisation of the PSI whole body counter by radiographic imaging.

    PubMed

    Mayer, S; Boschung, M; Meier, K; Laedermann, J-P; Bochud, F O

    2011-03-01

    A joint project between the Paul Scherrer Institut (PSI) and the Institute of Radiation Physics was initiated to characterise the PSI whole body counter in detail through measurements and Monte Carlo simulation. Accurate knowledge of the detector geometry is essential for reliable simulations of human body phantoms filled with known activity concentrations. Unfortunately, the technical drawings provided by the manufacturer are often not detailed enough and sometimes the specifications do not agree with the actual set-up. Therefore, the exact detector geometry and the position of the detector crystal inside the housing were determined through radiographic images. X-rays were used to analyse the structure of the detector, and (60)Co radiography was employed to measure the core of the germanium crystal. Moreover, the precise axial alignment of the detector within its housing was determined through a series of radiographic images with different incident angles. The hence obtained information enables us to optimise the Monte Carlo geometry model and to perform much more accurate and reliable simulations. PMID:21044999

  7. Utilization of 3-D elastic transformation in the registration of chest x-ray CT and whole body PET

    SciTech Connect

    Tai, Yuan-Chuan; Hoh, C.K.; Hoffman, E.J.

    1996-12-31

    X-ray CT is widely used for detection and localization of lesions in the thorax. Whole Body PET with 18-FDG is becoming accepted for staging of cancer because of its ability to detect malignancy. Combining information from these two modalities has a significant value to improve lung cancer staging and treatment planning. Due to the non-rigid nature of the thorax and the differences in the acquisition conventions, the subject is stretched non-uniformly and the images of these two modalities requires non-rigid transformation for proper registration. Techniques to register chest x-ray CT and Whole Body PET images were developed and evaluated. Accuracy of 3-D elastic transformation was tested by phantom study. Studies on patients with lung carcinoma were used to validate the technique in localizing the 18-FDG uptake and in correlating PET to x-ray CT images. The fused images showed an accurate alignment and provided confident identification of the detailed anatomy of the CT with the functional information of the PET images.

  8. An adaptive diffusion-weighted whole-body magnetic resonance imaging scheme using the multistation approach

    NASA Astrophysics Data System (ADS)

    Han, Yeji

    2016-02-01

    Whole-body diffusion-weighted imaging (DWI) is a useful tool in oncology, which enables fast screening of disseminated tumors, lymph nodes or abscesses in the body. Multistation magnetic resonance imaging (MRI) or continuously moving table (CMT) MRI can be performed to overcome the limited field of view (FOV) of the magnet bore in whole-body DWI. Although CMT-MRI is regarded as a more advanced form of whole-body MRI, it cannot be widely used because most of the available MR systems are not equipped with the required hardware/software to perform CMT. Thus, optimizing the multistation approach for whole-body DWI, which is more widely available and easier to perform with the existing MR systems, is worthwhile. To improve the quality of DW images acquired with the multistation approach, we used different combinations of the built-in body RF coil and the phased-array surface RF coils for reception of the signals in whole-body DWI in this work. If different coils are selectively used in the extended FOV and appropriate reconstruction algorithms are exploited, the screening ability of whole-body DWI can be improved while minimizing the patient's discomfort and the artifacts due to physiological motions.

  9. Secondary neurolymphomatosis detected by whole-body diffusion-weighted magnetic resonance imaging: a case report.

    PubMed

    Tanaka, Hiroaki; Yoshino, Kazuhiro; Sakaida, Emiko; Hashimoto, Shinichiro; Takeda, Yusuke; Kawajiri, Chika; Takagi, Toshiyuki; Nakaseko, Chiaki

    2013-01-01

    Neurolymphomatosis (NL) is a rare clinical entity defined as peripheral nervous system infiltration by lymphoma. The diagnosis is difficult and often elusive. Whole-body diffusion-weighted magnetic resonance imaging (DW MRI) was developed to enhance the detection of vaguely delineated tumors. Here, we describe the case of a 71-year-old male with secondary NL of diffuse large B-cell lymphoma (DLBCL) that was successfully detected by whole-body DW MRI. The patient was diagnosed with DLBCL extending from the ethmoidal sinus to the nasal cavity, orbital cavity, and anterior cranial fossa. Although he was administered R-THP-COP chemotherapy and the tumor remarkably decreased in size, he developed painful paresthesia and weakness in the left upper and bilateral lower extremities during treatment. Because lymphoma cells were detected in his spinal fluid, high-dose methotrexate (MTX) and weekly intrathecal MTX and cytarabine injections were administered. Test results for lymphoma cells in the spinal fluid became negative ; however, the neurological disorders progressed. Whole-body DW MRI was performed as whole-body screening and could localize NL at the left cervical and bilateral lumbar nerve roots. Both cervical spine plain MRI and enhanced computed tomography performed around the same time could not detect the cervical lesion. Our case report suggests that whole-body DW MRI is a useful diagnostic imaging procedure, especially as whole-body screening in facilities where PET/CT is not available. PMID:24369224

  10. Whole-body nanoparticle aerosol inhalation exposures.

    PubMed

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 (5). The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M

  11. Whole-Body Nanoparticle Aerosol Inhalation Exposures

    PubMed Central

    Yi, Jinghai; Chen, Bean T.; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L.; Stapleton, Phoebe A.; Minarchick, Valerie C.; Nurkiewicz, Timothy R.

    2013-01-01

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter < 200 nm and a geometric standard deviation σg < 2.5 5. The generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size 6, which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria 5. A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m3 whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm3) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m3). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpreand Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is

  12. Whole-body vibration perception thresholds

    NASA Astrophysics Data System (ADS)

    Parsons, K. C.; Griffin, M. J.

    1988-03-01

    This paper presents the results of a series of laboratory experiments concerned with perception thresholds for whole-body vibration. The nature of absolute perception thresholds is discussed and a method of determining vibration thresholds, based upon signal detection theory, is proposed. Thresholds of subjects exposed to x-, y- and z-axis sinusoidal vibration were determined for sitting and standing subjects (from 2 to 100 Hz). Perception thresholds have also been determined for supine subjects exposed to vertical ( x-axis) sinusoidal vibration (10-63 Hz). In additional experiments the effects of complex (e.g., random) vibration and the effects of duration on the perception thresholds were investigated. The relation between perception thresholds and vibration levels, said by subjects to be unacceptable if they occurred in their own homes, was investigated as well as the effects of subjects' personality and the visual and acoustic conditions in the laboratory. For the vertical vibration of seated subjects no significant differences were found between the responses of male and female subjects. Significant differences were found between perception thresholds for sitting and standing postures. The median threshold was approximately 0·01 m/s 2 r.m.s. between 2 and 100 Hz. Perception thresholds for x-axis and y-axis vibration were not significantly different in either sitting or standing subjects but significant differences in thresholds were found between sitting and standing positions for both x-axis and y-axis vibration. Subjects tended to be more sensitive to vibration when lying than when sitting or standing. The results suggested that the perception of random vibrations can be predicted from a knowledge of the perception of its component vibrations. The number of cycles of vibration did not affect perception thresholds for vibration durations of more than about 0·25 s. Some assessments suggested that vibration at more than twice the perception threshold may not

  13. Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy.

    PubMed

    Takada, Kenta; Kumada, Hiroaki; Isobe, Tomonori; Terunuma, Toshiyuki; Kamizawa, Satoshi; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    Dose evaluation for out-of-field organs during radiotherapy has gained interest in recent years. A team led by University of Tsukuba is currently implementing a project for advancing boron neutron capture therapy (BNCT), along with a radiation treatment planning system (RTPS). In this study, the authors used the RTPS (the 'Tsukuba-Plan') to evaluate the dose to out-of-field organs during BNCT. Computed tomography images of a whole-body phantom were imported into the RTPS, and a voxel model was constructed for the Monte Carlo calculations, which used the Particle and Heavy Ion Transport Code System. The results indicate that the thoracoabdominal organ dose during BNCT for a brain tumour and maxillary sinus tumour was 50-360 and 120-1160 mGy-Eq, respectively. These calculations required ∼29.6 h of computational time. This system can evaluate the out-of-field organ dose for BNCT irradiation during treatment planning with patient-specific irradiation conditions. PMID:25520378

  14. An analysis of dependency of counting efficiency on worker anatomy for in vivo measurements: whole-body counting

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Mille, Matthew; Xu, X. George

    2008-07-01

    In vivo radiobioassay is integral to many health physics and radiological protection programs dealing with internal exposures. The Bottle Manikin Absorber (BOMAB) physical phantom has been widely used for whole-body counting calibrations. However, the shape of BOMAB phantoms—a collection of plastic, cylindrical shells which contain no bones or internal organs—does not represent realistic human anatomy. Furthermore, workers who come in contact with radioactive materials have rather different body shape and size. To date, there is a lack of understanding about how the counting efficiency would change when the calibrated counter is applied to a worker with complicated internal organs or tissues. This paper presents a study on various in vivo counting efficiencies obtained from Monte Carlo simulations of two BOMAB phantoms and three tomographic image-based models (VIP-Man, NORMAN and CNMAN) for a scenario involving homogeneous whole-body radioactivity contamination. The results reveal that a phantom's counting efficiency is strongly dependent on the shape and size of a phantom. Contrary to what was expected, it was found that only small differences in efficiency were observed when the density and material composition of all internal organs and tissues of the tomographic phantoms were changed to water. The results of this study indicate that BOMAB phantoms with appropriately adjusted size and shape can be sufficient for whole-body counting calibrations when the internal contamination is homogeneous.

  15. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body counter. 892.1130 Section 892.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter....

  16. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body counter. 892.1130 Section 892.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter....

  17. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body counter. 892.1130 Section 892.1130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter....

  18. Whole-body FDG-PET imaging for staging of Hodgkin`s disease and lymphoma

    SciTech Connect

    Hoh, C.K.; Glaspy, J.; Rosen, P.

    1997-03-01

    Accurate staging of Hodgkin`s disease (HD) and non-Hodgkin`s lymphoma (NHL) is important for treatment management. In this study, the utility of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (FDG) wholebody PET was evaluated as an imaging modality for initial staging or restaging of 7 HD and 11 NHL patients. Whole-body PET-based staging results were compared to the patient`s clinical stage based on conventional staging studies, which included combinations of CT of the chest, abdomen and pelvis, MRI scans, gallium scans, lymphangiograms, staging laparatomies and bone scans. Accurate staging was performed in 17 of 18 patients using a whole-body PET-based staging algorithm compared to the conventional staging algorithm in 15 of 18 patients. In 5 of 18 patients, whole-body PET-based staging showed additional lesions not detected by conventional staging modalities, whereas conventional staging demonstrated additional lesions in 4 of 18 patients not detected by whole-body PET. The total cost of conventional staging was $66,292 for 16 CT chest scans, 16 CT abdominal/pelvis scans, three limited MRI scans, four bone scans, give gallium scans, two laparotomies and one lymphangiogram. In contrast, scans cost $36,250 for 18 whole-body PET studies and additional selected correlative studies: one plain film radiograph, one limited CT, one bone marrow san, one upper GI and one endoscopy. A whole-body FDG-PET-based staging algorithm may be an accurate and cost-effective method for staging or restaging HD and NHL. 10 refs., 7 figs., 2 tabs.

  19. Whole-body cryotherapy in athletes.

    PubMed

    Banfi, Giuseppe; Lombardi, Giovanni; Colombini, Alessandra; Melegati, Gianluca

    2010-06-01

    Cold therapy is commonly used as a procedure to relieve pain symptoms, particularly in inflammatory diseases, injuries and overuse symptoms. A peculiar form of cold therapy (or stimulation) was proposed 30 years ago for the treatment of rheumatic diseases. The therapy, called whole-body cryotherapy (WBC), consists of exposure to very cold air that is maintained at -110 degrees C to -140 degrees C in special temperature-controlled cryochambers, generally for 2 minutes. WBC is used to relieve pain and inflammatory symptoms caused by numerous disorders, particularly those associated with rheumatic conditions, and is recommended for the treatment of arthritis, fibromyalgia and ankylosing spondylitis. In sports medicine, WBC has gained wider acceptance as a method to improve recovery from muscle injury. Unfortunately, there are few papers concerning the application of the treatment on athletes. The study of possible enhancement of recovery from injuries and possible modification of physiological parameters, taking into consideration the limits imposed by antidoping rules, is crucial for athletes and sports physicians for judging the real benefits and/or limits of WBC. According to the available literature, WBC is not harmful or detrimental in healthy subjects. The treatment does not enhance bone marrow production and could reduce the sport-induced haemolysis. WBC induces oxidative stress, but at a low level. Repeated treatments are apparently not able to induce cumulative effects; on the contrary, adaptive changes on antioxidant status are elicited--the adaptation is evident where WBC precedes or accompanies intense training. WBC is not characterized by modifications of immunological markers and leukocytes, and it seems to not be harmful to the immunological system. The WBC effect is probably linked to the modifications of immunological molecules having paracrine effects, and not to systemic immunological functions. In fact, there is an increase in anti

  20. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer

    NASA Astrophysics Data System (ADS)

    Wetterling, Friedrich; Corteville, Dominique M.; Kalayciyan, Raffi; Rennings, Andreas; Konstandin, Simon; Nagel, Armin M.; Stark, Helmut; Schad, Lothar R.

    2012-07-01

    Sodium magnetic resonance imaging (23Na MRI) is a non-invasive technique which allows spatial resolution of the tissue sodium concentration (TSC) in the human body. TSC measurements could potentially serve to monitor early treatment success of chemotherapy on patients who suffer from whole body metastases. Yet, the acquisition of whole body sodium (23Na) images has been hampered so far by the lack of large resonators and the extremely low signal-to-noise ratio (SNR) achieved with existing resonator systems. In this study, a 23Na resonator was constructed for whole body 23Na MRI at 3T comprising of a 16-leg, asymmetrical birdcage structure with 34 cm height, 47.5 cm width and 50 cm length. The resonator was driven in quadrature mode and could be used either as a transceiver resonator or, since active decoupling was included, as a transmit-only resonator in conjunction with a receive-only (RO) surface resonator. The relative B1-field profile was simulated and measured on phantoms, and 3D whole body 23Na MRI data of a healthy male volunteer were acquired in five segments with a nominal isotropic resolution of (6 × 6 × 6) mm3 and a 10 min acquisition time per scan. The measured SNR values in the 23Na-MR images varied from 9 ± 2 in calf muscle, 15 ± 2 in brain tissue, 23 ± 2 in the prostate and up to 42 ± 5 in the vertebral discs. Arms, legs, knees and hands could also be resolved with applied resonator and short time-to-echo (TE) (0.5 ms) radial sequence. Up to fivefold SNR improvement was achieved through combining the birdcage with local RO surface coil. In conclusion, 23Na MRI of the entire human body provides sub-cm spatial resolution, which allows resolution of all major human body parts with a scan time of less than 60 min.

  1. Detection and semi-quantitative measurement of lung cancer metabolic activity by whole body PET

    SciTech Connect

    Tse, K.K.M.; Buchpiguel, C.A.; Alavi, J.B.

    1994-05-01

    Conventional radiologic and nuclear medicine techniques have been shown to have a limited role in the staging and monitoring of disease activity in patients with lung cancer. Both qualitative and semi-quantitative position emission tomography (PET) using the F-18 FDG technique have been applied to determine the clinical utility of whole body PET-FDG imaging in lung cancer. Nineteen whole body FDG PET scans were performed in 18 patients; 17 with lung cancer (15 non-small cell and 2 small cell) and 1 with squamous cell carcinoma of the trachea.

  2. A HF EM installation allowing simultaneous whole body and deep local EM hyperthermia.

    PubMed

    Mazokhin, V N; Kolmakov, D N; Lucheyov, N A; Gelvich, E A; Troshin, I I

    1999-01-01

    The structure and main features of a HF EM installation based upon a new approach for creating electromagnetic fields destined for whole body (WBH) and deep local (DLH) hyperthermia are discussed. The HF EM field, at a frequency of 13.56 MHz, is created by a coplanar capacity type applicator positioned under a distilled water filled bolus that the patient is lying on. The EM energy being released directly in the deep tissues ensures effective whole body heating to required therapeutic temperatures of up to 43.5 degrees C, whereas the skin temperature can be maintained as low as 39-40.5 degrees C. For DLH, the installation is equipped with additional applicators and a generator operating at a frequency of 40.68 MHz. High efficiency of the WBH applicator makes it possible to carry out the WBH procedure without any air-conditioning cabin. Due to this, a free access to the patient's body during the WBH treatment is provided and a simultaneous WBH/DLH or WBH/LH procedure by means of additional applicators is possible. Controllable power output in the range of 100-800 W at a frequency of 13.56 MHz and 50-350 W at a frequency of 40.68 MHz allows accurate temperature control during WBH, DLH and WBH/DLH procedures. SAR patterns created by the WBH and DLH applicators in a liquid muscle phantom and measured by means of a non-perturbing E-dipole are investigated. The scattered EM field strength measured in the vicinity of the operating installation during the WBH, DLH and WBH/DLH procedures does not exceed security standards. Examples of temperature versus time graphs in the course of WBH, DLH and WBH/DLH procedures in clinics are presented. The installation is successfully used in leading oncological institutions of Russia and Belarus, though combined WBH/DLH procedures are evidently more complicated and demand thorough planning and temperature measurements to avoid overheating. PMID:10458570

  3. Estimating whole-body fish PCB concentrations from fillet data

    SciTech Connect

    Rigg, D.; Hohreiter, D.; Strause, K.; Brown, M.; Barnes, C.

    1995-12-31

    A study was designed to assess a potentially cost-effective method for generating both types of data from single fish specimens. The method is based on the testable hypothesis that whole-body PCE concentrations are predictable from fillet PCB concentrations and fillet and whole-body lipid concentrations. The study involved the collection of small-mouth bass (Micropterus dolomieui) and carp (Cyprinus carpio) from several locations in the Kalamazoo River (Michigan) watershed to represent a range in PCB exposure. PCB and lipid concentrations were determined in aliquots of homogenized fillets and remaining carcasses. Wet-weight total PCB concentrations in carp ranged from 0.06 to 17 mg/kg in fillets, and from 0.11 to 14 mg/kg for remaining carcass; small-mouth bass ranged from 0.08 to 5.8 mg/kg in fillets, and from 0.21 to 13.2 mg/kg for remaining carcass. Whole-body PCB concentrations predicted using fillet PCB concentrations and fillet and carcass lipid concentrations accounted for 94% and 88% of the variability in measured whole-body small-mouth and whole-body carp concentrations, respectively. Predicted and measured whole-body PCB concentrations had a correlation of 91% for small-mouth bass, and 84% for carp. These results demonstrate that value of the lipid-based model in predicting whole-body PCB concentrations from measured fillet PCB concentrations and lipid concentrations in fillet and remaining carcass.

  4. Abatacept Improves Whole-Body Insulin Sensitivity in Rheumatoid Arthritis

    PubMed Central

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-01-01

    Abstract Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  5. Comprehensive diagnosis of whole-body acid-base and fluid-electrolyte disorders using a mathematical model and whole-body base excess.

    PubMed

    Wolf, Matthew B

    2015-08-01

    A mathematical model of whole-body acid-base and fluid-electrolyte balance was used to provide information leading to the diagnosis and fluid-therapy treatment in patients with complex acid-base disorders. Given a set of measured laboratory-chemistry values for a patient, a model of their unique, whole-body chemistry was created. This model predicted deficits or excesses in the masses of Na(+), K(+), Cl(-) and H2O as well as the plasma concentration of unknown or unmeasured species, such as ketoacids, in diabetes mellitus. The model further characterized the acid-base disorder by determining the patient's whole-body base excess and quantitatively partitioning it into ten components, each contributing to the overall disorder. The results of this study showed the importance of a complete set of laboratory measurements to obtain sufficient accuracy of the quantitative diagnosis; having only a minimal set, just pH and PCO2, led to a large scatter in the predicted results. A computer module was created that would allow a clinician to achieve this diagnosis at the bedside. This new diagnostic approach should prove to be valuable in the treatment of the critically ill. PMID:25281215

  6. Treating the whole body in Huntington's disease.

    PubMed

    Carroll, Jeffrey B; Bates, Gillian P; Steffan, Joan; Saft, Carsten; Tabrizi, Sarah J

    2015-11-01

    Huntington's disease is a genetic neurodegenerative disorder with symptoms that are linked to the progressive dysfunction and neuronal death in corticostriatal circuits. The causative gene (mutated HTT) is widely expressed outside the CNS and several peripheral signs of disease, including weight loss and increased proinflammatory signalling, are often seen; however, their importance in the pathophysiology of Huntington's disease is not clear. Studies in animals have shown that features of the disease involving the CNS, including synapse loss and behavioural alterations, are susceptible to modulation by treatments that target tissues and organs outside the CNS. Links between peripheral biology and neurodegeneration have also been shown in other chronic neurodegenerative diseases, suggesting that modulation of these peripheral targets can offer new approaches to therapeutic development. Treatments targeted to tissues and organs outside the CNS might therefore substantially improve the quality of life of patients with Huntington's disease, even in the absence of disease-modifying effects. PMID:26466780

  7. Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology.

    PubMed

    Schmidt, Gerwin P; Kramer, Harald; Reiser, Maximilian F; Glaser, Christian

    2007-06-01

    The advent of positron emission tomography-computed tomography (PET-CT) and whole-body magnetic resonance imaging (WB-MRI) has introduced tumor imaging with a systemic and functional approach compared with established sequential, multimodal diagnostic algorithms.Whole-body PET with [18F]-fluoro-2-desoxy-glucose is a useful imaging procedure for tumor staging and monitoring that can visualize active tumor tissue by detecting pathological glucose metabolism. The combination of PET with the detailed anatomical information of multislice computed tomography as dual-modality scanners has markedly increased lesion localization and diagnostic accuracy compared with both modalities as standalone applications.Hardware innovations, such as the introduction of multi-receiver channel whole-body MRI scanners at 1.5 and, recently, 3 T, combined with acquisition acceleration techniques, have made high-resolution WB-MRI clinically feasible. Now, a dedicated assessment of individual organs with various soft tissue contrast, spatial resolution, and contrast media dynamics can be combined with whole-body anatomical coverage in a multiplanar imaging approach. More flexible protocols (eg, T1-weighted turbo spin-echo and short inversion recovery imaging, dedicated lung imaging or dynamic contrast-enhanced studies of the abdomen) can be performed within 45 minutes.Whole-body magnetic resonance imaging has recently been proposed for tumor screening of asymptomatic individuals, and potentially life-changing diagnoses, such as formerly unknown malignancy, have been reported. However, larger patient cohort studies will have to show the cost efficiency and the clinical effectiveness of such an approach.For initial tumor staging, PET-CT has proved more accurate for the definition of T-stage and lymph node assessment, mainly because of the missing metabolic information in WB-MRI. However, new applications, such as magnetic resonance whole-body diffusion-weighted imaging or lymphotropic contrast

  8. MONICA: a compact, portable dual gamma camera system for mouse whole-body imaging

    SciTech Connect

    Choyke, Peter L; Xia, Wenze; Seidel, Jurgen; Kakareka, John W; Pohida, Thomas J; Milenic, Diane E; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G; Green, Michael V

    2010-04-01

    Introduction We describe a compact, portable dual-gamma camera system (named "MONICA" for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed ?looking up? through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV?10%, yielded the following results: spatial resolution (FWHM at 1 cm), 2.2 mm; sensitivity, 149 cps (counts per seconds)/MBq (5.5 cps/μCi); energy resolution (FWHM, full width at half maximum), 10.8%; count rate linearity (count rate vs. activity), r2=0.99 for 0?185 MBq (0?5 mCi) in the field of view (FOV); spatial uniformity, <3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-min images acquired throughout the 168-h study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g., limited imaging space, portability and, potentially, cost are important.

  9. Measurement of caesium-137 in the human body using a whole body counter

    NASA Astrophysics Data System (ADS)

    Elessawi, Elkhadra Abdulmula

    Gamma radiation in the environment is mainly due to naturally occurring radionuclides. However, there is also a contribution from anthropogenic radionuclides such as 137Cs which originate from nuclear fission processes. Since 1986, the accident at the Chernobyl power plant has been a significant source of artificial environmental radioactivity. In order to assess the radiological impact of these radionuclides, it is necessary to measure their activities in samples drawn from the environment and in plants and animals including human populations. The whole body counter (WBC) at the University Hospital of Wales in Cardiff makes in vivo measurements of gamma emitting radionuclides using a scanning ring of six large-volume thallium-doped sodium iodide (Nal(Tl)) scintillation detectors. In this work the WBC was upgraded by the addition of two high purity germanium (HPGe) detectors. The performance and suitability of the detection systems were evaluated by comparing the detection limits for Cs. Sensitivities were measured using sources of known activity in a water filled anthropomorphic phantom and theoretical minimum detectable count-rates were estimated from phantom background pulse height spectra. The theoretical minimum detectable activity was about 24 Bq for the combination of six Nal(Tl) detectors whereas for the individual HPGe detectors it was 64 Bq and 65 Bq, despite the much improved energy resolution Activities of 137Cs in the human body between 1993 and 2007 were estimated from the background Nal(Tl) spectra of 813 patients and compared with recent measurements in 14 volunteers. The body burden of Cs in Cardiff patients increased from an average of about 60 Bq in the early and mid 1990s to a maximum of about 100 Bq in 2000. By 2007 it had decreased to about 40 Bq. This latter value was similar to that of Cardiff residents at the time of the Chernobyl accident and to that of the volunteers measured in 2007 (51 Bq). However, it was less than the mean activity of

  10. Whole-Body Clinical Applications of Digital Tomosynthesis.

    PubMed

    Machida, Haruhiko; Yuhara, Toshiyuki; Tamura, Mieko; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko; Nye, Katelyn; Sabol, John M

    2016-01-01

    With flat-panel detector mammography, radiography, and fluoroscopy systems, digital tomosynthesis (DT) has been recently introduced as an advanced clinical application that removes overlying structures, enhances local tissue separation, and provides depth information about structures of interest by providing high-quality tomographic images. DT images are generated from projection image data, typically using filtered back-projection or iterative reconstruction. These low-dose x-ray projection images are easily and swiftly acquired over a range of angles during a single linear or arc sweep of the x-ray tube assembly. DT is advantageous in a variety of clinical contexts, including breast, chest, head and neck, orthopedic, emergency, and abdominal imaging. Specifically, compared with conventional mammography, radiography, and fluoroscopy, as a result of reduced tissue overlap DT can improve detection of breast cancer, pulmonary nodules, sinonasal mucosal thickening, and bone fractures and delineation of complex anatomic structures such as the ostiomeatal unit, atlantoaxial joint, carpal and tarsal bones, and pancreatobiliary and gastrointestinal tracts. Compared with computed tomography, DT offers reduced radiation exposure, better in-plane resolution to improve assessment of fine bony changes, and less metallic artifact, improving postoperative evaluation of patients with metallic prostheses and osteosynthesis materials. With more flexible patient positioning, DT is also useful for functional, weight-bearing, and stress tests. To optimize patient management, a comprehensive understanding of the clinical applications and limitations of whole-body DT applications is important for improvement of diagnostic quality, workflow, and cost-effectiveness. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27163590

  11. Small-animal whole-body imaging using a photoacoustic full ring array system

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Guo, Zijian; Aguirre, Andres; Zhu, Quing; Wang, Lihong V.

    2011-03-01

    In this report, we present a novel 3D photoacoustic computed tomography (PACT) system for small-animal whole-body imaging. The PACT system, based on a 512-element full-ring transducer array, received photoacoustic signals primarily from a 2-mm-thick slice. The light was generated by a pulse laser, and can either illuminate from the top or be reshaped to illuminate the sample from the side, using a conical lens and an optical condenser. The PACT system was capable of acquiring an in-plane image in 1.6 s; by scanning the sample in the elevational direction, a 3D tomographic image could be constructed. We tested the system by imaging a cylindrical phantom made of human hairs immersed in a scattering medium. The reconstructed image achieved an in-plane resolution of 0.1 mm and an elevational resolution of 1 mm. After deconvolution in the elevational direction, the 3D image was found to match well with the phantom. The system was also used to image a baby mouse in situ; the spinal cord and ribs can be seen easily in the reconstructed image. Our results demonstrate that the PACT system has the potential to be used for fast small-animal whole-body tomographic imaging.

  12. Design specification for the whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.

    1974-01-01

    The necessary requirements and guidelines for the construction of a computer program of the whole-body algorithm are presented. The minimum subsystem models required to effectively simulate the total body response to stresses of interest are (1) cardiovascular (exercise/LBNP/tilt); (2) respiratory (Grodin's model); (3) thermoregulatory (Stolwijk's model); and (4) long-term circulatory fluid and electrolyte (Guyton's model). The whole-body algorithm must be capable of simulating response to stresses from CO2 inhalation, hypoxia, thermal environmental exercise (sitting and supine), LBNP, and tilt (changing body angles in gravity).

  13. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    NASA Astrophysics Data System (ADS)

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M.; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F.; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L.; McCollough, Cynthia H.

    2016-02-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  14. Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array

    PubMed Central

    Yu, Zhicong; Leng, Shuai; Jorgensen, Steven M; Li, Zhoubo; Gutjahr, Ralf; Chen, Baiyu; Halaweish, Ahmed F; Kappler, Steffen; Yu, Lifeng; Ritman, Erik L; McCollough, Cynthia H

    2016-01-01

    This study evaluated the conventional imaging performance of a research whole-body photon-counting CT system and investigated its feasibility for imaging using clinically realistic levels of x-ray photon flux. This research system was built on the platform of a 2nd generation dual-source CT system: one source coupled to an energy integrating detector (EID) and the other coupled to a photon-counting detector (PCD). Phantom studies were conducted to measure CT number accuracy and uniformity for water, CT number energy dependency for high-Z materials, spatial resolution, noise, and contrast-to-noise ratio. The results from the EID and PCD subsystems were compared. The impact of high photon flux, such as pulse pile-up, was assessed by studying the noise-to-tube-current relationship using a neonate water phantom and high x-ray photon flux. Finally, clinical feasibility of the PCD subsystem was investigated using anthropomorphic phantoms, a cadaveric head, and a whole-body cadaver, which were scanned at dose levels equivalent to or higher than those used clinically. Phantom measurements demonstrated that the PCD subsystem provided comparable image quality to the EID subsystem, except that the PCD subsystem provided slightly better longitudinal spatial resolution and about 25% improvement in contrast-to-noise ratio for iodine. The impact of high photon flux was found to be negligible for the PCD subsystem: only subtle high-flux effects were noticed for tube currents higher than 300 mA in images of the neonate water phantom. Results of the anthropomorphic phantom and cadaver scans demonstrated comparable image quality between the EID and PCD subsystems. There were no noticeable ring, streaking, or cupping/capping artifacts in the PCD images. In addition, the PCD subsystem provided spectral information. Our experiments demonstrated that the research whole-body photon-counting CT system is capable of providing clinical image quality at clinically realistic levels of x

  15. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging

    NASA Astrophysics Data System (ADS)

    Minarik, D.; Ljungberg, M.; Segars, P.; Sjögreen Gleisner, K.

    2009-10-01

    With high-dose administration of 90Y labeled antibodies, it is possible to image 90Y without an admixture of 111In. We have earlier shown that it is possible to perform quantitative 90Y bremsstrahlung SPECT for dosimetry purposes with reasonable accuracy. However, whole-body (WB) activity quantification with the conjugate view method is not as time consuming as SPECT and has been the method of choice for dosimetry. We have investigated the possibility of using a conjugate view method where scatter-, backscatter- and septal-penetration compensations are performed by inverse filtering and attenuation correction is performed with a WB x-ray image, for total-body and organ activity quantification of 90Y. The method was evaluated using both Monte Carlo simulated scintillation camera images using realistic source distributions, and by an experimental phantom study. The method was evaluated in terms of image quality and accuracy of the activity quantification. The experimental phantom study was performed using the RSD torso phantom with 90Y activity uniformly distributed in the liver insert. A GE Discovery VH/Hawkeye system was used to acquire the image. The simulation study was performed for a realistic activity distribution in the NCAT anthropomorphic phantom where 90Y bremsstrahlung images were generated using the SIMIND MC program. Two different phantom configurations and two activity distributions were simulated. To mimic the RSD phantom experiment one simulation study was also made with 90Y activity located only in the liver. The SIMIND program was configured to resemble a GE Discovery VH/Hawkeye system. An x-ray projector program was used to generate whole-body x-ray images from the NCAT phantom for attenuation correction in the conjugate view method. Organ activities were calculated from ROIs that exactly covered the organs. Corrections for background activity, overlapping activity and source extension in the depth direction were applied on the ROI data. The total

  16. Kappa Delta Award. Low back pain and whole body vibration.

    PubMed

    Pope, M H; Magnusson, M; Wilder, D G

    1998-09-01

    The investigators describe their multifaceted approach to the study of the relationship between whole body vibration and low back pain. The epidemiologic study was a two center study of drivers and sedentary workers in the United States and Sweden. The vibration exposure was measured in the vehicles. It was found that the career vibration exposure was related to low back, neck, and shoulder pain. However, disability was related to job satisfaction. In vivo experiments, using percutaneous pin mounted accelerometers have shown that the natural frequency is at 4.5 Hz. The frequency response is affected by posture, seating, and seat back inclination. The response appears to be determined largely by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration, should be reduced for those recovering from these problems. Vibration attenuating seats and correct ergonomic layout of the cabs may reduce the risks of recurrence. PMID:9755785

  17. Wireless Network for Measurement of Whole-Body Vibration

    PubMed Central

    Koenig, Diogo; Chiaramonte, Marilda S.; Balbinot, Alexandre

    2008-01-01

    This article presents the development of a system integrated to a ZigBee network to measure whole-body vibration. The developed system allows distinguishing human vibrations of almost 400Hz in three axes with acceleration of almost 50g. The tests conducted in the study ensured the correct functioning of the system for the project's purpose.

  18. BABYSCAN: a whole body counter for small children in Fukushima.

    PubMed

    Hayano, Ryugo S; Yamanaka, Shunji; Bronson, Frazier L; Oginni, Babatunde; Muramatsu, Isamu

    2014-09-01

    BABYSCAN, a whole body counter for small children with a detection limit for (137)Cs of better than 50 Bq/body, was developed, and the first unit has been installed at a hospital in Fukushima, to help families with small children who are very much concerned about internal exposures. The design principles, implementation details and the initial operating experience are described. PMID:25118889

  19. Age Modulates Attitudes to Whole Body Donation among Medical Students

    ERIC Educational Resources Information Center

    Perry, Gary F.; Ettarh, Raj R.

    2009-01-01

    Managing a whole body donor program is necessary for facilitating a traditional dissection-based anatomy curriculum in medicine and health sciences. Factors which influence body donations to medical science can therefore affect dissection-based anatomy teaching. In order to determine whether age influences the attitudes of medical students to…

  20. Student Attitudes to Whole Body Donation Are Influenced by Dissection

    ERIC Educational Resources Information Center

    Cahill, Kevin C.; Ettarh, Raj R.

    2008-01-01

    Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial…

  1. Small-animal whole-body photoacoustic tomography: a review

    PubMed Central

    Xia, Jun; Wang, Lihong V.

    2014-01-01

    With the wide use of small animals for biomedical studies, in vivo small-animal whole-body imaging plays an increasingly important role. Photoacoustic tomography (PAT) is an emerging whole-body imaging modality that shows great potential for preclinical research. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous tissue chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Using near-infrared light, which has relatively low blood absorption, PAT can image through the whole body of small animals with acoustically defined spatial resolution. Anatomical and vascular structures are imaged with endogenous hemoglobin contrast, while functional and molecular images are enabled by the wide choice of exogenous optical contrasts. This paper reviews the rapidly growing field of small-animal whole-body PAT and highlights studies done in the past decade. PMID:24108456

  2. Towards Whole-Body Fluorescence Imaging in Humans

    PubMed Central

    Piper, Sophie K.; Habermehl, Christina; Schmitz, Christoph H.; Kuebler, Wolfgang M.; Obrig, Hellmuth; Steinbrink, Jens; Mehnert, Jan

    2013-01-01

    Dynamic near-infrared fluorescence (DNIF) whole-body imaging of small animals has become a popular tool in experimental biomedical research. In humans, however, the field of view has been limited to body parts, such as rheumatoid hands, diabetic feet or sentinel lymph nodes. Here we present a new whole-body DNIF-system suitable for adult subjects. We explored whether this system (i) allows dynamic whole-body fluorescence imaging and (ii) can detect modulations in skin perfusion. The non-specific fluorescent probe indocyanine green (ICG) was injected intravenously into two subjects, and fluorescence images were obtained at 5 Hz. The in- and out-flow kinetics of ICG have been shown to correlate with tissue perfusion. To validate the system, skin perfusion was modulated by warming and cooling distinct areas on the chest and the abdomen. Movies of fluorescence images show a bolus passage first in the face, then in the chest, abdomen and finally in the periphery (∼10, 15, 20 and 30 seconds, respectively). When skin perfusion is augmented by warming, bolus arrives about 5 seconds earlier than when the skin is cooled and perfusion decreased. Calculating bolus arrival times and spatial fitting of basis time courses extracted from different regions of interest allowed a mapping of local differences in subcutaneous skin perfusion. This experiment is the first to demonstrate the feasibility of whole-body dynamic fluorescence imaging in humans. Since the whole-body approach demonstrates sensitivity to circumscribed alterations in skinperfusion, it may be used to target autonomous changes in polyneuropathy and to screen for peripheral vascular diseases. PMID:24391820

  3. Adaptation and applications of a realistic digital phantom based on patient lung tumor trajectories

    NASA Astrophysics Data System (ADS)

    Mishra, Pankaj; St. James, Sara; Segars, W. Paul; Berbeco, Ross I.; Lewis, John H.

    2012-06-01

    Digital phantoms continue to play a significant role in modeling and characterizing medical imaging. The currently available XCAT phantom incorporates both the flexibility of mathematical phantoms and the realistic nature of voxelized phantoms. This phantom generates images based on a regular breathing pattern and can include arbitrary lung tumor trajectories. In this work, we present an algorithm that modifies the current XCAT phantom to generate 4D imaging data based on irregular breathing. First, a parameter is added to the existing XCAT phantom to include any arbitrary tumor motion. This modification introduces the desired tumor motion but, comes at the cost of decoupled diaphragm, chest wall and lung motion. To remedy this problem diaphragm and chest wall motion is first modified based on initial tumor location and then input to the XCAT phantom. This generates a phantom with synchronized respiratory motion. Mapping of tumor motion trajectories to diaphragm and chest wall motion is done by adaptively calculating a scale factor based on tumor to lung contour distance. The distance is calculated by projecting the initial tumor location to lung edge contours characterized by quadratic polynomials. Data from ten patients were used to evaluate the accuracy between actual independent tumor location and the location obtained from the modified XCAT phantom. The RMSE and standard deviations for ten patients in x, y, and z directions are: (0.29 ± 0.04, 0.54 ± 0.17, and0.39 ± 0.06) mm. To demonstrate the utility of the phantom, we use the new phantom to simulate a 4DCT acquisition as well as a recently published method for phase sorting. The modified XCAT phantom can be used to generate more realistic imaging data for enhanced testing of algorithms for CT reconstruction, tumor tracking, and dose reconstruction.

