Science.gov

Sample records for pattern generation involved

  1. Apparatus for generating nonlinear pulse patterns

    DOEpatents

    Nakamura, Michiyuki

    1981-01-01

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Also, apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  2. Apparatus for generating nonlinear pulse patterns

    DOEpatents

    Nakamura, N.M.I.

    Apparatus for generating a plurality of nonlinear pulse patterns from a single linear pulse pattern. A first counter counts the pulses of the linear pulse pattern and a second counter counts the pulses of the nonlinear pulse pattern. A comparator compares the counts of both counters, and in response to an equal count, a gate is enabled to gate a pulse of the linear pattern as a pulse of the nonlinear pattern, the latter also resetting the first counter. Presettable dividers divide the pulses of each pattern before they are counted by the respective counters. Apparatus for generating a logarithmic pulse pattern from a linear pulse pattern to any log base is described. In one embodiment, a shift register is used in place of the second counter to be clocked by each pulse of the logarithmic pattern to generate the pattern. In another embodiment, a memory stores the logarithmic pattern and is addressed by the second counter which is clocked by the pulses of the logarithmic pulse pattern.

  3. Mask pattern generator employing EPL technology

    NASA Astrophysics Data System (ADS)

    Yoshioka, Nobuyuki; Yamabe, Masaki; Wakamiya, Wataru; Endo, Nobuhiro

    2003-08-01

    Mask cost is one of crucial issues in device fabrication, especially in SoC (System on a Chip) with small-volume production. The cost mainly depends on productivity of mask manufacturing tools such as mask writers and defect inspection tools. EPL (Electron Projection Lithography) has been developing as a high-throughput electron beam exposure technology that will succeed optical lithography. The application of EPL technology to mask writing will result in high productivity and contribute to decrease the mask cost. The concept of a mask pattern generator employing EPL technology is proposed in this paper. It is very similar to EPL technology used for pattern printing on a wafer. The mask patterns on the glass substrate are exposed by projecting the basic circuit patterns formed on the mother EPL mask. One example of the mother EPL mask is a stencil type made with 200-mm Si wafer. The basic circuit patterns are IP patterns and logical primitive patterns such as cell libraries (AND, OR, Inverter, Flip-Flop and etc.) to express the SoC device patterns. Since the SoC patterns are exposed with its collective units such as IP and logical primitive patterns by using this method, the high throughput will be expected comparing with conventional mask E-beam writers. In this paper, the mask pattern generator with the EPL technology is proposed. The concept, its advantages and issues to be solved are discussed.

  4. Optical Pattern Generator Using Excimer Laser

    NASA Astrophysics Data System (ADS)

    Hafner, Bernhard F.

    1988-01-01

    Reticles (masks on enlarged scale) are needed for optical pattern transfer in the production of integrated semiconductor circuits. In order to meet present requirements for 5X reticles only a direct writing technique is feasible. This means direct exposing of photoresist either with light or an electron beam. Many of todays highly dense reticles require some 10 5 to 10 6 discrete exposures when generated with an optical pattern generator. Optical pattern generators normally use mercury arc lamps to expose positive photoresist, which in turn need 200 milliseconds for each of these discrete exposures, thus requiring to stop the table at every exposure position ("stop and go" mode). This results in running times of several days per reticle. Therefore most reticles are nowadays being manufactured with very expensive e-beam machines. In the early 80's we started the first experiments to expose photoresist with an excimer laser. In order to obtain the maximum gain in speed, the goal was to operate with only one excimer laser pulse per exposure, so that a fast "flash on the fly" operation with an optical pattern generator became true. Equipping a conventional optical pattern generator with an excimer laser as the light source, it has become possible to expose substrates coated with standard photoresist in the "flash on the fly" mode with only 13 nanoseconds per flash. So the thruput could be increased up to 25 times in comparison to a pattern generator equipped with a mercury lamp. A comparison of both operation modes will show that an immense increase of speed is possible, even when a ten years old M3600 pattern generator is used. This system is in function now with very high reliability since more than three years in our IC development line.

  5. Intersecting Circuits Generate Precisely Patterned Retinal Waves

    PubMed Central

    Akrouh, Alejandro; Kerschensteiner, Daniel

    2013-01-01

    SUMMARY The developing retina generates spontaneous glutamatergic (stage III) waves of activity that sequentially recruit neighboring ganglion cells with opposite light responses (ON and OFF RGCs). This activity pattern is thought to help establish parallel ON and OFF pathways in downstream visual areas. The circuits that produce stage III waves and desynchronize ON and OFF RGC firing remain obscure. Using dual patch clamp recordings, we find that ON and OFF RGCs receive sequential excitatory input from ON and OFF cone bipolar cells (CBCs), respectively. This input sequence is generated by crossover circuits, in which ON CBCs control glutamate release from OFF CBCs via diffusely stratified inhibitory amacrine cells. In addition, neighboring ON CBCs communicate directly and indirectly through lateral glutamatergic transmission and gap junctions, both of which are required for wave initiation and propagation. Thus, intersecting lateral excitatory and vertical inhibitory circuits give rise to precisely patterned stage III retinal waves. PMID:23830830

  6. Automatically generating extraction patterns from untagged text

    SciTech Connect

    Riloff, E.

    1996-12-31

    Many corpus-based natural language processing systems rely on text corpora that have been manually annotated with syntactic or semantic tags. In particular, all previous dictionary construction systems for information extraction have used an annotated training corpus or some form of annotated input. We have developed a system called AutoSlog-TS that creates dictionaries of extraction patterns using only untagged text. AutoSlog-TS is based on the AutoSlog system, which generated extraction patterns using annotated text and a set of heuristic rules. By adapting AutoSlog and combining it with statistical techniques, we eliminated its dependency on tagged text. In experiments with the MUC-4 terrorism domain, AutoSlog-TS created a dictionary of extraction patterns that performed comparably to a dictionary created by AutoSlog, using only preclassified texts as input.

  7. Patterning techniques for next generation IC's

    NASA Astrophysics Data System (ADS)

    Balasinski, A.

    2007-12-01

    Reduction of linear critical dimensions (CDs) beyond 45 nm would require significant increase of the complexity of pattern definition process. In this work, we discuss the key successor methodology to the current optical lithography, the Double Patterning Technique (DPT). We compare the complexity of CAD solutions, fab equipment, and wafer processing with its competitors, such as the nanoimprint (NIL) and the extreme UV (EUV) techniques. We also look ahead to the market availability for the product families enabled using the novel patterning solutions. DPT is often recognized as the most viable next generation lithography as it utilizes the existing equipment and processes and is considered a stop-gap solution before the advanced NIL or EUV equipment is developed. Using design for manufacturability (DfM) rules, DPT can drive the k1 factor down to 0.13. However, it faces a variety of challenges, from new mask overlay strategies, to layout pattern split, novel OPC, increased CD tolerances, new etch techniques, as well as long processing time, all of which compromise its return on investment (RoI). In contrast, it can be claimed e.g., that the RoI is the highest for the NIL but this technology bears significant risk. For all novel patterning techniques, the key questions remain: when and how should they be introduced, what is their long-term potential, when should they be replaced, and by what successor technology. We summarize the unpublished results of several panel discussions on DPT at the recent SPIE/BACUS conferences.

  8. Silicon central pattern generators for cardiac diseases.

    PubMed

    Nogaret, Alain; O'Callaghan, Erin L; Lataro, Renata M; Salgado, Helio C; Meliza, C Daniel; Duncan, Edward; Abarbanel, Henry D I; Paton, Julian F R

    2015-02-15

    Cardiac rhythm management devices provide therapies for both arrhythmias and resynchronisation but not heart failure, which affects millions of patients worldwide. This paper reviews recent advances in biophysics and mathematical engineering that provide a novel technological platform for addressing heart disease and enabling beat-to-beat adaptation of cardiac pacing in response to physiological feedback. The technology consists of silicon hardware central pattern generators (hCPGs) that may be trained to emulate accurately the dynamical response of biological central pattern generators (bCPGs). We discuss the limitations of present CPGs and appraise the advantages of analog over digital circuits for application in bioelectronic medicine. To test the system, we have focused on the cardio-respiratory oscillators in the medulla oblongata that modulate heart rate in phase with respiration to induce respiratory sinus arrhythmia (RSA). We describe here a novel, scalable hCPG comprising physiologically realistic (Hodgkin-Huxley type) neurones and synapses. Our hCPG comprises two neurones that antagonise each other to provide rhythmic motor drive to the vagus nerve to slow the heart. We show how recent advances in modelling allow the motor output to adapt to physiological feedback such as respiration. In rats, we report on the restoration of RSA using an hCPG that receives diaphragmatic electromyography input and use it to stimulate the vagus nerve at specific time points of the respiratory cycle to slow the heart rate. We have validated the adaptation of stimulation to alterations in respiratory rate. We demonstrate that the hCPG is tuneable in terms of the depth and timing of the RSA relative to respiratory phase. These pioneering studies will now permit an analysis of the physiological role of RSA as well as its any potential therapeutic use in cardiac disease. PMID:25433077

  9. Pattern formation during the CO-oxidation involving subsurface oxygen

    NASA Astrophysics Data System (ADS)

    Rotermund, Harm Hinrich; Pollmann, Michael; Kevrekidis, Ioannis G.

    2002-03-01

    This paper focuses on subsurface oxygen and its influence on pattern formation during CO-oxidation on platinum surfaces. For the observation of spatiotemporal pattern formation during catalytic reactions the photoelectron emission microscope (PEEM) has proven to be an excellent real-time imaging instrument, capable of tracking local work function changes. The existence of subsurface oxygen on platinumlike surfaces has been extensively discussed and for palladium its presence has been clearly established during rate oscillations. Subsurface oxygen is defined at this point as an atomic O species located directly underneath the uppermost metal crystal layer; its dipole moment therefore considerably lowers the work function of the surface. Here we review some of the investigations involving subsurface oxygen, focusing on the role subsurface oxygen might play in pattern formation during CO-oxidation on platinum. We will also present some new results, where this species clearly interacts with chemisorbed oxygen under restrictions by boundary conditions on the Pt(110) single crystal. These previously (through microlithography) constructed domain boundaries on the surface are made out of Rh or Pd, and they are acting as an additional source of CO molecules for the Pt surface.

  10. Generation 1.5 Written Error Patterns: A Comparative Study

    ERIC Educational Resources Information Center

    Doolan, Stephen M.; Miller, Donald

    2012-01-01

    In an attempt to contribute to existing research on Generation 1.5 students, the current study uses quantitative and qualitative methods to compare error patterns in a corpus of Generation 1.5, L1, and L2 community college student writing. This error analysis provides one important way to determine if error patterns in Generation 1.5 student…

  11. Atypical patterns of cardiac involvement in Fabry disease.

    PubMed

    Coughlan, J J; Elkholy, K; O'Brien, J; Kiernan, T

    2016-01-01

    A 58-year-old woman was referred to our cardiology service with chest pain, exertional dyspnoea and palpitations on a background of known Fabry disease diagnosed with genetic testing in 1994. ECG showed sinus rhythm, shortened PR interval, widespread t wave inversion, q waves in the lateral leads and left ventricular hypertrophy (LVH). Coronary angiogram showed only mild atheroma. Transthoracic echocardiogram showed anterolateral LVH and reduced left ventricular cavity size in keeping with Fabry cardiomyopathy. Cardiac MRI demonstrated asymmetric hypertrophy with evidence of diffuse myocardial fibrosis in the maximally hypertrophied segments from base to apex with late gadolinium enhancement in the anterior and anteroseptal walls. This was quite an atypical appearance for Fabry cardiomyopathy. This case highlights the heterogeneity of patterns of cardiac involvement that may be associated with this rare X-linked lysosomal disorder. PMID:26989114

  12. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  13. Pattern Generation by Dissipative Parametric Instability

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-01-01

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems.

  14. Pattern Generation by Dissipative Parametric Instability.

    PubMed

    Perego, A M; Tarasov, N; Churkin, D V; Turitsyn, S K; Staliunas, K

    2016-01-15

    Nonlinear instabilities are responsible for spontaneous pattern formation in a vast number of natural and engineered systems, ranging from biology to galaxy buildup. We propose a new instability mechanism leading to pattern formation in spatially extended nonlinear systems, which is based on a periodic antiphase modulation of spectrally dependent losses arranged in a zigzag way: an effective filtering is imposed at symmetrically located wave numbers k and -k in alternating order. The properties of the dissipative parametric instability differ from the features of both key classical concepts of modulation instabilities, i.e., the Benjamin-Feir instability and the Faraday instabiltyity. We demonstrate how the dissipative parametric instability can lead to the formation of stable patterns in one- and two-dimensional systems. The proposed instability mechanism is generic and can naturally occur or can be implemented in various physical systems. PMID:26824573

  15. Central Pattern Generator for Locomotion: Anatomical, Physiological, and Pathophysiological Considerations

    PubMed Central

    Guertin, Pierre A.

    2013-01-01

    This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome. PMID:23403923

  16. A central pattern generator producing alternative outputs: temporal pattern of premotor activity.

    PubMed

    Norris, Brian J; Weaver, Adam L; Morris, Lee G; Wenning, Angela; García, Paul A; Calabrese, Ronald L

    2006-07-01

    The central pattern generator for heartbeat in medicinal leeches constitutes seven identified pairs of segmental heart interneurons. Four identified pairs of heart interneurons make a staggered pattern of inhibitory synaptic connections with segmental heart motor neurons. Using extracellular recording from multiple interneurons in the network in 56 isolated nerve cords, we show that this pattern generator produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons. This pattern corresponds to a similarly asymmetric fictive motor pattern in heart motor neurons and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. We provide a quantitative description of the firing pattern of all the premotor interneurons, including phase, duty cycle, and intraburst frequency of this premotor activity pattern. This analysis identifies two stereotypical coordination modes corresponding to synchronous and peristaltic, which show phase constancy over a broad range of periods as do the fictive motor pattern and the heart constriction pattern. Coordination mode is controlled through one segmental pair of heart interneurons (switch interneurons). Side-to-side switches in coordination mode are a regular feature of this pattern generator and occur with changes in activity state of these switch interneurons. Associated with synchronous coordination of premotor interneurons, the ipsilateral switch interneuron is in an active state, during which it produces rhythmic bursts, whereas associated with peristaltic coordination, the ipsilateral switch interneuron is largely silent. We argue that timing and pattern elaboration are separate functions produced by overlapping subnetworks in the heartbeat central pattern generator. PMID:16611849

  17. Computer-Assisted Generation of Patterns and Virtual Reality Techniques for Fashion Design

    NASA Astrophysics Data System (ADS)

    Naud, Mickael; Richard, Paul; Chapeau-Blondeau, François

    2009-03-01

    We present a methodology for the design of aesthetic patterns and their visualization on virtual clothes. Generated patterns are directly mapped on the dress of a virtual mannequin. Furthermore, patterns sets may be interactively mapped on the virtual dress using a specific 3D interaction technique called Back-and-Forth. Pattern generation involves different mathematical approaches such as iterated function systems (IFS) and nonlinear trajectory models. Both model parameters and color space exploration is performed through a simple user interface. This work contributes to promote both computer assistance in the context of mass customization for fashion design.

  18. Parental Involvement in Adolescent Romantic Relationships: Patterns and Correlates

    ERIC Educational Resources Information Center

    Kan, Marni L.; McHale, Susan M.; Crouter, Ann C.

    2008-01-01

    This study examined dimensions of mothers' and fathers' involvement in adolescents' romantic relationships when offspring were age 17. Using cluster analysis, parents from 105 White, working and middle class families were classified as positively involved, negatively involved, or autonomy-oriented with respect to their adolescents' romantic…

  19. Automated branching pattern report generation for laparoscopic surgery assistance

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Matsuzaki, Tetsuro; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2015-05-01

    This paper presents a method for generating branching pattern reports of abdominal blood vessels for laparoscopic gastrectomy. In gastrectomy, it is very important to understand branching structure of abdominal arteries and veins, which feed and drain specific abdominal organs including the stomach, the liver and the pancreas. In the real clinical stage, a surgeon creates a diagnostic report of the patient anatomy. This report summarizes the branching patterns of the blood vessels related to the stomach. The surgeon decides actual operative procedure. This paper shows an automated method to generate a branching pattern report for abdominal blood vessels based on automated anatomical labeling. The report contains 3D rendering showing important blood vessels and descriptions of branching patterns of each vessel. We have applied this method for fifty cases of 3D abdominal CT scans and confirmed the proposed method can automatically generate branching pattern reports of abdominal arteries.

  20. An optical pattern classification using computer-generated holograms

    NASA Astrophysics Data System (ADS)

    Kajiki, Yoshinori; Matsushita, Kenji; Shimizu, Eiji

    1990-07-01

    An optical pattern classification system is proposed which performs weighting and summation by the optical system using computer-generated holograms (CGHs). The system makes it possible to simplify the structure and to improve the processing speed. A trainable pattern classification system which performs weight modification by using a CGH matrix and a dot matrix liquid crystal display (LCD) as a shutter array is proposed. The trainable pattern classifier using a CGH matrix and LCD is described, and the experimental results are presented.

  1. Characteristic flow patterns generated by macrozoobenthic structures

    NASA Astrophysics Data System (ADS)

    Friedrichs, M.; Graf, G.

    2009-02-01

    A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s - 1 and 10 cm s - 1 ) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1-2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of

  2. Examining Associations between Race, Urbanicity, and Patterns of Bullying Involvement

    ERIC Educational Resources Information Center

    Goldweber, Asha; Waasdorp, Tracy Evian; Bradshaw, Catherine P.

    2013-01-01

    Research on the role of race and urbanicity in bullying involvement has been limited. The present study examined bullying involvement subgroups that relate to race, urbanicity, and the perceived reason for the bullying. Self-report data were collected from 10,254 middle school youth (49.8% female; 62.4% Caucasian, 19.0% African American, and 5.6%…

  3. Examining associations between race, urbanicity, and patterns of bullying involvement.

    PubMed

    Goldweber, Asha; Waasdorp, Tracy Evian; Bradshaw, Catherine P

    2013-02-01

    Research on the role of race and urbanicity in bullying involvement has been limited. The present study examined bullying involvement subgroups that relate to race, urbanicity, and the perceived reason for the bullying. Self-report data were collected from 10,254 middle school youth (49.8 % female; 62.4 % Caucasian, 19.0 % African American, and 5.6 % Hispanic) and latent class analyses were used to identify three subtypes of bullying involvement: low involvement (50 %), victim (31.3 %), and bully-victim (18.7 %). Irrespective of urbanicity (urban vs. non-urban), African American youth were more likely to be members of either the victim or bully-victim classes than the low involvement class. Further exploration of the community context suggested that urbanicity was associated with the increased likelihood of having been racially bullied. Urban bully-victims were also more likely to have been bullied about money than non-urban bully-victims. Findings underscore the importance of addressing both race and urbanicity for culturally sensitive prevention programming. PMID:23095907

  4. Identification of Regional Lymph Node Involvement of Colorectal Cancer by Serum SELDI Proteomic Patterns

    PubMed Central

    Fan, Nai-Jun; Gao, Chun-Fang; Wang, Xiu-Li

    2011-01-01

    Background. To explore the application of serum proteomic patterns for the preoperative detection of regional lymph node involvement of colorectal cancer (CRC). Methods. Serum samples were applied to immobilized metal affinity capture ProteinChip to generate mass spectra by Surface-Enhanced Laser Desorption/ionization Time-of-Flight Mass Spectrometry (SELDI-TOF-MS). Proteomic spectra of serum samples from 70 node-positive CRC patients and 75 age- and gender-matched node-negative CRC patients were employed as a training set, and a classification tree was generated by using Biomarker Pattern Software package. The validity of the classification tree was then challenged with a blind test set including another 65 CRC patients. Results. The software identified an average of 46 mass peaks/spectrum and 5 of the identified peaks at m/z 3,104, 3,781, 5,867, 7,970, and 9,290 were used to construct the classification tree. The classification tree separated effectively node-positive CRC patients from node-negative CRC patients, achieving a sensitivity of 94.29% and a specificity of 100.00%. The blind test challenged the model independently with a sensitivity of 91.43% a specificity of 96.67%. Conclusions. The results indicate that SELDI-TOF-MS can correctly distinguish node-positive CRC patients from node-negative ones and show great potential for preoperative screening for regional lymph node involvement of CRC. PMID:22253617

  5. Fringe patterns generated by micro-optical sensors for pattern recognition.

    PubMed

    Tamee, Kreangsak; Chaiwong, Khomyuth; Yothapakdee, Kriengsak; Yupapin, Preecha P

    2015-01-01

    We present a new result of pattern recognition generation scheme using a small-scale optical muscle sensing system, which consisted of an optical add-drop filter incorporating two nonlinear optical side ring resonators. When light from laser source enters into the system, the device is stimulated by an external physical parameter that introduces a change in the phase of light propagation within the sensing device, which can be formed by the interference fringe patterns. Results obtained have shown that the fringe patterns can be used to form the relationship between signal patterns and fringe pattern recognitions. PMID:24450752

  6. Patterns of airway involvement in inflammatory bowel diseases

    PubMed Central

    Papanikolaou, Ilias; Kagouridis, Konstantinos; Papiris, Spyros A

    2014-01-01

    Extraintestinal manifestations occur commonly in inflammatory bowel diseases (IBD). Pulmonary manifestations (PM) of IBD may be divided in airway disorders, interstitial lung disorders, serositis, pulmonary vasculitis, necrobiotic nodules, drug-induced lung disease, thromboembolic lung disease and enteropulmonary fistulas. Pulmonary involvement may often be asymptomatic and detected solely on the basis of abnormal screening tests. The common embryonic origin of the intestine and the lungs from the primitive foregut, the co-existence of mucosa associated lymphoid tissue in both organs, autoimmunity, smoking and bacterial translocation from the colon to the lungs may all be involved in the pathogenesis of PM in IBD. PM are mainly detected by pulmonary function tests and high-resolution computed tomography. This review will focus on the involvement of the airways in the context of IBD, especially stenoses of the large airways, tracheobronchitis, bronchiectasis, bronchitis, mucoid impaction, bronchial granulomas, bronchiolitis, bronchiolitis obliterans syndrome and the co-existence of IBD with asthma, chronic obstructive pulmonary disease, sarcoidosis and a1-antitrypsin deficiency. PMID:25400999

  7. The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator.

    PubMed

    Li, Wen-Chang; Merrison-Hort, Robert; Zhang, Hong-Yan; Borisyuk, Roman

    2014-04-23

    Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left-right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony. PMID:24760866

  8. Digitally based pattern generator for an electron-beam welder

    SciTech Connect

    Whitten, L.G. III

    1981-02-19

    A digitally based deflection generator for an electron-beam welder is presented. Up to seven patterns of any shape are stored in programmable read-only memory (PROM). The pattern resolution is 39% at frequencies from 10 Hz to 1 kHz and can be x-t, y-t, or x-y formed. Frequency and pattern selections may be chosen by the welder computer or manually selected on the front panel. The ability to repeatedly synchronize two waveforms of any shape and frequency enables an unlimited variety of welds.

  9. Ring Counter Based ATPG for Low Transition Test Pattern Generation

    PubMed Central

    Begam, V. M. Thoulath; Baulkani, S.

    2015-01-01

    In test mode test patterns are applied in random fashion to the circuit under circuit. This increases switching transition between the consecutive test patterns and thereby increases dynamic power dissipation. The proposed ring counter based ATPG reduces vertical switching transitions by inserting test vectors only between the less correlative test patterns. This paper presents the RC-ATPG with an external circuit. The external circuit consists of XOR gates, full adders, and multiplexers. First the total number of transitions between the consecutive test patterns is determined. If it is more, then the external circuit generates and inserts test vectors in between the two test patterns. Test vector insertion increases the correlation between the test patterns and reduces dynamic power dissipation. The results prove that the test patterns generated by the proposed ATPG have fewer transitions than the conventional ATPG. Experimental results based on ISCAS'85 and ISCAS'89 benchmark circuits show 38.5% reduction in the average power and 50% reduction in the peak power attained during testing with a small size decoding logic. PMID:26075295

  10. Automatic generation of primary sequence patterns from sets of related protein sequences.

    PubMed

    Smith, R F; Smith, T F

    1990-01-01

    We have developed a computer algorithm that can extract the pattern of conserved primary sequence elements common to all members of a homologous protein family. The method involves clustering the pairwise similarity scores among a set of related sequences to generate a binary dendrogram (tree). The tree is then reduced in a stepwise manner by progressively replacing the node connecting the two most similar termini by one common pattern until only a single common "root" pattern remains. A pattern is generated at a node by (i) performing a local optimal alignment on the sequence/pattern pair connected by the node with the use of an extended dynamic programming algorithm and then (ii) constructing a single common pattern from this alignment with a nested hierarchy of amino acid classes to identify the minimal inclusive amino acid class covering each paired set of elements in the alignment. Gaps within an alignment are created and/or extended using a "pay once" gap penalty rule, and gapped positions are converted into gap characters that function as 0 or 1 amino acid of any type during subsequent alignment. This method has been used to generate a library of covering patterns for homologous families in the National Biomedical Research Foundation/Protein Identification Resource protein sequence data base. We show that a covering pattern can be more diagnostic for sequence family membership than any of the individual sequences used to construct the pattern. PMID:2296575

  11. A movement pattern generator model using artificial neural networks.

    PubMed

    Srinivasan, S; Gander, R E; Wood, H C

    1992-07-01

    Artificial neural networks (ANN's) allow a new approach to biological modeling. The main applications of ANN's have been geared towards the modeling of the association and learning mechanisms of the brain; only a few researchers have explored them for motor control. The fact that ANN's are based on biological systems indicates their potential application for a biological act such as locomotion. Towards this goal, we have developed a "movement pattern generator," using an ANN for generating periodic movement trajectories. This model is based on the concept of "central pattern generators." Jordan's sequential network, which is capable of learning sequences of patterns, was modified and used to generate several bipedal trajectories (or gaits), coded in task space, at different frequencies. The network model successfully learned all of the trajectories presented to it. The model has many attractive properties such as limit cycle behavior, generalization of trajectories and frequencies, phase maintenance, and fault tolerance. The movement pattern generator model is potentially applicable for improved understanding of animal locomotion and for use in legged robots and rehabilitation medicine. PMID:1516938

  12. Central respiratory pattern generation in the bullfrog, Rana catesbeiana.

    PubMed

    Milsom, W K; Reid, S G; Meier, J T; Kinkead, R

    1999-11-01

    There are two components to breathing pattern generation the production of the pattern of neural discharge associated with individual breaths, and the pattern in which breaths are produced to effect ventilation. Bullfrogs typically breathe with randomly distributed breaths. When respiratory drive is elevated, breathing becomes more regular and often episodic. Studies on in vitro brainstem-spinal cord preparations of the adult bullfrog and in situ preparations of decerebrate, paralyzed, unidirectionally ventilated animals suggest that output from the central rhythm generator in frogs is conditional on receiving some input and that a host of central inputs remain even in the most reduced preparations. There appear to be descending inputs from sites in the dorsal brainstem just caudal to the optic chiasma that cluster breaths into episodes, a strong excitatory input caudal to this site but rostral to the origin of the Vth cranial nerve and, possibly, segmental rhythm generators throughout the medulla that are normally entrained to produce the normal breathing pattern. The data also suggest that the shape of the discharge pattern (augmenting, decrementing) and timing of outputs (alternating vs synchronous) associated with motor outflow during each breath are also dependent on the interconnections between these various sites. PMID:10665378

  13. Central pattern generator for vocalization: Is there a vertebrate morphotype?

    PubMed Central

    Bass, Andrew H.

