Science.gov

Sample records for pb-bi corrosion processes

  1. Corrosion erosion test of SS316 in flowing Pb Bi

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Kurata, Y.; Saito, S.; Futakawa, M.; Sasa, T.; Oigawa, H.; Wakai, E.; Miura, K.

    2003-05-01

    Corrosion tests of austenitic stainless tube were done under flowing Pb-Bi conditions for 3000 h at 450 °C. Specimens were 316SS produced as a tubing form with 13.8 mm outer diameter, 2 mm thickness and 40 cm length. During operation, maximum temperature, temperature difference and flow velocity of Pb-Bi at the specimen were kept at 450, 50 °C, and 1 m/s, respectively. After the test, specimen and components of the loop were cut and examined by optical microscope, SEM, EDX, WDX and X-ray diffraction. Pb-Bi adhered on the surface of the specimen even after Pb-Bi was drained out to the storage tank from the circulating loop. Results differed from a stagnant corrosion test in that the specimen surface became rough and the corrosion rate was maximally 0.1 mm/3000 h. Mass transfer from the high temperature to the lower temperature area was observed: crystals of Fe-Cr were found on the tube surface in the low-temperature region. The sizes of crystals varied from 0.1 to 0.2 mm. The depositing crystals were ferrite grains and the chemical composition ratio (mass%) of Fe to Cr was 9:1.

  2. Corrosion behavior of Al-surface-treated steels in liquid Pb?Bi in a pot

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2004-12-01

    Corrosion tests were performed in oxygen-saturated liquid Pb-Bi at 450 °C and 550 °C in a pot for 3000 h for Al-surface-treated steels containing various levels of Cr contents. The Al surface treatments were achieved using a gas diffusion method and a melt dipping method. Al2O3, FeAl2 and AlCr2 produced by the gas diffusion method exhibited corrosion resistance to liquid Pb-Bi, while the surface layer produced by the melt dipping method suffered a severe corrosion attack. Fe4Al13 and Fe2Al5 produced by the melt dipping method disappeared during the corrosion test at 550 °C and only FeAl remained.

  3. In-Situ X-ray Spectroscopic Studies of the Fundamental Chemistry of Pb and Pb-Bi Corrosion Processes at High Temperatures: Development and Assessment of Composite Corrosion Resistant Materials.

    SciTech Connect

    Carlo Segre

    2009-12-30

    Over the course of this project, we have a number of accomplishments. The following list is presented as a summary statement for the project. Specific details from previous Quarterly Reports are given. (1) We established that it is possible to use EXAFS to study the interface layer between a material and the liquid Pb overlayer. We have discovered that molybdenum grows a selflimiting oxide layer which does not spall even at the highest temperatures studied. There have been 2 publications resulting from these studies. (2) We have fabricated a high temperature environmental chamber capable of extending the Pb overlayer studies by varying the incident x-ray beam angle to perform depth profiling of the Pb layer. This chamber will continue to be available to nuclear materials program researchers who wish to use the MRCAT beam line. (3) We have developed a collaboration with researchers at the Paul Scherrer Institute to study corrosion layers on zircalloy. One publication has resulted from this collaboration and another is in progress. (4) We have developed a collaboration with Prof. G.R. Odette of UCSB in which we studied the local structure of Ti and Y in nanoclusters found in oxygen dispersion strengthened steels. There are two publications in progress form this collaboration and we have extended the project to anomalous small angle x-ray scattering as well as EXAFS. (5) We have promoted the use of EXAFS for the study of nuclear materials to the community over the past 4 years and we have begun to see an increase in demand for EXAFS from the community at the MRCAT beam line. (6) This grant was instrumental in nucleating interest in establishing a new Collaborative Access Team at the Advanced Photon Source, the Nuclear and Radiological Research CAT (NRR-CAT). The co-PI (Jeff Terry) is the lead investigator on this project and it has been approved by the APS Scientific Advisory Committee for further planning. The status of the NRR-CAT project is being discussed in a

  4. Kinetics of gas phase oxygen control system (OCS) for stagnant and flowing Pb-Bi Systems

    NASA Astrophysics Data System (ADS)

    Lefhalm, C. H.; Knebel, J. U.; Mack, K. J.

    2001-07-01

    Pb and Pb-Bi are known to be very corrosive to structural materials at elevated temperatures. In recent studies, the necessity of measurement and control of the oxygen concentration in the liquid metal in order to safely operate a liquid Pb or Pb-Bi loop has been shown. The dynamic behaviour of the gas phase oxygen control system (OCS), which was developed at Forschungszentrum Karlsruhe (FZK), is investigated with respect to diffusion as the limiting process of oxygen exchange between the gas phase and the liquid metal. In this paper the development of a physical model for this diffusion process is described and compared to experimental results of a stagnant liquid Pb-Bi system. The experimental findings are in very good agreement with the theoretical equations describing the thermodynamic and kinetic behaviour of such a system. Recent investigations in a Pb-Bi loop at the Karlsruhe Lead Laboratory (KALLA) indicate that this gas phase OCS is a promising candidate system for an accelerator-driven subcritical system (ADS).

  5. Influence of Zn as a spallation product on the behaviour of martensitic steel T91 and austenitic steel 316L in liquid Pb-Bi

    NASA Astrophysics Data System (ADS)

    Deloffre, Ph.; Terlain, A.

    2004-11-01

    The liquid Pb-Bi alloy is proposed as material for the spallation target in hybrid systems. During the spallation process, several chemical elements are produced in the target which could generate specific liquid metal embrittlement phenomena. Among these species, zinc is known as an element which can promote LME (liquid metal embrittlement). Corrosion tests were carried out in liquid Pb-Bi in isothermal static conditions without and with 80 wppm of zinc at 150 °C, 350 °C and 600 °C up to 6000 h. No modification of the corrosion kinetics of T91 martensitic and 316L austenitic steels was observed for either unstressed or U-bend specimens with zinc in Pb-Bi. Moreover, no sign of embrittlement was observed for any of the samples with and without zinc.

  6. The influence of liquid Pb-Bi on the anti-corrosion behavior of Fe3O4: a first-principles study.

    PubMed

    Li, Dongdong; Qu, Bingyan; He, H Y; Zhang, Y G; Xu, Yichun; Pan, B C; Zhou, Rulong

    2016-03-01

    In this work, the influence of Pb and Bi atoms on the anti-corrosion behavior of the oxide film (Fe3O4) formed on steel surface is investigated based on first-principles calculations. Through calculations of the formation energies, we find that Pb and Bi atoms can promote the formation of point defects, such as interstitial atoms and vacancies in Fe3O4. Besides, the effects of the concentration of Pb (or Bi) and pressure on the formation of these defects are also studied. Our results depict that a high density of Pb (or Bi) and compression pressure can promote the formation of defects in Fe3O4 significantly. Furthermore, the energy barriers for Pb and Bi atom migration in Fe3O4 are also estimated using the climbing image nudge elastic band (CI-NEB) method, which implies that Pb and Bi can diffuse more easily in Fe3O4 compared to Fe. Our results reveal the underlying mechanism of how Pb and Bi influence the anti-corrosion ability of oxide films in an accelerate driven system (ADS). It is instructive for improving the corrosion resistance of the oxide films in the ADS. PMID:26912208

  7. Superconducting properties of Ba(Pb, Bi)O 3 single crystals and melt-processed (Ba, K)BiO 3

    NASA Astrophysics Data System (ADS)

    Grumann, M.; Balakrishnan, G.; Tomy, C. V.; Paul, D. McK.

    1994-06-01

    Single crystals of the superconductors BaPb 1- xBi xO 3 with nominal compositions of x=0.25, were grown by cooling from the melt using an excess of PbO. The superconducting transitions have been measured on the grown crystals as a function of oxygen annealing and sharp transitions with Tconset at 12 K have been observed. The related perovskite Ba 1- xK xBiO 3 superconductor ( x=0.4) has been synthesized by a new melt-processing technique using an infra-red image furnace. The melt-processed material on post annealing, is superconducting with Tconset∼25 K. The superconducting properties of these two families of superconductors are presented.

  8. Strong superconducting strength in ε-PbBi microcubes

    NASA Astrophysics Data System (ADS)

    Gandhi, Ashish Chhaganlal; Wu, Sheng Yun

    2016-06-01

    Single phase ε-PbBi microcubes were synthesized using a simple thermal evaporation method. Synchrotron x-ray measurement of the crystal structure of the ε-PbBi microcubes revealed a space group of P63/mmc. Enhanced superconducting transitions were observed from the temperature dependent magnetization, showing a main diamagnetic Meissner state below a TC of ~8.66(2) K. An extremely strong superconducting strength (α=2.51(1)) and electron-phonon constant (λEP=2.25) are obtained from the modified Allen and Dynes theory, which give rise to higher TC superconductivity in this type of structure. The electron-phonon coupling to low lying phonons is found to be the leading mechanism for the observed strong-coupling superconductivity in the PbBi system.

  9. Performance of New Pb-Bi Alloys for Pb-Acid Battery Applications: EIS and Polarization Study

    NASA Astrophysics Data System (ADS)

    Peixoto, Leandro C.; Bortolozo, Ausdinir D.; Garcia, Amauri; Osório, Wislei R.

    2016-06-01

    The present investigation is focused on the evaluation of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization results, associated with resulting microstructural features of two distinct as-cast Pb-Bi alloys (i.e., 1 and 2.5 wt.% Bi). EIS, potentiodynamic polarization curves, and equivalent circuits are used to analyze the corrosion behavior. The electrochemical parameters show that the corrosion resistance increases when the matrix microstructure is characterized by coarser cells when compared with finer ones. However, when a coarse cellular array is associated with increase in Bi content caused by macrosegregation during casting, the corrosion resistance decreases significantly. Bismuth modifies the anode/cathode area ratio increasing drastically the corrosion action.

  10. Performance of New Pb-Bi Alloys for Pb-Acid Battery Applications: EIS and Polarization Study

    NASA Astrophysics Data System (ADS)

    Peixoto, Leandro C.; Bortolozo, Ausdinir D.; Garcia, Amauri; Osório, Wislei R.

    2016-04-01

    The present investigation is focused on the evaluation of electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization results, associated with resulting microstructural features of two distinct as-cast Pb-Bi alloys (i.e., 1 and 2.5 wt.% Bi). EIS, potentiodynamic polarization curves, and equivalent circuits are used to analyze the corrosion behavior. The electrochemical parameters show that the corrosion resistance increases when the matrix microstructure is characterized by coarser cells when compared with finer ones. However, when a coarse cellular array is associated with increase in Bi content caused by macrosegregation during casting, the corrosion resistance decreases significantly. Bismuth modifies the anode/cathode area ratio increasing drastically the corrosion action.

  11. Corrosion

    ERIC Educational Resources Information Center

    Slabaugh, W. H.

    1974-01-01

    Presents some materials for use in demonstration and experimentation of corrosion processes, including corrosion stimulation and inhibition. Indicates that basic concepts of electrochemistry, crystal structure, and kinetics can be extended to practical chemistry through corrosion explanation. (CC)

  12. Design and synthesis of a new layered thermoelectric material LaPbBiS3O.

    PubMed

    Sun, Yun-Lei; Ablimit, Abduweli; Zhai, Hui-Fei; Bao, Jin-Ke; Tang, Zhang-Tu; Wang, Xin-Bo; Wang, Nan-Lin; Feng, Chun-Mu; Cao, Guang-Han

    2014-10-20

    A new quinary oxysulfide LaPbBiS3O was designed and successfully synthesized via a solid-state reaction in a sealed evacuated quartz tube. This material, composed of stacked NaCl-like [M4S6] (where M = Pb, Bi) layers and fluorite-type [La2O2] layers, crystallizes in the tetragonal space group P4/nmm with a = 4.0982(1) Å, c = 19.7754(6) Å, and Z = 2. Electrical resistivity and Hall effect measurements demonstrate that it is a narrow gap semiconductor with an activation energy of ∼17 meV. The thermopower and the figure of merit at room temperature were measured to be -52 μV/K and 0.23, respectively, which makes LaPbBiS3O and its derivatives be promising for thermoelectric applications. PMID:25272272

  13. Remote recovery of irradiated tensile samples incapsulated in Pb-Bi

    SciTech Connect

    Nicol, A.G.; Brown, R.D.; Cook, J.H.

    1985-01-01

    The Swiss Institute for Nuclear Research (SIN) is upgrading their proton accelerator to 1 to 2 mA Beam current at 600 MeV. Molten Pb-Bi is being considered as a beam stop. The materials in the beam stop must be chemically compatible with molten Pb-Bi, retain ductility and strength, and have a lifetime of at least six months. In a joint venture between the United States and SIN, four capsules were designed and loaded with eight tensile samples. The tensile samples were Ta, Cr (Fe-2 1/4% Cr-1% Mo), Fe, and HT (Fe-12%, Cr-1% Mo). The cavity of the capsule was then filled with a molten Pb-Bi alloy so it would surround the tensile samples. The capsule lids were then welded in place. The capsules were irradiated in the proton beam at the Los Alamos Meson Physics Facility (LAMPF). The LAMPF facility was used because of its similarity to the proposed SIN upgrade. The LAMPF 800 MeV proton beam passing through the capsules subjects the Pb-Bi and tensile samples to temperatures between 350 to 400/sup 0/ centigrade. These temperatures were verified with melt wires placed in previous irradiation experiments. The Pb-Bi is molten at operating temperatures and tests the compatibility of the tensile samples with molten Pb-bi. Through transmutation by irradiation, Po-210 and Hg were produced. The containment of these toxic isotopes was a major concern during the planning for the disassembly of this experiment.

  14. Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO{sub 2}Br

    SciTech Connect

    Shan Zhichao; Wang Wendeng; Lin Xinping; Ding Hanming Huang Fuqiang

    2008-06-15

    The layered compound of lead bismuth oxybromide PbBiO{sub 2}Br, prepared by conventional solid-state reaction method, has an optical band gap of 2.3 eV, and possesses a good visible-light-response ability. The references, PbBi{sub 2}Nb{sub 2}O{sub 9}, TiO{sub 2-x}N{sub x}, BiOBr and BiOI{sub 0.8}Cl{sub 0.2}, which are excellent visible-light-response photocatalysts, were applied to comparatively understand the activity of PbBiO{sub 2}Br. Degradation of methyl orange and methylene blue was used to evaluate photocatalytic activity. The results show that PbBiO{sub 2}Br is more photocatalytically active than PbBi{sub 2}Nb{sub 2}O{sub 9}, TiO{sub 2-x}N{sub x} and BiOBr under visible light. - Graphical abstract: The as-prepared layered PbBiO{sub 2}Br with an optical band gap of 2.3 eV possesses a fair visible-light-response ability. The references, PbBi{sub 2}Nb{sub 2}O{sub 9}, TiO{sub 2-x}N{sub x}, BiOBr and BiOI{sub 0.8}Cl{sub 0.2}, were applied to comparatively understand the activity of PbBiO{sub 2}Br. Degradation of dyes was used to evaluate photocatalytic activity. The results show that PbBiO{sub 2}Br is more photocatalytically active than PbBi{sub 2}Nb{sub 2}O{sub 9}, TiO{sub 2-x}N{sub x} and BiOBr under visible light.

  15. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1981-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon.

  16. Combustion system processes leading to corrosive deposits

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Rosner, D. E.

    1983-01-01

    Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, anad silicon. Previously announced in STAR as N81-23243

  17. Development of a liquid Pb-Bi target for high-power ISOL facilities

    NASA Astrophysics Data System (ADS)

    Houngbo, D.; Bernardes, A. P.; David, J. C.; Delonca, M.; Kravalis, K.; Lahiri, S.; Losito, R.; Maglioni, C.; Marchix, A.; Mendonca, T. M.; Popescu, L.; Schumann, D.; Schuurmans, P.; Stora, T.; Vollaire, J.; Vierendeels, J.

    2016-06-01

    This paper describes some R&D activities conducted in support of the design and safe operation of a high-power liquid Pb-Bi target within the LIEBE (Liquid Eutectic Lead Bismuth Loop Target for EURISOL) project. The target material is lead bismuth eutectic (LBE) which also acts as a primary coolant. As a consequence of interaction of the highly pulsed 1.4-GeV protons at ISOLDE with the target, heat powers of the order of 2 GW would be instantaneously deposited in the target during a bunch. Considerable R&D effort is thus required to demonstrate its continued coolability and structural integrity. This paper mainly reports on the conjugate flow (CFD) and heat deposition (Monte Carlo) calculations, not accounting for Fluid-Structure Interactions.

  18. MYRRHA, a Pb-Bi experimental ADS: specific approach to radiation protection aspects.

    PubMed

    Abderrahim, H Aït; Aoust, Th; Malambu, E; Sobolev, V; Van Tichelen, K; De Bruyn, D; Maes, D; Haeck, W; Van den Eynde, G

    2005-01-01

    Since 1998, SCK*CEN, in partnership with IBA s.a. and many European research laboratories, is designing a multipurpose accelerator driven system (ADS) for Research and Development (R&D) applications-MYRRHA-and is conducting an associated R&D support programme. MYRRHA is an ADS under development at Mol in Belgium and is aiming to serve as a basis for the European experimental ADS to provide protons and neutrons for various R&D applications. It consists of a proton accelerator delivering a 350 MeV x 5 mA proton beam to a liquid Pb-Bi spallation target that in turn couples to a Pb-Bi cooled, subcritical fast core. In the first stage, the project focuses mainly on demonstration of the ADS concept, safety research on sub-critical systems and nuclear waste transmutation studies. In a later stage, the device will also be dedicated to research on structural materials, nuclear fuel, liquid metal technology and associated aspects, and on sub-critical reactor physics. Subsequently, it will be used for research on applications such as radioisotope production. A first preliminary conceptual design file of MYRRHA was completed by the end of 2001 and has been reviewed by an International Technical Guidance Committee, which concluded that there are no show stoppers in the project and even though some topics such as the safety studies and the fuel qualification need to be addressed more deeply before concluding it. In this paper, we are reporting on the state-of-the art of the MYRRHA project at the beginning of 2004 and in particular on the radiation shielding assessment and the radiation protection particular aspects through a remote handling operation approach in order to minimise the personnel exposure to radiation. PMID:16604674

  19. Corrosion and stress corrosion cracking in coal liquefaction processes

    SciTech Connect

    Baylor, V. B.; Keiser, J. R.

    1980-01-01

    The liquefaction of coal to produce clean-burning synthetic fuels has been demonstrated at the pilot plant level. However, some significant materials problems must be solved before scale-up to commercial levels of production can be completed. Failures due to inadequate materials performance have been reported in many plant areas: in particular, stress corrosion cracking has been found in austenitic stainless steels in the reaction and separation areas and several corrosion has been observed in fractionation components. In order to screen candidate materials of construction, racks of U-bend specimens in welded and as-wrought conditions and unstressed surveillance coupons were exposed in pilot plant vessels and evaluated. Failed components were analyzed on-site and by subsequent laboratory work. Laboratory tests were also performed. From these studies alloys have been identified that are suitable for critical plant locations. 19 figures, 7 tables.

  20. Corrosion resistant process piping changes in economics

    SciTech Connect

    Lain, E.H. Jr.

    1996-07-01

    In recent years, the process piping industry has seen dramatic changes occur in corrosion resistant materials. Some changes have occurred in the form of new and modified materials becoming available. However, the most dramatic changes have occurred in the pricing of some older and well known materials. These economic changes have been dramatic and quick, so much so that the old established budget pricing ``rules of thumb`` used for many years to estimate piping projects are no longer valid. In many instances, the prices of some premium metals (titanium, for example) are now on a comparatively equal basis even with high alloys when all factors including densities, special fabrication requirements and service life are taken into account. The purpose of this paper is to discuss some commonly encountered corrosion resistant piping materials, a brief summary of their chemical and mechanical properties and usage. However, the focus of the paper presented will be economic. It will detail the current raw material prices for high alloys including duplex stainless steels, nickel and nickel alloys, Hastelloys+, as well as the reactive metals, zirconium and titanium. In addition, a typical fabricated piping spool in various diameters will be estimated for all of the above metals and the results plotted in graphical format for quick comparison. Last, a quick method will be presented to estimate as fabricated piping costs if the base material price for pipe is known.

  1. CORROSION ISSUES ASSOCIATED WITH AUSTENITIC STAINLESS STEEL COMPONENTS USED IN NUCLEAR MATERIALS EXTRACTION AND SEPARATION PROCESSES

    SciTech Connect

    Mickalonis, J.; Louthan, M.; Sindelar, R.

    2012-12-17

    This paper illustrated the magnitude of the systems, structures and components used at the Savannah River Site for nuclear materials extraction and separation processes. Corrosion issues, including stress corrosion cracking, pitting, crevice corrosion and other corrosion induced degradation processes are discussed and corrosion mitigation strategies such as a chloride exclusion program and corrosion release testing are also discussed.

  2. Microbial iron respiration: impacts on corrosion processes.

    PubMed

    Lee, A K; Newman, D K

    2003-08-01

    In this review, we focus on how biofilms comprising iron-respiring bacteria influence steel corrosion. Specifically, we discuss how biofilm growth can affect the chemistry of the environment around the steel at different stages of biofilm development, under static or dynamic fluid regimes. We suggest that a mechanistic understanding of the role of biofilm metabolic activity may facilitate corrosion control. PMID:12734693

  3. Design Study of Small Pb-Bi Cooled Modified Candle Reactors

    SciTech Connect

    Su'ud, Zaki; Sekimoto, H.

    2010-06-22

    In this study application of modified CANDLE burnup scheme based long life Pb-Bi Cooled Fast Reactors for small long life reactors with natural Uranium as Fuel Cycle Input has been performed. The reactor cores are subdivided into several parts with the same volume in the axial directions. The natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2, and 10 years after that it is shifted to region 3. This concept is applied to all regions, i.e. shifted the core of I'th region into I+1 region after the end of 10 years burn-up cycle. The first region 1 is filled by fresh natural uranium fuel. Compared to the previous works, in a smaller reactor core the criticality need to be considered more carefully especially at the beginning of life. As an optimized design, a core of 85 cm radius and 150 cm height with 300 MWt power are selected. This core can be operated 10 years without refueling or fuel shuffling. The average discharge burn-up is 350 GWd/ton HM.

  4. Design Study of Small Pb-Bi Cooled Modified Candle Reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2010-06-01

    In this study application of modified CANDLE burnup scheme based long life Pb-Bi Cooled Fast Reactors for small long life reactors with natural Uranium as Fuel Cycle Input has been performed. The reactor cores are subdivided into several parts with the same volume in the axial directions. The natural uranium is initially put in region 1, after one cycle of 10 years of burn-up it is shifted to region 2, and 10 years after that it is shifted to region 3. This concept is applied to all regions, i.e. shifted the core of I'th region into I+1 region after the end of 10 years burn-up cycle. The first region 1 is filled by fresh natural uranium fuel. Compared to the previous works, in a smaller reactor core the criticality need to be considered more carefully especially at the beginning of life. As an optimized design, a core of 85 cm radius and 150 cm height with 300 MWt power are selected. This core can be operated 10 years without refueling or fuel shuffling. The average discharge burn-up is 350 GWd/ton HM.

  5. Strong Superconducting Proximity Effect in Pb-Bi2Te3 Hybrid Structures

    PubMed Central

    Qu, Fanming; Yang, Fan; Shen, Jie; Ding, Yue; Chen, Jun; Ji, Zhongqing; Liu, Guangtong; Fan, Jie; Jing, Xiunian; Yang, Changli; Lu, Li

    2012-01-01

    To study the interface between a conventional superconductor and a topological insulator, we fabricated Pb-Bi2Te3-Pb lateral and sandwiched junctions, and performed electron transport measurements down to low temperatures. The results show that there is a strong superconducting proximity effect between Bi2Te3 and Pb, as that a supercurrent can be established along the thickness direction of the Bi2Te3 flakes (100~300 nm thick) at a temperature very close to the superconducting Tc of Pb. Moreover, a Josephson current can be established over several microns in the lateral direction between two Pb electrodes on the Bi2Te3 surface. We have further demonstrated that superconducting quantum interference devices can be constructed based on the proximity-effect-induced superconductivity. The critical current of the devices exhibits s-wave-like interference and Fraunhofer diffraction patterns. With improved designs, Josephson devices of this type would provide a test-bed for exploring novel phenomena such as Majorana fermions in the future. PMID:22468226

  6. Degradation Modeling of 2024 Aluminum Alloy During Corrosion Process

    NASA Astrophysics Data System (ADS)

    Pidaparti, Ramana M.; Aghazadeh, Babak Seyed

    2011-04-01

    Corrosion is one of the most damaging mechanisms in aluminum alloys used in aerospace engineering structures. In this article, the degradation behavior of AA 2024-T3 as a function of time under corrosive conditions is studied through experiments and modeling. Corrosion experiments were conducted on AA 2024-T3 specimens under controlled electrochemical conditions. The chemical element alloy map was investigated through EDS technique for evaluation purposes. Based on the experimental data, an analytical model is developed relating the material loss to the degradation during the corrosion process. The analytical model uses genetic algorithms (GAs) to map the relationship through optimization. The results obtained from GAs were compared with a standard non-linear regression model. The results obtained indicate that a quadratic relationship exists in time between the material loss due to corrosion and the degradation behavior of the alloy. Based on the good results obtained, the present approach of degradation modeling can be extended to other metals.

  7. Fluxoid pinning by planar defects in Pb-Bi alloy films

    SciTech Connect

    Yetter, W.E.

    1980-01-01

    It is believed that the most important contribution to FLL pinning for both intrinsic and diffusion-modified grain boundaries is the electron scattering from the boundary and its surroundings. A theoretical model is derived for the elementary interaction force f between an isolated grain boundary and the FLL based on: (1) strong electron scattering from the boundary itself; (2) a simple geometrical derivation of the electron mean free path (l) as a function of distance (x) from the boundary; (3) a treatment of the change in FLL energy due to scattering as a small perturbation, allowing the use of the Ginzburg-Landau expression for the free energy; (4) a rigid FLL. The predictions for intrinsic grain boundaries are in substantial agreement with both the Pb-Bi data and the Q/sub GB/ values extracted from literature data on Nb, Pb-In, and Nb/sub 3/Sn. After modification to include the effects on l(x) of an inhomogeneity in composition, the electron scattering model also produces results in qualitative agreement with the time evolution of Q/sub GB/ for diffusion-modified boundaries. The specific areal pinning force Q/sub L/ of well-separated 2nM Cr layers in a Pb-18% Bi matrix is determined to be approx. 200 N/m/sub 2/ at H/H/sub c/sub 2// = 0.7 Q/sub L/ is independent of Cr layer thickness between 1 and 7.5 nm, but decreases markedly at small layer spacings. All these observations may be accounted for by breakage of Cooper pairs at the surface of the antiferromagnetic Cr layers. A semi-quantitative model based on a large depression of the order parameter at the surface of each layer explains the large magnitude of Q/sub L/, its insensitivity to layer thickness, and the deleterious effects of small layer spacings.