  4. Prognostic value of the /sup 131/I whole-body scan in postsurgical therapy for differentiated thyroid cancer

    SciTech Connect

    Pupi, A.; Castagnoli, A.; Morotti, A.; La Cava, G.; Meldolesi, U.

    1983-08-01

    Seventy-two patients affected by differentiated thyroid cancer underwent whole-body scan seven days after the postsurgical thyroablative treatment with /sup 131/I. In 40 patients this scanning did not reveal any area of /sup 131/I uptake outside the residual thyroid parenchyma. During the follow-up period, no signs of functioning tumors were detected in these patients and therefore, there was no need for further therapeutic treatment with radioiodine. From this results it is legitimate to conclude that whole-body scan control can be significantly postponed without diagnostic inaccuracy for those patients whose postthyroablative scans do not reveal diffuse tumor localizations.

  5. Assessing patient dose in interventional fluoroscopy using patient-dependent hybrid phantoms

    NASA Astrophysics Data System (ADS)

    Johnson, Perry Barnett

    Interventional fluoroscopy uses ionizing radiation to guide small instruments through blood vessels or other body pathways to sites of clinical interest. The technique represents a tremendous advantage over invasive surgical procedures, as it requires only a small incision, thus reducing the risk of infection and providing for shorter recovery times. The growing use and increasing complexity of interventional procedures, however, has resulted in public health concerns regarding radiation exposures, particularly with respect to localized skin dose. Tracking and documenting patient-specific skin and internal organ dose has been specifically identified for interventional fluoroscopy where extended irradiation times, multiple projections, and repeat procedures can lead to some of the largest doses encountered in radiology. Furthermore, inprocedure knowledge of localized skin doses can be of significant clinical importance to managing patient risk and in training radiology residents. In this dissertation, a framework is presented for monitoring the radiation dose delivered to patients undergoing interventional procedures. The framework is built around two key points, developing better anthropomorphic models, and designing clinically relevant software systems for dose estimation. To begin, a library of 50 hybrid patient-dependent computational phantoms was developed based on the UF hybrid male and female reference phantoms. These phantoms represent a different type of anthropomorphic model whereby anthropometric parameters from an individual patient are used during phantom selection. The patient-dependent library was first validated and then used in two patient-phantom matching studies focused on cumulative organ and local skin dose. In terms of organ dose, patient-phantom matching was shown most beneficial for estimating the dose to large patients where error associated with soft tissue attenuation differences could be minimized. For small patients, inherent difference

  6. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma.

    PubMed

    Toledano-Massiah, Sarah; Luciani, Alain; Itti, Emmanuel; Zerbib, Pierre; Vignaud, Alexandre; Belhadj, Karim; Baranes, Laurence; Haioun, Corinne; Lin, Chieh; Rahmouni, Alain

    2015-01-01

    Whole-body imaging, in particular molecular imaging with fluorine 18 ((18)F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), is essential to management of lymphoma. The assessment of disease extent provided by use of whole-body imaging is mandatory for planning appropriate treatment and determining patient prognosis. Assessment of treatment response allows clinicians to tailor the treatment strategy during therapy if necessary and to document complete remission at the end of treatment. Because of rapid technical developments, such as echo-planar sequences, parallel imaging, multichannel phased-array surface coils, respiratory gating, and moving examination tables, whole-body diffusion-weighted (DW) magnetic resonance (MR) imaging that reflects cell density is now feasible in routine clinical practice. Whole-body DW MR imaging allows anatomic assessment as well as functional and quantitative evaluation of tumor sites by calculation of the apparent diffusion coefficient (ADC). Because of their high cellularity and high nucleus-to-cytoplasm ratio, lymphomatous lesions have low ADC values and appear hypointense on ADC maps. As a result, whole-body DW MR imaging with ADC mapping has become a promising tool for lymphoma staging and treatment response assessment. The authors review their 4 years of experience with 1.5-T and 3-T whole-body DW MR imaging used with (18)F-FDG PET/computed tomography at baseline, interim, and end of treatment in patients with Hodgkin lymphoma and diffuse large B-cell lymphoma and discuss the spectrum of imaging findings and potential pitfalls, limitations, and challenges associated with whole-body DW MR imaging in these patients. PMID:25815803

  7. SINGLE LOOP - MULTI GAP RESONATOR FOR WHOLE BODY EPR IMAGING OF MICE AT 1.2 GHZ

    PubMed Central

    Petryakov, Sergey; Samouilov, Alexandre; Kesselring, Eric; Wasowicz, Tomasz; Caia, George L.; Zweier, Jay L.

    2009-01-01

    For whole body EPR imaging of small animals, typically low frequencies of 250–750 MHz have been used due to the microwave losses at higher frequencies and the challenges in designing suitable resonators to accommodate these large lossy samples. However, low microwave frequency limits the obtainable sensitivity. L-band frequencies can provide higher sensitivity, and have been commonly used for localized in vivo EPR spectroscopy. Therefore, it would be highly desirable to develop an L-band microwave resonator suitable for in vivo whole body EPR imaging of small animals such as living mice. A 1.2 GHz 16 gap resonator with inner diameter of 43 mm and 48 mm length was designed and constructed for whole body EPR imaging of small animals. The resonator has good field homogeneity and stability to animal induced motional noise. Resonator stability was achieved with electrical and mechanical design utilizing a fixed position double coupling loop of novel geometry, thus minimizing the number of moving parts. Using this resonator, high quality EPR images of lossy phantoms and living mice were obtained. This design provides good sensitivity, ease of sample access, excellent stability and uniform B1 field homogeneity for in vivo whole body EPR imaging of mice at 1.2 GHz. PMID:17625940

  8. A motorized solid-state phantom for patient-specific dose verification in ion beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Henkner, K.; Winter, M.; Echner, G.; Ackermann, B.; Brons, S.; Horn, J.; Jäkel, O.; Karger, C. P.

    2015-09-01

    For regular quality assurance and patient-specific dosimetric verification under non-horizontal gantry angles in ion beam radiotherapy, we developed and commissioned a motorized solid state phantom. The phantom is set up under the selected gantry angle and moves an array of 24 ionization chambers to the measurement position by means of three eccentrically-mounted cylinders. Hence, the phantom allows 3D dosimetry at oblique gantry angles. To achieve the high standards in dosimetry, the mechanical and dosimetric accuracy of the phantom was investigated and corrections for residual uncertainties were derived. Furthermore, the exact geometry as well as a coordinate transformation from cylindrical into Cartesian coordinates was determined. The developed phantom proved to be suitable for quality assurance and 3D-dose verifications for proton- and carbon ion treatment plans at oblique gantry angles. Comparing dose measurements with the new phantom under oblique gantry angles with those in a water phantom and horizontal beams, the dose deviations averaged over the 24 ionization chambers were within 1.5%. Integrating the phantom into the HIT treatment plan verification environment, allows the use of established workflow for verification measurements. Application of the phantom increases the safety of patient plan application at gantry beam lines.

  9. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Zhou, Yun; Lodge, Martin A.; Casey, Michael E.; Wahl, Richard L.; Zaidi, Habib; Rahmim, Arman

    2015-11-01

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV

  10. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET.

    PubMed

    Karakatsanis, Nicolas A; Zhou, Yun; Lodge, Martin A; Casey, Michael E; Wahl, Richard L; Zaidi, Habib; Rahmim, Arman

    2015-11-21

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16-18% and 20-40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV

  11. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  12. Acute effects of whole-body vibration. Stabilography and electrogastrography.

    PubMed

    Kjellberg, A; Wikström, B O

    1987-06-01

    The influence of whole-body vibration on postural control and stomach motility was investigated. Fifteen subjects were exposed to two vibration signals (3 and 6 Hz random) while sitting for 1 h on a vibration simulator. A control situation, ie, sitting for 1 h without vibration, was also included. Stabilographic recordings before and 1 and 15 min after the sitting showed that exposure to these frequencies had no effect on postural control. Electrogastrographic (EGG) measurements before and during the sitting showed that, for 3 Hz, there was an initial increase in activity which decreased towards normal values. For 6 Hz there was a significant increase in activity for EGG frequencies of 0.05 and 0.13 Hz. The results imply that stomach motility can be affected by whole-body vibration in certain frequency ranges. PMID:3616553

  13. Whole body simultaneous PET/MRI: one-stop-shop?

    PubMed

    Maseeh-uz-Zaman; Fatima, Nosheen; Sajjad, Zafar; Zaman, Unaiza

    2014-02-01

    Beginning of this century is hallmarked by arrival of hybrid imaging PET/CT (positron emission tomography/computerized tomography) which has become a standard of care primarily in oncology in a short span of time. Continuous research and development by industry and academia for exploiting the excellent soft tissue contrast, spectroscopy and precise measurement of various functional parameters by magnetic resonance imaging (MRI) with PET has resulted in emergence of whole body PET/MRI. It is expected this new hybrid modality would be warmly welcomed due to high magnitude of functional and morphostructural information at molecular level with low radiation dose which is indeed a point of concern for young and paediatric population. This short technical report for nuclear medicine readers will focus upon the various configuration and acquisition sequences of PET/MRI, attenuation correction and clinical applications of whole body simultaneous PET/MRI. PMID:24640813

  14. Quantitative whole-body autoradiography: past, present and future.

    PubMed

    McEwen, Andrew; Henson, Claire

    2015-01-01

    Traditional bioanalytical measurements determine concentrations of drug and metabolites in plasma; however, most drugs exert their effects in defined target tissues. As there is no clear relation between concentrations in plasma and those in tissue, alternative methods must be employed to study the absorption, distribution, metabolism and excretion properties of new therapeutic agents. Quantitative whole-body autoradiography is used in the drug development process to determine the distribution and concentrations of radiolabeled test compounds in laboratory animals. Quantitative whole-body autoradiography can provide information on tissue PKs, penetration, accumulation and retention. Although the technique is considered the industry standard for performing preclinical tissue distribution studies, it is perhaps timely, 60 years after the first reported use of the method, to re-assess the technique against modern alternatives. PMID:25826137

  15. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  16. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  17. Rifaximin diminishes neutropenia following potentially lethal whole-body radiation.

    PubMed

    Jahraus, Christopher D; Schemera, Bettina; Rynders, Patricia; Ramos, Melissa; Powell, Charles; Faircloth, John; Brawner, William R

    2010-07-01

    Terrorist attacks involving radiological or nuclear weapons are a substantial geopolitical concern, given that large populations could be exposed to potentially lethal doses of radiation. Because of this, evaluating potential countermeasures against radiation-induced mortality is critical. Gut microflora are the most common source of systemic infection following exposure to lethal doses of whole-body radiation, suggesting that prophylactic antibiotic therapy may reduce mortality after radiation exposure. The chemical stability, easy administration and favorable tolerability profile of the non-systemic antibiotic, rifaximin, make it an ideal potential candidate for use as a countermeasure. This study evaluated the use of rifaximin as a countermeasure against low-to-intermediate-dose whole-body radiation in rodents. Female Wistar rats (8 weeks old) were irradiated with 550 cGy to the whole body and were evaluated for 30 d. Animals received methylcellulose, neomycin (179 mg/kg/d) or variably dosed rifaximin (150-2000 mg/kg/d) one hour after irradiation and daily throughout the study period. Clinical assessments (e.g. body weight) were made daily. On postirradiation day 30, blood samples were collected and a complete blood cell count was performed. Animals receiving high doses of rifaximin (i.e. 1000 or 2000 mg/kg/d) had a greater increase in weight from the day of irradiation to postirradiation day 30 compared with animals that received placebo or neomycin. For animals with an increase in average body weight from irradiation day within 80-110% of the group average, methylcellulose rendered an absolute neutrophil count (ANC) of 211, neomycin rendered an ANC of 334, rifaximin 300 mg/kg/d rendered an ANC of 582 and rifaximin 1000 mg/kg/d rendered an ANC of 854 (P = 0.05 for group comparison). Exposure to rifaximin after near-lethal whole-body radiation resulted in diminished levels of neutropenia. PMID:20558844

  18. Clinical examination or whole-body magnetic resonance imaging: the Holy Grail of spondyloarthritis imaging

    PubMed Central

    2012-01-01

    Whole-body magnetic resonance imaging allows acquisition of diagnostic images in the shortest scan time, leading to better patient compliance and artifact-free images. Methods of clinical examination of the anterior chest wall joints vary between physician groups and consideration of the rules of rib motion is suggested. The type of joint and its synovial lining may also aid imaging/clinical correlation. This well-written study by experts in the field with a standardized design and methodology allows good scientific analysis and suggests the advantages of whole-body magnetic resonance imaging in anterior chest wall imaging. Selection of clinical examination criteria and specific joints may have had an influence on the study results and the lack of association reported. PMID:22380535

  19. Evaluating image reconstruction methods for tumor detection performance in whole-body PET oncology imaging

    NASA Astrophysics Data System (ADS)

    Lartizien, Carole; Kinahan, Paul E.; Comtat, Claude; Lin, Michael; Swensson, Richard G.; Trebossen, Regine; Bendriem, Bernard

    2000-04-01

    This work presents initial results from observer detection performance studies using the same volume visualization software tools that are used in clinical PET oncology imaging. Research into the FORE+OSEM and FORE+AWOSEM statistical image reconstruction methods tailored to whole- body 3D PET oncology imaging have indicated potential improvements in image SNR compared to currently used analytic reconstruction methods (FBP). To assess the resulting impact of these reconstruction methods on the performance of human observers in detecting and localizing tumors, we use a non- Monte Carlo technique to generate multiple statistically accurate realizations of 3D whole-body PET data, based on an extended MCAT phantom and with clinically realistic levels of statistical noise. For each realization, we add a fixed number of randomly located 1 cm diam. lesions whose contrast is varied among pre-calibrated values so that the range of true positive fractions is well sampled. The observer is told the number of tumors and, similar to the AFROC method, asked to localize all of them. The true positive fraction for the three algorithms (FBP, FORE+OSEM, FORE+AWOSEM) as a function of lesion contrast is calculated, although other protocols could be compared. A confidence level for each tumor is also recorded for incorporation into later AFROC analysis.

  20. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  1. Between-country comparison of whole-body SAR from personal exposure data in Urban areas.

    PubMed

    Joseph, Wout; Frei, Patrizia; Röösli, Martin; Vermeeren, Günter; Bolte, John; Thuróczy, György; Gajšek, Peter; Trček, Tomaž; Mohler, Evelyn; Juhász, Péter; Finta, Viktoria; Martens, Luc

    2012-12-01

    In five countries (Belgium, Switzerland, Slovenia, Hungary, and the Netherlands), personal radio frequency electromagnetic field measurements were performed in different microenvironments such as homes, public transports, or outdoors using the same exposure meters. From the mean personal field exposure levels (excluding mobile phone exposure), whole-body absorption values in a 1-year-old child and adult male model were calculated using a statistical multipath exposure method and compared for the five countries. All mean absorptions (maximal total absorption of 3.4 µW/kg for the child and 1.8 µW/kg for the adult) were well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) basic restriction of 0.08 W/kg for the general public. Generally, incident field exposure levels were well correlated with whole-body absorptions (SAR(wb) ), although the type of microenvironment, frequency of the signals, and dimensions of the considered phantom modify the relationship between these exposure measures. Exposure to the television and Digital Audio Broadcasting band caused relatively higher SAR(wb) values (up to 65%) for the 1-year-old child than signals at higher frequencies due to the body size-dependent absorption rates. Frequency Modulation (FM) caused relatively higher absorptions (up to 80%) in the adult male. PMID:22674152

  2. Whole-body magnetic resonance imaging in children: state of the art*

    PubMed Central

    Teixeira, Sara Reis; Elias Junior, Jorge; Nogueira-Barbosa, Marcello Henrique; Guimarães, Marcos Duarte; Marchiori, Edson; Santos, Marcel Koenigkam

    2015-01-01

    Whole-body imaging in children was classically performed with radiography, positron-emission tomography, either combined or not with computed tomography, the latter with the disadvantage of exposure to ionizing radiation. Whole-body magnetic resonance imaging (MRI), in association with the recently developed metabolic and functional techniques such as diffusion-weighted imaging, has brought the advantage of a comprehensive evaluation of pediatric patients without the risks inherent to ionizing radiation usually present in other conventional imaging methods. It is a rapid and sensitive method, particularly in pediatrics, for detecting and monitoring multifocal lesions in the body as a whole. In pediatrics, it is utilized for both oncologic and non-oncologic indications such as screening and diagnosis of tumors in patients with genetic syndromes, evaluation of disease extent and staging, evaluation of therapeutic response and post-therapy follow-up, evaluation of non neoplastic diseases such as multifocal osteomyelitis, vascular malformations and syndromes affecting multiple regions of the body. The present review was aimed at describing the major indications of whole-body MRI in pediatrics added of technical considerations. PMID:25987752

  3. [Intraindividual comparison of whole body cold therapy and warm treatment with hot packs in generalized tendomyopathy].

    PubMed

    Samborski, W; Stratz, T; Sobieska, M; Mennet, P; Müller, W; Schulte-Mönting, J

    1992-01-01

    In a cross-over study, the short-term efficacy of whole-body cold therapy and hot mud packs in patients with generalized tendomyopathy (fibromyalgia) was compared. As a pain assessment, visual analog scale and so-called pain score were measured; dolorimetry of the 24 tender points and eight control points was performed as well. Using these methods, we found that there is a significant improvement of all parameters examined during a 2-h period of measurements after cold application, and a marked improvement was also detectable 24 h after this therapy. In contrast, only pain score values showed a slight decrease immediately after hot mud-pack therapy, and no significant differences were found in visual analog scale and pressure tenderness as measured dolorimetrically. Central inhibition of nociceptors as a result of an activation of A-delta system as well as a blockade of gamma-motoneurons are discussed to be a mechanism of action of whole-body cold therapy, resulting in a decrease in muscle tonus. Long-term studies are needed to determine, if there is any enduring effect of whole-body cold therapy on pain in the patients with generalized tendomyopathy. PMID:1574933

  4. Optoacoustic 3D whole-body tomography: experiments in nude mice

    NASA Astrophysics Data System (ADS)

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matt; Ermilov, Sergey A.; Conjusteau, André; Liopo, Anton; Motamedi, Massoud; Oraevsky, Alexander A.

    2009-02-01

    We developed a 3D whole-body optoacoustic tomography system for applications in preclinical research on mice. The system is capable of generating images with resolution better than 0.6 mm. Two pulsed lasers, an Alexandrite laser operating at 755 nm and a Nd:YAG laser operating at 532 nm and 1064nm were used for light delivery. The tomographic images were obtained while the objects of study (phantoms or mice) were rotated within a sphere outlined by a concave arc-shaped array of 64 piezo-composite transducers. During the scan, the mouse was illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. Illumination at 532 nm showed superficial vasculature, but limited penetration depth at this wavelength prevented the detection of deeper structures. Illumination at 755 and 1064 nm showed organs and blood vessels, respectively. Filtering of the optoacoustic signals using high frequency enhancing wavelets further emphasized the smaller blood vessels.

  5. Whole-body three-dimensional optoacoustic tomography system for small animals

    PubMed Central

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matthew; Ermilov, Sergey A.; Conjusteau, Andre; Oraevsky, Alexander A.

    2009-01-01

    We develop a system for three-dimensional whole-body optoacoustic tomography of small animals for applications in preclinical research. The tomographic images are obtained while the objects of study (phantoms or mice) are rotated within a sphere outlined by a concave arc-shaped array of 64 piezocomposite transducers. Two pulsed lasers operating in the near-IR spectral range (755 and 1064 nm) with an average pulsed energy of about 100 mJ, a repetition rate of 10 Hz, and a pulse duration of 15 to 75 ns are used as optical illumination sources. During the scan, the mouse is illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. The system is capable of generating images of individual organs and blood vessels through the entire body of a mouse with spatial resolution of ∼0.5 mm. PMID:20059245

  6. Performance Characteristics of a Positron Projection Imager For Mouse Whole-body Imaging

    PubMed Central

    Seidel, Jurgen; Xi, Wenze; Kakareka, John W.; Pohida, Thomas J.; Jagoda, Elaine M.; Green, Michael V.; Choyke, Peter L.

    2013-01-01

    Introduction We describe a prototype positron projection imager (PPI) for visualizing the whole-body biodistribution of positron-emitting compounds in mouse-size animals. The final version of the PPI will be integrated into the MONICA portable dual-gamma camera system to allow the user to interchangeably image either single photon or positron-emitting compounds in a shared software and hardware environment. Methods A mouse is placed in the mid-plane between two identical, opposed, pixelated LYSO arrays separated by 21.8-cm and in time coincidence. An image of the distribution of positron decays in the animal is formed on this mid-plane by coincidence events that fall within a small cone angle to the perpendicular to the two detectors and within a user-specified energy window. We measured the imaging performance of this device with phantoms and in tests performed in mice injected with various compounds labeled with positron-emitting isotopes. Results Representative performance measurements yielded the following results (energy window 250–650 keV, cone angle 3.5-degrees): resolution in the image mid-plane, 1.66-mm (FWHM), resolution ±1.5-cm above and below the image plane, 2.2-mm (FWHM), sensitivity: 0.237-cps/kBq (8.76-cps/μCi) 18F (0.024% absolute). Energy resolution was 15.9% with a linear-count-rate operating range of 0–14.8 MBq (0–400 μCi) and a corrected sensitivity variation across the field-of-view of <3%. Whole-body distributions of [18F] FDG and [18F] fluoride were well visualized in mice of typical size. Conclusion Performance measurements and field studies indicate that the PPI is well suited to whole-body positron projection imaging of mice. When integrated into the MONICA gamma camera system, the PPI may be particularly useful early in the drug development cycle where, like MONICA, basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors (e.g., available imaging space, non

  7. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates

    PubMed Central

    Rajangam, Sankaranarayani; Tseng, Po-He; Yin, Allen; Lehew, Gary; Schwarz, David; Lebedev, Mikhail A.; Nicolelis, Miguel A. L.

    2016-01-01

    Several groups have developed brain-machine-interfaces (BMIs) that allow primates to use cortical activity to control artificial limbs. Yet, it remains unknown whether cortical ensembles could represent the kinematics of whole-body navigation and be used to operate a BMI that moves a wheelchair continuously in space. Here we show that rhesus monkeys can learn to navigate a robotic wheelchair, using their cortical activity as the main control signal. Two monkeys were chronically implanted with multichannel microelectrode arrays that allowed wireless recordings from ensembles of premotor and sensorimotor cortical neurons. Initially, while monkeys remained seated in the robotic wheelchair, passive navigation was employed to train a linear decoder to extract 2D wheelchair kinematics from cortical activity. Next, monkeys employed the wireless BMI to translate their cortical activity into the robotic wheelchair’s translational and rotational velocities. Over time, monkeys improved their ability to navigate the wheelchair toward the location of a grape reward. The navigation was enacted by populations of cortical neurons tuned to whole-body displacement. During practice with the apparatus, we also noticed the presence of a cortical representation of the distance to reward location. These results demonstrate that intracranial BMIs could restore whole-body mobility to severely paralyzed patients in the future. PMID:26938468

  8. The GSF family of voxel phantoms

    NASA Astrophysics Data System (ADS)

    Petoussi-Henss, Nina; Zankl, Maria; Fill, Ute; Regulla, Dieter

    2002-01-01

    Voxel phantoms are human models based on computed tomographic or magnetic resonance images obtained from high-resolution scans of a single individual. They consist of a huge number of volume elements (voxels) and are at the moment the most precise representation of the human anatomy. The purpose of this paper is to introduce the GSF voxel phantoms, with emphasis on the new ones and highlight their characteristics and limitations. The GSF voxel family includes at the moment two paediatric and five adult phantoms of both sexes, different ages and stature and several others are under construction. Two phantoms made of physical calibration phantoms are also available to be used for validation purposes. The GSF voxel phantoms tend to cover persons of individual anatomy and were developed to be used for numerical dosimetry of radiation transport but other applications are also possible. Examples of applications in patient dosimetry in diagnostic radiology and in nuclear medicine as well as for whole-body irradiations from idealized external exposures are given and discussed.

  9. SU-F-BRE-08: Feasibility of 3D Printed Patient Specific Phantoms for IMRT/IGRT QA

    SciTech Connect

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: Test the feasibility of 3D printed, per-patient phantoms for IMRT QA to analyze the treatment delivery quality within the patient geometry. Methods: Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom. During the delivery of the IMRT QA on to the 3D printed phantom, the same patient positioning indexing system was used on the phantom and image guidance (cone beam CT) was used to localize the phantom, serving as a test of the IGRT system as well. The 3D printed phantom was designed to accommodate four radiochromic film planes (two axial, one coronal and one sagittal) and an ionization chamber measurement. As a frame of comparison, the IMRT QA was also performed on traditional phantoms. Dosimetric tolerance levels such as 3mm / 3% Gamma Index as well as 3% and 5% dose difference were considered. All detector systems were calibrated against a NIST traceable ionization chamber. Results: Comparison of results 3D printed patient phantom with the standard IMRT QA systems showed similar passing rates for the 3D printed phantom and the standard phantoms. However, the locations of the failing regions did not necessarily correlate. The 3D printed phantom was localized within 1 mm and 1° using on-board cone beam CT. Conclusion: A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine clinical use.

  10. Whole-body response to pure lateral impact.

    PubMed

    Lessley, David; Shaw, Greg; Parent, Daniel; Arregui-Dalmases, Carlos; Kindig, Matthew; Riley, Patrick; Purtsezov, Sergey; Sochor, Mark; Gochenour, Thomas; Bolton, James; Subit, Damien; Crandall, Jeff; Takayama, Shinichi; Ono, Koshiro; Kamiji, Koichi; Yasuki, Tsuyoshi

    2010-11-01

    The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband. Following the impact the subject was captured in an energy-absorbing net that provided a controlled non-injurious deceleration. The wall maintained nearly constant velocity throughout the impact event. One of the tested subjects sustained 16 rib fractures as well as injury to the struck shoulder while the other two tested subjects sustained no injuries. The collected response data suggest that the shoulder injury may have contributed to the rib fractures in the injured subject. The results suggest that the shoulder presents a substantial load path and may play an important role in transmitting lateral forces to the spine, shielding and protecting the ribcage. This characterization of whole-body, lateral impact response provides quantified subject responses and boundary condition interactions that are currently unavailable for whole-body, lateral impacts at impact speeds less than 6.7 m/s. PMID:21512913

  11. Whole body vibration exercise for chronic low back pain: study protocol for a single-blind randomized controlled trial

    PubMed Central

    2014-01-01

    Background Low back pain affects approximately 80% of people at some stage in their lives. Exercise therapy is the most widely used nonsurgical intervention for low back pain in practice guidelines. Whole body vibration exercise is becoming increasingly popular for relieving musculoskeletal pain and improving health-related quality of life. However, the efficacy of whole body vibration exercise for low back pain is not without dispute. This study aims to estimate the effect of whole body vibration exercise for chronic low back pain. Methods/Design We will conduct a prospective, single-blind, randomized controlled trial of 120 patients with chronic low back pain. Patients will be randomly assigned into an intervention group and a control group. The intervention group will participate in whole body vibration exercise twice a week for 3 months. The control group will receive general exercise twice a week for 3 months. Primary outcome measures will be the visual analog scale for pain, the Oswestry Disability Index and adverse events. The secondary outcome measures will include muscle strength and endurance of spine, trunk proprioception, transversus abdominis activation capacity, and quality of life. We will conduct intention-to-treat analysis if any participants withdraw from the trial. Discussion Important features of this study include the randomization procedures, single-blind, large sample size, and a standardized protocol for whole body vibration in chronic low back pain. This study aims to determine whether whole body vibration exercise produces more beneficial effects than general exercise for chronic low back pain. Therefore, our results will be useful for patients with chronic low back pain as well as for medical staff and health-care decision makers. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-13003708. PMID:24693945

  12. A new technological approach to radiant heat whole body hyperthermia.

    PubMed

    Robins, H I; Woods, J P; Schmitt, C L; Cohen, J D

    1994-05-16

    A new methodology for administering radiant heat whole body hyperthermia (WBH) in humans is described. The technology utilized circulates hot water in a cylinder constructed from copper tubing; the design incorporates a counter current distribution system to maintain thermal constancy. The tubing is coated with a temperature resistant high emissivity finish. Other features include a humidification system to eliminate evaporative heat losses. Data accrued from initial evaluation of this apparatus with a canine model shows that there was no detectable WBH-related hematological, biochemical or physiological toxicity. The perceived advantages of this WBH-system are discussed. PMID:8019971

  13. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  14. The effect of activity outside the field of view on image quality for a 3D LSO-based whole body PET/CT scanner.

    PubMed

    Matheoud, R; Secco, C; Della Monica, P; Leva, L; Sacchetti, G; Inglese, E; Brambilla, M

    2009-10-01

    The purpose of this study was to quantify the influence of outside field of view (FOV) activity concentration (A(c)(,out)) on the noise equivalent count rate (NECR), scatter fraction (SF) and image quality of a 3D LSO whole-body PET/CT scanner. The contrast-to-noise ratio (CNR) was the figure of merit used to characterize the image quality of PET scans. A modified International Electrotechnical Commission (IEC) phantom was used to obtain SF and counting rates similar to those found in average patients. A scatter phantom was positioned at the end of the modified IEC phantom to simulate an activity that extends beyond the scanner. The modified IEC phantom was filled with (18)F (11 kBq mL(-1)) and the spherical targets, with internal diameter (ID) ranging from 10 to 37 mm, had a target-to-background ratio of 10. PET images were acquired with background activity concentrations into the FOV (A(c)(,bkg)) about 11, 9.2, 6.6, 5.2 and 3.5 kBq mL(-1). The emission scan duration (ESD) was set to 1, 2, 3 and 4 min. The tube inside the scatter phantom was filled with activities to provide A(c)(,out) in the whole scatter phantom of zero, half, unity, twofold and fourfold the one of the modified IEC phantom. Plots of CNR versus the various parameters are provided. Multiple linear regression was employed to study the effects of A(c)(,out) on CNR, adjusted for the presence of variables (sphere ID, A(c)(,bkg) and ESD) related to CNR. The presence of outside FOV activity at the same concentration as the one inside the FOV reduces peak NECR of 30%. The increase in SF is marginal (1.2%). CNR diminishes significantly with increasing outside FOV activity, in the range explored. ESD and A(c)(,out) have a similar weight in accounting for CNR variance. Thus, an experimental law that adjusts the scan duration to the outside FOV activity can be devised. Recovery of CNR loss due to an elevated A(c)(,out) activity seems feasible by modulating the ESD in individual bed positions according to A

  15. A new method for calculating the distribution of radioactivity in man measured with a whole-body counter

    SciTech Connect

    Novario, R.; Conte, L. )

    1990-05-01

    A whole-body counter with a scanning bed and two opposite (antero-posterior) probes was used to obtain profiles of count rates of radioactivity held in the whole body. The distribution of the activity in the patient was calculated by solving an overdetermined system (more equations than unknowns) of linear equations with the Chebyshev method, the least-squares method, and an iterative method. The iterative method gave the best results, especially in the case of distributions with peaks of radioactivity. Some in-vivo applications of the method are presented.

  16. The reference phantoms: voxel vs polygon.

    PubMed

    Kim, C H; Yeom, Y S; Nguyen, T T; Wang, Z J; Kim, H S; Han, M C; Lee, J K; Zankl, M; Petoussi-Henss, N; Bolch, W E; Lee, C; Chung, B S

    2016-06-01

    The International Commission on Radiological Protection (ICRP) reference male and female adult phantoms, described in Publication 110, are voxel phantoms based on whole-body computed tomography scans of a male and a female patient, respectively. The voxel in-plane resolution and the slice thickness, of the order of a few millimetres, are insufficient for proper segmentation of smaller tissues such as the lens of the eye, the skin, and the walls of some organs. The calculated doses for these tissues therefore present some limitations, particularly for weakly penetrating radiation. Similarly, the Publication 110 phantoms cannot represent 8-40-µm-thick target regions in respiratory or alimentary tract organs. Separate stylised models have been used to represent these tissues for calculation of the ICRP reference dose coefficients (DCs). ICRP Committee 2 recently initiated a research project, the ultimate goal of which is to convert the Publication 110 phantoms to a high-quality polygon-mesh (PM) format, including all source and target regions, even those of the 8-40-µm-thick alimentary and respiratory tract organs. It is expected that the converted phantoms would lead to the same or very similar DCs as the Publication 110 reference phantoms for penetrating radiation and, at the same time, provide more accurate DCs for weakly penetrating radiation and small tissues. Additionally, the reference phantoms in the PM format would be easily deformable and, as such, could serve as a starting point to create phantoms of various postures for use, for example, in accidental dose calculations. This paper will discuss the current progress of the phantom conversion project and its significance for ICRP DC calculations. PMID:26969297

  17. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    SciTech Connect

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  18. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NASA Astrophysics Data System (ADS)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-10-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83-1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms.

  19. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data.

    PubMed

    Bouwman, R W; van Engen, R E; Young, K C; den Heeten, G J; Broeders, M J M; Schopphoven, S; Jeukens, C R L P N; Veldkamp, W J H; Dance, D R

    2015-10-21

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last decades the automatic exposure control (AEC) increased in complexity and became more sensitive to (local) differences in breast composition. The question is how well the AGD estimated using these simple dosimetry phantoms agrees with the average patient AGD. In this study the AGDs for both dosimetry phantoms and for patients have been evaluated for 5 different x-ray systems in DM and DBT modes. It was found that the ratios between patient and phantom AGD did not differ considerably using both dosimetry phantoms. These ratios averaged over all breast thicknesses were 1.14 and 1.15 for the PMMA and PMMA-PE dosimetry phantoms respectively in DM mode and 1.00 and 1.02 in the DBT mode. These ratios were deemed to be sufficiently close to unity to be suitable for dosimetry evaluation in quality control procedures. However care should be taken when comparing systems for DM and DBT since depending on the AEC operation, ratios for particular breast thicknesses may differ substantially (0.83-1.96). Although the predictions of both phantoms are similar we advise the use of PMMA  +  PE slabs for both DM and DBT to harmonize dosimetry protocols and avoid any potential issues with the use of spacers with the PMMA phantoms. PMID:26407015

  20. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    , was employed along with extensive Monte Carlo simulations and an initial clinical 18F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ˜30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  1. Accurate assessment of whole-body retention for PRRT with (177)Lu using paired measurements with external detectors.

    PubMed

    Liu, Boxue; de Blois, Erik; Breeman, Wouter A P; Konijnenberg, Mark W; Wolterbeek, Hubert T; Bode, Peter

    2015-01-01

    The aim of this study was to assess the accuracy of the results of whole-body measurements by comparison with the urine collection method in the PRRT with (177)Lu and furthermore to develop a more accurate method of paired measurements. Excreted samples were collected at given intervals and activities were measured by a dose calibrator. Traditionally, whole-body activities during subsequent measurements are normalized individually to the administered activity. In order to correct for the effects of the activity in the bladder during the baseline measurement before the first voiding and activity redistributions in the patient body during subsequent measurements, a series of paired measurements before and after each voiding were carried out. Time-dependent detector responses at given times were derived and time-activity retentions were then determined. Compared to the results of the urine collection, whole-body activities by traditional whole-body measurements were overestimated by ca. 14% at 1 h after administration and randomly varied from -29% to 49% at 24 h. Measurement uncertainties of whole-body activities were from ± 4% (the coverage factor k=2) at 1 h to >± 20% at 24 h by the urine collection and ± 7% by paired measurements, respectively. Whole-body activities at 1 h by paired measurements were validated using the results by measurements of the collected first urine. The new method of paired measurements has an equivalent measurement accuracy and even better during the later measurements with respect to the urine collection method and therefore can replace urine approach for assessing the time-activity remaining in the patient body. PMID:25771370

  2. Impact of TOF PET on whole-body oncologic studies: a human observer lesion detection and localization study

    PubMed Central

    Surti, Suleman; Scheuermann, Joshua; Fakhri, Georges El; Daube-Witherspoon, Margaret E.; Lim, Ruth; Abi-Hatem, Nathalie; Moussallem, Elie; Benard, Francois; Mankoff, David; Karp, Joel S.

    2011-01-01

    Phantom studies have shown improved lesion detection performance with time-of-flight (TOF) PET. In this study we evaluate the benefit of fully-3D, TOF PET in clinical whole-body oncology using human observers to localize and detect lesions in realistic patient anatomic backgrounds. Our hypothesis is that with TOF imaging we achieve improved lesion detection and localization for clinically challenging tasks with a bigger impact in large patients. Methods 100 patient studies with normal 18F-fluoro-deoxyglucose (18F-FDG) uptake were chosen. 10-mm diameter spheres were imaged in air at variable locations in the scanner field-of-view (FOV) corresponding to lung and liver locations within each patient. Sphere data were corrected for attenuation and merged with patient data to produce fused list data files with lesions added to normal patients. All list files were reconstructed with full corrections and with or without the TOF kernel using a list-mode iterative algorithm. The images were presented to readers to localize and report with a confidence level the presence/absence of a lesion. The interpretation results were then analyzed to calculate the probability of correct localization and detection, and the area under the localized receiver operating characteristic (LROC) curve. The results were analyzed as a function of scan time per bed position, patient body-mass index (BMI < 26 and BMI ≥ 26), and type of imaging (TOF and Non-TOF). Results Our results showed that longer scan times led to improved area under the LROC curve for all patient sizes. With TOF imaging there was a bigger increase in the area under the LROC curve for larger patients (BMI ≥ 26). Finally, combining longer scan times with TOF imaging we saw smaller differences in the area under the LROC curve for large and small patients. Conclusion A combination of longer scan time (3 minutes in this study) together with TOF imaging provides the best performance for imaging large patients and/or a low uptake

  3. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    PubMed Central

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  4. Neural systemic impairment from whole-body vibration.