    2014-01-01

    Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one’s own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems. PMID:25050813

  14. Generating Coherent Patterns of Activity from Chaotic Neural Networks

    PubMed Central

    Sussillo, David; Abbott, L. F.

    2009-01-01

    Neural circuits display complex activity patterns both spontaneously and when responding to a stimulus or generating a motor output. How are these two forms of activity related? We develop a procedure called FORCE learning for modifying synaptic strengths either external to or within a model neural network to change chaotic spontaneous activity into a wide variety of desired activity patterns. FORCE learning works even though the networks we train are spontaneously chaotic and we leave feedback loops intact and unclamped during learning. Using this approach, we construct networks that produce a wide variety of complex output patterns, input-output transformations that require memory, multiple outputs that can be switched by control inputs, and motor patterns matching human motion capture data. Our results reproduce data on pre-movement activity in motor and premotor cortex, and suggest that synaptic plasticity may be a more rapid and powerful modulator of network activity than generally appreciated. PMID:19709635

  15. Order parameter for bursting polyrhythms in multifunctional central pattern generators

    NASA Astrophysics Data System (ADS)

    Wojcik, Jeremy; Clewley, Robert; Shilnikov, Andrey

    2011-05-01

    We examine multistability of several coexisting bursting patterns in a central pattern generator network composed of three Hodgkin-Huxley type cells coupled reciprocally by inhibitory synapses. We establish that the control of switching between bursting polyrhythms and their bifurcations are determined by the temporal characteristics, such as the duty cycle, of networked interneurons and the coupling strength asymmetry. A computationally effective approach to the reduction of dynamics of the nine-dimensional network to two-dimensional Poincaré return mappings for phase lags between the interneurons is presented.

  16. Modeling Scalable Pattern Generation in DNA Reaction Networks

    PubMed Central

    Allen, Peter B.; Chen, Xi; Simpson, Zack B.; Ellington, Andrew D.

    2013-01-01

    We have developed a theoretical framework for developing patterns in multiple dimensions using controllable diffusion and designed reactions implemented in DNA. This includes so-called strand displacement reactions in which one single-stranded DNA hybridizes to a hemi-duplex DNA and displaces another single-stranded DNA, reversibly or irreversibly. These reactions can be designed to proceed with designed rate and molecular specificity. By also controlling diffusion by partial complementarity to a stationary, cross-linked DNA, we can generate predictable patterns. We demonstrate this with several simulations showing deterministic, predictable shapes in space. PMID:25506295

  17. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.

    PubMed

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-11-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation. PMID:26536029

  18. Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition

    PubMed Central

    Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey

    2015-01-01

    Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation. PMID:26536029

  19. Generating patterns from fields of cells. Examples from Drosophila segmentation.

    PubMed

    Sanson, B

    2001-12-01

    In Drosophila, a cascade of maternal, gap, pair-rule and segment polarity genes subdivides the antero/posterior axis of the embryo into repeating segmental stripes. This review summarizes what happens next, i.e. how an intrasegmental pattern is generated and controls the differentiation of specific cell types in the epidermis. Within each segment, cells secreting the signalling molecules Wingless (the homologue of vertebrate Wnt-1) and Hedgehog are found in narrow stripes on both sides of the parasegmental boundary. The Wingless and Hedgehog organizing activities help to establish two more stripes per segment that localize ligands for the Epidermal Growth Factor and the Notch signalling pathways, respectively. These four signals then act at short range and in concert to control epidermal differentiation at the single cell level across the segment. This example from Drosophila provides a paradigm for how organizers generate precise patterns, and ultimately different cell types, in a naïve field of cells. PMID:11743020

  20. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence

    NASA Technical Reports Server (NTRS)

    Patwardhan, A. R.; Vallurupalli, S.; Evans, J. M.; Bruce, E. N.; Knapp, C. F.

    1995-01-01

    We investigated the effects of voluntary control of breathing on autonomic function in cardiovascular regulation. Variability in heart rate was compared between 5 min of spontaneous and controlled breathing. During controlled breathing, for 5 min, subjects voluntarily reproduced their own spontaneous breathing pattern (both rate and volume on a breath-by-breath basis). With the use of this experimental design, we could unmask the effects of voluntary override of the spontaneous respiratory pattern generator on autonomic function in cardiovascular regulation without the confounding effects of altered respiratory pattern. Results from 10 subjects showed that during voluntary control of breathing, mean values of heart rate and blood pressure increased, whereas fractal and spectral powers in heart rate in the respiratory frequency region decreased. End-tidal PCO2 was similar during spontaneous and controlled breathing. These results indicate that the act of voluntary control of breathing decreases the influence of the vagal component, which is the principal parasympathetic influence in cardiovascular regulation.

  1. Continuities and changes in infant attachment patterns across two generations.

    PubMed

    Raby, K Lee; Steele, Ryan D; Carlson, Elizabeth A; Sroufe, L Alan

    2015-01-01

    This study examined the intergenerational continuities and changes in infant attachment patterns within a higher-risk longitudinal sample of 55 female participants born into poverty. Infant attachment was assessed using the Strange Situation when participants were 12 and 18 months as well as several decades later with participants' children. Paralleling earlier findings from this sample on the stability of attachment patterns from infancy to young adulthood, results provided evidence for intergenerational continuities in attachment disorganization but not security. Children of adults with histories of infant attachment disorganization were at an increased risk of forming disorganized attachments. Although changes in infant attachment patterns across the two generations were not correlated with individuals' caregiving experiences or interpersonal stresses and supports during childhood and adolescence, higher quality social support during adulthood was associated with intergenerational changes from insecure to secure infant-caregiver attachment relationships. PMID:26213155

  2. Continuities and Changes in Infant Attachment Patterns Across Two Generations

    PubMed Central

    Raby, K. Lee; Steele, Ryan D.; Carlson, Elizabeth A.; Sroufe, L. Alan

    2015-01-01

    This study examined the intergenerational continuities and changes in infant attachment patterns within a higher-risk longitudinal sample of 55 female participants born into poverty. Infant attachment was assessed using the Strange Situation when participants were 12 and 18 months as well as several decades later with participants’ children. Paralleling earlier findings from this sample on the stability of attachment patterns from infancy to young adulthood, results provided evidence for intergenerational continuities in attachment disorganization but not security. Children of adults with histories of infant attachment disorganization were at an increased risk of forming disorganized attachments. Although changes in infant attachment patterns across the two generations were not correlated with individuals’ caregiving experiences or interpersonal stresses and supports during childhood and adolescence, higher quality social support during adulthood was associated with intergenerational changes from insecure to secure infant-caregiver attachment relationships. PMID:26213155

  3. Electron beam pattern generator sensitivity to target potentials

    NASA Astrophysics Data System (ADS)

    Ruan, Junru; Hartley, John

    2005-11-01

    Electrostatic chucking is the plan of record for mask clamping in Extreme Ultraviolet (EUV) lithography. In order to minimize mask distortion it is recommended by the EUV lithography community that identical electrostatic chucks be used in the mask patterning and metrology tools. The high voltages used in electrostatic chucking have the potential to establish voltages on the mask surface, which may influence the electron optical characteristics of the pattern generator to the detrimental imaging of the pattern. To understand the relationship between image degradation and mask surface voltages, we are modeling the interaction between mask potential and electron beam columns. The first system modeled consists entirely of electrostatic elements, and the second one is a more traditional electron beam lithography system with electrostatic and magnetic components. All of the working parameters of the systems were fixed to establish optimal imaging on the grounded mask. We then altered the potential on the mask surface and determined the impact on focus and deflection errors. The simulation results establish the relationship between the mask potential, focus and deflection errors. Detailed data of focus deflection error versus mask potential will be presented for these electron beam column configurations. When combined with ITRS roadmap specifications, these results set boundaries on mask and chuck configurations as well as grounding schemes. The results are also applicable to charged particle maskless lithography schemes as well as issues of substrate charging in both pattern generators and metrology tools.

  4. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  5. Patterns of Romantic Involvement among Emerging Adults: Psychosocial Correlates and Precursors

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Scharf, Miri; Livne, Yaara; Barr, Tamuz

    2013-01-01

    The present study examined patterns of romantic involvement in 100 Israeli emerging adults (54 males) who were followed from age 22 to 29 years. Analyses of interviews at age 29 yielded four distinctive relational patterns that are associated with different levels of concurrent wellbeing: Intimately committed, Intimate, Non- intimately committed,…

  6. Processing and analysis techniques involving in-vessel material generation

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2012-09-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  7. Processing and analysis techniques involving in-vessel material generation

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.

    2011-01-25

    In at least one embodiment, the inventive technology relates to in-vessel generation of a material from a solution of interest as part of a processing and/or analysis operation. Preferred embodiments of the in-vessel material generation (e.g., in-vessel solid material generation) include precipitation; in certain embodiments, analysis and/or processing of the solution of interest may include dissolution of the material, perhaps as part of a successive dissolution protocol using solvents of increasing ability to dissolve. Applications include, but are by no means limited to estimation of a coking onset and solution (e.g., oil) fractionating.

  8. Use of design pattern layout for automatic metrology recipe generation

    NASA Astrophysics Data System (ADS)

    Tabery, Cyrus; Page, Lorena

    2005-05-01

    As critical dimension control requirements become more challenging, due to complex designs, aggressive lithography, and the constant need to shrink,metrology recipe generation and design evaluation have also become very complex. Hundreds of unique sites must be measured and monitored to ensure good device performance and high yield. The use of the design and layout for automated metrology recipe generation will be critical to that challenge. The DesignGauge from Hitachi implements a system enabling arbitrary recipe generation and control of SEM observations performed on the wafer, based only on the design information. This concept for recipe generation can reduce the time to develop a technology node from RET and design rule selection, through OPC model calibration and verification, and all the way to high volume manufacturing. Conventional recipe creation for a large number of measurement targets requires a significant amount of engineering time. Often these recipes are used only once or twice during mask and process verification or OPC calibration data acquisition. This process of manual setup and analysis is also potentially error prone. CD-SEM recipe creation typically requires an actual wafer, so the recipe creation cannot occur until the scanner and reticle are in house. All of these problems with conventional CD SEM lead to increased development time and reduced final process quality. The new model of CD-SEM recipe generation and management utilizes design-to-SEM matching technology. This new technology extracts an idealized shape from the designed pattern, and utilizes the shape information for pattern matching. As a result, the designed pattern is used as basis for the template instead of the actual SEM image. Recipe creation can be achieved in a matter of seconds once the target site list is finalized. The sequence of steps for creating a recipe are: generate a target site list, pass the design polygons (GDS) and site list to the CD SEM, define references

  9. Patterns of Parental Involvement in Selected OECD Countries: Cross-National Analyses of PISA

    ERIC Educational Resources Information Center

    Hartas, Dimitra

    2015-01-01

    Using data from the Programme for International Student Assessment (PISA), patterns of parental involvement were examined in selected OECD countries. The findings showed that, irrespective of educational qualifications, parents were frequently involved in their children's learning at the start of primary school and at age 15. Cross-national…

  10. Mexican-Origin Mothers' and Fathers' Involvement in Adolescents' Peer Relationships: A Pattern-Analytic Approach

    ERIC Educational Resources Information Center

    Updegraff, Kimberly A.; Perez-Brena, Norma J.; Baril, Megan E.; McHale, Susan M.; Umana-Taylor, Adriana J.

    2012-01-01

    Using latent profile analysis, the authors examined patterns of mother-father involvement in adolescents' peer relationships along three dimensions--support, guidance, and restrictions--in 240 Mexican-origin families. Three profiles were identified: (a) High Mother Involvement (mothers higher than fathers on all three dimensions), (b) High…

  11. CT and MRI of diffuse lobar involvement pattern in liver pathology.

    PubMed

    Karçaaltincaba, Muşturay; Sirlin, Claude B

    2011-12-01

    Focal, segmental, and diffuse liver pathologies have been described in the literature. This article describes a pattern in which liver pathology is confined to a lobe. This lobar pattern has not been described previously to our knowledge. Herein, we illustrate computed tomography (CT) and magnetic resonance imaging (MRI) findings of diffuse lobar involvement patterns in various liver conditions. Diffuse lobar involvement can be observed in benign (steatosis, hepatic iron overload, cholestasis, perfusion alterations, infarction, alveolar hydatid cysts, trauma, and hemangiomas) and primary malignant (hepatocellular carcinoma) pathologies. Diffuse lobar involvement in metastatic disease appears to be rare. Due in part to their potentially unusual appearances, the diagnosis of lobar pathologies using imaging can be challenging, and entities with lobar patterns can cause diagnostic confusion. Liver MRI can be used as a problem-solving tool for diffuse lobar pathologies detected on ultrasonography and CT. Inand out-of-phase MRI can help in the assessment of lobar fat accumulation. PMID:21053176

  12. Stochastic Generation of Wind Patterns over Lake Geneva

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Barry, C. E.; Razmi, A. M.; Lemmin, U.; Le Dantec, N.

    2011-12-01

    stochastic generator of wind-pattern indices, i.e., the INAR(1) model produces a sequence of integers, each of which corresponds to a wind pattern. For a given index, the aforementioned binned COSMO wind fields were sampled randomly to produce the stochastic wind-field sequence.

  13. Pattern Recognition on Read Positioning in Next Generation Sequencing

    PubMed Central

    Byeon, Boseon; Kovalchuk, Igor

    2016-01-01

    The usefulness and the utility of the next generation sequencing (NGS) technology are based on the assumption that the DNA or cDNA cleavage required to generate short sequence reads is random. Several previous reports suggest the existence of sequencing bias of NGS reads. To address this question in greater detail, we analyze NGS data from four organisms with different GC content, Plasmodium falciparum (19.39%), Arabidopsis thaliana (36.03%), Homo sapiens (40.91%) and Streptomyces coelicolor (72.00%). Using machine learning techniques, we recognize the pattern that the NGS read start is positioned in the local region where the nucleotide distribution is dissimilar from the global nucleotide distribution. We also demonstrate that the mono-nucleotide distribution underestimates sequencing bias, and the recognized pattern is explained largely by the distribution of multi-nucleotides (di-, tri-, and tetra- nucleotides) rather than mono-nucleotides. This implies that the correction of sequencing bias needs to be performed on the basis of the multi-nucleotide distribution. Providing companion software to quantify the effect of the recognized pattern on read positioning, we exemplify that the bias correction based on the mono-nucleotide distribution may not be sufficient to clean sequencing bias. PMID:27299343

  14. Generation of Viable Cell and Biomaterial Patterns by Laser Transfer

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2001-03-01

    In order to fabricate and interface biological systems for next generation applications such as biosensors, protein recognition microarrays, and engineered tissues, it is imperative to have a method of accurately and rapidly depositing different active biomaterials in patterns or layered structures. Ideally, the biomaterial structures would also be compatible with many different substrates including technologically relevant platforms such as electronic circuits or various detection devices. We have developed a novel laser-based technique, termed matrix assisted pulsed laser evaporation direct write (MAPLE DW), that is able to direct write patterns and three-dimensional structures of numerous biologically active species ranging from proteins and antibodies to living cells. Specifically, we have shown that MAPLE DW is capable of forming mesoscopic patterns of living prokaryotic cells (E. coli bacteria), living mammalian cells (Chinese hamster ovaries), active proteins (biotinylated bovine serum albumin, horse radish peroxidase), and antibodies specific to a variety of classes of cancer related proteins including intracellular and extracellular matrix proteins, signaling proteins, cell cycle proteins, growth factors, and growth factor receptors. In addition, patterns of viable cells and active biomolecules were deposited on different substrates including metals, semiconductors, nutrient agar, and functionalized glass slides. We will present an explanation of the laser-based transfer mechanism as well as results from our recent efforts to fabricate protein recognition microarrays and tissue-based microfluidic networks.

  15. Evolution of central pattern generators and rhythmic behaviours.

    PubMed

    Katz, Paul S

    2016-01-01

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. PMID:26598733

  16. Temperature-dependent regulation of vocal pattern generator.

    PubMed

    Yamaguchi, Ayako; Gooler, David; Herrold, Amy; Patel, Shailja; Pong, Winnie W

    2008-12-01

    Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms. PMID:18829853

  17. The generation of vertebral segmental patterning in the chick embryo

    PubMed Central

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-01-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. PMID:22458512

  18. MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION

    SciTech Connect

    Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

    2009-01-01

    Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

  19. Vapor-Generator Wand Helps To Reveal Airflow Patterns

    NASA Technical Reports Server (NTRS)

    Robelen, David B.

    1993-01-01

    In vapor-generator wand, liquid propylene glycol flows into electrically heated stainless-steel tube. Liquid boils in heated tube, and emerging vapor forms dense, smoke-like fog used to make airflow patterns visible. Built in variety of sizes, suitable for uses ranging from tabletop demonstrations to research in wind tunnels. For best viewing, plume illuminated by bright, focused incandescent spotlight at right angle to viewing direction. Viewing further enhanced by coating walls of test chamber with flat, dark color to minimize reflections and increase contrast.

  20. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system

    NASA Astrophysics Data System (ADS)

    Rotstein, Horacio G.; Wu, Hui

    2012-09-01

    We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling.

  1. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system.

    PubMed

    Rotstein, Horacio G; Wu, Hui

    2012-09-14

    We use simulations and dynamical systems tools to investigate the mechanisms of generation of phase-locked and localized oscillatory cluster patterns in a globally coupled Oregonator model where the activator receives global feedback from the inhibitor, mimicking experimental results observed in the photosensitive Belousov-Zhabotinsky reaction. A homogeneous two-cluster system (two clusters with equal cluster size) displays antiphase patterns. Heterogenous two-cluster systems (two clusters with different sizes) display both phase-locked and localized patterns depending on the parameter values. In a localized pattern the oscillation amplitude of the largest cluster is roughly an order of magnitude smaller than the oscillation amplitude of the smaller cluster, reflecting the effect of self-inhibition exerted by the global feedback term. The transition from phase-locked to localized cluster patterns occurs as the intensity of global feedback increases. Three qualitatively different basic mechanisms, described previously for a globally coupled FitzHugh-Nagumo model, are involved in the generation of the observed patterns. The swing-and-release mechanism is related to the canard phenomenon (canard explosion of limit cycles) in relaxation oscillators. The hold-and-release and hold-and-escape mechanisms are related to the release and escape mechanisms in synaptically connected neural models. The methods we use can be extended to the investigation of oscillatory chemical reactions with other types of non-local coupling. PMID:22979891

  2. Sequentially firing neurons confer flexible timing in neural pattern generators

    SciTech Connect

    Urban, Alexander; Ermentrout, Bard

    2011-05-15

    Neuronal networks exhibit a variety of complex spatiotemporal patterns that include sequential activity, synchrony, and wavelike dynamics. Inhibition is the primary means through which such patterns are implemented. This behavior is dependent on both the intrinsic dynamics of the individual neurons as well as the connectivity patterns. Many neural circuits consist of networks of smaller subcircuits (motifs) that are coupled together to form the larger system. In this paper, we consider a particularly simple motif, comprising purely inhibitory interactions, which generates sequential periodic dynamics. We first describe the dynamics of the single motif both for general balanced coupling (all cells receive the same number and strength of inputs) and then for a specific class of balanced networks: circulant systems. We couple these motifs together to form larger networks. We use the theory of weak coupling to derive phase models which, themselves, have a certain structure and symmetry. We show that this structure endows the coupled system with the ability to produce arbitrary timing relationships between symmetrically coupled motifs and that the phase relationships are robust over a wide range of frequencies. The theory is applicable to many other systems in biology and physics.

  3. Drug-Abusing Fathers: Patterns of Pair-Bonding, Reproduction, and Paternal Involvement

    PubMed Central

    McMahon, Thomas J.; Winkel, Justin D.; Suchman, Nancy E.; Rounsaville, Bruce J.

    2007-01-01

    Despite concern about compromise of fathering as a public policy issue, very little is known about the status of drug-abusing men as parents. In this pilot study, 50 men enrolled in methadone maintenance treatment completed a structured research interview designed to generate basic information about patterns of pair-bonding, reproduction, and paternal involvement. Descriptive analysis of these data highlighted a number of trends in the nature of fathering that, although at odds with popular stereotypes, were similar to trends noted in research being done with other populations of disenfranchised men. Consistent with a developmental-ecological perspective on parenting, the findings raise questions about ways historical and situational influences interact within this population to compromise socially responsible efforts to function as a father. The results also raise questions about the extent to which public policy initiatives designed to promote more responsible fathering are reaching this population, and they raise questions about ways the drug abuse treatment system might better support men interested in being a more effective parent. PMID:17399935

  4. Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements

    PubMed Central

    Bosman, Laurens W. J.; Houweling, Arthur R.; Owens, Cullen B.; Tanke, Nouk; Shevchouk, Olesya T.; Rahmati, Negah; Teunissen, Wouter H. T.; Ju, Chiheng; Gong, Wei; Koekkoek, Sebastiaan K. E.; De Zeeuw, Chris I.

    2011-01-01

    The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception. PMID:22065951

  5. Sexually differentiated central pattern generators in Xenopus laevis.

    PubMed

    Zornik, Erik; Yamaguchi, Ayako

    2008-06-01

    Understanding the neural mechanisms that underlie the function of central pattern generators (CPGs) presents a formidable challenge requiring sophisticated tools and well-chosen model systems. In this article, we describe recent work on vocalizations of the African clawed frog Xenopus laevis. These behaviors are driven by sexually differentiated CPGs and are exceptionally well suited to this objective. In particular, a simplified mechanism of vocal production (independent of respiratory musculature) allows straightforward interpretations of nerve activity with respect to behavior. Furthermore, the development of a fictively vocalizing isolated brain, together with the finding of rapid androgen-induced masculinization of female vocalizations, provides an invaluable tool for determining how new behaviors arise from existing circuits. PMID:18471902

  6. Analog electronic model of the lobster pyloric central pattern generator

    NASA Astrophysics Data System (ADS)

    Volkovskii, A.; Brugioni, S.; Levi, R.; Rabinovich, M.; Selverston, A.; Abarbane, H. D. I.

    2005-01-01

    An electronic circuit intended to simulate the nonlinear dynamics of a simplified 3-cell model of the pyloric central pattern generator in California spiny lobster stomato gastric ganglion is presented. The model employs the synaptic phase locked loop (SPLL) concept where the frequency of oscillations of a postsynaptic cell is mainly controlled by the synaptic current which depends on the phase shift between the oscillations. The theoretical study showed that the system has a stable steady state with correct phase shifts between the oscillations and that this regime is stable when the frequency of the pacemaker cell is varied over a wide range. The main bifurcations in the system were studied analytically, in computer simulations, and in experiments with the electronic circuit. The experimental measurements are in good agreement with the expectations of the theoretical model.

  7. Two-stage Turing model for generating pigment patterns on the leopard and the jaguar

    NASA Astrophysics Data System (ADS)

    Liu, R. T.; Liaw, S. S.; Maini, P. K.

    2006-07-01

    Based on the results of phylogenetic analysis, which showed that flecks are the primitive pattern of the felid family and all other patterns including rosettes and blotches develop from it, we construct a Turing reaction-diffusion model which generates spot patterns initially. Starting from this spotted pattern, we successfully generate patterns of adult leopards and jaguars by tuning parameters of the model in the subsequent phase of patterning.

  8. Generation of Earth's First-Order Biodiversity Pattern

    NASA Astrophysics Data System (ADS)

    Krug, Andrew Z.; Jablonski, David; Valentine, James W.; Roy, Kaustuv

    2009-02-01

    The first-order biodiversity pattern on Earth today and at least as far back as the Paleozoic is the latitudinal diversity gradient (LDG), a decrease in richness of species and higher taxa from the equator to the poles. LDGs are produced by geographic trends in origination, extinction, and dispersal over evolutionary timescales, so that analyses of static patterns will be insufficient to reveal underlying processes. The fossil record of marine bivalve genera, a model system for the analysis of biodiversity dynamics over large temporal and spatial scales, shows that an origination and range-expansion gradient plays a major role in generating the LDG. Peak origination rates and peak diversities fall within the tropics, with range expansion out of the tropics the predominant spatial dynamic thereafter. The origination-diversity link occurs even in a "contrarian" group whose diversity peaks at midlatitudes, an exception proving the rule that spatial variations in origination are key to latitudinal diversity patterns. Extinction rates are lower in polar latitudes (≥60°) than in temperate zones and thus cannot create the observed gradient alone. They may, however, help to explain why origination and immigration are evidently damped in higher latitudes. We suggest that species require more resources in higher latitudes, for the seasonality of primary productivity increases by more than an order of magnitude from equatorial to polar regions. Higher-latitude species are generalists that, unlike potential immigrants, are adapted to garner the large share of resources required for incumbency in those regions. When resources are opened up by extinctions, lineages spread chiefly poleward and chiefly through speciation.