  8. CORROSION PROCESS IN REINFORCED CONCRETE IDENTIFIED BY ACOUSTIC EMISSION

    NASA Astrophysics Data System (ADS)

    Kawasaki, Yuma; Kitaura, Misuzu; Tomoda, Yuichi; Ohtsu, Masayasu

    Deterioration of Reinforced Concrete (RC) due to salt attack is known as one of serious problems. Thus, development of non-destructive evaluation (NDE) techniques is important to assess the corrosion process. Reinforcement in concrete normally does not corrode because of a passive film on the surface of reinforcement. When chloride concentration at reinfo rcement exceeds the threshold level, the passive film is destroyed. Thus maintenance is desirable at an early stage. In this study, to identify the onset of corrosion and the nucleation of corrosion-induced cracking in concrete due to expansion of corrosion products, continuous acoustic emission (AE) monitoring is applied. Accelerated corrosion and cyclic wet and dry tests are performed in a laboratory. The SiGMA (Simplified Green's functions for Moment tensor Analysis) proce dure is applied to AE waveforms to clarify source kinematics of micro-cracks locations, types and orientations. Results show that the onset of corrosion and the nu cleation of corrosion-induced cracking in concrete are successfully identified. Additionally, cross-sections inside the reinforcement are observed by a scanning electron microscope (SEM). From these results, a great promise for AE techniques to monitor salt damage at an early stage in RC structures is demonstrated.

  9. Study on neutronic of very small Pb - Bi cooled no-onsite refueling nuclear power reactor (VSPINNOR)

    SciTech Connect

    Arianto, Fajar; Su'ud, Zaki; Zuhair

    2014-09-30

    A conceptual design study on Very Small Pb-Bi No-Onsite Refueling Cooled Nuclear Reactor (VSPINNOR) with Uranium nitride fuel using MCNPX program has been performed. In this design the reactor core is divided into three regions with different enrichment. At the center of the core is laid fuel without enrichment (internal blanket). While for the outer region using fuel enrichment variations. VSPINNOR fast reactor was operated for 10 years without refueling. Neutronic analysis shows optimized result of VSPINNOR has a core of 50 cm radius and 100 cm height with 300 MWth thermal power output at 60% fuel fraction that can be operated 18 years without refueling or fuel shuffling.

  10. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Surekha, K.; Murty, B. S.; Prasad Rao, K.

    2009-04-01

    The effect of processing parameters (rotation speed and traverse speed) on the corrosion behaviour of friction stir processed high strength precipitation hardenable AA 2219-T87 alloy was investigated. The results indicate that the rotation speed has a major influence in determining the rate of corrosion, which is attributed to the breaking down and dissolution of the intermetallic particles. Corrosion resistance of friction stir processed alloy was studied by potentiodynamic polarization, electrochemical impedance spectroscopy, salt spray and immersion tests.

  11. TREATMENT TANK CORROSION STUDIES FOR THE ENHANCED CHEMICAL CLEANING PROCESS

    SciTech Connect

    Wiersma, B.

    2011-08-24

    Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate the degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than

  12. Chevron process reduces FCC/coker corrosion and saves energy

    SciTech Connect

    Knowlton, H.E.; Coombs, J.W.; Allen, E.R.

    1980-01-01

    The Chevron Polysulfide process for controlling cyanide-induced corrosion was installed in seven fluid catalytic cracking (FCC) and coker fractionation systems at six Chevron refineries. Besides reducing corrosion, the process conserves energy that would otherwise be required for foul water stripping, and provides environmental benefits that include a reduction in effluent volume due to less-stripped foul water, less ammonia in effluent, low cyanide in the stripped foul-water, additional foul-water stripper capacity, and reduced foul-water stripper corrosion. In all units, the process was economically justified by the energy and additive savings associated with its use (no credits were taken for corrosion benefits). The mechanism by which cyanide induces corrosion and hydrogen blistering, i.e., removal of the protective iron sulfide film, in vapor lines, knockout drums, compressors, heat exchangers, and fractionation columns, and their elimination by the Chevron Polysulfide process, which involves the reaction of purchased ammonium polysulfide with cyanide to form thiocyanate, are discussed based on the above case histories.

  13. Aspects of two corrosion processes relevant to military hardware

    SciTech Connect

    Braithwaite, J.W.; Buchheit, R.G.

    1997-11-01

    Corrosion is a leading material degradation mode observed in many military systems. This report contains a description of a small project that was performed to allow some of the important electrochemical aspects of two distinct and potentially relevant degradation modes to be better understood: environmentally assisted cracking (EAC) of aluminum alloys and corrosion in moist salt. Two specific and respective tasks were completed: (A) the characterization of the effect of aluminum microstructural variability on its susceptibility to EAC, and (B) the development of experimental and analytical techniques that can be used to identify the factors and processes that influence the corrosivity of moist salt mixtures. The resultant information constitutes part of the basis needed to ultimately predict component reliability and/or possibly to identify techniques that could be used to control corrosion in critical components. In Task A, a physical model and related understanding for the relevant degradation processes were formulated. The primary result from Task B included the identification and qualitative validation of a methodology for determining the corrosivity of salt mixtures. A detailed compilation of the results obtained from each of these two diverse tasks is presented separately in the body of this report.

  14. The Development and Production of a Functionally Graded Composite for Pb-Bi Service

    SciTech Connect

    Ballinger, Ronald G

    2011-08-01

    A material that resists lead-bismuth eutectic (LBE) attack and retains its strength at 700°C would be an enabling technology for LBE-cooled reactors. No single alloy currently exists that can economically meet the required performance criteria of high strength and corrosion resistance. A Functionally Graded Composite (FGC) was developed with layers engineered to perform these functions. F91 was chosen as the structural layer of the composite for its strength and radiation resistance. Fe-12Cr-2Si, an alloy developed from previous work in the Fe-Cr-Si system, was chosen as the corrosion-resistant cladding layer because of its chemical similarity to F91 and its superior corrosion resistance in both oxidizing and reducing environments. Fe-12Cr-2Si experienced minimal corrosion due to its self-passivation in oxidizing and reducing environments. Extrapolated corrosion rates are below one micron per year at 700ï°C. Corrosion of F91 was faster, but predictable and manageable. Diffusion studies showed that 17 microns of the cladding layer will be diffusionally diluted during the three year life of fuel cladding. 33 microns must be accounted for during the sixty year life of coolant piping. 5 cm coolant piping and 6.35 mm fuel cladding preforms were produced on a commercial scale by weld-overlaying Fe-12Cr-2Si onto F91 billets and co-extruding them. An ASME certified weld was performed followed by the prescribed quench-and-tempering heat treatment for F91. A minimal heat affected zone was observed, demonstrating field weldability. Finally, corrosion tests were performed on the fabricated FGC at 700ï°C after completely breaching the cladding in a small area to induce galvanic corrosion at the interface. None was observed. This FGC has significant impacts on LBE reactor design. The increases in outlet temperature and coolant velocity allow a large increase in power density, leading to either a smaller core for the same power rating or more power output for the same size

  15. Corrosion study in the chemical air separation (MOLTOX trademark ) process

    SciTech Connect

    Kang, Doohee; Wong, Kai P.; Archer, R.A.; Cassano, A.A.

    1988-12-01

    This report presents the results of studies aimed at solving the corrosion problems encountered during operation of the MOLTOX{trademark} pilot plant. These studies concentrated on the screening of commercial and developmental alloys under conditions simulating operation conditions in this high temperature molten salt process. Process economic studies were preformed in parallel with the laboratory testing to ensure that an economically feasible solution would be achieved. In addition to the above DOE co-funded studies, Air Products and Chemicals pursued proprietary studies aimed at developing a less corrosive salt mixture which would potentially allow the use of chemurgically available alloys such as stainless steels throughout the system. These studies will not be reported here; however, the results of corrosion tests in the new less corrosive salt mixtures are reported. Because our own studies on salt chemistry impacts heavily on the overall process and thereby has an influence on the experimental work conducted under this contract, some of the studies discussed here were impacted by our own proprietary data. Therefore, the reasons behind some of the experiments presented herein will not be explained because that information is proprietary to Air Products. 14 refs., 42 figs., 21 tabs.

  16. Numerical Modeling of High-Temperature Corrosion Processes

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1995-01-01

    Numerical modeling of the diffusional transport associated with high-temperature corrosion processes is reviewed. These corrosion processes include external scale formation and internal subscale formation during oxidation, coating degradation by oxidation and substrate interdiffusion, carburization, sulfidation and nitridation. The studies that are reviewed cover such complexities as concentration-dependent diffusivities, cross-term effects in ternary alloys, and internal precipitation where several compounds of the same element form (e.g., carbides of Cr) or several compounds exist simultaneously (e.g., carbides containing varying amounts of Ni, Cr, Fe or Mo). In addition, the studies involve a variety of boundary conditions that vary with time and temperature. Finite-difference (F-D) techniques have been applied almost exclusively to model either the solute or corrodant transport in each of these studies. Hence, the paper first reviews the use of F-D techniques to develop solutions to the diffusion equations with various boundary conditions appropriate to high-temperature corrosion processes. The bulk of the paper then reviews various F-D modeling studies of diffusional transport associated with high-temperature corrosion.

  17. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    SciTech Connect

    Su'ud, Zaki; Sekimoto, H.

    2014-09-30

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  18. Preliminary safety analysis of Pb-Bi cooled 800 MWt modified CANDLE burn-up scheme based fast reactors

    NASA Astrophysics Data System (ADS)

    Su'ud, Zaki; Sekimoto, H.

    2014-09-01

    Pb-Bi Cooled fast reactors with modified CANDLE burn-up scheme with 10 regions and 10 years cycle length has been investigated from neutronic aspects. In this study the safety aspect of such reactors have been investigated and discussed. Several condition of unprotected loss of flow (ULOF) and unprotected rod run-out transient over power (UTOP) have been simulated and the results show that the reactors excellent safety performance. At 80 seconds after unprotected loss of flow condition, the core flow rate drop to about 25% of its initial flow and slowly move toward its natural circulation level. The maximum fuel temperature can be managed below 1000°C and the maximum cladding temperature can be managed below 700°C. The dominant reactivity feedback is radial core expansion and Doppler effect, followed by coolant density effect and fuel axial expansion effect.

  19. Experimental Study on Flow Technology and Steel Corrosion of Lead-Bismuth

    SciTech Connect

    Minoru Takahashi; Hiroshi Sekimoto; Kotaro Ishikawa; Naoki Sawada; Tadashi Suzuki; Susumu Yoshida; Toyohiko Yano; Masamitsu Imai; Koji Hata; Suizheng Qiu

    2002-07-01

    For the feasibility study of Pb-Bi-cooled fast reactors (FR) and the Pb-Bi target of accelerator-driven nuclear transmutation systems, Pb-Bi flow technologies were developed and steel corrosion behavior in a Pb-Bi flow was investigated using a Pb-Bi circulation loop. The performance of an electro-magnetic flow meter with electrically insulated electrodes plated with Rh was better than those of conventional and tubular types. Oxygen concentration was controlled by continuous injection of Ar, H{sub 2} and H{sub 2}O mixture gas into the Pb-Bi flow. In order to have desired oxygen potential, the partial pressure ratio of P{sub H{sub 2}}/P{sub H{sub 2}}{sub O} was chosen in the range from 0.12 to 2.2 by bubbling the mixture of Ar and H{sub 2} in water columns at the room temperature. By injecting the mixture gas into the loop for sufficient time, the oxygen potentials measured by the oxygen sensor made of solid electrolyte ZrO{sub 2}-Y{sub 2}O{sub 3} agreed well with those in the injected gas mixture. In the first corrosion test, steels were exposed to a Pb-Bi flow at the temperature of 550 deg. C, the velocity of 2 m/s and the oxygen concentration of {approx}5.0x10{sup -7} wt.% for 959 hours. It was found that the weight loss was larger in the order of SS316, low Cr steel (SCM420) and high Cr steels (STBA26, SUS405, SUS430). Corrosion was suppressed by a Cr oxide layer for high Cr steels. A porous layer was formed on SS316 surface due to high solubility of Ni in Pb-Bi,. In the second corrosion test, the oxygen concentration was kept at 3.6x10{sup -7} wt.% by injecting Ar, H{sub 2} and H{sub 2}O mixture gas into a Pb-Bi flow, and steels were exposed to a Pb-Bi flow at the temperature of 550 deg. C, the velocity of 2 m/s for 1000 hours. Serious erosion damage was observed in SCM420 at the entrance, and some erosion damages appeared in low Cr steels: SCM420, F82H, STBA26 and HCM12 downstream. Crack type damage was observed on the surface of HCM12, and pitting-type damage

  20. Unusual Strong Incommensurate Modulation in a Tungsten-Bronze-Type Relaxor PbBiNb5O15.

    PubMed

    Lin, Kun; Zhou, Zhengyang; Liu, Laijun; Ma, Hongqiang; Chen, Jun; Deng, Jinxia; Sun, Junliang; You, Li; Kasai, Hidetaka; Kato, Kenichi; Takata, Masaki; Xing, Xianran

    2015-10-28

    Pb- or Bi-based perovskite oxides have been widely studied and used because of their large ferroelectric polarization features induced by stereochemically active 6s(2) lone pair electrons. It is intriguing whether this effect could exist in other related systems. Herein, we designed and synthesized a mixed Pb and Bi A site polar compound, PbBiNb5O15, with the TTB framework. The as-synthesized material turns out to be a relaxor with weak macroscopic ferroelectricity but adopts strong local polarizations. What's more, unusual five orders of incommensurate satellite reflections with strong intensities were observed under the electron diffraction, suggesting that the modulation is highly developed with large amplitudes. The structural modulation was solved with a (3 + 1)D superspace group using high-resolution synchrotron radiation combined with anomalous dispersion X-ray diffraction technique to distinguish Pb from Bi. We show that the strong modulation mainly originates from lone-pair driven Pb(2+)-Bi(3+) ordering in the large pentagonal caves, which can suppress the local polarization in x-y plane in long ranges. Moreover, the as-synthesized ceramics display strong relaxor ferroelectric feature with transition temperature near room temperature and moderate dielectric properties, which could be functionalized to be electromechanical device materials. PMID:26474121

  1. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    NASA Astrophysics Data System (ADS)

    Afifah, Maryam; Miura, Ryosuke; Su'ud, Zaki; Takaki, Naoyuki; Sekimoto, H.

    2015-09-01

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don't need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  2. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    SciTech Connect

    Afifah, Maryam Su’ud, Zaki; Miura, Ryosuke; Takaki, Naoyuki; Sekimoto, H.

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design. The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.

  3. The effects of ion gun beam voltage on the electrical characteristics of NbCN/PbBi edge junctions

    NASA Technical Reports Server (NTRS)

    Lichtenberger, A. W.; Feldman, M. J.; Mattauch, R. J.; Cukauskas, E. J.

    1989-01-01

    The authors have succeeded in fabricating high-quality submicron NbCN edge junctions using a technique which is commonly used to make Nb edge junctions. A modified commercial ion gun was used to cut an edge in SiO2/NbCN films partially covered with photoresist. An insulating barrier was then formed on the exposed edge by reactive ion beam oxidation, and a counterelectrode of PbBi was deposited. The electrical quality of the resulting junctions was found to be strongly influenced by the ion beam acceleration voltages used to cut the edge and to oxidize it. For low ion beam voltages, the junction quality parameter was as high as Vm = 55 mV (measured at 3 mV), but higher ion beam voltages yielded strikingly poorer quality junctions. In light of the small coherence length of NbN, the dependence of the electrical characteristics on ion beam voltage is presumably due to mechanical damage of the NbCN surface. In contrast, for similar ion beam voltages, no such dependence was found for Nb edge junctions.

  4. Transformation of Dion-Jacobson phase to Aurivillius phase: synthesis of (PbBiO{sub 2})MNb{sub 2}O{sub 7} (M = La, Bi)

    SciTech Connect

    Sivakumar, T.; Gopalakrishnan, J. . E-mail: gopal@sscu.iisc.ernet.in

    2005-01-04

    We describe transformations of the Dion-Jacobson (D-J) phases, KLaNb{sub 2}O{sub 7} and RbBiNb{sub 2}O{sub 7}, to the Aurivillius (A) phases (PbBiO{sub 2})LaNb{sub 2}O{sub 7} (1) and (PbBiO{sub 2})BiNb{sub 2}O{sub 7} (2), in a metathesis reaction with PbBiO{sub 2}Cl. Oxide 1 adopts centrosymmetric tetragonal structure (a = 3.905(1) A, c = 25.66(1) A), whereas oxide 2 crystallizes in a noncentrosymmetric orthorhombic (A2{sub 1}am) (a = 5.489(1) A, b = 5.496(2) A, c = 25.53(1) A) structure. Oxide 2 shows a distinct SHG response towards 1064 nm laser radiation. The role of La{sup 3+} versus Bi{sup 3+} in the perovskite slabs for the occurrence of noncentrosymmetric structure/ferroic property in these materials is pointed out.

  5. Corrosion-Resistant Container for Molten-Material Processing

    NASA Technical Reports Server (NTRS)

    Stern, Theodore G.; McNaul, Eric

    2010-01-01

    In a carbothermal process, gaseous methane is passed over molten regolith, which is heated past its melting point to a temperature in excess of 1,625 C. At this temperature, materials in contact with the molten regolith (or regolith simulant) corrode and lose their structural properties. As a result, fabricating a crucible to hold the molten material and providing a method of contact heating have been problematic. Alternative containment approaches use a large crucible and limit the heat zone of the material being processed, which is inefficient because of volume and mass constraints. Alternative heating approaches use non-contact heating, such as by laser or concentrated solar energy, which can be inefficient in transferring heat and thus require higher power heat sources to accomplish processing. The innovation is a combination of materials, with a substrate material having high structural strength and stiffness and high-temperature capability, and a coating material with a high corrosion resistance and high-temperature capability. The material developed is a molybdenum substrate with an iridium coating. Creating the containment crucible or heater jacket using this material combination requires only that the molybdenum, which is easily processed by conventional methods such as milling, electric discharge machining, or forming and brazing, be fabricated into an appropriate shape, and that the iridium coating be applied to any surfaces that may come in contact with the corrosive molten material. In one engineering application, the molybdenum was fashioned into a container for a heat pipe. Since only the end of the heat pipe is used to heat the regolith, the container has a narrowing end with a nipple in which the heat pipe is snugly fit, and the external area of this nipple, which contacts the regolith to transfer heat into it, is coated with iridium. At the time of this reporting, no single material has been found that can perform the functions of this combination

  6. Martensitic transformation behavior in Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys

    SciTech Connect

    Jang, Jai-young; Chun, Su-jin; Kim, Nam-suk; Cho, Jeung-won; Kim, Jae-hyun; Yeom, Jong-taek; Kim, Jae-il; Nam, Tae-hyun

    2013-12-15

    Graphical abstract: - Highlights: • Ag, In and Sn were soluble in TiNi matrix, while Sb, Te, Tl, Pb and Bi were not. • The B2-R-B19′transformation occurred in Ti-Ni-(Ag, In, Sn) alloys. • Solid solution hardening was essential for inducing the B2-R transformation. - Abstract: The microstructures and transformation behaviors of Ti–Ni–X (Ag, In, Sn, Sb, Te, Tl, Pb, Bi) ternary alloys were investigated using electron probe micro-analysis (EPMA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Micro Vickers hardness tests. All specimens consisted of Ti–Ni matrices and second phase particles. Ag, In and Sn were soluble in Ti–Ni matrices with a limited solubility (≤1.0 at%), while Sb, Te, Tl, Pb and Bi were not soluble. Two-stage B2-R-B19′ transformation occurred in Ti–48.8Ni–1.2Ag, Ti–49.0Ni–1.0In and Ti–49.0Ni–1.0Sn alloys, while one-stage B2-B19′ transformation occurred in Ti–49.0Ni–1.0Ag, Ti–49.0Ni–1.0Sb, Ti–49.0Ni–1.0Te, Ti–49.0Ni–1.0Pb and Ti–49.0Ni–1.0Bi alloys. Micro Vickers hardness of the alloys displaying the B2-R-B19′ transformation (Hv 250–368) was much larger than that (

  7. Two-dimensional quantification of the corrosion process in metal surfaces using digital speckle pattern interferometry

    SciTech Connect

    Andres, N.; Lobera, J.; Arroyo, M. P.; Angurel, L. A.

    2011-04-01

    The applicability of digital speckle pattern interferometry (DSPI) to the analysis of surface corrosion processes has been evaluated by studying the evolution of an Fe surface immersed in sulfuric acid. This work describes the analysis process required to obtain quantitative information about the corrosion process. It has been possible to evaluate the corrosion rate, and the results agree with those derived from the weight loss method. In addition, a two-dimensional analysis has been applied, showing that DSPI measurements can be used to extract information about the corrosion rate at any region of the surface.

  8. Process Test Plan for 4TH Generation Hanford Corrosion Monitoring System

    SciTech Connect

    NORMAN, E.C.

    2000-06-20

    Instrumentation and cabinets for the 241-AN-107 and 241-AN-102 corrosion monitoring systems will be upgraded in FY 2000. The bulk of the field work involved in this task will involve placement of the corrosion monitoring data collection hardware closer to the risers that house the existing corrosion probes. This will be accomplished by placing a new climate controlled cabinet by the risers containing corrosion probes on these two tanks (one cabinet per tank). Once installed the systems will feed data back to a centralized corrosion monitoring station in the 241-AN-271 instrument building. The upgraded systems will be operated under the bounds of this Process Test Plan (PTP) for six principle reasons. These reasons were established prior to installing the original systems in 1997 (241-AN-107) and 1998 (241-AN-102). They are as follows: (1) Acquire corrosion data on the waste in 241-AN-107 and 241-AN-102. (2) Provide supporting data to the site's Integrity Assessment program. (3) Demonstrate that corrosion monitoring by evaluation of electrochemical noise data is possible in waste tank systems, particularly with regard to the detection of general corrosion and (if present) pitting and stress corrosion cracking. (4) Demonstrate the durability of the design of the corrosion monitoring equipment. (5) Extend tank life and reduce annual operations cost. (6) Provide basis to control corrosion in double shell tanks though the use of direct corrosion monitoring rather than waste sampling and analysis. The designs of the existing corrosion probes in 241-AN-107 and 241-AN-102 were reviewed and documented prior to the original installation activities in 1997 and 1998. Initial programmatic documentation for Hanford's corrosion monitoring program was also established prior to the original installation activities.

  9. Corrosion of mild steel in simulated cesium elution process solutions

    SciTech Connect

    Elmore, M.R.

    1996-09-01

    The West Valley Support Project is being conducted to meet technology needs for the West Valley Demonstration Project and to provide support to the site cleanup and stabilization activities, which involves removing residual Cs in Tank 8D-1 after waste retrieval. In-tank oxalic acid elution of Cs-loaded zeolite is being evaluated. The work reported here involved evaluating the potential for increased corrosion of Tank 8D-1 during Cs elution, because oxalic acid is corrosive to carbon steel. This included corrosion tests with mild steel (A516 Grade 55) at 27-50 C with 4 and 8 wt% oxalic acid, for 2, 4, and 6 days. Results agreed with Sept. 1995 tests at 50 C for 1-3 weeks. Corrosion rate of A516 Grade 55 mild steel in oxalic acid is quite high (about 150 mils/y or 3.8 mm/y). Corrosion increased three- or fourfold going from 27 to 50 C. Although the tests resulted in a very rough surface appearance, indicating potential for localized corrosion, eg, pitting and crevice corrosion, the exposure times used were apparently too short to initiate pitting.

  10. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOEpatents

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  11. Corrosion and failure processes in high-level waste tanks

    SciTech Connect

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted.

  12. Pb-Bi-Ag-Cu-(Hg) chemistry of galena and some associated sulfosalts. A review and some new data from Colorado California and Pennsylvania

    USGS Publications Warehouse

    Foord, Eugene E.; Shawe, Daniel R.

    1989-01-01

    Galena, associated with Pb-Bi-Ag sulfosalts and simple sulfides, contains varied amounts of Ag and Bi in the Dandy vein system, Idarado mine, Ouray, Colorado; the Jackass mine, Darwin District, California; and the Leadville district, Colorado. Silver- and bismuth-bearing galena associated with minor amounts of pyrite, chalcopyrite and sphalerite occur at the Pequea mine, Lancaster County, Pennsylvania. Ag and Bi contents in the Dandy suite of galena range from about 1.4 to 3.4 and 2.5 to 6.5 wt.% respectively, and are comparable or lower in galena from the other localities. Exsolved matildite is present in galena from the Dandy, Jackass and Leadville localities. The presence in significant amounts of both Ag and Bi in a Pb-rich sulfide system is necessary for formation of PbSss (galena solid-solution). If Ag (especially) and Bi (to a lesser extent) are absent, the galena formed will be essentially pure PbS. Some minor Sb may substitute for Bi. Compositional data for all of the galena samples are in agreement with a previously proposed linear relationship between a and Ag-Bi(Sb) content. Matildite and seven additional Pb-Bi-Ag-Cu sulfosalts have been identified from the Dandy vein system, based on electron-microprobe analyses and some X-ray powder-diffraction data.

  13. Mitigation of copper corrosion and agglomeration in APS process water systems.

    SciTech Connect

    Dortwegt, R.; Putnam, C.; Swetin, E.

    2002-10-10

    Copper corrosion has been observed in process water (PW) systems at the Advanced Photon Source (APS) dating to the early postcommissioning phase of the project. In time, copper corrosion products agglomerated significantly in certain preferred locations. Significant agglomerations (or deposits) can occur in copper cooling passages such as magnet conductors and x-ray absorbers having relatively large length-to-diameter ratios and where heat is removed by water cooling. Such agglomerations also occur at restrictions found in noncopper system components such as valve seats, fixed orifices, pump seal faces, etc. Modifications to the APS process water system that significantly reduce the rate of copper corrosion are discussed. These modifications have not prevented corrosion altogether. Other means used to prevent component clogging and malfunction as a result of current copper corrosion rates are listed.