    PubMed

    Yan, Ji-Geng; Zhang, Lin-ling; Agresti, Michael; LoGiudice, John; Sanger, James R; Matloub, Hani S; Havlik, Robert

    2015-05-01

    Insidious brain microinjury from motor vehicle-induced whole-body vibration (WBV) has not yet been investigated. For a long time we have believed that WBV would cause cumulative brain microinjury and impair cerebral function, which suggests an important risk factor for motor vehicle accidents and secondary cerebral vascular diseases. Fifty-six Sprague-Dawley rats were divided into seven groups (n = 8): 1) 2-week normal control group, 2) 2-week sham control group (restrained in the tube without vibration), 3) 2-week vibration group (exposed to whole-body vibration at 30 Hz and 0.5g acceleration for 4 hr/day, 5 days/week, for 2 weeks), 4) 4-week sham control group, 5) 4-week vibration group, 6) 8-week sham control group, and 7) 8-week vibration group. At the end point, all rats were evaluated in behavior, physiological, and brain histopathological studies. The cerebral injury from WBV is a cumulative process starting with vasospasm squeezing of the endothelial cells, followed by constriction of the cerebral arteries. After the 4-week vibration, brain neuron apoptosis started. After the 8-week vibration, vacuoles increased further in the brain arteries. Brain capillary walls thickened, mean neuron size was obviously reduced, neuron necrosis became prominent, and wide-ranging chronic cerebral edema was seen. These pathological findings are strongly correlated with neural functional impairments. PMID:25557339

  5. A Portable Stereo Vision System for Whole Body Surface Imaging

    PubMed Central

    Yu, Wurong; Xu, Bugao

    2009-01-01

    This paper presents a whole body surface imaging system based on stereo vision technology. We have adopted a compact and economical configuration which involves only four stereo units to image the frontal and rear sides of the body. The success of the system depends on a stereo matching process that can effectively segment the body from the background in addition to recovering sufficient geometric details. For this purpose, we have developed a novel sub-pixel, dense stereo matching algorithm which includes two major phases. In the first phase, the foreground is accurately segmented with the help of a predefined virtual interface in the disparity space image, and a coarse disparity map is generated with block matching. In the second phase, local least squares matching is performed in combination with global optimization within a regularization framework, so as to ensure both accuracy and reliability. Our experimental results show that the system can realistically capture smooth and natural whole body shapes with high accuracy. PMID:20161620

  6. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy. PMID:24937778

  7. Cognitive-emotional sensitization contributes to wind-up-like pain in phantom limb pain patients.

    PubMed

    Vase, Lene; Nikolajsen, Lone; Christensen, Bente; Egsgaard, Line Lindhart; Arendt-Nielsen, Lars; Svensson, Peter; Staehelin Jensen, Troels

    2011-01-01

    Peripheral mechanisms are known to play a role in phantom pain following limb amputation, and more recently it has been suggested that central mechanisms may also be of importance. Some patients seem to have a psychological sensitivity that predisposes them to react with pain catastrophizing after amputation of a limb, and this coping style may contribute to increased facilitation, impaired modulation of nociceptive signals, or both. To investigate how pain catastrophizing, independently of anxiety and depression, may contribute to phantom limb pain and to alterations in pain processing twenty-four upper-limb amputees with various levels of phantom limb pain were included in the study. Patients' level of pain catastrophizing, anxiety and depression was assessed and they went through quantitative sensory testing (QST) of thresholds (mechanical and thermal) and wind-up-like pain (brush and pinprick). Catastrophizing accounted for 35% of the variance in phantom limb pain (p=0.001) independently of anxiety and depression. Catastrophizing was also positively associated with wind-up-like pain in non-medicated patients (p=0.015), but not to pain thresholds. These findings suggest that cognitive-emotional sensitization contributes to the altered nociceptive processing seen in phantom limb pain patients. The possible interactions between pain catastrophizing, wind-up-like pain, and peripheral input in generating and maintaining phantom limb pain are discussed. PMID:21067864

  8. Pilot study of patient and phantom breast dose measurements in Bulgaria

    NASA Astrophysics Data System (ADS)

    Avramova-Cholakova, Simona; Vassileva, Jenia

    2008-01-01

    A pilot study of breast dose measurements on two mammography units in Bulgaria was conducted. The mean glandular doses (MGDs) to samples of approximately 60 women per unit were measured. MGD with a standard PMMA phantom was measured as well. The MGDs were calculated according to the European protocol on dosimetry in mammography as well as to the European protocol for the quality control of the physical and technical aspects of mammography screening. The measured women's MGDs were divided into three groups depending on the compressed breast thicknesses. The results for the group of thicknesses in the interval 40-60 mm were compared with the results from the measurements on the standard 45 mm PMMA phantom. Some differences were found which could be due to errors in breast thickness measurements, differences in breast and phantom densities and other factors. A standardized procedure was elaborated for patient dose measurement and calculation both from patient and phantom studies.

  9. A whole body counter for an emergency and occupational monitoring of an internal contamination with low energy photon emitters

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.; Pfeiferová, V.

    2015-11-01

    A whole-body counter in SÚRO (NRPI) Prague, Czech Republic has been upgraded recently with the goal to enhance its capability of a safe, smooth, accurate and reproducible positioning of detectors for whole- and partial-body counting. The counter is intended especially for counting of low energy gamma emitters in various organs and tissues of the human body. Counting efficiency calibration of a four-detector system installed in the shielded room has been performed by means of physical and voxel phantoms. The consistency of in vivo bioassay data of three internal contamination cases long-term monitored in the Institute is shown.

  10. Evaluation of 2-PI liquid scintillation whole body counter using MCNP

    NASA Astrophysics Data System (ADS)

    Mireles-Garcia, Fernando

    The 2-pi liquid scintillation whole body counter (WBC) at the University of Missouri-Columbia has been evaluated using MCNP-4A (a general Monte Carlo Neutron-Photon transport code, Version 4A). This facility is of importance to a wide variety of applications, such as determination of body fat content in human and animal subjects and measurement of radioactive tracers in animals. Phantoms and mathematical models were used in this research to upgrade the calibration procedures of the WBC. Since the existing protocol assumes a simple efficiency calibration based only upon body mass, it does not account for body shape and gives no methodology for placement of the subject below the detectors. Mathematical models were developed to calculate geometry efficiency for a variety of subjects and geometries utilizing the MCNP-4A transport code. Comparison of the results from simulation with experimental data shows excellent agreement not only in the shape of the curves as a function of subject position but also in absolute magnitude. In the case of the WBC and a phantom consisting of 40 liters of water containing 800 grams of sp+K the error in the magnitude is within 6%, which is easily attributable to the experimental calibration of the detectors. The efficiency of the WBC has been calculated for different weights for modified Adam-E through Adam-L model geometries; hence weight and shape can be modeled carefully and correction can be applied to actual human measurements based upon this work.

  11. Construction of realistic phantoms from patient images and a commercial three-dimensional printer.

    PubMed

    Leng, Shuai; Chen, Baiyu; Vrieze, Thomas; Kuhlmann, Joel; Yu, Lifeng; Alexander, Amy; Matsumoto, Jane; Morris, Jonathan; McCollough, Cynthia H

    2016-07-01

    The purpose of this study was to use three-dimensional (3-D) printing techniques to construct liver and brain phantoms having realistic pathologies, anatomic structures, and heterogeneous backgrounds. Patient liver and head computed tomography (CT) images were segmented into tissue, vessels, liver lesion, white and gray matter, and cerebrospinal fluid (CSF). Stereolithography files of each object were created and imported into a commercial 3-D printer. Printing materials were assigned to each object after test scans, which showed that the printing materials had CT numbers ranging from 70 to 121 HU at 120 kV. Printed phantoms were scanned on a CT scanner and images were evaluated. CT images of the liver phantom had measured CT numbers of 77.8 and 96.6 HU for the lesion and background, and 137.5 to 428.4 HU for the vessels channels, which were filled with iodine solutions. The difference in CT numbers between lesions and background (18.8 HU) was representative of the low-contrast values needed for optimization tasks. The liver phantom background was evaluated with Haralick features and showed similar texture between patient and phantom images. CT images of the brain phantom had CT numbers of 125, 134, and 108 HU for white matter, gray matter, and CSF, respectively. The CT number differences were similar to those in patient images. PMID:27429998

  12. Accurate body composition measures from whole-body silhouettes

    PubMed Central

    Xie, Bowen; Avila, Jesus I.; Ng, Bennett K.; Fan, Bo; Loo, Victoria; Gilsanz, Vicente; Hangartner, Thomas; Kalkwarf, Heidi J.; Lappe, Joan; Oberfield, Sharon; Winer, Karen; Zemel, Babette; Shepherd, John A.

    2015-01-01

    Purpose: Obesity and its consequences, such as diabetes, are global health issues that burden about 171 × 106 adult individuals worldwide. Fat mass index (FMI, kg/m2), fat-free mass index (FFMI, kg/m2), and percent fat mass may be useful to evaluate under- and overnutrition and muscle development in a clinical or research environment. This proof-of-concept study tested whether frontal whole-body silhouettes could be used to accurately measure body composition parameters using active shape modeling (ASM) techniques. Methods: Binary shape images (silhouettes) were generated from the skin outline of dual-energy x-ray absorptiometry (DXA) whole-body scans of 200 healthy children of ages from 6 to 16 yr. The silhouette shape variation from the average was described using an ASM, which computed principal components for unique modes of shape. Predictive models were derived from the modes for FMI, FFMI, and percent fat using stepwise linear regression. The models were compared to simple models using demographics alone [age, sex, height, weight, and body mass index z-scores (BMIZ)]. Results: The authors found that 95% of the shape variation of the sampled population could be explained using 26 modes. In most cases, the body composition variables could be predicted similarly between demographics-only and shape-only models. However, the combination of shape with demographics improved all estimates of boys and girls compared to the demographics-only model. The best prediction models for FMI, FFMI, and percent fat agreed with the actual measures with R2 adj. (the coefficient of determination adjusted for the number of parameters used in the model equation) values of 0.86, 0.95, and 0.75 for boys and 0.90, 0.89, and 0.69 for girls, respectively. Conclusions: Whole-body silhouettes in children may be useful to derive estimates of body composition including FMI, FFMI, and percent fat. These results support the feasibility of measuring body composition variables from simple

  13. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning.

    PubMed

    Paulus, Daniel H; Oehmigen, Mark; Grüneisen, Johannes; Umutlu, Lale; Quick, Harald H

    2016-05-01

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  -11.8% in the top part of the phantom was observable, which was reduced to  -1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  -10.0% and  -2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning. PMID

  14. Whole-body hybrid imaging concept for the integration of PET/MR into radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Paulus, Daniel H.; Oehmigen, Mark; Grueneisen, Johannes; Umutlu, Lale; Quick, Harald H.

    2016-05-01

    Modern radiation therapy (RT) treatment planning is based on multimodality imaging. With the recent availability of whole-body PET/MR hybrid imaging new opportunities arise to improve target volume delineation in RT treatment planning. This, however, requires dedicated RT equipment for reproducible patient positioning on the PET/MR system, which has to be compatible with MR and PET imaging. A prototype flat RT table overlay, radiofrequency (RF) coil holders for head imaging, and RF body bridges for body imaging were developed and tested towards PET/MR system integration. Attenuation correction (AC) of all individual RT components was performed by generating 3D CT-based template models. A custom-built program for μ-map generation assembles all AC templates depending on the presence and position of each RT component. All RT devices were evaluated in phantom experiments with regards to MR and PET imaging compatibility, attenuation correction, PET quantification, and position accuracy. The entire RT setup was then evaluated in a first PET/MR patient study on five patients at different body regions. All tested devices are PET/MR compatible and do not produce visible artifacts or disturb image quality. The RT components showed a repositioning accuracy of better than 2 mm. Photon attenuation of  ‑11.8% in the top part of the phantom was observable, which was reduced to  ‑1.7% with AC using the μ-map generator. Active lesions of 3 subjects were evaluated in terms of SUVmean and an underestimation of  ‑10.0% and  ‑2.4% was calculated without and with AC of the RF body bridges, respectively. The new dedicated RT equipment for hybrid PET/MR imaging enables acquisitions in all body regions. It is compatible with PET/MR imaging and all hardware components can be corrected in hardware AC by using the suggested μ-map generator. These developments provide the technical and methodological basis for integration of PET/MR hybrid imaging into RT planning.

  15. Whole-body effective half-lives for radiolabeled antibodies and related issues

    SciTech Connect

    Kaurin, D.G.L.; Carsten, A.L.; Baum, J.W.; Barber, D.E.

    1996-08-01

    Radiolabeled antibodies (RABs) are being developed and used in medical imaging and therapy in rapidly increasing numbers. Data on the whole body half effective half-lives were calculated from external dose rates obtained from attending physicians and radiation safety officers at participating institutions. Calculations were made using exponential regression analysis of data from patients receiving single and multiple administrations. Theses data were analyzed on the basis of age, sex, isotope label, radiation energy, antibody type, disease treated, administration method, and number of administrations.

  16. MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research

    PubMed Central

    Paul Segars, W.; Tsui, Benjamin M. W.

    2012-01-01

    Recent work in the development of computerized phantoms has focused on the creation of ideal “hybrid” models that seek to combine the realism of a patient-based voxelized phantom with the flexibility of a mathematical or stylized phantom. We have been leading the development of such computerized phantoms for use in medical imaging research. This paper will summarize our developments dating from the original four-dimensional (4-D) Mathematical Cardiac-Torso (MCAT) phantom, a stylized model based on geometric primitives, to the current 4-D extended Cardiac-Torso (XCAT) and Mouse Whole-Body (MOBY) phantoms, hybrid models of the human and laboratory mouse based on state-of-the-art computer graphics techniques. This paper illustrates the evolution of computerized phantoms toward more accurate models of anatomy and physiology. This evolution was catalyzed through the introduction of nonuniform rational b-spline (NURBS) and subdivision (SD) surfaces, tools widely used in computer graphics, as modeling primitives to define a more ideal hybrid phantom. With NURBS and SD surfaces as a basis, we progressed from a simple geometrically based model of the male torso (MCAT) containing only a handful of structures to detailed, whole-body models of the male and female (XCAT) anatomies (at different ages from newborn to adult), each containing more than 9000 structures. The techniques we applied for modeling the human body were similarly used in the creation of the 4-D MOBY phantom, a whole-body model for the mouse designed for small animal imaging research. From our work, we have found the NURBS and SD surface modeling techniques to be an efficient and flexible way to describe the anatomy and physiology for realistic phantoms. Based on imaging data, the surfaces can accurately model the complex organs and structures in the body, providing a level of realism comparable to that of a voxelized phantom. In addition, they are very flexible. Like stylized models, they can easily be

  17. Whole-body vibration improves cognitive functions of an adult with ADHD.

    PubMed

    Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; van den Bos, Meinris; Regterschot, G Ruben H; Zeinstra, Edzard B; van Heuvelen, Marieke J G; van der Zee, Eddy A; Lange, Klaus W; Tucha, Oliver

    2014-09-01

    Adult attention deficit hyperactivity disorder (ADHD) is associated with a variety of cognitive impairments, which were shown to affect academic achievement and quality of life. Current treatment strategies, such as stimulant drug treatment, were demonstrated to effectively improve cognitive functions of patients with ADHD. However, most treatment strategies are associated with a number of disadvantages in a considerable proportion of patients, such as unsatisfactory effects, adverse clinical side effects or high financial costs. In order to address limitations of current treatment strategies, whole-body vibration (WBV) might represent a novel approach to treat cognitive dysfunctions of patients with ADHD. WBV refers to the exposure of the whole body of an individual to vibration and was found to affect physiology and cognition. In the present study, WBV was applied on 10 consecutive days to an adult diagnosed with ADHD. Neuropsychological assessments were performed repeatedly at three different times, i.e., the day before the start of the treatment, on the day following completion of treatment and 14 days after the treatment have been completed (follow-up). An improved neuropsychological test performance following WBV treatment points to the high clinical value of WBV in treating patients with neuropsychological impairments such as ADHD. PMID:25031090

  18. Applications of quantitative whole body autoradiographic technique in radiopharmaceutical research

    SciTech Connect

    Som, P.; Oster, Z.H.; Yonekura, Y.; Meyer, M.A.; Fand, I.; Brill, A.B.

    1982-01-01

    The routine evaluation of radiopharmaceuticals involves dissecting tissue distribution studies (DTDS) and gamma or positron imaging. DTDS have the following disadvantages: since not all tissues can always be sampled, sites of radiopharmaceutical uptake may be missed and because the procedure involves weighing of dissected tissue samples, the spatial resolution of this method is low and determined by the smallest amount that can be weighed accurately. Gamma camera imaging and positron emission tomography though more comprehensive in evaluating the global distribution of a compound, have relative low spatial resolution. Whole body autoradiography of small animals has a much higher spatial resolution as compared to the above and depicts the global distribution of radiopharmaceuticals. A computer-assisted quantification method of WBARG applied to positron, beta, and gamma emitters will complement the method by producing quantitative values comparable to those obtained by dissection and direct tissue counting, with the advantages of depicting the global distribution at high spatial resolution.

  19. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation.

    PubMed

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  20. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  1. Integrated Whole Body MR/PET: Where Are We?

    PubMed Central

    Yoo, Hye Jin; Lee, Jae Sung

    2015-01-01

    Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed. PMID:25598673

  2. Vertebrate Growth and Form: A Whole-Body Approach

    NASA Astrophysics Data System (ADS)

    Evans, J.

    The problems of growth and form in organic systems remain largely unsolved. Field methods applied to the whole body provide an alternative to the genetic approach. Cells cohere according to the electrical forces between cell membranes; and an obvious place to begin applying field methods is to the major electrical pathways of the cerebrospinal system. This paper describes the author's private research into morphogenesis, involving computer modelling of AC and DC fields associated with the spinal and autonomic nerve chains. The 2D and 3D models considered here assume the existence of a stable pattern of electrical sources throughout development, and that expresses itself in different ways according to the overall size. The concept of electrical resonance is basic to this study, and has wide implications, involving earth and solar fields. It is also relevant to the growing use of ELF oscillators in medicine.

  3. Integrated whole body MR/PET: where are we?

    PubMed

    Yoo, Hye Jin; Lee, Jae Sung; Lee, Jeong Min

    2015-01-01

    Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed. PMID:25598673

  4. Multimodal Correlative Preclinical Whole Body Imaging and Segmentation

    PubMed Central

    Akselrod-Ballin, Ayelet; Dafni, Hagit; Addadi, Yoseph; Biton, Inbal; Avni, Reut; Brenner, Yafit; Neeman, Michal

    2016-01-01

    Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates supervoxels by an efficient hierarchical agglomerative strategy and utilizes multiple SVM-kNN classifiers each constrained by a heatmap prior region to compose the segmentation. We demonstrate results showing segmentation of mice images into several structures including the heart, lungs, liver, kidneys, stomach, vena cava, bladder, tumor, and skeleton structures. Experimental validation on a large set of mice and organs, indicated that our system outperforms alternative state of the art approaches. The system proposed can be generalized to various tissues and imaging modalities to produce automatic atlas-free segmentation, thereby enabling a wide range of applications in preclinical studies of small animal imaging. PMID:27325178

  5. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  6. Whole body bone scintigraphy in osseous hydatosis: a case report

    PubMed Central

    Ebrahimi, Abdolali; Assadi, Majid; Saghari, Mohsen; Eftekhari, Mohammad; Gholami, Amir; Ghasemikhah, Reza; Assadi, Sakineh

    2007-01-01

    Hydatid disease is common in many parts of the world, and causes considerable health and economic loss. This disease may develop in almost any part of the body. Bone involvement is often asymptomatic, and its diagnosis is primarily based on radiographic findings. A whole body bone scan is able to show the extent and distribution of lesions. We describe an unusual case of multifocal skeletal hydatosis and also explain the clinical and diagnostic points. We hope to stimulate a high index of suspicion among clinicians to facilitate early diagnosis and to consider this disease as a differential diagnosis in cases of multiple abnormal activity in bone scintigraphy especially among people in endemic areas. PMID:17880713

  7. Whole-body 3D scanner and scan data report

    NASA Astrophysics Data System (ADS)

    Addleman, Stephen R.

    1997-03-01

    With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.

  8. Whole-body imaging at 7T: preliminary results.

    PubMed

    Vaughan, J Thomas; Snyder, Carl J; DelaBarre, Lance J; Bolan, Patrick J; Tian, Jinfeng; Bolinger, Lizann; Adriany, Gregor; Andersen, Peter; Strupp, John; Ugurbil, Kamil

    2009-01-01

    The objective of this study was to investigate the feasibility of whole-body imaging at 7T. To achieve this objective, new technology and methods were developed. Radio frequency (RF) field distribution and specific absorption rate (SAR) were first explored through numerical modeling. A body coil was then designed and built. Multichannel transmit and receive coils were also developed and implemented. With this new technology in hand, an imaging survey of the "landscape" of the human body at 7T was conducted. Cardiac imaging at 7T appeared to be possible. The potential for breast imaging and spectroscopy was demonstrated. Preliminary results of the first human body imaging at 7T suggest both promise and directions for further development. PMID:19097214

  9. Application of whole-body autoradiography in toxicology

    SciTech Connect

    Benard, P.; Burgat, V.; Rico, A.G.

    1985-01-01

    Whole-body autoradiography enables the drugs and toxicants to be distributed throughout the animal. Good results are obtained with this technique. However, certain artifacts can occur that could lead to misinterpretation, and these must be known. These artifacts are described. From the metabolic point of view, autoradiography provides data on the distribution kinetics of a compound and the elimination of radioactivity in various organs. These data are a guide for quantitative research into the metabolism of a compound. From the toxicological point of view, it must be admitted that the main purpose of this technique is to reveal the sites of retention of radioactivity. Such specific organ retention could be the consequence of the activation of a minor metabolite into a very reactive compound. If this is so, it is a specific organ effect which could not be studied by other techniques and could lead the way to a more specific organ effect which could not be studied by other techniques and could lead the way to a more appropriate line of research in the study of chronic toxicity. However, it must be recalled that the fact that a compound is retained by a specific organ does not always mean that the compound exerts a toxic effect upon the said organ. With this technique, distribution study can be performed on pregnant animals, and it provides us with more data concerning the transplacental passage of radioactive metabolites. All these aspects of the technique clearly indicate that whole-body autoradiography should be insisted upon during the early stages of development of new molecules. Successive experiments could then lead to selecting the best experimental conditions for metabolic pharmacokinetics and studies in toxicology. 245 references.

  10. Dual adaptation to sensory conflicts during whole-body rotations.

    PubMed

    Dumontheil, Iroise; Panagiotaki, Panagiota; Berthoz, Alain

    2006-02-01

    A dual adaptation paradigm was used in order to study the adaptation to two conditions of conflicting visual and kinesthetic and vestibular information. Adaptation was induced in humans by modifying visual information during whole-body rotations with the help of a virtual reality set-up. Real rotations' amplitudes were factored by a gain of 0.5 or 1.5. The two conditions were associated to a visual context cue. The aim of the experiment was to provide support for either the feedback or the feedforward model of adaptive states switch. Results show that subjects could adapt to the two conditions of conflict during whole-body rotations. However, the two conflict situations have been found to differ both in their motor dynamics and in their susceptibility to adaptation, as it seems that the adaptation is more complete in the condition of gain 1.5, i.e., faster and more precise. Subjects could be divided into two groups according to their ability to use contextual information to switch between adaptive gains. The visual cues were sufficient for some subjects to switch adaptive state, which corresponds to a context-dependent dual adaptation, or feedforward model of switching. Other subjects showed a switch cost maintained across the experiment, corresponding with a stimulus-dependent adaptation, or feedback model of switching. We are suggesting that the process enabling switching between adaptive states depends on subjects' abilities to use contextual cues of certain types, and thus on their "perceptive styles". This could explain the variability of results obtained in the literature. PMID:16457794

  11. Mathematical Phantom Modelled with MCNP-4B code for Individual Patient Dosimetry

    NASA Astrophysics Data System (ADS)

    Gual, Maritza Rodríguez; Valle, Saúl Hernández

    2002-08-01

    In this work was modeled the ORNL mathematical phantom designed by Cristy and Eckerman in 1987 using the MCNP-4B code with the objective of validating the systems of patient specific dosimetry used in the hospitals. The mathematical phantoms modeling with Monte Carlo guarantee estimates doses more exact in the therapy of the cancer with radionuclides because of difference of the anthropomorphic phantoms, are free of engines that are one of the reason of present errors in the experimental mesurements. As a result of this work will be provided mathematical phantom that reproduces the anatomy of the human organism for a standard "reference man". This paper show the specific absorbed fraction of photon energy in the different organ source for energy of 1 MeV and the results are compared with the published values by Cristy and Eckerman in 1987[1].

  12. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  13. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  14. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-01

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 °C at a whole-body-averaged specific absorption rate of 0.08 W kg-1, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  15. Development of a patient-specific two-compartment anthropomorphic breast phantom

    NASA Astrophysics Data System (ADS)

    Prionas, Nicolas D.; Burkett, George W.; McKenney, Sarah E.; Chen, Lin; Stern, Robin L.; Boone, John M.

    2012-07-01

    The purpose of this paper is to develop a technique for the construction of a two-compartment anthropomorphic breast phantom specific to an individual patient's pendant breast anatomy. Three-dimensional breast images were acquired on a prototype dedicated breast computed tomography (bCT) scanner as part of an ongoing IRB-approved clinical trial of bCT. The images from the breast of a patient were segmented into adipose and glandular tissue regions and divided into 1.59 mm thick breast sections to correspond to the thickness of polyethylene stock. A computer-controlled water-jet cutting machine was used to cut the outer breast edge and the internal regions corresponding to glandular tissue from the polyethylene. The stack of polyethylene breast segments was encased in a thermoplastic ‘skin’ and filled with water. Water-filled spaces modeled glandular tissue structures and the surrounding polyethylene modeled the adipose tissue compartment. Utility of the phantom was demonstrated by inserting 200 µm microcalcifications as well as by measuring point dose deposition during bCT scanning. Affine registration of the original patient images with bCT images of the phantom showed similar tissue distribution. Linear profiles through the registered images demonstrated a mean coefficient of determination (r2) between grayscale profiles of 0.881. The exponent of the power law describing the anatomical noise power spectrum was identical in the coronal images of the patient's breast and the phantom. Microcalcifications were visualized in the phantom at bCT scanning. The real-time air kerma rate was measured during bCT scanning and fluctuated with breast anatomy. On average, point dose deposition was 7.1% greater than the mean glandular dose. A technique to generate a two-compartment anthropomorphic breast phantom from bCT images has been demonstrated. The phantom is the first, to our knowledge, to accurately model the uncompressed pendant breast and the glandular tissue

  16. Implemented myeloma management with whole-body low-dose CT scan: a real life experience.

    PubMed

    Mangiacavalli, Silvia; Pezzatti, Sara; Rossini, Fausto; Doni, Elisa; Cocito, Federica; Bolis, Silvia; Corso, Alessandro

    2016-07-01

    A total of 318 consecutive myeloma patients underwent whole-body low-dose CT scan (WBLDCT) at baseline and during follow-up as a radiological assessment of lytic lesions in place of skeletal X-ray survey. After WBLDCT baseline assessment, 60% had bone involvement. The presence of lytic lesions represented the only met CRAB (hyperCalcaemia, Renal insufficiency, Anaemia, Bone lesions) criteria in 29% of patients. Patients presenting with extramedullary masses were 10%. Radiological progression was documented in 9% of the population with available follow-up. Additional pathological incidental findings were detected in 28 patients (14.5%), most located in the chest region (68%). In conclusion, our real-life data shows that WBLDCT scan represents a reliable imaging tool for decision-making process for multiple myeloma management in different disease phases, providing significant additional information on the presence of soft tissues plasmacytomas detection as well as the presence of pathological incidental findings. PMID:26788613

  17. Whole-body kinetics and dosimetry of L-3--123I-iodo-alpha-methyltyrosine.

    PubMed

    Schmidt, D; Langen, K J; Herzog, H; Wirths, J; Holschbach, M; Kiwit, J C; Ziemons, K; Coenen, H H; Müller-Gärtner, H

    1997-09-01

    The synthetic amino acid L-3--123I-iodo-alpha-methyltyrosine (IMT) is currently under clinical evaluation as a single-photon emission tomography (SPET) tracer of amino acid uptake in brain tumours. So far, dosimetric data in respect of IMT are not available. Therefore we investigated the whole-body distribution of IMT in six patients with cerebral gliomas and the radiation doses were estimated. Whole-body scans were acquired at 1.5, 3 and 5 h after i.v. injection of 370-550 MBq IMT. The bladder was voided prior to each scan and the radioactivity excreted in the urine was measured. Based on the MIRD-11 method and the updated MIRDOSE3, the mean absorbed doses for various organs and the effective dose were calculated from geometric means of the anterior and posterior whole-body scans using seven source organs and the residence time. IMT was predominantly excreted by the kidneys (52.8%+/-11.5% at 1.5 h p.i., 63.0%+/-15.7% at 3 h p.i. and 74.6%+/-9.8% at 5 h p.i.). No organ system other than the urinary tract showed significant retention of the tracer. Early whole-body scans revealed slightly increased tracer uptake in the liver and in the bowel. Highest absorbed doses were found for the urinary bladder wall (0.047 mGy/MBq), the kidneys (0.010 mGy/MBq), the lower large intestinal wall (0.011 mGy/MBq) and the upper large intestinal wall (0.008 mGy/MBq). The effective dose according to ICRP 60 was estimated to be 0.0073 mSv/MBq for adults. This leads to an effective dose of 3.65 mSv in a typical brain SPET study using 500 MBq IMT. The MIRDOSE3 scheme yielded similar results. Thus, in spite of the relatively high tracer dose required for optimal brain scanning, radiation exposure in SPET studies with IMT is in the normal range of routine nuclear medicine investigations. PMID:9283111

  18. Whole-body cryotherapy: empirical evidence and theoretical perspectives

    PubMed Central

    Bleakley, Chris M; Bieuzen, François; Davison, Gareth W; Costello, Joseph T

    2014-01-01

    Whole-body cryotherapy (WBC) involves short exposures to air temperatures below −100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC. PMID:24648779

  19. Acoustical method of whole-body hydration status monitoring

    NASA Astrophysics Data System (ADS)

    Sarvazyan, A. P.; Tsyuryupa, S. N.; Calhoun, M.; Utter, A.

    2016-07-01

    An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

  20. Whole-body cryotherapy: empirical evidence and theoretical perspectives.

    PubMed

    Bleakley, Chris M; Bieuzen, François; Davison, Gareth W; Costello, Joseph T

    2014-01-01

    Whole-body cryotherapy (WBC) involves short exposures to air temperatures below -100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC. PMID:24648779

  1. Whole-body impedance--what does it measure?

    PubMed

    Foster, K R; Lukaski, H C

    1996-09-01

    Although the bioelectrical impedance technique is widely used in human nutrition and clinical research, an integrated summary of the biophysical and bioelectrical bases of this approach is lacking. We summarize the pertinent electrical phenomena relevant to the application of the impedance technique in vivo and discuss the relations between electrical measurements and biological conductor volumes. Key terms in the derivation of bioelectrical impedance analysis are described and the relation between the electrical properties of tissues and tissue structure is discussed. The relation between the impedance of an object and its geometry, scale, and intrinsic electrical properties is also discussed. Correlations between whole-body impedance measurements and various bioconductor volumes, such as total body water and fat-free mass, are experimentally well established; however, the reason for the success of the impedence technique is much less clear. The bioengineering basis for the technique is critically presented and considerations are proposed that might help to clarify the method and potentially improve its sensitivity. PMID:8780354

  2. Whole-body counting in the Marshall Islands

    SciTech Connect

    Sun, L.C.; Clinton, J.; Kaplan, E.; Meinhold, C.B.

    1991-01-01

    In 1978 the Marshall Islands Radiological Safety Program was organized to perform radiation measurements and assess radiation doses for the people of the Bikini, Enewetak, Rongelap and Utirik Atolls. One of the major field components of this program is whole- body counting (WBC). WBC is used to monitor the quantity of gamma- emitting radionuclides present in individuals. A primary objective of the program was to establish {sup 137}Cesium body contents among the Enewetak, Rongelap and Utirik populations. {sup 137}Cs was the only gamma-emitting fission radionuclide detected in the 1,967 persons monitored. {sup 137}Cs body burdens tended to increase with age for both sexes, and were higher in males. The average {sup 137}Cs dose Annual Effective Dose for the three populations was as follows: For Enewetak, the dose was 22{+-}4 {mu}Sv. For Utirik, the dose was 33{+-} 3 {mu}Sv. Since 1985 the Rongelap people have been self-exiled to Mejatto. Biological elimination should have reduced their dose to virtually zero, and the measured dose was 2{+-}2 {mu}Sv. If they had remained on Rongelap Island, the calculated dose would have been 99 {mu}Sv, which is about one-third of the background dose. 7 refs., 1 tab. (MHB)

  3. Sex differences in whole body gait kinematics at preferred speeds.

    PubMed

    Bruening, Dustin A; Frimenko, Rebecca E; Goodyear, Chuck D; Bowden, David R; Fullenkamp, Adam M

    2015-02-01

    Studies on human perception have identified pelvis and torso motion as key discriminators between male and female gaits. However, while most observers would advocate that men and women walk differently, consistent findings and explanations of sex differences in gait kinematics across modern empirical studies are rare. In the present study we evaluated sex differences in whole body gait kinematics from a large sample of subjects (55 men, 36 women) walking at self selected speeds. We analyzed the data through comparisons of discrete metrics and whole curve analyses. Results showed that in the frontal plane, women walked with greater pelvic obliquity than men, but exhibited a more stable torso and head. Women had greater transverse plane pelvis and torso rotation as well as greater arm swing. Additional sex differences were noted at the hip and ankle. These kinematic results are in line with anectdotal observations and qualitative studies. In order to understand these observations and substantiate some of the explanations previously set forth in the biomechanics literature, we also explored possible reasons for dynamic sex effects, and suggested applications that may benefit from their consideration. PMID:25548119

  4. Whole body vibration improves cognition in healthy young adults.

    PubMed

    Regterschot, G Ruben H; Van Heuvelen, Marieke J G; Zeinstra, Edzard B; Fuermaier, Anselm B M; Tucha, Lara; Koerts, Janneke; Tucha, Oliver; Van Der Zee, Eddy A

    2014-01-01

    This study investigated the acute effects of passive whole body vibration (WBV) on executive functions in healthy young adults. Participants (112 females, 21 males; age: 20.5±2.2 years) underwent six passive WBV sessions (frequency 30 Hz, amplitude approximately 0.5 mm) and six non-vibration control sessions of two minutes each while sitting on a chair mounted on a vibrating platform. A passive WBV session was alternated with a control session. Directly after each session, performance on the Stroop Color-Block Test (CBT), Stroop Color-Word Interference Test (CWIT), Stroop Difference Score (SDS) and Digit Span Backward task (DSBT) was measured. In half of the passive WBV and control sessions the test order was CBT-CWIT-DSBT, and DSBT-CBT-CWIT in the other half. Passive WBV improved CWIT (p = 0.009; effect size r = 0.20) and SDS (p = 0.034; r = 0.16) performance, but only when the CBT and CWIT preceded the DSBT. CBT and DSBT performance did not change. This study shows that two minutes passive WBV has positive acute effects on attention and inhibition in young adults, notwithstanding their high cognitive functioning which could have hampered improvement. This finding indicates the potential of passive WBV as a cognition-enhancing therapy worth further evaluation, especially in persons unable to perform active forms of exercise. PMID:24949870

  5. Effect of whole body vibration applied on upper extremity muscles.

    PubMed

    Gyulai, G; Rácz, L; Di Giminiani, R; Tihanyi, József

    2013-03-01

    The acute residual effect of whole body vibration (WBV) on upper extremity muscles and testosterone secretion was studied. Eight highly (G1), nine moderately trained gymnasts (G2) and seven physically active persons (CG) were recruited for the investigation. The intervention occurred in push-up position with the elbow flexed at 90°. G1 and G2 received 30 s, 30 Hz and 6 mm amplitude vibration repeated five times. Subjects were tested before and after one and ten minutes intervention in push-up movement. Contact time (Tc), fly time (Tf), TF/Tc ratio and impulse was measured from the ground reaction force-time curves recorded during self-selected (SSRM) and full range of motion (FRM). Testosterone level in urine was also determined. Tf increased significantly in SSRM for G1 and decreased in SSRM and FRM for G2. Tf/Tc ratio in FRM and impulse in SSRM increased significantly for G1 only. No significant alteration in testosterone level was observed. We concluded that WBV is a reasonable training modality for influencing dynamic work of upper extremity muscle, but the reaction to WBV is training and individual dependent. It seems that WBV do not influence dynamic work through increased testosterone secretion because of the relatively low mass of the involved muscles. PMID:23232701

  6. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R.; Xiang, Jianping; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui; Rudin, Stephen

    2014-03-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a "marching cubes" algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing.

  7. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing

    PubMed Central

    Ionita, Ciprian N; Mokin, Maxim; Varble, Nicole; Bednarek, Daniel R; Xiang, Jianping; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Meng, Hui; Rudin, Stephen

    2014-01-01

    Additive manufacturing (3D printing) technology offers a great opportunity towards development of patient-specific vascular anatomic models, for medical device testing and physiological condition evaluation. However, the development process is not yet well established and there are various limitations depending on the printing materials, the technology and the printer resolution. Patient-specific neuro-vascular anatomy was acquired from computed tomography angiography and rotational digital subtraction angiography (DSA). The volumes were imported into a Vitrea 3D workstation (Vital Images Inc.) and the vascular lumen of various vessels and pathologies were segmented using a “marching cubes” algorithm. The results were exported as Stereo Lithographic (STL) files and were further processed by smoothing, trimming, and wall extrusion (to add a custom wall to the model). The models were printed using a Polyjet printer, Eden 260V (Objet-Stratasys). To verify the phantom geometry accuracy, the phantom was reimaged using rotational DSA, and the new data was compared with the initial patient data. The most challenging part of the phantom manufacturing was removal of support material. This aspect could be a serious hurdle in building very tortuous phantoms or small vessels. The accuracy of the printed models was very good: distance analysis showed average differences of 120 μm between the patient and the phantom reconstructed volume dimensions. Most errors were due to residual support material left in the lumen of the phantom. Despite the post-printing challenges experienced during the support cleaning, this technology could be a tremendous benefit to medical research such as in device development and testing. PMID:25300886

  8. Design of POSICAM: A high resolution multislice whole body positron camera

    SciTech Connect

    Mullani, N.A.; Wong, W.H.; Hartz, R.K.; Bristow, D.; Gaeta, J.M.; Yerian, K.; Adler, S.; Gould, K.L.

    1985-01-01

    A high resolution (6mm), multislice (21) whole body positron camera has been designed with innovative detector and septa arrangement for 3-D imaging and tracer quantitation. An object of interest such as the brain and the heart is optimally imaged by the 21 simultaneous image planes which have 12 mm resolution and are separated by 5.5 mm to provide adequate sampling in the axial direction. The detector geometry and the electronics are flexible enough to allow BaF/sub 2/, BGO, GSO or time of flight BaF/sub 2/ scintillators. The mechanical gantry has been designed for clinical applications and incorporates several features for patient handling and comfort. A large patient opening of 58 cm diameter with a tilt of +-30/sup 0/ and rotation of +-20/sup 0/ permit imaging from different positions without moving the patient. Multiprocessor computing systems and user-friendly software make the POSICAM a powerful 3-D imaging device. 7 figs.

  9. Development of a Patient-Specific Two-Compartment Anthropomorphic Breast Phantom

    PubMed Central

    Prionas, Nicolas D.; Burkett, George W.; McKenney, Sarah E.; Chen, Lin; Stern, Robin L.; Boone, John M.