  9. Caregiving Practice Patterns of Asian, Hispanic, and Non-Hispanic White American Family Caregivers of Older Adults Across Generations.

    PubMed

    Miyawaki, Christina E

    2016-03-01

    This study is a cross-sectional investigation of caregiving practice patterns among Asian, Hispanic and non-Hispanic White American family caregivers of older adults across three immigrant generations. The 2009 California Health Interview Survey (CHIS) dataset was used, and 591 Asian, 989 Hispanic and 6537 non-Hispanic White American caregivers of older adults were selected. First, descriptive analyses of caregivers' characteristics, caregiving situations and practice patterns were examined by racial/ethnic groups and immigrant generations. Practice patterns measured were respite care use, hours and length of caregiving. Three hypotheses on caregiving patterns based on assimilation theory were tested and analyzed using logistic regression and generalized linear models by racial/ethnic groups and generations. Caregiving patterns of non-Hispanic White caregivers supported all three hypotheses regarding respite care use, caregiving hours and caregiving duration, showing less caregiving involvement in later generations. However, Asian and Hispanic counterparts showed mixed results. Third generation Asian and Hispanic caregivers used respite care the least and spent the most caregiving hours per week and had the longest caregiving duration compared to earlier generations. These caregiving patterns revealed underlying cultural values related to filial responsibility, even among later generations of caregivers of color. Findings suggest the importance of considering the cultural values of each racial/ethnic group regardless of generation when working with racially and ethnically diverse populations of family caregivers of older adults. PMID:26810575

  10. Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns.

    PubMed

    Machado, João Paulo; Philip, Siby; Maldonado, Emanuel; O'Brien, Stephen J; Johnson, Warren E; Antunes, Agostinho

    2016-01-01

    A diverse group of genes are involved in the tooth development of mammals. Several studies, focused mainly on mice and rats, have provided a detailed depiction of the processes coordinating tooth formation and shape. Here we surveyed 236 tooth-associated genes in 39 mammalian genomes and tested for signatures of selection to assess patterns of molecular adaptation in genes regulating mammalian dentition. Of the 236 genes, 31 (∼13.1%) showed strong signatures of positive selection that may be responsible for the phenotypic diversity observed in mammalian dentition. Mammalian-specific tooth-associated genes had accelerated mutation rates compared with older genes found across all vertebrates. More recently evolved genes had fewer interactions (either genetic or physical), were associated with fewer Gene Ontology terms and had faster evolutionary rates compared with older genes. The introns of these positively selected genes also exhibited accelerated evolutionary rates, which may reflect additional adaptive pressure in the intronic regions that are associated with regulatory processes that influence tooth-gene networks. The positively selected genes were mainly involved in processes like mineralization and structural organization of tooth specific tissues such as enamel and dentin. Of the 236 analyzed genes, 12 mammalian-specific genes (younger genes) provided insights on diversification of mammalian teeth as they have higher evolutionary rates and exhibit different expression profiles compared with older genes. Our results suggest that the evolution and development of mammalian dentition occurred in part through positive selection acting on genes that previously had other functions. PMID:27613398

  11. Neural basis of singing in crickets: central pattern generation in abdominal ganglia

    NASA Astrophysics Data System (ADS)

    Schöneich, Stefan; Hedwig, Berthold

    2011-12-01

    The neural mechanisms underlying cricket singing behavior have been the focus of several studies, but the central pattern generator (CPG) for singing has not been localized conclusively. To test if the abdominal ganglia contribute to the singing motor pattern and to analyze if parts of the singing CPG are located in these ganglia, we systematically truncated the abdominal nerve cord of fictively singing crickets while recording the singing motor pattern from a front-wing nerve. Severing the connectives anywhere between terminal ganglion and abdominal ganglion A3 did not preclude singing, although the motor pattern became more variable and failure-prone as more ganglia were disconnected. Singing terminated immediately and permanently after transecting the connectives between the metathoracic ganglion complex and the first unfused abdominal ganglion A3. The contribution of abdominal ganglia for singing pattern generation was confirmed by intracellular interneuron recordings and current injections. During fictive singing, an ascending interneuron with its soma and dendrite in A3 depolarized rhythmically. It spiked 10 ms before the wing-opener activity and hyperpolarized in phase with the wing-closer activity. Depolarizing current injection elicited rhythmic membrane potential oscillations and spike bursts that elicited additional syllables and reliably reset the ongoing chirp rhythm. Our results disclose that the abdominal ganglion A3 is directly involved in generating the singing motor pattern, whereas the more posterior ganglia seem to provide only stabilizing feedback to the CPG circuit. Localizing the singing CPG in the anterior abdominal neuromeres now allows analyzing its circuitry at the level of identified interneurons in subsequent studies.

  12. Key Bifurcations of Bursting Polyrhythms in 3-Cell Central Pattern Generators

    PubMed Central

    Wojcik, Jeremy; Schwabedal, Justus; Clewley, Robert; Shilnikov, Andrey L.

    2014-01-01

    We identify and describe the key qualitative rhythmic states in various 3-cell network motifs of a multifunctional central pattern generator (CPG). Such CPGs are neural microcircuits of cells whose synergetic interactions produce multiple states with distinct phase-locked patterns of bursting activity. To study biologically plausible CPG models, we develop a suite of computational tools that reduce the problem of stability and existence of rhythmic patterns in networks to the bifurcation analysis of fixed points and invariant curves of a Poincaré return maps for phase lags between cells. We explore different functional possibilities for motifs involving symmetry breaking and heterogeneity. This is achieved by varying coupling properties of the synapses between the cells and studying the qualitative changes in the structure of the corresponding return maps. Our findings provide a systematic basis for understanding plausible biophysical mechanisms for the regulation of rhythmic patterns generated by various CPGs in the context of motor control such as gait-switching in locomotion. Our analysis does not require knowledge of the equations modeling the system and provides a powerful qualitative approach to studying detailed models of rhythmic behavior. Thus, our approach is applicable to a wide range of biological phenomena beyond motor control. PMID:24739943

  13. Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

    PubMed

    Katz, P S; Frost, W N

    1997-10-15

    For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state. PMID:9315892

  14. Mutual synchronization between structure and central pattern generator

    NASA Astrophysics Data System (ADS)

    Hongu, Junichi; Iba, Daisuke

    2012-04-01

    This paper shows an evaluating method of synchronization between a structure and Central Pattern Generators (CPGs), which are embedded in a controller designed for an active mass damper. A neural oscillator composing the CPGs has nonlinear and entrainment properties. Therefore, the proposed controller has possibility to exhibit the characteristic of robustness, when the structural parameters, i.e. stiffness or damping, are changed by earthquakes and the like. Our earlier studies have proposed the new controller and ascertained the efficacy of vibration suppression. However, there has been no study to evaluate the controller's above-mentioned properties. For tuning into practical application, the reliability and robustness along with the controller's vibration mitigation performance must be analyzed. In this paper, phase reduction theory is tried to appraise the synchronization between a structure and the CPGs. In this case, the synchronization between the target structure and a single neural oscillator constituting the CPGs is required to be investigated. Therefore, the single neural oscillator's the harmonization characteristic with sinusoidal input is firstly examined, and the synchronization region is expressed using phase response curves. In addition, the mutual synchronization between the structure and the single neural oscillator is studied under sinusoidal input using the result of the harmonization characteristic.

  15. Electronic Tongue Generating Continuous Recognition Patterns for Protein Analysis

    PubMed Central

    Hou, Yanxia; Genua, Maria; Garçon, Laurie-Amandine; Buhot, Arnaud; Calemczuk, Roberto; Bonnaffé, David; Lortat-Jacob, Hugues; Livache, Thierry

    2014-01-01

    In current protocol, a combinatorial approach has been developed to simplify the design and production of sensing materials for the construction of electronic tongues (eT) for protein analysis. By mixing a small number of simple and easily accessible molecules with different physicochemical properties, used as building blocks (BBs), in varying and controlled proportions and allowing the mixtures to self-assemble on the gold surface of a prism, an array of combinatorial surfaces featuring appropriate properties for protein sensing was created. In this way, a great number of cross-reactive receptors can be rapidly and efficiently obtained. By combining such an array of combinatorial cross-reactive receptors (CoCRRs) with an optical detection system such as surface plasmon resonance imaging (SPRi), the obtained eT can monitor the binding events in real-time and generate continuous recognition patterns including 2D continuous evolution profile (CEP) and 3D continuous evolution landscape (CEL) for samples in liquid. Such an eT system is efficient for discrimination of common purified proteins. PMID:25286325

  16. Electronic tongue generating continuous recognition patterns for protein analysis.

    PubMed

    Hou, Yanxia; Genua, Maria; Garçon, Laurie-Amandine; Buhot, Arnaud; Calemczuk, Roberto; Bonnaffé, David; Lortat-Jacob, Hugues; Livache, Thierry

    2014-01-01

    In current protocol, a combinatorial approach has been developed to simplify the design and production of sensing materials for the construction of electronic tongues (eT) for protein analysis. By mixing a small number of simple and easily accessible molecules with different physicochemical properties, used as building blocks (BBs), in varying and controlled proportions and allowing the mixtures to self-assemble on the gold surface of a prism, an array of combinatorial surfaces featuring appropriate properties for protein sensing was created. In this way, a great number of cross-reactive receptors can be rapidly and efficiently obtained. By combining such an array of combinatorial cross-reactive receptors (CoCRRs) with an optical detection system such as surface plasmon resonance imaging (SPRi), the obtained eT can monitor the binding events in real-time and generate continuous recognition patterns including 2D continuous evolution profile (CEP) and 3D continuous evolution landscape (CEL) for samples in liquid. Such an eT system is efficient for discrimination of common purified proteins. PMID:25286325

  17. The Network Spinal Wave as a Central Pattern Generator

    PubMed Central

    Epstein, Donald M.; Lemberger, Daniel

    2016-01-01

    Abstract Objectives: This article explains the research on a unique spinal wave visibly observed in association with network spinal analysis care. Since 1997, the network wave has been studied using surface electromyography (sEMG), characterized mathematically, and determined to be a unique and repeatable phenomenon. Methods: The authors provide a narrative review of the research and a context for the network wave's development. Results: The sEMG research demonstrates that the movement of the musculature of the spine during the wave phenomenon is electromagnetic and mechanical. The changes running along the spine were characterized mathematically at three distinct levels of care. Additionally, the wave has the mathematical properties of a central pattern generator (CPG). Conclusions: The network wave may be the first CPG discovered in the spine unrelated to locomotion. The mathematical characterization of the signal also demonstrates coherence at a distance between the sacral to cervical spine. According to mathematical engineers, based on studies conducted a decade apart, the wave itself is a robust phenomenon and the detection methods for this coherence may represent a new measure for central nervous system health. This phenomenon has implications for recovery from spinal cord injury and for reorganizational healing development. PMID:27243963

  18. Mexican-origin Mothers’ and Fathers’ Involvement in Adolescents’ Peer Relationships: A Pattern-Analytic Approach

    PubMed Central

    Updegraff, Kimberly A.; Perez-Brena, Norma J.; Baril, Megan E.; McHale, Susan M.; Umaña-Taylor, Adriana J.

    2013-01-01

    Using latent profile analysis, this study examined patterns of mother-father involvement in adolescents’ peer relationships along three dimensions, support, guidance, and restrictions, in 240 Mexican-origin families. Three profiles were identified: (a) High Mother Involvement (mothers higher than fathers on all three dimensions); (b) High Support/Congruent (mothers and fathers reported the highest levels of peer support and similar levels of guidance and restrictions); and (c) Differentiated (more guidance and restrictions by fathers than by mothers, similar levels of parent support). These profiles were linked to mothers’ and fathers’ familism values, traditional patriarchal gender role attitudes, and socioeconomic status, and to adolescents’ friendship intimacy and risky behaviors measured longitudinally from early to late adolescence. Adolescent gender moderated the linkages between parents’ involvement in adolescents’ peer relationships and youth adjustment. PMID:24092949

  19. Ethnic and Gender Variation in Religious Involvement: Patterns of Expression in Young Adulthood

    PubMed Central

    Jones, Janine M.; St. Peter, Josie R.; Fernandes, Sherira J.; Herrenkohl, Todd I.; Kosterman, Rick; Hawkins, J. David

    2012-01-01

    This study used latent class analysis to empirically derive profiles of religious involvement among a sample of 808 young adults and describe ethnic and gender differences within such religious involvement patterns. Items on the Duke Religion Index were included as part of a larger longitudinal survey of emotional, physical, and behavioral health. The scale measured the organizational, nonorganizational, and intrinsic dimensions of religiosity (Koenig et al. 2001) in a sample of young adults at two waves of the study—age 27 and age 30. At age 27, five religious profiles were distinguishable in the sample while at age 30 six profiles emerged. Ethnic differences were found for each of the religious profiles where religious involvement manifested in different ways. Religious profiles between ages 27 and 30 changed over time and were affected by gender and ethnicity. PMID:23002308

  20. Viewing Generativity and Social Capital as Underlying Factors of Parent Involvement

    ERIC Educational Resources Information Center

    Stevens, Sharon; Patel, Nimisha

    2015-01-01

    Parent involvement in education is a multifaceted support that has many well-documented benefits for students of all ages. Parent involvement is also a common expression of generativity as defined in Erik Erikson's theory of psychosocial development. The activities parents engage in during their children's educational pursuits, as well as their…

  1. Principal-Generated YouTube Video as a Method of Improving Parental Involvement

    ERIC Educational Resources Information Center

    Richards, Joey

    2013-01-01

    The purpose of this study was to evaluate the involvement level of parents and reveal whether principal-generated YouTube videos for regular communication would enhance levels of parental involvement at one North Texas Christian Middle School (pseudonym). The following questions guided this study: 1. What is the beginning level of parental…

  2. Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates.

    PubMed

    Kuraku, Shigehiro; Takio, Yoko; Sugahara, Fumiaki; Takechi, Masaki; Kuratani, Shigeru

    2010-05-01

    In jawed vertebrates, the Dlx code, or nested expression patterns of Dlx genes, specify the dorsoventral polarity of pharyngeal arches, downstream of endothelin-1 (Edn-1) and its effectors, Bapx1 (Nkx3.2) and dHand (Hand2). To elucidate the evolution of the specification mechanism of the oropharyngeal skeletal system, lamprey homologs of Dlx, Edn, endothelin receptor (Ednr), Bapx1, and dHand were identified. Our analysis suggested that the Edn gene family emerged at the advent of vertebrates, and that gene duplications leading to the different Edn gnathostome subtypes (Edn1-3) occurred before the cyclostome-gnathostome split. This timing of gene duplications, giving rise to multiple subtypes, was also implied for Dlx, Ednr, Hand, and Bapx. In lamprey embryos, nested expressions of Dlx genes were not observed in pharyngeal arches, nor was any focal expression of Bapx1, known in gnathostomes to specify the jaw joint. The dHand homolog, however, was expressed more intensively ventrally, as in gnathostomes. Lamprey homologs of Edn-1 and EdnrA were also shown to be expressed as described in mice, indicating involvement of this signaling pathway in the craniofacial patterning early in vertebrate evolution. These results suggest that the last common ancestor of all the extant vertebrates would have possessed basic gene repertoires involved in oropharyngeal patterning in gnathostomes, but the elaborate genetic program leading to the Dlx code is likely to have been acquired uniquely in gnathostomes. PMID:20171204

  3. Expression of Genes Involved in Drosophila Wing Morphogenesis and Vein Patterning Are Altered by Spaceflight

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia A.; Hosamani, Ravikumar; Bhattacharya, Sharmila

    2015-01-01

    Imaginal wing discs of Drosophila melanogaster (fruit fly) defined during embryogenesis ultimately result in mature wings of stereotyped (specific) venation patterning. Major regulators of wing disc development are the epidermal growth factor receptor (EGF), Notch, Hedgehog (Hh), Wingless (Wg), and Dpp signaling pathways. Highly stereotyped vascular patterning is also characteristic of tissues in other organisms flown in space such as the mouse retina and leaves of Arabidopsis thaliana. Genetic and other adaptations of vascular patterning to space environmental factors have not yet been systematically quantified, despite widespread recognition of their critical importance for terrestrial and microgravity applications. Here we report changes in gene expression with space flight related to Drosophila wing morphogenesis and vein patterning. In addition, genetically modified phenotypes of increasingly abnormal ectopic wing venation in the Drosophila wing1 were analyzed by NASA's VESsel GENeration Analysis (VESGEN) software2. Our goal is to further develop insightful vascular mappings associated with bioinformatic dimensions of genetic or other molecular phenotypes for correlation with genetic and other molecular profiling relevant to NASA's GeneLab and other Space Biology exploration initiatives.

  4. A Compartmental Lateral Inhibition System to Generate Contrasting Patterns

    PubMed Central

    Rufino Ferreira, Ana S.; Hsia, Justin; Arcak, Murat

    2015-01-01

    We propose a lateral inhibition system and analyze contrasting patterns of gene expression. The system consists of a set of compartments interconnected by channels. Each compartment contains a colony of cells that produce diffusible molecules to be detected by the neighboring colonies. Each cell is equipped with an inhibitory circuit that reduces its production when the detected signal is sufficiently strong. We characterize the parameter range in which steady-state patterns emerge. PMID:26665158

  5. Crashes involving motorised rickshaws in urban India: Characteristics and injury patterns

    PubMed Central

    Schmucker, Uli; Dandona, Rakhi; Kumar, G. Anil; Dandona, Lalit

    2011-01-01

    Introduction Motorised three-wheeled vehicles (motorised rickshaw) are popular in Asian countries including India. This study aims to describe the crash characteristics and injury patterns for motorised rickshaw occupants and the road users hit-by-motorised rickshaw in urban India. Methods Consecutive cases of road traffic crashes involving motorised rickshaw, irrespective of injury severity, whether alive or dead, presenting to the emergency departments of two large government hospitals and three branches of a private hospital in Hyderabad city were recruited. Crash characteristics, details of injuries, injury severity parameters and outcome were documented in detailed interviews. Results A total of 139 (18%) of the 781 participants recruited were injured as a motorised rickshaw occupant (11%) or were hit by a motorised rickshaw (7%) in 114 crashes involving motorised rickshaw. Amongst motorised rickshaw occupants, single-vehicle collisions (54%) were more frequent than multi-vehicle collisions (46%), with overturning of motorised rickshaw in 73% of the single-vehicle collisions. Mortality (12%), the mean Injury Severity Score (5.8) and rate of multiple injured (60%) indicated a substantial trauma load. No significant differences in injury pattern were found between motorised rickshaw occupants and hit-by-motorised rickshaw subjects, with the pattern being similar to that of the pedestrians and two-wheeled vehicle users. With bivariate analysis for motorised rickshaw occupants, the risk of fatal outcome (odds ratio (OR) 2.60, 95% confidence interval (CI): 0.64–10.54), upper limb injury (OR 2.25, 95% CI: 0.94–5.37) and multiple injuries (OR 2.03, 95% CI 0.85–4.83) was high, although not statistically significant in multi-motorised-vehicle collisions as compared with the single-vehicle collisions or overturning. The risk of having multiple injuries (OR 4.55, 95% CI: 1.15–17.95) was significantly higher in motorised rickshaw occupants involved in front

  6. Spin wave excitation patterns generated by spin torque oscillators

    NASA Astrophysics Data System (ADS)

    Macià, F.; Hoppensteadt, F. C.; Kent, A. D.

    2014-01-01

    Spin torque nano-oscillators (STNO) are nanoscale devices that can convert a direct current into short wavelength spin wave excitations in a ferromagnetic layer. We show that arrays of STNO can be used to create directional spin wave radiation similarly to electromagnetic antennas. Combining STNO excitations with planar spin waves also creates interference patterns. We show that these interference patterns are static and have information on the wavelength and phase of the spin waves emitted from the STNO. We describe a means of actively controlling spin wave radiation patterns with the direct current flowing through STNO, which is useful in on-chip communication and information processing and could be a promising technique for studying short wavelength spin waves in different materials.

  7. Perceptions of Father Involvement Patterns in Teenage-Mother Families: Predictors and Links to Mothers' Psychological Adjustment

    ERIC Educational Resources Information Center

    Kalil, Ariel; Ziol-Guest, Kathleen M.; Coley, Rebekah Levine

    2005-01-01

    Based on adolescent mothers' reports, longitudinal patterns of involvement of young, unmarried biological fathers (n=77) in teenage-mother families using cluster analytic techniques were examined. Approximately one third of fathers maintained high levels of involvement over time, another third demonstrated low involvement at both time points, and…

  8. Polychromatic Optical Vortex Generation from Patterned Cholesteric Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Generation of optical vortices is described in cholesteric liquid crystals with a singular point in the spatial distribution of a helix phase. The phenomenon uses the fact that a Bragg reflected light phase varies in proportion to the spatial phase of the helix, both at normal and oblique incidences. Our proposal enables high-efficiency, polychromatic generation of optical vortices without the need of a cumbersome fabrication process and fine-tuning.

  9. Polychromatic Optical Vortex Generation from Patterned Cholesteric Liquid Crystals.

    PubMed

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-24

    Generation of optical vortices is described in cholesteric liquid crystals with a singular point in the spatial distribution of a helix phase. The phenomenon uses the fact that a Bragg reflected light phase varies in proportion to the spatial phase of the helix, both at normal and oblique incidences. Our proposal enables high-efficiency, polychromatic generation of optical vortices without the need of a cumbersome fabrication process and fine-tuning. PMID:27391724

  10. Microstencils to generate defined, multi-species patterns of bacteria

    SciTech Connect

    Doktycz, Mitchel J.; Retterer, Scott T.; Pelletier, Dale A.; Timm, Collin M.; Hansen, Ryan R.

    2015-11-12

    Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniques with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.

  11. Microstencils to generate defined, multi-species patterns of bacteria

    DOE PAGESBeta

    Doktycz, Mitchel J.; Retterer, Scott T.; Pelletier, Dale A.; Timm, Collin M.; Hansen, Ryan R.

    2015-11-12

    Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less

  12. 32 nm imprint masks using variable shape beam pattern generators

    NASA Astrophysics Data System (ADS)

    Selinidis, Kosta; Thompson, Ecron; Schmid, Gerard; Stacey, Nick; Perez, Joseph; Maltabes, John; Resnick, Douglas J.; Yeo, Jeongho; Kim, Hoyeon; Eynon, Ben

    2008-05-01

    Imprint lithography has been included on the ITRS Lithography Roadmap at the 32, 22 and 16 nm nodes. Step and Flash Imprint Lithography (S-FIL ®) is a unique method that has been designed from the beginning to enable precise overlay for creating multilevel devices. A photocurable low viscosity monomer is dispensed dropwise to meet the pattern density requirements of the device, thus enabling imprint patterning with a uniform residual layer across a field and across entire wafers. Further, S-FIL provides sub-100 nm feature resolution without the significant expense of multi-element, high quality projection optics or advanced illumination sources. However, since the technology is 1X, it is critical to address the infrastructure associated with the fabrication of templates. For sub-32 nm device manufacturing, one of the major technical challenges remains the fabrication of full-field 1x templates with commercially viable write times. Recent progress in the writing of sub-40 nm patterns using commercial variable shape e-beam tools and non-chemically amplified resists has demonstrated a very promising route to realizing these objectives, and in doing so, has considerably strengthened imprint lithography as a competitive manufacturing technology for the sub 32nm node. Here we report the first imprinting results from sub-40 nm full-field patterns, using Samsung's current flash memory production device design. The fabrication of the template is discussed and the resulting critical dimension control and uniformity are discussed, along with image placement results. The imprinting results are described in terms of CD uniformity, etch results, and overlay.

  13. Emergent Central Pattern Generator Behavior in Gap-Junction-Coupled Hodgkin-Huxley Style Neuron Model

    PubMed Central

    Memelli, Heraldo; Solomon, Irene C.

    2012-01-01

    Most models of central pattern generators (CPGs) involve two distinct nuclei mutually inhibiting one another via synapses. Here, we present a single-nucleus model of biologically realistic Hodgkin-Huxley neurons with random gap junction coupling. Despite no explicit division of neurons into two groups, we observe a spontaneous division of neurons into two distinct firing groups. In addition, we also demonstrate this phenomenon in a simplified version of the model, highlighting the importance of afterhyperpolarization currents (IAHP) to CPGs utilizing gap junction coupling. The properties of these CPGs also appear sensitive to gap junction conductance, probability of gap junction coupling between cells, topology of gap junction coupling, and, to a lesser extent, input current into our simulated nucleus. PMID:23365558

  14. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    PubMed

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity. PMID:17804574

  15. A Single Input Change Test Pattern Generator for Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Lei, Shaochong; Shao, Zhibiao

    An optimized Built-In Self-Test technology is proposed in this paper. A simplified algebraic model is developed to represent the configurations of single input change circuits. A novel single input change sequence generation technique is designed. It consists of a modified scan shift register, a seed storage array and a series of XOR gates. This circuitry can automatically generate single input change sequences of more unique vectors. Experimental results based on the ISCAS-89 benchmark show that the proposed method can achieve high stuck-at fault coverage with low switching activity during test applications.

  16. Pattern generation with cesium atomic beams at nanometer scales

    NASA Astrophysics Data System (ADS)

    Kreis, M.; Lison, F.; Haubrich, D.; Meschede, D.; Nowak, S.; Pfau, T.; Mlynek, J.

    1996-12-01

    We have demonstrated that a cesium atomic beam can be used to pattern a gold surface using a self assembling monolayer (SAM) as a resist. A 12.5 μm period mesh was used as a proximity mask for the atomic beam. The cesium atoms locally change the wetability of the SAM, which allows a wet etching reagent to remove the underlying gold in the exposed regions. An edge resolution of better than 100 nm was obtained. The experiment suggests that this method can either be used as a sensitive position detector with nanometer resolution in atom optics, or for nanostructuring in a resist technique.

  17. GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION

    NASA Astrophysics Data System (ADS)

    Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič

    2015-10-01

    In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.

  18. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  19. Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion

    PubMed Central

    Moraes, Caroline da Silva; Diaz-Albiter, Hector M.; Faria, Maiara do Valle; Sant'Anna, Maurício R. V.; Dillon, Rod J.; Genta, Fernando A.