  14. Environmental Cracking of Corrosion Resistant Alloys in the Chemical Process Industry - A Review

    SciTech Connect

    Rebak, R B

    2006-12-04

    A large variety of corrosion resistant alloys are used regularly in the chemical process industry (CPI). The most common family of alloys include the iron (Fe)-based stainless steels, nickel (Ni) alloys and titanium (Ti) alloys. There also other corrosion resistant alloys but their family of alloys is not as large as for the three groups mentioned above. All ranges of corrosive environments can be found in the CPI, from caustic solutions to hot acidic environments, from highly reducing to highly oxidizing. Stainless steels are ubiquitous since numerous types of stainless steels exist, each type tailored for specific applications. In general, stainless steels suffer stress corrosion cracking (SCC) in hot chloride environments while high Ni alloys are practically immune to this type of attack. High nickel alloys are also resistant to caustic cracking. Ti alloys find application in highly oxidizing solutions. Solutions containing fluoride ions, especially acid, seem to be aggressive to almost all corrosion resistant alloys.

  15. Corrosion barriers processed by Al electroplating and their resistance against flowing Pb-15.7Li

    NASA Astrophysics Data System (ADS)

    Krauss, Wolfgang; Konys, Jürgen; Wulf, Sven-Erik

    2014-12-01

    In the HCLL blanket design, ferritic-martensitic steels are in direct contact with the flowing liquid breeder Pb-15.7Li and have to withstand severe corrosion attack. Beyond corrosion, T-permeation from the breeder into the RAFM-steels is also an important issue and has to be reduced significantly. Earlier work showed that Al-based coatings can act as barriers for both, however, applied processes e.g. HDA or VPS exhibited strong drawbacks in the past. Meanwhile new industrial relevant coating processes, using electroplating technology are under development and called ECA (electrochemical aluminization) and ECX (electrochemical deposition from ionic liquids) process. In this study electrochemically Al-coated and heat-treated Eurofer samples were tested in PICOLO loop for exposure times up to 12,000 h (ECA) and 2000 h (first results ECX) respectively to determine corrosion properties in flowing Pb-15.7Li (550 °C, 0.1 m/s). Cross section analysis afterward corrosion testing proved the ability of thin Al-based barriers made by electrochemical techniques to protect the bare Eurofer from corrosion attack even at exposure times of 12,000 h. Determined radial corrosion rates lay between 10 and 20 μm/a. First results for ECX coated samples (2000 h) revealed more homogeneous corrosion behavior of the barrier layer itself compared to ECA.

  16. Flux patterns of multifilamentary Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3O10+δ tapes

    NASA Astrophysics Data System (ADS)

    Koblischka, M. R.; Johansen, T. H.; Bratsberg, H.; Půst, L.; Galkin, A.; Nálevka, P.; Maryško, M.; Jirsa, M.; Bentzon, M.; Bodin, P.; Vase, P.; Freltoft, T.

    1998-06-01

    Flux patterns of multifilamentary Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3O10+δ tapes comprising 19 filaments are visualized by means of magneto-optic imaging. In low fields, the shielding currents are seen to flow mainly in the outermost filaments. With increasing external magnetic field, the inner filaments also contribute to the current flow. To compare the local flux distribution with the integral magnetization values, magnetization loops are measured by a SQUID magnetometer on the same sample following the fields used in the magneto-optic imaging (± 120 mT) and covering fields up to ±5 T at various temperatures. The magnetization loops also reveal that the multifilamentary tapes show the anomalous position of the central peak, but always less pronounced than in monofilamentary tapes.

  17. Determination of critical length scales for corrosion processes using microelectroanalytical techniques.

    SciTech Connect

    Zavadil, Kevin Robert; Wall, Frederick Douglas

    2004-03-01

    A key factor in our ability to produce and predict the stability of metal-based macro- to nano-scale structures and devices is a fundamental understanding of the localized nature of corrosion. Corrosion processes where physical dimensions become critical in the degradation process include localized corrosion initiation in passivated metals, microgalvanic interactions in metal alloys, and localized corrosion in structurally complex materials like nanocrystalline metal films under atmospheric and inundated conditions. This project focuses on two areas of corrosion science where a fundamental understanding of processes occurring at critical dimensions is not currently available. Sandia will study the critical length scales necessary for passive film breakdown in the inundated aluminum (Al) system and the chemical processes and transport in ultra-thin water films relevant to the atmospheric corrosion of nanocrystalline tungsten (W) films. Techniques are required that provide spatial information without significantly perturbing or masking the underlying relationships. Al passive film breakdown is governed by the relationship between area of the film sampled and its defect structure. We will combine low current measurements with microelectrodes to study the size scale required to observe a single initiation event and record electrochemical breakdown events. The resulting quantitative measure of stability will be correlated with metal grain size, secondary phase size and distribution to understand which metal properties control stability at the macro- and nano-scale. Mechanisms of atmospheric corrosion on W are dependent on the physical dimensions and continuity of adsorbed water layers as well as the chemical reactions that take place in this layer. We will combine electrochemical and scanning probe microscopic techniques to monitor the chemistry and resulting material transport in these thin surface layers. A description of the length scales responsible for driving the

  18. Transport properties of the SnBi{sub 2}Te{sub 4}–PbBi{sub 2}Te{sub 4} solid solution

    SciTech Connect

    Pan, Lin; Li, Jing; Berardan, David Dragoe, Nita

    2015-05-15

    We report on the electrical and thermal transport properties of the Sn{sub 1−x}Pb{sub x}Bi{sub 2}Te{sub 4} series and we discuss the potential of these materials for thermoelectric conversion applications. From the evolution of the XRD patterns, we can confidently conclude that a complete solid solution exists between SnBi{sub 2}Te{sub 4} and PbBi{sub 2}Te{sub 4}, with no miscibility gap. A crossover from p-type conduction in Sn-rich samples to n-type conduction in Pb-rich ones has been observed, with a transition between x=0.3 and 0.4. A concomitant increase of the electrical resistivity and of the Seebeck coefficient has been observed in the solid solution, which leads to almost constant values of the thermoelectric power factor. Moreover, the thermal conductivity is slightly reduced in the solid solution. The best figure of merit ZT values at room temperature have been observed for p-type Sn{sub 0.8}Pb{sub 0.2}Bi{sub 2}Te{sub 4} with ZT=0.25 and for n-type Sn{sub 0.3}Pb{sub 0.7}Bi{sub 2}Te{sub 4} with ZT=0.15. - Graphical abstract: Seebeck coefficient in (Pb/Sn)Bi{sub 2}Te{sub 4} solid solution. - Highlights: • A complete solid solution exists between PbBi{sub 2}Te{sub 4} and SnBi{sub 2}Te{sub 4.} • A crossover between p-type and n-type is observed for 0.3

  19. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  20. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    NASA Astrophysics Data System (ADS)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  1. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    SciTech Connect

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  2. Corrosion Properties of Polydopamine Coatings Formed in One-Step Immersion Process on Magnesium.

    PubMed

    Singer, Ferdinand; Schlesak, Magdalena; Mebert, Caroline; Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    Polydopamine layers were polymerized directly from Tris(hydroxymethyl)aminomethane-buffered solution in a one-step immersion process onto magnesium surface. Scanning electron microscopy showed successful formation of a ∼1 μm thick layer. ASTM D3359-09 "Tape test" revealed excellent adhesion of the layer. X-ray induced photoelectron spectroscopy and Fourier transform infrared spectroscopy verified the presence of polydopamine on the surface. Corrosion measurements were performed in 0.1 M NaCl solution investigating the influence of coating parameters: dopamine concentration, immersion time, solution pH, and immersion angle. Tafel analysis revealed strong improvement of corrosion behavior compared to bare magnesium. Polydopamine layers prepared with optimized coating procedure showed promising corrosion properties in Dulbecco's modified Eagle medium. In summary, polydopamine coatings offer a simple treatment for magnesium to improve the corrosion behavior and could further act as intermediate layer for further surface functionalization. PMID:26561489

  3. Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    NASA Astrophysics Data System (ADS)

    Brady, M. P.; Keiser, J. R.; Leonard, D. N.; Whitmer, L.; Thomson, J. K.

    2014-12-01

    Thermochemical liquefaction processing of biomass to produce bio-derived fuels (e.g., gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc., to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic oxygenates, including acids, which make the bio-oil a potential source of corrosion issues in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another issue that must also be addressed in bio-oil liquefaction is potential corrosion issues in the process equipment. Depending on the specific process, bio-oil liquefaction production temperatures are typically in the 300-600°C range, and the process environment can contain aggressive sulfur and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes recent, ongoing efforts to assess the extent of corrosion of bio-oil process equipment, with the ultimate goal of providing a basis for the selection of the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  4. Corrosion behavior of cold-worked austenitic stainless steels in liquid lead-bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Kurata, Yuji

    2014-05-01

    The effect of cold working on the corrosion behavior of austenitic stainless steels in liquid lead-bismuth eutectic (LBE) was studied to develop accelerator-driven systems for the transmutation of long-lived radioactive wastes and lead-bismuth cooled fast reactors. Corrosion tests on solution-treated, 20% cold-worked and 50% cold-worked 316SS and JPCA (15Cr-15Ni-Ti) were conducted in oxygen-controlled LBE. Slight ferritization caused by Ni dissolution and Pb-Bi penetration were observed for all specimens in the corrosion test conducted at 500 °C for 1000 h in liquid LBE with an intermediate oxygen concentration (1.4 × 10-7 wt.%). In the corrosion test performed at 550 °C for 1000 h in liquid LBE with a low oxygen concentration (4.2 × 10-9 wt.%), the depth of the ferritization of 316SS and JPCA increased with the extent of cold working. Only oxidation was observed in the corrosion test that was performed at 550 °C for 1000 h in liquid LBE with a high oxygen concentration (approximately 10-5 wt.%). Cold working accelerated the formation of the double layer oxide and increased the thickness of the oxide layer slightly. In contrast, the ferritization accompanied by Pb-Bi penetration was widely observed with oxidation for all specimens corrosion tested at 550 °C for 3000 h under the high-oxygen condition. Cold working increased the depth of the ferritization of 316SS and JPCA. It is considered that cold working accelerated the ferritization and Pb-Bi penetration through the enhanced dissolution of Ni into LBE due to an increase in the dislocation density under conditions in which the protective oxide layer was not formed in liquid LBE.

  5. Research Summary: Corrosion Considerations for Thermochemical Biomass Liquefaction Process Systems in Biofuel Production

    DOE PAGESBeta

    Brady, Michael P; Keiser, James R; Leonard, Donovan N; Whitmer, Lysle; Thomson, Jeffery K

    2014-01-01

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. This paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  6. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    SciTech Connect

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oils to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.

  7. Corrosion considerations for thermochemical biomass liquefaction process systems in biofuel production

    DOE PAGESBeta

    Brady, Michael P.; Keiser, James R.; Leonard, Donovan N.; Whitmer, Lysle; Thomson, Jeffery K.

    2014-11-11

    Thermochemical liquifaction processing of biomass to produce bio-derived fuels (e.g. gasoline, jet fuel, diesel, home heating oil, etc.) is of great recent interest as a renewable energy source. Approaches under investigation include direct liquefaction, hydrothermal liquefaction, hydropyrolysis, fast pyrolysis, etc. to produce energy dense liquids that can be utilized as produced or further processed to provide products of higher value. An issue with bio-oils is that they tend to contain significant concentrations of organic compounds, which make the bio-oil acidic and a potential source of corrosion issues in in transport, storage, and use. Efforts devoted to modified/further processing of bio-oilsmore » to make them less corrosive are currently being widely pursued. Another aspect that must also be addressed is potential corrosion issues in the bio-oil liquefaction process equipment itself. Depending on the specific process, bio-oil liquefaction production temperatures can reach up to 400-600 °C, and involve the presence of aggressive sulfur, and halide species from both the biomass used and/or process additives. Detailed knowledge of the corrosion resistance of candidate process equipment alloys in these bio-oil production environments is currently lacking. Lastly, this paper summarizes our recent, ongoing efforts to assess the extent to which corrosion of bio-oil process equipment may be an issue, with the ultimate goal of providing the basis to select the lowest cost alloy grades capable of providing the long-term corrosion resistance needed for future bio-oil production plants.« less

  8. Quantitative Performance Assessment of Computed Radiography for Corrosion Detection in Process Pipes

    NASA Astrophysics Data System (ADS)

    Venkatachalam, Rajashekar; Raghu, C.; Pandey, Pramod; Vedula, Venumadhav; Thapa, Prasad; Venugopal, Manoharan

    2007-03-01

    Evaluation of integrity of process pipes in service is an important preventive maintenance issue for power generation and petrochemical industries. Ultrasonic wall thickness is traditionally used to measure wall thickness loss due to corrosion. This technique has various limitations such as need for removal of insulation, point based measurements and unsuitability for high temperature applications. Many have attempted computed radiography to quantify corrosion in pipelines as an alternative technique. Computed Radiography can be carried out without removing insulation and also at higher temperatures. However, the minimum detectability limit of wall thickness loss is limited by various physics complications in radiographic imaging process i.e. scattering, modulation due to detector response, focal spot blurring, the effective thickness of insulation and fluid inside pipe. An attempt has been made to study the effect of insulation and fluid inside pipe on detectability of wall loss due to corrosion using physics simulations and experiments.

  9. Influence of the casting processing route on the corrosion behavior of dental alloys.

    PubMed

    Galo, Rodrigo; Rocha, Luis Augusto; Faria, Adriana Claudia; Silveira, Renata Rodrigues; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2014-12-01

    Casting in the presence of oxygen may result in an improvement of the corrosion performance of most alloys. However, the effect of corrosion on the casting without oxygen for dental materials remains unknown. The aim of this study was to investigate the influence of the casting technique and atmosphere (argon or oxygen) on the corrosion behavior response of six different dental casting alloys. The corrosion behavior was evaluated by electrochemical measurements performed in artificial saliva for the different alloys cast in two different conditions: arc melting in argon and oxygen-gas flame centrifugal casting. A slight decrease in open-circuit potential for most alloys was observed during immersion, meaning that the corrosion tendency of the materials increases due to the contact with the solution. Exceptions were the Co-based alloys prepared by plasma, and the Co-Cr-Mo and Ni-Cr-4Ti alloys processed by oxidized flame, in which an increase in potential was observed. The amount of metallic ions released into the artificial saliva solution during immersion was similar for all specimens. Considering the pitting potential, a parameter of high importance when considering the fluctuating conditions of the oral environment, Co-based alloys show the best performance in comparison with the Ni-based alloys, independent of the processing route. PMID:25491859

  10. Microstructure and corrosion behavior of laser processed NiTi alloy.

    PubMed

    Marattukalam, Jithin J; Singh, Amit Kumar; Datta, Susmit; Das, Mitun; Balla, Vamsi Krishna; Bontha, Srikanth; Kalpathy, Sreeram K

    2015-12-01

    Laser Engineered Net Shaping (LENS™), a commercially available additive manufacturing technology, has been used to fabricate dense equiatomic NiTi alloy components. The primary aim of this work is to study the effect of laser power and scan speed on microstructure, phase constituents, hardness and corrosion behavior of laser processed NiTi alloy. The results showed retention of large amount of high-temperature austenite phase at room temperature due to high cooling rates associated with laser processing. The high amount of austenite in these samples increased the hardness. The grain size and corrosion resistance were found to increase with laser power. The surface energy of NiTi alloy, calculated using contact angles, decreased from 61 mN/m to 56 mN/m with increase in laser energy density from 20 J/mm(2) to 80 J/mm(2). The decrease in surface energy shifted the corrosion potentials to nobler direction and decreased the corrosion current. Under present experimental conditions the laser power found to have strong influence on microstructure, phase constituents and corrosion resistance of NiTi alloy. PMID:26354269

  11. A New Corrosion Sensor to Determine the Start and Development of Embedded Rebar Corrosion Process at Coastal Concrete

    PubMed Central

    Xu, Chen; Li, Zhiyuan; Jin, Weiliang

    2013-01-01

    The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117

  12. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. PMID:24067447

  13. Energy release, beam attenuation radiation damage, gas production and accumulation of long-lived activity in Pb, Pb-Bi and Hg targets

    SciTech Connect

    Shubin, Yu.N.

    1996-06-01

    The calculation and analysis of the nuclei concentrations and long-lived residual radioactivity accumulated in Pb, Pb-Bi and Hg targets irradiated by 800 MeV, 30 mA proton beam have been performed. The dominating components to the total radioactivity of radionuclides resulting from fission and spallation reactions and radiative capture by both target nuclei and accumulated radioactive nuclei for various irradiation and cooling times were analyzed. The estimations of spectral component contributions of neutron and proton fluxes to the accumulated activity were carried out. The contributions of fission products to the targets activity and partial activities of main long-lived fission products to the targets activity and partial activities of main long-lived fission products were evaluated. The accumulation of Po isotopes due to reactions induced by secondary alpha-particles were found to be important for the Pb target as compared with two-step radiative capture. The production of Tritium in the targets and its contribution to the total targets activity was considered in detail. It is found that total activities of both targets are close to one another.

  14. Influence of Processing and Heat Treatment on Corrosion Resistance and Properties of High Alloyed Steel Coatings

    NASA Astrophysics Data System (ADS)

    Hill, Horst; Weber, Sebastian; Raab, Ulrich; Theisen, Werner; Wagner, Lothar

    2012-09-01

    Corrosion and abrasive wear are two important aspects to be considered in numerous engineering applications. Looking at steels, high-chromium high-carbon tool steels are proper and cost-efficient materials. They can either be put into service as bulk materials or used as comparatively thin coatings to protect lower alloyed construction or heat treatable steels from wear and corrosion. In this study, two different corrosion resistant tool steels were used for the production of coatings and bulk material. They were processed by thermal spraying and super solidus liquid phase sintering as both processes can generally be applied to produce coatings on low alloyed substrates. Thermally sprayed (high velocity oxygen fuel) coatings were investigated in the as-processed state, which is the most commonly used condition for technical applications, and after a quenching and tempering treatment. In comparison, sintered steels were analyzed in the quenched and tempered condition only. Significant influence of alloy chemistry, processing route, and heat treatment on tribological properties was found. Experimental investigations were supported by computational thermodynamics aiming at an improvement of tribological and corrosive resistance.

  15. High-temperature corrosion observed in austenitic coils and tubes in a direct reduction process

    SciTech Connect

    Campillo, B.; Gonzalez, C.; Hernandez-Duque, G.; Juarez-Islas, J.A.

    2000-02-01

    The subject of this study is related to the performance of austenitic steel coils and tubes, in a range of temperatures between 425 and 870 C for the transport of reducing gas, in an installation involving the direct reduction of iron-ore by reforming natural gas. Evidence is presented that metal dusting is not the only unique high-temperature corrosion mechanism that caused catastrophic failures of austenitic 304 (UNS S30400) coils and HK-40 (UNS J94204) tubes. Sensitization as well as stress corrosion cracking occurred in 304 stainless steel coils and metal dusting took place in HK-40 tubes, a high resistance alloy. The role of continuous injection of H{sub 2}S into the process is suggested to avoid the high resistance metal dusting corrosion mechanism found in this kind of installation.

  16. O the Existence of bi 6.67O 4( xo 4) 4 and PbBi 6O 4( xo 4) 4 ( X=P, V, and As)

    NASA Astrophysics Data System (ADS)

    Giraud, Sophie; Drache, Michel; Conflant, Pierre; Wignacourt, Jean Pierre; Steinfink, Hugo

    2000-11-01

    PbBi6O4(PO4)4 obtained at room temperature is isomorphous with the high-temperature phase Bi6.67O4(PO4)4. The Pb atom replaces 0.67 Bi in the same crystallographic site. The vanadate and arsenate with the composition PbBi6O4(XO4)4 were synthesized and yielded isomorphic phases at room temperature. All three compounds adopt a triclinic cell, space group Poverline1Z=1. The structure refinement of PbBi6O4(PO4)4 was performed using the Rietveld method on X-ray powder diffraction data. The starting parameters were the atomic positions of Bi6.67O4(PO4)4. Conductivity measurements were made from 300°C to 800°C on samples of the three homologues. The highest conductivity was observed for the vanadate. Attempts to synthesize the binary vanadate and arsenate compounds isostructural with the high-temperature phase Bi6.67O4(PO4)4 were unsuccessful.

  17. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  18. The use of an organic inhibitor to control corrosion in alkanolamine units processing gas containing CO{sub 2}

    SciTech Connect

    Rodriguez, E.F.; Edwards, M.A.

    1999-11-01

    Alkanolamine plants processing natural gas and gas liquids containing only carbon dioxide as the contaminant acid gas are often troubled by high corrosion rates. Capital constraints sometimes require the plant operator to use carbon steel in the construction of piping and vessels in locations where stainless steel might otherwise be employed. Rich amine acid gas loadings sometimes exceed recommended or design levels, increasing the corrosivity of the system. Typical corrosion inhibitor products and packages are sometime ineffective in controlling corrosion at desired levels when one or both of the above conditions are present. This paper presents a procedure used to test the effectiveness of corrosion inhibitors on-stream and demonstrates the effectiveness of a sulfur-containing inhibitor in controlling CO{sub 2} corrosion in gas/gas and gas/liquid amine plants.

  19. Corrosion 99: Proceedings

    SciTech Connect

    1999-11-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO{sub 2} Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H{sub 2}S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  20. Corrosion 99: Proceedings

    SciTech Connect

    Not Available

    1999-01-01

    This conference includes the following; Corrosion in Gas Treating; Advances in Scale and Deposit Control; Uses of Computers for Improved Corrosion Control; Erosion-Corrosion in Steam Generating Systems; Electrochemical Noise Measurements for Corrosion Evaluations; Materials Performance in Fossil Fuel Combustion and Conversion Systems; Corrosion in Super Critical Processes; Cathodic Protection of External Surfaces for Underground and Aboveground Storage Tanks; Microbiologically Influenced Corrosion; Advances in Materials for Oilfield Applications; Refining Industry Corrosion; Green Corrosion/Scale Inhibition Technologies; Managing Corrosion With Plastics; Corrosion Measurement Technology; Marine Corrosion; Improved Understanding and Mitigation of CO[sub 2] Corrosion; Thermal Spray Coatings for Corrosion Protection; Volatile Corrosion Inhibitors; Corrosion Testing in Concrete; Stress Corrosion Cracking: Field Laboratory Correlations; Materials Performance in Incineration and Waste Fuel Combustion Environments; Water Reuse in Industry; Corrosion Control and Prevention of Military and Aerospace Equipment; Corrosion in Nuclear Systems; Latest Developments in Aboveground Storage Tanks Corrosion Control, Monitoring and Evaluation Technology; Internal In-line Inspection of Pipelines and Evaluation of Results; New Developments in Cathodic Protection of Reinforcing Steels in Concrete; Cathodic Protection in Natural Waters; Corrosion in the Pulp and Paper Industry; Advanced Materials for High Temperature Service in Chemical Process Industry; Advances in Cooling Water Treatment; Materials, Fabrication, and Inspection Guidelines for Wet H[sub 2]S Service; Environmental Wear of Nonmetallics in Oilfield Service; and Corrosion and Scale Control in Low Pressure Boiler and Steam Systems in Buildings. Separate abstracts were prepared for most of the papers.

  1. Effect of natural and synthetic iron corrosion products on silicate glass alteration processes

    NASA Astrophysics Data System (ADS)

    Dillmann, Philippe; Gin, Stéphane; Neff, Delphine; Gentaz, Lucile; Rebiscoul, Diane

    2016-01-01

    Glass long term alteration in the context of high-level radioactive waste (HLW) storage is influenced by near-field materials and environmental context. As previous studies have shown, the extent of glass alteration is strongly related to the presence of iron in the system, mainly provided by the steel overpack around surrounding the HLW glass package. A key to understanding what will happen to the glass-borne elements in the geological disposal lies in the relationship between the iron-bearing phases and the glass alteration products formed. In this study, we focus on the influence of the formation conditions (synthetized or in-situ) and the age of different iron corrosion products on SON68 glass alteration. Corrosion products obtained from archaeological iron artifacts are considered here to be true analogues of the corrosion products in a waste disposal system due to the similarities in formation conditions and physical properties. These representative corrosion products (RCP) are used in the experiment along with synthetized iron anoxic corrosion products and pristine metallic iron. The model-cracks of SON68 glass were altered in cell reactors, with one of the different iron-sources inserted in the crack each time. The study was successful in reproducing most of the processes observed in the long term archaeological system. Between the different systems, alteration variations were noted both in nature and intensity, confirming the influence of the iron-source on glass alteration. Results seem to point to a lesser effect of long term iron corrosion products (RCP) on the glass alteration than that of the more recent products (SCP), both in terms of general glass alteration and of iron transport.

  2. Inorganic deterioration affecting the Altamira Cave, N Spain: quantitative approach to wall-corrosion (solutional etching) processes induced by visitors.

    PubMed

    Sánchez-Moral, S; Soler, V; Cañaveras, J C; Sanz-Rubio, E; Van Grieken, R; Gysels, K

    1999-12-15

    In order to study the wall corrosion processes induced by visitors in the Altamira Cave (northern Spain), a multidisciplinary study was conducted in the cave. For a period of 1 year, a microclimate monitoring system, measuring the temperature, relative humidity, CO2 and 222Rn concentrations was operated. Host rock samples were collected as well as indoor and outdoor atmospheric particulate matter. These data are used for a quantitative assessment of the wall corrosion processes. The presence of visitors was found to enhance the corrosion processes up to 78 times in comparison with the natural processes. Outdoor air pollution did not have a significant affect. PMID:10635591

  3. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Spring Grove Experiment

    SciTech Connect

    Pawel, SJ

    2003-06-18

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at four locations and at one location in the bottom cone of the associated flash tank. The probes consisted of carbon steel electrodes, representing the vessel construction material, and 309LSi stainless steel overlay electrodes, representing the weld overlay repair in a portion of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 32 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare ECN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate ECN activity from each electrode type with process parameters. The results indicate the high general corrosion rates of steel observed just below the extraction screens--on the order of 35 mils/y for the past few years--accelerated further during the period of probe deployment. The maximum wastage of steel (normalized to one full year exposure) was about 85 mils/y at the ring 6N probe just below the extraction screens. Consistent with recent historical observations, the steel corrosion rate at the ring 6S probe--at the same elevation but directly across the digester from ring 6N--was significantly lower at about 50 mils/y. Just prior to probe deployment, the digester shell below the extraction screens was overlaid with 309LSi stainless steel, which was observed to be essentially immune to corrosion at this location. While the ECN probes detected differences in electrochemical behavior between steel probes and between 309LSi probes at rings 6N and 6S, there was only poor quantitative correlation of current sums with actual corrosion rates at these locations. A significant contribution of redox reactions on both steel

  4. Experimental simulation of possible radiation-corrosive processes in container with spent nuclear fuel after groundwater ingress

    NASA Astrophysics Data System (ADS)

    Neufuss, S.; Čuba, V.; Silber, R.; Múčka, V.; Pospíšil, M.; Vokál, A.