    2012-01-01

    Purpose To develop a technique for the construction of a two-compartment anthropomorphic breast phantom specific to an individual patient’s pendant breast anatomy. Methods Three-dimensional breast images were acquired on a prototype dedicated breast computed tomography (bCT) scanner as part of an ongoing IRB-approved clinical trial of bCT. The images from the breast of a patient were segmented into adipose and glandular tissue regions and divided into 1.59 mm thick breast sections to correspond to the thickness of polyethylene stock. A computer controlled water-jet cutting machine was used to cut the outer breast edge and the internal regions corresponding to glandular tissue from the polyethylene. The stack of polyethylene breast segments was encased in a thermoplastic “skin” and filled with water. Water-filled spaces modeled glandular tissue structures and the surrounding polyethylene modeled the adipose tissue compartment. Utility of the phantom was demonstrated by inserting 200 μm microcalcifications as well as measuring point dose deposition during bCT scanning. Results Rigid registration of the original patient images with bCT images of the phantom showed similar tissue distribution. Linear profiles through the registered images demonstrated a mean coefficient of determination (r2) between grayscale profiles of 0.881. The exponent of the power law describing the anatomical noise power spectrum was identical in the coronal images of the patient’s breast and the phantom. Microcalcifications were visualized in the phantom at bCT scanning. Real-time air kerma rate was measured during bCT scanning and fluctuated with breast anatomy. On average, point dose deposition was 7.1% greater than mean glandular dose. Conclusions A technique to generate a two-compartment anthropomorphic breast phantom from bCT images has been demonstrated. The phantom is the first, to our knowledge, to accurately model the uncompressed pendant breast and the glandular tissue

  10. Metal bar prevents phantom limb motion: case study of an amputation patient who showed a profound change in the awareness of his phantom limb.

    PubMed

    Kawashima, Noritaka; Mita, Tomoki

    2009-12-01

    This case report describes an amputee (patient A.S., a 60-year-old male forelimb amputee) who had an extraordinary experience with a phantom limb. He complained that he could not move the wrist of his phantom limb because a metal bar was perceived to be grasped by the hand. As a solution for removing the metal bar, we invited the patient to undergo mirror reflection-induced visual feedback therapy. The patient reported that the metal bar previously grasped by his hand was successfully removed from the phantom during the course of therapy. Interestingly, this experience was accompanied by profound changes in the EMG modulation in the residual wrist muscles. In this article, the possible mechanisms underlying this interesting phenomenon will be discussed. PMID:19585348

  11. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice.

    PubMed

    Patwardhan, Sachin; Bloch, Sharon; Achilefu, Samuel; Culver, Joseph

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (tauswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (deltat=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue. PMID:19495147

  12. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice

    NASA Astrophysics Data System (ADS)

    Patwardhan, Sachin V.; Bloch, Sharon R.; Achilefu, Samuel; Culver, Joseph P.

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (τswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (δt=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue.

  13. Estimation of signal and noise for a whole-body photon counting research CT system

    NASA Astrophysics Data System (ADS)

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Steffen; McCollough, Cynthia H.

    2016-03-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configuration. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semianthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT.

  14. A multi-configurational cylindrical phantom based evaluation of patient-specific IMRT QA tools

    NASA Astrophysics Data System (ADS)

    Olding, T.; Halsall, T.; Schreiner, L. J.; Kerr, A.

    2013-06-01

    A custom in-house built multi-purpose phantom has been designed and built to investigate the integrity of the 2D Matrixx ion chamber (Scanditronix-Welhoffer, Bartlett, TN) and 3D electronic portal image device (EPID) techniques employed for patient specific IMRT delivery QA at our centre. Single ion chamber, EBT3 film and FXG gel dose measurements from the common phantom system were found to be consistent with the Matrixx and EPID measurements except in the limit of highly modulated plan deliveries.

  15. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    SciTech Connect

    Tsai, W.-L.; Tsai, I-C.; Lee Tain; Hsieh, C.-W.

    2008-07-15

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  16. Measurement of whole-body vibration in taxi drivers.

    PubMed

    Funakoshi, Mitsuhiko; Taoda, Kazushi; Tsujimura, Hiroji; Nishiyama, Katsuo

    2004-03-01

    In a previous epidemiological study we reported that the prevalence (45.8%) of low-back pain (LBP) and the two-year incidence (25.9%) of LBP in 284 male taxi drivers in Japan was comparable with rates reported for other occupational drivers in which LBP frequently occurs. LBP was significantly related with the level of uncomfortable road vibrations, and, importantly, increased with total mileage. The aim of this study was to measure whole-body vibration (WBV) on the driver's seat pan of 12 taxis operating under actual working conditions. The results were evaluated according to the health guidelines in International Standard ISO 2631-1:1997. Finally, the relation between total mileage and WBV was investigated. The majority of the frequency-weighted r.m.s. accelerations of the taxis fell into the "potential health risks" zone, under ISO 2631-1:1997. It was clear that the taxi drivers were exposed to serious WBV magnitudes. Therefore, occupational health and safety management should be carried out to help prevent adverse health effects in taxi drivers. In particular, reduction of WBV in taxis and shortening of driving time to reduce duration of WBV exposure should be considered. Moreover, because many taxi drivers work 18 h every other day, the shortening of working hours and taking of rest breaks while working should be considered. Frequency-weighted r.m.s. accelerations of taxis had a tendency to decrease as total mileage increased. The relation between total mileage and WBV should be investigated by taking measurements on the floor and the back rest in addition to the seat pan. PMID:15090686

  17. Ultra-high field magnets for whole-body MRI

    NASA Astrophysics Data System (ADS)

    Warner, Rory

    2016-09-01

    For whole-body MRI, an ultra-high field (UHF) magnet is currently defined as a system operating at 7 T or above. Over 70 UHF magnets have been built, all with the same technical approach originally developed by Magnex Scientific Ltd. The preferred coil configuration is a compensated solenoid. In this case, the majority of the field is generated by a simple long solenoid that stretches the entire length of the magnet. Additional coils are wound on a separate former outside the main windings with the purpose of balancing the homogeneity. Most of the magnets currently in operation are passively shielded systems where the magnet is surrounded by a steel box of 200–870 tonnes of carbon steel. More recently actively shielded magnets have been built for operation at 7 T; in this case the stray field is controlled by with reverse turns wound on a separate former outside the primary coils. Protection against quench damage is much more complex with an actively shielded magnet design due to the requirement to prevent the stray field from increasing during a quench. In the case of the 7 T 900 magnet this controlled by combining some of the screening coils into each section of the protection circuit. Correction of the field variations caused by manufacturing tolerances and environmental effects are made with a combination of superconducting shims and passive shims. Modern UHF magnets operate in zero boil-off mode with the use of cryocoolers with cooling capacity at 4.2 K. Although there are no cryogen costs associated with normal operation UHF magnets require a significant volume (10 000–20 000 l) of liquid helium for the cool-down. Liquid helium is expensive therefore new methods of cool-down using high-power cryocoolers are being implemented to reduce the requirement.

  18. Human perceptual overestimation of whole body roll tilt in hypergravity

    PubMed Central

    Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2014-01-01

    Hypergravity provides a unique environment to study human perception of orientation. We utilized a long-radius centrifuge to study perception of both static and dynamic whole body roll tilt in hypergravity, across a range of angles, frequencies, and net gravito-inertial levels (referred to as G levels). While studies of static tilt perception in hypergravity have been published, this is the first to measure dynamic tilt perception (i.e., with time-varying canal stimulation) in hypergravity using a continuous matching task. In complete darkness, subjects reported their orientation perception using a haptic task, whereby they attempted to align a hand-held bar with their perceived horizontal. Static roll tilt was overestimated in hypergravity, with more overestimation at larger angles and higher G levels, across the conditions tested (overestimated by ∼35% per additional G level, P < 0.001). As our primary contribution, we show that dynamic roll tilt was also consistently overestimated in hypergravity (P < 0.001) at all angles and frequencies tested, again with more overestimation at higher G levels. The overestimation was similar to that for static tilts at low angular velocities but decreased at higher angular velocities (P = 0.006), consistent with semicircular canal sensory integration. To match our findings, we propose a modification to a previous Observer-type canal-otolith interaction model. Specifically, our data were better modeled by including the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. This modified model was able to simulate quantitatively both the static and the dynamic roll tilt overestimation in hypergravity measured experimentally. PMID:25540216

  19. Experimental study of pharmacokinetics of external, whole-body bathing application of ivermectin.

    PubMed

    Miyajima, Atsushi; Komoda, Masayo; Akagi, Keita; Yuzawa, Kaoru; Yoshimasu, Takashi; Yamamoto, Yosuke; Hirota, Takashi

    2015-01-01

    As a novel method improving the safety of conventional oral ivermectin (IVM) for scabies treatment, we conceived an idea called the "whole-body bathing method". In this method, the patients would bathe themselves in a bathing fluid containing IVM at an effective concentration. To evaluate the feasibility of the method, we investigated the IVM concentration in the skin and plasma after bathing rats in a fluid containing 100 ng/mL of IVM. After the bathing, the concentration of IVM in the skin was more than 400 ng/g wet weight and was maintained until 8 h after the bathing. The concentration was clearly higher than that in patients taking IVM p.o. as previously reported; IVM was not detected in plasma in the present study. Thus, the method would be a preferable drug delivery system for the skin application of IVM compared with p.o. administration. PMID:25492083

  20. The Nicholas Research Award for Radiographers 1977: anatomical and radiological registration in whole body computed tomography.

    PubMed

    Nettle, J R

    1979-09-01

    Accurate registration of a section 13 mm in depth in different patients or reregistration in the same patient during whole body computed tomography is a significant problem. The method described here attempts to overcome some of these difficulties. The feasibility of using the EMI Scanner X-ray tube and a pair of Kodak Lanex intensifying screens in a vacuum pack cassette has been examined. A registration system which as an accuracy to within 1 pixel has been described. This technique has its major application in the registration and recognition of the axial skeleton, on fixed bony structures. The registration of soft tissue structures, subject to greater physiological variation poses problems which are the subject of further investigation. PMID:554171

  1. Anthropometric approaches and their uncertainties to assigning computational phantoms to individual patients in pediatric dosimetry studies

    NASA Astrophysics Data System (ADS)

    Whalen, Scott; Lee, Choonsik; Williams, Jonathan L.; Bolch, Wesley E.

    2008-01-01

    Current efforts to reconstruct organ doses in children undergoing diagnostic imaging or therapeutic interventions using ionizing radiation typically rely upon the use of reference anthropomorphic computational phantoms coupled to Monte Carlo radiation transport codes. These phantoms are generally matched to individual patients based upon nearest age or sometimes total body mass. In this study, we explore alternative methods of phantom-to-patient matching with the goal of identifying those methods which yield the lowest residual errors in internal organ volumes. Various thoracic and abdominal organs were segmented and organ volumes obtained from chest-abdominal-pelvic (CAP) computed tomography (CT) image sets from 38 pediatric patients ranging in age from 2 months to 15 years. The organs segmented included the skeleton, heart, kidneys, liver, lungs and spleen. For each organ, least-squared regression lines, 95th percentile confidence intervals and 95th percentile prediction intervals were established as a function of patient age, trunk volume, estimated trunk mass, trunk height, and three estimates of the ventral body cavity volume based on trunk height alone, or in combination with circumferential, width and/or breadth measurements in the mid-chest of the patient. When matching phantom to patient based upon age, residual uncertainties in organ volumes ranged from 53% (lungs) to 33% (kidneys), and when trunk mass was used (surrogate for total body mass as we did not have images of patient head, arms or legs), these uncertainties ranged from 56% (spleen) to 32% (liver). When trunk height is used as the matching parameter, residual uncertainties in organ volumes were reduced to between 21 and 29% for all organs except the spleen (40%). In the case of the lungs and skeleton, the two-fold reduction in organ volume uncertainties was seen in moving from patient age to trunk height—a parameter easily measured in the clinic. When ventral body cavity volumes were used

  2. SU-E-P-59: A Graphical Interface for XCAT Phantom Configuration, Generation and Processing

    SciTech Connect

    Myronakis, M; Cai, W; Dhou, S; Cifter, F; Lewis, J; Hurwitz, M

    2015-06-15

    Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing, our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.

  3. Development of anthropomorphic hand phantoms for personal dosimetry in 90Y-Zevalin preparation and patient delivering.

    PubMed

    Ciolini, R; d'Errico, F; Traino, A C; Paternostro, E; Laganà, A; Romei, C; Pazzagli, F; Del Gratta, A

    2014-01-01

    Anthropomorphic tissue-equivalent hand phantoms were achieved to measure the extremity dose involved in Zevalin (90)Y-labelling and patient delivering procedure for radioimmunotherapy treatment of non-Hodgkin lymphoma. The extremity doses to hands and wrists of operators were measured by using thermoluminescent detectors mounted on the developed phantoms. Measurements of chest- and lens-equivalent doses performed on a Rando phantom are also reported. PMID:23960242

  4. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  5. Evaluation of organ doses and effective dose according to the ICRP Publication 110 reference male/female phantom and the modified ImPACT CT patient dosimetry.

    PubMed

    Kobayashi, Masanao; Asada, Yasuki; Matsubara, Kosuke; Matsunaga, Yuta; Kawaguchi, Ai; Katada, Kazuhiro; Toyama, Hiroshi; Koshida, Kichiro; Suzuki, Shouichi

    2014-01-01

    We modified the Imaging Performance Assessment of CT scanners (ImPACT) to evaluate the organ doses and the effective dose based on the International Commission on Radiological Protection (ICRP) Publication 110 reference male/female phantom with the Aquilion ONE ViSION Edition scanner. To select the new CT scanner, the measurement results of the CTDI100,c and CTDI100,p for the 160 (head) and the 320 (body) mm polymethylmethacrylate phantoms, respectively, were entered on the Excel worksheet. To compute the organ doses and effective dose of the ICRP reference male/female phantom, the conversion factors obtained by comparison between the organ doses of different types of phantom were applied. The organ doses and the effective dose were almost identical for the ICRP reference male/female and modified ImPACT. The results of this study showed that, with the dose assessment of the ImPACT, the difference in sex influences only testes and ovaries. Because the MIRD-5 phantom represents a partially hermaphrodite adult, the phantom has the dimensions of the male reference man including testes, ovaries, and uterus but no female breasts, whereas the ICRP male/female phantom includes whole-body male and female anatomies based on high-resolution anatomical datasets. The conversion factors can be used to estimate the doses of a male and a female accurately, and efficient dose assessment can be performed with the modified ImPACT. PMID:25207566

  6. THE UF FAMILY OF REFERENCE HYBRID PHANTOMS FOR COMPUTATIONAL RADIATION DOSIMETRY

    PubMed Central

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2009-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in-vivo whole-body counters. Two classes of the computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms, that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15-year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms – those of the reference 1-year, 5-year, and 10-year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2

  7. The UF family of reference hybrid phantoms for computational radiation dosimetry.

    PubMed

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-21

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference organ

  8. Guidelines for Whole-Body Vibration Health Surveillance

    NASA Astrophysics Data System (ADS)

    POPE, M.; MAGNUSSON, M.; LUNDSTRÖM, R.; HULSHOF, C.; VERBEEK, J.; BOVENZI, M.

    2002-05-01

    examination, which includes recording any change in exposure to WBV. The findings for the individual should be compared with previous examinations. Group data should also be compiled periodically. Medical removal may be considered along with re-placement in working practices without exposure to WBV. This paper presents opinions on health surveillance for whole-body vibration developed within a working group of partners funded on a European Community Network (BIOMED2 concerted action BMH4-CT98-3251: Research network on detection and prevention of injuries due to occupational vibration exposures). The health surveillance protocol and the draft questionnaire with explanation comments are presented for wider consideration by the science community and others before being considered appropriate for implementation.

  9. Functional Reorganization of the Primary Somatosensory Cortex of a Phantom Limb Pain Patient.

    PubMed

    Zhao, Jia; Guo, Xiaoli; Xia, Xiaolei; Peng, Weiwei; Wang, Wuchao; Li, Shulin; Zhang, Ya; Hu, Li

    2016-07-01

    Functional reorganization of the somatosensory system was widely observed in phantom limb pain patients. Whereas some studies demonstrated that the primary somatosensory cortex (S1) of the amputated limb was engaged with the regions around it, others showed that phantom limb pain was associated with preserved structure and functional organization in the former brain region. However, according to the law of use and disuse, the sensitivity of S1 of the amputated limb to pain-related context should be enhanced due to the adaptation to the long-lasting phantom limb pain experience. Here, we collected neurophysiological data from a patient with 21-year phantom limb pain using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) techniques. EEG data showed that both laser-evoked potentials (LEPs) and tactile-evoked potentials (TEPs) were clearly presented only when radiant-heat laser pulses and electrical pulses were delivered to the shoulder of the healthy limb, but not of the amputated limb. This observation suggested the functional deficit of somatosensory pathways at the amputated side. FMRI data showed that significant larger brain activations by painful rather than non-painful stimuli in video clips were observed not only at visual-related brain areas and anterior/mid-cingulate cortex, but also at S1 contralateral to the amputated limb. This observation suggested the increased sensitivity of S1 of the amputated limb to the pain-related context. In addition, such increase of sensitivity was significantly larger if the context was associated with the amputated limb of the patient. In summary, our findings provided novel evidence for a possible neuroplasticity of S1 of the amputated limb: in an amputee with long-lasting phantom limb pain, the sensitivity of S1 to pain-related and amputated-limb-related context was greatly enhanced. PMID:27389122

  10. Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease

    SciTech Connect

    Coon , Steven; Stark, Azadeh; Peterson, Edward; Gloi, Aime; Kortsha, Gene; Pounds, Joel G.; Chettle, D. R.; Gorell, Jay M.

    2006-12-01

    We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.

  11. Whole-Body Pediatric Neuroblastoma Imaging: 123I-mIBG and Beyond.

    PubMed

    Pai Panandiker, Atmaram S; Coleman, Jamie; Shulkin, Barry

    2015-09-01

    Pediatric cancer imaging stands to benefit from higher tumor detection sensitivity without ionizing radiation exposure. A prospective protocol compared diagnostic I-metaiodobenzylguanidine (I-mIBG) with whole-body diffusion-weighted MRI (DWI) to validate adjunctive methods of identifying small-volume oligometastatic neuroblastoma tumor deposits. Dual-modality imaging (I-mIBG and DWI) was obtained within a 3- and 25-day window at baseline and again at one year in the first enrolled patient. MRI was able to define the full extent of metastatic disease foci with improved resolution. These findings may provide critical information for definitive locoregional surgery and radiotherapy for high-risk neuroblastoma treatment. PMID:26053707

  12. Phantom tumour of the lung in a patient with renal failure misdiagnosed as chest infection

    PubMed Central

    Althomali, Sarah Ali; Almalki, Mazen Mohammed; Mohiuddin, Syed Atif

    2014-01-01

    Phantom or vanishing tumour of the lung is a rare finding on chest radiographs that has been reported secondary to heart failure or chronic kidney disease. It has been described as an interlobular effusion of the transverse or oblique fissure of the right lung. Although it is uncommon, it should always be considered as a differential diagnosis for a radiographic opacity of the right-middle lung zone because it can be easily mistaken for a lung mass or infiltration. We herein present a case involving a patient with chronic kidney disease and a radiographic opacity of the right-middle lung that was diagnosed as a chest infection. The patient did not respond to various antibiotics and showed a poor response to diuretics, the standard treatment for phantom tumour. However, the patient markedly improved after dialysis, and the radiographic chest opacity disappeared. PMID:24943144

  13. Phantom tumour of the lung in a patient with renal failure misdiagnosed as chest infection.

    PubMed

    Althomali, Sarah Ali; Almalki, Mazen Mohammed; Mohiuddin, Syed Atif

    2014-01-01

    Phantom or vanishing tumour of the lung is a rare finding on chest radiographs that has been reported secondary to heart failure or chronic kidney disease. It has been described as an interlobular effusion of the transverse or oblique fissure of the right lung. Although it is uncommon, it should always be considered as a differential diagnosis for a radiographic opacity of the right-middle lung zone because it can be easily mistaken for a lung mass or infiltration. We herein present a case involving a patient with chronic kidney disease and a radiographic opacity of the right-middle lung that was diagnosed as a chest infection. The patient did not respond to various antibiotics and showed a poor response to diuretics, the standard treatment for phantom tumour. However, the patient markedly improved after dialysis, and the radiographic chest opacity disappeared. PMID:24943144

  14. Effects of theta burst stimulation on referred phantom sensations in patients with spinal cord injury.

    PubMed

    Nardone, Raffaele; De Blasi, Pierpaolo; Höller, Yvonne; Taylor, Alexandra C; Brigo, Francesco; Trinka, Eugen

    2016-03-01

    To further explore the mechanisms underlying cortical reorganization in patients with phantom sensations after deafferentation, a repetitive transcranial magnetic stimulation study was carried out in two patients with referred phantom sensations (RPS) after incomplete spinal cord injury at the thoracic level. We delivered continuous (inhibitory), intermittent (excitatory), and placebo theta burst stimulation to the contralateral primary motor cortex (M1), primary somatosensory cortex (S1), and secondary somatosensory cortex (S2). Perception of RPS was significantly and transiently disrupted by inhibitory theta burst stimulation applied over S1 and, to a lesser extent, S2. This study supports the hypothesis that RPS depend on remapping in the somatosensory cortex and provides further electrophysiological evidence in vivo that cortical reorganizational processes are critically modulated by GABAergic mechanisms. Enhancement of GABAergic activity may block cortical reorganization, leading to RPS in spinal cord injury patients. PMID:26626415

  15. Whole-Body Diffusion-Weighted Imaging in Chronic Recurrent Multifocal Osteomyelitis in Children

    PubMed Central

    Leclair, Nadine; Thörmer, Gregor; Sorge, Ina; Ritter, Lutz; Schuster, Volker; Hirsch, Franz Wolfgang

    2016-01-01

    Objective Chronic recurrent multifocal osteomyelitis/ chronic non-bacterial osteomyelitis (CRMO/ CNO) is a rare auto-inflammatory disease and typically manifests in terms of musculoskeletal pain. Because of a high frequency of musculoskeletal disorders in children/ adolescents, it can be quite challenging to distinguish CRMO/ CNO from nonspecific musculosketetal pain or from malignancies. The purpose of this study was to evaluate the visibility of CRMO lesions in a whole-body diffusion-weighted imaging (WB-DWI) technique and its potential clinical value to better characterize MR-visible lesions. Material and Methods Whole-body imaging at 3T was performed in 16 patients (average: 13 years) with confirmed CRMO. The protocol included 2D Short Tau Inversion Recovery (STIR) imaging in coronal and axial orientation as well as diffusion-weighted imaging in axial orientation. Visibility of lesions in DWI and STIR was evaluated by two readers in consensus. The apparent diffusion coefficient (ADC) was measured for every lesion and corresponding reference locations. Results A total of 33 lesions (on average 2 per patient) visible in STIR and DWI images (b = 800 s/mm2 and ADC maps) were included, predominantly located in the long bones. With a mean value of 1283 mm2/s in lesions, the ADC was significantly higher than in corresponding reference regions (782 mm2/s). By calculating the ratio (lesion to reference), 82% of all lesions showed a relative signal increase of 10% or higher and 76% (25 lesions) showed a signal increase of more than 15%. The median relative signal increase was 69%. Conclusion This study shows that WB-DWI can be reliably performed in children at 3T and predominantly, the ADC values were substantially elevated in CRMO lesions. WB-DWI in conjunction with clinical data is seen as a promising technique to distinguish benign inflammatory processes (in terms of increased ADC values) from particular malignancies. PMID:26799970

  16. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  17. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  18. A high protein diet upregulated whole-body protein turnover during energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of higher protein diets and sustained energy deficit (ED) on whole-body protein turnover (WBPTO) are not well described. This study examined whether dietary protein level influences whole-body protein breakdown (Ra), non-oxidative leucine disposal (NOLD), and oxidation (Ox) during ED. ...

  19. Three-dimensional modeling of supine human and transport system under whole-body vibration.

    PubMed

    Wang, Yang; Rahmatalla, Salam

    2013-06-01

    The development of predictive computer human models in whole-body vibration has shown some success in predicting simple types of motion, mostly for seated positions and in the uniaxial vertical direction. The literature revealed only a handful of papers that tackled supine human modeling in response to vertical vibration. The objective of this work is to develop a predictive, multibody, three-dimensional human model to simulate the supine human and underlying transport system in response to multidirectional whole-body vibration. A three-dimensional dynamic model of a supine human and its underlying transport system is presented in this work to predict supine-human biodynamic response under three-dimensional input random whole-body vibration. The proposed supine-human model consists of three interconnected segments representing the head, torso-arms, and pelvis-legs. The segments are connected via rotational and translational joints that have spring-damper components simulating the three-dimensional muscles and tissuelike connecting elements in the three x, y, and z directions. Two types of transport systems are considered in this work, a rigid support and a long spinal board attached to a standard military litter. The contact surfaces between the supine human and the underlying transport system are modeled using spring-damper components. Eight healthy supine human subjects were tested under combined-axis vibration files with a magnitude of 0.5 m/s2 (rms) and a frequency content of 0.5-16 Hz. The data from seven subjects were used in parameter identification for the dynamic model using optimization schemes in the frequency domain that minimize the differences between the magnitude and phase of the predicted and experimental transmissibility. The predicted accelerations in the time and frequency domains were comparable to those gathered from experiments under different anthropometric, input vibration, and transport conditions under investigation. Based on the

  20. The UF family of reference hybrid phantoms for computational radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L.; Bolch, Wesley E.

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms—those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR™. NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros™. The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  1. Statistical analysis of whole-body absorption depending on anatomical human characteristics at a frequency of 2.1 GHz

    NASA Astrophysics Data System (ADS)

    El Habachi, A.; Conil, E.; Hadjem, A.; Vazquez, E.; Wong, M. F.; Gati, A.; Fleury, G.; Wiart, J.

    2010-04-01

    In this paper, we propose identification of the morphological factors that may impact the whole-body averaged specific absorption rate (WBSAR). This study is conducted for the case of exposure to a front plane wave at a 2100 MHz frequency carrier. This study is based on the development of different regression models for estimating the WBSAR as a function of morphological factors. For this purpose, a database of 12 anatomical human models (phantoms) has been considered. Also, 18 supplementary phantoms obtained using the morphing technique were generated to build the required relation. This paper presents three models based on external morphological factors such as the body surface area, the body mass index or the body mass. These models show good results in estimating the WBSAR (<10%) for families obtained by the morphing technique, but these are still less accurate (30%) when applied to different original phantoms. This study stresses the importance of the internal morphological factors such as muscle and fat proportions in characterization of the WBSAR. The regression models are then improved using internal morphological factors with an estimation error of approximately 10% on the WBSAR. Finally, this study is suitable for establishing the statistical distribution of the WBSAR for a given population characterized by its morphology.

  2. A high-resolution imaging technique using a whole-body, research photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-03-01

    A high-resolution (HR) data collection mode has been introduced to a whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm x 0.45 mm detector pixels were used, which corresponded to a pixel size of 0.25 mm x 0.25 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% modulation. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode.

  3. A High-Resolution Imaging Technique using a Whole-body, Research Photon Counting Detector CT System

    PubMed Central

    Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D. L.; Jorgensen, S.; Ritman, E.; McCollough, C.

    2016-01-01

    A high-resolution (HR) data collection mode has been introduced to the whole-body, research photon-counting-detector CT system installed in our laboratory. In this mode, 64 rows of 0.45 mm × 0.45 mm detectors pixels were used, which corresponded to a pixel size of 0.225 mm × 0.225 mm at the iso-center. Spatial resolution of this HR mode was quantified by measuring the MTF from a scan of a 50 micron wire phantom. An anthropomorphic lung phantom, cadaveric swine lung, temporal bone and heart specimens were scanned using the HR mode, and image quality was subjectively assessed by two experienced radiologists. Comparison of the HR mode images against their energy integrating system (EID) equivalents using comb filters was also performed. High spatial resolution of the HR mode was evidenced by the MTF measurement, with 15 lp/cm and 20 lp/cm at 10% and 2% MTF. Images from anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures, such as lung vessels, lung nodules, temporal bone structures, and coronary arteries. Temporal bone images showed critical anatomy (i.e. stapes superstructure) that was clearly visible in the PCD system but hardly visible with the EID system. These results demonstrated the potential application of this imaging mode in lung, temporal bone, and vascular imaging. Other clinical applications that require high spatial resolution, such as musculoskeletal imaging, may also benefit from this high resolution mode. PMID:27330238

  4. Dosimetric intercomparison for multicenter clinical trials using a patient-based anatomic pelvic phantom

    SciTech Connect

    Ebert, M. A.; Harrison, K. M.; Howlett, S. J.; Cornes, D.; Bulsara, M.; Hamilton, C. S.; Kron, T.; Joseph, D. J.; Denham, J. W.

    2011-09-15

    Purpose: To assess dose delivery accuracy to clinically significant points in a realistic patient geometry for two separate pelvic radiotherapy scenarios. Methods: An inhomogeneous pelvic phantom was transported to 36 radiotherapy centers in Australia and New Zealand. The phantom was treated according to Phase III rectal and prostate trial protocols. Point dose measurements were made with thermoluminescent dosimeters (TLDs) and an ionisation chamber. Comprehensive site-demographic, treatment planning, and physical data were collected for correlation with measurement outcomes. Results: Dose delivery to the prescription point for the rectal treatment was consistent with planned dose (mean difference between planned and measured dose - 0.1 {+-} 0.3% std err). Dose delivery in the region of the sacral hollow was consistently higher than planned (+1.2 {+-} 0.2%). For the prostate treatment, dose delivery to the prostate volume was consistent with planned doses (-0.49 {+-} 0.2%) and planned dose uniformity, though with a tendency to underdose the PTV at the prostate-rectal border. Measured out-of-field doses were significantly higher than planned. Conclusions: A phantom based on realistic anatomy and heterogeneity can be used to comprehensively assess the influence of multiple aspects of the radiotherapy treatment process on dose delivery. The ability to verify dose delivery for two trials with a single phantom was advantageous.

  5. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non

  6. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    NASA Astrophysics Data System (ADS)

    Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.

    2015-10-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.

  7. SU-E-T-117: Dose to Organs Outside of CT Scan Range- Monte Carlo and Hybrid Phantom Approach

    SciTech Connect

    Pelletier, C; Jung, J; Lee, C; Kim, J; Lee, C

    2014-06-01

    Purpose: Epidemiological study of second cancer risk for cancer survivors often requires the dose to normal tissues located outside the anatomy covered by radiological imaging, which is usually limited to tumor and organs at risk. We have investigated the feasibility of using whole body computational human phantoms for estimating out-of-field organ doses for patients treated by Intensity Modulated Radiation Therapy (IMRT). Methods: Identical 7-field IMRT prostate plans were performed using X-ray Voxel Monte Carlo (XVMC), a radiotherapy-specific Monte Carlo transport code, on the computed tomography (CT) images of the torso of an adult male patient (175 cm height, 66 kg weight) and an adult male hybrid computational phantom with the equivalent body size. Dose to the liver, right lung, and left lung were calculated and compared. Results: Considerable differences are seen between the doses calculated by XVMC for the patient CT and the hybrid phantom. One major contributing factor is the treatment method, deep inspiration breath hold (DIBH), used for this patient. This leads to significant differences in the organ position relative to the treatment isocenter. The transverse distances from the treatment isocenter to the inferior border of the liver, left lung, and right lung are 19.5cm, 29.5cm, and 30.0cm, respectively for the patient CT, compared with 24.3cm, 36.6cm, and 39.1cm, respectively, for the hybrid phantom. When corrected for the distance, the mean doses calculated using the hybrid phantom are within 28% of those calculated using the patient CT. Conclusion: This study showed that mean dose to the organs located in the missing CT coverage can be reconstructed by using whole body computational human phantoms within reasonable dosimetric uncertainty, however appropriate corrections may be necessary if the patient is treated with a technique that will significantly deform the size or location of the organs relative to the hybrid phantom.

  8. Radiation exposure to patients receiving routine scoliosis radiography measured at depth in an anthropomorphic phantom

    SciTech Connect

    Dutkowsky, J.P.; Shearer, D.; Schepps, B.; Orton, C.; Scola, F. )

    1990-07-01

    Concern about the amount of radiation received during scoliosis evaluation and treatment led us to measure radiation exposure in an anthropomorphic phantom to determine the increased risk of breast cancer in young women with scoliosis. Assuming that 22 radiographic examinations were performed over the course of scoliosis treatment, the increased relative risk of breast cancer was determined to be 0.22% in these patients.

  9. A formula for human average whole-body SARwb under diffuse fields exposure in the GHz region

    NASA Astrophysics Data System (ADS)

    Bamba, A.; Joseph, W.; Vermeeren, G.; Thielens, A.; Tanghe, E.; Martens, L.

    2014-12-01

    A simple formula to determine the human average whole-body SAR (SARwb) under realistic propagation conditions is proposed in the GHz region, i.e. from 1.45 GHz to 5.8 GHz. The methodology is based on simulations of ellipsoidal human body models. Only the exposure (incident power densities) and the human mass are needed to apply the formula. Diffuse scattered illumination is addressed for the first time and the possible presence of a Line-of-Sight (LOS) component is addressed as well. As validation, the formula is applied to calculate the average whole-body SARwb in 3D heterogeneous phantoms, i.e. the virtual family (34 year-old male, 26 year-old female, 11 year-old girl, and 6 year-old boy) and the results are compared with numerical ones—using the Finite-Difference Time-Domain (FDTD) method—at 3 GHz. For the LOS exposure, the average relative error varies from 28% to 12% (resp. 14-12%) for the vertical polarization (resp. horizontal polarization), depending on the heteregeneous phantom. Regarding the diffuse illumination, relative errors of -39.40%, -11.70%, 10.70%, and 10.60% are obtained for the 6 year-old boy, 11 year-old girl, 26 year-old female, and 34 year-old male, respectively. The proposed formula estimates well (especially for adults) the SARwb induced by diffuse illumination in realistic conditions. In general, the correctness of the formula improves when the human mass increases. Keeping the uncertainties of the FDTD simulations in mind, the proposed formula might be important for the dosimetry community to assess rapidly and accurately the human absorption of electromagnetic radiation caused by diffuse fields in the GHz region. Finally, we show the applicability of the proposed formula to personal dosimetry for epidemiological research.

  10. Estimation of signal and noise for a whole-body photon counting research CT system

    PubMed Central

    Li, Zhoubo; Leng, Shuai; Yu, Zhicong; Kappler, Stephen; McCollough, Cynthia H.

    2016-01-01

    Photon-counting CT (PCCT) may yield potential value for many clinical applications due to its relative immunity to electronic noise, increased geometric efficiency relative to current scintillating detectors, and the ability to resolve energy information about the detected photons. However, there are a large number of parameters that require optimization, particularly the energy thresholds configurations. Fast and accurate estimation of signal and noise in PCCT can benefit the optimization of acquisition parameters for specific diagnostic tasks. Based on the acquisition parameters and detector response of our research PCCT system, we derived mathematical models for both signal and noise. The signal model took the tube spectrum, beam filtration, object attenuation, water beam hardening, and detector response into account. The noise model considered the relationship between noise and radiation dose, as well as the propagation of noise as threshold data are subtracted to yield energy bin data. To determine the absolute noise value, a noise look-up table (LUT) was acquired using a limited number of calibration scans. The noise estimation algorithm then used the noise LUT to estimate noise for scans with a variety of combination of energy thresholds, dose levels, and object attenuation. Validation of the estimation algorithms was performed on our whole-body research PCCT system using semi-anthropomorphic water phantoms and solutions of calcium and iodine. The algorithms achieved accurate estimation of signal and noise for a variety of scanning parameter combinations. The proposed method can be used to optimize energy thresholds configuration for many clinical applications of PCCT. PMID:27346908

  11. Five-Day Whole-Body Cryostimulation, Blood Inflammatory Markers, and Performance in High-Ranking Professional Tennis Players

    PubMed Central

    Ziemann, Ewa; Olek, Robert Antoni; Kujach, Sylwester; Grzywacz, Tomasz; Antosiewicz, Jędrzej; Garsztka, Tomasz; Laskowski, Radosław

    2012-01-01

    Context Tournament season can provoke overreaching syndrome in professional tennis players, which may lead to deteriorated performance. Thus, appropriate recovery methods are crucial for athletes in order to sustain high-level performance and avoid injuries. We hypothesized that whole-body cryostimulation could be applied to support the recovery process. Objective To assess the effects of 5 days of whole-body cryostimulation combined with moderate-intensity training on immunologic, hormonal, and hematologic responses; resting metabolic rate; and tennis performance in a posttournament season. Design Controlled laboratory study. Setting National Olympic Sport Centre. Patients or Other Participants Twelve high-ranking professional tennis players. Intervention(s) Participants followed a moderate-intensity training program. A subgroup was treated with the 5-day whole-body cryostimulation (−120°C) applied twice a day. The control subgroup participated in the training only. Main Outcome Measure(s) Pretreatment and posttreatment blood samples were collected and analyzed for tumor necrosis factor α, interleukin 6, testosterone, cortisol, and creatine kinase. Resting metabolic rate and performance of a tennis drill were also assessed. Results Proinflammatory cytokine (tumor necrosis factor α) decreased and pleiotropic cytokine (interleukin 6) and cortisol increased in the group exposed to cryostimulation. In the same group, greater stroke effectiveness during the tennis drill and faster recovery were observed. Neither the training program nor cryostimulation affected resting metabolic rate. Conclusions Professional tennis players experienced an intensified inflammatory response after the completed tournament season, which may lead to overreaching. Applying whole-body cryostimulation in conjunction with moderate-intensity training was more effective for the recovery process than the training itself. The 5-day exposure to cryostimulation twice a day ameliorated the

  12. New Experiences of Treatment in Multiple Tumors with HIFU Ablation and Whole Body Hyperthermia

    NASA Astrophysics Data System (ADS)

    Takeuchi, Akira; Gondo, Hideki; Iijima, Norio; Xia, Yuantian; Takeuchi, Takashi

    2007-05-01

    We have performed some 5000 whole body hyperthermia (WBH) treatments using far-infrared equipment (RHD 7500: Enthermics medical systems, USA) in 1000 cancer patients since 1991 at Luke Hospital & Clinic (Nakano, Japan). Hyperthermia is a natural treatment whereby patients are heated within the fever temperature range of 41-42 C. However, this therapy alone is poorly suited to advanced cancer patients, where regional tumor control is needed. The potential of HIFU therapy for theses cases deserves further investigation. We have treated 20 times in 12 advanced cancer patients, since importing a new HIFU device (Sonic CZ901: Mianyang some electronic Ltd: China) last December and are able to report some interesting results of combination treatment with HIFU and WBH. Our first experience was a 20-year old female pharyngeal cancer patient with lung and multiple liver metastases. Her lung tumor reduced following WBH (given weekly, 4 times in total) and her liver tumor clearly reduced following HIFU treatment. Our second experience of combinative treatment was in a 65-year old male suffering from a neck tumor with bone metastasis. He received WBH after HIFU treatment into 7th lib bone metastasis. After 10 days, his neck tumor grew with evidence of internal necrosis, and finally ruptured. CT images showed necrotic changes in the focus of the neck tumor and also lib bone metastasis. We believe that this new thermal combinative therapy shows great promise.

  13. The influence of patient size on dose conversion coefficients: a hybrid phantom study for adult cardiac catheterization

    NASA Astrophysics Data System (ADS)

    Johnson, Perry; Lee, Choonsik; Johnson, Kevin; Siragusa, Daniel; Bolch, Wesley E.