    2014-01-01

    The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves β-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive β-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes. PMID:25140153

  20. Patterns of rock fragment cover generated by tillage erosion

    NASA Astrophysics Data System (ADS)

    Poesen, Jean; Wesemael, Bas van; Govers, Gerard; Martinez-Fernandez, José; Desmet, Philippe; Vandaele, Karel; Quine, Timothy; Degraer, Greet

    1997-03-01

    Intensively cultivated areas in the upper part of the Guadalentin catchment (southeast Spain) show a systematic spatial pattern of surface rock fragment cover ( Rc). The objective of this paper is to quantify and to explain this spatial rock fragment cover pattern. Therefore, a map of an intensively cultivated area of 5 km 2 was digitised, and for each pixel total topographic curvature was calculated. Next, rock fragment cover was determined photographically at 35 sites with a range of total slope curvatures. A linear relation between total curvature and rock fragment cover was found, except for narrow concavities. It was hypothesised that this pattern can be explained by a significant net downslope movement of rock fragments and fine earth by tillage. The displacement distances of rock fragments by tillage with a duckfoot chisel were measured by monitoring the displacement of tracers (painted rock fragments and aluminium cubes) on 5 sites having different slopes. The rare of tillage erosion for one tillage pass with a duckfoot chisel, expressed by the diffusion constant ( k), equals 282 kg/m for up and downslope tillage and only 139 kg/m for contour tillage. Nomograms indicate that mean denudation rates in almond groves due to tillage erosion (3 to 5 tillage passes per year) can easily amount to 1.5-2.6 mm/year for contour tillage and up to 3.6-5.9 mm/year for up- and downslope tillage for a field, 50 m long and having a slope of 20%. These figures are at least one order of magnitude larger than reported denudation rates caused by water erosion in similar environments. Hence tillage erosion contributes significantly to land degradation. The downslope soil flux induced by tillage not only causes considerable denudation on topographic convexities (hill tops and spurs) and upper field boundaries but also an important sediment accumulation in topographic concavities (hollows and valley bottoms) and at lower field boundaries. Kinetic sieving (i.e. the upward migration

  1. Comparison of the reliability of multifocal visual evoked cortical potentials generated by pattern reversal and pattern pulse stimulation.

    PubMed

    Souza, G S; Schakelford, H B; Moura, A L A; Gomes, B D; Ventura, D F; Fitzgerald, M E C; Silveira, L C L

    2012-10-01

    This study compared the effectiveness of the multifocal visual evoked cortical potentials (mfVEP) elicited by pattern pulse stimulation with that of pattern reversal in producing reliable responses (signal-to-noise ratio >1.359). Participants were 14 healthy subjects. Visual stimulation was obtained using a 60-sector dartboard display consisting of 6 concentric rings presented in either pulse or reversal mode. Each sector, consisting of 16 checks at 99% Michelson contrast and 80 cd/m² mean luminance, was controlled by a binary m-sequence in the time domain. The signal-to-noise ratio was generally larger in the pattern reversal than in the pattern pulse mode. The number of reliable responses was similar in the central sectors for the two stimulation modes. At the periphery, pattern reversal showed a larger number of reliable responses. Pattern pulse stimuli performed similarly to pattern reversal stimuli to generate reliable waveforms in R1 and R2. The advantage of using both protocols to study mfVEP responses is their complementarity: in some patients, reliable waveforms in specific sectors may be obtained with only one of the two methods. The joint analysis of pattern reversal and pattern pulse stimuli increased the rate of reliability for central sectors by 7.14% in R1, 5.35% in R2, 4.76% in R3, 3.57% in R4, 2.97% in R5, and 1.78% in R6. From R1 to R4 the reliability to generate mfVEPs was above 70% when using both protocols. Thus, for a very high reliability and thorough examination of visual performance, it is recommended to use both stimulation protocols. PMID:22782556

  2. Morphodynamics and anabranching patterns generated in the Madeira River, Brazil

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.; Bonthius, C.; Abad, J. D.; Stevaux, J.; Filizola, N.; Frias, C. E.

    2013-12-01

    The Madeira River is the largest tributary in water discharge and sediment transport of the Amazon River. At present, this river is at the center of a controversial political discussion because the Brazilian government is building two hydroelectric plants on the Bolivia-Brazil border, flooding a long reach from near Cachuela Esperanza in the tributary Beni River, close to the Brazil-Bolivia border, up to Porto Velho. We present results from three field expeditions carried out in July-August 2011, December 2012 and March 2013. The main scope of this article is to disseminate the environmental threat suffered by the Madeira from regulation/disruption, and to present preliminary results on the geomorphologic characteristics of the Madeira channel and floodplain. Using historical radar and satellite imagery, the floodplain morpho-sedimentary units and morphology of the channel were assessed and quantified. Sediment bed and bank sampling, bathymetric surveys and velocity measurements were recorded using a single beam echo sounder and an acoustic Doppler current profiler (ADCP), respectively. Velocity data were analyzed using TRDI's WinRiverII and a MATLAB-based software package Velocity Mapping Tool. We consider that the Madeira River offers some ideal conditions to provide information on critical conditions and geomorphologic thresholds in mega-rivers. The Madeira River has been classified as a simple to moderate anabranching low-sinuosity river. The Madeira flows through a relatively simple pattern, alternating straight reaches with others that exhibit an incipient tendency to anabranch. Single beam and ADCP data yields insight into the bathymetry and flow characteristics in the channel through straight, pseudo-meandering, and anabranching stretches. We studied in detail three selected three reaches zones where three primary mechanisms for anabranching were identified: a) branches upstream and downstream in box shape pseudo-meanders; b) simple branch patterns

  3. Topology-generating interfacial pattern formation during liquid metal dealloying

    PubMed Central

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  4. Topology-generating interfacial pattern formation during liquid metal dealloying.

    PubMed

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-01-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics. PMID:26582248

  5. Topology-generating interfacial pattern formation during liquid metal dealloying

    NASA Astrophysics Data System (ADS)

    Geslin, Pierre-Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-01

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Moreover, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  6. Topology-generating interfacial pattern formation during liquid metal dealloying

    DOE PAGESBeta

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growthmore » of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.« less

  7. Topology-generating interfacial pattern formation during liquid metal dealloying

    SciTech Connect

    Geslin, Pierre -Antoine; McCue, Ian; Gaskey, Bernard; Erlebacher, Jonah; Karma, Alain

    2015-11-19

    Liquid metal dealloying has emerged as a novel technique to produce topologically complex nanoporous and nanocomposite structures with ultra-high interfacial area and other unique properties relevant for diverse material applications. This process is empirically known to require the selective dissolution of one element of a multicomponent solid alloy into a liquid metal to obtain desirable structures. However, how structures form is not known. Here we demonstrate, using mesoscale phase-field modelling and experiments, that nano/microstructural pattern formation during dealloying results from the interplay of (i) interfacial spinodal decomposition, forming compositional domain structures enriched in the immiscible element, and (ii) diffusion-coupled growth of the enriched solid phase and the liquid phase into the alloy. We highlight how those two basic mechanisms interact to yield a rich variety of topologically disconnected and connected structures. Furthermore, we deduce scaling laws governing microstructural length scales and dealloying kinetics.

  8. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation.

    PubMed

    Grace, Kevin P; Horner, Richard L

    2015-01-01

    Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  9. Pattern Generator for Bench Test of Digital Boards

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Chu, Anhua J.

    2012-01-01

    All efforts to develop electronic equipment reach a stage where they need a board test station for each board. The SMAP digital system consists of three board types that interact with each other using interfaces with critical timing. Each board needs to be tested individually before combining into the integrated digital electronics system. Each board needs critical timing signals from the others to be able to operate. A bench test system was developed to support test of each board. The test system produces all the outputs of the control and timing unit, and is delivered much earlier than the timing unit. Timing signals are treated as data. A large file is generated containing the state of every timing signal at any instant. This file is streamed out to an IO card, which is wired directly to the device-under-test (DUT) input pins. This provides a flexible test environment that can be adapted to any of the boards required to test in a standalone configuration. The problem of generating the critical timing signals is then transferred from a hardware problem to a software problem where it is more easily dealt with.

  10. Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy.

    PubMed

    Eldridge, Tilly; Łangowski, Łukasz; Stacey, Nicola; Jantzen, Friederike; Moubayidin, Laila; Sicard, Adrien; Southam, Paul; Kennaway, Richard; Lenhard, Michael; Coen, Enrico S; Østergaard, Lars

    2016-09-15

    Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity. PMID:27624834

  11. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation

    PubMed Central

    Grace, Kevin P.; Horner, Richard L.

    2015-01-01

    Rapid eye movement (REM) sleep – characterized by vivid dreaming, motor paralysis, and heightened neural activity – is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the “pontine REM sleep generator” by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail. PMID:26388832

  12. Expression Patterns of Genes Involved in Sugar Metabolism and Accumulation during Apple Fruit Development

    PubMed Central

    Cheng, Lailiang

    2012-01-01

    Both sorbitol and sucrose are imported into apple fruit from leaves. The metabolism of sorbitol and sucrose fuels fruit growth and development, and accumulation of sugars in fruit is central to the edible quality of apple. However, our understanding of the mechanisms controlling sugar metabolism and accumulation in apple remains quite limited. We identified members of various gene families encoding key enzymes or transporters involved in sugar metabolism and accumulation in apple fruit using homology searches and comparison of their expression patterns in different tissues, and analyzed the relationship of their transcripts with enzyme activities and sugar accumulation during fruit development. At the early stage of fruit development, the transcript levels of sorbitol dehydrogenase, cell wall invertase, neutral invertase, sucrose synthase, fructokinase and hexokinase are high, and the resulting high enzyme activities are responsible for the rapid utilization of the imported sorbitol and sucrose for fruit growth, with low levels of sugar accumulation. As the fruit continues to grow due to cell expansion, the transcript levels and activities of these enzymes are down-regulated, with concomitant accumulation of fructose and elevated transcript levels of tonoplast monosaccharide transporters (TMTs), MdTMT1 and MdTMT2; the excess carbon is converted into starch. At the late stage of fruit development, sucrose accumulation is enhanced, consistent with the elevated expression of sucrose-phosphate synthase (SPS), MdSPS5 and MdSPS6, and an increase in its total activity. Our data indicate that sugar metabolism and accumulation in apple fruit is developmentally regulated. This represents a comprehensive analysis of the genes involved in sugar metabolism and accumulation in apple, which will serve as a platform for further studies on the functions of these genes and subsequent manipulation of sugar metabolism and fruit quality traits related to carbohydrates. PMID:22412983

  13. Beyond participation: the association between school extracurricular activities and involvement in violence across generations of immigration.

    PubMed

    Jiang, Xin; Peterson, Ruth D

    2012-03-01

    Participation in extracurricular activities is purported to protect the broad spectrum of youth from a host of behavioral risks. Yet, empirical research on the extent to which this assumption holds for involvement in violence by immigrant youth is limited. Thus, using data for 13,236 (51.8% female) adolescents from the National Longitudinal Study of Adolescent Health, this study explores how the relationship between extracurricular activities and youth violence varies by type of extracurricular activity profile (sports alone, non-sports alone, and a combination of sports and non-sports) and by generations of immigration (first, second, and third-plus). The sample is composed of 9.3% (n = 1,233) first-generation youth, 15.7% (n = 2,080) second generation, and 74.9% (n = 9,923) third-plus generation. The results reveal that adolescents from the third-plus generation (i.e., non-immigrant youth) who participate in non-sports alone or sports plus non-sports have lower odds of involvement in violence than adolescents from the same generation who do not participate in extracurricular activities. However, for first- and second-generation adolescents, participation in extracurricular activities is associated with higher rather than lower odds of violence compared to their non-participating counterparts. These findings challenge the viewpoint that participation in mainstream extracurricular activities as afforded by US schools is equally beneficial for all youth. They also call for additional research that explores why immigrant youth are less likely than non-immigrant youth to gain violence-reducing benefits when they participate in extracurricular activities. PMID:22167574

  14. Generation of nearly hemispherical and high gain azimuthally symmetric patterns with printed circuit antennas

    NASA Astrophysics Data System (ADS)

    Yang, Hung Yu; Alexopoulos, Nicolaos G.

    1987-08-01

    Patttern shaping techniques are discussed for printed circuit antennas such as microstrip dipoles and slot elements. Crossed printed circuit dipoles or a combination of a printed circuit dipole and a slot are employed. It is demonstrated that with the proper choice of substrate or substrate-superstrate parameters it is possible to generate: (1) nearly hemispherical patterns, (2) high-gain azimuthally symmetric patterns, and (3) nearly sec theta patterns.

  15. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

    PubMed Central

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-01-01

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment. PMID:26902520

  16. Central Pattern Generation and the Motor Infrastructure for Suck, Respiration, and Speech

    ERIC Educational Resources Information Center

    Barlow, Steven M.; Estep, Meredith

    2006-01-01

    The objective of the current report is to review experimental findings on centrally patterned movements and sensory and descending modulation of central pattern generators (CPGs) in a variety of animal and human models. Special emphasis is directed toward speech production muscle systems, including the chest wall and orofacial complex during…

  17. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

    NASA Astrophysics Data System (ADS)

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-02-01

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment.

  18. From Central Pattern Generator to Sensory Template in the Evolution of Birdsong

    ERIC Educational Resources Information Center

    Konishi, Masakazu

    2010-01-01

    Central nervous networks, be they a part of the human brain or a group of neurons in a snail, may be designed to produce distinct patterns of movement. Central pattern generators can account for the development and production of normal vocal signals without auditory feedback in non-songbirds. Songbirds need auditory feedback to develop and…

  19. Generation of rhythmic patterns of activity by ventral interneurones in rat organotypic spinal slice culture

    PubMed Central

    Ballerini, Laura; Galante, Micaela; Grandolfo, Micaela; Nistri, Andrea

    1999-01-01

    In the presence of certain excitatory substances the rat isolated spinal cord generates rhythmic oscillations believed to be an in-built locomotor programme (fictive locomotion). However, it is unknown whether a long-term culture of the same tissue can express rhythmic activity. Such a simplified model system would provide useful data on the minimal circuitry involved and the cellular mechanisms mediating this phenomenon. For this purpose we performed patch clamp recording (under whole-cell voltage or current clamp conditions) from visually identified ventral horn interneurones of an organotypic slice culture of the rat spinal cord. Ventral horn interneurones expressed rhythmic bursting when the extracellular [K+] was raised from 4 to 6-7 mM. Under voltage clamp this activity consisted of composite synaptic currents grouped into bursts lasting 0.9 ± 0.5 s (2.8 ± 1.5 s period) and was generated at network level as it was blocked by tetrodotoxin or low-Ca2+-high-Mg2+ solution and its periodicity was unchanged at different potential levels. In current clamp mode bursting was usually observed as episodes comprising early depolarizing potentials followed by hyperpolarizing events with tight temporal patterning. Bursting was fully suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and reduced in amplitude and duration by N-methyl-D-aspartate (NMDA) receptor antagonism without change in periodicity. Extracellular field recording showed bursting activity over a wide area of the ventral horn. Regular, rhythmic activity similar to that induced by K+ also appeared spontaneously in Mg2+-free solution. The much slower rhythmic pattern induced by strychnine and bicuculline was also accelerated by high-K+ solution. The fast and regular rhythmic activity of interneurones in the spinal organotypic culture is a novel observation which suggests that the oversimplified circuit present in this culture is a useful model for investigating spinal rhythmic activity. PMID:10332095

  20. A test of a dual central pattern generator hypothesis for subcortical control of locomotion.

    PubMed

    Guadagnoli, M A; Etnyre, B; Rodrigue, M L

    2000-08-01

    This study was designed to examine the nature of neural circuits involved in subcortical inter-limb coordination and reflex modulation mechanisms of locomotion. These circuits, called central pattern generators (CPGs), are believed to receive tonic input and generate rhythmically alternating sets of commands. Although CPGs have been theorized to exist in humans, their potential dual role in inter-limb coordination and reflex modulation is unclear. In the present study, nine participants walked on a treadmill, timing their heel-strikes to a metronome which varied the phase lag from 0.5 to 1.0 pi radians (0.1 pi intervals). A stimulus was delivered to the sural nerve and reflexes were measured in the ipsilateral and contralateral lower extremities through electromyography. The similarity between phase lag conditions for both temporal coordination (i.e., relative timing aspects between muscles and/or limbs) and reflex intensities suggested that they may be controlled by the same subcortical circuitry. Two plausible explanations exist: (1) a single CPG coordinates muscular contractions and phasically alters proprioceptive reflex modulation, as well as cutaneous input, using feed-forward control; (2) two separate circuits are strongly entrained, producing synchronous outputs for inter-limb coordination and reflex modulation. The out-of-phase task used in this study was limited in discerning such a difference, if it exists. PMID:10969197

  1. A Method for Generating Natural and User-Defined Sniffing Patterns in Anesthetized or Reduced Preparations

    PubMed Central

    Carey, Ryan M.; Wachowiak, Matt

    2009-01-01

    Sniffing has long been thought to play a critical role in shaping neural responses to odorants at multiple levels of the nervous system. However, it has been difficult to systematically examine how particular parameters of sniffing behavior shape odorant-evoked activity, in large part because of the complexity of sniffing behavior and the difficulty in reproducing this behavior in an anesthetized or reduced preparation. Here we present a method for generating naturalistic sniffing patterns in such preparations. The method involves a nasal ventilator whose movement is controlled by an analog command voltage. The command signal may consist of intranasal pressure transients recorded from awake rats and mice or user-defined waveforms. This “sniff playback” device generates intranasal pressure and airflow transients in anesthetized animals that approximate those recorded from the awake animal and are reproducible across trials and across preparations. The device accurately reproduces command waveforms over an amplitude range of approximately 1 log unit and up to frequencies of approximately 12 Hz. Further, odorant-evoked neural activity imaged during sniff playback appears similar to that seen in awake animals. This method should prove useful in investigating how the parameters of odorant sampling shape neural responses in a variety of experimental settings. PMID:18791186

  2. Proposed Tenaska Washington II Generation Project : Final Environmental Impact Statement. Volume 2: Public Involvement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1994-01-01

    In regard to the proposed Tenaska Washington II Generation Project, the goal of the Bonneville Power Administration`s (BPA) Environmental Impact Statement (EIS) public involvement process is to determine the issues to be examined and pertinent analyses to be conducted and to solicit comments on the content and quality of information presented in the Draft Environmental Impact Statement (DEIS). Comments and questions are solicited from the public and government agencies during the scoping process and during the comment period and public hearing on the DEIS, to find out what is of most concern to them. The end product of the public involvement process is the Comment Report which follows in part of this volume on Public Involvement.

  3. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns.

    PubMed

    Nakamasu, Akiko; Takahashi, Go; Kanbe, Akio; Kondo, Shigeru

    2009-05-26

    The reaction-diffusion system is one of the most studied nonlinear mechanisms that generate spatially periodic structures autonomous. On the basis of many mathematical studies using computer simulations, it is assumed that animal skin patterns are the most typical examples of the Turing pattern (stationary periodic pattern produced by the reaction-diffusion system). However, the mechanism underlying pattern formation remains unknown because the molecular or cellular basis of the phenomenon has yet to be identified. In this study, we identified the interaction network between the pigment cells of zebrafish, and showed that this interaction network possesses the properties necessary to form the Turing pattern. When the pigment cells in a restricted region were killed with laser treatment, new pigment cells developed to regenerate the striped pattern. We also found that the development and survival of the cells were influenced by the positioning of the surrounding cells. When melanophores and xanthophores were located at adjacent positions, these cells excluded one another. However, melanophores required a mass of xanthophores distributed in a more distant region for both differentiation and survival. Interestingly, the local effect of these cells is opposite to that of their effects long range. This relationship satisfies the necessary conditions required for stable pattern formation in the reaction-diffusion model. Simulation calculations for the deduced network generated wild-type pigment patterns as well as other mutant patterns. Our findings here allow further investigation of Turing pattern formation within the context of cell biology. PMID:19433782

  4. Differences in Parental Involvement Typologies among Baby Boomers, Generation X, and Generation Y Parents: A Study of Select Bay Area Region of Houston Elementary Schools

    ERIC Educational Resources Information Center

    Veloz, Elizabeth Andrea

    2010-01-01

    The purpose of this study was to determine whether differences existed among generations (Baby Boomers, Generation X, and Generation Y) regarding the levels of parental involvement within each of these generations. Also examined were additional factors such as the parents. socioeconomic status, educational level, marital status, and ethnicity. The…

  5. Effects of Differences in Working Memory Capacity on Patterns of Word Generation

    ERIC Educational Resources Information Center

    Kawamura, Mimpei; Kobayashi, Yasutaka; Morioka, Shu

    2012-01-01

    In recent years, it has been reported that WM (working memory) is concerned with word generation, but many points regarding the relationship between the individual differences of WM capacity and the patterns of word generation remain unclear. This study is to investigate these unclear points by using three types of word fluency task with different…

  6. Alcohol Consumption Patterns in Immigrant and Later Generation Mexican American Women.

    ERIC Educational Resources Information Center

    Gilbert, M. Jean

    1987-01-01

    Immigrant Mexican women's drinking patterns were compared with those of Mexican women in Mexico, other United States Latinas, later-generation Mexican-American women, and male immigrants. Changes in the direction of greater permissiveness and rationalization of alcohol use among later-generation Mexican-American women are demonstrated. (JMM)

  7. Automatic test pattern generation for logic circuits using the Boolean tree

    SciTech Connect

    Jeong Taegwon.

    1991-01-01

    The goal of this study was to develop an algorithm that can generate test patterns for combinational circuits and sequential logic circuits automatically. The new proposed algorithm generates a test pattern by using a special tree called a modified Boolean tree. In this algorithm, the construction of a modified Boolean tree is the most time-consuming step. Following the construction of a modified Boolean tree, a test pattern can be found by simply assigning a logic value 1 for even primary inputs and a logic value 0 for odd primary inputs of the constructed modified Boolean tree. The algorithm is applied to several benchmark circuits. The results showed the following: (1) for combinational circuits, the algorithm can generate test patterns 10-15% faster than the FAN algorithm, which is known as one of the most efficient algorithms to-date; (2) for sequential circuits, the algorithm shows more fault coverage than the nine valued algorithm.

  8. Pigment cell movement is not required for generation of Turing patterns in zebrafish skin

    NASA Astrophysics Data System (ADS)

    Bullara, D.; de Decker, Y.

    2015-05-01

    The zebrafish is a model organism for pattern formation in vertebrates. Understanding what drives the formation of its coloured skin motifs could reveal pivotal to comprehend the mechanisms behind morphogenesis. The motifs look and behave like reaction-diffusion Turing patterns, but the nature of the underlying physico-chemical processes is very different, and the origin of the patterns is still unclear. Here we propose a minimal model for such pattern formation based on a regulatory mechanism deduced from experimental observations. This model is able to produce patterns with intrinsic wavelength, closely resembling the experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring despite the absence of cell motion, through an effect that we call differential growth. This mechanism is qualitatively different from the reaction-diffusion originally proposed by Turing, although they both generate the short-range activation and the long-range inhibition required to form Turing patterns.

  9. Pigment cell movement is not required for generation of Turing patterns in zebrafish skin

    PubMed Central

    Bullara, D.; De Decker, Y.

    2015-01-01

    The zebrafish is a model organism for pattern formation in vertebrates. Understanding what drives the formation of its coloured skin motifs could reveal pivotal to comprehend the mechanisms behind morphogenesis. The motifs look and behave like reaction–diffusion Turing patterns, but the nature of the underlying physico-chemical processes is very different, and the origin of the patterns is still unclear. Here we propose a minimal model for such pattern formation based on a regulatory mechanism deduced from experimental observations. This model is able to produce patterns with intrinsic wavelength, closely resembling the experimental ones. We mathematically prove that their origin is a Turing bifurcation occurring despite the absence of cell motion, through an effect that we call differential growth. This mechanism is qualitatively different from the reaction–diffusion originally proposed by Turing, although they both generate the short-range activation and the long-range inhibition required to form Turing patterns. PMID:25959141

  10. Cortical regions involved in the generation of musical structures during improvisation in pianists.

    PubMed

    Bengtsson, Sara L; Csíkszentmihályi, Mihály; Ullén, Fredrik

    2007-05-01

    Studies on simple pseudorandom motor and cognitive tasks have shown that the dorsolateral prefrontal cortex and rostral premotor areas are involved in free response selection. We used functional magnetic resonance imaging to investigate whether these brain regions are also involved in free generation of responses in a more complex creative behavior: musical improvisation. Eleven professional pianists participated in the study. In one condition, Improvise, the pianist improvised on the basis of a visually displayed melody. In the control condition, Reproduce, the participant reproduced his previous improvisation from memory. Participants were able to reproduce their improvisations with a high level of accuracy, and the contrast Improvise versus Reproduce was thus essentially matched in terms of motor output and sensory feedback. However, the Improvise condition required storage in memory of the improvisation. We therefore also included a condition FreeImp, where the pianist improvised but was instructed not to memorize his performance. To locate brain regions involved in musical creation, we investigated the activations in the Improvise-Reproduce contrast that were also present in FreeImp contrasted with a baseline rest condition. Activated brain regions included the right dorsolateral prefrontal cortex, the presupplementary motor area, the rostral portion of the dorsal premotor cortex, and the left posterior part of the superior temporal gyrus. We suggest that these regions are part of a network involved in musical creation, and discuss their possible functional roles. PMID:17488207

  11. K+ homeostasis and central pattern generation in the metathoracic ganglion of the locust.

    PubMed

    Rodgers, Corinne I; Labrie, John D; Robertson, R Meldrum

    2009-07-01

    Stress-induced arrest of ventilatory motor pattern generation is tightly correlated with an abrupt increase in extracellular potassium concentration ([K+]o) within the metathoracic neuropil of the locust, Locusta migratoria. Na+/K+-ATPase inhibition with ouabain elicits repetitive surges of [K+]o that coincide with arrest and recovery of motor activity. Here we show that ouabain induces repetitive [K+]o events in a concentration-dependent manner. 10(-5)M, 10(-4)M, and 10(-3)M ouabain was bath-applied in semi-intact locust preparations. 10(-4)M and 10(-3)M ouabain reliably induced repetitive [K+]o events whereas 10(-5)M ouabain had no significant effect. In comparison to 10(-4)M ouabain, 10(-3)M ouabain increased the number and hastened the time to onset of repetitive [K+]o waves, prolonged [K+]o event duration, increased resting [K+]o, and diminished the absolute value of [K+]o waves. Recovery of motor patterning following [K+]o events was less likely in 10(-3)M ouabain. In addition, we show that K+ channel inhibition using TEA suppressed the onset and decreased the amplitude of ouabain-induced repetitive [K+]o waves. Our results demonstrate that ventilatory circuit function in the locust CNS is dependent on the balance between mechanisms of [K+] accumulation and [K+] clearance. We suggest that with an imbalance in favour of accumulation the system tends towards a bistable state with transitions mediated by positive feedback involving voltage-dependent K+ channels. PMID:19482133

  12. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Astrophysics Data System (ADS)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  13. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    NASA Technical Reports Server (NTRS)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  14. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    PubMed

    Hückesfeld, Sebastian; Schoofs, Andreas; Schlegel, Philipp; Miroschnikow, Anton; Pankratz, Michael J

    2015-01-01

    Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system. PMID:26252658

  15. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae

    PubMed Central

    Hückesfeld, Sebastian; Schoofs, Andreas; Schlegel, Philipp; Miroschnikow, Anton; Pankratz, Michael J.