    2006-01-01

    Radiation corrosion in deaerated water/carbon steel systems has been studied. Kinetics of releasing corrosion products into the water and their sorption on the surface of steel tablets is affected by various factors (redox potential, absorbed dose, temperature, irradiation duration). Concentration of corrosion products in the solution was evaluated using various chemical methods. Total concentration of Fe2+/Fe3+ ions in liquid phase was determined by UV/VIS spectrometry. Solid phase was analysed using X-ray diffraction method. Corrosion processes were studied in deaerated distilled water and synthetic granitic water. Corrosion cells consisted of glass ampoules with inserted steel tablets, completely filled with deoxygenated water. Corrosion cells were carefully enclosed so that air diffusion into system during experiment was kept at minimum. 60Co gamma sources with various dose rates were used for irradiation. The obtained results indicated that radiation noticeably contributed to the formation of corrosion products. Kinetics of radiation corrosion was strongly dependent on the parameters under study. The obtained experimental data should be taken into consideration when predicting effects of corrosion on containers with spent nuclear fuel using mathematical models.

  5. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system.

    PubMed

    Wang, Jun; Wang, Dong; Hou, Deyin

    2016-01-01

    A combined process was developed to inhibit the corrosion both in the pipeline of reclaimed water supplies (PRWS) and in downstream recirculating cooling water systems (RCWS) using the reclaimed water as makeup. Hydroxyl carboxylate-based corrosion inhibitors (e.g., gluconate, citrate, tartrate) and zinc sulfate heptahydrate, which provided Zn(2+) as a synergistic corrosion inhibition additive, were added prior to the PRWS when the phosphate (which could be utilized as a corrosion inhibitor) content in the reclaimed water was below 1.7 mg/L, and no additional corrosion inhibitors were required for the downstream RCWS. Satisfactory corrosion inhibition was achieved even if the RCWS was operated under the condition of high numbers of concentration cycles. The corrosion inhibition requirement was also met by the appropriate combination of PO4(3-) and Zn(2+) when the phosphate content in the reclaimed water was more than 1.7 mg/L. The process integrated not only water reclamation and reuse, and the operation of a highly concentrated RCWS, but also the comprehensive utilization of phosphate in reclaimed water and the application of non-phosphorus corrosion inhibitors. The proposed process reduced the operating cost of the PRWS and the RCWS, and lowered the environmental hazard caused by the excessive discharge of phosphate. Furthermore, larger amounts of water resources could be conserved as a result. PMID:26899639

  6. Microstructure and Corrosion Resistance of Fe-Based Coatings Prepared by Twin Wires Arc Spraying Process

    NASA Astrophysics Data System (ADS)

    Lin, Jinran; Wang, Zehua; Lin, Pinghua; Cheng, Jiangbo; Zhang, Jingjing; Zhang, Xin

    2014-02-01

    FeB, FeBSi, and FeNiCrBSiNbW coatings were prepared by twin wires arc spraying process on AISI 1045 steel substrate, and the microstructure and phases were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffraction. The corrosion resistance was investigated by means of electrochemical tests. It was found that FeB coating and FeBSi coating were composed of α-Fe, FeO, and Fe2O3 phases. FeNiCrBSiNbW coating consisted of amorphous phase and α-(Fe, Cr) nanocrystalline phase, with porosity of 1.8%, hardness of 807 Hv0.1 and tensile bonding strength of 52.1 MPa. Three kinds of electrochemical tests were employed to identify the corrosion resistance of the coatings. The results indicated that the FeNiCrBSiNbW coating had a superior corrosion resistance, much better than FeB and FeBSi coatings. It was attributed to the amorphous/nanocrystalline structure and the presence of corrosion-resistant element Cr.

  7. Corrosion protection

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  8. Corrosion Processes of the CANDU Steam Generator Materials in the Presence of Silicon Compounds

    SciTech Connect

    Lucan, Dumitra; Fulger, Manuela; Velciu, Lucian; Lucan, Georgiana; Jinescu, Gheorghita

    2006-07-01

    The feedwater that enters the steam generators (SG) under normal operating conditions is extremely pure but, however, it contains low levels (generally in the {mu}g/l concentration range) of impurities such as iron, chloride, sulphate, silicate, etc. When water is converted into steam and exits the steam generator, the non-volatile impurities are left behind. As a result of their concentration, the bulk steam generator water is considerably higher than the one in the feedwater. Nevertheless, the concentrations of corrosive impurities are in general sufficiently low so that the bulk water is not significantly aggressive towards steam generator materials. The impurities and corrosion products existing in the steam generator concentrate in the porous deposits on the steam generator tubesheet. The chemical reactions that take place between the components of concentrated solutions generate an aggressive environment. The presence of this environment and of the tubesheet crevices lead to localized corrosion and thus the same tubes cannot ensure the heat transfer between the fluids of the primary and secondary circuits. Thus, it becomes necessary the understanding of the corrosion process that develops into SG secondary side. The purpose of this paper is the assessment of corrosion behavior of the tubes materials (Incoloy-800) at the normal secondary circuit parameters (temperature = 2600 deg C, pressure = 5.1 MPa). The testing environment was demineralized water containing silicon compounds, at a pH=9.5 regulated with morpholine and cyclohexyl-amine (all volatile treatment - AVT). The paper presents the results of metallographic examinations as well as the results of electrochemical measurements. (authors)

  9. Development, Processing, and Testing of High-Performance Corrosion-Resistant HVOF Coatings

    SciTech Connect

    Farmer, J; Wong, F; Haslam, J; Estill, J; Branagan, D; Yang, N; Blue, C

    2003-08-26

    New amorphous-metal and ceramic coatings applied by the high-velocity oxy-fuel (HVOF) process may reduce the waste package materials cost of the Yucca Mountain high-level nuclear waste repository by over $4 billion (cost reduction of 27 to 42%). Two critical requirements that have been determined from design analysis are protection in brines that may evolve from the evaporative concentration of pore waters and protection for waste package welds, thereby preventing exposure to environments that might cause stress corrosion cracking (SCC). Our efforts are directed towards producing and evaluating these high-performance coatings for the development of lower cost waste packages, and will leverage a cost-effective collaboration with DARPA for applications involving marine corrosion.

  10. Intentional synthesis of corrosion inhibitors based on secondary products of sugar cane processing

    SciTech Connect

    Ledovskykh, V.M.

    1988-07-01

    Secondary products of sugar cane processing (mosto, wax, furfurol) were studied as starting raw materials for creating inhibitors for different purposes and temporary means of protecting metals from corrosion. In order to protect metals in different corrosive media the following inhibitors have been developed: an inhibitor for acid solutions (pickling metals, acid washing of the equipment) based on high-tonnage water-soluble waste mosto and combined synergistic inhibitors based on mixtures of it with cation- and anion-active surfactants, including nitrogen- and sulfur-containing substances obtained by intentional synthesis of another secondary product, furfurol; inhibitors for two-phase media (oil recovery and refining) of the carbonic acid amide and 2-alkylimidazoline classes from sugar cane wax; and inhibitors comprised of Li-, Na-, Ca-, and Al-plastic greases from sugar cane wax for atmospheric conditions.

  11. Real Time Corrosion Monitoring in Lead and Lead-Bismuth Systems

    SciTech Connect

    James F. Stubbins; Alan Bolind; Ziang Chen

    2010-02-25

    The objective of this research program is to develop a real-time, in situ corrosion monitoring technique for flowing liquid Pb and eutectic PbBi (LBE) systems in a temperature range of 400 to 650 C. These conditions are relevant to future liquid metal cooled fast reactor operating parameters. THis program was aligned with the Gen IV Reactor initiative to develp technologies to support the design and opertion of a Pb or LBE-cooled fast reactor. The ability to monitor corrosion for protection of structural components is a high priority issue for the safe and prolonged operation of advanced liquid metal fast reactor systems. In those systems, protective oxide layers are intentionally formed and maintained to limit corrosion rates during operation. This program developed a real time, in situ corrosion monitoring tecnique using impedance spectroscopy (IS) technology.

  12. Corrosion Behavior of Friction Stir-Processed and Gas Tungsten Arc-Welded Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Atapour, Masoud; Pilchak, Adam L.; Frankel, G. S.; Williams, James C.

    2010-09-01

    The corrosion behavior of the investment-cast Ti-6Al-4V alloy in 5-pct HCl solution was investigated after gas tungsten arc welding and friction stir (FS) processing. The FS-processed samples exhibited superior corrosion behavior compared with the base metal and the arc-welded samples. The inferior corrosion resistance of the arc weldment was attributed to the acicular α and β microstructure and the alloying element partitioning between the phases. This was confirmed by scanning electron microscopy evaluations of the surface of specimens that had been immersed 50 hours in 20-pct HCl at 308 K (35 °C). In addition, the results indicated that vanadium as an alloying element has a detrimental effect on the corrosion performance of Ti-6Al-4V alloy in an HCl solution.

  13. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains a minimum of 162 citations and includes a subject term index and title list.)

  14. Microstructure, Mechanical and Corrosion Properties of Friction Stir-Processed AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Yasavol, Noushin; Jafari, Hassan

    2015-05-01

    In this study, AISI D2 tool steel underwent friction stir processing (FSP). The microstructure, mechanical properties, and corrosion resistance of the FSPed materials were then evaluated. A flat WC-Co tool was used; the rotation rate of the tool varied from 400 to 800 rpm, and the travel speed was maintained constant at 385 mm/s during the process. FSP improved mechanical properties and produced ultrafine-grained surface layers in the tool steel. Mechanical properties improvement is attributed to the homogenous distribution of two types of fine (0.2-0.3 μm) and coarse (1.6 μm) carbides in duplex ferrite-martensite matrix. In addition to the refinement of the carbides, the homogenous dispersion of the particles was found to be more effective in enhancing mechanical properties at 500 rpm tool rotation rate. The improved corrosion resistance was observed and is attributed to the volume fraction of low-angle grain boundaries produced after friction stir process of the AISI D2 steel.

  15. Identification of Green Rust Compounds in the Aqueous Corrosion Processes of Steels; the Case of Microbially Induced Corrosion and Use of 78 K CEMS

    NASA Astrophysics Data System (ADS)

    Génin, J.-M. R.; Refait, Ph.; Olowe, A. A.; Abdelmoula, M.; Fall, I.; Drissi, S. H.

    1998-12-01

    Fe(II)-Fe(III) hydroxy-sulphate Green Rust 2, GR2(SO4 -), is obtained by microbially induced corrosion of steel. Transmission Mössbauer spectroscopy (TMS) was used to characterise the corrosion products of steel sheet piles under the biofilm at low sea-water level in a harbour. To understand the process, iron coupons maintained in aqueous solutions of 4 M NaCl and 0.1 M NaHCO3 of pH 7.4 were studied by X ray diffraction and conversion electron Mössbauer spectroscopy (CEMS) at 78 K. The Fe(II)-Fe(III) hydroxy-carbonate, GR1(CO3 -), covers the surface, as predicted by the Eh-pH diagram.

  16. Caustic stress corrosion cracking susceptibility in continuous kraft digesters due to process loadings

    SciTech Connect

    Leinonen, H.

    1999-07-01

    Loads of the continuous kraft digester have been determined during the start-up of the digester house. Loading was caused by the pressure of the proof test, the start-up pressures of the digester and, finally, the normal working pressure. The apparent threshold stress level in the base metal was greater than that achieved during the normal continuous cooking process but the level in the weld of the impregnation zone were exceeded due to the superposition of the tensile residual stresses. This two-axial tension is considered as the precondition for stress corrosion cracking (SCC), which was confirmed by fractography studies. The results showed, that SCC in the impregnation zone is possible only in the welds during the normal continuous cooking process. During the refill and blow phase of the digester the measured loading stress changes corresponded to the stresses of the proof test and increased the risk for SCC. Some procedures to avoid or minimize SCC are discussed.

  17. Corrosion investigation of multilayered ceramics and experimental nickel alloys in SCWO process environments

    SciTech Connect

    Garcia, K.M.; Mizia, R.

    1995-02-01

    A corrosion investigation was done at MODAR, Inc., using a supercritical water oxidation (SCWO) vessel reactor. Several types of multilayered ceramic rings and experimental nickel alloy coupons were exposed to a chlorinated cutting oil TrimSol, in the SCWO process. A corrosion casing was designed and mounted in the vessel reactor with precautions to minimize chances of degrading the integrity of the pressure vessel. Fifteen of the ceramic coated rings were stacked vertically in the casing at one time for each test. There was a total of 36 rings. The rings were in groupings of three rings that formed five sections. Each section saw a different SCWO environment, ranging from 650 to 300{degrees}C. The metal coupons were mounted on horizontal threaded holders welded to a vertical rod attached to the casing cover in order to hang down the middle of the casing. The experimental nickel alloys performed better than the baseline nickel alloys. A titania multilayered ceramic system sprayed onto a titanium ring remained intact after 120-180 hours of exposure. This is the longest time any coating system has withstood such an environment without significant loss.

  18. Corrosion/96 conference papers

    SciTech Connect

    1996-07-01

    Topics covered by this conference include: cathodic protection in natural waters; cleaning and repassivation of building HVAC systems; worldwide opportunities in flue gas desulfurization; advancements in materials technology for use in oil and gas service; fossil fuel combustion and conversion; technology of corrosion inhibitors; computers in corrosion control--modeling and information processing; recent experiences and advances of austenitic alloys; managing corrosion with plastics; corrosion measurement technology; corrosion inhibitors for concrete; refining industry; advances in corrosion control for rail and tank trailer equipment; CO{sub 2} corrosion--mechanisms and control; microbiologically influenced corrosion; corrosion in nuclear systems; role of corrosion in boiler failures; effects of water reuse on monitoring and control technology in cooling water applications; methods and mechanisms of scale and deposit control; corrosion detection in petroleum production lines; underground corrosion control; environmental cracking--relating laboratory results and field behavior; corrosion control in reinforced concrete structures; corrosion and its control in aerospace and military hardware; injection and process addition facilities; progress reports on the results of reinspection of deaerators inspected or repaired per RP0590 criteria; near 100% volume solids coating technology and application methods; materials performance in high temperature environments containing halides; impact of toxicity studies on use of corrosion/scale inhibitors; mineral scale deposit control in oilfield related operations; corrosion in gas treating; marine corrosion; cold climate corrosion; corrosion in the pulp and paper industry; gaseous chlorine alternatives in cooling water systems; practical applications of ozone in recirculating cooling water systems; and water reuse in industry. Over 400 papers from this conference have been processed separately for inclusion on the data base.

  19. Effect of Dissolved Oxygen on Cu Corrosion in Single Wafer Cleaning Process

    NASA Astrophysics Data System (ADS)

    Imai, Masayoshi; Yamashita, Yukinari; Futatsuki, Takashi; Shiohara, Morio; Kondo, Seiichi; Saito, Shuichi

    2009-04-01

    We investigated Cu corrosion at the via bottom of multi-layered Cu interconnects that occurred after post-etching wet cleaning and caused via open failures. We found that oxygen was dissolved into de-ionized water (DIW) on the wafer edge from the air atmosphere during the rinse step after chemical cleaning and that Cu was oxidized due to the high oxidation-reduction potential (ORP) of the rinse DIW. To prevent Cu interconnects from being corroded, control of the dissolved oxygen and the ORP of the rinse DIW by decreasing the oxygen concentration of the atmosphere in the cleaning machine as well as by using H2 water is required. This will become indispensable in the cleaning process of the next generation Cu interconnects.

  20. Corrosion Behavior of Carbon Steel with Hmta Inhibitor in Pickling Process

    NASA Astrophysics Data System (ADS)

    Liu, D.; Huang, L. P.

    In this investigation, attempts have been made to study the inhibitive effect of hexamethylenetetramine (HMTA) on carbon steel in 10% HCl (mass%) by weight loss, potentiodynamic polarization, EIS, and AFM. Results indicate that inhibition efficiency (IE) of HMTA increases with the increase in pickling immersion time from 10 to 60 min, and IE also increases with the increase in temperature. At higher temperatures (80°C), the IE values are higher and almost independent of pickling time. HMTA can be adsorbed on the surface of metal and reduce the corrosion rate of metal. HMTA is a kind of mixed inhibitor and can retard both the anodic dissolution and cathodic hydrogen evolution reactions independently. IE increases with the concentration of HMTA. Electrochemistry measurement shows that adsorption follows the Langmuir isotherm and the value of free energies of adsorption (ΔGads) is < 0, so the adsorption process can occur automatically. AFM analyses show HMTA can affect the surface roughness and protect metal.

  1. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  2. A new approach to study local corrosion processes on steel surfaces by combining different microscopic techniques

    NASA Astrophysics Data System (ADS)

    Heyer, A.; D'Souza, F.; Bruin, A.; Ferrari, G.; Mol, J. M. C.; de Wit, J. H. W.

    2012-09-01

    Corrosion studies of materials on the micro or even nano-scale level are cumbersome due to instrumental limitations and handling procedures. If biological processes are involved the spatial resolution is even more important and sample preparation is usually the limitation. Attachment of bacteria on stainless steel surface is a complex interfacial process including interactions of bacterial cells and bacterial extracellular polymeric substances with the surface. To overcome the limitations in sample preparations and resolution we present a new stainless steel sample holder to switch among epifluorescent microscope (EFM), AFM and SEM at exactly the same position. Exemplary bacterial accumulation was studied by staining the bacterial DNA with a fluorescent dye over time. It was possible to distinguish among bacteria and other surface characteristic such as deformations or grain structures. Also surface topographic features such as roughness at the grain boundaries and deposits were quantified. All three techniques complement one another in the way that AFM is a high-resolution technique that does not allow to distinguish directly bacterial cell structures, whereas EFM offers excellent bacterial identification based on staining at a low resolution that can complement AFM images. Application of SEM in the last step will reveal inclusions and grain structure and combined with EDX gives the composition of the substrate, inclusions and corrosion deposit. The combination of the three high-resolution techniques enables a more detailed understanding of surface phenomena. The method itself is quite elegant and easy to handle which is an important aspect in materials research, especially when a high sample throughput is needed.

  3. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy.

    PubMed

    Thierry, B; Tabrizian, M; Trepanier, C; Savadogo, O; Yahia, L

    2000-09-15

    Nickel-titanium (NiTi) alloy derives its biocompatibility and good corrosion resistance from a homogeneous oxide layer mainly composed of TiO(2), with a very low concentration of nickel. In this article, we described the corrosion behavior of NiTi alloys after mechanical polishing, electropolishing, and sterilization processes using cyclic polarization and atomic absorption. As a preparative surface treatment, electropolishing decreased the amount of nickel on the surface and remarkably improved the corrosion behavior of the alloy by increasing the mean breakdown potential value and the reproducibility of the results (0.99 +/- 0.05 V/SCE vs. 0.53 +/- 0. 42). Ethylene oxide and Sterrad(R) sterilization techniques did not modify the corrosion resistance of electropolished NiTi, whereas a steam autoclave and, to a lesser extent, peracetic acid sterilization produced scattered breakdown potential. In comparing the corrosion resistance of common biomaterials, NiTi ranked between 316L stainless steel and Ti6A14V even after sterilization. Electropolished NiTi and 316L stainless-steel alloys released similar amounts of nickel after a few days of immersion in Hank's solution. Measurements by atomic absorption have shown that the amount of released nickel from passive dissolution was below the expected toxic level in the human body. Auger electron spectroscopy analyses indicated surface contamination by Ca and P on NiTi during immersion, but no significant modification in oxide thickness was observed. PMID:10880117

  4. Aircraft Materials, Processes, Cleaning and Corrosion Control (Course Outline), Aviation Mechanics 1 (Power and Frame): 9073.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the beginning student with the basic concepts common to aircraft materials and processes, together with the requirements of proper cleaning and corrosion control as outlined by the Federal Aviation Agency. The aviation airframe and powerplant maintenance technician is…

  5. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    PubMed

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-01

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate. PMID:26365307

  6. Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel.

    PubMed

    Rouvre, Ingrid; Gauquelin, Charles; Meynial-Salles, Isabelle; Basseguy, Régine

    2016-06-01

    The influence of additional chemical molecules, necessary for the purification process of [Fe]-hydrogenase from Clostridium acetobutylicum, was studied on the anaerobic corrosion of mild steel. At the end of the purification process, the pure [Fe-Fe]-hydrogenase was recovered in a Tris-HCl medium containing three other chemicals at low concentration: DTT, dithionite and desthiobiotin. Firstly, mild steel coupons were exposed in parallel to a 0.1M pH7 Tris-HCl medium with or without pure hydrogenase. The results showed that hydrogenase and the additional molecules were in competition, and the electrochemical response could not be attributed solely to hydrogenase. Then, solutions with additional chemicals of different compositions were studied electrochemically. DTT polluted the electrochemical signal by increasing the Eoc by 35mV 24h after the injection of 300μL of control solutions with DTT, whereas it drastically decreased the corrosion rate by increasing the charge transfer resistance (Rct 10 times the initial value). Thus, DTT was shown to have a strong antagonistic effect on corrosion and was removed from the purification process. An optimal composition of the medium was selected (0.5mM dithionite, 7.5mM desthiobiotin) that simultaneously allowed a high activity of hydrogenase and a lower impact on the electrochemical response for corrosion tests. PMID:26774688

  7. Corrosion related properties of iron (100) surface in liquid lead and bismuth environments: A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Chi; Li, Dong-Dong; Xu, Yi-Chun; Pan, Bi-Cai; Liu, Chang-Song; Wang, Zhi-Guang

    2014-05-01

    The corrosion of steels in liquid metal lead (Pb) and bismuth (Bi) is a critical challenge in the development of accelerator driven systems (ADS). Using a first-principles method with a slab model, we theoretically investigate the interaction between the Pb (Bi) atom and the iron (Fe) (100) surface to assess the fundamental corrosion properties. Our investigation demonstrates that both Pb and Bi atoms favorably adsorb on the (100) surface. Such an adsorption decreases the energy required for the dissociation of an Fe atom from the surface, enhancing the dissolution tendency significantly. The segregation of six common alloying elements (Cr, Al, Mn, Ni, Nb, and Si) to the surface and their impacts on the corrosion properties are also considered. The present results reveal that Si seems to have a relatively good performance to stabilize the surface and alleviate the dissolving trend caused by Pb and Bi.

  8. Liquefaction corrosion

    SciTech Connect

    DeVan, J.H.; Keiser, J.R.; Baylor, V.B.

    1980-01-01

    The goal of this program is to provide screening data on the susceptibility to corrosion of commercial base metals and welds that are candidate materials of construction for large coal liquefaction plants. Specimens are exposed in operating environments of liquefaction pilot plants and under controlled laboratory conditions to establish acceptable conditions of stress, temperature, time, and environment for candidate alloys. Chemical analyses have been carried out to identify the corrosion-causing constituents of the liquids. The behavior of potential containment materials is being assessed on the basis of results from both in-plant exposure of test specimens as well as results from laboratory tests at ORNL. One portion of the in-plant tests includes exposing stress corrosion cracking specimens in critical areas of liquefaction plants. The critical areas include the dissolver vessel, the pressure letdown vessels, and the factionation columns. Other in-plant tests consist of exposure of corrosion coupons in areas where general corrosion has been severe. These areas include the fractionation columns used for recovery of process and wash solvents. Laboratory tests are being conducted using selected liquid process streams from the pilot plants to simulate SRC environments. Sample materials include the full range of austenitic stainless steels, most of the Inconel, Incoloy and Hastelloy high-nickel alloys, ferritic stainless steels, and Cr-Mo steels, as well as pure materials such as titanium, aluminum and nickel.

  9. Corrosion process and structural performance of a 17 year old reinforced concrete beam stored in chloride environment

    SciTech Connect

    Vidal, T. Castel, A. Francois, R.

    2007-11-15

    The long-term corrosion process of reinforced concrete beams is studied in this paper. The reinforced concrete elements were stored in a chloride environment for 17years under service loading in order to be representative of real structural conditions. At different stages, cracking maps were drawn, total chloride contents were measured and mechanical tests were performed. Results show that the bending cracks and their width do not influence significantly the service life of the structure. The chloride threshold at the reinforcement depth, used by standards as a single parameter to predict the end of the initiation period, is a necessary but not a sufficient parameter to define service life. The steel-concrete interface condition is also a determinant parameter. The bleeding of concrete is an important cause of interface de-bonding which leads to an early corrosion propagation of the reinforcements. The structural performance under service load (i.e.: stiffness in flexure) is mostly affected by the corrosion of the tension reinforcement (steel cross-section and the steel-concrete bond reduction). Limit-state service life design based on structural performance reduction in terms of serviceability shows that the propagation period of the corrosion process is an important part of the reinforced concrete service life.

  10. Corrosion in CO{sub 2} capture process using blended monoethanolamine and piperazine

    SciTech Connect

    Nainar, M.; Veawab, A.

    2009-10-15

    This work explores the promise of aqueous solutions of blended monoethanolamine (MEA) and piperazine (PZ) as a cost-effective solvent for carbon dioxide (CO{sub 2}) capture, from industrial flue gas streams with respect to corrosion, which is regarded as one of the, most severe operational problems in typical CO{sub 2} capture plants. Electrochemical corrosion experiments were carried out using the potentiodynamic polarization technique for corrosion measurements. The results show that the blended MEA/PZ solutions are more corrosive than the MEA solutions. The corrosion rate of carbon steel increases with concentration of PZ, total amine concentration, CO{sub 2} loading of solution, solution temperature, and the presence of heat stable salts. Among the tested heat-stable salts, formate is the most corrosive salt, followed by acetate, oxalate, and thiosulfate in the absence of oxygen (O{sub 2}), while acetate is the most corrosive salt followed by formate, oxalate, and thiosulfate in the presence of O{sub 2}.