    2009-06-01

    In this study, the influence of patient size on organ and effective dose conversion coefficients (DCCs) was investigated for a representative interventional fluoroscopic procedure—cardiac catheterization. The study was performed using hybrid phantoms representing an underweight, average and overweight American adult male. Reference body sizes were determined using the NHANES III database and parameterized based on standing height and total body mass. Organ and effective dose conversion coefficients were calculated for anterior-posterior, posterior-anterior, left anterior oblique and right anterior oblique projections using the Monte Carlo code MCNPX 2.5.0 with the metric dose area product being used as the normalization factor. Results show body size to have a clear influence on DCCs which increased noticeably when body size decreased. It was also shown that if patient size is neglected when choosing a DCC, the organ and effective dose will be underestimated to an underweight patient and will be overestimated to an underweight patient, with errors as large as 113% for certain projections. Results were further compared with those published for a KTMAN-2 Korean patient-specific tomographic phantom. The published DCCs aligned best with the hybrid phantom which most closely matched in overall body size. These results highlighted the need for and the advantages of phantom-patient matching, and it is recommended that hybrid phantoms be used to create a more diverse library of patient-dependent anthropomorphic phantoms for medical dose reconstruction.

  14. X-ray beam filtration, dosimetry phantom size and CT patient dose conversion factors.

    PubMed

    Huda, Walter; Sterzik, Alexander; Tipnis, Sameer

    2010-01-21

    We examine how the choice of CT x-ray beam filtration and phantom size influences patient dose (D) to computed tomography dose index (CTDI) conversion factors (i.e. D/CTDI). The ratio of head to body phantom CTDI(w) for a defined scan technique is alpha, and the ratio of organ dose when the body filter is changed to the head filter is beta. CTDI and organ doses were obtained using the ImPACT CT patient dosimetry calculator, and values of alpha and beta were determined for 39 CT scanners. The average value of alpha for the 39 CT scanners covering a 20 year period was 1.99 +/- 0.23, but 30% of scanners had alpha values that differed by more than 10% from the average. For GE, the value of alpha has been approximately constant at approximately 2.0. Both Philips and Siemens show a definite upward trend from values well below 2.0 in the early 1990s to well over 2.0 for their latest models. The data for Toshiba show no overall trend with time with half the data points below 2.0 and the remainder above this value. The average value of beta was 1.09 +/- 0.25. All vendors showed a downward trend in the beta parameter, and where the most recent scanners from each vendor had a beta value close to unity. Our results show that average D/CTDI conversion factors for a body phantom/filter combination are typically double those appropriate for a head phantom/filter combination. PMID:20023330

  15. Abatacept improves whole-body insulin sensitivity in rheumatoid arthritis: an observational study.

    PubMed

    Ursini, Francesco; Russo, Emilio; Letizia Hribal, Marta; Mauro, Daniele; Savarino, Francesca; Bruno, Caterina; Tripolino, Cesare; Rubino, Mariangela; Naty, Saverio; Grembiale, Rosa Daniela

    2015-05-01

    Rheumatoid arthritis (RA) is characterized by increased insulin resistance, a well-known risk factor for diabetes and cardiovascular diseases. The aim of the present study was to evaluate the effect of abatacept on insulin sensitivity in RA patients with moderate to severe disease despite treatment with methotrexate. Fifteen RA patients were recruited for the present study. Patients were evaluated at time 0 and after 6 months of the treatment with i.v. abatacept at the dosage recommended for weight range. Evaluation included oral glucose tolerance test (OGTT) at both time points. Insulin sensitivity was estimated with insulin sensitivity index (ISI) by Matsuda, a measure of whole-body insulin sensitivity. ISI significantly increased after the treatment with abatacept from 3.7 ± 2.6 to 5.0 ± 3.2 (P = 0.003) with a mean difference of 1.23. Analysis of glucose and insulin values during OGTT revealed a reduction of both glucose (303.9 ± 73.4 mg/dL min versus 269.2 ± 69.5 mg/dL min, P = 0.009) and insulin (208.4 ± 119.7 mg/dL min versus 158.0 ± 95.3 mg/dL min, P = 0.01) area under the curves (AUCs). Accordingly also glycated hemoglobin significantly improved (5.5 ± 0.4% versus 5.3 ± 0.3%, P = 0.04). No significant differences were found for measures of β-cell function insulinogenic index (1.11 ± 1.19 versus 1.32 ± 0.82, P = 0.77) and oral disposition index (2.0 ± 5.4 versus 6.0 ± 6.0, P = 0.25). Treatment with abatacept seems to be able to improve whole-body insulin sensitivity in RA patients without affecting β-cell function. PMID:26020396

  16. Glucose and insulin administration while maintaining normoglycemia inhibits whole body protein breakdown and synthesis after cardiac surgery.

    PubMed

    Hatzakorzian, Roupen; Shum-Tim, Dominique; Wykes, Linda; Hülshoff, Ansgar; Bui, Helen; Nitschmann, Evan; Lattermann, Ralph; Schricker, Thomas

    2014-12-01

    We investigated the effect of insulin administered as part of a hyperinsulinemic-normoglycemic clamp on protein metabolism after coronary artery bypass grafting (CABG) surgery. Eighteen patients were studied, with nine patients in the control group receiving standard metabolic care and nine patients receiving insulin (5 mU·kg(-1)·min(-1)). Whole body glucose production, protein breakdown, synthesis, and oxidation were determined using stable isotope tracer kinetics (l-[1-(13)C]leucine, [6,6-(2)H2]glucose) before and 6 h after the procedure. Plasma amino acids, cortisol, and lactate were also measured. Endogenous glucose production (preoperatively 10.0 ± 1.6, postoperatively 3.7 ± 2.5 μmol·kg(-1)·min(-1); P = 0.0001), protein breakdown (preoperatively 105.3 ± 9.8, postoperatively 85.2 ± 9.2 mmol·kg(-1)·h(-1); P = 0.0005) and synthesis (preoperatively 88.7 ± 8.7, postoperatively 72.4 ± 8.4 mmol·kg(-1)·h(-1); P = 0.0005) decreased in the presence of hyperinsulinemia, whereas both parameters remained unchanged in the control group. A positive correlation between endogenous glucose production and protein breakdown was observed in the insulin group (r(2) = 0.385). Whole body protein oxidation and balance decreased after surgery in patients receiving insulin without reaching statistical significance. In the insulin group the plasma concentrations of 13 of 20 essential and nonessential amino acids decreased to a significantly greater extent than in the control group. In summary, supraphysiological hyperinsulinemia, while maintaining normoglycemia, decreased whole body protein breakdown and synthesis in patients undergoing CABG surgery. However, net protein balance remained negative. PMID:25257875

  17. Whole-body vibration alters blood flow velocity and neuromuscular activity in Friedreich's ataxia.

    PubMed

    Herrero, Azael J; Martín, Juan; Martín, Teresa; García-López, David; Garatachea, Nuria; Jiménez, Beatriz; Marín, Pedro J

    2011-03-01

    The purpose of this study was to investigate the effects of whole-body vibration (WBV) on blood flow velocity and muscular activity after different vibration protocols in Friedreich's ataxia (FA) patients. After two familiarization sessions ten patients received six 3 min WBV treatments depending on a combination of frequency (10, 20 or 30 Hz) and protocol (constant or fragmented). Femoral artery blood flow velocity, vastus lateralis (VL) and vastus medialis (VM) electromyography (EMG), and rate of perceived exertion were registered. Peak blood velocity was increased with respect to basal values after 1, 2 and 3 min of WBV (14·8%, 18·8% and 19·7%, respectively, P<0·001). Likewise, mean blood velocity was increased with respect to basal values after 1, 2 and 3 min of WBV (17·3%, 19·4% and 16·6%, respectively, P<0·001). EMG amplitude of VL and VM was increased (39% and 23%, respectively, P<0·05) and EMG frequencies decreased during the application of WBV. The results of this study suggest that higher frequencies (30 Hz) produce a greater increase in blood flow velocity and rate of perceived exertion. WBV is an effective method to increase blood flow and to activate muscle mass in patients with Friedreich's ataxia, and could therefore be considered to be incorporated in rehabilitation programs of this collective. PMID:21078065

  18. Fast Dixon Whole-Body MRI for Detecting Distant Cancer Metastasis: A Preliminary Clinical Study

    PubMed Central

    Costelloe, Colleen M.; Kundra, Vikas; Ma, Jingfei; Chasen, Beth A.; Rohren, Eric M.; Bassett, Roland L.; Madewell, John E.

    2011-01-01

    Purpose To evaluate the feasibility of fast Dixon whole-body (WB) MRI for detecting bone and liver metastasis in clinical patients and to compare its performance with skeletal scintigraphy (SS) for detecting bone metastases using reference imaging with > 1 year followup as gold standard. Materials and Methods Twenty-nine patients with bone metastases prospectively underwent WB MRI and SS. WB MRI included coronal T2, axial T1 with and without intravenous gadolinium (including triphasic liver sequences), and axial diffusion-weighted imaging, plus spinal sagittal post-contrast T1-weighted images. The skeleton was divided into 16 segments. Reviewers blinded to other images identified up to 5 lesions per segment and rated them using a five-point confidence scale for metastatic disease. Sensitivities and specificities were compared using the McNemar test. Results The sensitivity of WB MRI and SS in detecting bone metastases was 70.8% and 59.6% (P = 0.003), respectively; specificity was 89.1% and 98.7% (P < 0.0001). WB MRI detected all livers with metastases (n= 8). One focal nodular hyperplasia was classified as a metastasis on WB MRI. Conclusion Fast Dixon WB MRI is feasible in clinical patients, highly specific and more sensitive than SS in detecting bone metastases, and can detect metastases of the liver. PMID:21990095

  19. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  20. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  1. Possible Mechanisms of Low Back Pain due to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Pope, M. H.; Wilder, D. G.; Magnusson, M.

    1998-08-01

    The investigators describe their multifaceted approach to the study of the relationship between whole-body vibration and low back pain.In vitroexperiments, using percutaneous pin-mounted accelerometers have shown that the natural frequency is at 4·5 Hz. The frequency response was affected by posture, seating, and seat-back inclination. The response appears to be largely determined by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration should be reduced for those recovering from these problems. Vibration attenuating seats, and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  2. Whole-body magnetic resonance imaging in children: technique and clinical applications.

    PubMed

    Eutsler, Eric P; Khanna, Geetika

    2016-05-01

    Whole-body MR imaging is being increasingly used in children to evaluate the extent of various oncologic and non-oncologic entities. The lack of exposure to ionizing radiation, excellent soft-tissue contrast (even without the use of contrast agents), and functional imaging capabilities make it especially suitable for screening and surveillance in the pediatric population. Technical developments such as moving table platforms, multi-channel/multi-element surface coils, and parallel imaging allow imaging of the entire body with multiple sequences in a reasonable 30- to 40-min time frame, which has facilitated its acceptance in routine clinical practice. The initial investigations in whole-body MR imaging were primarily focused on oncologic applications such as tumor screening and staging. The exquisite sensitivity of fluid-sensitive MR sequences to many different types of pathology has led to new applications of whole-body MR imaging in evaluation of multifocal rheumatologic conditions. Availability of blood pool contrast agents has allowed whole-body MR angiographic imaging of vascular malformations, vasculitides and vasculopathies. Whole-body MRI is being applied for delineating the extent and distribution of systemic and multifocal diseases, establishing diagnoses, assessing treatment response, and surveillance imaging. This article reviews the technique and clinical applications of whole-body MR imaging in children. PMID:27229503

  3. Whole-body irradiation transiently diminishes the adrenocorticotropin response to recombinant human interleukin-1{alpha}

    SciTech Connect

    Perlstein, R.S.; Mehta, N.R.; Neta, R.; Whitnall, M.H.; Mougey, E.H.

    1995-03-01

    Recombinant human interleukin-1{alpha} (rhIL-1{alpha}) has significant potential as a radioprotector and/or treatment for radiation-induced hematopoietic injury. Both IL-1 and whole-body ionizing irradiation acutely stimulate the hypothalamic-pituitary-adrenal axis. We therefore assessed the interaction of whole-body irradiation and rhIL-1{alpha} in altering the functioning of the axis in mice. Specifically, we determined the adrenocorticotropin (ACTH) and corticosterone responses to rhIL-1{alpha} administered just before and hours to days after whole-body or sham irradiation. Our results indicate that whole-body irradiation does not potentiate the rhIL-1{alpha}-induced increase in ACTH levels at the doses used. In fact, the rhIL-1{alpha}-induced increase in plasma ACTH is transiently impaired when the cytokine is administered 5 h after, but not 1 h before, exposure to whole-body irradiation. The ACTH response may be inhibited by elevated corticosterone levels after whole-body irradiation, or by other radiation-induced effects on the pituitary gland and hypothalamus. 36 refs., 3 figs.

  4. WE-D-18A-05: Construction of Realistic Liver Phantoms From Patient Images and a Commercial 3D Printer

    SciTech Connect

    Leng, S; Vrieze, T; Kuhlmann, J; Yu, L; Matsumoto, J; Morris, J; McCollough, C

    2014-06-15

    Purpose: To assess image quality and radiation dose reduction in abdominal CT imaging, physical phantoms having realistic background textures and lesions are highly desirable. The purpose of this work was to construct a liver phantom with realistic background and lesions using patient CT images and a 3D printer. Methods: Patient CT images containing liver lesions were segmented into liver tissue, contrast-enhanced vessels, and liver lesions using commercial software (Mimics, Materialise, Belgium). Stereolithography (STL) files of each segmented object were created and imported to a 3D printer (Object350 Connex, Stratasys, MN). After test scans were performed to map the eight available printing materials into CT numbers, printing materials were assigned to each object and a physical liver phantom printed. The printed phantom was scanned on a clinical CT scanner and resulting images were compared with the original patient CT images. Results: The eight available materials used to print the liver phantom had CT number ranging from 62 to 117 HU. In scans of the liver phantom, the liver lesions and veins represented in the STL files were all visible. Although the absolute value of the CT number in the background liver material (approx. 85 HU) was higher than in patients (approx. 40 HU), the difference in CT numbers between lesions and background were representative of the low contrast values needed for optimization tasks. Future work will investigate materials with contrast sufficient to emulate contrast-enhanced arteries. Conclusion: Realistic liver phantoms can be constructed from patient CT images using a commercial 3D printer. This technique may provide phantoms able to determine the effect of radiation dose reduction and noise reduction techniques on the ability to detect subtle liver lesions in the context of realistic background textures.

  5. Computing patient doses of X-ray examinations using a patient size- and sex-adjustable phantom.

    PubMed

    Rannikko, S; Ermakov, I; Lampinen, J S; Toivonen, M; Karila, K T; Chervjakov, A

    1997-07-01

    Both the use of traditional fluoroscopy and the increasing use of modern digital techniques in radiology and interventional radiology demand the development of versatile computer programs for patient dose determinations. Long computing times restrict the use of Monte Carlo (MC) methods in dose monitoring applications where the radiological views change frequently. In the Organ Doses Calculation Software application (ODS-60), the phantom model is similar in principle to the Alderson-Rando (A-R) phantom, but its sex, size and shape is modified according to a particular patient. Organ and effective doses are computed online (in a few seconds) using a method similar to the traditional dose planning systems used in radiotherapy. In this paper, the new ODS-60 software is presented in detail and its capabilities are demonstrated. Software performance was determined by comparing the results with those from independent methods. In the case of a reference man-sized male, the effective dose was about 7% larger than the effective dose given in another publication. In the case of a reference woman-sized female, the disagreement with the other method was greater (33%). Anatomical differences between the phantom models (ODS-60 and MC) were found to be the main reasons for these findings. This paper shows the advantage of using a patient size- and sex-adaptable phantom for patient dose determinations; the conversion coefficient from entrance surface dose-to-effective dose ratio between male (170 cm, 85 kg) and a female (160 cm, 43 kg) varies in the range 1.5-2. PMID:9245883

  6. Comparison of setup error using different reference images: a phantom and lung cancer patients study

    SciTech Connect

    Jiang Bo; Dai Jianrong; Zhang Ye; Zhang Ke; Men Kuo; Zhou Zongmei; Liang Jun; Wang Lvhua

    2012-04-01

    The purpose of this study was to compare setup errors obtained with kilovoltage cone-beam computed tomography (CBCT) and 2 different kinds of reference images, free-breathing 3D localization CT images (FB-CT) and the average images of 4-D localization CT images (AVG-CT) for phantom and lung cancer patients. This study also explored the correlation between the difference of translational setup errors and the gross tumor volume (GTV) motion. A respiratory phantom and 14 patients were enrolled in this study. For phantom and each patient, 3D helical CT and 4D CT images were acquired, and AVG-CT images were generated from the 4D CT. The setup errors were determined based on the image registration between the CBCT and the 2 different reference images, respectively. The data for both translational and rotational setup errors were analyzed and compared. The GTV centroid movement as well as its correlation with the translational setup error differences was also evaluated. In the phantom study, the AVG-CT method was more accurate than the FB-CT method. For patients, the translational setup errors based on FB-CT were significantly larger than those from AVG-CT in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) directions (p < 0.05). Translational setup errors differed by >1 mm in 32.6% and >2 mm in 12.9% of CBCT scans. The rotational setup errors from FB-CT were significantly different from those from AVG-CT in the LR and AP directions (p < 0.05). The correlation coefficient of the translational setup error differences and the GTV centroid movement in the LR, SI, and AP directions was 0.515 (p = 0.060), 0.902 (p < 0.001), and 0.510 (p = 0.062), respectively. For lung cancer patients, respiration may affect the on-line target position location. AVG-CT provides different reference information than FB-CT. The difference in SI direction caused by the 2 methods increases with the GTV movement. Therefore, AVG-CT should be the prefered choice of reference

  7. Feasibility and analysis of thermal parameters for the whole-body-hyperthermia system IRATHERM-2000.

    PubMed

    Wust, P; Riess, H; Hildebrandt, B; Löffel, J; Deja, M; Ahlers, O; Kerner, T; von Ardenne, A; Felix, R

    2000-01-01

    The infrared system IRATHERM-2000, with water-filtered infrared A wavelength underwent 20 treatments of whole body hyperthermia in conjunction with chemotherapy. In all the sessions, the aimed systemic temperature (41.8 degrees C, maximum 42.0 degrees C) could be achieved and maintained for 60 min. Due to increasing clinical experience, the unnegligible local toxicity, exhibited as heat-induced superficial lesions, and neurotoxicity, could be reduced during the course of the study. Data from three other series accomplished at the von Ardenne Clinic, totalling 120 heat sessions, were available and included for a comparative analysis. Analysis of the toxicity shows that a correlation exists between thermal side-effects and heat-up periods (until steady-state), maximum temperatures, and superficial thermal doses. The time needed to reach the plateau seems to correlate with fluid loss, which, thus, indirectly influences toxicity, and most importantly the initial power level. The typical heat-up time in such a standard set-up amounts to 100-150 min, for a temperature rise from 37.5 to 42.0 degrees C. Evaluation of the energy balance reveals a highly patient-specific range for the reactive evaporation in the IRATHERM system, resulting in a power (heat) loss of up to 1400 W via sweat production of approximately 2 l/h. In order to counterbalance this effect, an accordingly high infrared power, ranging from 1200-1500 W, needs to be delivered, resulting in a significant thermal skin exposition. Concepts used to reduce the heat loss by reactive evaporation include prevention of convection by appropriate sealing of the heating chamber and increasing the humidity by a nebulizer. For the more trained user, the heat-up time can be considerably shortened, particularly, in the introductory phase of the heating process, by employing higher, but still tolerable, patient-specific power levels. However, such a strategy requires, due to higher risks, close monitoring of skin

  8. The effects of whole body vibration on mobility and balance in Parkinson disease: a systematic review.

    PubMed

    Sharififar, Sharareh; Coronado, Rogelio A; Romero, Sergio; Azari, Hassan; Thigpen, Mary

    2014-07-01

    Whole body vibration (WBV) is a contemporary treatment modality that holds promise as an exercise training method in health-compromised individuals. A growing number of studies on individuals with Parkinson Disease are examining whether WBV improves balance and functional mobility. However, interpreting WBV studies is challenging since there is variability in the manner in which WBV intervention is conducted. The primary goal of this systematic review was to investigate the effect of WBV on improving mobility and balance as measured by a battery of clinical tests, in patients with Parkinson disease. Studies based on WBV parameters were characterized and a systematic search of peer-reviewed literature in five major databases was conducted. Randomized-controlled trials investigating the effects of WBV in patients with a Parkinson diagnosis and no cognitive impairment were included. A total of six publications met the inclusion criteria. Overall, studies demonstrated mixed results in favor of WBV for improving balance or mobility. The majority of studies seem to suggest a favorable benefit following WBV for mobility and balance, but not when compared to other active intervention or placebo. There was variability in the manner in which WBV intervention was applied. Variations among the six studies included: duration of intervention and rest, follow-up period, type of control groups, frequency of vibration, number of treatment sessions and sex distribution of subjects. Future research is needed to investigate the effects of different types of equipment and treatment dosage in individuals with Parkinson disease. PMID:25031483

  9. The Effects of Whole Body Vibration on Mobility and Balance in Parkinson Disease: a Systematic Review

    PubMed Central

    Sharififar, Sharareh; Coronado, Rogelio A.; Romero, Sergio; Azari, Hassan; Thigpen, Mary

    2014-01-01

    Whole body vibration (WBV) is a contemporary treatment modality that holds promise as an exercise training method in health–compromised individuals. A growing number of studies on individuals with Parkinson Disease are examining whether WBV improves balance and functional mobility. However, interpreting WBV studies is challenging since there is variability in the manner in which WBV intervention is conducted. The primary goal of this systematic review was to investigate the effect of WBV on improving mobility and balance as measured by a battery of clinical tests, in patients with Parkinson disease. Studies based on WBV parameters were characterized and a systematic search of peer-reviewed literature in five major databases was conducted. Randomized-controlled trials investigating the effects of WBV in patients with a Parkinson diagnosis and no cognitive impairment were included. A total of six publications met the inclusion criteria. Overall, studies demonstrated mixed results in favor of WBV for improving balance or mobility. The majority of studies seem to suggest a favorable benefit following WBV for mobility and balance, but not when compared to other active intervention or placebo. There was variability in the manner in which WBV intervention was applied. Variations among the six studies included: duration of intervention and rest, follow-up period, type of control groups, frequency of vibration, number of treatment sessions and sex distribution of subjects. Future research is needed to investigate the effects of different types of equipment and treatment dosage in individuals with Parkinson disease. PMID:25031483

  10. Automated lung tumor segmentation for whole body PET volume based on novel downhill region growing

    NASA Astrophysics Data System (ADS)

    Ballangan, Cherry; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Feng, Dagan

    2010-03-01

    We propose an automated lung tumor segmentation method for whole body PET images based on a novel downhill region growing (DRG) technique, which regards homogeneous tumor hotspots as 3D monotonically decreasing functions. The method has three major steps: thoracic slice extraction with K-means clustering of the slice features; hotspot segmentation with DRG; and decision tree analysis based hotspot classification. To overcome the common problem of leakage into adjacent hotspots in automated lung tumor segmentation, DRG employs the tumors' SUV monotonicity features. DRG also uses gradient magnitude of tumors' SUV to improve tumor boundary definition. We used 14 PET volumes from patients with primary NSCLC for validation. The thoracic region extraction step achieved good and consistent results for all patients despite marked differences in size and shape of the lungs and the presence of large tumors. The DRG technique was able to avoid the problem of leakage into adjacent hotspots and produced a volumetric overlap fraction of 0.61 +/- 0.13 which outperformed four other methods where the overlap fraction varied from 0.40 +/- 0.24 to 0.59 +/- 0.14. Of the 18 tumors in 14 NSCLC studies, 15 lesions were classified correctly, 2 were false negative and 15 were false positive.

  11. Risk communication with Fukushima residents affected by the Fukushima Daiichi accident at whole-body counting

    SciTech Connect

    Gunji, I.; Furuno, A.; Yonezawa, R.; Sugiyama, K.

    2013-07-01

    After the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident, the Tokai Research and Development Center of the Japan Atomic Energy Agency (JAEA) have had direct dialogue as risk communication with Fukushima residents who underwent whole-body counting examination (WBC). The purpose of the risk communication was to exchange information and opinions about radiation in order to mitigate Fukushima residents' anxiety and stress. Two kinds of opinion surveys were performed: one survey evaluated residents' views of the nuclear accident itself and the second survey evaluated the management of WBC examination as well as the quality of JAEA's communication skills on risks. It appears that most Fukushima residents seem to have reduced their anxiety level after the direct dialogue. The results of the surveys show that Fukushima residents have the deepest anxiety and concern about their long-term health issues and that they harbor anger toward the government and TEPCO. On the other hand, many WBC patients and patients' relatives have expressed gratitude for help in reducing their feelings of anxiety.

  12. Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography

    PubMed Central

    Konecky, Soren D.; Choe, Regine; Corlu, Alper; Lee, Kijoon; Wiener, Rony; Srinivas, Shyam M.; Saffer, Janet R.; Freifelder, Richard; Karp, Joel S.; Hajjioui, Nassim; Azar, Fred; Yodh, Arjun G.

    2008-01-01

    We acquire and compare three-dimensional tomographic breast images of three females with suspicious masses using diffuse optical tomography (DOT) and positron emission tomography (PET). Co-registration of DOT and PET images was facilitated by a mutual information maximization algorithm. We also compared DOT and whole-body PET images of 14 patients with breast abnormalities. Positive correlations were found between total hemoglobin concentration and tissue scattering measured by DOT, and fluorodeoxyglucose (18F-FDG) uptake. In light of these observations, we suggest potential benefits of combining both PET and DOT for characterization of breast lesions. PMID:18383664

  13. College of Radiology, Academy of Medicine of Malaysia position on whole body screening CT scans in healthy asymptomatic individuals (2008)

    PubMed Central

    Ho, ELM; Abdullah, BJJ; Tang, AAL; Nordin, AJ; Nair, AR; Lim, GCC; Samad-Cheung, H; Ng, KH; Ponnusamy, S; Abbas, SF; Bux, SI; Arasaratnam, S; Abdul Aziz, YF; Venugopal, S; Musa, Z; Abdul Manaf, Z

    2008-01-01

    To date, the College of Radiology (CoR) does not see any clear benefit in performing whole body screening computed tomography (CT) examinations in healthy asymptomatic individuals. There are radiation risk issues in CT and principles of screening should be adhered to. There may be a role for targeted cardiac screening CT that derives calcium score, especially for asymptomatic medium-risk individuals and CT colonography when used as part of a strategic programme for colorectal cancer screening in those 50 years and older. However, population based screening CT examinations may become appropriate when evidence emerges regarding a clear benefit for the patient outweighing the associated radiation risks. PMID:21611021

  14. Monte Carlo optimization of total body irradiation in a phantom and patient geometry

    NASA Astrophysics Data System (ADS)

    Chakarova, R.; Müntzing, K.; Krantz, M.; Hedin, E.; Hertzman, S.

    2013-04-01

    The objective of this work is to apply a Monte Carlo (MC) accelerator model, validated by experimental data at isocentre distances, to a large-field total body irradiation (TBI) technique and to develop a strategy for individual patient treatment on the basis of MC dose distributions. Calculations are carried out using BEAMnrc/DOSXYZnrc code packages for a 15 MV Varian accelerator. Acceptable agreement is obtained between MC data and measurements in a large water phantom behind a spoiler at source-skin distances (SSD) = 460 cm as well as in a CIRS® thorax phantom. Dose distributions in patients are studied when simulating bilateral beam delivery at a distance of 480 cm to the patient central sagittal plane. A procedure for individual improvement of the dose uniformity is suggested including the design of compensators in a conventional treatment planning system (TPS) and a subsequent update of the dose distribution. It is demonstrated that the dose uniformity for the simple TBI technique can be considerably improved. The optimization strategy developed is straightforward and suitable for clinics where the TPS available is deficient to calculate 3D dose distributions at extended SSD.

  15. Whole-body in-vivo neutron activation analysis in assessing treatment of renal osteodystrophy with 1-alpha-hydroxycholecalciferol.

    PubMed

    Naik, R B; Gosling, P; Price, C P; Robinson, B H; Dabek, J T; Heath, D A; James, H M; Kanis, J A; Smith, R

    1976-07-10

    Four selected adults with different patterns of osteodystrophy receiving regular dialysis were treated with 1-alpha-hydroxycholecalciferol (1-alpha-OHD3) 0-5-2 mug/day for 10 to 12 months. In two patients, one with osteitis fibrosa and the other with osteomalacia, significant biochemical, radiological, and histological improvements occurred, and total body calcium measured by in-vivo neutron activation analysis increased. In two patients, in whom there were no increases of whole-body calcium, neither biochemical improvement nor healing of bone lesions occurred during the study; in one of these patients the effect of 1-alpha-OHD3 on bone resorption may have contributed to loss of body calcium and deterioration of bone disease. 1-alpha-OHD3 may therefore be a valuable adjunct in the treatment of only some patients with renal osteodystrophy. Whole-body in-vivo neutron activation seems to provide a sensitive and non-invasive index of early response to treatment. PMID:1276820

  16. Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses.

    PubMed

    Koukorava, C; Farah, J; Struelens, L; Clairand, I; Donadille, L; Vanhavere, F; Dimitriou, P

    2014-09-01

    Monte Carlo calculations were used to investigate the efficiency of radiation protection equipment in reducing eye and whole body doses during fluoroscopically guided interventional procedures. Eye lens doses were determined considering different models of eyewear with various shapes, sizes and lead thickness. The origin of scattered radiation reaching the eyes was also assessed to explain the variation in the protection efficiency of the different eyewear models with exposure conditions. The work also investigates the variation of eye and whole body doses with ceiling-suspended shields of various shapes and positioning. For all simulations, a broad spectrum of configurations typical for most interventional procedures was considered. Calculations showed that 'wrap around' glasses are the most efficient eyewear models reducing, on average, the dose by 74% and 21% for the left and right eyes respectively. The air gap between the glasses and the eyes was found to be the primary source of scattered radiation reaching the eyes. The ceiling-suspended screens were more efficient when positioned close to the patient's skin and to the x-ray field. With the use of such shields, the Hp(10) values recorded at the collar, chest and waist level and the Hp(3) values for both eyes were reduced on average by 47%, 37%, 20% and 56% respectively. Finally, simulations proved that beam quality and lead thickness have little influence on eye dose while beam projection, the position and head orientation of the operator as well as the distance between the image detector and the patient are key parameters affecting eye and whole body doses. PMID:24938591

  17. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-01-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50 °C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions. PMID:26070030

  18. Tomographic physical phantom of the newborn child with real-time dosimetry I. Methods and techniques for construction

    SciTech Connect

    Jones, A. K.; Simon, T. A.; Bolch, W. E.; Holman, M. M.; Hintenlang, D. E.

    2006-09-15

    A tomographic phantom representing a newborn female patient was constructed using tissue-equivalent materials previously developed at the University of Florida. This phantom was constructed using contoured images from an actual patient data set, a whole-body computed tomography of a newborn cadaver previously described by Nipper et al. [Phys. Med. Biol. 47, 3143-1364 (2002)]. Four types of material are incorporated in the phantom: soft tissue, bone tissue, lung tissue, and air. The phantom was constructed on a slice-by-slice basis with a z-axis resolution of 5 mm, channels for dosimeters (thermoluminescent dosimeter (TLD), metal-oxide-semiconductor field-effect transistor, or gated fiber-optic-coupled dosimeter (GFOC)) were machined into slices prior to assembly, and the slices were then fixed together to form the complete phantom. The phantom will be used in conjunction with an incorporated dosimetry system to calculate individual organ and effective doses delivered to newborn patients during various diagnostic procedures, including, but not limited to, projection radiography and computed tomography. Included in this paper are images detailing the construction process, and images of the completed phantom.

  19. Future directions in therapy of whole body radiation injury

    SciTech Connect

    Cronkite, E.P.

    1989-01-01

    Clinicians have long known that marked granulocytopenia predisposed patients to bacterial infections either from pathogens or commensal organisms with which an individual usually lives in harmony. Evidence that infection was of major importance derives from several observations: (a) clinical observations of bacterial infection in human beings exposed to atomic bomb radiation in Hiroshima and Nagasaki, in reactor accidents, and in large animals dying from radiation exposure, (b) correlative studies on mortality rate, time of death, and incidence of positive culture in animals, (c) challenge of irradiated animals with normally non-virulent organisms, (d) studies of germ free mice and rats, and (e) studies of the effectiveness of antibiotics in reducing mortality rate. General knowledge and sound experimental data on animals and man clearly demonstrated that the sequelae of pancytopenia (bacterial infection, thrombopenic hemorrhage, and anemia) are the lethal factors. A lot of research was required to demonstrate that there were no mysterious radiations toxins, that hyperheparinemia was not a cause of radiation hemorrhage and that radiation hemorrhage could be prevented by fresh platelet transfusions.

  20. Whole body acid-base and fluid-electrolyte balance: a mathematical model.

    PubMed

    Wolf, Matthew B

    2013-10-15

    A cellular compartment was added to our previous mathematical model of steady-state acid-base and fluid-electrolyte chemistry to gain further understanding and aid diagnosis of complex disorders involving cellular involvement in critically ill patients. An important hypothesis to be validated was that the thermodynamic, standard free-energy of cellular H(+) and Na(+) pumps remained constant under all conditions. In addition, a hydrostatic-osmotic pressure balance was assumed to describe fluid exchange between plasma and interstitial fluid, including incorporation of compliance curves of vascular and interstitial spaces. The description of the cellular compartment was validated by close comparison of measured and model-predicted cellular pH and electrolyte changes in vitro and in vivo. The new description of plasma-interstitial fluid exchange was validated using measured changes in fluid volumes after isoosmotic and hyperosmotic fluid infusions of NaCl and NaHCO3. The validated model was used to explain the role of cells in the mechanism of saline or dilutional acidosis and acid-base effects of acidic or basic fluid infusions and the acid-base disorder due to potassium depletion. A module was created that would allow users, who do not possess the software, to determine, for free, the results of fluid infusions and urinary losses of water and solutes to the whole body. PMID:23884137

  1. Whole-body vibration transmissibility in supine humans: effects of board litter and neck collar.

    PubMed

    Meusch, John; Rahmatalla, Salam

    2014-05-01

    Whole-body vibration has been identified as a stressor to supine patients during medical transportation. The transmissibility between the input platform acceleration and the output acceleration of the head, sternum, pelvis, head-sternum, and pelvis-sternum of eight supine subjects were investigated. Vibration files were utilized in the fore-aft, lateral, and vertical directions. The power spectral density across the bandwidth of 0.5-20 Hz was approximately flat for each file. A comparison between a baseline rigid-support and a support with a long spinal board strapped to a litter has shown that the latter has considerable effects on the transmitted motion in all directions with a double magnification in the vertical direction around 5 Hz. The results also showed that the neck-collar has increased the relative head-sternum flexion-extension because of the input fore-aft vibration, but reduced the head-sternum extension-compression due to the input vertical vibration. PMID:24075288

  2. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    SciTech Connect

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  3. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    PubMed Central

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Williams, Cameron H.; Feng, Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.; Frush, D.; Samei, E.

    2013-01-01

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  4. MCNP simulation of radiation doses distributions in a water phantoms simulating interventional radiology patients

    NASA Astrophysics Data System (ADS)

    He, Wenjun; Mah, Eugene; Huda, Walter; Selby, Bayne; Yao, Hai

    2011-03-01

    Purpose: To investigate the dose distributions in water cylinders simulating patients undergoing Interventional Radiological examinations. Method: The irradiation geometry consisted of an x-ray source, dose-area-product chamber, and image intensifier as currently used in Interventional Radiology. Water cylinders of diameters ranging between 17 and 30 cm were used to simulate patients weighing between 20 and 90 kg. X-ray spectra data with peak x-ray tube voltages ranging from 60 to 120 kV were generated using XCOMP3R. Radiation dose distributions inside the water cylinder (Dw) were obtained using MCNP5. The depth dose distribution along the x-ray beam central axis was normalized to free-in-air air kerma (AK) that is incident on the phantom. Scattered radiation within the water cylinders but outside the directly irradiated region was normalized to the dose at the edge of the radiation field. The total absorbed energy to the directly irradiated volume (Ep) and indirectly irradiated volume (Es) were also determined and investigated as a function of x-ray tube voltage and phantom size. Results: At 80 kV, the average Dw/AK near the x-ray entrance point was 1.3. The ratio of Dw near the entrance point to Dw near the exit point increased from ~ 26 for the 17 cm water cylinder to ~ 290 for the 30 cm water cylinder. At 80 kV, the relative dose for a 17 cm water cylinder fell to 0.1% at 49 cm away from the central ray of the x-ray beam. For a 30 cm water cylinder, the relative dose fell to 0.1% at 53 cm away from the central ray of the x-ray beam. At a fixed x-ray tube voltage of 80 kV, increasing the water cylinder diameter from 17 to 30 cm increased the Es/(Ep+Es) ratio by about 50%. At a fixed water cylinder diameter of 24 cm, increasing the tube voltage from 60 kV to 120 kV increased the Es/(Ep+Es) ratio by about 12%. The absorbed energy from scattered radiation was between 20-30% of the total energy absorbed by the water cylinder, and was affected more by patient size

  5. Comparison between a linear versus a macrocyclic contrast agent for whole body MR angiography in a clinical routine setting

    PubMed Central

    Seeger, Achim; Kramer, Ulrich; Fenchel, Michael; Grimm, Florian; Bretschneider, Christiane; Döring, Jörg; Klumpp, Bernhard; Tepe, Gunnar; Rittig, Kilian; Seidensticker, Peter R; Claussen, Claus D; Miller, Stephan

    2008-01-01

    Background Previous experiences of whole body MR angiography are predominantly available in linear 0.5 M gadolinium-containing contrast agents. The aim of this study was to compare image quality on a four-point scale (range 1–4) and diagnostic accuracy of a 1.0 M macrocyclic contrast agent (gadobutrol, n = 80 patients) with a 0.5 M linear contrast agent (gadopentetate dimeglumine, n = 85 patients) on a 1.5 T whole body MR system. Digital subtraction angiography served as standard of reference. Results All examinations yielded diagnostic image quality. There was no significant difference in image quality (3.76 ± 0.3 versus 3.78 ± 0.3, p = n.s.) and diagnostic accuracy observed. Sensitivity and specificity of the detection of hemodynamically relevant stenoses was 93%/95% in the gadopentetate dimeglumine group and 94%/94% in the gadobutrol group, respectively. Conclusion The high diagnostic accuracy of gadobutrol in the clinical routine setting is of high interest as medical authorities (e.g. the European Agency for the Evaluation of Medicinal Products) recommend macrocyclic contrast agents especially to be used in patients with renal failure or dialysis. PMID:19116027

  6. Treatment planning for image-guided neuro-vascular interventions using patient-specific 3D printed phantoms

    NASA Astrophysics Data System (ADS)

    Russ, M.; O'Hara, R.; Setlur Nagesh, S. V.; Mokin, M.; Jimenez, C.; Siddiqui, A.; Bednarek, D.; Rudin, S.; Ionita, C.