    2015-01-01

    Motor systems can be functionally organized into effector organs (muscles and glands), the motor neurons, central pattern generators (CPG) and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS) that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM) ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ). Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC) only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system. PMID:26252658

  16. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models.

    PubMed

    Jiang, Ting-Xin; Widelitz, Randall B; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2004-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  17. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication

    PubMed Central

    Geng, Yong; Noh, JungHyun; Drevensek-Olenik, Irena; Rupp, Romano; Lenzini, Gabriele; Lagerwall, Jan P. F.

    2016-01-01

    Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns. PMID:27230944

  18. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication.

    PubMed

    Geng, Yong; Noh, JungHyun; Drevensek-Olenik, Irena; Rupp, Romano; Lenzini, Gabriele; Lagerwall, Jan P F

    2016-01-01

    Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns. PMID:27230944

  19. Note: A novel dielectric barrier discharge system for generating stable patterns in wide range

    NASA Astrophysics Data System (ADS)

    Liu, Weibo; Wang, Yongjie; Zhang, Hao; Pan, Yuyang; Dong, Lifang

    2016-05-01

    We develop a novel dielectric barrier discharge (DBD) system with a meshed water electrode to generate stable square superlattice patterns (MSSP) in Ar/air mixture in a wide range of experimental environments. Discharge scenarios with the applied voltage increasing in the meshed DBD and ordinary DBD are presented respectively under the same experimental conditions. It is found that a square pattern and MSSP can be obtained stably and easily in meshed DBD, while no pattern emerges in ordinary DBD. MSSP can be formed when the Ar content is from 0% to 70%, and the corresponding applied voltage decreases with Ar content increasing. Results based on optical methods show that MSSP is generated by artificially designed electrodes together with nonlinear characteristics of DBD, which may account for why patterns in meshed DBD exist in a wide range.

  20. Note: A novel dielectric barrier discharge system for generating stable patterns in wide range.

    PubMed

    Liu, Weibo; Wang, Yongjie; Zhang, Hao; Pan, Yuyang; Dong, Lifang

    2016-05-01

    We develop a novel dielectric barrier discharge (DBD) system with a meshed water electrode to generate stable square superlattice patterns (MSSP) in Ar/air mixture in a wide range of experimental environments. Discharge scenarios with the applied voltage increasing in the meshed DBD and ordinary DBD are presented respectively under the same experimental conditions. It is found that a square pattern and MSSP can be obtained stably and easily in meshed DBD, while no pattern emerges in ordinary DBD. MSSP can be formed when the Ar content is from 0% to 70%, and the corresponding applied voltage decreases with Ar content increasing. Results based on optical methods show that MSSP is generated by artificially designed electrodes together with nonlinear characteristics of DBD, which may account for why patterns in meshed DBD exist in a wide range. PMID:27250476

  1. High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication

    NASA Astrophysics Data System (ADS)

    Geng, Yong; Noh, Junghyun; Drevensek-Olenik, Irena; Rupp, Romano; Lenzini, Gabriele; Lagerwall, Jan P. F.

    2016-05-01

    Monodisperse cholesteric liquid crystal microspheres exhibit spherically symmetric Bragg reflection, generating, via photonic cross communication, dynamically tuneable multi-coloured patterns. These patterns, uniquely defined by the particular sphere arrangement, could render cholesteric microspheres very useful in countless security applications, as tags to identify and authenticate their carriers, mainly physical objects or persons. However, the optical quality of the cholesteric droplets studied so far is unsatisfactory, especially after polymerisation, a step required for obtaining durable samples that can be used for object identification. We show that a transition from droplets to shells solves all key problems, giving rise to sharp patterns and excellent optical quality even after polymerisation, the polymerised shells sustaining considerable mechanical deformation. Moreover, we demonstrate that, counter to prior expectation, cross communication takes place even between non-identical shells. This opens additional communication channels that add significantly to the complexity and unique character of the generated patterns.

  2. Rapid Generation of Multiplexed Cell Cocultures Using Acoustic Droplet Ejection Followed by Aqueous Two-Phase Exclusion Patterning

    PubMed Central

    Fang, Yu; Frampton, John P.; Raghavan, Shreya; Sabahi-Kaviani, Rahman; Luker, Gary

    2012-01-01

    The development of tools for patterning cocultures of cells is a fundamental interest among cell biologists and tissue engineers. Although a variety of systems exist for micropatterning cells, the methods used to generate cell micropatterns are often cumbersome and difficult to adapt for tissue engineering purposes. This study combines acoustic droplet ejection and aqueous two-phase system exclusion patterning to introduce a method for patterning cocultures of cells in multiplexed arrays. This new method uses focused acoustic radiation pressure to eject discrete droplets of uniform size from the surface of a dextran solution containing cells. The size of droplets is controlled by adjusting ultrasound parameters, such as pulse, duration, and amplitude. The ejected dextran droplets are captured on a cell culture substrate that is manipulated by a computer-controlled 3D positioning system according to predesigned patterns. Polyethylene glycol solution containing an additional cell type is then added to the culture dish to produce a two-phase system capable of depositing different types of cells around the initial pattern of cells. We demonstrate that our method can produce patterns of islands or lines with two or more cell types. Further, we demonstrate that patterns can be multiplexed for studies involving combinations of multiple cell types. This method offers a tool to transfer cell-containing samples in a contact-free, nozzle-less manner, avoiding sample cross-contamination. It can be used to pattern cell cocultures without complicated fabrication of culture substrates. These capabilities were used to examine the response of cancer cells to the presence of a ligand (CXCL12) secreted from surrounding cocultured cells. PMID:22356298

  3. When does colonisation of a semi-arid hillslope generate vegetation patterns?

    PubMed

    Sherratt, Jonathan A

    2016-07-01

    Patterned vegetation occurs in many semi-arid regions of the world. Most previous studies have assumed that patterns form from a starting point of uniform vegetation, for example as a response to a decrease in mean annual rainfall. However an alternative possibility is that patterns are generated when bare ground is colonised. This paper investigates the conditions under which colonisation leads to patterning on sloping ground. The slope gradient plays an important role because of the downhill flow of rainwater. One long-established consequence of this is that patterns are organised into stripes running parallel to the contours; such patterns are known as banded vegetation or tiger bush. This paper shows that the slope also has an important effect on colonisation, since the uphill and downhill edges of an isolated vegetation patch have different dynamics. For the much-used Klausmeier model for semi-arid vegetation, the author shows that without a term representing water diffusion, colonisation always generates uniform vegetation rather than a pattern. However the combination of a sufficiently large water diffusion term and a sufficiently low slope gradient does lead to colonisation-induced patterning. The author goes on to consider colonisation in the Rietkerk model, which is also in widespread use: the same conclusions apply for this model provided that a small threshold is imposed on vegetation biomass, below which plant growth is set to zero. Since the two models are quite different mathematically, this suggests that the predictions are a consequence of the basic underlying assumption of water redistribution as the pattern generation mechanism. PMID:26547308

  4. Parental Involvement in Infant Sleep Routines Predicts Differential Sleep Patterns in Children With and Without Anxiety Disorders.

    PubMed

    Cowie, Jennifer; Palmer, Cara A; Hussain, Hira; Alfano, Candice A

    2016-08-01

    This study compared parents' retrospective reports of their involvement in infant settling strategies and their relation to current sleep patterns among children (N = 84, ages 7-11) with generalized anxiety disorder (GAD) and healthy controls. Parents of children with GAD were significantly more likely to report rocking their infants to sleep and putting infants down when they were already asleep than parents of healthy controls, even when accounting for infant health-related factors and parental anxiety. Greater involvement in infant sleep routines also predicted sleep patterns (measured via actigraphy) during childhood, though opposite relationships were observed in the two groups. Early involvement was related to poorer sleep in control children but better sleep for children with GAD even after controlling for current parenting practices. Findings suggest differential effects of early sleep-related parenting for children with and without later anxiety disorders with possible implications for early intervention. PMID:26493392

  5. Calculation of second-harmonic wave pattern generated by focused cylindrical vector beams

    NASA Astrophysics Data System (ADS)

    Ohtsu, A.; Kozawa, Y.; Sato, S.

    2010-03-01

    We calculated the second-harmonic wave pattern induced by focused cylindrically symmetric, polarized vector beams. The second-order nonlinear polarization was expressed for fundamental electric field components passed through a dielectric interface based on vector diffraction theory. Furthermore, the second-harmonic wave pattern was represented on the basis of the far-field approximate expression derived from the formulation of higher-order harmonic generation including a Green's function. For a (110) zinc selenide crystal, the calculated forward emission patterns of the second-harmonic wave were eight-figure shaped as observed in experiment.

  6. Oscillatory Pattern Generation of the Olfactory Center Using Pulse-Type Hardware Chaotic Neuron Models

    NASA Astrophysics Data System (ADS)

    Saito, Ken; Hatano, Hirokazu; Saito, Minoru; Sekine, Yoshifumi

    Oscillatory patterns of electrical activity are a ubiquitous feature in nervous systems. Oscillatory patterns play an important role in the processing of sensory information pattern recognition. For example, earlier reports describe that the oscillatory patterns in the olfactory center of the land slug are changed by odor stimuli to the tentacles. Olfactory processing has also been studied in relation to rabbits and land slugs through the construction and use of mathematical neural network models. However, a large-scale model is necessary for the study of a model which has sensory information recognition by the oscillatory pattern. Therefore, the construction of a hardware model that can generate oscillatory patterns is desired because nonlinear operations can be processed at higher speeds than the mathematical model. We are studying about the neural network using hardware neuron models to construct the olfactory center model of the living organisms. In the present study, we discuss about the oscillatory pattern generation of the olfactory center using pulse-type hardware chaotic neuron models. Our model shows periodic, quasi-periodic and chaotic oscillations such as the olfactory center of living organisms by changing the synaptic connection weights.

  7. Structural vibration control by tuned mass damper using central pattern generator

    NASA Astrophysics Data System (ADS)

    Iba, Daisuke; Hongu, Junichi

    2011-04-01

    This paper proposes a new control method for active mass dampers using a Central Pattern Generator in vibration mitigation. The active mass dampers (or active dynamic absorbers) have been applied to structural vibration control of high-rise buildings, bridges and so on. In this case, the mass of the active mass damper must oscillate in an appropriate phase in relation to the control object, and generally, the damper has been designed by linear control theory as pole placement method, optimal control method or H infinity control method, and all the rest. On the other hand, on walking of animate beings like mammals or insects, both side feet have appropriate phase relations; moreover, it is possible to keep moving on irregular ground. That is, algorithms for the walking would be embedded into the animate beings to control the complicated and redundant bodies with ease and robustness. In biological study, the Central Pattern Generators in bodies playing a significant role in the walking have been learned over the last few decades, and some studies said that some animate beings are able to control their feet by using the generators without their brains in the walking. Moreover, mathematical models of the pattern generators have been proposed, and some researchers have been studying to realize walking of biped-robots using the pattern generators embedded in a computer. In this study, the algorithm is installed into a controller for the active mass damper; furthermore, validation of the controller is performed by numerical simulation.

  8. Generation of optical crystals and quasicrystal beams: Kaleidoscopic patterns and phase singularity

    SciTech Connect

    Chen, Y. F.; Liang, H. C.; Lin, Y. C.; Tzeng, Y. S.; Su, K. W.; Huang, K. F.

    2011-05-15

    We explore the feasibility of the generation of pseudonondiffracting optical beams related to crystal and quasicrystal structures. It is experimentally confirmed that optical crystal and quasicrystal beams can be remarkably generated with a collimated light to illuminate a high-precision mask with multiple apertures regularly distributed on a ring. We also found that exotic kaleidoscopic patterns can be exhibited with the high-order quasicrystal beams. More importantly, the structures of phase singularities in optical quasicrystal beams are manifested.

  9. Influence of next-generation sequencing and storage conditions on miRNA patterns generated from PAXgene blood.

    PubMed

    Backes, Christina; Leidinger, Petra; Altmann, Gabriela; Wuerstle, Maximilian; Meder, Benjamin; Galata, Valentina; Mueller, Sabine C; Sickert, Daniel; Stähler, Cord; Meese, Eckart; Keller, Andreas

    2015-09-01

    Whole blood derived miRNA signatures determined by Next-Generation Sequencing (NGS) offer themselves as future minimally invasive biomarkers for various human diseases. The PAXgene system is a commonly used blood storage system for miRNA analysis. Central to all miRNA analyses that aim to identify disease specific miRNA signatures, is the question of stability and variability of the miRNA profiles that are generated by NGS. We characterized the influence of five different conditions on the genome wide miRNA expression pattern of human blood isolated in PAXgene RNA tubes. In detail, we analyzed 15 miRNomes from three individuals. The blood was subjected to different numbers of freeze/thaw cycles and analyzed for the influence of storage at -80 or 8 °C. We also determined the influence of blood collection and NGS preparations on the miRNA pattern isolated from a single individual, which has been sequenced 10 times. Here, five PAXGene tubes were consecutively collected that have been split in two replicates, representing two experimental batches. All samples were analyzed by Illumina NGS. For each sample, approximately 20 million NGS reads have been generated. Hierarchical clustering and Principal Component Analysis (PCA) showed an influence of the different conditions on the miRNA patterns. The effects of the different conditions on miRNA abundance are, however, smaller than the differences that are due to interindividual variability. We also found evidence for an influence of the NGS measurement on the miRNA pattern. Specifically, hsa-miR-1271-5p and hsa-miR-182-5p showed coefficients of variation above 100% indicating a strong influence of the NGS protocol on the abundance of these miRNAs. PMID:26207298

  10. Central pattern generators for a common semiology in fronto-limbic seizures and in parasomnias. A neuroethologic approach.

    PubMed

    Tassinari, C A; Rubboli, G; Gardella, E; Cantalupo, G; Calandra-Buonaura, G; Vedovello, M; Alessandria, M; Gandini, G; Cinotti, S; Zamponi, N; Meletti, S

    2005-12-01

    Central pattern generators (CPGs) are genetically determined neuronal aggregates in the mesencephalon, pons and spinal cord subserving innate motor behaviours essential for survival (feeding, locomotion, reproduction etc.). In higher primates CPGs are largely under neocortical control. We describe how certain motor events observed in parasomnias and epileptic seizures could have similar features and resemble motor behaviours, which can be the expression of the same CPG. Both epilepsy and sleep can lead to a temporary loss of control of neomammalian cortex that facilitates through a common platform (arousal) the emergences of stereotyped inborn fixed action patterns. Therefore we suggest that, independently from the nature of the trigger, be it a seizure or a parasomnia, the same CPGs can be involved, "caught up", leading to a common motor semiology (the "Carillon theory"). PMID:16331401

  11. Spiral pattern in a radial displacement involving a reaction-producing gel

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hayashi, Atsushi; Ban, Mitsumasa; Kato, Yoshihito; Tada, Yutaka

    2008-08-01

    We have shown experimentally that the pattern created by the displacement of a more viscous fluid by a less viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more viscous sodium polyacrylate solution is displaced by a less viscous trivalent iron ion (Fe3+) solution with a sufficiently high concentration of Fe3+ . Another experiment revealed that an instantaneous chemical reaction takes place between the two fluids, and at high Fe3+ concentrations it produces a film of the gel at the contact plane. The gel film is proposed to be responsible for the spiral pattern.

  12. Spiral pattern in a radial displacement involving a reaction-producing gel.

    PubMed

    Nagatsu, Yuichiro; Hayashi, Atsushi; Ban, Mitsumasa; Kato, Yoshihito; Tada, Yutaka

    2008-08-01

    We have shown experimentally that the pattern created by the displacement of a more viscous fluid by a less viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more viscous sodium polyacrylate solution is displaced by a less viscous trivalent iron ion (Fe3+) solution with a sufficiently high concentration of Fe3+ . Another experiment revealed that an instantaneous chemical reaction takes place between the two fluids, and at high Fe3+ concentrations it produces a film of the gel at the contact plane. The gel film is proposed to be responsible for the spiral pattern. PMID:18850936

  13. Inferior olivary nucleus involvement in pediatric neurodegenerative disorders: does it play a role in neuroimaging pattern-recognition approach?

    PubMed

    Mirabelli-Badenier, Marisol; Morana, Giovanni; Bruno, Claudio; Di Rocco, Maja; Striano, Pasaquale; De Grandis, Eusa; Veneselli, Edvige; Rossi, Andrea; Biancheri, Roberta

    2015-04-01

    The diagnostic work up of neurometabolic/degenerative disorders is complex. In such context, identification of neuroradiological features suggestive of specific diagnoses is useful to prompt further diagnostic tests. Involvement of the inferior olivary nucleus (ION) has been reported in several pathologic conditions, either as a primary manifestation of disease or secondary to hypertrophic olivary degeneration (HOD). In this study, we analyzed a cohort of 95 children with different neurometabolic/degenerative diseases involving the brainstem and cerebellum, with the aim to evaluate whether ION involvement plays a role in a neuroimaging-based pattern-recognition approach. A total of 13 patients (13.7%) showed bilateral high-signal intensity and enlargement of the ION on T2-weighted images, while 16 (16.8%) had ION T2-hyperintensity without olivary nucleus enlargement. Our study demonstrates that ION involvement is not rare in children with neurometabolic/degenerative disorders. Two main neuroradiological patterns, that is, "T2-hyperintense signal" and "T2-hyperintense signal with enlargement" are found. These patterns can be related to different etiologies, and do not suggest specific diagnoses. Primary ION lesion can be characterized by olivary swelling, and the differentiation from typical secondary HOD may be difficult. PMID:25686202

  14. Improved photomask accuracy with a high-productivity DUV laser pattern generator

    NASA Astrophysics Data System (ADS)

    Öström, Thomas; Måhlén, Jonas; Karawajczyk, Andrzej; Rosling, Mats; Carlqvist, Per; Askebjer, Per; Karlin, Tord; Sallander, Jesper; Österberg, Anders

    2006-10-01

    A strategy for sub-100 nm technology nodes is to maximize the use of high-speed deep-UV laser pattern generators, reserving e-beam tools for the most critical photomask layers. With a 248 nm excimer laser and 0.82 NA projection optics, the Sigma7500 increases the application space of laser pattern generators. A programmable spatial light modulator (SLM) is imaged with partially coherent optics to compose the photomask pattern. Image profiles are enhanced with phase shifting in the pattern generator, and features below 200 nm are reliably printed. The Sigma7500 extends the SLM-based architecture with improvements to CD uniformity and placement accuracy, resulting from an error budget-based methodology. Among these improvements is a stiffer focus stage design with digital servos, resulting in improved focus stability. Tighter climate controls and improved dose control reduce drift during mask patterning. As a result, global composite CD uniformity below 5 nm (3σ) has been demonstrated, with placement accuracy below 10 nm (3σ) across the mask. Self-calibration methods are used to optimize and monitor system performance, reducing the need to print test plates. The SLM calibration camera views programmed test patterns, making it possible to evaluate image metrics such as CD uniformity and line edge roughness. The camera is also used to characterize image placement over the optical field. A feature called ProcessEqualizer TM has been developed to correct long-range CD errors arising from process effects on production photomasks. Mask data is sized in real time to compensate for pattern-dependent errors related to local pattern density, as well as for systematic pattern-independent errors such as radial CD signatures. Corrections are made in the pixel domain in the advanced adjustments processor, which also performs global biasing, stamp distortion compensation, and corner enhancement. In the Sigma7500, the mask pattern is imaged with full edge addressability in each

  15. Variation in motor output and motor performance in a centrally generated motor pattern

    PubMed Central

    Norris, Brian J.; Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Central pattern generators (CPGs) produce motor patterns that ultimately drive motor outputs. We studied how functional motor performance is achieved, specifically, whether the variation seen in motor patterns is reflected in motor performance and whether fictive motor patterns differ from those in vivo. We used the leech heartbeat system in which a bilaterally symmetrical CPG coordinates segmental heart motor neurons and two segmented heart tubes into two mutually exclusive coordination modes: rear-to-front peristaltic on one side and nearly synchronous on the other, with regular side-to-side switches. We assessed individual variability of the motor pattern and the beat pattern in vivo. To quantify the beat pattern we imaged intact adults. To quantify the phase relations between motor neurons and heart constrictions we recorded extracellularly from two heart motor neurons and movement from the corresponding heart segments in minimally dissected leeches. Variation in the motor pattern was reflected in motor performance only in the peristaltic mode, where larger intersegmental phase differences in the motor neurons resulted in larger phase differences between heart constrictions. Fictive motor patterns differed from those in vivo only in the synchronous mode, where intersegmental phase differences in vivo had a larger front-to-rear bias and were more constrained. Additionally, load-influenced constriction timing might explain the amplification of the phase differences between heart segments in the peristaltic mode and the higher variability in motor output due to body shape assumed in this soft-bodied animal. The motor pattern determines the beat pattern, peristaltic or synchronous, but heart mechanics influence the phase relations achieved. PMID:24717348

  16. Lay Referral Patterns Involved in Cardiac Treatment Decision Making among Middle-Aged and Older Adults

    ERIC Educational Resources Information Center

    Schoenberg, Nancy E.; Amey, Cheryl H.; Stoller, Eleanor Palo; Muldoon, Susan B.

    2003-01-01

    Purpose: This study examined age and contextually related factors that are influential in lay referral patterns during cardiac treatment decision making. Design and Methods: A complementary design was used. The Myocardial Infarction (MI) Onset Study identified demographic correlates of who sought medical care for 1,388 MI (heart attack) survivors.…

  17. Student-Generated Content in College Teaching: Content Quality, Behavioural Pattern and Learning Performance

    ERIC Educational Resources Information Center

    Yang, X.; Guo, X.; Yu, S.

    2016-01-01

    This study investigates the quality of course content, behavioural patterns of students and learning performance in teaching of student-generated content (SGC). A total of 49 third-year university students in educational technology participated in this study. By combining the methods of questionnaire, lag sequence analysis and interview, the study…

  18. The Development of Group Interaction Patterns: How Groups become Adaptive, Generative, and Transformative Learners

    ERIC Educational Resources Information Center

    London, Manuel; Sessa, Valerie I.

    2007-01-01

    This article integrates the literature on group interaction process analysis and group learning, providing a framework for understanding how patterns of interaction develop. The model proposes how adaptive, generative, and transformative learning processes evolve and vary in their functionality. Environmental triggers for learning, the group's…

  19. Synergistic action of nectins and cadherins generates the mosaic cellular pattern of the olfactory epithelium

    PubMed Central

    Katsunuma, Sayaka; Honda, Hisao; Shinoda, Tomoyasu; Ishimoto, Yukitaka; Miyata, Takaki; Kiyonari, Hiroshi; Abe, Takaya; Nibu, Ken-ichi; Takai, Yoshimi

    2016-01-01

    In the olfactory epithelium (OE), olfactory cells (OCs) and supporting cells (SCs), which express different cadherins, are arranged in a characteristic mosaic pattern in which OCs are enclosed by SCs. However, the mechanism underlying this cellular patterning is unclear. Here, we show that the cellular pattern of the OE is established by cellular rearrangements during development. In the OE, OCs express nectin-2 and N-cadherin, and SCs express nectin-2, nectin-3, E-cadherin, and N-cadherin. Heterophilic trans-interaction between nectin-2 on OCs and nectin-3 on SCs preferentially recruits cadherin via α-catenin to heterotypic junctions, and the differential distributions of cadherins between junctions promote cellular intercalations, resulting in the formation of the mosaic pattern. These observations are confirmed by model cell systems, and various cellular patterns are generated by the combinatorial expression of nectins and cadherins. Collectively, the synergistic action of nectins and cadherins generates mosaic pattern, which cannot be achieved by a single mechanism. PMID:26929452

  20. Pattern-generating travelling waves in a discrete multicellular system with lateral inhibition

    NASA Astrophysics Data System (ADS)

    Plahte, Erik; Øyehaug, Leiv

    2007-02-01

    On a one-dimensional string of cells, the juxtacrine signalling model for Delta-Notch lateral inhibition by Collier et al. [J.R. Collier, N.A.M. Monk, P.K. Maini, J.H. Lewis, Pattern formation by lateral inhibition with feedback: A mathematical model of Delta-Notch intercellular interaction, J. Theoret. Biol. 183 (1996) 429-446] exhibits a predominant alternating pattern of cells expressing either Delta or Notch, as well as many aperiodic patterns. Despite this multistationarity, in the idealised situation of no noise, travelling waves invading the unstable, homogeneous state only generate the predominant alternating pattern in their wake all over the lattice. However, this robustness is totally lost in the presence of stochastic noise because the invaded, initial state is unstable. Using linear approximations around the initial, homogeneous state and around the final, patterned state, we are able to derive analytically all essential properties of the wave: the shape of the wave front, the unique, alternating pattern generated by the wave, and the asymptotic speed of the wave front. We show that the asymptotic wave speed equals the theoretical minimum wave speed. The latter agrees extremely well with the value estimated from numerical simulations. Thus, in this system travelling waves are pulled by the leading edge of the front.