  11. Monitoring of microbially mediated corrosion and scaling processes using redox potential measurements.

    PubMed

    Opel, Oliver; Eggerichs, Tanja; Otte, Tobias; Ruck, Wolfgang K L

    2014-06-01

    The use of redox potential measurements for corrosion and scaling monitoring, including microbially mediated processes, is demonstrated. As a case study, monitoring data from 10years of operation of an aquifer thermal energy storage (ATES) site located in Berlin, Germany, were examined. (Fe(2+))-activities as well as [Fe(3+)]-build up rates were calculated from redox potential, pH, conductivity, temperature and dissolved oxygen measurements. Calculations are based on assuming (Fe(3+))-activity being controlled by Fe(OH)3-solubility, the primary iron(III)-precipitate. This approach was tested using a simple log-linear model including dissolved oxygen besides major Fe(2+)-ligands. Measured redox potential values in groundwater used for thermal storage are met within ±8mV. In other systems comprising natural groundwater and in heating and cooling systems in buildings, quantitatively interpretable values are obtained also. It was possible to calculate particulate [Fe(3+)]-loads in the storage fluids in the order of 2μM and correlate a decrease in filter lifetimes to [Fe(3+)]-build up rates, although observations show clear signs of microbially mediated scaling processes involving iron and sulphur cycling. PMID:24411307

  12. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  13. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    NASA Astrophysics Data System (ADS)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  14. The effect of various deformation processes on the corrosion behavior of casing and tubing carbon steels in sweet environment

    NASA Astrophysics Data System (ADS)

    Elramady, Alyaa Gamal

    The aim of this research project is to correlate the plastic deformation and mechanical instability of casing steel materials with corrosion behavior and surface change, in order to identify a tolerable degree of deformation for casing steel materials. While the corrosion of pipeline and casing steels has been investigated extensively, corrosion of these steels in sweet environments with respect to plastic deformation due to bending, rolling, autofrettage, or handling needs more investigation. Downhole tubular expansion of pipes (casings) is becoming standard practice in the petroleum industry to repair damaged casings, shutdown perforations, and ultimately achieve mono-diameter wells. Tubular expansion is a cold-drawing metal forming process, which consists of running conical mandrels through casings either mechanically using a piston or hydraulically by applying a back pressure. This mechanism subjects the pipes to large radial plastic deformations of up to 30 pct. of the inner diameter. It is known that cold-working is a way of strengthening materials such as low carbon steel, but given that this material will be subjected to corrosive environments, susceptibility to stress corrosion cracking (SCC) should be investigated. This research studies the effect of cold-work, in the form of cold-rolling and cold-expansion, on the surface behavior of API 5CT steels when it is exposed to a CO2-containing environment. Cold-work has a pronounced influence on the corrosion behavior of both API 5CT K55 and P110 grade steels. The lowest strength grade steel, API 5CT K55, performed poorly in a corrosive environment in the slow strain rate test. The ductile material exhibited the highest loss in strength and highest susceptibility to stress corrosion cracking in a CO 2-containing environment. The loss in strength declined with cold-rolling, which can be ascribed to the surface compressive stresses induced by cold-work. On the other hand, API 5CT P110 grade steels showed higher

  15. Correlation of Process Data and Electrocheical Noise to Assess Kraft Digester Corrosion: Second Year at Spring Grove

    SciTech Connect

    Pawel, SJ

    2004-04-27

    Electrochemical noise (EN) probes were deployed in the carbon steel continuous kraft digester at Spring Grove at four locations and at one location in the bottom cone of the associated flash tank for a second consecutive year of a corrosion study. The probes contained dual electrodes of 309LSi stainless steel overlay--representing a field repair material applied to a portion of the vessel--and dual electrodes of 312 stainless steel overlay. Current and potential noise, the temperature at each probe location, and the value of 23 process parameters (flow rates, liquor chemistry, etc.) were again monitored continuously for a period of almost one year. Historical vessel inspection data and post-test evaluation of the probe components were used to assess/compare EN corrosion activity with physical changes in wall thickness and corrosion patterns on the digester shell. In addition, attempts were made to correlate EN activity from each electrode type with process parameters. The results indicate the corrosion conditions aggressive to mild steel persist within the digester, as post-test inspection of the vessel revealed localized corrosion of mild steel in locations previously free of attack. Further, there was evidence that the depth of localized attack of exposed steel had increased in some locations. Nevertheless, the stainless steel overlay in the digester was essentially immune to corrosion, as evidenced by retained surface relief and heat tint associated with the original deposition process. The 309LSi electrodes also appeared visually pristine, and post-exposure metallographic examination of the 309LSi electrode materials revealed no attack. The 312 electrode materials were similar in appearance, but exhibited very minor interdendritic attack over the exposed surface. The silver electrodes in the probes were consumed (to Ag{sub 2}S) to variable degree over the course of the exposure indicating a useful life of not more than a year in digester service in this vessel

  16. Effect of thiosemicarbazones on corrosion of steel in phosphoric acid produced by wet process

    SciTech Connect

    Khamis, E.; Ameer, M.A.; AlAndis, N.M.; Al-Senani, G.

    2000-02-01

    Corrosion inhibition of steel in phosphoric acid (H{sub 3}PO{sub 4}) by thiosemicarbazide derivatives was studied using different chemical and electrochemical techniques. Protection efficiency up to 99% was obtained with small amounts (10{sup {minus}4} M) of cinnamaldehyde thiosemicarbazone (CTSCN). The order of increasing inhibition efficiency was correlated with the modification of the molecular structure of the inhibitors. Empirical kinetic relationship was obtained describing the experimental data obtained from the different compounds used in this investigation. Potentiodynamic polarization curves indicated that the compounds acted primarily as mixed-type inhibitors. Electrochemical impedance spectroscopy showed that the charge-transfer resistance increased and the capacitance of the double layer decreased with increasing the concentration of the inhibitor in the medium, confirming adsorption process mechanism. At high concentrations (>10{sup 4} M), the capacitance of the double layer leveled off since maximum double-layer thickness was attained. Kinetic-thermodynamic model and Flory-Huggins adsorption isotherm described the experimental findings. Number of active sites, binding constant, and change of free energy were computed for all inhibitors studied. Based on the inhibitor, it was found that each organic molecule replaced one or more adsorbed water molecule from the steel surface. The influence of exposure time on the performance of crotonaldehyde thiosemicarbazone (CrTSCN) was studied. Results showed that the inhibitor performed better with time and at a critical concentration of 5 x 10{sup {minus}4} M.

  17. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-12-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr-1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr-1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr-1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO2 phase to t-ZrO2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400.

  18. Modeling of concrete cracking due to corrosion process of reinforcement bars

    SciTech Connect

    Bossio, Antonio; Monetta, Tullio; Bellucci, Francesco; Lignola, Gian Piero; Prota, Andrea

    2015-05-15

    The reinforcement corrosion in Reinforced Concrete (RC) is a major reason of degradation for structures and infrastructures throughout the world leading to their premature deterioration before design life was attained. The effects of corrosion of reinforcement are: (i) the reduction of the cross section of the bars, and (ii) the development of corrosion products leading to the appearance of cracks in the concrete cover and subsequent cover spalling. Due to their intrinsic complex nature, these issues require an interdisciplinary approach involving both material science and structural design knowledge also in terms on International and National codes that implemented the concept of durability and service life of structures. In this paper preliminary FEM analyses were performed in order to simulate pitting corrosion or general corrosion aimed to demonstrate the possibility to extend the results obtained for a cylindrical specimen, reinforced by a single bar, to more complex RC members in terms of geometry and reinforcement. Furthermore, a mechanical analytical model to evaluate the stresses in the concrete surrounding the reinforcement bars is proposed. In addition, a sophisticated model is presented to evaluate the non-linear development of stresses inside concrete and crack propagation when reinforcement bars start to corrode. The relationships between the cracking development (mechanical) and the reduction of the steel section (electrochemical) are provided. Finally, numerical findings reported in this paper were compared to experimental results available in the literature and satisfactory agreement was found.

  19. Review of state-of-the-art of solar collector corrosion processes. Task 1 of solar collector studies for solar heating and cooling applications. Final technical progress report

    SciTech Connect

    Clifford, J E; Diegle, R B

    1980-04-11

    The state-of-the-art of solar collector corrosion processes is reviewed, and Task 1 of a current research program on use of aqueous heat transfer fluids for solar heating and cooling is summarized. The review of available published literature has indicated that lack of quantitative information exists relative to collector corrosion at the present time, particularly for the higher temperature applications of solar heating and cooling compared to domestic water heating. Solar collector systems are reviewed from the corrosion/service life viewpoint, with emphasis on various applications, collector design, heat transfer fluids, and freeze protection methods. Available information (mostly qualitative) on collector corrosion technology is reviewed to indicate potential corrosion problem areas and corrosion prevention practices. Sources of limited quantitative data that are reviewed are current solar applications, research programs on collector corrosion, and pertinent experience in related applications of automotive cooling and non-solar heating and cooling. A data bank was developed to catalog corrosion information. Appendix A of this report is a bibliography of the data bank, with abstracts reproduced from presently available literature accessions (about 220). This report is presented as a descriptive summary of information that is contained in the data bank.

  20. Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications.

    PubMed

    Mostaed, Ehsan; Hashempour, Mazdak; Fabrizi, Alberto; Dellasega, David; Bestetti, Massimiliano; Bonollo, Franco; Vedani, Maurizio

    2014-09-01

    Ultra-fine grained ZK60 Mg alloy was obtained by multi-pass equal-channel angular pressing at different temperatures of 250°C, 200°C and 150°C. Microstructural observations showed a significant grain refinement after ECAP, leading to an equiaxed and ultrafine grain (UFG) structure with average size of 600nm. The original extrusion fiber texture with planes oriented parallel to extrusion direction was gradually undermined during ECAP process and eventually it was substituted by a newly stronger texture component with considerably higher intensity, coinciding with ECAP shear plane. A combination of texture modification and grain refinement in UFG samples led to a marked reduction in mechanical asymmetric behavior compared to the as-received alloy, as well as adequate mechanical properties with about 100% improvement in elongation to failure while keeping relatively high tensile strength. Open circuit potential, potentiodynamic and weight loss measurements in a phosphate buffer solution electrolyte revealed an improved corrosion resistance of UFG alloy compared to the extruded one, stemming from a shift of corrosion regime from localized pitting in the as-received sample to a more uniform corrosion mode with reduced localized attack in ECAP processed alloy. Compression tests on immersed samples showed that the rate of loss of mechanical integrity in the UFG sample was lower than that in the as-received sample. PMID:24971801

  1. Chem I Supplement: Corrosion: A Waste of Energy.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1979

    1979-01-01

    This article, intended for secondary school chemistry students, discusses the corrosion of metals. The discussion includes: (1) thermodynamic aspects of corrosion; (2) electrochemical aspects of corrosion; and (3) inhibition of corrosion processes. (HM)

  2. Evolution of the corrosion process of AA 2024-T3 in an alkaline NaCl solution with sodium dodecylbenzenesulfonate and lanthanum chloride inhibitors

    NASA Astrophysics Data System (ADS)

    Zhou, Biner; Wang, Yishan; Zuo, Yu

    2015-12-01

    The evolution of the corrosion process of AA 2024-T3 in 0.58 g L-1 NaCl solution (pH 10) with sodium dodecylbenzenesulfonate (SDBS) and lanthanum chloride inhibitors was studied with electrochemical and surface analysis methods. With the addition of the compounded LaCl3 and SDBS inhibitors, in the early stage the polarization behavior of AA 2024-T3 changed from active corrosion to passivation, and both the general corrosion and pitting corrosion were inhibited. However, with the immersion time extended, the passive behavior gradually disappeared and pitting happened at the Cu-rich phases. After 24 h immersion, the compounded inhibitors still showed good inhibition for general corrosion, but the polarization curve again presented the characteristic similar to active polarization. The compounded inhibitors also inhibited the pitting corrosion to some extent. The acting mechanism of the inhibitors SDBS and La3Cl on the corrosion process of AA 2024-T3 in the test solution was discussed.

  3. The effect of porous coating processing on the corrosion behavior of cast Co-Cr-Mo surgical implant alloys.

    PubMed

    Jacobs, J J; Latanision, R M; Rose, R M; Veeck, S J

    1990-11-01

    The manufacture of porous coated cobalt-based surgical implant alloys requires sintering--a high temperature process above the incipient melting temperature of this alloy system. The metallurgical changes produced by the high temperature sinter cycle consist of dissolution of interdendritic carbides, massive precipitation of lamellar carbide eutectic phases at grain boundaries, localized porosity from incipient melting that is not completely eliminated by subsequent hot isostatic pressing, and grain growth in fine-grained materials. These microstructural changes, which are known to affect the mechanical properties, do not affect the static in vitro localized and generalized corrosion behavior of the bulk material as determined by anodic polarization measurements in a buffered saline environment and direct examination by scanning electron and optical microscopy. Additionally, cast Co-Cr-Mo surgical implant alloys are found to be immune to crevice corrosion (in the absence of mechanical fretting) in the saline environment studied. The hysteretic component of the anodic polarization curve is not due to crevice corrosion; rather, as suggested by the electrochemical tests and Auger spectroscopy, the hysteresis is due to redox reactions in the chromium-rich surface layer. PMID:2213344

  4. Monitoring the Corrosion Process of Reinforced Concrete Using BOTDA and FBG Sensors

    PubMed Central

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-01-01

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions. PMID:25884790

  5. Monitoring the corrosion process of reinforced concrete using BOTDA and FBG sensors.

    PubMed

    Mao, Jianghong; Chen, Jiayun; Cui, Lei; Jin, Weiliang; Xu, Chen; He, Yong

    2015-01-01

    Expansion and cracking induced by the corrosion of reinforcement concrete is the major factor in the failure of concrete durability. Therefore, monitoring of concrete cracking is critical for evaluating the safety of concrete structures. In this paper, we introduce a novel monitoring method combining Brillouin optical time domain analysis (BOTDA) and fiber Bragg grating (FBG), based on mechanical principles of concrete expansion cracking. BOTDA monitors concrete expansion and crack width, while FBG identifies the time and position of cracking. A water-pressure loading simulation test was carried out to determine the relationship between fiber strain, concrete expansion and crack width. An electrical accelerated corrosion test was also conducted to evaluate the ability of this novel sensor to monitor concrete cracking under practical conditions. PMID:25884790

  6. The chemistry of sodium chloride involvement in processes related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Sodium chloride is one of the primary contaminants that enter gas turbine engines and contribute, either directly or indirectly, to the hot corrosion degradation of hot-gas-path components. The paper surveys the results of laboratory experiments along with thermodynamic and mass transport calculations, intended for elucidating the behavior of sodium chloride in combustion environments. It is shown that besides being a source of sodium for the formation of corrosive liquid Na2SO4, the NaCl itself contributes in other indirect ways to the material degradation associated with the high-temperature environmental attack. In addition, the experimental results lend credence to the conceptual scheme presented schematically (behavior of NaCl in a turbine engine combustion gas environment) and resolve conflicting aspects of relevant NaCl misconceptions.

  7. Intergranular stress corrosion cracking: A rationalization of apparent differences among stress corrosion cracking tendencies for sensitized regions in the process water piping and in the tanks of SRS reactors

    SciTech Connect

    Louthan, M.R.

    1990-09-28

    The frequency of stress corrosion cracking in the near weld regions of the SRS reactor tank walls is apparently lower than the cracking frequency near the pipe-to-pipe welds in the primary cooling water system. The difference in cracking tendency can be attributed to differences in the welding processes, fabrication schedules, near weld residual stresses, exposure conditions and other system variables. This memorandum discusses the technical issues that may account the differences in cracking tendencies based on a review of the fabrication and operating histories of the reactor systems and the accepted understanding of factors that control stress corrosion cracking in austenitic stainless steels.

  8. Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection.

    PubMed

    Ou, Junfei; Hu, Weihua; Xue, Mingshan; Wang, Fajun; Li, Wen

    2013-04-24

    After hydrothermally treated in H2O (for Mg alloy and Al alloy) or H2O2 (for Ti alloy), microstructured oxide or hydroxide layers were formed on light alloy substrates, which further served as the active layers to boost the self-assembling of 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) and finally endowed the substrates with unique wettability, that is, superhydrophobicity. For convenience, the so-fabricated superhyrdophobic surfaces (SHS) were abridged as HT-SHS. For comparison, SHS coded as CE-SHS were also prepared based on chemical etching in acid and succedent surface passivation with PFOTES. To reveal the corrosion protection of these SHS, potentiodynamic polarization measurements in NaCl solution (3.5 wt %) were performed. Moreover, to reflect the long-term stability of these SHS, SHS samples were immersed into NaCl solution and the surface wettability was monitored. Experimental results indicated that HT-SHS was much more stable and effective in corrosion protection as compared with CE-SHS. The enhancement was most likely due to the hydrothermally generated oxide layer by the following tow aspects: on one hand, oxide layer itself can lower the corrosion due to its barrier effect; on the other hand, stronger interfacial bonding is expected between oxide layer and PFOTES molecules. PMID:23496751

  9. Copper corrosion in potable water systems: Impacts of natural organic matter and water treatment processes

    SciTech Connect

    Rehring, J.P.; Edwards, M.

    1996-04-01

    Copper corrosion was examined in the presence of natural organic matter (NOM) and in situations where NOM was altered by drinking water treatment. Corrosion rates (i{sub corr}) increased with higher NOM concentration at pH 6, whereas insignificant effects were observed at pH 7.5 and 9.0. Corrosion byproduct release was affected adversely by 4 mg/L NOM at pH 6.0, 7.5 and 9.0, with soluble copper increasing by 0.6 mg/L to 0.7 mg/L when compared to solutions without NOM. Alum-coagulated waters had higher i{sub corr} than untreated waters, but ferric chloride (FeCl{sub 3}{center_dot}6H{sub 2}O)-coagulated waters exhibited reduced i{sub corr}. This difference was attributed to the relative effects of added sulfate via alum coagulation vs added chloride via FeCl{sub 3}{center_dot}6H{sub 2}O coagulation. The effect of combined treatment (alum coagulation, ozonation, and granular activated carbon) was similar to that using alum coagulation alone.

  10. Ancient coins: cluster analysis applied to find a correlation between corrosion process and burial soil characteristics

    PubMed Central

    2012-01-01

    Although it is well known that any material degrades faster when exposed to an aggressive environment as well as that "aggressive" cannot be univocally defined as depending also on the chemical-physical characteristics of material, few researches on the identification of the most significant parameters influencing the corrosion of metallic object are available. A series of ancient coins, coming from the archaeological excavation of Palazzo Valentini (Rome) were collected together with soils, both near and far from them, and then analysed using different analytical techniques looking for a correlation between the corrosion products covering the coins and the chemical-physical soil characteristics. The content of soluble salts in the water-bearing stratum and surfacing in the archaeological site, was also measured. The obtained results stress the influence of alkaline soils on formation of patina. Cerussite, probably due to the circulation of water in layers rich in marble and plaster fragments, was the main corrosion product identified by X-ray Diffraction (XRD). Copper, lead and vanadium were found in soil surrounding coins. By measuring conductivity, pH and soluble salts content of the washing solutions from both coins and soils, we could easily separate coins coming from different stratigraphic units of the site. Data were treated by cluster and multivariate analysis, revealing a correlation between part of the coins and the nearby soil samples. PMID:22594444

  11. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains a minimum of 166 citations and includes a subject term index and title list.)

  12. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1996-10-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  13. Corrosion prevention: Conversion coatings and coating processes. (Latest citations from the US Patent Bibliographic File with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-11-01

    The bibliography contains citations of selected patents concerning conversion coatings and coating processes for the prevention of metal corrosion in various environments. Conversion coating patents for the application of phosphates and chromates to the surfaces of aluminum, zinc, ferrous metals, titanium, cadmium, iron, steels, and various alloys are presented. Topics include coating compositions, surface preparations and pretreatments prior to coating applications, post-treatment of coated metal surfaces, coating quality control, and sacrificial coatings for jet engines. Specific patents concerning protective coatings are excluded and covered in a separate bibliography. (Contains a minimum of 191 citations and includes a subject term index and title list.)

  14. SRB seawater corrosion project

    NASA Technical Reports Server (NTRS)

    Bozack, M. J.

    1991-01-01

    The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.

  15. Case reviews on the effect of microstructure on the corrosion behavior of austenitic alloys for processing and storage of nuclear waste

    NASA Astrophysics Data System (ADS)

    Kain, V.; Sengupta, P.; de, P. K.; Banerjee, S.

    2005-05-01

    This article describes the corrosion behavior of special austenitic alloys for waste management applications. The special stainless steels have controlled levels of alloying and impurity elements and inclusion levels. It is shown that “active” inclusions and segregation of chromium along flow lines accelerated IGC of nonsensitized stainless steels. Concentration of Cr+6 ions in the grooves of dissolved inclusions increased the potential to the transpassive region of the material, leading to accelerated attack. It is shown that a combination of cold working and controlled solution annealing resulted in a microstructure that resisted corrosion even after a sensitization heat treatment. This imparted extra resistance to corrosion by increasing the fraction of “random” grain boundaries above a threshold value. Randomization of grain boundaries made the stainless steels resistant to sensitization, IGC, and intergranular stress corrosion cracking (IGSCC) in even hot chloride environments. The increased corrosion resistance has been attributed to connectivity of random grain boundaries. The reaction mechanism between the molten glass and the material for process pot, alloy 690, during the vitrification process has been shown to result in depletion of chromium from the reacting surfaces. A comparison is drawn between the electrochemical behavior of alloys 33 and 22 in 1 M HCl at 65 °C. It is shown that a secondary phase formed during welding of alloy 33 impaired corrosion properties in the HCl environment.

  16. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  17. Hydrogen role in stress corrosion cracking process of iron aluminide Fe{sub 3}Al in NaCl solution

    SciTech Connect

    Chiu, H.; Qiao, L.; Mao, X.

    1995-09-01

    The stress corrosion cracking behavior of Fe3AI based intermetallic alloy in 3.5% NaCl solution was studied. The role of hydrogen in the cracking process was also defined. The susceptibility of the alloy to hydrogen embrittlement was first investigated by performing tensile tests in air environment and mineral oil. It was found that ductility increased with increasing strain rate when tested in air, but stayed at a high value when tested in mineral oil. This behavior indicates that the alloy is sensitive to hydrogen embrittlement in air. In 3.5% NaCl solution, the environmental effect was studied by slow strain rate tests that were done at electrochemical potentials ranging from {minus}1,000 mV to 0 mV vs SCE. When tested at anodic potentials, from {minus}500 mV to 0 mV vs SCE, ductility reduced from 8.7% to 3.9%. When tested in cathodic region, from {minus}500 mV to {minus}1,000 mV, the ductility was between 7.3% to 9.1%. Results of tests done on pre-immersed specimens and notched tensile specimens confirmed this material degradation to be caused by stress corrosion cracking (SCC). To identify the mechanism, an electrochemical permeation technique was employed. By measuring the diffusible hydrogen concentration, sensitivity to hydrogen embrittlement has been assessed at different potentials. Anodic dissolution is believed to be the controlling mechanism of the SCC as the alloy is less sensitive to hydrogen embrittlement at anodic potentials. Fracture surfaces were examined under the scanning electron microscope (SEM). Fracture mode was found to be mainly transgranular quasi-cleavage, except the ones tested at anodic potentials on which intergranular fracture area was found near the edge. This intergranular fracture, which increases with increasing anodic potential, is believed to be the stress corrosion cracking area. Pits which corroded intergranularly are the crack initiation sites.

  18. A facile electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on carbon steel

    NASA Astrophysics Data System (ADS)

    Fan, Yi; He, Yi; Luo, Pingya; Chen, Xi; Liu, Bo

    2016-04-01

    Superhydrophobic Fe film with hierarchical micro/nano papillae structures is prepared on C45 steel surface by one-step electrochemical method. The superhydrophobic surface was measured with a water contact angle of 160.5 ± 0.5° and a sliding angle of 2 ± 0.5°. The morphology of the fabricated surface film was characterized by field emission scanning electron microscopy (FE-SEM), and the surface structure seems like accumulated hierarchical micro-nano scaled particles. Furthermore, according to the results of Fourier transform infrared spectra (FT-IR) and X-ray photoelectron spectroscopy (XPS), the chemical composition of surface film was iron complex with organic acid. Besides, the electrochemical measurements showed that the superhydrophobic surface improved the corrosion resistance of carbon steel in 3.5 wt.% NaCl solution significantly. The superhydrophobic layer can perform as a barrier and provide a stable air-liquid interface which inhibit penetration of corrosive medium. In addition, the as-prepared steel exhibited an excellent self-cleaning ability that was not favor to the accumulation of contaminants.

  19. Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper

    NASA Astrophysics Data System (ADS)

    Espinosa, Tulia; Sanes, José; Jiménez, Ana-Eva; Bermúdez, María-Dolores

    2013-05-01

    In order to select possible candidates for use as lubricants or as precursors of surface coatings, the corrosion and surface interactions of oxygen-free high conductivity (OFHC) copper with two new protic (PIL) and four aprotic (APIL) room-temperature ionic liquids have been studied. The PILs, with no heteroatoms in their composition, are the triprotic di[(2-hydroxyethyl)ammonium] succinate (MSu) and the diprotic di[bis-(2-hydroxyethyl)ammonium] adipate (DAd). The four APILs contain imidazolium cations with short or long alkyl chain substituents and reactive anions: 1-ethyl-3-methylimidazolium phosphonate ([EMIM]EtPO3H); 1-ethyl-3-methylimidazolium octylsulfate ([EMIM]C8H17SO4); 1-hexyl-3-methylimidazolium tetrafluoroborate ([HMIM]BF4) and 1-hexyl-3-methylimidazolium hexafluorophosphate ([HMIM]PF6). Contact angles between the ionic liquids and OFHC copper surface were measured. Mass and roughness changes of OFHC copper after 168 h in contact with the ionic liquids have been determined. Copper surfaces were studied by XRD, SEM-EDX and XPS surface analysis. FTIR spectra of the liquid phases recovered after being in contact with the copper surface were compared with that of the neat ionic liquids. The lowest corrosion rate is observed for the diprotic ammonium adipate PIL (DAd), which gives low mass and surface roughness changes and forms adsorbed layers on copper, while the triprotic ammonium succinate salt (MSu) produces a severe corrosive attack by reaction with copper to form a blue crystalline solid, which has been characterized by FTIR and thermal analysis (TGA). All imidazolium APILs react with copper, with different results as a function of the anion. As expected, [EMIM]C8H17SO4 reacts with copper to form the corresponding copper sulphate salt. [EMIM]EtPO3H produces severe corrosion to form a phosphonate-copper soluble phase. [HMIM]BF4 gives rise to the highest roughness increase of the copper surface. [HMIM]PF6 shows the lowest mass and roughness changes of

  20. The effects of microstructure on the corrosion of glycine/nitrate processed cermet inert anodes: A preliminary study

    SciTech Connect

    Windisch, Jr, C F; Chick, L A; Maupin, G D; Stice, N D

    1991-07-01

    The Inert Electrodes Program at the Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under the study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anodes surface, and (c) to develop sensors for monitoring various anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The anode mechanism studies were focused in four areas in FY 1990 and FY 1991: (a) the determination of whether a film formed on cermet inert anodes and (if it existed) the characterization of this film, (b) the determination of the sources of the anode impedance, (c) the evaluation of the effects of silica and a precorroded state on anode corrosion, and (d) a preliminary study on the effect of microstructure on the corrosion properties of the anodes. This report discusses the results of the microstructure studies. 6 refs., 32 figs., 3 tabs.