    2015-03-01

    Minimally invasive endovascular image-guided interventions (EIGIs) are the preferred procedures for treatment of a wide range of vascular disorders. Despite benefits including reduced trauma and recovery time, EIGIs have their own challenges. Remote catheter actuation and challenging anatomical morphology may lead to erroneous endovascular device selections, delays or even complications such as vessel injury. EIGI planning using 3D phantoms would allow interventionists to become familiarized with the patient vessel anatomy by first performing the planned treatment on a phantom under standard operating protocols. In this study the optimal workflow to obtain such phantoms from 3D data for interventionist to practice on prior to an actual procedure was investigated. Patientspecific phantoms and phantoms presenting a wide range of challenging geometries were created. Computed Tomographic Angiography (CTA) data was uploaded into a Vitrea 3D station which allows segmentation and resulting stereo-lithographic files to be exported. The files were uploaded using processing software where preloaded vessel structures were included to create a closed-flow vasculature having structural support. The final file was printed, cleaned, connected to a flow loop and placed in an angiographic room for EIGI practice. Various Circle of Willis and cardiac arterial geometries were used. The phantoms were tested for ischemic stroke treatment, distal catheter navigation, aneurysm stenting and cardiac imaging under angiographic guidance. This method should allow for adjustments to treatment plans to be made before the patient is actually in the procedure room and enabling reduced risk of peri-operative complications or delays.

  7. Statistical determination of whole-body average SARs in a 2 GHz whole-body exposure system for unrestrained pregnant and newborn rats

    NASA Astrophysics Data System (ADS)

    Wang, Jianqing; Wake, Kanako; Kawai, Hiroki; Watanabe, Soichi; Fujiwara, Osamu

    2012-01-01

    A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.

  8. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37

  9. Whole body mechanics differ among running and cutting maneuvers in skilled athletes.

    PubMed

    Havens, Kathryn L; Sigward, Susan M

    2015-09-01

    Quick changes of direction during running (cutting) represent a whole body mechanical challenge, as they require deceleration and translation of the body during ongoing movement. While much is known with respect to whole body demands during walking turns, whole body mechanics and anticipatory adjustments necessary for cutting are unclear. As the ability to rapidly change direction is critical to athletes' success in many sports, a better understanding of whole body adjustments made during cuts is needed. Whole body center of mass velocity and position during the approach and execution steps of three tasks (straight running, 45° sidestep cut, and 90° sidestep cut) performed as fast as possible were compared in 25 healthy soccer athletes. Repeated measure ANOVA revealed that overall, braking and translation were greater during the cuts compared to the straight run. Interestingly, with systematically increased cut angle, disproportionately greater braking but proportionately greater translation was observed. Anticipatory adjustments made prior to the execution of the cuts suggested that individuals evenly distributed the deceleration and redirection demands across steps of the 45° cut but prioritized deceleration over translation during the approach step of the 90° cut. PMID:25149902

  10. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis. PMID:22981594

  11. EFFICIENCY STUDY OF A LEGe DETECTOR SYSTEM FOR THE ASSESSMENT OF 241Am IN SKULL AT CIEMAT WHOLE BODY COUNTER.

    PubMed

    Pérez López, B; Navarro, J F; López Ponte, M A; Nogueira, P

    2016-09-01

    (241)Am incorporation due to an incident or chronic exposure causes an internal dose, which can be evaluated from the total activity of this isotope in the skeleton several months after the intake. For this purpose, it is necessary to perform in vivo measurements of this bone-seeker radionuclide in appropriate counting bone geometries with very low attenuation of surrounded tissue and to extrapolate to total activity in the skeleton (ICRP 89, Basic anatomical and physiological data for use in radiological protection: reference values. 2001. 265). The work here presented refers to direct measurements of americium in the Cohen skull phantom at the CIEMAT Whole Body Counter (WBC) using low-energy germanium (LEGe) detectors inside a shielding room. The main goal was to determinate the most adequate head counting geometry for the in vivo detection of americium in the bone. The calibration of the in vivo LEGe system was performed with four detectors with 2 cm of distance to Cohen phantom. Two geometries were measured, on junction of frontal to parietal bones and frontal bone. The efficiencies are very similar in both geometries, the preferred counting geometry is the most comfortable for the person, with the LEGe detectors in the highest part of the frontal bone, near the junction with the parietal bone, CIEMAT WBC participated in a skull intercomparison exercise organised by WG7 of EURADOS (European Radiation Dosimetry Group e.V.). Efficiencies using three different skull phantoms were obtained. Measurements were performed for different head counting positions, four of them in the plane of symmetry and others over the temporal bone. The detector was placed in parallel with the calibration phantom at a distance of 1 cm. The main gamma emission of (241)Am, 59.5 keV (36 %), was used for comparing efficiency values. The lower efficiency was obtained over the frontal and occipital bones. Measurement with one LEGe detector over the parietal bone is the most efficient. The

  12. Automated Movement Correction for Dynamic PET/CT Images: Evaluation with Phantom and Patient Data

    PubMed Central

    Ye, Hu; Wong, Koon-Pong; Wardak, Mirwais; Dahlbom, Magnus; Kepe, Vladimir; Barrio, Jorge R.; Nelson, Linda D.; Small, Gary W.; Huang, Sung-Cheng

    2014-01-01

    Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers. PMID:25111700

  13. Benefits of whole-body vibration with an oscillating platform for people with multiple sclerosis: a systematic review.

    PubMed

    Santos-Filho, Sebastião David; Cameron, Michelle H; Bernardo-Filho, Mario

    2012-01-01

    The objective of this work was to investigate the effects of whole-body vibration on people with multiple sclerosis (MS). PubMed, CINAHL and Scopus databases were systematically searched for studies on the use of whole-body vibration (WBV) exercise in people with MS. These searches were supplemented with material identified in the references and in the authors' personal files. A qualitative analysis was performed to summarize the findings. Five studies with a total of seventy-one subjects were identified. All of these studies had small numbers of subjects (3-25), and two of the studies had no control groups. Some investigations have shown significant improvements of the muscle strength, of the functional mobility, and of the timed get up and go test in patients with MS. The number of publications found in the databanks searched is small, and in general, they have limitations in the design of protocols with a weakness to the interpretation of the findings. However, the analysis of the findings in these studies permits to conclude that some papers indicate that WBV exercises could benefit patients with MS. In addition, we suggest further larger scale investigations with controlled parameters and well-designed protocols into the effects of WBV exercises in people with MS. PMID:22685660

  14. Benefits of Whole-Body Vibration with an Oscillating Platform for People with Multiple Sclerosis: A Systematic Review

    PubMed Central

    Santos-Filho, Sebastião David; Cameron, Michelle H.; Bernardo-Filho, Mario

    2012-01-01

    The objective of this work was to investigate the effects of whole-body vibration on people with multiple sclerosis (MS). PubMed, CINAHL and Scopus databases were systematically searched for studies on the use of whole-body vibration (WBV) exercise in people with MS. These searches were supplemented with material identified in the references and in the authors' personal files. A qualitative analysis was performed to summarize the findings. Five studies with a total of seventy-one subjects were identified. All of these studies had small numbers of subjects (3–25), and two of the studies had no control groups. Some investigations have shown significant improvements of the muscle strength, of the functional mobility, and of the timed get up and go test in patients with MS. The number of publications found in the databanks searched is small, and in general, they have limitations in the design of protocols with a weakness to the interpretation of the findings. However, the analysis of the findings in these studies permits to conclude that some papers indicate that WBV exercises could benefit patients with MS. In addition, we suggest further larger scale investigations with controlled parameters and well-designed protocols into the effects of WBV exercises in people with MS. PMID:22685660

  15. Myeloma bone and extra-medullary disease: Role of PET/CT and other whole-body imaging techniques.

    PubMed

    Rubini, Giuseppe; Niccoli-Asabella, Artor; Ferrari, Cristina; Racanelli, Vito; Maggialetti, Nicola; Dammacco, Francesco

    2016-05-01

    Multiple myeloma (MM) is the second most common hematological malignancy. Although it can affect different organs, the bone compartment stands out both in terms of prevalence and clinical impact. Despite the striking advances in MM therapy, bone disease can remarkably affect the patient's quality of life. The occurrence and extension of bone marrow and extra-medullary involvement should be carefully assessed to confirm the diagnosis, to locate and whenever possible prevent dreadful complications such as pathological fractures and spinal cord compression, and to establish suitable therapeutic measures. Many imaging techniques have been proposed for the detection of MM skeletal involvement. With the development of more sophisticated imaging tools, it is time to use the right technique at the right time. Based on the review of the literature and our own experience, this article discusses advantages and disadvantages of the different imaging methods in the work-up of MM patients, with particular emphasis on the role that PET/CT can play. It is emphasized that whole body low-dose computed tomography should be the preferred imaging technique at baseline. However, bone marrow infiltration and extra-medullary manifestations are better detected by whole body magnetic resonance imaging. Positron emission tomography/computed tomography, on the other hand, combines the benefits of the two mentioned imaging procedures and is particularly useful not only for the detection of osteolytic lesions unrevealed by conventional X-ray, but also in the assessment of prognosis and therapeutic response. PMID:26997302

  16. Wearable Ballistocardiography: Preliminary Methods for Mapping Surface Vibration Measurements to Whole Body Forces

    PubMed Central

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.

    2015-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  17. A non-rigid registration method for mouse whole body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie Claude; Salvado, Olivier

    2010-03-01

    Micro-CT/PET imaging scanner provides a powerful tool to study tumor in small rodents in response to therapy. Accurate image registration is a necessary step to quantify the characteristics of images acquired in longitudinal studies. Small animal registration is challenging because of the very deformable body of the animal often resulting in different postures despite physical restraints. In this paper, we propose a non-rigid registration approach for the automatic registration of mouse whole body skeletons, which is based on our improved 3D shape context non-rigid registration method. The whole body skeleton registration approach has been tested on 21 pairs of mouse CT images with variations of individuals and time-instances. The experimental results demonstrated the stability and accuracy of the proposed method for automatic mouse whole body skeleton registration.

  18. Whole-body Fluorescent Optical Imaging Based on Power Light Emitting Diode.

    PubMed

    Chen, Yanping; Xiong, Tao; Yu, Li; Zeng, Shaoqun; Luo, Qingming

    2005-01-01

    With complex configuration, the general whole-body fluorescence optical imaging system is power-consuming for it is mainly composed of laser or mercury lamp, filter and fiber-optic cable. In this paper we aimed at setting up a compact imaging system based on power light emitting diode (LED). We first discussed fluorescence excitation efficiency of mercury lamp and LED. Then we developed a compact prototype whole-body fluorescence optical imaging system based on power LED. With the prototype, we monitored the dynamic course of green fluorescence protein (GFP) expressing tumors in the same intact nude mice. We also recorded the temporal behavior of the infectious process of GFP-expressing bacteria from outside intact infected animals. This study puts forward a platform for monitoring tumor growth. The experiment reveals that it is doable to substitute power LED for mercury lamp for whole-body fluorescence optical imaging. PMID:17282471

  19. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects.

    PubMed

    Macaluso, T; Bourdin, C; Buloup, F; Mille, M-L; Sainton, P; Sarlegna, F R; Taillebot, V; Vercher, J-L; Weiss, P; Bringoux, L

    2016-07-01

    Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which

  20. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-12-31

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  1. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-01-01

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  2. Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections

    NASA Astrophysics Data System (ADS)

    Stoeckli, Markus; Staab, Dieter; Schweitzer, Alain

    2007-02-01

    The determination of the compound distribution in laboratory animal tissue in early development is a standard process in pharmaceutical research. While this information is traditionally obtained by means of whole-body autoradiography using radiolabeled compounds, this technology does not distinguish between metabolites and parent compound. The technique described in this article, termed matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging, can fill this gap by simultaneously measuring compound and multiple metabolites distributed in whole-body tissue sections, using non-labeled compounds.

  3. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  4. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.

    PubMed

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT. PMID:26215085

  5. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males.

    PubMed

    Giombini, A; Menotti, F; Laudani, L; Piccinini, A; Fagnani, F; Di Cagno, A; Macaluso, A; Pigozzi, F

    2015-09-01

    Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients. PMID:26424928

  6. Whole Body Periodic Acceleration Is an Effective Therapy to Ameliorate Muscular Dystrophy in mdx Mice

    PubMed Central

    Altamirano, Francisco; Perez, Claudio F.; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R.; Allen, Paul D.; Adams, Jose A.; Lopez, Jose R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway. PMID:25181488

  7. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice.

    PubMed

    Altamirano, Francisco; Perez, Claudio F; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R; Allen, Paul D; Adams, Jose A; Lopez, Jose R

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca(2+) and Na(+) overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca(2+) and Na(+) overload, diminished abnormal sarcolemmal Ca(2+) entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway. PMID:25181488

  8. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males

    PubMed Central

    Giombini, A; Menotti, F; Piccinini, A; Fagnani, F; Di Cagno, A; Macaluso, A; Pigozzi, F

    2015-01-01

    Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients. PMID:26424928

  9. Temperature Profile and Outcomes of Neonates Undergoing Whole Body Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Shankaran, Seetha; Laptook, Abbot R.; McDonald, Scott A.; Higgins, Rosemary D.; Tyson, Jon E.; Ehrenkranz, Richard A.; Das, Abhik; Sant’Anna, Guilherme; Goldberg, Ronald N.; Bara, Rebecca; Walsh, Michele C.

    2011-01-01

    BACKGROUND Decreases below target temperature were noted among neonates undergoing cooling in the NICHD Neonatal Research Network Trial of whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. OBJECTIVE To examine the temperature profile and impact on outcome among ≥ 36 week gestation neonates randomized at ≤ 6 hours of age targeting esophageal temperature of 33.5°C for 72 hours. DESIGN/SETTING/PATIENTS Infants with intermittent temperatures recorded < 32.0°C during induction and maintenance of cooling were compared to all other cooled infants and relationship with outcome at 18 months was evaluated. RESULTS There were no differences in stage of encephalopathy, acidosis, or 10 minute Apgar scores between infants with temperatures < 32.0°C during induction (n=33) or maintenance (n=10) and all other infants who were cooled (n=58); however birth weight was lower and need for blood pressure support higher among infants with temperatures < 32.0 °C compared to all other cooled infants. No increase in acute adverse events were noted among infants with temperatures < 32.0 °C and hours spent < 32°C were not associated with the primary outcome of death or moderate/severe disability or the Bayley II Mental Developmental Index at 18 months. CONCLUSION Term infants with a lower birth weight are at risk for decreasing temperatures < 32.0°C while undergoing body cooling using a servo controlled system. This information suggests extra caution during the application of hypothermia as these lower birth weight infants are at risk for overcooling. Our findings may assist in planning additional trials of lower target temperature for neonatal hypoxic-ischemic encephalopathy. PMID:21499182

  10. Whole-body vibration improves functional recovery in spinal cord injured rats.

    PubMed

    Wirth, Felicitas; Schempf, Greta; Stein, Gregor; Wellmann, Katharina; Manthou, Marilena; Scholl, Carolin; Sidorenko, Malina; Semler, Oliver; Eisel, Leonie; Harrach, Rachida; Angelova, Srebrina; Jaminet, Patrick; Ankerne, Janina; Ashrafi, Mahak; Ozsoy, Ozlem; Ozsoy, Umut; Schubert, Harald; Abdulla, Diana; Dunlop, Sarah A; Angelov, Doychin N; Irintchev, Andrey; Schönau, Eckhard

    2013-03-15

    Whole-body vibration (WBV) is a relatively novel form of exercise used to improve neuromuscular performance in healthy individuals. Its usefulness as a therapy for patients with neurological disorders, in particular spinal cord injury (SCI), has received little attention in clinical settings and, surprisingly, even less in animal SCI models. We performed severe compression SCI at a low-thoracic level in Wistar rats followed by daily WBV starting 7 (10 rats) or 14 (10 rats) days after injury (WBV7 and WBV14, respectively) and continued over a 12-week post-injury period. Rats with SCI but no WBV training (sham, 10 rats) and intact animals (10 rats) served as controls. Compared to sham-treated rats, WBV did not improve BBB score, plantar stepping, or ladder stepping during the 12-week period. Accordingly, WBV did not significantly alter plantar H-reflex, lesion volume, serotonergic input to the lumbar spinal cord, nor cholinergic or glutamatergic inputs to lumbar motoneurons at 12 weeks after SCI. However, compared to sham, WBV14, but not WBV7, significantly improved body weight support (rump-height index) during overground locomotion and overall recovery between 6-12 weeks and also restored the density of synaptic terminals in the lumbar spinal cord at 12 weeks. Most remarkably, WBV14 led to a significant improvement of bladder function at 6-12 weeks after injury. These findings provide the first evidence for functional benefits of WBV in an animal SCI model and warrant further preclinical investigations to determine mechanisms underpinning this noninvasive, inexpensive, and easily delivered potential rehabilitation therapy for SCI. PMID:23157611

  11. Impact of different treatment of whole-body cryotherapy on circulatory parameters.

    PubMed

    Bonomi, Felice Giulio; De Nardi, Massimo; Fappani, Aldo; Zani, Viviana; Banfi, Giuseppe

    2012-04-01

    Cryotherapy is commonly used as a procedure to relieve pain symptoms, particularly in inflammatory diseases, injuries and overuse symptoms. A peculiar form of cold therapy or stimulation was proposed 30 years ago for the treatment of rheumatic diseases. The therapy consists in the exposure to very cold air in special cryochambers. The air is maintained at temperatures between -110 and -160°C. The treatment was named whole-body cryotherapy (WBC). It consists in a brief exposure to extreme cold in a temperature-controlled chamber. It is applied to relieve pain and inflammatory symptoms caused by numerous disorders, particularly those associated with rheumatic conditions, and it is recommended for the treatment of arthritis, fibromyalgia and ankylosing spondylitis. The aim of this study was to investigate the effects of different treatment of WBC on blood pressure (BP) and heart rate (HR) parameters in adult subjects characterized from non-pathological values of BP. Eighty subjects (36 females, 44 males, age range 19-80 years) submitted to 4-17 WBC applications for a total of 816 treatments were recruited. Immediately before and after each WBC application systolic and diastolic BP and HR were measured and recorded. We did not find significant differences in BP and HR (p > 0.05). WBC seems to be safe with respect to unwanted BP and HR alterations for adult patients. An individual monitoring of subjects is recommended over the treatment, but pathological changes of circulatory parameters can be considered rare and occasional. PMID:22310979

  12. Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...

  13. AMMONIA ABATEMENT SYSTEM FOR WHOLE-BODY SMALL ANIMAL INHALATION EXPOSURES TO ACID MODELS

    EPA Science Inventory

    Conducting whole-body acid aerosol inhalation exposures of laboratory animals is complicated by ammonia arising from the excrement of the test animals which is sufficient to completely neutralize much of the acid aerosol. he neutralization of acid by ammonia con only be controlle...

  14. Whole-body CO2 production as an index of the metabolic response to sepsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  15. [Recent technical research hot spots and development progresses in medical whole-body positron emission tomography].

    PubMed

    Shi, Han; Du, Dong; Su, Zhihong; Xu, Jianfeng; Zou, Yirong; Peng, Qiyu

    2015-02-01

    Medical whole-body positron emission tomography (PET), one of the most successful molecular imaging technologies, has been widely used in the fields of cancer diagnosis, cardiovascular disease diagnosis and cranial nerve study. But, on the other hand, the sensitivity, spatial resolution and signal-noise-ratio of the commercial medical whole-body PET systems still have some shortcomings and a great room for improvement. The sensitivity, spatial resolution and signal-noise-ratio of PET system are largely affected by the performances of the scintillators and the photo detectors. The design of a PET system is usually a trade-off in cost and performance. A better image quality can be achieved by optimizing and balancing the key components which affect the system performance the most without dramatically increases in cost. With the development of the scintillator, photo-detector and high speed electronic system, the performance of medical whole-body PET system would be dramatically improved. In this paper, we report current progresses and discuss future directions of the developments of technologies in medical whole-body PET system. PMID:25997296

  16. Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition

    ERIC Educational Resources Information Center

    Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.

    2012-01-01

    Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…

  17. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  18. Whole-body vibration and health effects in the agricultural machinery drivers.

    PubMed

    Futatsuka, M; Maeda, S; Inaoka, T; Nagano, M; Shono, M; Miyakita, T

    1998-04-01

    Recently farm mechanization has been widespread and developing rapidly, in particular riding farm machines are increasingly used in paddy fields in Japan. We have no information available on the actual situation regarding whole-body vibration on the seats of these farm machines from the standpoint of labour protection. Measurement and evaluation of whole-body vibration was performed on the seats of popular riding agricultural machineries. Whole-body vibration on the seats of combine harvesters and wheel tractors exceeded exposure limits and the fatigue-decreased proficiency boundary limit of 8 hr and also shortened the reduced comfort boundary limits of ISO 2631 (1985). Some combines, tractors and carieers had only less than one hour exposure duration as compared with the ISO 2631-1 standard (1997). On the other hand a questionnaire was also performed on the subject of agricultural machine operators. Any specific injury or other effects, i.e. low back injuries were not found among the group of operators as compared with those in non-operator farmers. It seems to be difficult to find out the health effects of whole-body vibration itself, because there may be a lot of causes, i.e. working posture, operating heavy materials, in farm working conditions. PMID:9583309

  19. Validation of a whole-body cortisol extraction procedure for channel catfish (Ictalurus punctatus) fry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed and validated a whole-body cortisol extraction technique for catfish fry. Their small size (< 1 g) makes it difficult to measure cortisol, a common indicator of a stress response, using conventional assay methods. Three volume enhancement methods were tested: CAL method (zero calibrator...

  20. Knowledge, Attitude, and Practices regarding Whole Body Donation among Medical Professionals in a Hospital in India

    ERIC Educational Resources Information Center

    Ballala, Kirthinath; Shetty, Avinash; Malpe, Surekha Bhat

    2011-01-01

    Voluntary body donation has become an important source of cadavers for anatomical study and education. The objective of this study was to assess knowledge, attitude, and practice (KAP) regarding whole body donation among medical professionals in a medical institute in India. A cross sectional study was conducted at Kasturba Hospital, Manipal,…

  1. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  2. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  3. Evolution of whole-body enantiomorphy in the tree snail genus Amphidromus

    PubMed Central

    SUTCHARIT, C; ASAMI, T; PANHA, S

    2007-01-01

    Diverse animals exhibit left–right asymmetry in development. However, no example of dimorphism for the left–right polarity of development (whole-body enantiomorphy) is known to persist within natural populations. In snails, whole-body enantiomorphs have repeatedly evolved as separate species. Within populations, however, snails are not expected to exhibit enantiomorphy, because of selection against the less common morph resulting from mating disadvantage. Here we present a unique example of evolutionarily stable whole-body enantiomorphy in snails. Our molecular phylogeny of South-east Asian tree snails in the genus Amphidromus indicates that enantiomorphy has likely persisted as the ancestral state over a million generations. Enantiomorphs have continuously coexisted in every population surveyed spanning a period of 10 years. Our results indicate that whole-body enantiomorphy is maintained within populations opposing the rule of directional asymmetry in animals. This study implicates the need for explicit approaches to disclosure of a maintenance mechanism and conservation of the genus. PMID:17305832

  4. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation.

    PubMed

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C ± 1.3°C and -8.3 ± 0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ± 0.11°C), while it only decreased at P20 (-0.14 ± 0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than

  5. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC

  6. Hybrid Computational Phantoms Representing the Reference Adult Male and Adult Female: Construction and Applications for Retrospective Dosimetry

    PubMed Central

    Hurtado, Jorge L.; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L.; Bolch, Wesley E.

    2013-01-01

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms - takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-year Korean volunteer and a 25-year U.S. female patient, respectively, with supplemental high-resolution CT images for the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention (CDC) and International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid adult male and female phantoms were completed where a total of 8 anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from

  7. Hybrid computational phantoms representing the reference adult male and adult female: construction and applications for retrospective dosimetry.

    PubMed

    Hurtado, Jorge L; Lee, Choonsik; Lodwick, Daniel; Goede, Timothy; Williams, Jonathan L; Bolch, Wesley E

    2012-03-01

    Currently, two classes of computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Mathematical surface equations in stylized phantoms are flexible, but the resulting anatomy is not as realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms called hybrid phantoms takes advantage of the best features of stylized and voxel phantoms-flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing the adult male and female reference anatomy and anthropometry are presented. These phantoms serve as the starting framework for creating patient or worker sculpted whole-body phantoms for retrospective dose reconstruction. Contours of major organs and tissues were converted or segmented from computed tomography images of a 36-y-old Korean volunteer and a 25-y-old U.S. female patient, respectively, with supplemental high-resolution CT images of the cranium. Polygon mesh models for the major organs and tissues were reconstructed and imported into Rhinoceros™ for non-uniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by Centers for Disease Control and Prevention and International Commission on Radiation Protection, respectively. Finally, two hybrid adult male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ volumes matched to ICRP data within 1% with the exception of total skin. The hybrid phantoms were voxelized from the NURBS phantoms

  8. Treatment Planning for Image-Guided Neuro-Vascular Interventions Using Patient-Specific 3D Printed Phantoms

    PubMed Central

    Russ, M.; O’Hara, R.; Setlur Nagesh, S.V.; Mokin, M.; Jimenez, C.; Siddiqui, A.; Bednarek, D.; Rudin, S.; Ionita, C.

    2015-01-01

    Minimally invasive endovascular image-guided interventions (EIGIs) are the preferred procedures for treatment of a wide range of vascular disorders. Despite benefits including reduced trauma and recovery time, EIGIs have their own challenges. Remote catheter actuation and challenging anatomical morphology may lead to erroneous endovascular device selections, delays or even complications such as vessel injury. EIGI planning using 3D phantoms would allow interventionists to become familiarized with the patient vessel anatomy by first performing the planned treatment on a phantom under standard operating protocols. In this study the optimal workflow to obtain such phantoms from 3D data for interventionist to practice on prior to an actual procedure was investigated. Patient-specific phantoms and phantoms presenting a wide range of challenging geometries were created. Computed Tomographic Angiography (CTA) data was uploaded into a Vitrea 3D station which allows segmentation and resulting stereo-lithographic files to be exported. The files were uploaded using processing software where preloaded vessel structures were included to create a closed-flow vasculature having structural support. The final file was printed, cleaned, connected to a flow loop and placed in an angiographic room for EIGI practice. Various Circle of Willis and cardiac arterial geometries were used. The phantoms were tested for ischemic stroke treatment, distal catheter navigation, aneurysm stenting and cardiac imaging under angiographic guidance. This method should allow for adjustments to treatment plans to be made before the patient is actually in the procedure room and enabling reduced risk of peri-operative complications or delays. PMID:26778878

  9. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    NASA Astrophysics Data System (ADS)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  10. Whole-body heating decreases skin vascular response to low orthostatic stress in the lower extremities.

    PubMed

    Yamazaki, Fumio; Nakayama, Yoshiro; Sone, Ryoko

    2006-04-01

    To elucidate the influence of heat stress on cutaneous vascular response in the lower extremities during orthostatic stress, a head-up tilt (HUT) test at angles of 15 degrees, 30 degrees, 45 degrees, and 60 degrees for 4 min each was conducted under normothermic control conditions followed by whole-body heat stress produced by a hot water-perfused suit in healthy volunteers. Skin blood flows (SkBF) in the forearm, thigh, and calf were monitored using laser-Doppler flowmetry throughout the experiment. Furthermore, to elucidate the effects of increased core and local skin temperatures on the local vascular response in calf skin under increasing orthostatic stress, the thigh was occluded at 20, 30, 50, 70, and 80 mmHg with a cuff in both the normothermic condition and the whole-body or local heating condition. Significant decreases in forearm SkBF during HUT were observed at an angle of 60 degrees during normothermia and at 30 degrees or more during heating. SkBF in the thigh and calf was decreased significantly by HUT at 15 degrees and above during normothermia, and there was no significant reduction of SkBF in these sites during HUT at the lower angles (15 degrees -45 degrees ) during whole-body heating. Significant decreases of calf SkBF were observed at cuff pressures of 20 mmHg and above during normothermia and of 30 mmHg and above during whole-body and local heating, respectively. These results suggest that SkBF in the lower extremities shows a marked reduction compared with the upper extremities during low orthostatic stress in normothermia, and the enhanced skin vasoconstrictor response in the lower extremities is diminished by both whole-body and local heat stress. PMID:16839449

  11. An information theoretic view of the scheduling problem in whole-body CAD

    NASA Astrophysics Data System (ADS)

    Zhan, Yiqiang; Zhou, Xiang Sean; Krishnan, Arun

    2008-03-01

    Emerging whole-body imaging technologies push computer aided detection/diagnosis (CAD) to scale up to a whole-body level, which involves multiple organs or anatomical structure. To be exploited in this paper is the fact that the various tasks in whole-body CAD are often highly dependent (e.g., the localization of the femur heads strongly predicts the position of the iliac bifurcation of the aorta). One way to effectively employ task dependency is to schedule the tasks such that outputs of some tasks are used to guide the others. In this sense, optimal task scheduling is key to improve overall performance of a whole-body CAD system. In this paper, we propose a method for task scheduling that is optimal in an information-theoretic sense. The central idea is to schedule tasks in such an order that each operation achieves maximum expected information gain over all the tasks. The formulation embeds two intuitive principles: (1) a task with higher confidence tends to be scheduled earlier; (2) a task with higher predictive power for other tasks tends to be scheduled earlier. More specifically, task dependency is modeled by conditional probability; the outcome of each task is assumed to be probabilistic as well; and the objective function is based on the reduction of the summed conditional entropy over all tasks. The validation is carried out on a challenging CAD problem, multi-organ localization in whole-body CT. Compared to unscheduled and ad hoc scheduled organ detection/localization, our scheduled execution achieves higher accuracy with much less computation time.

  12. Organ dose assessment in pediatric fluoroscopy and CT via a tomographic computational phantom of the newborn patient

    NASA Astrophysics Data System (ADS)

    Staton, Robert J.

    Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients

  13. EURADOS INTERCOMPARISONS IN EXTERNAL RADIATION DOSIMETRY: SIMILARITIES AND DIFFERENCES AMONG EXERCISES FOR WHOLE-BODY PHOTON, WHOLE-BODY NEUTRON, EXTREMITY, EYE-LENS AND PASSIVE AREA DOSEMETERS.

    PubMed

    Romero, Ana M; Grimbergen, Tom; McWhan, Andrew; Stadtmann, Hannes; Fantuzzi, Elena; Clairand, Isabelle; Neumaier, Stefan; Figel, Markus; Dombrowski, Harald

    2016-09-01

    The European Radiation Dosimetry Group (EURADOS) has been organising dosimetry intercomparisons for many years in response to an identified requirement from individual monitoring services (IMS) for independent performance tests for dosimetry systems. The participation in intercomparisons gives IMS the opportunity to show compliance with their own quality management system, compare results with other participants and develop plans for improving their dosimetry systems. In response to growing demand, EURADOS has increased the number of intercomparisons for external radiation dosimetry. Most of these fit into the programme of self-financing intercomparisons for dosemeters routinely used by IMS. This programme is being coordinated by EURADOS working group 2 (WG2). Up to now, this programme has included four intercomparisons for whole-body dosemeters in photon fields, one for extremity dosemeters in photon and beta fields, and one for whole-body dosemeters in neutron fields. Other EURADOS working groups have organised additional intercomparisons including events in 2014 for eye-lens dosemeters and passive area dosemeters for environmental monitoring. In this paper, the organisation and achievements of these intercomparisons are compared in detail focusing on the similarities and differences in their execution. PMID:26759475

  14. Quantification of biological tissue and construction of patient equivalent phantom (skull and chest) for infants (1-5 years old)

    NASA Astrophysics Data System (ADS)

    Alves, A. F.; Pina, D. R.; Bacchim Neto, F. A.; Ribeiro, S. M.; Miranda, J. R. A.

    2014-03-01

    Our main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab ®. The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior-anterior or anterior-posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.

  15. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    PubMed Central

    Surti, S; Karp, J S

    2015-01-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20–25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16–22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 minutes for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15 mm thick crystals can

  16. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25 mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22 mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72 cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10 min for imaging a 100 cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72 cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18 cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3 mm (as opposed to 4 mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15 mm thick crystal leads to lower lesion detectability than a 20 mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15

  17. Dosimetric quality assurance of highly conformal external beam treatments: from 2D phantom comparisons to 4D patient dose reconstruction

    NASA Astrophysics Data System (ADS)

    Feygelman, V.; Nelms, B.

    2013-06-01

    As IMRT technology continues to evolve, so do the dosimetric QA methods. A historical review of those is presented, starting with longstanding techniques such as film and ion chamber in a phantom and progressing towards 3D and 4D dose reconstruction in the patient. Regarding patient-specific QA, we envision that the currently prevalent limited comparison of dose distributions in the phantom by γ-analysis will be eventually replaced by clinically meaningful patient dose analyses with improved sensitivity and specificity. In a larger sense, we envision a future of QA built upon lessons from the rich history of "quality" as a science and philosophy. This future will aim to improve quality (and ultimately reduce cost) via advanced commissioning processes that succeed in detecting and rooting out systematic errors upstream of patient treatment, thus reducing our reliance on, and the resource burden associated with, per-beam/per-plan inspection.

  18. Managing phantom pain.

    PubMed

    Manchikanti, Laxmaiah; Singh, Vijay

    2004-07-01

    Since the first medical description of post-amputation phenomena reported by Ambrose Paré, persistent phantom pain syndromes have been well recognized. However, they continue to be difficult to manage. The three most commonly utilized terms include phantom sensation, phantom pain, and stump pain. Phantom limb sensation is an almost universal occurrence at some time during the first month following surgery. However, most phantom sensations generally resolve after two to three years without treatment, except in the cases where phantom pain develops. The incidence of phantom limb pain has been reported to vary from 0% to 88%. The incidence of phantom limb pain increases with more proximal amputations. Even though phantom pain may diminish with time and eventually fade away, it has been shown that even two years after amputation, the incidence is almost the same as at onset. Consequently, almost 60% of patients continue to have phantom limb pain after one year. In addition, phantom limb pain may also be associated with multiple pain problems in other areas of the body. The third symptom, stump pain, is located in the stump itself. The etiology and pathophysiological mechanisms of phantom pain are not clearly defined. However, both peripheral and central neural mechanisms have been described, along with superimposed psychological mechanisms. Literature describing the management of phantom limb pain or stump pain is in its infancy. While numerous treatments have been described, there is little clinical evidence supporting drug therapy, psychological therapy, interventional techniques or surgery. This review will describe epidemiology, etiology and pathophysiological mechanisms, risk factors, and treatment modalities. The review also examines the effectiveness of various described modalities for prevention, as well as management of established phantom pain syndromes. PMID:16858476

  19. Human non-Hodgkin's malignant lymphomas serially transplanted in nude mice conditioned with whole-body irradiation.

    PubMed Central

    Igarashi, T.; Oka, K.; Miyamoto, T.

    1989-01-01

    Direct transplantation of non-Hodgkin's malignant lymphoma into athymic nude mice was successfully achieved after whole-body irradiation (5 Gy). Twenty-seven per cent (6/22) of transplanted lymphomas were established as nude mouse lines. The successful lines were derived solely from the patients with diffuse lymphoma who showed advanced clinical stage, high LDH value, large mass and poor prognosis. The histological, immunophenotypic and chromosomal characteristics of the nude mouse lines were compared with those of the original lymphomas, and the proliferative characteristics of the lines were examined. The transplanted lymphomas substantially retained the characteristics of the original lymphomas, and could be useful in biological, oncological and therapeutic studies of human malignant lymphoma. Images Figure 1 Figure 2 Figure 3 PMID:2649134

  20. A phantom evaluation of a stereo-vision surface imaging system for radiotherapy patient setup

    SciTech Connect

    Bert, Christoph; Metheany, Katherine G.; Doppke, Karen; Chen, George T.Y.

    2005-09-15

    External beam irradiation requires precise positioning of the target relative to the treatment planning coordinate system. A three-dimensional (3D) surface imaging system for patient positioning has recently been installed in one of our linear accelerator (linac) rooms. The device utilizes close-range photogrammetry to generate a 3D model of the patient's surface. This geometric model can be made to look like a digital camera image if wrapped with a gray-level image (texture mapping) that shows surface coloration. The system is calibrated to the linac coordinate system and has been designed as a patient setup device. To reproduce patient position in fractionated radiotherapy, the daily patient surface model is registered to a previously recorded reference surface. Using surface registration, the system calculates the rigid-body transformation that minimizes the distance between the treatment and the reference surface models in a region-of-interest (ROI). This transformation is expressed as a set of new couch coordinates at which the patient position best matches with the reference data. If respiratory motion is a concern, the surface can be obtained with a gated acquisition at a specified phase of the respiratory cycle. To analyze the accuracy of the system, we performed several experiments with phantoms to assess stability, alignment accuracy, precision of the gating function, and surface topology. The reproducibility of surface measurements was tested for periods up to 57 h. Each recorded frame was registered to the reference surface to calculate the required couch adjustment. The system stability over this time period was better than 0.5 mm. To measure the accuracy of the system to detect and quantify patient shift relative to a reference image, we compared the shift detected by the surface imaging system with known couch transitions in a phantom study. The maximum standard deviation was 0.75 mm for the three translational degrees of freedom, and less than 0

  1. Design, fabrication and acceptance testing of a zero gravity whole body shower

    NASA Technical Reports Server (NTRS)

    Schumacher, E. A.; Lenda, J. A.

    1974-01-01

    Recent research and development programs have established the ability of the zero gravity whole body shower to maintain a comfortable environment in which the crewman can safely cleanse and dry the body. The purpose of this program was to further advance the technology of whole body bathing and to demonstrate technological readiness including in-flight maintenance by component replacement for flight applications. Three task efforts of this program are discussed. Conceptual designs and system tradeoffs were accomplished in task 1. Task 2 involved the formulation of preliminary and final designs for the shower, while task 3 included the fabrication and test of the shower assembly. Particular attention is paid to the evaluation and correction of test anomalies during the final phase of the program.

  2. Brain-machine interfacing control of whole-body humanoid motion.

    PubMed

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-Ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  3. Factors affecting the sensitivity of X-ray films used for whole-body autoradiography.

    PubMed

    Franklin, E R

    1983-03-01

    The sensitivities of five X-ray films commonly used for autoradiography of whole-body sections and thin-layer chromatograms were determined. The films tested were Kodak NS-2T, XAR-5, Industrex C, Agfa-Gevaert Osray M3 and CEAverken Singul-X. The order of sensitivity, from greatest to least, was found to be NS-2T, Osray M3, XAR-5, Singul-X and Industrex C. Increases in sensitivity following extended development were demonstrated for Industrex C. A literature review has revealed confusion in the use, in whole-body autoradiography, or various measures of autoradiographic response, which, in view of the simple relationship between radiographic optical density and absorbed dose, need not have arisen. PMID:6613162

  4. Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss )

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.; Rach, J.J.

    1990-01-01

    1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA). 2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain. 3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines. 4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.

  5. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  6. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  7. Whole-Body Reaching Movements Formulated by Minimum Muscle-Tension Change Criterion.