  1. Directivity patterns of laser-generated sound in solids: Effects of optical and thermal parameters.

    PubMed

    Krylov, Victor V

    2016-07-01

    In the present paper, directivity patterns of laser-generated sound in solids are investigated theoretically. Two main approaches to the calculation of directivity patterns of laser-generated sound are discussed for the most important case of thermo-optical regime of generation. The first approach, which is widely used in practice, is based on the simple modelling of the equivalent thermo-optical source as a mechanical dipole comprising two horizontal forces applied to the surface in opposite directions. The second approach is based on the rigorous theory that takes into account all acoustical, optical and thermal parameters of a solid material and all geometrical and physical parameters of a laser beam. Directivity patterns of laser-generated bulk longitudinal and shear elastic waves, as well as the amplitudes of generated Rayleigh surface waves, are calculated for different values of physical and geometrical parameters and compared with the directivity patterns calculated in case of dipole-source representation. It is demonstrated that the simple approach using a dipole-source representation of laser-generated sound is rather limited, especially for description of generated longitudinal acoustic waves. A practical criterion is established to define the conditions under which the dipole-source representation gives predictions with acceptable errors. It is shown that, for radiation in the normal direction to the surface, the amplitudes of longitudinal waves are especially sensitive to the values of thermal parameters and of the acoustic reflection coefficient from a free solid surface. A discussion is given on the possibility of using such a high sensitivity to the values of the reflection coefficient for investigation of surface properties of real solids. PMID:26851995

  2. Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination.

    PubMed

    Delica, Serafin; Blanca, Carlo Mar

    2007-10-10

    We present a simple and cost-effective wide-field, depth-sectioning, fluorescence microscope utilizing a commercial multimedia projector to generate excitation patterns on the sample. Highly resolved optical sections of fluorescent pollen grains at 1.9 microm axial resolution are constructed using the structured illumination technique. This requires grid excitation patterns to be scanned across the sample, which is straightforwardly implemented by creating slideshows of gratings at different phases, projecting them onto the sample, and synchronizing camera acquisition with slide transition. In addition to rapid dynamic pattern generation, the projector provides high illumination power and spectral excitation selectivity. We exploit these properties by imaging mouse neural cells in cultures multistained with Alexa 488 and Cy3. The spectral and structural neural information is effectively resolved in three dimensions. The flexibility and commercial availability of this light source is envisioned to open multidimensional imaging to a broader user base. PMID:17932535

  3. Generation of mask patterns for diffractive optical elements using Mathematica{sup T}{sup M}

    SciTech Connect

    OShea, D.C.

    1996-07-01

    The generation of binary and grayscale masks used in the fabrication of diffractive optical elements is usually performed using a proprietary piece of software or a computer-aided drafting package. Once the pattern is computed or designed, it must be output to a plotting or imaging system that will produce a reticle plate. This article describes a number of short Mathematica modules that can be used to generate binary and grayscale patterns in a PostScript-compatible format. Approaches to ensure that the patterns are directly related to the function of the element and the design wavelength are discussed. A procedure to preserve the scale of the graphic output when it is transferred to another application is given. Examples of surfaces for a 100 mm effective focal length lens and an Alvarez surface are given. {copyright} {ital 1996 American Institute of Physics.}

  4. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites.

    PubMed

    González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O

    2014-11-01

    The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. PMID:25081852

  5. An approach toward an analysis of the pattern recognition involved in the stellar orientation of birds

    NASA Technical Reports Server (NTRS)

    Wallraff, H. G.

    1972-01-01

    A conditioning method was used to investigate the orientational responses of ducks as affected by manipulations of the stellar patterns in a planetarium. Under simulated natural skies it was possible to train a bird to a particular direction successively under all positions of the rotating sphere at a constant latitude. The responses were independent of the phase relationships between local time, season, and appearance of the sky provided the bird had been trained under the particular sector of the sphere some time before.

  6. Officer-involved shooting: reaction patterns, response protocols, and psychological intervention strategies.

    PubMed

    Miller, Laurence

    2006-01-01

    Psychologists who work with law enforcement agencies may be called upon to respond to an officer-involved shooting (OIS). These need not be the most traumatic critical incidents in policing, but when they are, the reasons usually involve a mix of incident characteristics, officer response styles, and departmental handling. This article describes some of the psychological reactions experienced by officers during and following an OIS and provides a model of administrative, legal, mental health, and peer support services for officers in need. Finally, the article discusses several key roles that the police psychologist can play in the process of managing an OIS. PMID:17131770

  7. Generational Patterns in Mexican Americans' Academic Performance in an Unwelcoming Political Context

    PubMed Central

    Moosmann, Danyel A. V.; Roosa, Mark W.; Knight, George P.

    2014-01-01

    Research has shown that immigrant students often do better academically than their U.S.-born peers from the same ethnic group but it is unclear whether this pattern holds for Mexican Americans. We examined the academic performance of four generations of Mexican American students from fifth to 10th grade looking for generation differences and explanations for them. Using data from 749 families, we tested a model with fifth grade variables that differed by generation as potential mediators linking student generation to 10th grade academic performance. Results showed that immigrants were academically behind at fifth grade but caught up by seventh. Only economic hardship mediated the long term relationship between student generation and 10th grade academic performance; maternal educational expectations and child language hassles, English usage, discrimination, and mainstream values helped explained the early academic deficit of immigrant children. The results identified potential targets for interventions to improve Mexican American students' academic performance. PMID:24578588

  8. Volunteers in Amateur Sport Organizations: Biographic and Demographic Characteristics and Patterns of Involvement.

    ERIC Educational Resources Information Center

    Slack, Trevor

    This paper presents findings on the biographic and demographic characteristics of volunteer sport administrators and their involvement in sport organizations. The sample for the study consisted of volunteer sport administrators in 60 province-level sport organizations in Alberta, Canada. This study was done because of the dearth of research in…

  9. Patterns of Rural Community Involvement: A Comparison of Residents and Recent Immigrants.

    ERIC Educational Resources Information Center

    Rank, Mark R.; Voss, Paul R.

    1982-01-01

    Data collected in 1977 from 992 households in 37 fast-growing nonmetropolitan counties in the Upper Great Lakes Region show that newcomers over time tend to become as involved in their new communities as the oldtimers and socioeconomic status positively affects levels of formal community participation for both migrants and residents. (LC)

  10. "Simply the Best for My Children": Patterns of Parental Involvement in Education

    ERIC Educational Resources Information Center

    Ule, Mirjana; Živoder, Andreja; du Bois-Reymond, Manuela

    2015-01-01

    This article explores parental involvement in the educational trajectories of children in Europe. The analysis is embedded in the framework of the three dominant contemporary social processes that have been acknowledged as crucial factors for the educational and life trajectories of young people today, i.e. familialization, institutionalization,…

  11. Changing Patterns of Parent-Teacher Communication and Parent Involvement from Preschool to School

    ERIC Educational Resources Information Center

    Murray, Elizabeth; McFarland-Piazza, Laura; Harrison, Linda J.

    2015-01-01

    PreschoolThis study investigated the nature of parent involvement and parent-educator communication in prior-to-school early childhood settings and school, to explore relations to social capital variables and consistencies and changes in practices over time. Parent interview and teacher questionnaire data from two waves of the Longitudinal Study…

  12. Mexican-Origin Parents' Involvement in Adolescent Peer Relationships: A Pattern Analytic Approach

    ERIC Educational Resources Information Center

    Updegraff, Kimberly A.; Killoren, Sarah E.; Thayer, Shawna M.

    2007-01-01

    The cultural backgrounds and experiences of Mexican-origin mothers and fathers (including their Anglo and Mexican cultural orientations and their familism values) and their socioeconomic background (parental education, family income, neighborhood poverty rate) are linked to the nature of their involvement in adolescent peer relationships.

  13. The large contour data generation from divided image of photomask pattern of 32 nm and beyond

    NASA Astrophysics Data System (ADS)

    Murakawa, Tsutomu; Ogiso, Yoshiaki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki

    2010-05-01

    The application of Mask CD-SEM for process management of photomask using two dimensional measurements as photomask patterns become smaller and more complex, [1]. Also, WPI technology application using an optical Mask inspection tool simulates wafer plane images using photomask images [2]. In order to simulate the MEEF influence for aggressive OPC and High-end photomask patterns in 32nm node and beyond, a requirement exists for wide Field of View (FOV) GDS data and tone information generated from high precision SEM images. In light of these requirements, we developed a GDS data extraction algorithm with sub-nanometer accuracy using wide FOV images, for example, greater than 10um square. As a result, we over come the difficulty of generating large contour data without the distortion that is normally associated with acquired SEM images. Also, it will be shown that the evaluation result can be effective for 32 nm applications and beyond using Mask CD-SEM E3620 manufactured by Advantest. On the other hand, we investigate the application example of the wide FOV GDS data. In order to easily compare the acquired GDS data with design data, we explain the separate algorithm with three layer structures for Tri-tone (Ternary) photomask pattern, consisting of an outer pattern and another pattern.

  14. Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    Schöneich, Stefan; Hedwig, Berthold

    2012-01-01

    The singing behavior of male crickets allows analyzing a central pattern generator (CPG) that was shaped by sexual selection for reliable production of species-specific communication signals. After localizing the essential ganglia for singing in Gryllus bimaculatus, we now studied the calling song CPG at the cellular level. Fictive singing was initiated by pharmacological brain stimulation. The motor pattern underlying syllables and chirps was recorded as alternating spike bursts of wing-opener and wing-closer motoneurons in a truncated wing nerve; it precisely reflected the natural calling song. During fictive singing, we intracellularly recorded and stained interneurons in thoracic and abdominal ganglia and tested their impact on the song pattern by intracellular current injections. We identified three interneurons of the metathoracic and first unfused abdominal ganglion that rhythmically de- and hyperpolarized in phase with the syllable pattern and spiked strictly before the wing-opener motoneurons. Depolarizing current injection in two of these opener interneurons caused additional rhythmic singing activity, which reliably reset the ongoing chirp rhythm. The closely intermeshing arborizations of the singing interneurons revealed the dorsal midline neuropiles of the metathoracic and three most anterior abdominal neuromeres as the anatomical location of singing pattern generation. In the same neuropiles, we also recorded several closer interneurons that rhythmically hyper- and depolarized in the syllable rhythm and spiked strictly before the wing-closer motoneurons. Some of them received pronounced inhibition at the beginning of each chirp. Hyperpolarizing current injection in the dendrite revealed postinhibitory rebound depolarization as one functional mechanism of central pattern generation in singing crickets. PMID:23170234

  15. Production patterns of packaging waste categories generated at typical Mediterranean residential building worksites

    SciTech Connect

    González Pericot, N.; Villoria Sáez, P.; Del Río Merino, M.; Liébana Carrasco, O.

    2014-11-15

    Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.

  16. Molecular interactions and residues involved in force generation in the T4 viral DNA packaging motor.

    PubMed

    Migliori, Amy D; Smith, Douglas E; Arya, Gaurav

    2014-12-12

    Many viruses utilize molecular motors to package their genomes into preformed capsids. A striking feature of these motors is their ability to generate large forces to drive DNA translocation against entropic, electrostatic, and bending forces resisting DNA confinement. A model based on recently resolved structures of the bacteriophage T4 motor protein gp17 suggests that this motor generates large forces by undergoing a conformational change from an extended to a compact state. This transition is proposed to be driven by electrostatic interactions between complementarily charged residues across the interface between the N- and C-terminal domains of gp17. Here we use atomistic molecular dynamics simulations to investigate in detail the molecular interactions and residues involved in such a compaction transition of gp17. We find that although electrostatic interactions between charged residues contribute significantly to the overall free energy change of compaction, interactions mediated by the uncharged residues are equally if not more important. We identify five charged residues and six uncharged residues at the interface that play a dominant role in the compaction transition and also reveal salt bridging, van der Waals, and solvent hydrogen-bonding interactions mediated by these residues in stabilizing the compact form of gp17. The formation of a salt bridge between Glu309 and Arg494 is found to be particularly crucial, consistent with experiments showing complete abrogation in packaging upon Glu309Lys mutation. The computed contributions of several other residues are also found to correlate well with single-molecule measurements of impairments in DNA translocation activity caused by site-directed mutations. PMID:25311860

  17. Composite axilens-axicon diffractive optical elements for generation of ring patterns with high focal depth

    NASA Astrophysics Data System (ADS)

    Dharmavarapu, Raghu; Vijayakumar, A.; Brunner, R.; Bhattacharya, Shanti

    2016-03-01

    A binary Fresnel Zone Axilens (FZA) is designed for the infinite conjugate mode and the phase profile of a refractive axicon is combined with it to generate a composite Diffractive Optical Element (DOE). The FZA designed for two focal lengths generates a line focus along the propagation direction extending between the two focal planes. The ring pattern generated by the axicon is focused through this distance and the radius of the ring depends on the propagation distance. Hence, the radius of the focused ring pattern can be tuned, during the design process, within the two focal planes. The integration of the two functions was carried out by shifting the location of zones of FZA with respect to the phase profile of the refractive axicon resulting in a binary composite DOE. The FZAs and axicons were designed for different focal depth values and base angles respectively, in order to achieve different ring radii within the focal depth of each element. The elements were simulated using scalar diffraction formula and their focusing characteristics were analyzed. The DOEs were fabricated using electron beam direct writing and evaluated using a fiber coupled diode laser. The tunable ring patterns generated by the DOEs have prospective applications in microdrilling as well as microfabrication of circular diffractive and refractive optical elements.

  18. Drosophila TIEG Is a Modulator of Different Signalling Pathways Involved in Wing Patterning and Cell Proliferation

    PubMed Central

    Rodriguez, Isabel

    2011-01-01

    Acquisition of a final shape and size during organ development requires a regulated program of growth and patterning controlled by a complex genetic network of signalling molecules that must be coordinated to provide positional information to each cell within the corresponding organ or tissue. The mechanism by which all these signals are coordinated to yield a final response is not well understood. Here, I have characterized the Drosophila ortholog of the human TGF-β Inducible Early Gene 1 (dTIEG). TIEG are zinc-finger proteins that belong to the Krüppel-like factor (KLF) family and were initially identified in human osteoblasts and pancreatic tumor cells for the ability to enhance TGF-β response. Using the developing wing of Drosophila as “in vivo” model, the dTIEG function has been studied in the control of cell proliferation and patterning. These results show that dTIEG can modulate Dpp signalling. Furthermore, dTIEG also regulates the activity of JAK/STAT pathway suggesting a conserved role of TIEG proteins as positive regulators of TGF-β signalling and as mediators of the crosstalk between signalling pathways acting in a same cellular context. PMID:21494610

  19. Vesicular glutamate transporter 2 is required for central respiratory rhythm generation but not for locomotor central pattern generation.

    PubMed

    Wallén-Mackenzie, Asa; Gezelius, Henrik; Thoby-Brisson, Muriel; Nygård, Anna; Enjin, Anders; Fujiyama, Fumino; Fortin, Gilles; Kullander, Klas

    2006-11-22

    Glutamatergic excitatory neurotransmission is dependent on glutamate release from presynaptic vesicles loaded by three members of the solute carrier family, Slc17a6-8, which function as vesicular glutamate transporters (VGLUTs). Here, we show that VGLUT2 (Slc17a6) is required for life ex utero. Vglut2 null mutant mice die immediately after birth because of the absence of respiratory behavior. Investigations at embryonic stages revealed that neural circuits in the location of the pre-Bötzinger (PBC) inspiratory rhythm generator failed to become active. However, neurons with bursting pacemaker properties and anatomical integrity of the PBC area were preserved. Vesicles at asymmetric synapses were fewer and malformed in the Vglut2 null mutant hindbrain, probably causing the complete disruption of AMPA/kainate receptor-mediated synaptic activity in mutant PBC cells. The functional deficit results from an inability of PBC neurons to achieve synchronous activation. In contrast to respiratory rhythm generation, the locomotor central pattern generator of Vglut2 null mutant mice displayed normal rhythmic and coordinated activity, suggesting differences in their operating principles. Hence, the present study identifies VGLUT2-mediated signaling as an obligatory component of the developing respiratory rhythm generator. PMID:17122055

  20. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.

    PubMed

    Yao, Yijun; Wu, Yun; Wang, Yue; Verginelli, Iason; Zeng, Tian; Suuberg, Eric M; Jiang, Lin; Wen, Yuezhong; Ma, Jie

    2015-10-01

    At petroleum vapor intrusion (PVI) sites at which there is significant methane generation, upward advective soil gas transport may be observed. To evaluate the health and explosion risks that may exist under such scenarios, a one-dimensional analytical model describing these processes is introduced in this study. This new model accounts for both advective and diffusive transport in soil gas and couples this with a piecewise first-order aerobic biodegradation model, limited by oxygen availability. The predicted results from the new model are shown to be in good agreement with the simulation results obtained from a three-dimensional numerical model. These results suggest that this analytical model is suitable for describing cases involving open ground surface beyond the foundation edge, serving as the primary oxygen source. This new analytical model indicates that the major contribution of upward advection to indoor air concentration could be limited to the increase of soil gas entry rate, since the oxygen in soil might already be depleted owing to the associated high methane source vapor concentration. PMID:26322369

  1. Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement.

    PubMed

    Holzinger, Dana; Schmitt, Markus; Dyckhoff, Gerhard; Benner, Axel; Pawlita, Michael; Bosch, Franz X

    2012-10-01

    Oropharyngeal squamous cell carcinomas (OPSCC) that are associated with human papilloma virus (HPV) infection carry a more favorable prognosis than those that are HPV-negative. However, it remains unclear which biomarker(s) can reliably determine which OPSCC specimens are truly driven by HPV infection. In this study, we analyzed 199 fresh-frozen OPSCC specimens for HPV DNA, viral load, RNA expression patterns typical for cervical carcinomas (CxCaRNA(+)), and the HPV-targeted tumor suppressor protein p16(INK4a) as markers for HPV infection. In this set of specimens, there was a 49% prevalence of DNA for the cancer-associated HPV type 16 (HPV(+)). However, there was only a 16% prevalence of high viral load and only a 20% prevalence of CxCaRNA(+), a marker of HPV16 carcinogenic activity. Among the CxCaRNA(+) tumors, 78% of the specimens exhibited overexpression of p16(INK4a), which also occurred in 14% of the HPV-negative tumors. Using a multivariate survival analysis with HPV negativity as the reference group, CxCaRNA(+) as a single marker conferred the lowest risk of death [HR = 0.28, 95% confidence interval (CI), 0.13-0.61] from oropharyngeal cancer, closely followed by high viral load (HR = 0.32, 95% CI, 0.14-0.73). In contrast, a weaker inverse association was found for OPSCC that were HPV(+) and p16(INK4a) high (HR = 0.55, 95% CI, 0.29-1.08). In summary, our findings argued that viral load or RNA pattern analysis is better suited than p16(INK4a) expression to identify HPV16-driven tumors in OPSCC patient populations. PMID:22991302

  2. SOM-based Pattern Generator: Pattern Generation Based on the Backward Projection in a Self-Organizing Map and Its Applications

    NASA Astrophysics Data System (ADS)

    Wakuya, Hiroshi; Ishiguma, Takahiro

    A major feature of the self-organizing map (SOM) is a topology-preserving projection from the input layer to the competitive layer, and it has been used mainly as an analytical tool for discovering underlying rules in the given data set. Even though recent splendid progress in this area, there are few novel ideas to break such a conventional style. On the contrary, based on its distinctive nature, a new method for generating patterns through backward projection from the competitive layer to the input layer is proposed recently. Moreover, a promising technology for producing animation as a series of backward-projected patterns along with any pathways on the competitive layer is presented. Then, in order to carry out further considerations, some computer simulations with a variety of posed stick figures are tried in this paper. After training, four kinds of pathways, which correspond to different movements such as dancing, exercising and walking, are prepared. Though some of them does not contain any training samples, all of them worked well as we have intended in advance. As a result, it is found that the proposed method shows good performance and it is also confirmed its effectiveness.

  3. Simultaneously Uncovering the Patterns of Brain Regions Involved in Different Story Reading Subprocesses

    PubMed Central

    Wehbe, Leila; Murphy, Brian; Talukdar, Partha; Fyshe, Alona; Ramdas, Aaditya; Mitchell, Tom

    2014-01-01

    Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders. PMID:25426840

  4. A rule-based expert system for automatic control rod pattern generation for boiling water reactors

    SciTech Connect

    Lin, L.S.; Lin, C. )

    1991-07-01

    This paper reports on an expert system for generating control rod patterns that has been developed. The knowledge is transformed into IF-THEN rules. The inference engine uses the Rete pattern matching algorithm to match facts, and rule premises and conflict resolution strategies to make the system function intelligently. A forward-chaining mechanism is adopted in the inference engine. The system is implemented in the Common Lisp programming language. The three-dimensional core simulation model performs the core status and burnup calculations. The system is successfully demonstrated by generating control rod programming for the 2894-MW (thermal) Kuosheng nuclear power plant in Taiwan. The computing time is tremendously reduced compared to programs using mathematical methods.

  5. Biological pattern generation: the cellular and computational logic of networks in motion.

    PubMed

    Grillner, Sten

    2006-12-01

    In 1900, Ramón y Cajal advanced the neuron doctrine, defining the neuron as the fundamental signaling unit of the nervous system. Over a century later, neurobiologists address the circuit doctrine: the logic of the core units of neuronal circuitry that control animal behavior. These are circuits that can be called into action for perceptual, conceptual, and motor tasks, and we now need to understand whether there are coherent and overriding principles that govern the design and function of these modules. The discovery of central motor programs has provided crucial insight into the logic of one prototypic set of neural circuits: those that generate motor patterns. In this review, I discuss the mode of operation of these pattern generator networks and consider the neural mechanisms through which they are selected and activated. In addition, I will outline the utility of computational models in analysis of the dynamic actions of these motor networks. PMID:17145498

  6. Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki

    There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.

  7. Experimental observation of multistability and dynamic attractors in silicon central pattern generators

    NASA Astrophysics Data System (ADS)

    Zhao, Le; Nogaret, Alain

    2015-11-01

    We report on the multistability of chaotic networks of silicon neurons and demonstrate how spatiotemporal sequences of voltage oscillations are selected with timed current stimuli. A three neuron central pattern generator was built by interconnecting Hodgkin-Huxley neurons with mutually inhibitory links mimicking gap junctions. By systematically varying the timing of current stimuli applied to individual neurons, we generate the phase lag maps of neuronal oscillators and study their dependence on the network connectivity. We identify up to six attractors consisting of triphasic sequences of unevenly spaced pulses propagating clockwise and anticlockwise. While confirming theoretical predictions, our experiments reveal more complex oscillatory patterns shaped by the ratio of the pulse width to the oscillation period. Our work contributes to validating the command neuron hypothesis.

  8. Photorefractive holographic moiré-like patterns for secure numerical code generation.

    PubMed

    de Oliveira, G N; Oliveira, M E; dos Santos, P A M

    2013-03-15

    In this Letter, low-frequency photorefractive holographic moiré fringe patterns are proposed as secure numerical code generators that could be useful for storage or data transmission. These dynamic moiré patterns are holographically obtained by the superposition of two or more sinusoidal gratings with slightly different pitches. The Bi(12)TiO(20) photorefractive crystal sample is used as holographic medium. An optical numerical base was defined with patterns representing the 0, 1 and -1 digits as bits. Then, the complete set of these optical bits is combined to form bytes, where a numerical sequence is represented. The results show that the proposed numerical code is simple, robust and extremely secure, then could be used efficiently as standard numerical identification in robotic vision or eventually in storage or transmission of secure numerical data. PMID:23503288

  9. Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network.

    PubMed

    Masino, Mark A; Calabrese, Ronald L

    2002-03-01

    Motor pattern generating networks that produce segmentally distributed motor outflow are often portrayed as a series of coupled segmental oscillators that produce a regular progression (constant phase differences) in their rhythmic activity. The leech heartbeat central pattern generator is paced by a core timing network, which consists of two coupled segmental oscillators in segmental ganglia 3 and 4. The segmental oscillators comprise paired mutually inhibitory oscillator interneurons and the processes of intersegmental coordinating interneurons. As a first step in understanding the coordination of segmental motor outflow by this pattern generator, we describe the functional synaptic interactions, and activity and phase relationships of the heart interneurons of the timing network, in isolated nerve cord preparations. In the timing network, most (approximately 75%) of the coordinating interneuron action potentials were generated at a primary spike initiation site located in ganglion 4 (G4). A secondary spike initiation site in ganglion 3 (G3) became active in the absence of activity at the primary site. Generally, the secondary site was characterized by a reluctance to burst and a lower spike frequency, when compared with the primary site. Oscillator interneurons in G3 inhibited spike activity at both initiation sites, whereas oscillator interneurons in G4 inhibited spike activity only at the primary initiation site. This asymmetry in the control of spike activity in the coordinating interneurons may account for the observation that the phase of the coordinating interneurons is more tightly linked to the G3 than G4 oscillator interneurons. The cycle period of the timing network and the phase difference between the ipsilateral G3 and G4 oscillator interneurons were regular within individual preparations, but varied among preparations. This variation in phase differences observed across preparations implies that modulated intrinsic membrane and synaptic properties

  10. Towards pattern generation and chaotic series prediction with photonic reservoir computers

    NASA Astrophysics Data System (ADS)

    Antonik, Piotr; Hermans, Michiel; Duport, François; Haelterman, Marc; Massar, Serge

    2016-03-01

    Reservoir Computing is a bio-inspired computing paradigm for processing time dependent signals that is particularly well suited for analog implementations. Our team has demonstrated several photonic reservoir computers with performance comparable to digital algorithms on a series of benchmark tasks such as channel equalisation and speech recognition. Recently, we showed that our opto-electronic reservoir computer could be trained online with a simple gradient descent algorithm programmed on an FPGA chip. This setup makes it in principle possible to feed the output signal back into the reservoir, and thus highly enrich the dynamics of the system. This will allow to tackle complex prediction tasks in hardware, such as pattern generation and chaotic and financial series prediction, which have so far only been studied in digital implementations. Here we report simulation results of our opto-electronic setup with an FPGA chip and output feedback applied to pattern generation and Mackey-Glass chaotic series prediction. The simulations take into account the major aspects of our experimental setup. We find that pattern generation can be easily implemented on the current setup with very good results. The Mackey-Glass series prediction task is more complex and requires a large reservoir and more elaborate training algorithm. With these adjustments promising result are obtained, and we now know what improvements are needed to match previously reported numerical results. These simulation results will serve as basis of comparison for experiments we will carry out in the coming months.