  1. Determination of corrosion rates for steel alloys in process solvent. Final technical report

    SciTech Connect

    Latos, E.J.

    1984-01-01

    The objectives of this program were to determine the corrosion rate, under static and dynamic conditions, of AISI 1010, 5 Cr-0.5 Mo, Type 304L and Type 316L steels in an SRC-I, V-178, coal-derived liquid at temperatures ranging from 550/sup 0/F (288/sup 0/C) to 700/sup 0/F (371/sup 0/C) and to analyze the after-test liquids for metal content, and physical and chemical properties to determine stability under these test conditions. In addition, the program included a study to determine the storage stability of the V-178 coal-derived liquid at 110/sup 0/F (43.3/sup 0/C) in air. 6 references, 32 figures, 35 tables.

  2. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  3. One-step electrodeposition process to fabricate corrosion-resistant superhydrophobic surface on magnesium alloy.

    PubMed

    Liu, Qin; Chen, Dexin; Kang, Zhixin

    2015-01-28

    A simple, one-step method has been developed to construct a superhydrophobic surface by electrodepositing Mg-Mn-Ce magnesium plate in an ethanol solution containing cerium nitrate hexahydrate and myristic acid. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were employed to characterize the surfaces. The shortest electrodeposition time to obtain a superhydrophobic surface was about 1 min, and the as-prepared superhydrophobic surfaces had a maximum contact angle of 159.8° and a sliding angle of less than 2°. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements demonstrated that the superhydrophobic surface greatly improved the corrosion properties of magnesium alloy in 3.5 wt % aqueous solutions of NaCl, Na2SO4, NaClO3, and NaNO3. Besides, the chemical stability and mechanical durability of the as-prepared superhydrophobic surface were also examined. The presented method is rapid, low-cost, and environmentally friendly and thus should be of significant value for the industrial fabrication of anticorrosive superhydrophobic surfaces and should have a promising future in expanding the applications of magnesium alloys. PMID:25559356

  4. Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application

    NASA Astrophysics Data System (ADS)

    Zhu, Shi-Jie; Liu, Qian; Qian, Ya-Feng; Sun, Bin; Wang, Li-Guo; Wu, Jing-Min; Guan, Shao-Kang

    2014-09-01

    The biomagnesium alloys have been considered to be one of the most potential biodegradable metal materials due to its good mechanical compatibility, biological compatibility, biological security and biodegradable characteristics. However, the two major problems of high degradation rates in physiological environment and low mechanical properties prevent the development of biomagnesium alloys. In the present work, the samples of Mg-Zn-Y-Nd alloy were prepared by cyclic extrusion compression (CEC) and equal channel angular pressing (ECAP). The microstructures, mechanical properties of alloy and its corrosion behavior in simulated body fluid (SBF) were evaluated. The results reveal that Mg-Zn-Y-Nd alloy consists of equiaxial fine grain structure with the homogeneous distribution of micrometer size and nano-sized second phase, which was caused by the dynamic recrystallization during the ECAP and CEC. The corrosion resistance of alloy was improved. The tensile and corrosion resistance were improved, especially the processed alloy exhibit uniform corrosion performances and decreased corrosion rate. This will provide theoretical ground for Mg-Zn-Y-Nd alloy as vascular stent application.

  5. Crude unit corrosion and corrosion control

    SciTech Connect

    Bagdasarian, A.; Feather, J.; Hull, B.; Stephenson, R.; Strong, R.

    1996-08-01

    In the petroleum refining process, the Crude Unit is the initial stage of distillation of the crude oil into useable fractions, either as end products or feed to downstream units. The major pieces of equipment found on units will vary depending on factors such as the assay of the design crude, the age of the refinery, and other downstream units. The unit discussed in this paper has all of the major pieces of equipment found on crude units including double desalting, a preflash section, an atmospheric section, a vacuum section, and a stabilization section. This paper reviews fundamental corrosion issues concerning the Crude Unit process. It is, in concise form, a description of the process and major equipment found in the Crude Unit; types of corrosion and where they occur; corrosion monitoring and inspection advice; and a list of related references for further reading. 12 refs., 1 fig.

  6. Long-Term Corrosion Processes of Iron and Steel Shipwrecks in the Marine Environment: A Review of Current Knowledge

    NASA Astrophysics Data System (ADS)

    Moore, James D.

    2015-12-01

    Methodologies for examining the corrosion behavior of iron and steel shipwrecks have steadily progressed since the 1970s, but the analytical techniques utilized since then are comparatively site-specific, and the overall quantity of data available for independent review is seemingly limited. Laudable advancements in the fields of maritime archaeology, oceanography, and corrosion science support the determination that microbiologically-influenced corrosion primarily controls the degradation rates of iron and steel shipwrecks over archaeological timescales. Future in situ analyses performed on these shipwreck sites need to consider the overreaching impacts that microbiological metabolism have on long-term corrosion rates. The corrosion behavior of an iron or steel archaeological shipwreck site should also not be readily applied to similar sites or to other wrecked vessels that are in close proximity.

  7. Microbiologically influenced corrosion testing

    SciTech Connect

    Kearns, J.R.; Little, B.J.

    1994-01-01

    This symposium was held November 16--17, 1992 in Miami, Florida. The purpose of the symposium was to provide a forum for state-of-the-art information on the effects of microorganisms on the corrosion of metals. Many industrial needs in the area of microbial influenced corrosion testing are identified in the presentations along with latest laboratory and field testing techniques. Strategies to monitor and control corrosion and biofouling in water distribution systems, underground pipelines, buildings, and marine vessels are discussed. Individual papers have been processed separately for inclusion in the appropriate data bases.

  8. Corrosion resistance of stainless steels

    SciTech Connect

    Dillon, C.P.

    1995-12-31

    This book reviews the mechanisms and forms of corrosion and examines the corrosion of stainless steels and similar chromium-bearing nickel containing higher alloys, detailing various corrosive environments including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It provides information on specific groups and grades of stainless steels; summarizes typical applications for specific stainless alloys; describes common corrosion problems associated with stainless steels; presents the acceptable isocorrosion parameters of concentration and temperature for over 250 chemicals for which stainless steels are the preferred materials of construction; discusses product forms and their availability; elucidates fabrication, welding, and joining techniques; and covers the effects of pickling and passivation.

  9. Influence of ECAP process on mechanical and corrosion properties of pure Mg and ZK60 magnesium alloy for biodegradable stent applications

    PubMed Central

    Mostaed, Ehsan; Vedani, Maurizio; Hashempour, Mazdak; Bestetti, Massimiliano

    2014-01-01

    Equal channel angular pressing (ECAP) was performed on ZK60 alloy and pure Mg in the temperature range 150–250 °C. A significant grain refinement was detected after ECAP, leading to an ultrafine grain size (UFG) and enhanced formability during extrusion process. Comparing to conventional coarse grained samples, fracture elongation of pure Mg and ZK60 alloy were significantly improved by 130% and 100%, respectively, while the tensile strength remained at high level. Extrusion was performed on ECAP processed billets to produce small tubes (with outer/inner diameter of 4/2.5 mm) as precursors for biodegradable stents. Studies on extruded tubes revealed that even after extrusion the microstructure and microhardness of the UFG ZK60 alloy were almost stable. Furthermore, pure Mg tubes showed an additional improvement in terms of grain refining and mechanical properties after extrusion. Electrochemical analyses and microstructural assessments after corrosion tests demonstrated two major influential factors in corrosion behavior of the investigated materials. The presence of Zn and Zr as alloying elements simultaneously increases the nobility by formation of a protective film and increase the local corrosion damage by amplifying the pitting development. ECAP treatment decreases the size of the second phase particles thus improving microstructure homogeneity, thereby decreasing the localized corrosion effects. PMID:25482411

  10. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  11. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    SciTech Connect

    Mackiewicz-Ludtka, G.; Sebright, J.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  12. Corrosion science and technology

    SciTech Connect

    Talbot, D.; Talbot, J.

    1998-01-01

    This book investigates the chemical, electrochemical, and metallurgical aspects of corrosion control in contemporary technologies. By examining the structures of water, oxides, and metals, the text identifies the interactions in which metals corrode in natural and artificial environments. The book also includes profiles of technological use in aviation, automobile manufacturing, food processing, and building construction; explanations of scientific principles, real world applications, and case histories; and extensive references for corrosion-related literature and other information.

  13. Corrosivity Of Pyrolysis Oils

    SciTech Connect

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  14. Chemical Species in the Vapor Phase of Hanford Double-Shell Tanks: Potential Impacts on Waste Tank Corrosion Processes

    SciTech Connect

    Felmy, Andrew R.; Qafoku, Odeta; Arey, Bruce W.; Boomer, Kayle D.

    2010-09-22

    The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modeling needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.

  15. Inhibiting mild steel corrosion from sulfate-reducing bacteria using antimicrobial-producing biofilms in Three-Mile-Island process water.

    PubMed

    Zuo, R; Ornek, D; Syrett, B C; Green, R M; Hsu, C-H; Mansfeld, F B; Wood, T K

    2004-04-01

    Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50-90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel. PMID:12898064

  16. Effect of Cr/C Ratio on Microstructure and Corrosion Performance of Cr3C2-NiCr Composite Fabricated by Laser Processing

    NASA Astrophysics Data System (ADS)

    Lou, Deyuan; Liu, Dun; He, Chunlin; Bennett, Peter; Chen, Lie; Yang, Qibiao; Fearon, Eamonn; Dearden, Geoff

    2016-01-01

    The present study focuses on the effect of different Cr/C ratios on the microstructure, microhardness, and corrosion resistance of Ni-based laser clad hardfacings, reinforced by in situ synthesized chromium carbide particles. Cr3C2-NiCr composites have been laser processed with graphite/Cr/Ni powder blends with varying Cr/C ratios. Following phase analysis (x-ray diffraction) and microstructure investigation (scanning electron microscopy; energy dispersive x-ray analysis; transmission electron microscopy), the solidification of laser melt pool is discussed, and the corrosion resistances are examined. Several different zones (planar, dendritic, eutectic and re-melt zone) were formed in these samples, and the thicknesses and shapes of these zones vary with the change of Cr/C ratio. The sizes and types of carbides and the content of reserved graphite in the composites change as the Cr/C ratio varies. With the content of carbides (especially Cr3C2) grows, the microhardness is improved. The corrosive resistance of the composites to 0.2M H2SO4 aqueous solution decreases as the Cr/C ratio reduces owing to not only the decreasing Cr content in the NiCr matrix but also the galvanic corrosion formed within the carbide and graphite containing Ni matrix.

  17. Benefits of thread rolling process to the stress corrosion cracking and fatigue resistance of high strength fasteners

    SciTech Connect

    Kephart, A.R.; Hayden, S.Z.

    1993-05-01

    Stress corrosion cracking (SCC) behavior of cut (machined) vice thread rolled Alloy X-750 and Alloy 625 fasteners in a simulated high temperature primary water environment has been evaluated. SCC testing at 360 and 338C included 157 small and 40 large 60{degree} Vee thread studs. Thread rolled fasteners had improved resistance relative to cut fasteners. Tests of fatigue resistance in air at room temperature and both air and primary water at 315C were conducted on smaller studs with both cut and rolled threads. Results showed rolled threads can have significantly improved fatigue lives over those of cut threads in both air and primary water. Fasteners produced by two different thread rolling methods, in-feed (radial) and through-feed (axial), revealed similar SCC initiation test results. Testing of thread rolled fasteners revealed no significant SCC or fatigue growth of rolling induced thread crest laps typical of the thread rolling process. While fatigue resistance differed between the two rolled thread supplier`s studs, neither of the suppliers studs showed SCC initiation at exposure times beyond that of cut threads with SCC. In contrast to rolling at room temperature, warm rolled (427C) threads showed no improvement over cut threads in terms of fatigue resistance. The observed improved SCC and fatigue performance of rolled threads is postulated to be due to interactive factors, including beneficial residual stresses in critically stressed thread root region, reduction of plastic strains during loading and formation of favorable microstructure.

  18. Benefits of thread rolling process to the stress corrosion cracking and fatigue resistance of high strength fasteners

    NASA Astrophysics Data System (ADS)

    Kephart, A. R.; Hayden, S. Z.

    1993-05-01

    Stress corrosion cracking (SCC) behavior of cut (machined) vice thread rolled Alloy X-750 and Alloy 625 fasteners in a simulated high temperature primary water environment has been evaluated. SCC testing at 360 and 338 C included 157 small and 40 large 60 degree thread studs. Thread rolled fasteners had improved resistance relative to cut fasteners. Tests of fatigue resistance in air at room temperature and both air and primary water at 315 C were conducted on smaller studs with both cut and rolled threads. Results showed rolled threads can have significantly improved fatigue lives over those of cut threads in both air and primary water. Fasteners produced by two different thread rolling methods, in-feed (radial) and through-feed (axial), revealed similar SCC initiation test results. Testing of thread rolled fasteners revealed no significant SCC or fatigue growth of rolling induced thread crest laps typical of the thread rolling process. While fatigue resistance differed between the two rolled thread supplier's studs, neither of the suppliers studs showed SCC initiation at exposure times beyond that of cut threads with SCC. In contrast to rolling at room temperature, warm rolled (427 C) threads showed no improvement over cut threads in terms of fatigue resistance. The observed improved SCC and fatigue performance of rolled threads is postulated to be due to interactive factors, including beneficial residual stresses in critically stressed thread root region, reduction of plastic strains during loading and formation of favorable microstructure.

  19. Degreasing of titanium to minimize stress corrosion

    NASA Technical Reports Server (NTRS)

    Carpenter, S. R.

    1967-01-01

    Stress corrosion of titanium and its alloys at elevated temperatures is minimized by replacing trichloroethylene with methanol or methyl ethyl ketone as a degreasing agent. Wearing cotton gloves reduces stress corrosion from perspiration before the metal components are processed.

  20. Coal-liquids distillation-tower corrosion. Chloride pathways in the Wilsonville, Alabama SRC-1 pilot plant when processing a high-chloride coal. Final report

    SciTech Connect

    Davis, B.H.; Saguees, A.; Thomas, G.A.; Baumert, K.L.

    1985-01-01

    The Wilsonville pilot plant experienced severe corrosion (> 1,000 mils/year) in the atmospheric fractionation column when processing a high-chloride (0.25 wt. %) coal. The operators found that the addition of sodium carbonate to the coal feed greatly reduced this corrosion but designers of a commercial plant could not use this corrosion control method. Hence, it was necessary to define the chloride pathway through the process. Samples collected during a brief operation without carbonate addition permitted a tentative conclusion about the chloride pathway. To provide a more definite pathway, the plant was operated for a three week period with a high chloride coal and samples were collected daily at more than 20 crucial sample points. Analysis of these samples clearly defined that the chloride pathway to the atmospheric fractionator was in the highest boiling distillate stream from the vacuum distillation column. A processing change near the mid-point of the three week run provided a marker to trace chloride through the process and provided further support for the pathway. Amines provide a transport mechanism for the chloride and provide, in addition, through thermal dissociation and recombination in fractionation columns, a mechanism for concentrating chlorides in a narrow region in the columns.

  1. Fireside Corrosion

    SciTech Connect

    Holcomb, Gordon

    2011-07-14

    Oxy-fuel fireside research goals are: (1) determine the effect of oxyfuel combustion on fireside corrosion - flue gas recycle choice, staged combustion ramifications; and (2) develop methods to use chromia solubility in ash as an ash corrosivity measurement - synthetic ashes at first, then boiler and burner rig ashes.

  2. Corrosion Engineering.

    ERIC Educational Resources Information Center

    White, Charles V.

    A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…

  3. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  4. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  5. Effects of aging temperature and time on the corrosion protection provided by trivalent chromium process coatings on AA2024-T3.

    PubMed

    Li, Liangliang; Swain, Greg M

    2013-08-28

    The effects of aging temperature and time on the physical structure of and corrosion protection provided by trivalent chromium process (TCP) coatings on AA2024-T3 are reported. The TCP coating forms a partially blocking barrier layer on the alloy surface that consists of hydrated channels and or defects. It is through these channels and defects that ions and dissolved O2 can be transported to small areas of the underlying alloy. Reactions initiate at these sites, which can ultimately lead to undercutting of the coating and localized corrosion. We tested the hypothesis that collapsing the channels and or reducing the number of defects in the coating might be possible through post-deposition heat treatment, and that this would enhance the corrosion protection provided by the coating. This was tested by aging the TCP-coated AA2024 alloys in air overnight at room temperature (RT), 55, 100, or 150 °C. The TCP coating became dehydrated and thinner at the high temperatures (55 and 100 °C). This improved the corrosion protection as evidenced by a 2× increase in the charge transfer resistance. Aging at 150 °C caused excessive coating dehydration and shrinkage. This led to severe cracking and detachment of the coating from the surface. The TCP-coated AA2024 samples were also aged in air at RT from 1 to 7 days. There was no thinning of the coating, but the corrosion protection was enhanced with a longer aging period as evidenced by a 4× increase in the charge transfer resistance. The coating became more hydrophobic after aging at elevated temperature (up to 100 °C) and with aging time at RT as evidenced by an increased water contact angle from 7 to 100 °C. PMID:23845106

  6. Microbial problems in connection with storage of jet fuel in rock caverns. Development of a process for purification of corrosive jet fuel). Mikrobiella problem vid bergrumslagring av jetbraensle. Utveckling av process foer rening av korrosivt jetbraensle

    SciTech Connect

    Roffey, R.

    1985-06-01

    The literature concerning desulfurization is summarized. Investigations concerning the use of different compounds in order to purify corrosive jet fuel are described. A process for purification of corrosive jet fuel with 1-5 mg/l elemental sulphur was developed which is based on powdered silver as adsorbent. The capacity for adsorption was determined. On the basis of the data obtained, a scale-up was carried out to a full scale plant. The plant was planned for a capacity of 100 - 300 mT fuel/hour and so that it can be constructed as a mobile unit enabling it to be transported to various storage plants.

  7. Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper-nickel alloy.

    PubMed

    Jadhav, U; Hocheng, H

    2016-10-01

    This study presents the corrosion behavior of the copper-nickel (Cu-Ni) alloy in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) and glucose oxidase (GOx) enzyme. In both the cases ferric ions played an important role in weight loss and thereby to carry out the corrosion of the Cu-Ni alloy. A corrosion rate of 0.6 (±0.008), 2.11 (±0.05), 3.69 (±0.26), 0.7 (±0.006) and 0.08 (±0.002) mm/year was obtained in 72 h using 9K medium with ferrous sulfate, A. ferrooxidans culture supernatant, A. ferrooxidans cells, GOx enzyme and hydrogen peroxide (H2O2) solution respectively. The scanning electron microscopy (SEM) micrographs showed that a variable extent of corrosion was caused by 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells. An arithmetic average surface roughness (Ra) of 174.78 nm was observed for the control work-piece using optical profilometer. The change in Ra was observed with the treatment of the Cu-Ni alloy using various systems. The Ra for 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells was 374.54, 607.32 and 799.48 nm, respectively, after 24 h. These results suggest that A. ferrooxidans cells were responsible for more corrosion of the Cu-Ni alloy than other systems used. PMID:26930447

  8. Permeability and corrosion behavior of phenoxy coatings

    SciTech Connect

    Tiburcio, A.C.; Manson, J.A.

    1993-12-31

    The corrosion behavior of a glass-bead-filled phenoxy coating system was studied by correlating permeability and electrochemical measurements with actual corrosion performance. The study emphasized the effects of filler and filler/polymer matrix interactions on corrosion behavior. Water vapor permeability, dissolved oxygen permeability and conductivity measurements were made to determine the rate of transport of the three key ingredients in cathodic delamination and corrosion process (H{sub 2}O, O{sub 2}, and cation). The glass bead filler had a greater effect on both cathodic delamination and corrosion behavior than filler/polymer matrix interaction. Overall, the permeability behavior controlled the delamination and corrosion performance.

  9. Papermaking: Corrosion and corrosion control. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning corrosive behavior of the pulping process and papermaking chemicals on paper manufacturing equipment, and corrosion control procedures. Stainless steel resistance to corrosive materials, chemical additives used to control corrosive actions, electrochemical corrosion control applications, and the effects of various pulping materials on corrosive behavior are among the topics discussed. Performance evaluations of corrosion control processes are also examined. (Contains a minimum of 221 citations and includes a subject term index and title list.)

  10. Microbial corrosion of stainless steel.

    PubMed

    Ibars, J R; Moreno, D A; Ranninger, C

    1992-11-01

    Stainless steel, developed because of their greater resistance to corrosion in different aggressive environments, have proved to be affected, however, by various processes and types of corrosion. Some of these types of corrosion, mainly pitting, is activated and developed in the presence of microorganisms, which acting in an isolated or symbiotic way, according to their adaptation to the environment, create a favorable situation for the corrosion of these steel. The microorganisms that are involved, mainly bacteria of both the aerobic and anaerobic type, modify the environment where the stainless steel is found, creating crevices, differential aeration zones or a more aggressive environment with the presence of metabolites. In these circumstances, a local break of the passive and passivating layer is produced, which is proper to these types of steel and impedes the repassivation that is more favorable to corrosion. In the study and research of these types of microbiologically influenced corrosion are found electrochemical techniques, since corrosion is fundamentally an electrochemical process, and microbiological techniques for the identification, culture, and evaluation of the microorganisms involved in the process, as well as in the laboratory or field study of microorganism-metal pairs. Microstructural characterization studies of stainless steel have also been considered important, since it is known that the microstructure of steel can substantially modify their behavior when faced with corrosion. As for surface analysis studies, it is known that corrosion is a process that is generated on and progresses from the surface. The ways of dealing with microbiologically influenced corrosion must necessarily include biocides, which are not always usable or successful, the design of industrial equipment or components that do not favor the adherence of microorganisms, using microstructures in steel less sensitive to corrosion, or protecting the materials. PMID:1492953

  11. Corrosion beneath disbonded pipeline coatings

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.

    1997-04-01

    The relationship between coatings, cathodic protection (CP), and external corrosion of underground pipelines is described. Historically, this problem has been addressed by focusing on the corrosion and CP processes associated with holidays, e.g., coating disbondment and CP current flow within the disbonded region. These issues and those associated with disbonded areas distant from holidays are also discussed.

  12. Corrosion beneath disbonded coatings: A review

    SciTech Connect

    Beavers, J.A.; Thompson, N.G.

    1996-12-01

    This paper describes the relationship between coatings, cathodic protection (CP), and external corrosion of underground pipelines. Historically, this problem has been addressed by focusing on the corrosion and CP processes associated with holidays, e.g., coating disbandment and CP current flow within the disbanded region. This paper addresses these issues but also considers corrosion associated with disbanded areas that are distant from holidays.

  13. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  14. Evaluation of electric arc furnace-processed steel slag for dermal corrosion, irritation, and sensitization from dermal contact.

    PubMed

    Suh, Mina; Troese, Matthew J; Hall, Debra A; Yasso, Blair; Yzenas, John J; Proctor, Debora M

    2014-12-01

    Electric arc furnace (EAF) steel slag is alkaline (pH of ~11-12) and contains metals, most notably chromium and nickel, and thus has potential to cause dermal irritation and sensitization at sufficient dose. Dermal contact with EAF slag occurs in many occupational and environmental settings because it is used widely in construction and other industrial sectors for various applications including asphaltic paving, road bases, construction fill, and as feed for cement kilns construction. However, no published study has characterized the potential for dermal effects associated with EAF slag. To assess dermal irritation, corrosion and sensitizing potential of EAF slag, in vitro and in vivo dermal toxicity assays were conducted based on the Organisation for Economic Co-operation and Development (OECD) guidelines. In vitro dermal corrosion and irritation testing (OECD 431 and 439) of EAF slag was conducted using the reconstructed human epidermal (RHE) tissue model. In vivo dermal toxicity and delayed contact sensitization testing (OECD 404 and 406) were conducted in rabbits and guinea pigs, respectively. EAF slag was not corrosive and not irritating in any tests. The results of the delayed contact dermal sensitization test indicate that EAF slag is not a dermal sensitizer. These findings are supported by the observation that metals in EAF slag occur as oxides of low solubility with leachates that are well below toxicity characteristic leaching procedure (TCLP) limits. Based on these results and in accordance to the OECD guidelines, EAF slag is not considered a dermal sensitizer, corrosive or irritant. PMID:24395402

  15. A comparison of corrosion, tribocorrosion and electrochemical impedance properties of pure Ti and Ti6Al4V alloy treated by micro-arc oxidation process

    NASA Astrophysics Data System (ADS)

    Fazel, M.; Salimijazi, H. R.; Golozar, M. A.; Garsivaz jazi, M. R.

    2015-01-01

    In this paper, the micro-arc oxidation (MAO) coatings were performed on pure Ti and Ti6Al4V samples at 180 V. The results indicated that unlike the volcanic morphology of oxide layer on pure Ti, a cortex-like morphology with irregular vermiform slots was seen on MAO/Ti6Al4V sample. According to polarization curves, the corrosion resistance of untreated samples was significantly increased by MAO process. The electrochemical impedance spectroscopy analysis showed a lower capacitance of barrier layer (led to higher resistance) for MAO/Ti specimens. This indicates that corrosive ions diffusion throughout the oxide film would be more difficult resulted in a higher corrosion resistance. Tribocorrosion results illustrated that the potential of untreated samples was dropped sharply to very low negative values. However, the lower wear volume loss was achieved for Ti6Al4V alloy. SEM images of worn surfaces demonstrated the local detachment of oxide layer within the wear track of MAO/Ti sample. Conversely, no delamination was detected in MAO/Ti6Al4V and a mild abrasive wear was the dominant mechanism.