    PubMed

    Kudo, Naoki; Choi, Kyuheong; Kagawa, Takahiro; Uno, Yoji

    2016-05-01

    It is well known that planar reaching movements of the human shoulder and elbow joints have invariant features: roughly straight hand paths and bell-shaped velocity profiles. The optimal control models with the criteria of smoothness or precision, which determine a unique movement pattern, predict such features of hand trajectories. In this letter on expanding the research on simple arm reaching movements, we examine whether the smoothness criteria can be applied to whole-body reaching movements with many degrees of freedom. Determining a suitable joint trajectory in the whole-body reaching movement corresponds to the optimization problem with constraints, since body balance must be maintained during a motion task. First, we measured human joint trajectories and ground reaction forces during whole-body reaching movements, and confirmed that subjects formed similar movements with common characteristics in the trajectories of the hand position and body center of mass. Second, we calculated the optimal trajectories according to the criteria of torque and muscle-tension smoothness. While the minimum torque change trajectories were not consistent with the experimental data, the minimum muscle-tension change model was able to predict the stereotyped features of the measured trajectories. To explore the dominant effects of the extension from the torque change to the muscle-tension change, we introduced a weighted torque change cost function. Considering the maximum voluntary contraction (MVC) force of the muscle as the weighting factor of each joint torque, we formulated the weighted torque change cost as a simplified version of the minimum muscle-tension change cost. The trajectories owing to the minimum weighted torque change criterion also showed qualitative agreement with the common features of the measured data. Proper estimation of the MVC forces in the body joints is essential to reproduce human whole-body movements according to the minimum muscle-tension change

  8. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion

    PubMed Central

    Bakker, Romy S.; Selen, Luc P. J.; Medendorp, W. Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  9. Gamma camera imaging for studying intestinal absorption and whole-body distribution of selenomethionine.

    PubMed

    Madsen, Jan L; Sjögreen-Gleisner, Katarina; Elema, Dennis R; Søndergaard, Lasse R; Rasmussen, Palle; Fuglsang, Stefan; Ljungberg, Michael; Damgaard, Morten

    2014-02-01

    Se metabolism in humans is not well characterised. Currently, the estimates of Se absorption, whole-body retention and excretion are being obtained from balance and tracer studies. In the present study, we used gamma camera imaging to evaluate the whole-body retention and distribution of radiolabelled selenomethionine (SeMet), the predominant form of Se present in foods. A total of eight healthy young men participated in the study. After consumption of a meal containing 4 MBq [⁷⁵Se]L-SeMet ([⁷⁵Se]SeMet), whole-body gamma camera scanning was performed for 45 min every hour over a 6 h period, every second hour for the next 18 h and once on each of the subsequent 6 d. Blood, urine and faecal samples were collected to determine the plasma content of [⁷⁵Se]SeMet as well as its excretion in urine and faeces. Imaging showed that 87·9 (sd 3·3)% of the administered activity of [⁷⁵Se]SeMet was retained within the body after 7 d. In contrast, the measured excretion in urine and faeces for the 7 d period was 8·2 (sd 1·1)% of the activity. Time-activity curves were generated for the whole body, stomach, liver, abdomen (other than the stomach and the liver), brain and femoral muscles. Gamma camera imaging allows for the assessment of the postprandial absorption of SeMet. This technique may also permit concurrent studies of organ turnover of SeMet. PMID:23930999

  10. A biomimetic framework for coordinating and controlling whole body movements in humanoid robots.

    PubMed

    Morasso, Pietro; Rea, Francesco; Mohan, Vishwanathan

    2013-01-01

    An integrated model for the coordination of whole body movements of a humanoid robot with a compliant ankle similar to the human case is described. It includes a synergy formation part, which takes into account the motor redundancy of the body model, and an intermittent controller, which stabilizes in a robust way postural sway movements, thus combining the hip strategy with ankle strategy. PMID:24110934

  11. Time course of lipolytic activity and lipid peroxidation after whole-body gamma irradiation of rats

    SciTech Connect

    Rejholcova, M.; Wilhelm, J.

    1989-01-01

    The content of fluorescing products of lipid peroxidation (LFP) and hormone-stimulated lipolytic activity were determined in rat epididymal adipose tissue during a 29-day interval after whole-body gamma irradiation. An increase in LFP was accompanied by a decrease in lipolytic activity. It is suggested that these effects are interrelated and that the decrease in lipolysis in irradiated, semi fasting rats is an additional deteriorating factor leading to death in some animals.

  12. Contributions of working muscle to whole body lipid metabolism are altered by exercise intensity and training.

    PubMed

    Friedlander, Anne L; Jacobs, Kevin A; Fattor, Jill A; Horning, Michael A; Hagobian, Todd A; Bauer, Timothy A; Wolfel, Eugene E; Brooks, George A

    2007-01-01

    To evaluate the contribution of working muscle to whole body lipid oxidation, we examined the effects of exercise intensity and endurance training (9 wk, 5 days/wk, 1 h, 75% Vo(2 peak)) on whole body and leg free fatty acid (FFA) kinetics in eight male subjects (26 +/- 1 yr, means +/- SE). Two pretraining trials [45 and 65% Vo(2 max) (45UT, 65UT)] and two posttraining trials [65% of pretraining Vo(2 peak) (ABT), and 65% of posttraining Vo(2 peak) (RLT)] were performed using [1-(13)C]palmitate infusion and femoral arteriovenous sampling. Training increased Vo(2 peak) by 15% (45.2 +/- 1.2 to 52.0 +/- 1.8 ml.kg(-1).min(-1), P < 0.05). Muscle FFA fractional extraction was lower during exercise (EX) compared with rest regardless of workload or training status ( approximately 20 vs. 48%, P < 0.05). Two-leg net FFA balance increased from net release at rest ( approximately -36 micromol/min) to net uptake during EX for 45UT (179 +/- 75), ABT (236 +/- 63), and RLT (136 +/- 110) (P < 0.05), but not 65UT (51 +/- 127). Leg FFA tracer measured uptake was higher during EX than rest for all trials and greater during posttraining in RLT (716 +/- 173 micromol/min) compared with pretraining (45UT 450 +/- 80, 65UT 461 +/- 72, P < 0.05). Leg muscle lipid oxidation increased with training in ABT (730 +/- 163 micromol/min) vs. 65UT (187 +/- 94, P < 0.05). Leg muscle lipid oxidation represented approximately 62 and 30% of whole body lipid oxidation at lower and higher relative intensities, respectively. In summary, training can increase working muscle tracer measured FFA uptake and lipid oxidation for a given power output, but both before and after training the association between whole body and leg lipid metabolism is reduced as exercise intensity increases. PMID:16896167

  13. Stability of Phase Relationships While Coordinating Arm Reaches with Whole Body Motion.

    PubMed

    Bakker, Romy S; Selen, Luc P J; Medendorp, W Pieter

    2015-01-01

    The human movement repertoire is characterized by the smooth coordination of several body parts, including arm movements and whole body motion. The neural control of this coordination is quite complex because the various body parts have their own kinematic and dynamic properties. Behavioral inferences about the neural solution to the coordination problem could be obtained by examining the emerging phase relationship and its stability. Here, we studied the phase relationships that characterize the coordination of arm-reaching movements with passively-induced whole-body motion. Participants were laterally translated using a vestibular chair that oscillated at a fixed frequency of 0.83 Hz. They were instructed to reach between two targets that were aligned either parallel or orthogonal to the whole body motion. During the first cycles of body motion, a metronome entrained either an in-phase or an anti-phase relationship between hand and body motion, which was released at later cycles to test phase stability. Results suggest that inertial forces play an important role when coordinating reaches with cyclic whole-body motion. For parallel reaches, we found a stable in-phase and an unstable anti-phase relationship. When the latter was imposed, it readily transitioned or drifted back toward an in-phase relationship at cycles without metronomic entrainment. For orthogonal reaches, we did not find a clear difference in stability between in-phase and anti-phase relationships. Computer simulations further show that cost models that minimize energy expenditure (i.e. net torques) or endpoint variance of the reach cannot fully explain the observed coordination patterns. We discuss how predictive control and impedance control processes could be considered important mechanisms underlying the rhythmic coordination of arm reaches and body motion. PMID:26720413

  14. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery

    PubMed Central

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-01-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  15. Whole Body Microwave Irradiation for Improved Dacarbazine Therapeutical Action in Cutaneous Melanoma Mouse Model

    PubMed Central

    Albulescu, Lucian; Iacob, Nicusor; Ighigeanu, Daniel

    2013-01-01

    A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females) bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70), IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group. PMID:24377047

  16. Whole Body Vibration Immediately Decreases Lower Extremity Loading During the Drop Jump.

    PubMed

    Chen, Zong-Rong; Peng, Hsien-Te; Siao, Sheng-Wun; Hou, Yan-Ting; Wang, Li-I

    2016-09-01

    Chen, Z-R, Peng, H-T, Siao, S-W, Hou, Y-T, and Wang, L-I. Whole body vibration immediately decreases lower extremity loading during the drop jump. J Strength Cond Res 30(9): 2476-2481, 2016-The purpose of this study was to evaluate the acute effect of whole body vibration (WBV) on lower extremity loading during the drop jump (DJ). Fifteen male collegiate physical education students randomly completed 3 experimental sessions on 3 separate days with 4 days interval between sessions (performing 3 trials of DJ from 30-, 40-, and 50-cm drop heights before WBV and 4 minutes after WBV). Eight cameras and 2 force platforms were used to record kinematic and kinetic data, respectively. Peak impact force and loading rate significantly decreased after WBV during DJ from 40 and 50 cm. Knee angular displacements significantly increased after WBV during DJ from 30, 40, and 50 cm. Whole body vibration may help immediately reduce lower extremity loading. PMID:26849793

  17. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  18. Segmental composition of whole-body impedance cardiogram estimated by computer simulations and clinical experiments.

    PubMed

    Kauppinen, P K; Kööbi, T; Hyttinen, J; Malmivuo, J

    2000-03-01

    Whole-body impedance cardiography (ICGWB) has been proposed as a feasible means of measuring cardiac output (CO). However, the source distribution of heart-related impedance variations in the whole body is not known. To establish how much of a signal originates in each segment of the body and what the contribution of each is to stroke volume (SV) in ICGWB, impedance in the extremities and trunk were investigated in 15 healthy volunteers. In addition, the theoretical measurement properties of ICGWB were studied using a computer model of the whole-body anatomy as a volume conductor. The model confirmed the expected result that most of the basal impedance originates from the extremities. Clinical experiments revealed that the heart-related amplitude variations in the ICGWB signal originate more evenly from various body segments, the trunk slightly more than the arms or legs. The heart-related ICGWB signal represents a weighted sum of segmental pulsatile events in the body yielding physiologically meaningful data on almost the whole circulatory system. PMID:10735977

  19. Exploring the effects of seated whole body vibration exposure on repetitive asymmetric lifting tasks.

    PubMed

    Mehta, Jay P; Lavender, Steven A; Jagacinski, Richard J; Sommerich, Carolyn M

    2015-01-01

    This study investigated changes in the physiological and behavioral responses to repetitive asymmetric lifting activity after exposure to whole body vibrations. Seventeen healthy volunteers repeatedly lifted a box (15% of lifter's capacity) positioned in front of them at ankle level to a location on their left side at waist level at the rate of 10 lifts/min for a period of 60 minutes. Prior to lifting, participants were seated on a vibrating platform for 60 minutes; in one of the two sessions the platform did not vibrate. Overall, the physiological responses assessed using near-infrared spectroscopy signals for the erector spinae muscles decreased significantly over time during the seating and the lifting tasks (p < 0.001). During repetitive asymmetric lifting, behavioral changes included increases in peak forward bending motion, twisting movement, and three-dimensional movement velocities of the spine. The lateral bending movement of the spine and the duration of each lift decreased significantly over the 60 minutes of repetitive lifting. With exposure to whole body vibration, participants twisted farther (p = 0.046) and twisted faster (p = 0.025). These behavioral changes would suggest an increase in back injury risk when repetitive lifting tasks are preceded by whole body vibration exposure. PMID:25264920

  20. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  1. Whole-body autoradiographic distribution of exogenously administered renal renin in rats.

    PubMed

    Kim, S; Iwao, H; Nakamura, N; Ikemoto, F; Yamamoto, K

    1987-05-01

    We studied, by whole-body autoradiography, the distribution of exogenously administered renal renin in rat. Rat renal renin was completely purified and labeled with 125I ([125I]-renin) and was then injected into the tail veins of conscious rats at a dose of 30 microCi, 430 ng. After various intervals, rats were killed by an overdose of ether, the whole body rapidly frozen in acetone-dry ice, and autoradiography performed on sagittal whole-body sections. To remove breakdown products ([125I]-tyrosine and free 125I) from [125I]-renin, sections were treated with perchloric acid solution. The main accumulation of [125I]-renin acid-insoluble radioactivity was observed in liver and renal cortex. The accumulation in these organs was already evident 2 min after the injection, reached a maximum level by 15 min, then gradually decreased. A small amount of [125I]-renin was also evident in spleen, bone marrow, and adrenal gland. Thirty min after the injection, radioactivity began to appear in the thyroid gland, stomach, and small intestine, but disappeared with acid treatment, except in the thyroid. Radioactivity was negligible in other organs including brain, submaxillary gland, lung, heart, and testis. These autoradiographs clearly demonstrate that exogenously administered renal renin is distributed mainly in the liver and renal cortex. PMID:3549890

  2. Whole-body autoradiographic distribution of exogenously administered renal renin in rats

    SciTech Connect

    Kim, S.; Iwao, H.; Nakamura, N.; Ikemoto, F.; Yamamoto, K.

    1987-05-01

    We studied, by whole-body autoradiography, the distribution of exogenously administered renal renin in rat. Rat renal renin was completely purified and labeled with /sup 125/I ((/sup 125/I)-renin) and was then injected into the tail veins of conscious rats at a dose of 30 microCi, 430 ng. After various intervals, rats were killed by an overdose of ether, the whole body rapidly frozen in acetone-dry ice, and autoradiography performed on sagittal whole-body sections. To remove breakdown products ((/sup 125/I)-tyrosine and free /sup 125/I) from (/sup 125/I)-renin, sections were treated with perchloric acid solution. The main accumulation of (/sup 125/I)-renin acid-insoluble radioactivity was observed in liver and renal cortex. The accumulation in these organs was already evident 2 min after the injection, reached a maximum level by 15 min, then gradually decreased. A small amount of (/sup 125/I)-renin was also evident in spleen, bone marrow, and adrenal gland. Thirty min after the injection, radioactivity began to appear in the thyroid gland, stomach, and small intestine, but disappeared with acid treatment, except in the thyroid. Radioactivity was negligible in other organs including brain, submaxillary gland, lung, heart, and testis. These autoradiographs clearly demonstrate that exogenously administered renal renin is distributed mainly in the liver and renal cortex.

  3. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    PubMed Central

    Yeung, Ella W.; Lau, Cheuk C.; Kwong, Ada P.K.; Sze, Yan M.; Zhang, Wei Y.; Yeung, Simon S.

    2014-01-01

    The acute effect of whole-body vibration (WBV) training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD)] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF) and vastus lateralis (VL; p = 0.934 and 0.935, respectively) EMD of RF and VL (p = 0.474 and 0.551, respectively) and peak torque production (p = 0.483) measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults. Key Points There is no acute potentiation of stretch reflex right after whole body vibration. Acute whole body vibration does not improve mus-cle peak torque performance in healthy young adults. PMID:24570602

  4. Impact of 10 Sessions of Whole Body Cryostimulation on Cutaneous Microcirculation Measured by Laser Doppler Flowmetry

    PubMed Central

    Renata, Szyguła; Tomasz, Dybek; Andrzej, Klimek; Sławomir, Tubek

    2011-01-01

    The aim of the present study was to evaluate the basic and evoked blood flow in the skin microcirculation of the hand, one day and ten days after a series of 10 whole body cryostimulation sessions, in healthy individuals. The study group included 32 volunteers – 16 women and 16 men. The volunteers underwent 10 sessions of cryotherapy in a cryogenic chamber. The variables were recorded before the series of 10 whole body cryostimulation sessions (first measurement), one day after the last session (second measurement) and ten days later (third measurement). Rest flow, post-occlusive hyperaemic reaction, reaction to temperature and arterio–venous reflex index were evaluated by laser Doppler flowmetry. The values recorded for rest flow, a post-occlusive hyperaemic reaction, a reaction to temperature and arterio – venous reflex index were significantly higher both in the second and third measurement compared to the initial one. Differences were recorded both in men and women. The values of frequency in the range of 0,01 Hz to 2 Hz (heart frequency dependent) were significantly lower after whole-body cryostimulation in both men and women. In the range of myogenic frequency significantly higher values were recorded in the second and third measurement compared to the first one. Recorded data suggest improved response of the cutaneous microcirculation to applied stimuli in both women and men. Positive effects of cryostimulation persist in the tested group for 10 consecutive days. PMID:23487007

  5. Analysis of adipose tissue distribution using whole-body magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Schwarz, Tobias; Dinkel, Julien; Delorme, Stefan; Teucher, Birgit; Kaaks, Rudolf; Meinzer, Hans-Peter; Heimann, Tobias

    2011-03-01

    Obesity is an increasing problem in the western world and triggers diseases like cancer, type two diabetes, and cardiovascular diseases. In recent years, magnetic resonance imaging (MRI) has become a clinically viable method to measure the amount and distribution of adipose tissue (AT) in the body. However, analysis of MRI images by manual segmentation is a tedious and time-consuming process. In this paper, we propose a semi-automatic method to quantify the amount of different AT types from whole-body MRI data with less user interaction. Initially, body fat is extracted by automatic thresholding. A statistical shape model of the abdomen is then used to differentiate between subcutaneous and visceral AT. Finally, fat in the bone marrow is removed using morphological operators. The proposed method was evaluated on 15 whole-body MRI images using manual segmentation as ground truth for adipose tissue. The resulting overlap for total AT was 93.7% +/- 5.5 with a volumetric difference of 7.3% +/- 6.4. Furthermore, we tested the robustness of the segmentation results with regard to the initial, interactively defined position of the shape model. In conclusion, the developed method proved suitable for the analysis of AT distribution from whole-body MRI data. For large studies, a fully automatic version of the segmentation procedure is expected in the near future.

  6. Effects of whole-body vibration after eccentric exercise on muscle soreness and muscle strength recovery.

    PubMed

    Timon, Rafael; Tejero, Javier; Brazo-Sayavera, Javier; Crespo, Carmen; Olcina, Guillermo

    2016-06-01

    [Purpose] The aim of this study was to investigate whether or not a single whole-body vibration treatment after eccentric exercise can reduce muscle soreness and enhance muscle recovery. [Subjects and Methods] Twenty untrained participants were randomly assigned to two groups: a vibration group (n=10) and control group (n=10). Participants performed eccentric quadriceps training of 4 sets of 5 repetitions at 120% 1RM, with 4 min rest between sets. After that, the vibration group received 3 sets of 1 min whole body vibration (12 Hz, 4 mm) with 30 s of passive recovery between sets. Serum creatine kinase, blood urea nitrogen, muscle soreness (visual analog scale) and muscle strength (peak isometric torque) were assessed. [Results] Creatine kinase was lower in the vibration group than in the control group at 24 h (200.2 ± 8.2 vs. 300.5 ± 26.1 U/L) and at 48 h (175.2 ± 12.5 vs. 285.2 ± 19.7 U/L) post-exercise. Muscle soreness decreased in vibration group compared to control group at 48 h post-exercise (34.1 ± 11.4 vs. 65.2 ± 13.2 mm). [Conclusion] Single whole-body vibration treatment after eccentric exercise reduced delayed onset muscle soreness but it did not affect muscle strength recovery. PMID:27390415

  7. Effects of whole-body irradiation on neonatally thymectomized mice. Incidence of benign and malignant tumors.

    PubMed Central

    Anderson, R. E.; Howarth, J. L.; Troup, G. M.

    1978-01-01

    The individual and combined effects of neonatal thymectomy and whole-body irradiation on the prevalence of benign and malignant tumors in germ-free female mice of the Charles Rivers line were studied to determine if a portion of the tumorigenic effects of irradiation can be attributed to injury of the thymic-dependent component of the immune response. Neonatal thymectomy increased a) the incidence of benign and malignant tumors and b) the prevalence of multiple primary neoplasms in an individual mouse. Whole-body exposure to 700 rad at 6 weeks of age further increased th incidence of tumors, but the relative magnitude of this increase was less pronounced than in sham-operated controls. Thus, the cumulative effects of thymectomy plus irradiation are less pronounced than the sum of the individual effects. One of several possible explanations for this observation is that a portion of the carcinogenic effects of whole-body irradiation is mediated by suppression of the thymic-dependent component of the immune response. PMID:645825

  8. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    SciTech Connect

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.; Bolch, Wesley E.

    2008-06-15

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms - called hybrid phantoms - takes advantage of the best features of stylized and voxel phantoms - flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS/polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and

  9. Evaluation of effective dose for a patient under Ga-67 nuclear examination using TLD, water phantom and a simplified model

    PubMed Central

    Chu, Kuang Hua; Lin, Yu Ting; Hsu, Chia Chun; Chen, Chien Yi; Pan, Lung Kwang

    2012-01-01

    This study evaluated the effective dose of Ga-67 for a patient undergoing Ga-67 citrate nuclear examination by applying thermoluminescent dosimeter (TLD) technique and an indigenous water phantom. The Ga-67 radionuclide remaining in the body inevitably generated a measurable internal dose even though gamma camera scanning took only minutes to complete the clinical examination. For effective simulation of the cumulated effective dose for a patient undergoing examination, 150 TLDs were placed inside the water phantom for 6 days to monitor the gamma ray dose from the distributed Ga-67 citrate solution. The inserted TLDs represented internal organs, and the effective dose was calculated according to data in the ICRP-60 report. The water phantom was designed to model the body of a healthy human weighing 70 kg, and the water that was mixed with Ga-67 citrate solution was slowly replaced with fresh feed water to yield the required biological half life of the phantom. After continuously feeding in fresh water throughout the 6 days of TLD exposure, the TLDs were analyzed to determine the effective doses from the various biological half lives of the phantom. The derived effective dose of 185 MBq Ga-67 citrate solution for male/female (M/F) was 10.7/12.2, 10.7/12.0, 8.7/9.9 and 6.0/6.8 mSv, of biological half lives of 6.0, 4.5, 3.0 and 1.5 days, respectively. Although these experimental results correlated well with earlier empirical studies, they were lower than most calculated values. The cumulated uncertainty in the effective dose was 12.5–19.4%, which was acceptable in terms of both TLD counting statistic and reproducibility. PMID:22915780

  10. Construction of realistic liver phantoms from patient images using 3D printer and its application in CT image quality assessment

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Yu, Lifeng; Vrieze, Thomas; Kuhlmann, Joel; Chen, Baiyu; McCollough, Cynthia H.

    2015-03-01

    The purpose of this study is to use 3D printing techniques to construct a realistic liver phantom with heterogeneous background and anatomic structures from patient CT images, and to use the phantom to assess image quality with filtered back-projection and iterative reconstruction algorithms. Patient CT images were segmented into liver tissues, contrast-enhanced vessels, and liver lesions using commercial software, based on which stereolithography (STL) files were created and sent to a commercial 3D printer. A 3D liver phantom was printed after assigning different printing materials to each object to simulate appropriate attenuation of each segmented object. As high opacity materials are not available for the printer, we printed hollow vessels and filled them with iodine solutions of adjusted concentration to represent enhance levels in contrast-enhanced liver scans. The printed phantom was then placed in a 35×26 cm oblong-shaped water phantom and scanned repeatedly at 4 dose levels. Images were reconstructed using standard filtered back-projection and an iterative reconstruction algorithm with 3 different strength settings. Heterogeneous liver background were observed from the CT images and the difference in CT numbers between lesions and background were representative for low contrast lesions in liver CT studies. CT numbers in vessels filled with iodine solutions represented the enhancement of liver arteries and veins. Images were run through a Channelized Hotelling model observer with Garbor channels and ROC analysis was performed. The AUC values showed performance improvement using the iterative reconstruction algorithm and the amount of improvement increased with strength setting.

  11. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT

    PubMed Central

    Khmelinskii, Artem; Groen, Harald C.; Baiker, Martin; de Jong, Marion; Lelieveldt, Boudewijn P. F.

    2012-01-01

    Whole-body SPECT small animal imaging is used to study cancer, and plays an important role in the development of new drugs. Comparing and exploring whole-body datasets can be a difficult and time-consuming task due to the inherent heterogeneity of the data (high volume/throughput, multi-modality, postural and positioning variability). The goal of this study was to provide a method to align and compare side-by-side multiple whole-body skeleton SPECT datasets in a common reference, thus eliminating acquisition variability that exists between the subjects in cross-sectional and multi-modal studies. Six whole-body SPECT/CT datasets of BALB/c mice injected with bone targeting tracers 99mTc-methylene diphosphonate (99mTc-MDP) and 99mTc-hydroxymethane diphosphonate (99mTc-HDP) were used to evaluate the proposed method. An articulated version of the MOBY whole-body mouse atlas was used as a common reference. Its individual bones were registered one-by-one to the skeleton extracted from the acquired SPECT data following an anatomical hierarchical tree. Sequential registration was used while constraining the local degrees of freedom (DoFs) of each bone in accordance to the type of joint and its range of motion. The Articulated Planar Reformation (APR) algorithm was applied to the segmented data for side-by-side change visualization and comparison of data. To quantitatively evaluate the proposed algorithm, bone segmentations of extracted skeletons from the correspondent CT datasets were used. Euclidean point to surface distances between each dataset and the MOBY atlas were calculated. The obtained results indicate that after registration, the mean Euclidean distance decreased from 11.5±12.1 to 2.6±2.1 voxels. The proposed approach yielded satisfactory segmentation results with minimal user intervention. It proved to be robust for “incomplete” data (large chunks of skeleton missing) and for an intuitive exploration and comparison of multi-modal SPECT/CT cross

  12. Does whole-body vibration training in the horizontal direction have effects on motor function and balance of chronic stroke survivors? A preliminary study

    PubMed Central

    Lee, GyuChang

    2015-01-01

    [Purpose] The objective of this study was to investigate the effects of whole-body vibration (WBV) in the horizontal direction on the motor function and balance of chronic stroke survivors. [Subjects and Methods] This study was a randomized controlled trial. Twenty-one individuals with chronic stroke from an inpatient rehabilitation center participated in the study. The participants were allocated to either the WBV training group or the control group. The WBV training group (n = 12) received whole-body vibration delivered in the horizontal direction (15 min/day, 3 times/week, 6 wks) followed by conventional rehabilitation (30 min/day, 5 times/week, 6 wks); the control group (n = 9) received conventional rehabilitation only (30 min/day, 5 times/week, 6 wks). Motor function was measured by using the Fugl-Meyer assessment, and balance was measured by using the Berg Balance Scale (BBS) and the Timed Up and Go (TUG) test before and after the interventions. [Results] After the interventions, all variables improved significantly compared with the baseline values in the WBV training group. In the control group, no significant improvements in any variables were noted. In addition, the BBS score in the WBV training group increased significantly compared with that in the control group. [Conclusion] WBV training with whole-body vibration delivered in the horizontal direction may be a potential intervention for improvement of motor function and balance in patients who previously experienced a stroke. PMID:25995573

  13. Does whole-body vibration training in the horizontal direction have effects on motor function and balance of chronic stroke survivors? A preliminary study.

    PubMed

    Lee, GyuChang

    2015-04-01

    [Purpose] The objective of this study was to investigate the effects of whole-body vibration (WBV) in the horizontal direction on the motor function and balance of chronic stroke survivors. [Subjects and Methods] This study was a randomized controlled trial. Twenty-one individuals with chronic stroke from an inpatient rehabilitation center participated in the study. The participants were allocated to either the WBV training group or the control group. The WBV training group (n = 12) received whole-body vibration delivered in the horizontal direction (15 min/day, 3 times/week, 6 wks) followed by conventional rehabilitation (30 min/day, 5 times/week, 6 wks); the control group (n = 9) received conventional rehabilitation only (30 min/day, 5 times/week, 6 wks). Motor function was measured by using the Fugl-Meyer assessment, and balance was measured by using the Berg Balance Scale (BBS) and the Timed Up and Go (TUG) test before and after the interventions. [Results] After the interventions, all variables improved significantly compared with the baseline values in the WBV training group. In the control group, no significant improvements in any variables were noted. In addition, the BBS score in the WBV training group increased significantly compared with that in the control group. [Conclusion] WBV training with whole-body vibration delivered in the horizontal direction may be a potential intervention for improvement of motor function and balance in patients who previously experienced a stroke. PMID:25995573

  14. The introduction of automated dispensing and injection during PET procedures: a step in the optimisation of extremity doses and whole-body doses of nuclear medicine staff.

    PubMed

    Covens, P; Berus, D; Vanhavere, F; Caveliers, V

    2010-08-01

    Significant staff exposure is generally expected during PET-and PET/CT applications. Whole-body doses as well as extremity doses are usually higher per procedure compared with SPECT applications. Dispensing individual patient doses and manual injection involves high extremity doses even when heavy weighted syringe shields are used. In some cases the external radiation causes an exposure to the fingertips of more than 500 mSv y(-1), which is the yearly limit. Whole-body doses per procedure are relatively lower compared with extremity doses and are generally spread over the entire procedure (Guillet, B., Quentin, P., Waultier, S., Bourrelly, M., Pisano, P. and Mundler, O. Technologist radiation exposure in routine clinical practice with 18F-FDG PET. J. Nucl. Med. Technol. 33, 175-179 (2005). Optimisation of the individual workload is often used to restrict staff doses, but many PET centres face the need for further optimisation to reduce the staff doses to an acceptable level. During this study the effect of the use of an automated dispensing and injection system for (18)FDG on whole-body doses and extremity doses was evaluated. Detailed dosimetric studies using thermoluminescent and direct ion storage dosimetry were carried out before and after the introduction of this system. The results show that the extremity doses can be reduced by more than 95 % up to a mean level of 10 muSv per handled GBq. At the same time, whole-body doses can be halved during injection of the tracer. This results in a dose reduction of 20 % during the entire procedure of injection, escorting and positioning. In this way, the study shows that with the use of automated dispensing and injection a considerable staff dose reduction can be obtained. PMID:20335185

  15. Effects of Whole-Body Cryotherapy in Comparison with Other Physical Modalities Used with Kinesitherapy in Rheumatoid Arthritis

    PubMed Central

    Gizińska, Małgorzata; Rutkowski, Radosław; Romanowski, Wojciech; Lewandowski, Jacek; Straburzyńska-Lupa, Anna

    2015-01-01

    Whole-body cryotherapy (WBC) has been frequently used to supplement the rehabilitation of patients with rheumatoid arthritis (RA). The aim of this study was to compare the effect of WBC and traditional rehabilitation (TR) on clinical parameters and systemic levels of IL-6, TNF-α in patients with RA. The study group comprised 25 patients who were subjected to WBC (−110°C) and 19 patients who underwent a traditional rehabilitation program. Some clinical variables and levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were used to assess the outcomes. After therapy both groups exhibited similar improvement in pain, disease activity, fatigue, time of walking, and the number of steps over a distance of 50 m. Only significantly better results were observed in HAQ in TR group (p < 0.05). However, similar significant reduction in IL-6 and TNF-α level was observed. The results showed positive effects of a 2-week rehabilitation program for patients with RA regardless of the kind of the applied physical procedure. PMID:26576422

  16. Contralateral subtraction technique for detection of asymmetric abnormalities on whole-body bone scintigrams

    NASA Astrophysics Data System (ADS)

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Pu, Yonglin; Doi, Kunio

    2007-03-01

    We developed a computer-aided diagnostic (CAD) scheme for assisting radiologists in the detection of asymmetric abnormalities on a single whole-body bone scintigram by applying a contralateral subtraction (CS) technique. Twenty whole-body bone scans including 107 abnormal lesions in anterior and/or posterior images (the number of lesions per case ranged from 1 to 16, mean 5.4) were used in this study. In our scheme, the original bone scan image was flipped horizontally to provide a mirror image. The mirror image was first rotated and shifted globally to match the original image approximately, and then was nonlinearly warped by use of an elastic matching technique in order to match the original image accurately. We applied a nonlinear lookup table to convert the difference in pixel values between the original and the warped images to new pixel values for a CS image, in order to enhance dark shadows at the locations of abnormal lesions where uptake of radioisotope was asymmetrically high, and to suppress light shadows of the lesions on the contralateral side. In addition, we applied a CAD scheme for the detection of asymmetric abnormalities by use of rule-based tests and sequential application of artificial neural networks with 25 image features extracted from the original and CS images. The performance of the CAD scheme, which was evaluated by a leave-one-case-out method, indicated an average sensitivity of 80.4 % with 3.8 false positives per case. This CAD scheme with the contralateral subtraction technique has the potential to improve radiologists' diagnostic accuracy and could be used for computerized identification of asymmetric abnormalities on whole-body bone scans.

  17. Extraction of basic movement from whole-body movement, based on gait variability

    PubMed Central

    Maurer, Christian; von Tscharner, Vinzenz; Samsom, Michael; Baltich, Jennifer; Nigg, Benno M

    2013-01-01

    The aim of this study was to quantify the step-to-step variability (SSV) in speed-variant and speed-invariant movement components of the whole-body gait pattern during running. These separate aspects of variability can be used to gain insight into the neuromuscular control strategies that are engaged during running. Ten healthy, physically active, male recreational athletes performed five treadmill running trials at five different speeds (range: 1.3–4.9 m/sec). The whole-body movement was separated into principal movements (PM) using a principal component analysis. The PMs were split into two groups: a speed-variant group, where the range of motion (amplitude of PMs) changed with running speed; and a speed-invariant group, where the range of motion was constant across various speeds. The step-to-step variability (SSV) of the two groups was then quantified. The absolute SSV was the summed variability across all gait cycles, whereas the relative SSV was the summed variability divided by the magnitude of the movement. The absolute SSV of the speed-variant movements increased with running speed. By contrast, the relative SSV of the speed-variant group (as normalized to the PM amplitude) decreased asymptotically toward a minimal level as running speed increased. Both the absolute and relative SSV of the speed-invariant movements revealed a minimum at 3.1 m/sec. The whole-body gait pattern during running can be subdivided into speed-variant and speed-invariant movements. An interpretation of the SSV based on minimal intervention theory suggests that speed-variant movements are more tightly controlled, as evidenced by a lower degree of variability compared to the speed-invariant movements. PMID:24303133

  18. Performance Evaluation of Whole Body Counting Facilities in the Marshall Islands (2002-2005)

    SciTech Connect

    Kehl, S R; Hamilton, T; Jue, T; Hickman, D

    2007-04-03

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands (https://eed.llnl.gov/mi/). Local atoll governments have been actively engaged in developing shared responsibilities for protecting the health and safety of resettled and resettling population at risk from exposure to elevated levels of residual fallout contamination in the environment. Under the program, whole body counting facilities have been established at three locations in the Marshall Islands. These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing technical support services including data quality assurance and performance testing. We have also established a mirror whole body counting facility at the Lawrence Livermore National Laboratory as a technician training center. The LLNL facility also allows program managers to develop quality assurance and operational procedures, and test equipment and corrective actions prior to deployment at remote stations in the Marshall Islands. This document summarizes the results of external performance evaluation exercises conducted at each of the facilities (2002-2005) under the umbrella of the Oak Ridge National Laboratory Intercomparison Studies Program (ISP). The ISP was specifically designed to meet intercomparison requirements of the United States (U.S.) Department of Energy Laboratory Accreditation Program (DOELAP). In this way, the Marshall Islands Radiological Surveillance Program has attempted to establish quality assurance measures in whole body counting that are consistent with standard requirements used to monitor DOE workers in the United States. Based on ANSI N13.30, the acceptable performance criteria for relative measurement bias and precision for radiobioassay service laboratory quality control

  19. Effect of sway on image fidelity in whole-body digitizing

    NASA Astrophysics Data System (ADS)

    Corner, Brian D.; Hu, Anmin

    1998-03-01

    For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.

  20. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone

    PubMed Central

    Paulus, Daniel H.; Quick, Harald H.; Geppert, Christian; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Faul, David; Boada, Fernando; Friedman, Kent P.; Koesters, Thomas

    2016-01-01

    In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging. Methods The new method (“Model”) is based on a regular 4-compartment segmentation from a Dixon sequence (“Dixon”). Bone information is added using a model-based bone segmentation algorithm, which includes a set of prealigned MR image and bone mask pairs for each major body bone individually. Model was quantitatively evaluated on 20 patients who underwent whole-body PET/MR imaging. As a standard of reference, CT-based μ-maps were generated for each patient individually by nonrigid registration to the MR images based on PET/CT data. This step allowed for a quantitative comparison of all μ-maps based on a single PET emission raw dataset of the PET/MR system. Volumes of interest were drawn on normal tissue, soft-tissue lesions, and bone lesions; standardized uptake values were quantitatively compared. Results In soft-tissue regions with background uptake, the average bias of SUVs in background volumes of interest was 2.4% ± 2.5% and 2.7% ± 2.7% for Dixon and Model, respectively, compared with CT-based AC. For bony tissue, the −25.5% ± 7.9% underestimation observed with Dixon was reduced to −4.9% ± 6.7% with Model. In bone lesions, the average underestimation was −7.4% ± 5.3% and −2.9% ± 5.8% for Dixon and Model, respectively. For soft-tissue lesions, the biases were 5.1% ± 5.1% for Dixon and 5.2% ± 5.2% for Model. Conclusion The novel MR-based AC method for whole-body PET/MR imaging, combining Dixon-based soft-tissue segmentation and model-based bone estimation, improves PET quantification in whole-body hybrid PET

  1. Local versus whole-body sweating adaptations following 14 days of traditional heat acclimation.

    PubMed

    Poirier, Martin P; Gagnon, Daniel; Kenny, Glen P

    2016-08-01

    The purpose of this study was to examine if local changes in sweat rate following 14 days of heat acclimation reflect those that occur at the whole-body level. Both prior to and following a 14-day traditional heat acclimation protocol, 10 males exercised in the heat (35 °C, ∼20% relative humidity) at increasing rates of heat production equal to 300 (Ex1), 350 (Ex2), and 400 (Ex3) W·m(-2). A 10-min recovery period followed Ex1, while a 20-min recovery period separated Ex2 and Ex3. The exercise protocol was performed in a direct calorimeter to measure whole-body sweat rate and, on a separate day, in a thermal chamber to measure local sweat rate (LSR), sweat gland activation (SGA), and sweat gland output (SGO) on the upper back, chest, and mid-anterior forearm. Post-acclimation, whole-body sweat rate was greater during each exercise bout (Ex1: 14.3 ± 0.9; Ex2: 17.3 ± 1.2; Ex3: 19.4 ± 1.3 g·min(-1), all p ≤ 0.05) relative to pre-acclimation (Ex1: 13.1 ± 0.6; Ex2: 15.4 ± 0.8; Ex3: 16.5 ± 1.3 g·min(-1)). In contrast, only LSR on the forearm increased with acclimation, and this increase was only observed during Ex2 (Post: 1.32 ± 0.33 vs. Pre: 1.06 ± 0.22 mg·min(-1)·cm(-2), p = 0.03) and Ex3 (Post: 1.47 ± 0.41 vs. Pre: 1.17 ± 0.23 mg·min(-1)·cm(-2), p = 0.05). The greater forearm LSR post-acclimation was due to an increase in SGO, as no changes in SGA were observed. Overall, these data demonstrate marked regional variability in the effect of heat acclimation on LSR, such that not all local measurements of sweat rate reflect the improvements observed at the whole-body level. PMID:27467216

  2. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid.

    PubMed

    Ambrus, C M; Ambrus, J L

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colonyforming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls. PMID:124758

  3. Absolute accuracy of the Cyberware WB4 whole-body scanner

    NASA Astrophysics Data System (ADS)

    Daanen, Hein A. M.; Taylor, Stacie E.; Brunsman, Matthew A.; Nurre, Joseph H.