  11. From spinal central pattern generators to cortical network: integrated BCI for walking rehabilitation.

    PubMed

    Cheron, G; Duvinage, M; De Saedeleer, C; Castermans, T; Bengoetxea, A; Petieau, M; Seetharaman, K; Hoellinger, T; Dan, B; Dutoit, T; Sylos Labini, F; Lacquaniti, F; Ivanenko, Y

    2012-01-01

    Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs). Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG), upper limb electromyogram (EMG), or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs) or dynamic recurrent neural networks (DRNNs). Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy. PMID:22272380

  12. Staphylococcus aureus genomic pattern and atopic dermatitis: may factors other than superantigens be involved?

    PubMed

    Rojo, A; Aguinaga, A; Monecke, S; Yuste, J R; Gastaminza, G; España, A

    2014-04-01

    The purpose of this investigation was to compare the genotypic profiles of Staphylococcus aureus isolated from atopic dermatitis (AD) patients and from control subjects, and to study the relationship between clinical severity, immune response, and genomic pattern of S. aureus isolated from AD patients. We selected 32 patients with AD and S. aureus skin colonization and 31 atopic controls with no history of AD who where asymptomatic carriers of S. aureus. Microarray-based genotyping was performed on S. aureus isolates. In AD patients, clinical severity was assessed using the Scoring Atopic Dermatitis index and total IgE levels and staphylococcal superantigen-specific IgE levels (SEA, SEB, SEC, TSST1) were determined. The genes lukE, lukD, splA, splB, ssl8, and sasG were more frequent in isolates from AD patients. CC30 was more common in isolates from atopic controls than in AD patients. There was a correlation between total IgE and clinical severity, but an association between clinical severity, immune response, and the presence of S. aureus superantigen genes, including enterotoxin genes, could not be demonstrated. Finally, a correlation was found between AD severity and other S. aureus genes, such as sasG and scn. S. aureus factors besides superantigens could be related to the worsening and onset of AD. PMID:24162256

  13. Structural insights into HetR−PatS interaction involved in cyanobacterial pattern formation

    PubMed Central

    Hu, Hai-Xi; Jiang, Yong-Liang; Zhao, Meng-Xi; Cai, Kun; Liu, Sanling; Wen, Bin; Lv, Pei; Zhang, Yonghui; Peng, Junhui; Zhong, Hui; Yu, Hong-Mei; Ren, Yan-Min; Zhang, Zhiyong; Tian, Changlin; Wu, Qingfa; Oliveberg, Mikael; Zhang, Cheng-Cai; Chen, Yuxing; Zhou, Cong-Zhao

    2015-01-01

    The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetRHood) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 Å, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical α-helices in the DNA-binding domain and an auxiliary α-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetRHood, and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary α-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model. PMID:26576507

  14. NeuroPG: open source software for optical pattern generation and data acquisition

    PubMed Central

    Avants, Benjamin W.; Murphy, Daniel B.; Dapello, Joel A.; Robinson, Jacob T.

    2015-01-01

    Patterned illumination using a digital micromirror device (DMD) is a powerful tool for optogenetics. Compared to a scanning laser, DMDs are inexpensive and can easily create complex illumination patterns. Combining these complex spatiotemporal illumination patterns with optogenetics allows DMD-equipped microscopes to probe neural circuits by selectively manipulating the activity of many individual cells or many subcellular regions at the same time. To use DMDs to study neural activity, scientists must develop specialized software to coordinate optical stimulation patterns with the acquisition of electrophysiological and fluorescence data. To meet this growing need we have developed an open source optical pattern generation software for neuroscience—NeuroPG—that combines, DMD control, sample visualization, and data acquisition in one application. Built on a MATLAB platform, NeuroPG can also process, analyze, and visualize data. The software is designed specifically for the Mightex Polygon400; however, as an open source package, NeuroPG can be modified to incorporate any data acquisition, imaging, or illumination equipment that is compatible with MATLAB’s Data Acquisition and Image Acquisition toolboxes. PMID:25784873

  15. Health Care Waste generation rates and patterns: The case of Lebanon.

    PubMed

    Maamari, Olivia; Brandam, Cedric; Lteif, Roger; Salameh, Dominique

    2015-09-01

    The objective of this study is to analyze Infectious Health Care Waste generation rates and patterns in Lebanon. Therefore, the quantities generated during five years by 57 hospitals from a total of 163 in the country have been analyzed. The seasonal evolution of Infectious Health Care Waste production and the evolution of the evaluation of the trends over years have been studied. Besides, the generation per capita have been estimated and compared to other countries. The variance between categories and the correlation between number of beds and Infectious Health Care Waste generation have been analyzed. The obtained results showed that the large private hospitals (over 200 beds) are characterized by their high generation rate: an average of 2.45kg per occupied bed(-1)day(-1), whereas the average generation rate for other categories is 0.94kg per occupied bed(-1)day(-1). The weighted mean is 1.14 per occupied kgbed(-1)day(-1). Small public hospitals (i.e. less than 100 beds) have the smallest standard deviation: 0.13, whereas large private hospitals (i.e. over than 200 beds) have the highest standard deviation: 0.40. Infectious Health Care Waste generation has been estimated to 1.42kg/capita/year. The correlation between the numbers of hospitals beds in hospitals and the generation rate per bed is weak. The correlation between Infectious Health Care Waste generation per day and beds number is stronger. The total quantity produced by hospitals has increased over the five past years. These results suggest that the quantities of medical waste are not well controlled, and that hospitals have a defective monitoring management system of their waste. Annual peaks are observed in June, July, and December. Thus, this study, for the first time in Lebanon, has provided information on the infectious waste generation, allowing benchmarking between hospitals and between countries. PMID:26049204

  16. Are Hox Genes Ancestrally Involved in Axial Patterning? Evidence from the Hydrozoan Clytia hemisphaerica (Cnidaria)

    PubMed Central

    Chiori, Roxane; Jager, Muriel; Denker, Elsa; Wincker, Patrick; Da Silva, Corinne; Le Guyader, Hervé; Manuel, Michaël; Quéinnec, Eric

    2009-01-01

    Background The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a “Hox code” predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. Methodology/Principal Findings Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. Conclusions/Significance Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations. PMID:19156208

  17. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, Mikhail; Shur, Yuri; Strauss, Jens; Jorgenson, Torre; Fortier, Daniel; Stephani, Eva; Vasiliev, Alexander

    2016-01-01

    Yedoma, a suite of syngenetically frozen silty ice- and organic-rich deposits with large ice wedges that accumulated during the late Pleistocene, is vulnerable to thermal degradation and erosion because of the extremely high ice contents. This degradation can result in significant surface subsidence and retreat of coastal bluffs and riverbanks with large consequences to landscape evolution, infrastructure damage, and water quality. We used remote sensing and field observations to assess patterns and rates of riverbank erosion at a 35-m-high active yedoma bluff along the Itkillik River in northern Alaska. The total volumetric ground-ice content-including wedge, segregated, and pore ice-was estimated to be ~ 86%. The process of riverbank erosion and stabilization include three main stages typical of the areas with ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. Active riverbank erosion at the main study site started in July 1995, when the Itkillik River changed its channel. The total retreat of the riverbank during 1995-2010 within different segments of the bluff varied from 180 to 280 m; the average retreat rate for the most actively eroded part of the riverbank was almost 19 m/y. From August 2007 to August 2011, the total retreat varied from 10 to almost 100 m. The average retreat rate for the whole 680-m-long bluff was 11 m/y. For the most actively eroded central part of the bluff (150 m long) it was 20 m/y, ranging from 16 to 24 m/y. More than 180,000 m3 of ground ice and organic-rich frozen soil, or almost 70,000 metric tons (t) of soil solids including 880 t of organic carbon, were transported to the river from the retreating bank annually. This study reports the highest long-term rates of riverbank erosion ever observed in permafrost regions of Eurasia and North America.

  18. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen species.

    PubMed

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-02-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  19. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen Species

    PubMed Central

    Farhan, Mohd; Khan, Husain Yar; Oves, Mohammad; Al-Harrasi, Ahmed; Rehmani, Nida; Arif, Hussain; Hadi, Sheikh Mumtaz; Ahmad, Aamir

    2016-01-01

    Catechins, the dietary phytochemicals present in green tea and other beverages, are considered to be potent inducers of apoptosis and cytotoxicity to cancer cells. While it is believed that the antioxidant properties of catechins and related dietary agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, these properties cannot account for apoptosis induction and chemotherapeutic observations. Catechin (C), epicatechin (EC), epigallocatechin (EGC) and epigallocatechin-3-gallate (EGCG) are the four major constituents of green tea. In this article, using human peripheral lymphocytes and comet assay, we show that C, EC, EGC and EGCG cause cellular DNA breakage and can alternatively switch to a prooxidant action in the presence of transition metals such as copper. The cellular DNA breakage was found to be significantly enhanced in the presence of copper ions. Catechins were found to be effective in providing protection against oxidative stress induced by tertbutylhydroperoxide, as measured by oxidative DNA breakage in lymphocytes. The prooxidant action of catechins involved production of hydroxyl radicals through redox recycling of copper ions. We also determined that catechins, particularly EGCG, inhibit proliferation of breast cancer cell line MDA-MB-231 leading to a prooxidant cell death. Since it is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies, cancer cells would be more subject to redox cycling between copper ions and catechins to generate reactive oxygen species (ROS) responsible for DNA breakage. Such a copper dependent prooxidant cytotoxic mechanism better explains the anticancer activity and preferential cytotoxicity of dietary phytochemicals against cancer cells. PMID:26861392

  20. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    PubMed Central

    2014-01-01

    Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs—from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS) networks that are involved in the control of ambulation and other stereotyped motor patterns—specifically Central Pattern Generators (CPGs) that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of spinal cord-injured (SCI) should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic SCI patients. PMID:24910602

  1. KCNQ1 and KCNE1 K+ Channel Components are Involved in Early Left-Right Patterning in Xenopus laevis Embryos

    PubMed Central

    Morokuma, Junji; Blackiston, Douglas; Levin, Michael

    2013-01-01

    Several ion transporters have been implicated in left-right (LR) patterning. Here, we characterize a new component of the early bioelectrical circuit: the potassium channel KCNQ1 and its accessory subunit KCNE1. Having cloned the native Xenopus versions of both genes, we show that both are asymmetrically localized as maternal proteins during the first few cleavages of frog embryo development in a process dependent on microtubule and actin organization. Molecular loss-of-function using dominant negative constructs demonstrates that both gene products are required for normal LR asymmetry. We propose a model whereby these channels provide an exit path for K+ ions brought in by the H+,K+-ATPase. This physiological module thus allows the obligate but electroneutral H+,K+-ATPase to generate an asymmetric voltage gradient on the left and right sides. Our data reveal a new, bioelectrical component of the mechanisms patterning a large-scale axis in vertebrate embryogenesis. PMID:18453744

  2. Antigenic Variation in Plasmodium falciparum Malaria Involves a Highly Structured Switching Pattern

    PubMed Central

    Recker, Mario; Buckee, Caroline O.; Serazin, Andrew; Kyes, Sue; Pinches, Robert; Christodoulou, Zóe; Springer, Amy L.; Gupta, Sunetra; Newbold, Chris I.

    2011-01-01

    Many pathogenic bacteria, fungi, and protozoa achieve chronic infection through an immune evasion strategy known as antigenic variation. In the human malaria parasite Plasmodium falciparum, this involves transcriptional switching among members of the var gene family, causing parasites with different antigenic and phenotypic characteristics to appear at different times within a population. Here we use a genome-wide approach to explore this process in vitro within a set of cloned parasite populations. Our analyses reveal a non-random, highly structured switch pathway where an initially dominant transcript switches via a set of switch-intermediates either to a new dominant transcript, or back to the original. We show that this specific pathway can arise through an evolutionary conflict in which the pathogen has to optimise between safeguarding its limited antigenic repertoire and remaining capable of establishing infections in non-naïve individuals. Our results thus demonstrate a crucial role for structured switching during the early phases of infections and provide a unifying theory of antigenic variation in P. falciparum malaria as a balanced process of parasite-intrinsic switching and immune-mediated selection. PMID:21408201

  3. Two-Generation Strategies and Involving Immigrant Parents in Children's Education

    ERIC Educational Resources Information Center

    Crosnoe, Robert

    2010-01-01

    Intervening in the parent generation can improve current and future prospects in the child generation. Such two-generation strategies target either parents' life circumstances or parenting behaviors. Because many immigrants do not have the English capabilities, inside knowledge about schools, or social standing, engaging them more fully in the…

  4. Generation, Language, Body Mass Index, and Activity Patterns in Hispanic Children

    PubMed Central

    Taverno, Sharon E.; Rollins, Brandi Y.; Francis, Lori A.

    2010-01-01

    Background The acculturation hypothesis proposes an overall disadvantage in health outcomes for Hispanic immigrants with more time spent living in the U.S., but little is known about how generational status and language may influence Hispanic children’s relative weight and activity patterns. Purpose The association between generation and language was investigated with relative weight (BMI z-scores), physical activity, screen time, and participation in extracurricular activities (e.g., sports, clubs) in a U.S.-based, nationally representative sample of Hispanic children. Methods Participants included 2,012 Hispanic children aged 6–11 years from the cross-sectional, 2003 National Survey of Children’s Health. Children were grouped according to generational status (1st, 2nd or 3rd), and the primary language spoken in the home (English vs non-English). Primary analyses included adjusted logistic and multinomial logistic regression to examine the relationships among variables; all analyses were conducted between 2008 and 2009. Results Compared to 3rd generation, English speakers, 1st and 2nd generation, non-English speakers were over two times more likely to be obese. Moreover, 1st generation, non-English speakers were half as likely to engage in regular physical activity and sports. Both 1st and 2nd generation, non-English speakers were less likely to participate in clubs compared to 2nd and 3rd generation, English speakers. Overall, all non–English speaking groups reported less screen time compared to 3rd generation, English speakers. Conclusions The hypothesis that Hispanics lose their health protection with more time spent in the U.S. was not supported in this sample of Hispanic children. PMID:20117570

  5. Generation of spatially periodic patterns by a mechanical instability: a mechanical alternative to the Turing model.

    PubMed

    Harris, A K; Stopak, D; Warner, P

    1984-04-01

    We have studied the generation of spatial patterns created by mechanical (rather than chemical) instabilities. When dissociated fibroblasts are suspended in a gel of reprecipitated collagen, and the contraction of the gel as a whole is physically restrained by attachment of its margin to a glass fibre meshwork, then the effect of the fibroblasts' traction is to break up the cell-matrix mixture into a series of clumps or aggregations of cells and compressed matrix. These aggregations are interconnected by linear tracts of collagen fibres aligned under the tensile stress exerted by fibroblast traction. The patterns generated by this mechanical instability vary depending upon cell population density and other factors. Over a certain range of cell concentrations, this mechanical instability yields geometric patterns which resemble but are usually much less regular than the patterns which develop normally in the dermis of developing bird skin. We propose that an equivalent mechanical instability, occurring during the embryonic development of this skin, could be the cause not only of the clumping of dermal fibroblasts to form the feather papillae, but also of the alignment of collagen fibres into the characteristic polygonal network of fibre bundles - which interconnect these papillae and which presage the subsequent pattern of the dermal muscles serving to control feather movements. More generally, we suggest that this type of mechanical instability can serve the morphogenetic functions for which Turing's chemical instability and other reaction-diffusion systems have been proposed. Mechanical instabilities can create physical structures directly, in one step, in contrast to the two or more steps which would be required if positional information first had to be specified by chemical gradients and then only secondarily implemented in physical form. In addition, physical forces can act more quickly and at much longer range than can diffusing chemicals and can generate a

  6. Toward robust phase-locking in Melibe swim central pattern generator models

    NASA Astrophysics Data System (ADS)

    Jalil, Sajiya; Allen, Dane; Youker, Joseph; Shilnikov, Andrey

    2013-12-01

    Small groups of interneurons, abbreviated by CPG for central pattern generators, are arranged into neural networks to generate a variety of core bursting rhythms with specific phase-locked states, on distinct time scales, which govern vital motor behaviors in invertebrates such as chewing and swimming. These movements in lower level animals mimic motions of organs in higher animals due to evolutionarily conserved mechanisms. Hence, various neurological diseases can be linked to abnormal movement of body parts that are regulated by a malfunctioning CPG. In this paper, we, being inspired by recent experimental studies of neuronal activity patterns recorded from a swimming motion CPG of the sea slug Melibe leonina, examine a mathematical model of a 4-cell network that can plausibly and stably underlie the observed bursting rhythm. We develop a dynamical systems framework for explaining the existence and robustness of phase-locked states in activity patterns produced by the modeled CPGs. The proposed tools can be used for identifying core components for other CPG networks with reliable bursting outcomes and specific phase relationships between the interneurons. Our findings can be employed for identifying or implementing the conditions for normal and pathological functioning of basic CPGs of animals and artificially intelligent prosthetics that can regulate various movements.

  7. Gas generation and migration studies involving recently generated /sup 238/Pu-contaminated waste for the TRU Waste Sampling Program

    SciTech Connect

    Zerwekh, A.; Warren, J.L.

    1986-07-01

    This study is part of the multicontractor TRU Waste Sampling Program. Radiolytically generated gases were vented through a filtering device to determine its effectiveness in maintaining hydrogen concentrations within acceptably safe levels. In the second part of the study measurements were made to determine the ability of these gases, particularly hydrogen, to migrate through a sealed rigid polyethylene drum liner. Void volumes in these drums were found to be generally in excess of 90%. The carbon composite filter was found to satisfactorily vent hydrogen up to moderately high levels of alpha activity in the waste substrate. The sealed 90-mil liner was found to inhibit, but not prevent, the migration of hydrogen and other radiolytically generated gases.

  8. Coupled chaotic oscillators and their relation to a central pattern generator for artificial quadrupeds

    NASA Astrophysics Data System (ADS)

    Castellini, Horacio; Yudiarsah, Efta; Romanelli, Lilia; Cerdeira, Hilda A.

    2005-04-01

    Animal locomotion employs different periodic patterns known as animal gaits. In 1993, Collins and Stewart recognized that gaits possessed certain symmetries and characterized the gaits of quadrupeds and bipeds using permutation symmetry groups, which impose constraints on the locomotion center called the central pattern generator (CPG) in the animal brain. They modeled the CPG by coupling four nonlinear oscillators and found that it was possible to reproduce all symmetries of the gaits by changing the coupling strength. Here we propose to extend this idea using coupled chaotic oscillators synchronized using the Pyragas method in order to characterize the CPG symmetries. We also evaluate the time series behavior when the foot is in contact with the ground: this has potential robotic applications.

  9. Family Involvement: Impacts on Postsecondary Educational Success for First-Generation Appalachian College Students

    ERIC Educational Resources Information Center

    Bryan, Elizabeth; Simmons, Leigh Ann

    2009-01-01

    First-generation college students face a number of barriers to academic success and completion of their degrees. Using Bronfenbrenner's (1989) ecological theory as a framework, qualitative research was used to examine the experiences of 10 first-generation Appalachian Kentucky university students (mean age = 21 years) and factors they attributed…

  10. Communication Challenges for Management Faculty Involving Younger "Generation X" Students in Their Classes.

    ERIC Educational Resources Information Center

    Payne, Stephen L.; Holmes, Barbara

    1998-01-01

    A majority (60%) of 19 management faculty identified challenges dealing with "Generation X" students, including communication differences; changes in teaching and assessment practices were noted. Managers (n=16) noted similar challenges with younger employees. Analysis showed these challenges were not unique to this generation, demonstrating how…

  11. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards

    PubMed Central

    2013-01-01

    Background Color traits in animals play crucial roles in thermoregulation, photoprotection, camouflage, and visual communication, and are amenable to objective quantification and modeling. However, the extensive variation in non-melanic pigments and structural colors in squamate reptiles has been largely disregarded. Here, we used an integrated approach to investigate the morphological basis and physical mechanisms generating variation in color traits in tropical day geckos of the genus Phelsuma. Results Combining histology, optics, mass spectrometry, and UV and Raman spectroscopy, we found that the extensive variation in color patterns within and among Phelsuma species is generated by complex interactions between, on the one hand, chromatophores containing yellow/red pteridine pigments and, on the other hand, iridophores producing structural color by constructive interference of light with guanine nanocrystals. More specifically, we show that 1) the hue of the vivid dorsolateral skin is modulated both by variation in geometry of structural, highly ordered narrowband reflectors, and by the presence of yellow pigments, and 2) that the reflectivity of the white belly and of dorsolateral pigmentary red marks, is increased by underlying structural disorganized broadband reflectors. Most importantly, these interactions require precise colocalization of yellow and red chromatophores with different types of iridophores, characterized by ordered and disordered nanocrystals, respectively. We validated these results through numerical simulations combining pigmentary components with a multilayer interferential optical model. Finally, we show that melanophores form dark lateral patterns but do not significantly contribute to variation in blue/green or red coloration, and that changes in the pH or redox state of pigments provide yet another source of color variation in squamates. Conclusions Precisely colocalized interacting pigmentary and structural elements generate extensive

  12. Coherence of light and generation of speckle patterns in photobiology and photomedicine

    NASA Astrophysics Data System (ADS)

    Zalevsky, Zeev; Belkin, Michael

    2012-03-01

    The use of diodes instead of lasers was recently suggested for phototherapeutic applications. This trend is due to economical and practical reasons and is based on the argument that lasers have no preference over diodes as light sources as the former lose their coherency upon penetrating biological tissues. This module supports this claim while providing a brief explanation to non professionals on the meaning of coherence of light as well as the physics behind the generation of speckle patterns, and the relation of these physical entities to photomedicine.

  13. Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage.

    PubMed

    Nobukawa, Teruyoshi; Wani, Yotaro; Nomura, Takanori

    2015-05-15

    A computer-generated reference pattern (CGRP) allows improvement in light efficiency and the quality of reconstructed data in coaxial holographic data storage. In this Letter, a multiplexed recording method with uncorrelated CGRPs is proposed. With this method, crosstalk from adjacent holograms is suppressed without shifting a medium. To confirm the feasibility of the proposed method experimentally, shift selectivity is investigated, and then multiplexed recording is performed. Experimental results show that the proposed method enables high-density recording compared with conventional shift multiplexing. In addition, a theoretical analysis implies that at least 100 uncorrelated CGRPs can be designed and used for multiplexed recording. PMID:26393689

  14. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    PubMed Central

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  15. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism.

    PubMed

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-01-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578

  16. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    NASA Astrophysics Data System (ADS)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  17. Importance of the inherent and the relative surface energies in generating patterned layer in a solution process

    NASA Astrophysics Data System (ADS)

    Kim, Do-Kyung; Kwon, Hyeok Bin; Park, Hongsik; Choe, Eunji; Bae, Jin-Hyuk; Park, Jaehoon; Song, Seong-Ho

    2016-03-01

    We report the importance of the inherent and the relative surface energies in generating a patterned organic semiconductor layer through a solution process. The inherent and the relative surface energies of the substrate can be effectively controlled using polydimethylsiloxane in combination with an UV/ozone treatment. The controlled inherent surface energy in each region, as well as the high-order difference of relative surface energy, plays a significant role in generating the patterned layer. In addition, the patterned metal-semiconductor-metal (MSM) structure shows a lower lateral current than the non-patterned MSM structure because the current path is limited.

  18. Bio-inspired Optimal Locomotion Reconfigurability of Quadruped Rovers using Central Pattern Generators

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza

    Legged rovers are often considered as viable solutions for traversing unknown terrain. This work addresses the optimal locomotion reconfigurability of quadruped rovers, which consists of obtaining optimal locomotion modes, and transitioning between them. A 2D sagittal plane rover model is considered based on a domestic cat. Using a Genetic Algorithm, the gait, pose and control variables that minimize torque or maximize speed are found separately. The optimization approach takes into account the elimination of leg impact, while considering the entire variable spectrum. The optimal solutions are consistent with other works on gait optimization, and are similar to gaits found in quadruped animals as well. An online model-free gait planning framework is also implemented, that is based on Central Pattern Generators is implemented. It is used to generate joint and control trajectories for any arbitrarily varying speed profile, and shown to regulate locomotion transition and speed modulation, both endogenously and continuously.

  19. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    NASA Astrophysics Data System (ADS)

    Y Luo, Y.; Xiao, Y. X.; Wang, Z. W.

    2013-12-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit.

  20. A mesh generation and machine learning framework for Drosophila gene expression pattern image analysis

    PubMed Central

    2013-01-01

    Background Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions. Results We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/. Conclusions Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods. PMID:24373308

  1. TermGenie – a web-application for pattern-based ontology class generation

    SciTech Connect

    Dietze, Heiko; Berardini, Tanya Z.; Foulger, Rebecca E.; Hill, David P.; Lomax, Jane; Osumi-Sutherland, David; Roncaglia, Paola; Mungall, Christopher J.

    2014-01-01

    Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 new classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. Lastly, TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.

  2. TermGenie – a web-application for pattern-based ontology class generation

    DOE PAGESBeta

    Dietze, Heiko; Berardini, Tanya Z.; Foulger, Rebecca E.; Hill, David P.; Lomax, Jane; Osumi-Sutherland, David; Roncaglia, Paola; Mungall, Christopher J.