  16. Monitoring power plant fireside corrosion using corrosion probes

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-01-01

    The ability to monitor the corrosion degradation of key components in fossil fuel power plants is of utmost importance for Futuregen and ultra-supercritical power plants. Fireside corrosion occurs in the high temperature sections of energy production facilities due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Problems occur when equipment designed for either oxidizing or reducing conditions is exposed to alternating oxidizing and reducing conditions. This can happen especially near the burners. The use of low NOx burners is becoming more commonplace and can produce reducing environments that accelerate corrosion. One method of addressing corrosion of these surfaces is the use of corrosion probes to monitor when process changes cause corrosive conditions. In such a case, corrosion rate could become a process control variable that directs the operation of a coal combustion or coal gasification system. Alternatively, corrosion probes could be used to provide an indication of total metal damage and thus a tool to schedule planned maintenance outages.

  17. PRINCIPLES OF CORROSION AND CORROSION MONITORING

    EPA Science Inventory

    Recent amendments to the National Interim Primary Drinking Water Regulations deal with corrosion and require utilities to assess corrosion in their distribution and home plumbing systems. Problems caused by corrosion can be grouped into 3 categories: health, aesthetics and econom...

  18. Fireside corrosion probes--an update

    SciTech Connect

    Covino, B.S., Jr.; Bullard, S.J.; Holcomb, G.R.; Ziomek-Moroz, M.; Matthes, S.A.

    2007-01-01

    The ability to monitor the corrosion degradation of key metallic components in fossil fuel power plants will become increasingly important for FutureGen and ultra-supercritical power plants. A number of factors (ash deposition, coal composition changes, thermal gradients, and low NOx conditions, among others) which occur in the high temperature sections of energy production facilities, will contribute to fireside corrosion. Several years of research have shown that high temperature corrosion rate probes need to be better understood before corrosion rate can be used as a process variable by power plant operators. Our recent research has shown that electrochemical corrosion probes typically measure lower corrosion rates than those measured by standard mass loss techniques. While still useful for monitoring changes in corrosion rates, absolute probe corrosion rates will need a calibration factor to be useful. Continuing research is targeted to help resolve these issues.

  19. Chemical processes involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium sulfate induced hot corrosion of B-1900 and NASA-TRW VIA at 900 C was studied with special emphasis on the chemical reactions occurring during and immediately after the induction period. Thermogravimetric tests were run for set periods of time after which the samples were washed with water and water soluable metal salts and/or residual sulfates were analyzed chemically. Element distributions within the oxide layer were obtained from electron microprobe X-ray micrographs. A third set of samples were subjected to surface analysis by X-ray photoelectron spectroscopy. Evolution of SO2 was monitored throughout many of the hot corrosion tests. Results are interpreted in terms of acid-base fluxing mechanisms.

  20. Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys.

    PubMed

    Hudson, D; Smith, G D W; Gault, B

    2011-05-01

    Atom probe tomography uses time-of-flight mass spectrometry to identify the chemical nature of atoms from their mass-to-charge-state ratios. Within a mass spectrum, ranges are defined so as to attribute a chemical identity to each peak. The accuracy of atom probe microanalysis relies on the definition of these ranges. Here we propose and compare several automated ranging techniques, tested against simulated mass spectra. The performance of these metrics compare favourably with a trial of users asked to manually range a simplified simulated dataset. The optimised automated ranging procedure was then used to precisely evaluate the very low iron concentration (0.003-0.018 at%) in a zirconium alloy to reveal its behaviour in the matrix during corrosion; oxygen is injected into solution and has the effect of increasing the local iron concentration near the oxide-metal interface, which in turn affects the corrosion properties of the metal substrate. PMID:21163577

  1. Corrosion processes of austenitic stainless steels and copper-based materials in gamma-irradiated aqueous environments

    SciTech Connect

    Glass, R.S.

    1985-09-01

    The US Department of Energy is evaluating a site located at Yucca Mountain in Nye County, Nevada, as a potential high-level nuclear waste repository. The rock at the proposed repository horizon (above the water table) is densely welded, devitrified tuff, and the fluid environment in the repository is expected to be primarily air-steam. A more severe environment would be present in the unlikely case of intrusion of vadose groundwater into the repository site. For this repository location, austenitic stainless steels and copper-based materials are under consideration for waste container fabrication. This study focuses on the effects of gamma irradiation on the electrochemical mechanisms of corrosion for the prospective waste container materials. The radiolytic production of such species as hydrogen peroxide and nitric acid are shown to exert an influence on corrosion mechanisms and kinetics.

  2. Effect of corrosion and stress-corrosion cracking on pipe integrity and remaining life

    SciTech Connect

    Jaske, C.E.; Beavers, J.A.

    1996-07-01

    Process piping is often exposed to corrosive fluids. During service, such exposure may cause localized corrosion or stress-corrosion cracking that affects structural integrity. This paper presents a model that quantifies the effect of localized corrosion and stress-corrosion cracking on pipe failure stress. The model is an extension of those that have been developed for oil and gas pipelines. It accounts for both axial and hoop stress. Cracks are modeled using inelastic fracture mechanics. Both flow-stress and fracture-toughness dependent failure modes are addressed. Corrosion and crack-growth rates are used to predict remaining service life.

  3. Influence of the Carbo-Chromization Process on the Microstructural, Hardness, and Corrosion Properties of 316L Sintered Stainless Steel

    NASA Astrophysics Data System (ADS)

    Iorga, Sorin; Cojocaru, Mihai; Chivu, Adriana; Ciuca, Sorin; Burdusel, Mihail; Badica, Petre; Leuvrey, Cédric; Schmerber, Guy; Ulhaq-Bouillet, Corinne; Colis, Silviu

    2014-06-01

    We report on the changes on the microstructural, hardness, and corrosion properties induced by carbo-chromization of 316L stainless steel prepared by Spark Plasma Sintering technique. The thermo-chemical treatments have been performed using pack cementation. The carburizing and chromization were carried out between 1153 K (880 °C)/4 h to 1253 K (980 °C)/12 h and 1223 K (950 °C)/6 h to 1273 K (1000 °C)/12 h in a solid powder mixture of charcoal/BaCO3 and ferrochromium/alumina/NH4Cl, respectively. The obtained layers were investigated using X-ray and electron diffraction, optical and scanning electron microscopies, Vickers micro-hardness, and potentiodynamic measurements. The thickness of the carbo-chromized layer ranges between 300 and 500 μm. Besides the host γ-phase, the layers are mainly constituted of carbides (Fe7C3, Cr23C6, Cr7C3, and Fe3C) and traces of α'-martensite. The average hardness values decrease smoothly from 650 HV at the sample surface down to 200 HV at the center of the sample. The potentiodynamic tests revealed that the carbo-chromized samples have smaller corrosion resistance with respect to the untreated material. For strong chromization regimes, the corrosion rate is increased by a factor of four with respect to that of the untreated material, while the micro-hardness of the layer is three times larger. Such materials are suited to be used in environments where good corrosion resistance and wear properties are required.

  4. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    PubMed Central

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  5. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.

    PubMed

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K

    2015-01-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896

  6. Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.

    2015-11-01

    Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.

  7. Proceedings: 1984 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect

    1986-03-01

    During 1984, research investigating intergranular corrosion and stress corrosion cracking in PWR steam generators provided data to formulate a corrosion-product transport theory. In addition, the research showed that changing the pH of liquids in generator crevices will retard and sometimes arrest the corrosion process.

  8. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    SciTech Connect

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-15

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  9. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes.

    PubMed

    Wiesinger, R; Schade, U; Kleber, Ch; Schreiner, M

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations. PMID:24985826

  10. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    NASA Astrophysics Data System (ADS)

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  11. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.

    2010-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.

  12. General Corrosion and Localized Corrosion of Waste Package Outer Barrier

    SciTech Connect

    K.G. Mon

    2004-10-01

    The waste package design for the License Application is a double-wall waste package underneath a protective drip shield (BSC 2004 [DIRS 168489]; BSC 2004 [DIRS 169480]). The purpose and scope of this model report is to document models for general and localized corrosion of the waste package outer barrier (WPOB) to be used in evaluating waste package performance. The WPOB is constructed of Alloy 22 (UNS N06022), a highly corrosion-resistant nickel-based alloy. The inner vessel of the waste package is constructed of Stainless Steel Type 316 (UNS S31600). Before it fails, the Alloy 22 WPOB protects the Stainless Steel Type 316 inner vessel from exposure to the external environment and any significant degradation. The Stainless Steel Type 316 inner vessel provides structural stability to the thinner Alloy 22 WPOB. Although the waste package inner vessel would also provide some performance for waste containment and potentially decrease the rate of radionuclide transport after WPOB breach before it fails, the potential performance of the inner vessel is far less than that of the more corrosion-resistant Alloy 22 WPOB. For this reason, the corrosion performance of the waste package inner vessel is conservatively ignored in this report and the total system performance assessment for the license application (TSPA-LA). Treatment of seismic and igneous events and their consequences on waste package outer barrier performance are not specifically discussed in this report, although the general and localized corrosion models developed in this report are suitable for use in these scenarios. The localized corrosion processes considered in this report are pitting corrosion and crevice corrosion. Stress corrosion cracking is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]).

  13. Atmospheric Corrosion

    PubMed Central

    Eyring, Henry; Robertson, Blake; Chu, Chih Chien; Andersen, Terrell

    1974-01-01

    A model of electrolytic corrosion is developed. It is shown that electrically conducting channels threading through the oxide layer and connecting anodic and cathodic areas, obey the equation for a reactant being catalyzed by its product. The resulting autocatalytic equation is compared with available experimental data and found to be widely applicable and capable of unifying many experimental observations. PMID:16592135

  14. CORROSION INHIBITION

    DOEpatents

    Cartledge, G.H.

    1958-06-01

    The protection of ferrous metsls from the corrosive action of aqueous solutions is accomplished by the incorporation of small amounts of certain additive agents into the aqueous solutions. The method comprises providing a small concentration of technetium, in the form of pertechnetate ion, dissolved in the solution.

  15. Atmospheric corrosion.

    PubMed

    Eyring, H; Robertson, B; Chu, C C; Andersen, T

    1974-02-01

    A model of electrolytic corrosion is developed. It is shown that electrically conducting channels threading through the oxide layer and connecting anodic and cathodic areas, obey the equation for a reactant being catalyzed by its product. The resulting autocatalytic equation is compared with available experimental data and found to be widely applicable and capable of unifying many experimental observations. PMID:16592135

  16. Atmospheric corrosion of metals in industrial city environment

    PubMed Central

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-01-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  17. Atmospheric corrosion of metals in industrial city environment.

    PubMed

    Kusmierek, Elzbieta; Chrzescijanska, Ewa

    2015-06-01

    Atmospheric corrosion is a significant problem given destruction of various materials, especially metals. The corrosion investigation in the industrial city environment was carried out during one year exposure. Corrosion potential was determined using the potentiometric method. The highest effect of corrosion processes was observed during the winter season due to increased air pollution. Corrosion of samples pre-treated in tannic acid before the exposure was more difficult compared with the samples without pretreatment. The corrosion products determined with the SEM/EDS method prove that the most corrosive pollutants present in the industrial city air are SO2, CO2, chlorides and dust. PMID:26217736

  18. The dual role of microbes in corrosion

    PubMed Central

    Kip, Nardy; van Veen, Johannes A

    2015-01-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  19. The dual role of microbes in corrosion.

    PubMed

    Kip, Nardy; van Veen, Johannes A

    2015-03-01

    Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571

  20. Corrosion/95 conference papers

    SciTech Connect

    1995-09-01

    The papers in this conference represent the latest technological advances in corrosion control and prevention. The following subject areas are covered: cathodic protection in natural waters; materials for fossil fuel combustion and conversion systems; modern problems in atmospheric corrosion; innovative ideas for controlling the decaying infrastructure; deposits and their effects on corrosion in industry; volatile high temperature and non aqueous corrosion inhibitors; corrosion of light-weight and precoated metals for automotive application; refining industry corrosion; corrosion in pulp and paper industry; arctic/cold weather corrosion; materials selection for waste incinerators and associated equipment; corrosion measurement technology; environmental cracking of materials; advancing technology in the coating industry; corrosion in gas treating; green inhibition; recent advances in corrosion control of rail equipment; velocity effects and erosion corrosion in oil and gas production; marine corrosion; corrosion of materials in nuclear systems; underground corrosion control; corrosion in potable and industrial water systems in buildings and its impact on environmental compliance; deposit related boiler tube failures; boiler systems monitoring and control; recent developments and experiences in reactive metals; microbiologically influenced corrosion; corrosion and corrosion control for steel reinforced concrete; international symposium on the use of 12 and 13 Cr stainless steels in oil and gas production environments; subsea corrosion /erosion monitoring in production facilities; fiberglass reinforced pipe and tubulars in oilfield service; corrosion control technology in power transmission and distribution; mechanisms and methods of scale and deposit control; closing the loop -- results oriented cooling system monitoring and control; and minimization of aqueous discharge.

  1. Corrosion and corrosion prevention in gas turbines

    NASA Technical Reports Server (NTRS)

    Mom, A. J. A.; Kolkman, H. J.

    1985-01-01

    The conditions governing the corrosion behavior in gas turbines are surveyed. Factors such as temperature, relative humidity, the presence of sulfur and nitrogen dioxide, and fuel quality are discussed. Electromechanical corrosion at relatively low temperature in compressors; oxidation; and hot corrosion (sulfidation) at high temperature in turbines are considered. Corrosion prevention by washing and rinsing, fueld additives, and corrosion resistant materials and coatings are reviewed.

  2. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    NASA Astrophysics Data System (ADS)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  3. Corrosion-resistant coating development

    SciTech Connect

    Stinton, D.P.; Kupp, D.M.; Martin, R.L.

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  4. Corrosion of retractable type fall arresters.

    PubMed

    Baszczyński, Krzysztof; Jachowicz, Marcin

    2009-01-01

    Retractable type fall arresters constitute a most effective group of components used in personal protection systems protecting against falls from a height. They are designed primarily for outdoor use, which results in exposure to atmospheric factors associated with risk of corrosion of metal elements. This paper presents the results of a study, in which retractable type fall arresters were exposed to a simulated corrosive environment, a neutral salt spray. It discusses the development of corrosion processes depending on the duration of exposure to corrosive conditions. Tests demonstrated that corrosion of elements decreased their strength and impaired the functioning of mobile parts. The article presents methods of testing the correct functioning of devices, necessary for assessing their resistance to corrosion, which have been developed for this purpose. It also analyzes the correlation between corrosion-related damage of retractable type fall arresters and potential hazards for their users. PMID:19744368

  5. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.

    2011-01-01

    This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.

  6. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    SciTech Connect

    Elmore, M.R.

    1996-02-01

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing {open_quotes}nitrogen-inerted{close_quotes} corrosion with {open_quotes}air-equilibrated{close_quotes} corrosion under simulated tank vault conditions.

  7. Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.

    2012-12-01

    Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.

  8. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing

    NASA Astrophysics Data System (ADS)

    Abdulwahab, M.; Fayomi, O. S. I.; Popoola, A. P. I.

    2016-07-01

    The electrolytic Ni-Cu based alloy coating with admixed interfacial blend of Mg have been successfully prepared on mild steel substrate by dual anode electroplating processes over a range of applied current density and dwell time. The electrocodeposition of Ni-Cu-Mg coating was investigated in the presence of other bath additives. The influence of deposition current on surface morphology, adhesion behavior, preferred crystal orientation, surface topography and electrochemical activity of Ni-Cu-Mg alloy coating on mild steel were systematically examined. The thermal stability of the developed composite materials was examined via isothermal treatment. Scanning electron microscope equipped with EDS, X-ray diffraction, Atomic force microscope, micro-hardness tester and 3 μmetrohm Potentiostat/galvanostat were used to compare untreated and isothermally treated electrocodeposited composite. The induced activity of the Ni-Cu-Mg alloy changed the surface modification and results to crystal precipitation within the structural interface by the formation of Cu, Ni2Mg3 phase. The obtained results showed that the introduction of Mg particles in the plating bath generally modified the surface and brings an increase in the hardness and corrosion resistance of Ni-Cu-Mg layers fabricated. Equally, isothermally treated composites demonstrated an improved properties indicating 45% increase in the micro-hardness and 79.6% corrosion resistance which further showed that the developed composite is thermally stable.

  9. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  10. Corrosion resistant neutron absorbing coatings

    SciTech Connect

    Choi, Jor-Shan; Farmer, Joseph C; Lee, Chuck K; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2013-11-12

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  11. Corrosion potential analysis system

    NASA Astrophysics Data System (ADS)

    Kiefer, Karl F.

    1998-03-01

    Many cities in the northeastern U.S. transport electrical power from place to place via underground cables, which utilize voltages from 68 kv to 348 kv. These cables are placed in seamless steel pipe to protect the conductors. These buried pipe-type-cables (PTCs) are carefully designed and constantly pressurized with transformer oil to prevent any possible contamination. A protective coating placed on the outside diameter of the pipe during manufacture protects the steel pipe from the soil environment. Notwithstanding the protection mechanisms available, the pipes remain vulnerable to electrochemical corrosion processes. If undetected, corrosion can cause the pipes to leak transformer oil into the environment. These leaks can assume serious proportions due to the constant pressure on the inside of the pipe. A need exists for a detection system that can dynamically monitor the corrosive potential on the length of the pipe and dynamically adjust cathodic protection to counter local and global changes in the cathodic environment surrounding the pipes. The northeastern United States contains approximately 1000 miles of this pipe. This milage is critical to the transportation and distribution of power. So critical, that each of the pipe runs has a redundant double running parallel to it. Invocon, Inc. proposed and tested a technically unique and cost effective solution to detect critical corrosion potential and to communicate that information to a central data collection and analysis location. Invocon's solution utilizes the steel of the casing pipe as a communication medium. Each data gathering station on the pipe can act as a relay for information gathered elsewhere on the pipe. These stations must have 'smart' network configuration algorithms that constantly test various communication paths and determine the best and most power efficient route through which information should flow. Each network station also performs data acquisition and analysis tasks that ultimately

  12. Corrosion of austenitic alloys in aerated brines

    SciTech Connect

    Heidersbach, R.; Shi, A.; Sharp, S.

    1999-11-01

    This report discusses the results of corrosion exposures of three austenitic alloys--3l6L stainless steel, UNS N10276, and UNS N08367. Coupons of these alloys were suspended in a series of brines used for processing in the pharmaceutical industry. The effects of surface finish and welding processes on the corrosion behavior of these alloys were determined. The 316L coupons experienced corrosion in several environments, but the other alloys were unaffected during the one-month exposures of this investigation. Electropolishing the surfaces improved corrosion resistance.

  13. Aqueous alteration in CR chondrites: Meteorite parent body processes as analogue for long-term corrosion processes relevant for nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Morlok, Andreas; Libourel, Guy

    2013-02-01

    Aqueous alteration of carbonaceous chondrites is one of the fundamental processes on accreting planetesimals that changes pristine materials from the formation of the Solar System. The study of mineralogical, petrological and chemical changes resulting from this alteration provides insight into the physical and chemical setting of forming planetesimals. CR chondrites provide samples for all stages of aqueous alteration, from type 3 to 1 (entirely hydrated), and are thus suited to study the alteration of pristine materials in a coherent sequence. Vitrification is a common way to store and stabilize fission products and minor actinides resulting from the reprocessing of nuclear spent fuel in a nuclear boro-silica glass in steel containers. The waste material has to be stored safely for a period of at least 105-106 years in a clay-rich geological repository. Laboratory experiments being too short to follow the long-term evolution of these materials, we analyzed the mineralogical, petrological and chemical changes in a series of CR chondrites (Renazzo CR2, Al Rais CR2, and GRO 95577 CR1) to serve as analogues. Rims of secondary materials around metal grains in contact to the fine-grained matrix serve as analogue to the interface between steel containment and the surrounding clay-rich geological layer, while chondrule glassy mesostasis is used as a proxy of the nuclear glass. With increasing degree of aqueous alteration in the sequence, Renazzo → Al Rais → GRO 95577, the size of the rims increase. Fe-rich alteration rims are ˜10 μm in thickness around metal grains in the fine-grained matrix in Renazzo. In Al Rais, multi-layered structures of interchanging Fe, S and P/Ca-rich layers appear, with a thickness of up to ˜30 μm. In the highly altered GRO 95577, extensive inner and external rims of secondary phases reach up to ˜200 μm into the surrounding matrix. In chondrules, metal in contact with the altered mesostasis shows similar trends, but with thinner

  14. Role(s) of pretreatment, inhibitors, and other process steps that effect surface composition on the under-paint corrosion of an aluminum-copper-magnesium alloy 2024-T3

    NASA Astrophysics Data System (ADS)

    Little, Daryl A.

    2006-12-01

    Under-paint corrosion is a surface corrosion that grows under a coating. The composition of an aluminum alloy, particularly Cu and Fe content, has a direct and dominant effect on the growth rate of filiform corrosion (FFC) and scribe-creep. The Cu and Fe content leads to formation of galvanic cells between intermetallic compounds (IMCs) or replated Cu and the aluminum-rich matrix. However, there is no model which describes scribe-creep behavior and can be used to predict the effect of material and surface pretreatment parameters such as inhibitors, chemical surface pretreatment, and alloy microstructure. Surface pretreatments and aging which control the amount of surface copper and alter IMC distributions decrease the growth rate of scribe-creep. Scribe-creep was observed to be enhanced by temperature, regardless of surface pretreatment, as well as by artificial aging and surface pretreatments. Scribe-creep was accelerated by pretreatments that increased surface copper or left a high capacity for Cu-replating such as Cu-containing IMCs. Pretreatment was rationalized to decrease the cathodic oxygen reduction reaction (ORR) rate, which supports anodic undercutting at the head of the corrosion front. In this galvanic corrosion mechanism, the scribe-creep rate will be proportional to the rate of the anodic dissolution at the head. This, in turn, is proportional to the galvanic corrosion rate. Both charge transfer controlled and mass transport controlled cathodic reaction rates occurred at the fastest rates at the scratch and tail. The charge transfer controlled cathodic reaction rate was directly proportional to the surface coverage of Cu (thetaCu) while the mass transport limited rate was a complex nonlinear function of thetaCu . Based on enhanced understanding a galvanic couple model that describes scribe-creep rates in terms of the relevant processes at the tail and head as well as ohmic voltage between the head and tail was developed in order to explain scribe

  15. Chemical Industry Corrosion Management

    SciTech Connect

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  16. Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion

  17. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  18. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  19. Feasibility Study of Low Force Robotic Friction Stir Process and its Effect On Cavitation Erosion and Electrochemical Corrosion for Ni Al Bronze Alloys

    NASA Astrophysics Data System (ADS)

    Ahmad, Azman; Li, Huijun; Pan, Zengxi; Cuiuri, Dominic; van Duin, Stephen; Larkin, Nathan; Polden, Joseph; Lane, Nathan

    2014-12-01

    Robotic friction stir processing (FSP) has not been widely researched to date. This is perhaps due to the limited force capabilities of industrial robots in comparison with dedicated commercial FSP equipment. When operating a FSP machine, the force used to plunge the tools may range from 5000 to 8000 N which is currently beyond the capability of most robots. However, the capacity of robotic manipulators is increasing, so low force friction stir processing is becoming feasible. The ability of the robot arm to apply a controlled force that is normal to a 3-dimensional surface without the need to reorient the workpiece makes it a very useful tool for FSP of complex components. In this analysis, a robot arm with a capacity of 2500 N is used to improve the surface properties of nickel aluminum bronze (NAB) using low force FSP. Multiple passes were applied to the surface of the test sample for a more consistent spread of the stir zone. The sample was then microhardness tested and demonstrated a 62 pct increase in surface hardness. Cavitation erosion testing of the original and processed surfaces was also performed as per ASTM G-32. The erosion rate of the processed NAB sample was 44 pct of the rate experienced by the original cast NAB sample. Finally, the corrosion potentials of FSP NAB were measured at 45 mV less anodic than the unprocessed material, indicating that the processed material is more noble relative to the cast NAB sample.

  20. Corrosion guard tubing nipple

    SciTech Connect

    Guy, W.E.

    1988-09-27

    This patent describes the process of placing a string of tubing in an oil field well; a. the string of tubing when placed extending from the surface of the earth to an oil bearing formation far below the surface, b. the string made from i. a plurality of tubing sections, ii. each section having external threads on each end, and iii. cuffs with internal threads coupling the tubing sections together, c. each of the tubing sections having i. an axis, ii. a wall thickness, and iii. a corrosion resistant coating on its inside bore; wherein the improved method comprises: d. placing a section of tubing into the well with a cuff attached to the upper end at the surface of the earth, e. dropping a corrosion resistant nipple into the cuff, f. the nipple being loose in the cuff, g. attaching an additional section of tubing onto the cuff, and h. screwing the additional section tightly to the cuff.

  1. Corrosion testing in flash tanks

    SciTech Connect

    Clarke, S.J.; Stead, N.J.

    1999-07-01

    As kraft pulp mills adopt modified cooking processes, an increasing amount of corrosion of carbon steel digester systems is being encountered. Many mills have had severe corrosion in the flash tanks, in particular, the first ({number{underscore}sign}1) flash tank. The work described in this report was aimed at characterizing the corrosion. Coupons of carbon steel, several stainless steels and titanium were exposed at two mills. At mill A, identical sets of coupons were exposed in the {number{underscore}sign}1 and {number{underscore}sign}2 flash tank. At mill B, three identical sets of coupons were placed in flash tank {number{underscore}sign}1. The results of the exposures showed that both carbon steel and titanium suffered high rates of general corrosion, while the stainless steels suffered varying degrees of localized attack. The ranking of the resistance of corrosion in the flash tank was the same ranking as would be expected in a reducing acid environment. In the light of the coupon results, organic acids is concluded to be the most likely cause of corrosion of the flash tanks.

  2. Mechanism of hot corrosion of IN-738

    NASA Technical Reports Server (NTRS)

    Meier, G. H.

    1982-01-01

    The Na2SO4 - induced hot corrosion of IN-738 in the temperature range 900 C to 1000 C is characterized by an initiation stage during which the corrosion rate is slow followed by a propagation stage during which the corrosion rate is markedly accelerated. In the second stage, corrosion is accelerated due essentially to a sulfidation/oxidation mechanism; in the third stage, the rate becomes catastrophic due to acid fluxing induced by an accumulation of refractory metal oxides (particularly MoO3) in the Na2SO4. The sequential stages in the corrosion process are described and a mechanism proposed. The influence of alloy microstructure on the corrosion mechanism is also discussed.