    1997-03-01

    The Cyberware WB4 whole body scanner is one of the first scanning systems in the world that generates a high resolution data set of the outer surface of the human body. The Computerized Anthropometric Research and Design (CARD) Laboratory of Wright-Patterson AFB intends to use the scanner to enable quick and reliable acquisition of anthropometric data. For this purpose, a validation study was initiated to check the accuracy, reliability and errors of the system. A calibration object, consisting of two boxes and a cylinder, was scanned in several locations in the scanning space. The object dimensions in the resulting scans compared favorably to the actual dimensions of the calibration object.

  4. Appearance of cell fragments in thymus after a whole-body X-irradiation of rat

    SciTech Connect

    Ohyama, H.; Yamada, T.

    1983-01-01

    Changes in surface architecture and three dimensional structure of rat thymus cortex were examined by scanning electron microscopy (SEM) after a whole-body X-irradiation. The samples of thymus prepared from rats 4 to 8 hr after a 400 R irradiation were observed by SEM. Normal thymocytes, having tiny microvilli and shallow ridges, decreased in number after irradiation, with a corresponding increase in radiation damaged round shaped cells with occasional protrusions and pores. With time after irradiation, smaller spherical fragments of cells having smooth or porous surfaces increased in number.

  5. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  6. Emergency treatment of exertional heatstroke and comparison of whole body cooling techniques.

    PubMed

    Costrini, A

    1990-02-01

    This manuscript compares the whole body cooling techniques in the emergency treatment of heatstroke. Historically, the use of cold water immersion with skin massage has been quite successful in rapidly lowering body temperature and in avoiding severe complications or death. Recent studies have suggested alternative therapies, including the use of a warm air spray, the use of helicopter downdraft, and pharmacological agents. While evidence exists to support these methods, they have not been shown to reduce fatalities as effectively as ice water immersion. Although several cooling methods may have clinical use, all techniques rely on the prompt recognition of symptoms and immediate action in the field. PMID:2406541

  7. Waveform-Sampling Electronics for a Whole-Body Time-of-Flight PET Scanner

    PubMed Central

    Ashmanskas, W. J.; LeGeyt, B. C.; Newcomer, F. M.; Panetta, J. V.; Ryan, W. A.; Van Berg, R.; Wiener, R. I.; Karp Fellow, J. S.

    2014-01-01

    Waveform sampling is an appealing technique for instruments requiring precision time and pulse-height measurements. Sampling each PMT waveform at oscilloscope-like rates of several gigasamples per second enables one to process PMT signals digitally, which in turn makes it straightforward to optimize timing resolution and amplitude (energy and position) resolution in response to calibration effects, pile-up effects, and other systematic sources of waveform variation. We describe a system design and preliminary implementation that neatly maps waveform-sampling technology onto the LaPET prototype whole-body time-of-flight PET scanner that serves as the platform for testing this new technology. PMID:25484379

  8. Whole-Body Vibration and Blood Flow and Muscle Oxygenation: A Meta-Analysis

    PubMed Central

    Games, Kenneth E.; Sefton, JoEllen M.; Wilson, Alan E.

    2015-01-01

    Context: The use and popularity of whole-body vibration (WBV) has increased in recent years, but there is a lack of consensus in the literature about the effectiveness of the treatment. Objective: To quantitatively examine the effects of WBV on muscle oxygenation and peripheral blood flow in healthy adults. Data Sources: We searched Web of Science and PubMed databases and reference lists from relevant articles using the key terms whole body vibration, whole-body vibration, WBV, blood flow, peripheral blood flow, oxygenation, muscle oxygenation, circulation, circulatory, near infrared spectroscopy, NIRS, and power Doppler. Key terms were searched using single word and combination searches. No date range was specified. Study Selection: Criteria for inclusion were (1) use of a commercially available WBV device, (2) a human research model, (3) a pre-WBV condition and at least 1 WBV experimental condition, and (4) reporting of unstandardized means and standard deviations of muscle oxygenation or peripheral blood flow. Data Extraction: Means, standard deviations, and sample sizes were extracted from the text, tables, and figures of included studies. A total of 35 and 90 data points were extracted for the muscle-oxygenation and blood-flow meta-analyses, respectively. Data for each meta-analysis were combined and analyzed using meta-analysis software. Weighted, random-effects meta-analyses using the Hedges g metric were completed for muscle oxygenation and blood flow. We then conducted follow-up analyses using the moderator variables of vibration type, vibration time, vibration frequency, measurement location, and sample type. Data Synthesis: We found 18 potential articles. Further examination yielded 10 studies meeting the inclusion criteria. Whole-body vibration was shown to positively influence peripheral blood flow. Additionally, the moderators of vibration type and frequency altered the influence of WBV on blood flow. Overall, WBV did not alter muscle oxygenation

  9. Incidental Gallbladder Cancer Visualized From Posttreatment 131I Whole-Body Scan.

    PubMed

    Anongpornjossakul, Yoch; Utamakul, Chirawat; Chamroonrat, Wichana; Kositwattanarerk, Arpakorn; Thamnirat, Kanungnij; Sritara, Chanika

    2016-03-01

    A 72-year-old woman with papillary thyroid cancer post-total thyroidectomy was referred for post-I treatment whole-body scan. Images revealed focal uptake within the gallbladder. Cholecystectomy was subsequently performed, and the pathology report showed well-differentiated adenocarcinoma. Given a history of papillary thyroid cancer, the iodine uptake was reasonably explained as metastasis; however, gallbladder metastasis was extremely infrequent. Literature described the incidental radioiodine retention in the gallbladder as false-positive findings, which can be normal variants or benign hepatobiliary conditions. Primary gallbladder malignancy could be counted for another possibility despite controversial mechanism of uptake. PMID:26447377

  10. A 2-Tesla active shield magnet for whole body imaging and spectroscopy

    SciTech Connect

    Davies, F.J.; Elliott, R.T.; Hawksworth, D.G. )

    1991-03-01

    This paper reports on the development and testing of a 2T superconducting Active Shield magnet, with a 0.99m diameter warm bore for whole-body Magnetic Resonance Imaging (MRI) and spectroscopy. The magnet and cryostat were designed to meet the same performance standards as existing MRI magnets, but with the volume of the stray field region reduced to less than 4% of that for an unshielded magnet. The 0.5 mT stray field contour is within 5m axially and 3m radially of the magnet center. The system weight is only 14 tonnes.

  11. Methods for calculating phase angle from measured whole body bioimpedance modulus

    NASA Astrophysics Data System (ADS)

    Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre

    2010-04-01

    Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.

  12. Hybrid computational phantoms of the 15-year male and female adolescent: Applications to CT organ dosimetry for patients of variable morphometry

    PubMed Central

    Lee, Choonsik; Lodwick, Daniel; Williams, Jonathan L.; Bolch, Wesley E.

    2008-01-01

    Currently, two classes of the computational phantoms have been developed for dosimetry calculation: (1) stylized (or mathematical) and (2) voxel (or tomographic) phantoms describing human anatomy through mathematical surface equations and three-dimensional labeled voxel matrices, respectively. Mathematical surface equations in stylized phantoms provide flexibility in phantom design and alteration, but the resulting anatomical description is, in many cases, not very realistic. Voxel phantoms display far better anatomical realism, but they are limited in terms of their ability to alter organ shape, position, and depth, as well as body posture. A new class of computational phantoms—called hybrid phantoms—takes advantage of the best features of stylized and voxel phantoms—flexibility and anatomical realism, respectively. In the current study, hybrid computational phantoms representing reference 15-year male and female body anatomy and anthropometry are presented. For the male phantom, organ contours were extracted from the University of Florida (UF) 14-year series B male voxel phantom, while for the female phantom, original computed tomography (CT) data from two 14-year female patients were used. Polygon mesh models for the major organs and tissues were reconstructed for nonuniform rational B-spline (NURBS) surface modeling. The resulting NURBS∕polygon mesh models representing body contour and internal anatomy were matched to anthropometric data and reference organ mass data provided by the Centers for Disease Control and Prevention (CDC) and the International Commission on Radiation Protection (ICRP), respectively. Finally, two hybrid 15-year male and female phantoms were completed where a total of eight anthropometric data categories were matched to standard values within 4% and organ masses matched to ICRP data within 1% with the exception of total skin. To highlight the flexibility of the hybrid phantoms, 10th and 90th weight percentile 15-year male and

  13. Follow-up of atheroma burden with sequential whole body contrast enhanced MR angiography: a feasibility study.

    PubMed

    Weir-McCall, Jonathan R; White, Richard D; Ramkumar, Prasad G; Gandy, Stephen J; Khan, Faisel; Belch, Jill J F; Struthers, Allan D; Houston, J Graeme

    2016-05-01

    Assess the feasibility of whole body magnetic resonance angiography (WB-MRA) for monitoring global atheroma burden in a population with peripheral arterial disease (PAD). 50 consecutive patients with symptomatic PAD referred for clinically indicated MRA were recruited. Whole body MRA (WB-MRA) was performed at baseline, 6 months and 3 years. The vasculature was split into 31 anatomical arterial segments. Each segment was scored according to degree of luminal narrowing: 0 = normal, 1 = <50 %, 2 = 50-70 %, 3 = 71-99 %, 4 = vessel occlusion. The score from all assessable segments was summed, and then normalised to the number of assessable vessels. This normalised score was divided by four (the maximum vessel score) and multiplied by 100 to give a final standardised atheroma score (SAS) with a score of 0-100. Progression was assessed with repeat measure ANOVA. 36 patients were scanned at 0 and 6 months, with 26 patients scanned at the 3 years follow up. Only those who completed all three visits were included in the final analysis. Baseline atherosclerotic burden was high with a mean SAS of 15.7 ± 10.3. No significant progression was present at 6 months (mean SAS 16.4 ± 10.5, p = 0.67), however there was significant disease progression at 3 years (mean SAS 17.7 ± 11.5, p = 0.01). Those with atheroma progression at follow-up were less likely to be on statin therapy (79 vs 100 %, p = 0.04), and had significantly higher baseline SAS (17.6 ± 11.2 vs 10.7 ± 5.1, p = 0.043). Follow up of atheroma burden is possible with WB-MRA, which can successfully quantify and monitor atherosclerosis progression at 3 years follow-up. PMID:26809611

  14. Institutional patient-specific intensity-modulated radiation therapy quality assurance does not predict unacceptable plan delivery as measured by IROC Houston’s head and neck phantom

    PubMed Central

    Kry, Stephen F.; Molineu, Andrea; Kerns, James; Faught, Austin; Huang, Jessie Y.; Pulliam, Kiley; Tonigan, Jackie; Alvarez, Paola; Stingo, Francesco; Followill, David S.

    2014-01-01

    Purpose To determine whether in-house patient-specific IMRT QA results predict the Imaging and Radiation Oncology Core (IROC)-Houston phantom results. Methods and Materials IROC Houston’s IMRT head and neck phantoms have been irradiated by numerous institutions as part of clinical trial credentialing. We retrospectively compared these phantom results with those of in-house IMRT QA (following the institution’s clinical process) for 855 irradiations performed between 2003 and 2013. The sensitivity and specificity of IMRT QA to detect unacceptable or acceptable plans was determined relative to the IROC Houston phantom results. Additional analyses evaluated specific IMRT QA dosimeters and analysis methods. Results IMRT QA universally showed poor sensitivity relative to the head and neck phantom i.e., poor ability to predict a failing IROC Houston phantom result. Depending on how the IMRT QA results were interpreted, overall sensitivity ranged from 2% to 18%. For different IMRT QA methods, sensitivity ranged from 3% to 54%. Although the observed sensitivity was particularly poor at clinical thresholds (e.g., 3% dose difference or 90% of pixels passing gamma), receiver operator characteristic analysis indicated that no threshold showed good sensitivity and specificity for the devices evaluated. Conclusions IMRT QA is not a reasonable replacement for a credentialing phantom. Moreover, the particularly poor agreement between IMRT QA and the IROC Houston phantoms highlights surprising inconsistency in the QA process. PMID:25442044

  15. Can an iPod Touch be used to assess whole-body vibration associated with mining equipment?

    PubMed

    Wolfgang, Rebecca; Di Corleto, Luke; Burgess-Limerick, Robin

    2014-11-01

    The cost and complexity of commercially available whole-body vibration measurement devices is a barrier to the systematic collection of the information required to manage this hazard. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by collecting 58 simultaneous pairs of acceleration measurements in three dimensions from a fifth-generation iPod Touch and gold standard whole-body vibration measurement devices, while a range of heavy mining equipment was operated at three surface coal mines. The results suggest that accelerometer data gathered from a consumer electronic device are able to be used to measure whole-body vibration amplitude with 95% confidence of ±0.06 m s(-2) root mean square for the vertical direction (1.96 × standard deviation of the constant error). PMID:25106947

  16. Transient infiltration of neutrophils into the thymus following whole-body X-ray irradiation in IL-10 knockout mice

    SciTech Connect

    Fujiwara, Hiroya; Yamazaki, Takahiro; Uzawa, Akiko; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-05-02

    IL-10 is known to suppress the inflammatory responses in a variety of experimental models. Because we previously found that whole-body X-irradiation causes massive apoptosis in the thymus and transient infiltration of neutrophils, in this study, we examined whether or not IL-10 is involved in the regulation of neutrophil infiltration upon whole-body X-ray irradiation using IL-10 knockout mice. Although IL-10 was induced in the thymus on whole-body X-ray irradiation, apoptosis of thymocytes, neutrophil infiltration, and MIP-2 and KC production in the thymus were not affected by an IL-10 deficiency. Coculturing of bone marrow-derived macrophages with late apoptotic cells caused MIP-2 production, which was also not affected by an IL-10 deficiency. These results suggest the uniqueness of the inflammatory response induced by whole-body X-ray irradiation, which does not seem to be regulated by IL-10.

  17. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    SciTech Connect

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  18. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  19. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice

    PubMed Central

    Machado, Ana S; Darmohray, Dana M; Fayad, João; Marques, Hugo G; Carey, Megan R

    2015-01-01

    The coordination of movement across the body is a fundamental, yet poorly understood aspect of motor control. Mutant mice with cerebellar circuit defects exhibit characteristic impairments in locomotor coordination; however, the fundamental features of this gait ataxia have not been effectively isolated. Here we describe a novel system (LocoMouse) for analyzing limb, head, and tail kinematics of freely walking mice. Analysis of visibly ataxic Purkinje cell degeneration (pcd) mice reveals that while differences in the forward motion of individual paws are fully accounted for by changes in walking speed and body size, more complex 3D trajectories and, especially, inter-limb and whole-body coordination are specifically impaired. Moreover, the coordination deficits in pcd are consistent with a failure to predict and compensate for the consequences of movement across the body. These results isolate specific impairments in whole-body coordination in mice and provide a quantitative framework for understanding cerebellar contributions to coordinated locomotion. DOI: http://dx.doi.org/10.7554/eLife.07892.001 PMID:26433022

  20. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit. PMID:20037244

  1. Equal sensation curves for whole-body vibration expressed as a function of driving force

    NASA Astrophysics Data System (ADS)

    Mansfield, Neil J.; Maeda, Setsuo

    2005-06-01

    Previous studies have shown that the seated human is most sensitive to whole-body vertical vibration at about 5 Hz. Similarly, the body shows an apparent mass resonance at about 5 Hz. Considering these similarities between the biomechanical and subjective responses, it was hypothesized that, at low frequencies, subjective ratings of whole-body vibration might be directly proportional to the driving force. Twelve male subjects participated in a laboratory experiment where subjects sat on a rigid seat mounted on a shaker. The magnitude of a test stimulus was adjusted such that the subjective intensity could be matched to a reference stimulus, using a modified Bruceton test protocol. The sinusoidal reference stimulus was 8-Hz vibration with a magnitude of 0.5 m/s2 rms (or 0.25 m/s2 rms for the 1-Hz test); the sinusoidal test stimuli had frequencies of 1, 2, 4, 16, and 32 Hz. Equal sensation contours in terms of seat acceleration showed data similar to those in the literature. Equal sensation contours in terms of force showed a nominally linear response at 1, 2, and 4 Hz, but an increasing sensitivity at higher frequencies. This is in agreement with a model derived from published subjective and objective fitted data. .

  2. Whole-body dynamic imaging with continuous bed motion PET/CT.

    PubMed

    Osborne, Dustin R; Acuff, Shelley

    2016-04-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  3. Consequences of lethal-whole-body gamma radiation and possible ameliorative role of melatonin.

    PubMed

    Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

    2014-01-01

    Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity. PMID:25431791

  4. A whole body counting facility in a remote Enewetak Island setting.

    PubMed

    Bell, Thomas R; Hickman, David; Yamaguchi, Lance; Jackson, William; Hamilton, Terry

    2002-08-01

    The U.S. Department of Energy (DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection programs for resettled and resettling populations. As part of this new initiative, DOE agreed to design and construct a radiological laboratory on Enewetak Island, and help develop the necessary local resources to maintain and operate the facility. This cooperative effort was formalized in August 2000 between the DOE, the Republic of the Marshall Islands (RMI), and the Enewetak/Ujelang Local Atoll Government (EULGOV). The laboratory facility was completed in May 2001. The laboratory incorporates both a permanent whole body counting system to assess internal exposures to 137Cs, and clean living space for people providing 24-h void urine samples. DOE continues to provide on-going technical assistance, training, and data quality review while EULGOV provides manpower and infrastructure development to sustain facility operations on a full-time basis. This paper will detail the special construction, transportation and installation issues in establishing a whole body counting facility in an isolated, harsh environmental setting. PMID:12132723

  5. Plutonium fecal and urinary excretion functions: Derivation from a systematic whole-body retention function

    SciTech Connect

    Sun, C. . Dept. of Advanced Technology); Lee, D. . Regulatory Research, Nuclear Safety Technology Div.)

    1999-06-01

    Liver-bile secretion directly influences the content of plutonium in feces. To assess the reliability of plutonium metabolic models and to improve the accuracy of interpreting plutonium fecal data, the authors developed a compartmental model that simulates the metabolism of plutonium in humans. With this model, they can describe the transport of plutonium contaminants in the systemic organs and tissues of the body, including fecal and urine excretions, without using elaborate kinetic information. The parameter values of the models, which describe the translocation rates and recycling of plutonium in the body, can be derived from a multi-term exponential systemic function for whole-body retention. The analytical derivations and algorithms for solving translocation parameter values are established for the model and illustrated by applying them to the biokinetics and bioassay of plutonium. This study describes how to (1) design a physiological model for incorporating liver biliary secretion and for obtaining a fecal-excretion function, (2) develop an analytical solution for identifying the translocation-parameter values incorporating the recycling of plutonium in the body, and (3) derive a set of urinary and fecal excretion-functions from a published systemic whole-body retention function, generally acknowledged to be accurate, as a real and practical example.

  6. Consequences of Lethal-Whole-Body Gamma Radiation and Possible Ameliorative Role of Melatonin

    PubMed Central

    Mihandoost, Ehsan; Shirazi, Alireza; Mahdavi, Seied Rabie; Aliasgharzadeh, Akbar

    2014-01-01

    Gamma radiation induces the generation of free radicals, leading to serious cellular damages in biological systems. Radioprotectors act as prophylactic agents that are administered to shield normal cells and tissues from the deleterious effects of radiation. Melatonin synergistically acts as an immune-stimulator and antioxidant. We investigated the possible radioprotective role of melatonin (100 mg/kg i.p.) against lethal-whole-body radiation- (10 Gy) induced sickness, body weight loss, and mortality in rats. Results of the present study suggest that exposure to lethal-whole-body radiation incurred mortality, body weight loss, and apoptosis and it also depleted the immunity and the antioxidant status of the rats. Our results show that melatonin pretreatment provides protection against radiation induced mortality, oxidative stress, and immune-suppression. The melatonin pretreated irradiated rats showed less change in body weight as compared to radiation only group. On the other hand, melatonin appeared to have another radioprotective role, suggesting that melatonin may reduce apoptosis through a caspase-3-mediated pathway by blocking caspase-3 activity. PMID:25431791

  7. Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques

    PubMed Central

    Attariwala, Rajpaul; Picker, Wayne

    2013-01-01

    Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006

  8. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers

    NASA Astrophysics Data System (ADS)

    Hoy, J.; Mubarak, N.; Nelson, S.; Sweerts de Landas, M.; Magnusson, M.; Okunribido, O.; Pope, M.

    2005-06-01

    A cross-sectional study was conducted to investigate the risks from whole-body vibration and posture demands for low back pain (LBP) among forklift truck (forklift) drivers. Using a validated questionnaire, information about health history was obtained over a period of two weeks in face-to-face interviews. The forklift drivers were observed in respect of their sitting posture, including frequency with which different positions were adopted (bending, leaning and twisting) and postural analyses were conducted using the OWAS and RULA techniques. Forklift vibrations at the seat (exposure) were measured in the three orthogonal axes ( x-fore and aft, y-lateral and z-vertical) under actual working conditions according to the recommendations of ISO 2631-1. The results showed that LBP was more prevalent amongst forklift drivers than among non-drivers and driving postures in which the trunk is considerably twisted or bent forward associated with greatest risk. Furthermore, forklift drivers showed to be exposed to acceptable levels of vibration in the x- and y-directions (i.e., below the EU Physical Agents Directive on Vibration Exposure recommended action level—0.5 m/s 2), but not in the z-direction. There were indications that whole-body vibration acts associatively with other factors (not independently) to precipitate LBP.

  9. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  10. Kaempferia parviflora extract increases whole-body energy expenditure in humans: roles of brown adipose tissue.

    PubMed

    Matsushita, Mami; Yoneshiro, Takeshi; Aita, Sayuri; Kamiya, Tomoyasu; Kusaba, Nobutaka; Yamaguchi, Kazuya; Takagaki, Kinya; Kameya, Toshimitsu; Sugie, Hiroki; Saito, Masayuki

    2015-01-01

    Kaempferia parviflora extract (KP) has been reported to have a preventive effect on obesity in mice, probably by increasing energy expenditure (EE). The aims of the current study were to examine the acute effects of KP ingestion on whole-body EE in humans and to analyze its relation to the activity of brown adipose tissue (BAT), a site of non-shivering thermogenesis. After an oral ingestion of an ethanol extract of KP, EE increased significantly, showing a maximal increase of 229±69 kJ/d at 60 min, while it did not change after placebo ingestion. To evaluate BAT activity, the subjects underwent fluorodeoxyglucose-positron emission tomography, and divided into two groups with high- and low-BAT activities. A similar and greater response of EE to KP ingestion was observed in the high-BAT group (351±50 kJ/d at 60 min), but not in the low activity group. Placebo ingestion did not cause any significant EE change in either group. These results indicate that a single oral ingestion of the KP extract can potentially increase whole-body EE probably through the activation of BAT in healthy men, and may be useful as an anti-obesity regimen. PMID:25994142

  11. Effects of aging on whole body and segmental control while obstacle crossing under impaired sensory conditions.

    PubMed

    Novak, Alison C; Deshpande, Nandini

    2014-06-01

    The ability to safely negotiate obstacles is an important component of independent mobility, requiring adaptive locomotor responses to maintain dynamic balance. This study examined the effects of aging and visual-vestibular interactions on whole-body and segmental control during obstacle crossing. Twelve young and 15 older adults walked along a straight pathway and stepped over one obstacle placed in their path. The task was completed under 4 conditions which included intact or blurred vision, and intact or perturbed vestibular information using galvanic vestibular stimulation (GVS). Global task performance significantly increased under suboptimal vision conditions. Vision also significantly influenced medial-lateral center of mass displacement, irrespective of age and GVS. Older adults demonstrated significantly greater trunk pitch and head roll angles under suboptimal vision conditions. Similar to whole-body control, no GVS effect was found for any measures of segmental control. The results indicate a significant reliance on visual but not vestibular information for locomotor control during obstacle crossing. The lack of differences in GVS effects suggests that vestibular information is not up-regulated for obstacle avoidance. This is not differentially affected by aging. In older adults, insufficient visual input appears to affect ability to minimize anterior-posterior trunk movement despite a slower obstacle crossing time and walking speed. Combined with larger medial-lateral deviation of the body COM with insufficient visual information, the older adults may be at a greater risk for imbalance or inability to recover from a possible trip when stepping over an obstacle. PMID:24746603

  12. Late response to whole-lung irradiation alone and with whole-body hyperthermia in dogs

    SciTech Connect

    Gillette, S.M.; Gillette, E.L.; Dawson, C.A.

    1997-02-01

    The late effects of whole-lung irradiation with and without whole-body hyperthermia were studied in beagle dogs. The reference doses ranged from 18 to 49.5 Gy given in 1.5-Gy fractions over 6 weeks. Whole-body hyperthermia was given in three 2-h treatments to a deep rectal temperature of 42.0{degrees}C. Radiation was given simultaneously with hyperthermia on those days. Physiological and histopathological responses were evaluated. Physiological changes included decreases in cardiac output, systemic blood pressure, dynamic compliance and serotonin uptake. Early changes included an increase in extravascular water and total protein in the lavage. These changes were considered mild, were compensated for and occurred only in dogs receiving doses of 40.5 Gy or greater given in 1.5-Gy fractions over 6 weeks. Histopathological change were typical of irradiated lung and included pleural fibrosis, interstitial fibrosis, fibrotic foci, and peribronchial and perivascular fibrosis. There was no enhancement of late injury to lung by hyperthermia seen in this study. 17 refs., 3 figs., 2 tabs.

  13. Suitability of Kinect for measuring whole body movement patterns during exergaming.

    PubMed

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Postema, Klaas; Verkerke, Gijsbertus J; Lamoth, Claudine J C

    2014-09-22

    Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3-64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment. PMID:25173920

  14. Self-reported back pain in tractor drivers exposed to whole-body vibration.

    PubMed

    Boshuizen, H C; Bongers, P M; Hulshof, C T

    1990-01-01

    A postal questionnaire on symptoms of ill health and exposure to whole-body vibration was completed by 577 workers (response rate 79%) who were employed in certain functions by two companies 11 years before. The relation between the occupational history of driving vibrating vehicles (mainly agricultural tractors) and back pain has been analyzed. The prevalence of reported back pain is approximately 10% higher in the tractor drivers than in workers not exposed to vibration. The increase is mainly due to more pain in the lower back and more pain lasting at least several days. A vibration dose was calculated by assigning each vehicle driven a vibration magnitude, estimated on the base of vibration measurements. The prevalence of back pain increases with the vibration dose. The highest prevalence odds ratios are found for the more severe types of back pain. These prevalence odds ratios do not increase with the vibration dose. This might be due to health-related selection which is more pronounced for severe back pain than for back pain in general. The two components of the vibration dose, duration of exposure and estimated mean vibration magnitude, have also been considered separately. Back pain increases with duration of exposure but it does not increase with the estimated mean magnitude of vibration. This is probably due to the inaccuracy of this estimate. The higher prevalence of back pain in tractor drivers might be (partly) caused by whole-body vibration, but prolonged sitting and posture might also be of influence. PMID:2139012

  15. THE RESULTS OF THE EURADOS INTERCOMPARISON IC2014 FOR WHOLE-BODY DOSEMETERS IN PHOTON FIELDS.

    PubMed

    Stadtmann, H; Grimbergen, T W M; Figel, M; Romero, A M; McWhan, A F; Gärtner, C

    2016-09-01

    The European Dosimetry Group (EURADOS) first started performing international intercomparisons for whole-body dosemeters for individual monitoring services in 1998. Since 2008, these whole-body intercomparisons have been performed on a regular basis. In this latest intercomparison (IC2014), 96 monitoring services from 35 countries (mostly European) participated with 112 dosimetry systems. Unlike in the previous intercomparisons, the whole registration, communication and data exchange process was handled by a new on-line platform. All dosemeter irradiations were carried out in the Seibersdorf accredited dosimetry laboratory. The irradiation plan consisted of nine irradiation setups with five different photon radiation qualities (S-Cs, S-Co, RQR7, W-80 and W-150) and two different angles of radiation incidence (0° and 60°). The paper describes and analyses the individual results for the personal dose equivalent quantities Hp(10) and if requested, Hp(0.07), for all participating systems and compares these results with the ISO 14146 'trumpet curve' performance criteria. The results show that 100 systems (89 % of all systems) do fulfil the general ISO 14146 performance criteria. This paper gives an overview on the performance of the participating individual monitoring services and the influence of the dosemeter type on the observed response values. PMID:26763903

  16. Hematological Profile and Martial Status in Rugby Players during Whole Body Cryostimulation

    PubMed Central

    Lombardi, Giovanni; Lanteri, Patrizia; Porcelli, Simone; Mauri, Clara; Colombini, Alessandra; Grasso, Dalila; Zani, Viviana; Bonomi, Felice Giulio; Melegati, Gianluca; Banfi, Giuseppe

    2013-01-01

    Cold-based therapies are commonly applied to alleviate pain symptoms secondary to inflammatory diseases, but also to treat injuries or overuse, as done in sports rehabilitation. Whole body cryotherapy, a relatively new form of cold therapy, consists of short whole-body exposure to extremely cold air (−110°C to −140°C). Cryostimulation is gaining wider acceptance as an effective part of physical therapy to accelerate muscle recovery in rugby players. The aim of this study was to evaluate the effect of repeated cryostimulation sessions on the hematological profile and martial status markers in professional rugby players. Twenty-seven professional rugby players received 2 daily cryostimulation treatments for 7 consecutive days. Blood samples were collected before and after administration of the cryotherapic protocol and hematological profiles were obtained. No changes in the leukocyte count or composition were seen. There was a decrease in the values for erythrocytes, hematocrit, hemoglobin and mean corpuscular hemoglobin content, and an increase in mean corpuscular volume and red cell distribution width. Platelet count and mean volume remained unchanged. Serum transferrin and ferritin decreased, while soluble transferrin receptor increased. Serum iron and transferrin saturation were unchanged, as was reticulocyte count, whereas the immature reticulocyte fraction decreased substantially. In conclusion, in this sample of professional rugby players, cryostimulation modified the hematological profile, with a reduction in erythrocyte count and hemoglobinization paralleled by a change in martial status markers. PMID:23383348

  17. Design and operation of a whole-body monitoring system for the Goiania radiation accident

    SciTech Connect

    Oliveira, C.A.; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. )

    1991-01-01

    With as many individuals involved in the Goiania 137Cs accident who had high levels of internal contamination, it was necessary to improvise a whole-body counter installation in loco. The in-vivo counting system was located in a 4.0 X 3.5 X 3.5-m room, where seven layers of 2-mm lead sheets with dimensions of 2.0 m X 1.0 m were overlaid on the floor at loci that were equidistant from the walls. A 20-cm diameter NaI (Tl) detector was installed at a height of 2.05 m above the floor at the center of the room. The detector was shielded and collimated with 5 cm of lead. The enormous amounts of activity in the subjects required the detector to be positioned at a height of 2.05 m. Subjects were required to wear disposable clothing and lie on a reclining, fiberglass chair. Counting time for the subjects was 2 min (live-time). The minimum detectable 137Cs activity for this counting time was 7.3 kBq* (0.05 significance level). Besides the accident victims, all individuals who had direct or indirect contact with contaminated people or areas were also monitored. More than 300 people of both sexes, with ages varying from a few months to 72 y, were measured for whole-body radioactivity. The observed activities ranged from less than the minimum detectable activity (MDA) to 59 MBq.

  18. Whole-body dynamic imaging with continuous bed motion PET/CT

    PubMed Central

    Acuff, Shelley

    2016-01-01

    Most dynamic imaging protocols require long scan times that are beyond the range of what can be supported in a routine clinical environment and suffer from various difficulties related to step and shoot imaging techniques. In this short communication, we describe continuous bed motion (CBM) imaging techniques to create clinically relevant 15 min whole-body dynamic PET imaging protocols. We also present initial data that suggest that these CBM methods may be sufficient for quantitative analysis of uptake rates and rates of glucose metabolism. Multipass CBM PET was used in conjunction with a population-based input function to perform Patlak modeling of normal tissue. Net uptake rates were estimated and metabolic rates of glucose were calculated. Estimations of k3 (Ki/Vd) were calculated along with modeling of liver regions of interest to assess model stability. Calculated values of metabolic rates of glucose were well within normal ranges found in the previous literature. CBM techniques can potentially be used clinically to obtain reliable, quantitative multipass whole-body dynamic PET data. Values calculated for normal brain were shown to be within previously published values for normal brain glucose metabolism. PMID:26629770

  19. Creatine transporter deficiency leads to increased whole body and cellular metabolism.

    PubMed

    Perna, Marla K; Kokenge, Amanda N; Miles, Keila N; Udobi, Kenea C; Clark, Joseph F; Pyne-Geithman, Gail J; Khuchua, Zaza; Skelton, Matthew R

    2016-08-01

    Creatine (Cr) is a guanidino compound required for rapid replenishment of ATP in cells with a high-energy demand. In humans, mutations in the Cr transporter (CRT;SLC6A8) prevent Cr entry into tissue and result in a significant intellectual impairment, epilepsy, and aphasia. The lack of Cr on both the whole body and cellular metabolism was evaluated in Crt knockout (Crt (-/y) ) mice, a high-fidelity model of human CRT deficiency. Crt (-/y) mice have reduced body mass and, however, show a twofold increase in body fat. There was increased energy expenditure in a home cage environment and during treadmill running in Crt (-/y) mice. Consistent with the increases in the whole-body metabolic function, Crt (-/y) mice show increased cellular metabolism as well. Mitochondrial respiration increased in skeletal muscle fibers and hippocampal lysates from Crt (-/y) mice. In addition, Crt (-/y) mice had increased citrate synthase activity, suggesting a higher number of mitochondria instead of an increase in mitochondrial activity. To determine if the increase in respiration was due to increased mitochondrial numbers, we measured oxygen consumption in an equal number of mitochondria from Crt (+/y) and Crt (-/y) mice. There were no changes in mitochondrial respiration when normalized to mitochondrial number, suggesting that the increase in respiration observed could be to higher mitochondrial content in Crt (-/y) mice. PMID:27401086

  20. Influence of ambient temperature on whole body and segmental bioimpedance spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Medrano, G.; Bausch, R.; Ismail, A. H.; Cordes, A.; Pikkemaat, R.; Leonhardt, S.

    2010-04-01

    Bioimpedance spectroscopy (BIS) measurements are easy to implement and could be used for continuous monitoring. However, several factors (e.g. environment temperature) influence the measurements limiting the accuracy of the technology. Changes in skin temperature produced by changes in ambient temperature are related with changes in skin blood flow and skin impedance. It is assumed that skin impedance change is responsible for the error observed in whole body and segmental measurements. Measurements including body parts more distant from the torso seem to be more affected. In the present article skin and segment impedance have been performed on healthy subjects under extreme changes in environment temperature (13-39 °C). A commercial BIS device with a range between 5 kHz and 1 MHz has been used for the measurements. The results indicate that not only skin impedance, but also impedance of deeper tissue (e.g. muscle) may be responsible for the influence of environment temperature on BIS measurements. Segmental (knee-to-knee) BIS measurements show a relative change of only 2 %, while forearm and whole body impedance changed 14 % and 8 % respectively.

  1. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes

  2. [Visual tracking with/without passive whole-body rotation in Parkinson's disease (PD): Dissociation of smooth-pursuit and cancellation of vestibulo-ocular reflex (VOR)].

    PubMed

    Ito, Norie; Takei, Hidetoshi; Chiba, Susumu; Inoue, Kiyoharu; Fukushima, Kikuro

    2016-01-01

    Although impaired smooth-pursuit in Parkinson's disease (PD) is well known, reports are conflicting on the ability to cancel vestibulo-ocular reflex (VOR) when the target moves with head, requiring gaze-pursuit. To compare visual tracking performance with or without passive whole-body rotation, we examined eye movements of 10 PD patients and 6 age-matched controls during sinusoidal horizontal smooth-pursuit and passive whole-body rotation (0.3 Hz, ± 10°). Three tasks were tested: smooth-pursuit, VOR cancellation, and VORx1 while subjects fixated an earth-stationary spot during whole-body rotation. Mean ± SD eye velocity gains (eye velocities/stimulus velocities) of PD patients during the 3 tasks were 0.32 ± 0.24 0.25 ± 0.22, 0.85 ± 0.20, whereas those of controls were 0.91 ± 0.06, 0.14 ± 0.07, 0.94 ± 0.05, respectively. Difference was significant between the two subject groups only during smooth-pursuit. Plotting eye-velocity gains of individual subjects during VOR cancellation against those during smooth-pursuit revealed significant negative linear correlation between the two parameters in the controls, but no correlation was found in PD patients. Based on the regression equation of the controls, we estimated expected eye velocity gains of individual subjects during VOR cancellation from their smooth-pursuit gains. Estimated gains of PD patients during VOR cancellation were significantly different from their actual gains, suggesting that different neural mechanisms operate during VOR cancellation in the controls and PD. PMID:26912226

  3. An iOS Application for Evaluating Whole-body Vibration Within a Workplace Risk Management Process.

    PubMed

    McGlothlin, James; Burgess-Limerick, R; Lynas, D

    2015-01-01

    Workplace management of whole-body vibration exposure requires systematic collection of whole-body vibration data in conjunction with the numerous variables which influence vibration amplitudes. The cost and complexity of commercially available measurement devices is an impediment to the routine collection of such data by workplaces. An iOS application (WBV) has been developed which allows an iPod Touch to be used to measure whole-body vibration exposures. The utility of the application was demonstrated by simultaneously obtaining 98 pairs of whole-body vibration measurements from both the iPod Touch application and a commercially available whole-body vibration device during the operation of a variety of vehicles and mobile plant in operation at a surface coal mine. The iOS application installed on a fifth-generation iPod Touch was shown to provide a 95% confidence of +/- 0.077 m/s(2) r.m.s. constant error for the vertical direction. Situations in which vibration levels lay within the ISO2631.1 health guidance caution zone were accurately identified, and the qualitative features of the frequency spectra were reproduced. The low cost and relative simplicity of the application has potential to facilitate its use as a screening tool to identify situations in which musculoskeletal disorders may arise as a consequence of exposure to whole-body vibration. PMID:25625605

  4. Whole-body isometric force/torque measurements for functional assessment in neuro-rehabilitation: platform design, development and verification

    PubMed Central

    Mazzoleni, Stefano; Toth, Andras; Munih, Marko; Van Vaerenbergh, Jo; Cavallo, Giuseppe; Micera, Silvestro; Dario, Paolo; Guglielmelli, Eugenio

    2009-01-01

    Background One of the main scientific and technological challenges of rehabilitation bioengineering is the development of innovative methodologies, based on the use of appropriate technological devices, for an objective assessment of patients undergoing a rehabilitation treatment. Such tools should be as fast and cheap to use as clinical scales, which are currently the daily instruments most widely used in the routine clinical practice. Methods A human-centered approach was used in the design and development of a mechanical structure equipped with eight force/torque sensors that record quantitative data during the initiation of a predefined set of Activities of Daily Living (ADL) tasks, in isometric conditions. Results Preliminary results validated the appropriateness, acceptability and functionality of the proposed platform, that has become now a tool used for clinical research in three clinical centres. Conclusion This paper presented the design and development of an innovative platform for whole-body force and torque measurements on human subjects. The platform has been de