    2014-01-01

    Biological ontologies are continually growing and improving from requests for new classes (terms) by biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology developers struggle to keep up, while manually processing these requests and create classes. TermGenie allows biocurators to generate new classes based on formally specified design patterns or templates. The system is web-based and can be accessed by any authorized curator through a web browser. Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes. In the last 4 years the Gene Ontology TermGenie generated 4715 newmore » classes, about 51.4% of all new classes created. The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes. Lastly, TermGenie is a web-based class-generation system that complements traditional ontology development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the system is simple and intuitive and can be used by most biocurators without extensive training.« less

  3. Control of traveling-wave oscillations and bifurcation behavior in central pattern generators.

    PubMed

    Landsman, Alexandra S; Slotine, Jean-Jacques

    2012-10-01

    Understanding synchronous and traveling-wave oscillations, particularly as they relate to transitions between different types of behavior, is a central problem in modeling biological systems. Here, we address this problem in the context of central pattern generators (CPGs). We use contraction theory to establish the global stability of a traveling-wave or synchronous oscillation, determined by the type of coupling. This opens the door to better design of coupling architectures to create the desired type of stable oscillations. We then use coupling that is both amplitude and phase dependent to create either globally stable synchronous or traveling-wave solutions. Using the CPG motor neuron network of a leech as an example, we show that while both traveling and synchronous oscillations can be achieved by several types of coupling, the transition between different types of behavior is dictated by a specific coupling architecture. In particular, it is only the "repulsive" but not the commonly used phase or rotational coupling that can explain the transition to high-frequency synchronous oscillations that have been observed in the heartbeat pattern generator of a leech. This shows that the overall dynamics of a CPG can be highly sensitive to the type of coupling used, even for coupling architectures that are widely believed to produce the same qualitative behavior. PMID:23214622

  4. Helical Striation Pattern Generation and Axial Field Compression in Aluminum Liner Experiments at 1 MA

    NASA Astrophysics Data System (ADS)

    Atoyan, Levon; Byvank, Tom; Greenly, John; Kusse, Bruce; Pikuz, Sergei; Potter, William; Shelkovenko, Tania; Hammer, David

    2015-11-01

    Awe et al. [Phys. Plasmas 21, 235005, 2014] found on the 20 MA Z machine that applying an externally generated axial magnetic field to an imploding liner produces a helical plasma pattern near the surface of the liner. Here we show that this phenomenon is also observed using 10 mm long cylindrical metal liners having 16 mm diameter and 3 to 6 μm wall thickness on the 1 MA, 100-200 ns COBRA pulsed power generator [T. A. Shelkovenko et al., Rev. Sci. Instrum. 77, 10F521, 2006]. The magnetic field in these experiments is created using a 150 μs rise time Helmholtz coil, and the pattern is observed using extreme ultraviolet imaging. Moreover, using B-dot probes we show that there is a 4-8% axial magnetic field compression relative to the initially applied Bz. Using a visible light framing camera, we show that this compression begins before the outside surface of the liner has become a visible light emitting plasma. This research was sponsored by the NNSA SSAP under DOE Coop Agreement DE-NA0001836 and DOE grant DE-NA0001847 as well as by NSF grant PHY-1102471.

  5. Low frequency variability of European weather patterns and its impact on power generation in northern Europe

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Slavov, Georgi

    2016-04-01

    It is well known that Europe is becoming increasingly reliant on the power generation from the solar and wind sources. Germany is a leader in such a trend - it is then interesting to study to what extent the low-frequency variability of the European weather patterns impacts the power production in this country. Rather than identifying such patterns starting from the weather angle, four weather regimes are identified that maximize and minimize the production of solar and wind power. The analysis of their past occurrence and trends allows us to estimate the potential amount of energy produced for any given year (assuming a constant installed capacity). It is found that the sole change in such weather regimes over the recent years is able to drive up to a 20% annual difference in power generation. This also throws an interesting challenge at the scientific community, whereby the future projection of these regimes can heavily influence both the short- and long-term Eurozone plans in terms of European renewable energy targets.

  6. Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns

    NASA Astrophysics Data System (ADS)

    Hyeog Kwon, Yang; Shin, Sung-Ho; Jung, Joo-Yun; Nah, Junghyo

    2016-05-01

    We report nanoimprint lithographic submicron surface patterning for scalable output power generation and performance enhancement in triboelectric nanogenerators (TENGs). Specifically, one contact surface of a TENG is nanoimprinted with polyurethane acrylate (PUA) lines in different pitches and the counter contact surface is coated with perfluoropolyether (PFPE). The results show that a TENG with 200 nm pitch PUA lines exhibits voltage and current up to ∼430 V and ∼55 μA cm‑2, generating about a sixfold higher output power than that with a flat PUA surface at an applied force of 0.3 MPa. In addition, scalable output power was obtained by adjusting line pitches. Further enhancement in output power was also demonstrated by chemically functionalizing the PUA line patterns with poly (diallyldimethylammonium chloride) (PDDA). The PDDA functionalization boosted voltage and current up to ∼500 V and ∼100 μA cm‑2, respectively, which corresponds to ∼50% power density enhancement. The approach introduced here is a simple, effective, scalable and reproducible way to fabricate TENGs.

  7. Control of traveling-wave oscillations and bifurcation behavior in central pattern generators

    NASA Astrophysics Data System (ADS)

    Landsman, Alexandra S.; Slotine, Jean-Jacques

    2012-10-01

    Understanding synchronous and traveling-wave oscillations, particularly as they relate to transitions between different types of behavior, is a central problem in modeling biological systems. Here, we address this problem in the context of central pattern generators (CPGs). We use contraction theory to establish the global stability of a traveling-wave or synchronous oscillation, determined by the type of coupling. This opens the door to better design of coupling architectures to create the desired type of stable oscillations. We then use coupling that is both amplitude and phase dependent to create either globally stable synchronous or traveling-wave solutions. Using the CPG motor neuron network of a leech as an example, we show that while both traveling and synchronous oscillations can be achieved by several types of coupling, the transition between different types of behavior is dictated by a specific coupling architecture. In particular, it is only the “repulsive” but not the commonly used phase or rotational coupling that can explain the transition to high-frequency synchronous oscillations that have been observed in the heartbeat pattern generator of a leech. This shows that the overall dynamics of a CPG can be highly sensitive to the type of coupling used, even for coupling architectures that are widely believed to produce the same qualitative behavior.

  8. Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns.

    PubMed

    Kwon, Yang Hyeog; Shin, Sung-Ho; Jung, Joo-Yun; Nah, Junghyo

    2016-05-20

    We report nanoimprint lithographic submicron surface patterning for scalable output power generation and performance enhancement in triboelectric nanogenerators (TENGs). Specifically, one contact surface of a TENG is nanoimprinted with polyurethane acrylate (PUA) lines in different pitches and the counter contact surface is coated with perfluoropolyether (PFPE). The results show that a TENG with 200 nm pitch PUA lines exhibits voltage and current up to ∼430 V and ∼55 μA cm(-2), generating about a sixfold higher output power than that with a flat PUA surface at an applied force of 0.3 MPa. In addition, scalable output power was obtained by adjusting line pitches. Further enhancement in output power was also demonstrated by chemically functionalizing the PUA line patterns with poly (diallyldimethylammonium chloride) (PDDA). The PDDA functionalization boosted voltage and current up to ∼500 V and ∼100 μA cm(-2), respectively, which corresponds to ∼50% power density enhancement. The approach introduced here is a simple, effective, scalable and reproducible way to fabricate TENGs. PMID:27053597

  9. Distinct Mammalian Precursors Are Committed to Generate Neurons with Defined Dendritic Projection Patterns

    PubMed Central

    Kelsch, Wolfgang; Mosley, Colleen P; Lin, Chia-Wei; Lois, Carlos

    2007-01-01

    The mechanisms that regulate how dendrites target different neurons to establish connections with specific cell types remain largely unknown. In particular, the formation of cell-type–specific connectivity during postnatal neurogenesis could be either determined by the local environment of the mature neuronal circuit or by cell-autonomous properties of the immature neurons, already determined by their precursors. Using retroviral fate mapping, we studied the lamina-specific dendritic targeting of one neuronal type as defined by its morphology and intrinsic somatic electrical properties in neonatal and adult neurogenesis. Fate mapping revealed the existence of two separate populations of neuronal precursors that gave rise to the same neuronal type with two distinct patterns of dendritic targeting—innervating either a deep or superficial lamina, where they connect to different types of principal neurons. Furthermore, heterochronic and heterotopic transplantation demonstrated that these precursors were largely restricted to generate neurons with a predetermined pattern of dendritic targeting that was independent of the host environment. Our results demonstrate that, at least in the neonatal and adult mammalian brain, the pattern of dendritic targeting of a given neuron is a cell-autonomous property of their precursors. PMID:18001150

  10. An Experimental and Theoretical Study of Fracture Patterns Generated by Underground Explosions

    NASA Astrophysics Data System (ADS)

    Bhat, H.; Mihaly, J. M.; Rosakis, A.; Sammis, C. G.

    2012-12-01

    A dynamic micro-mechanical damage mechanics model, developed by Bhat, Rosakis and Sammis, J. Appl. Mech., 2012, is used to simulate two-dimensional explosions in a brittle material. The theoretical patterns of circumferential and radial fractures are quantitatively compared with those produced by point explosions in very brittle "candy glass" plates. In these experiments the evolution of the fracture pattern is monitored using high-speed digital photography, which also images the resultant elastic waves (P and S). Theoretical estimates of the spatial extent of circumferential and radial cracking as well as the propagation speed of the comminution front and the growth-rate of individual radial cracks all compare well with the experimental observations. The wave-forms of the P and S waves, specifically the local particle velocities, are also recorded at selected points using laser vibrometers. Asymmetric fracture patterns caused by a non isotropic pre-stress, the preferred orientation of initial flaws (a rift plane), or a lithostatic gradient lead to the generation of strong S-waves from the otherwise spherically symmetric point source.

  11. Atomic layer deposition on phase-shift lithography generated photoresist patterns for 1D nanochannel fabrication.

    PubMed

    Güder, Firat; Yang, Yang; Krüger, Michael; Stevens, Gregory B; Zacharias, Margit

    2010-12-01

    A versatile, low-cost, and flexible approach is presented for the fabrication of millimeter-long, sub-100 nm wide 1D nanochannels with tunable wall properties (wall thickness and material) over wafer-scale areas on glass, alumina, and silicon surfaces. This approach includes three fabrication steps. First, sub-100 nm photoresist line patterns were generated by near-field contact phase-shift lithography (NFC-PSL) using an inexpensive homemade borosilicate mask (NFC-PSM). Second, various metal oxides were directly coated on the resist patterns with low-temperature atomic layer deposition (ALD). Finally, the remaining photoresist was removed via an acetone dip, and then planar nanochannel arrays were formed on the substrate. In contrast to all the previous fabrication routes, the sub-100 nm photoresist line patterns produced by NFC-PSL are directly employed as a sacrificial layer for the creation of nanochannels. Because both the NFC-PSL and the ALD deposition are highly reproducible processes, the strategy proposed here can be regarded as a general route for nanochannel fabrication in a simplified and reliable manner. In addition, the fabricated nanochannels were used as templates to synthesize various organic and inorganic 1D nanostructures on the substrate surface. PMID:21047101

  12. Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms

    PubMed Central

    Bass, Andrew H.; Remage-Healey, Luke

    2008-01-01

    Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals. PMID:18262186

  13. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  14. Mechanisms of left-right coordination in mammalian locomotor pattern generation circuits: a mathematical modeling view.

    PubMed

    Molkov, Yaroslav I; Bacak, Bartholomew J; Talpalar, Adolfo E; Rybak, Ilya A

    2015-05-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized "hopping" pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left-right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  15. Tigroid pattern of cerebral white matter involvement in chromosome 6p25 deletion syndrome with concomitant 5p15 duplication

    PubMed Central

    Balasubramanian, Meena; Smith, Kath; Williams, Steve; Griffiths, Paul D.; Parker, Michael J.; Mordekar, Santosh R.

    2012-01-01

    Sub-telomeric deletions of the short arm of chromosome 6 are a well-described clinical entity characterized by developmental impairment, hypotonia, eye abnormalities and defects in the heart and kidneys. Chromosome 5p terminal duplication is a rarer entity, associated with developmental impairment and facial dysmorphism. We report a 3-year-old patient with a chromosome 6p25.1pter deletion and chromosome 5p15.1pter duplication who had global developmental impairment and unusual cerebral white matter changes, with hypoplastic corpus callosum and cerebellar vermis on magnetic resonance imaging -brain scan. We discuss the differential diagnosis to consider in patients with this appearance on magnetic resonance imaging -brain scan and reiterate the need for chromosome analysis in patients with this pattern of developmental anomaly. Tigroid pattern of cerebral white matter involvement has not been reported in chromosomal deletion/duplication syndromes. With the increasing use of molecular karyotyping for patients with multiple congenital anomalies and developmental delay, it is important to consider the exact size and nature of chromosomal deletion/duplication, in order to provide families with prognostic information and recurrence risk. This in turn, will help provide valuable information regarding the natural history of rare chromosomal imbalances.

  16. Resolution improvement and pattern generator development for the maskless micro-ion-beam reduction lithography system

    NASA Astrophysics Data System (ADS)

    Jiang, Ximan

    have been studied. The dependence of the throughput with the exposure field size and the speed of the mechanical stage has been investigated. In order to perform maskless lithography, different micro-fabricated pattern generators have been developed for the MMRL system. Ion beamlet switching has been successfully demonstrated on the MMRL system. A positive bias voltage around 10 volts is sufficient to switch off the ion current on the micro-fabricated pattern generators. Some unexpected problems, such as the high-energy secondary electron radiations, have been discovered during the experimental investigation. Thermal and structural analysis indicates that the aperture displacement error induced by thermal expansion can satisfy the 3delta CD requirement for lithography nodes down to 25 nm. The cross-talking effect near the surface and inside the apertures of the pattern generator has been simulated in a 3-D ray-tracing code. New pattern generator design has been proposed to reduce the cross-talking effect. In order to eliminate the surface charging effect caused by the secondary electrons, a new beam-switching scheme in which the switching electrodes are immersed in the plasma has been demonstrated on a mechanically fabricated pattern generator.

  17. Molecules and mechanisms involved in the generation and migration of cortical interneurons

    PubMed Central

    Hernández-Miranda, Luis R; Parnavelas, John G; Chiara, Francesca

    2010-01-01

    The GABA (γ-aminobutyric acid)-containing interneurons of the neocortex are largely derived from the ganglionic eminences in the subpallium. Numerous studies have previously defined the migratory paths travelled by these neurons from their origins to their destinations in the cortex. We review here results of studies that have identified many of the genes expressed in the subpallium that are involved in the specification of the subtypes of cortical interneurons, and the numerous transcription factors, motogenic factors and guidance molecules that are involved in their migration. PMID:20360946

  18. Spike timing-dependent serotonergic neuromodulation of synaptic strength intrinsic to a central pattern generator circuit.

    PubMed

    Sakurai, Akira; Katz, Paul S

    2003-11-26

    Neuromodulation is often thought to have a static, gain-setting function in neural circuits. Here we report a counter example: the neuromodulatory effect of a serotonergic neuron is dependent on the interval between its spikes and those of the neuron being modulated. The serotonergic dorsal swim interneurons (DSIs) are members of the escape swim central pattern generator (CPG) in the mollusk Tritonia diomedea. DSI spike trains heterosynaptically enhanced synaptic potentials evoked by another CPG neuron, ventral swim interneuron B (VSI-B), when VSI-B action potentials occurred within 10 sec of a DSI spike train; however, if VSI-B was stimulated 20-120 sec after DSI, then the amplitude of VSI-B synaptic potentials decreased. Consistent with this, VSI-B-evoked synaptic currents exhibited a temporally biphasic and bidirectional change in amplitude after DSI stimulation. Both the DSI-evoked enhancement and decrement were occluded by serotonin and blocked by the serotonin receptor antagonist methysergide, suggesting that both phases are mediated by serotonin. In most preparations, however, bath-applied serotonin caused only a sustained enhancement of VSI-B synaptic strength. The heterosynaptic modulation interacted with short-term homosynaptic plasticity: DSI-evoked depression was offset by VSI-B homosynaptic facilitation. This caused a complicated temporal pattern of neuromodulation when DSI and VSI-B were stimulated to fire in alternating bursts to mimic the natural motor pattern: DSI strongly enhanced summated VSI-B synaptic potentials and suppressed single synaptic potentials after the cessation of the artificial motor pattern. Thus, spike timing-dependent serotonergic neuromodulatory actions can impart temporal information that may be relevant to the operation of the CPG. PMID:14645466

  19. Beyond Participation: The Association between School Extracurricular Activities and Involvement in Violence across Generations of Immigration

    ERIC Educational Resources Information Center

    Jiang, Xin; Peterson, Ruth D.

    2012-01-01

    Participation in extracurricular activities is purported to protect the broad spectrum of youth from a host of behavioral risks. Yet, empirical research on the extent to which this assumption holds for involvement in violence by immigrant youth is limited. Thus, using data for 13,236 (51.8% female) adolescents from the National Longitudinal Study…

  20. The New Workforce Generation: Understanding the Problems Facing Parental Involvement in Jordanian Kindergartens

    ERIC Educational Resources Information Center

    Ihmeideh, Fathi; Khasawneh, Samer; Mahfouz, Safi; Khawaldeh, Moustafa

    2008-01-01

    This study aimed to investigate the problems facing parental involvement in Jordanian kindergartens from the parents' perspectives. A 36-item questionnaire that addressed five domains was designed by the researchers and distributed among the study participants. The study sample consisted of 297 parents of kindergarten children from various…

  1. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    PubMed

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  2. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    PubMed Central

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  3. Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment

    PubMed Central

    Rhinn, Muriel; Schuhbaur, Brigitte; Niederreither, Karen; Dollé, Pascal

    2011-01-01

    Retinoic acid (RA), an active vitamin A metabolite, is a key signaling molecule in vertebrate embryos. Morphogenetic RA gradients are thought to be set up by tissue-specific actions of retinaldehyde dehydrogenases (RALDHs) and catabolizing enzymes. According to the species, two enzymatic pathways (β-carotene cleavage and retinol oxidation) generate retinaldehyde, the substrate of RALDHs. Placental species depend on maternal retinol transferred to the embryo. The retinol-to-retinaldehyde conversion was thought to be achieved by several redundant enzymes; however, a random mutagenesis screen identified retinol dehydrogenase 10 [Rdh10Trex allele; Sandell LL, et al. (2007) Genes Dev 21:1113–1124] as responsible for a homozygous lethal phenotype with features of RA deficiency. We report here the production and characterization of unique murine Rdh10 loss-of-function alleles generated by gene targeting. We show that although Rdh10−/− mutants die at an earlier stage than Rdh10Trex mutants, their molecular patterning defects do not reflect a complete state of RA deficiency. Furthermore, we were able to correct most developmental abnormalities by administering retinaldehyde to pregnant mothers, thereby obtaining viable Rdh10−/− mutants. This demonstrates the rescue of an embryonic lethal phenotype by simple maternal administration of the missing retinoid compound. These results underscore the importance of maternal retinoids in preventing congenital birth defects, and lead to a revised model of the importance of RDH10 and RALDHs in controlling embryonic RA distribution. PMID:21930923

  4. Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses.

    PubMed

    Dabiri, John O; Colin, Sean P; Costello, John H; Gharib, Morteza

    2005-04-01

    Flow patterns generated by medusan swimmers such as jellyfish are known to differ according the morphology of the various animal species. Oblate medusae have been previously observed to generate vortex ring structures during the propulsive cycle. Owing to the inherent physical coupling between locomotor and feeding structures in these animals, the dynamics of vortex ring formation must be robustly tuned to facilitate effective functioning of both systems. To understand how this is achieved, we employed dye visualization techniques on scyphomedusae (Aurelia aurita) observed swimming in their natural marine habitat. The flow created during each propulsive cycle consists of a toroidal starting vortex formed during the power swimming stroke, followed by a stopping vortex of opposite rotational sense generated during the recovery stroke. These two vortices merge in a laterally oriented vortex superstructure that induces flow both toward the subumbrellar feeding surfaces and downstream. The lateral vortex motif discovered here appears to be critical to the dual function of the medusa bell as a flow source for feeding and propulsion. Furthermore, vortices in the animal wake have a greater volume and closer spacing than predicted by prevailing models of medusan swimming. These effects are shown to be advantageous for feeding and swimming performance, and are an important consequence of vortex interactions that have been previously neglected. PMID:15781886

  5. Parenting across Racial and Class Lines: Assortative Mating Patterns of New Parents Who Are Married, Cohabiting, Dating or No Longer Romantically Involved

    ERIC Educational Resources Information Center

    Goldstein, Joshua R.; Harknett, Kristen

    2006-01-01

    We examine the assortative mating patterns of new parents who are married, cohabiting, romantically involved and no longer romantically involved. Using data from the Fragile Families and Child Wellbeing study, we find that relationship status at the time of a birth depends mainly on father's race rather than on whether mother and father's…

  6. A new Pulse-Pattern Generator based on LabVIEW FPGA

    NASA Astrophysics Data System (ADS)

    Ziegler, F.; Beck, D.; Brand, H.; Hahn, H.; Marx, G.; Schweikhard, L.

    2012-07-01

    For the control of experimental sequences composed of triggers, gates and delays a Pulse-Pattern Generator (PPG) has been developed based on a Field Programmable Gate Array (FPGA) addressed in a LabVIEW environment. It allows a highly reproducible timing of measurement procedures by up to 64 individual channels with pulse and delay periods from the nanoseconds to the minutes range. The PPG has been implemented in the context of the development of a new control system for the ClusterTrap setup, an ion storage device for atomic-cluster research, in close contact with the SHIPTRAP and ISOLTRAP collaborations at GSI and CERN, respectively. As the new PPG is not ion-trap specific it can be employed in any experiment based on sequences of triggers, pulses and delays.

  7. Development of a morphing structure with the incorporation of central pattern generators

    NASA Astrophysics Data System (ADS)

    Bliss, Thomas K.; Bart-Smith, Hilary; Iwasaki, Tetsuya

    2006-03-01

    The Manta Ray, Manta birostris, is an amazing creature, propelling itself through the water with the elegant and complex flapping of its wings. Achieving outstanding efficiencies, engineers are looking for ways to mimic its flight through the water and harness its propulsive techniques. This study combines two biologically inspired aspects to achieve this goal: morphing structures actuated with a biomimetic neural network control system. It is believed that this combination will prove capable of producing the oscillatory motions necessary for locomotion. In this paper, a four-truss structure with three actuators is chosen and its performance capabilities are analyzed. A synthetic central pattern generator, which provides the fundamental control mechanisms for rhythmic motion in animals, is designed to realize an oscillatory control of the three actuators. The control system is simulated using Matlab, then combined with LabVIEW to control the four-truss structure. The system's performance is analyzed, with specific attention to both transient and steady-state behavior.

  8. A model of a flexible anguilliform swimmer driven by a central pattern generator with proprioceptive feedback

    NASA Astrophysics Data System (ADS)

    Hamlet, Christina; Tytell, Eric; Hoffman, Kathleen; Fauci, Lisa

    2015-11-01

    The swimming of a simple vertebrate, the lamprey, can shed light on how a flexible body can couple with a fluid environment to swim rapidly and efficiently. Animals use proprioceptive sensory information to sense how their bodies are bending, and then adjust the neural signals to their muscles to improve performance. We will present recent progress in the development of a computational model of a lamprey swimming in a Navier-Stokes fluid where a simple central pattern generator model, based on phase oscillators, is coupled to the evolving body dynamics of the swimmer through curvature and curvature derivative feedback. Such feedback can be positive (frequency decreasing), negative (frequency increasing), or mixed (positive to one side of the body and negative to the other, or vice versa). We will examine how the emergent swimming behavior and cost of transport depends upon these functional forms of proprioceptive feedback chosen in the model.

  9. Pattern Formation and Force Generation by Cell Ensembles in a Filamentous Matrix

    NASA Astrophysics Data System (ADS)

    Paul, R.; Schwarz, U. S.

    Adhesion-dependent soft tissue cells both create and sense tension in the extracellular matrix. Therefore cells can actively interact through the mechanics of the surrounding matrix. An intracellular positive feedback loop upregulates cellular contractility in stiff or tensed environments. Here we theoretically address the resulting pattern formation and force generation for the case of a filamentous matrix, which we model as a two-dimensional cable network. Cells are modeled as anisotropic contraction dipoles which move in favor of tensed directions in the matrix. Our Monte Carlo simulations suggest that at small densities, cells align in strings, while at high densities, they form interconnected meshworks. Cellular activation both by biochemical factors and by tension leads to a hyperbolic increase in tissue tension. We also discuss the effect of cell density on tissue tension and shape.

  10. A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight.

    PubMed

    Buhl, Edgar; Schildberger, Klaus; Stevenson, Paul A

    2008-07-01

    A central question in behavioural control is how central pattern generators (CPGs) for locomotion are activated. This paper disputes the key role generally accredited to octopamine in activating the CPG for insect flight. In deafferented locusts, fictive flight was initiated by bath application of the muscarinic agonist pilocarpine, the acetylcholine analogue carbachol, and the acetylcholinesterase blocker eserine, but not by nicotine. Furthermore, in addition to octopamine, various other amines including dopamine, tyramine and histamine all induced fictive flight, but not serotonin or the amine-precursor amino acid tyrosine. However, flight initiation was not reversibly blocked by aminergic antagonists, and was still readily elicited by both natural stimulation (wind) and pilocarpine in reserpinized, amine-depleted locusts. By contrast, the muscarinic antagonists atropine and scopolamine reversibly blocked flight initiated by wind, cholinergic agonists, octopamine, and by selective stimulation of a flight-initiating interneurone (TCG). The short delay from TCG stimulation to flight onset suggests that TCG acts directly on the flight CPG, and accordingly that TCG, or its follower cell within the flight generating circuit, is cholinergic. We conclude that acetylcholine acting via muscarinic receptors is the key neurotransmitter in the mechanism underlying the natural activation of the locust flight CPG. Amines are not essential for this, but must be considered as potential neuromodulators for facilitating flight release and tuning the motor pattern. We speculate that muscarinic activation coupled to aminergic facilitation may be a general feature of behavioural control in insects for ensuring conditional recruitment of individual motor programs in accordance with momentary adaptive requirements. PMID:18587129