  3. Failure Prevention by Short Time Corrosion Tests

    SciTech Connect

    MICKALONIS, JOHN

    2005-05-01

    Short time corrosion testing of perforated sheets and wire meshes fabricated from Type 304L stainless steel, Alloy 600 and C276 showed that 304L stainless steel perforated sheet should perform well as the material of construction for dissolver baskets. The baskets will be exposed to hot nitric acid solutions and are limited life components. The corrosion rates of the other alloys and of wire meshes were too high for useful extended service. Test results also indicated that corrosion of the dissolver should drop quickly during the dissolutions due to the inhibiting effects of the corrosion products produced by the dissolution processes.

  4. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  5. Corrosion probe. Innovative technology summary report

    SciTech Connect

    1999-05-01

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designed to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.

  6. Magnetron Sputtering Deposits Corrosion-Resistant Alloy

    NASA Technical Reports Server (NTRS)

    Khanna, S. K.; Thakoor, A. P.; Williams, R. M.

    1986-01-01

    Dense, amorphous, metallic film resists corrosion attack by acid. Coatings thermally stable up to 800 degrees C and made corrosion resistant by proper choice of sputtering deposition conditions. Protective, corrosionresistant coatings applied to process equipment that comes in contact with aqueous, neutral, or acidic solutions in chemical, petroleum, and paper industries, in wastewater treatment, and in heat exchangers.

  7. Factors affecting the corrosivity of pulping liquors

    NASA Astrophysics Data System (ADS)

    Hazlewood, Patrick Evan

    Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.

  8. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  9. EFFECT OF CREVICE FORMER ON CORROSION DAMAGE PROPAGATION

    SciTech Connect

    J.H. Payer; U. Landau; X. Shan; A.S. Agarwal

    2006-03-01

    The objectives of this report are: (1) To determine the effect of the crevice former on the localized corrosion damage propagation; (2) FOCUS on post initiation stage, crevice propagation and arrest processes; (3) Determine the evolution of damage--severity, shape, location/distribution, damage profile; and (4) Model of crevice corrosion propagation, i.e. the evolution of the crevice corrosion damage profile.

  10. Effect of irradiation defects on the corrosion behaviors of steels exposed to lead bismuth eutectic in ADS: a first-principles study.

    PubMed

    Zhang, Yange; You, Yu-Wei; Li, Dong-Dong; Xu, Yichun; Liu, C S; Pan, B C; Wang, Zhiguang

    2015-05-14

    In accelerator driven systems (ADSs), steels will suffer not only from the irradiation damage produced by protons or neutrons, but also from the dissolution corrosion induced by the liquid lead-bismuth eutectic (LBE). In this work we investigate the interactions between LBE atoms (Pb, Bi) and the irradiation induced defects X (X is helium, vacancy or divacancy) in α-Fe based on first-principles calculations. It is found that LBE atoms repulse each other without irradiation defects, while they aggregate easily with the defects to form X-Pbn and X-Bin complexes. This indicates that the irradiation defects could promote the aggregation of LBE atoms in iron, especially Bi atoms. The total binding energies of the X-Pbn and X-Bin complexes increase with the number of Pb and Bi atoms, respectively. The origin of the total binding energies of the complexes is further discussed via the electronic structures and the distortion of the crystalline lattice. Finally, the concentration evolutions of the Vac-(Bi)n complexes and unbound vacancies with temperature are predicted by the mass action analysis. This work provides important information for the synergistic effect of irradiation and LBE corrosion on the steels in the ADSs, which can be used as basic parameters for further study. PMID:25891773

  11. High temperature electrochemical corrosion rate probes

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, M.

    2005-09-01

    Corrosion occurs in the high temperature sections of energy production plants due to a number of factors: ash deposition, coal composition, thermal gradients, and low NOx conditions, among others. Electrochemical corrosion rate (ECR) probes have been shown to operate in high temperature gaseous environments that are similar to those found in fossil fuel combustors. ECR probes are rarely used in energy production plants at the present time, but if they were more fully understood, corrosion could become a process variable at the control of plant operators. Research is being conducted to understand the nature of these probes. Factors being considered are values selected for the Stern-Geary constant, the effect of internal corrosion, and the presence of conductive corrosion scales and ash deposits. The nature of ECR probes will be explored in a number of different atmospheres and with different electrolytes (ash and corrosion product). Corrosion rates measured using an electrochemical multi-technique capabilities instrument will be compared to those measured using the linear polarization resistance (LPR) technique. In future experiments, electrochemical corrosion rates will be compared to penetration corrosion rates determined using optical profilometry measurements.

  12. Effect of chemical etching and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide resulting from manufacturing process.

    PubMed

    Shabalovskaya, S; Rondelli, G; Anderegg, J; Simpson, B; Budko, S

    2003-07-15

    The effect of chemical etching in a HF/HNO(3) acid solution and aging in boiling water on the corrosion resistance of Nitinol wires with black oxide has been evaluated with the use of potentiodynamic, modified potentiostatic ASTM F746, and scratch tests. Scanning-electron microscopy, elemental XPS, and Auger analysis were employed to characterize surface alterations induced by surface treatment and corrosion testing. The effect of aging in boiling water on the temperatures of martensitic transformations and shape recovery was evaluated by means of measuring the wire electroresistance. After corrosion tests, as-received wires revealed uniformly cracked surfaces reminiscent of the stress-corrosion-cracking phenomenon. These wires exhibited negative breakdown potentials in potentiostatic tests and variable breakdown potentials in potentiodynamic tests (- 100 mV to + 400 mV versus SCE). Wires with treated surfaces did not reveal cracking or other traces of corrosion attacks in potentiodynamic tests up to + 900-1400-mV potentials and no pitting after stimulation at + 800 mV in potentiostatic tests. They exhibited corrosion behavior satisfactory for medical applications. Significant improvement of corrosion parameters was observed on the reverse scans in potentiodynamic tests after exposure of treated wires to potentials > 1000 mV. In scratch tests, the prepared surfaces repassivated only at low potentials, comparable to that of stainless steel. Tremendous improvement of the corrosion behavior of treated Nitinol wires is associated with the removal of defect surface material and the growth of stable TiO(2) oxide. The role of precipitates in the corrosion resistance of Nitinol-scratch repassivation capacity in particular-is emphasized in the discussion. PMID:12808592

  13. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; R. Honaker; B. K. Parekh

    2007-09-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral and coal processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a significant improvement of the service life.

  14. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; Craig A. Blue

    2006-07-20

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, novel surface treatment technologies, High Density Infrared (HDI) and Laser Surface Engineering (LSE) surface coating processes were developed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated specimens were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and can be significantly increased by applying HDI and LSE coating processes. Field testing has been performed using a LSE-treated screen panel and it showed a 2 times improvement of the service life.

  15. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; Craig A. Blue

    2005-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, a novel surface treatment technology, laser surface engineering (LSE) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated specimen were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of ASTM A36 (raw coal screen section) and AISI 4140 steels can be increased 10 and 25 folds, respectively by the application of LSE process. Initial field testing showed a 2 times improvement of the service life of a raw coal screen panel.

  16. Development of Advanced Surface Enhancement Technology for Decreasing Wear and Corrosion of Equipment Used for Mineral Processing

    SciTech Connect

    Daniel Tao; Craig A. Blue

    2004-08-01

    Equipment wear is a major concern in the mineral processing industry, which dramatically increases the maintenance cost and adversely affects plant operation efficiency. In this research, wear problems of mineral processing equipment including screens, sieve bends, heavy media vessel, dewatering centrifuge, etc., were identified. A novel surface treatment technology, high density infrared (HDI) surface coating process was proposed for the surface enhancement of selected mineral processing equipment. Microstructural and mechanical properties of the coated samples were characterized. Laboratory-simulated wear tests were conducted to evaluate the tribological performance of the coated components. Test results indicate that the wear resistance of AISI 4140 and ASTM A36 steels can be increased 3 and 5 folds, respectively by the application of HDI coatings.

  17. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua

    2004-09-16

    The repository design includes a drip shield (BSC 2004 [DIRS 168489]) that provides protection for the waste package both as a barrier to seepage water contact and a physical barrier to potential rockfall. The purpose of the process-level models developed in this report is to model dry oxidation, general corrosion, and localized corrosion of the drip shield plate material, which is made of Ti Grade 7. This document is prepared according to ''Technical Work Plan For: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The models developed in this report are used by the waste package degradation analyses for TSPA-LA and serve as a basis to determine the performance of the drip shield. The drip shield may suffer from other forms of failure such as the hydrogen induced cracking (HIC) or stress corrosion cracking (SCC), or both. Stress corrosion cracking of the drip shield material is discussed in ''Stress Corrosion Cracking of the Drip Shield, the Waste Package Outer Barrier, and the Stainless Steel Structural Material'' (BSC 2004 [DIRS 169985]). Hydrogen induced cracking of the drip shield material is discussed in ''Hydrogen Induced Cracking of Drip Shield'' (BSC 2004 [DIRS 169847]).

  18. Corrosion of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Jacobson, Nathan S.

    1999-01-01

    Non-oxide ceramics are promising materials for a range of high temperature applications. Selected current and future applications are listed. In all such applications, the ceramics are exposed to high temperature gases. Therefore it is critical to understand the response of these materials to their environment. The variables to be considered here include both the type of ceramic and the environment to which it is exposed. Non-oxide ceramics include borides, nitrides, and carbides. Most high temperature corrosion environments contain oxygen and hence the emphasis of this chapter will be on oxidation processes.

  19. Internal Corrosion and Deposition Control

    EPA Science Inventory

    This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...

  20. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect

    J.H. Payer

    2005-03-10

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape size and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective.

  1. Effect of Slug Flow on CO2 Corrosion

    NASA Astrophysics Data System (ADS)

    Zhang, Y. B.; Yan, K.; Che, D. F.

    2010-03-01

    Multiphase flow induced CO2 corrosion has resulted in serious losses in oil and gas production. In this paper, gas-liquid two-phase vertical upward slug flow has been analyzed from aspects containing flow structure, hydrodynamic characteristics, mass transfer characteristics and their effects on pipe wall and corrosion product film, and it is found that slug flow has a distinct effect on transports of corroding species to and of corrosion products from the wall, momentum interchange between fluid and wall and the formation and damage of corrosion product film. In addition, the transports of corrosive species and corrosion product are also an important step in CO2 corrosion process. It is assumed that the slug flow induced CO2 corrosion of pipeline is dependent on the non-linear coupling of the characteristics including the shear stress, the normal stress, the mass transfer coefficient, and the electrochemical reaction.

  2. The corrosion behavior of DWPF glasses

    SciTech Connect

    Ebert, W.L.; Bates, J.K.

    1995-06-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed.

  3. Preceedings of the International Congress (12th), corrosion control for low-cost reliability, held in Houston, Texas on September 19 -24, 1993. Volume 5a. Corrosion: Specific issues

    SciTech Connect

    Not Available

    1993-09-24

    Partial contents include: (1) The role of corrosion in aging aircraft; (2) Hidden corrosion - needs and requirements; (3) Corrosion control as a necessary treatment; (4) Computer assisted aircraft paint stripping technology; (5) Reducing aircraft corrosion with desiccant dehumidifiers; (6) Corrosion contribution to environmental cracking failures of critical aircraft parts; (7) Designing metallic surface coatings for improved corrosion resistance; (8) Development of chromium based composite coatings; (9) In-situ analysis of corrosion in the crevice of automotive body by A.C. impedance measurement; (10) Designing a reinforced concrete against corrosion in chloride containing environments; (11) Carbonation of flyash-containing concrete electrochemical studies; (12) Evaluation of concrete corrosion inhibitors; (13) Cathodic protection of new steel reinforced concrete structure; (14) Reliability and corrosion testing of electronic components and assemblies; (15) Corrosion study of polymer-on-metal systems modified by processing conditions; (16) How to formulate corrosion knowledge for expert systems; and (17) Corrosion prediction form laboratory tests using artificial neural networks.

  4. Cooling tower hardware corrosion studies

    SciTech Connect

    Blue, S.C.

    1983-01-31

    The data presented in this report are interim results of a continuing investigation into the corrosion resistance of metals in the environment of a large cooling tower. Some of the significant observations are as follows: the corrosion of susceptible metals occurs most rapidly in the warm fog conditions between the deck and mist filters; the application of stainless steel must be made on the basis of alloy chemistry and processing history. Some corrosion resistant alloys may develop cracking problems after improper heat treating or welding; combinations of aluminum bronze, stainless steel, and silicon bronze hardware were not susceptible to galvanic corrosion; the service life of structural steel is extended by coal tar epoxy coatings; aluminum coatings appear to protect structural steel on the tower deck and below the distribution nozzles. The corrosion of cooling tower hardware can be easily controlled through the use of 316 stainless steel and silicon bronze. The use of other materials which exhibit general resistance should be specified only after they have been tested in the form of structural assemblies such as weldments and bolted joints in each of the different tower zones.

  5. Stress corrosion and hydrogen embrittlement

    NASA Technical Reports Server (NTRS)

    Blackburn, M. J.; Smyrl, W. H.

    1973-01-01

    Service experience applications, experimental data generation, and the development of satisfactory quantitative theories relevant to the suppression and control of stress corrosion cracking in titanium are discussed. The impact of stress corrosion cracking (SCC) on the use of titanium alloys is considered, with emphasis on utilization in the aerospace field. Recent data on hot salt SCC, crack growth in hydrogen gas, and crack growth in liquid environments containing halide ions are reviewed. The status of the understanding of crack growth processes in these environments is also examined.

  6. Corrosion inhibition for distillation apparatus

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.; Schweighardt, Frank K.

    1985-01-01

    Tower material corrosion in an atmospheric or sub-atmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  7. Corrosion inhibition for distillation apparatus

    SciTech Connect

    Baumert, K.L.; Davis, B.H.; Sagues, A.A.; Schweighardt, F.K.

    1985-04-30

    Tower material corrosion in an atmospheric or subatmospheric distillation tower in a coal liquefaction process is reduced or eliminated by subjecting chloride-containing tray contents to an appropriate ion-exchange resin to remove chloride from such tray contents materials.

  8. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  9. Corrosion probes for fireside monitoring in coal-fired boilers

    SciTech Connect

    Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Holcomb, Gordon R.

    2005-01-01

    Corrosion probes are being developed and combined with an existing measurement technology to provide a tool for assessing the extent of corrosion of metallic materials on the fireside in coal-fired boilers. The successful development of this technology will provide power plant operators the ability to (1) accurately monitor metal loss in critical regions of the boiler, such as waterwalls, superheaters, and reheaters; and (2) use corrosion rates as process variables. In the former, corrosion data could be used to schedule maintenance periods and in the later, processes can be altered to decrease corrosion rates. The research approach involves laboratory research in simulated environments that will lead to field tests of corrosion probes in coal-fired boilers. Laboratory research has already shown that electrochemically-measured corrosion rates for ash-covered metals are similar to actual mass loss corrosion rates. Electrochemical tests conducted using a potentiostat show the corrosion reaction of ash-covered probes at 500?C to be electrochemical in nature. Corrosion rates measured are similar to those from an automated corrosion monitoring system. Tests of corrosion probes made with mild steel, 304L stainless steel (SS), and 316L SS sensors showed that corrosion of the sensors in a very aggressive incinerator ash was controlled by the ash and not by the alloy content. Corrosion rates in nitrogen atmospheres tended to decrease slowly with time. The addition of oxygen-containing gases, oxygen and carbon dioxide to nitrogen caused a more rapid decrease in corrosion rate, while the addition of water vapor increased the corrosion rate.

  10. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  11. Duralumin and Its Corrosion

    NASA Technical Reports Server (NTRS)

    Nelson, WM

    1927-01-01

    The types of corrosion and factors of corrosion of duralumin are investigated. Salt water is the most common of the corroding media with which designers have to contend in using duralumin in aircraft and ships.

  12. Novel Corrosion Sensor for Vision 21 Systems

    SciTech Connect

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indication of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.

  13. PRINCIPLES OF INTERNAL CORROSION AND CORROSION MONITORING

    EPA Science Inventory

    Corrosion, a complex electrochemical phenomenon that cannot always be eliminated but can usually be controlled in a cost-effective manner, may be uniform and attack a surface evenly or may cause severe localized problems such as a crevice or pit. For the corrosion reaction to pro...

  14. A survey of techniques for corrosion monitoring

    SciTech Connect

    Mickalonis, J.I.

    1992-10-01

    Corrosion monitoring techniques have improved with advances in instrumentation technology and corrosion research. Older techniques, such as coupon immersion, generally provide historical information. The new electrochemical techniques, which have not been used widely at SRS, allow on-line monitoring and correlation with process changes. These techniques could improve the corrosion assessment of the waste tanks to be used for In-Tank Precipitation and Extended Sludge Processing. A task was initiated to place an electrochemical probe into tank 48 for testing the utility of this technique for waste tank applications.

  15. Minimizing corrosion in coal liquid distillation

    DOEpatents

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  16. REDUCED-POLLUTION CORROSION-PROTECTION SYSTEMS

    EPA Science Inventory

    Coating systems, designed to protect metallic components against corrosive attack using environmentally compatible materials and processes, were evaluated as potential alternatives for their higher polluting counterparts. Viable replacements were established for cyanide cadmium, ...

  17. Corrosion problems with aqueous coolants, final report

    SciTech Connect

    Diegle, R B; Beavers, J A; Clifford, J E

    1980-04-11

    The results of a one year program to characterize corrosion of solar collector alloys in aqueous heat-transfer media are summarized. The program involved a literature review and a laboratory investigation of corrosion in uninhibited solutions. It consisted of three separate tasks, as follows: review of the state-of-the-art of solar collector corrosion processes; study of corrosion in multimetallic systems; and determination of interaction between different waters and chemical antifreeze additives. Task 1 involved a comprehensive review of published literature concerning corrosion under solar collector operating conditions. The reivew also incorporated data from related technologies, specifically, from research performed on automotive cooling systems, cooling towers, and heat exchangers. Task 2 consisted of determining the corrosion behavior of candidate alloys of construction for solar collectors in different types of aqueous coolants containing various concentrations of corrosive ionic species. Task 3 involved measuring the degradation rates of glycol-based heat-transfer media, and also evaluating the effects of degradation on the corrosion behavior of metallic collector materials.

  18. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  19. Launch Pad Coatings for Smart Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.

    2010-01-01

    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability

  20. High-temperature corrosion: Issues in alloy selection

    NASA Astrophysics Data System (ADS)

    Lai, George Y.

    1991-11-01

    This article examines the modes of high-temperature corrosion that are often responsible for equipment failures in a variety of industries, including aerospace and gas turbines; heat treating; mineral and metallurgical processing; chemical processing; refining and petrochemical processing; ceramic, electronic, and glass manufacturing; automotive; pulp and paper; waste incineration; and power generation and energy conversion. Corrosion data related to each corrosion mode are reviewed to provide readers with a brief materials selection guide.

  1. Events as Power Source: Wireless Sustainable Corrosion Monitoring

    PubMed Central

    Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo

    2013-01-01

    This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS. PMID:24351643

  2. A Multifunctional Smart Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.

    2012-01-01

    Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This

  3. IN DRIFT CORROSION PRODUCTS

    SciTech Connect

    D.M. Jolley

    1999-12-02

    As directed by a written development plan (CRWMS M&O 1999a), a conceptual model for steel and corrosion products in the engineered barrier system (EBS) is to be developed. The purpose of this conceptual model is to assist Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department in modeling the geochemical environment within a repository drift, thus allowing PAO to provide a more detailed and complete in-drift geochemical model abstraction and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near-Field Environment (NFE) Revision 2 (NRC 1999). This document provides the conceptual framework for the in-drift corrosion products sub-model to be used in subsequent PAO analyses including the EBS physical and chemical model abstraction effort. This model has been developed to serve as a basis for the in-drift geochemical analyses performed by PAO. However, the concepts discussed within this report may also apply to some near and far-field geochemical processes and may have conceptual application within the unsaturated zone (UZ) and saturated zone (SZ) transport modeling efforts.

  4. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  5. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect. PMID:21344888

  6. Electrochemical corrosion testing: An effective tool for corrosion inhibitor evaluation

    SciTech Connect

    Bartley, L.S.; Van de Ven, P.; Mowlem, J.K.

    1996-10-01

    Corrosivity of an Antifreeze/Coolant can lead to localized attacks which are a major cause for metal failure. To prevent this phenomenon, specific corrosion inhibitors are used to protect the different metals in service. This paper will discuss the electrochemical principles behind corrosion, Realized corrosion and corrosion inhibition. It will also discuss electrochemical techniques which allow for the evaluation of these inhibitors.

  7. On the Problem of Stress Corrosion

    NASA Technical Reports Server (NTRS)

    Graf, L.

    1946-01-01

    The object of the present work is first to investigate accurately the processes during stress corrosion, in particular, for light metal alloys and, as the first part of the investigation, to determine its laws; and secondly to explain its causes for various alloys and thereby find means for its partial or complete elimination and thus make possible the production of light metal alloys free from any stress corrosion. In the present paper some of the results of the investigation are given and the fundamental problems of stress corrosion discussed.

  8. Effect of Na2WO4 on Growth Process and Corrosion Resistance of Micro-arc Oxidation Coatings on 2A12 Aluminum Alloys in CH3COONa Electrolyte

    NASA Astrophysics Data System (ADS)

    Lin, Zhaoqing; Yu, Huijun; He, Siyu; Wang, Diangang; Chen, Chuanzhong

    2016-01-01

    Ceramic coatings were deposited on 2A12 aluminum alloys using micro-arc oxidation (MAO) technology in CH3COONa-Na2WO4 electrolyte. The MAO process was studied by recording the current-time curve. The influences of Na2WO4 concentrations on the coatings in CH3COONa electrolyte were investigated. The results show that the Na2WO4 concentrations affect the MAO process and performances of the coatings directly. Na2WO4 in excess is harmful for the formation of Al2O3 in this electrolyte. The corrosion resistance was enhanced with the decrease of Na2WO4 concentration.

  9. Thermal control system corrosion study

    NASA Technical Reports Server (NTRS)

    Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.

    1990-01-01

    During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.

  10. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  11. The corrosion behavior of in-situ Zr-based metallic glass matrix composites in different corrosive media

    NASA Astrophysics Data System (ADS)

    Tian, H. F.; Qiao, J. W.; Yang, H. J.; Wang, Y. S.; Liaw, P. K.; Lan, A. D.

    2016-02-01

    The corrosion behavior of Zr58.5Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 metallic glass matrix composites (MGMCs) in different corrosive media, including 1 M NaCl, 1 M HCl, 0.5 M H2SO4, and 1 M NaOH solutions, was studied. The electrochemical characteristics of the composites were investigated by potentiodynamic-polarization measurements. The results show that the corrosion resistance in NaOH solution is the poorest in terms of the corrosion potential (Ecorr) and corrosion current density (icorr). For comparison, the chemical immersion tests were conducted. The corroded surface morphologies after electrochemical and immersion measurements both show that the amorphous matrix and crystalline dendrites exhibit different corrosion behaviors. The possible interpretation of the observed morphology evolution was proposed. The effect of a very base metallic element of beryllium on the corrosion dynamic process has been emphasized.

  12. Monitoring corrosion in prestressed concrete beams using acoustic emission technique

    NASA Astrophysics Data System (ADS)

    ElBatanouny, Mohamed K.; Mangual, Jesé; Vélez, William; Ziehl, Paul H.; Matta, Fabio; González, Miguel

    2012-04-01

    Early detection of corrosion can help reduce the cost of maintenance and extend the service life of structures. Acoustic emission (AE) sensing has proven to be a promising method for early detection of corrosion in reinforced concrete members. A test program is presented composed of four medium-scale prestressed concrete T-beams. Three of the beams have a length of 16 ft. 4 in. (4.98 m), and one is 9 ft. 8 in. (2.95 m). In order to corrode the specimens a 3% NaCl solution was prepared, which is representative of sea salt concentration. The beams were subjected to wet-dry cycles to accelerate the corrosion process. Two of the specimens were pre-cracked prior to conditioning in order to examine the effect of crack presence. AE data was recorded continuously while half-cell potential measurements and corrosion rate by Linear Polarization Resistance (LPR) were measured daily. Corrosion current was also being acquired constantly to monitor any change in the concrete resistivity. Results indicate that the onset of corrosion may be identified using AE features, and were corroborated with measurements obtained from electrochemical techniques. Corroded areas were located using source triangulation. The results indicate that cracked specimens showed corrosion activity prior to un-cracked specimens and experienced higher corrosion rates. The level of corrosion was determined using corrosion rate results. Intensity analysis was used to link the corrosion rate and level to AE data.

  13. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    PubMed

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-01

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type. PMID:27390870

  14. Stress corrosion resistant fasteners

    NASA Technical Reports Server (NTRS)

    Roach, T. A.

    1985-01-01

    A family of high performance aerospace fasteners made from corrosion resistant alloys for use in applications where corrosion and stress-corrosion cracking are of major concern are discussed. The materials discussed are mainly A-286, Inconel 718, MP35N and MP159. Most of the fasteners utilize cold worked and aged materials to achieve the desired properties. The fasteners are unique in that they provide a combination of high strength and immunity to stress corrosion cracking not previously attainable. A discussion of fastener stress corrosion failures is presented including a review of the history and a description of the mechanism. Case histories are presented to illustrate the problems which can arise when material selection is made without proper regard for the environmental conditions. Mechanical properties and chemical compositions are included for the fasteners discussed. Several aspects of the application of high performance corrosion resistant fasteners are discussed including galvanic compatibility and torque-tension relationships.

  15. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  16. Electrochemical corrosion studies

    NASA Technical Reports Server (NTRS)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  17. Effective corrosion monitoring

    SciTech Connect

    Britton, C.F.; Tofield, B.C.

    1988-04-01

    The results of two surveys (conducted in 1981 and 1984) of users of corrosion monitoring equipment are described. The benefits to be obtained from a well-designed corrosion monitoring system, especially if a corrosion control program is used, are outlined together with the difficulties and barriers that can obstruct successful application. Developing methods such as AC impedance, electrochemical noise, and thin layer activation are discussed in view of the comments received from the surveys.

  18. Microsensors for corrosion control

    SciTech Connect

    Chawla, S.K.; Anguish, T.; Payer, J.H. )

    1990-05-01

    Sensors have been developed and manufactured by microelectronic fabrication techniques to directly measure corrosion rates and to determine the effectiveness of corrosion control systems. Microsensors based on measurements of corrosion rate by linear polarization, electrical resistance change, and galvanic currents have been devised. Analytical measurements by potentiometric and amperometric techniques using thick-film planar transducers are illustrated. The use of generic sensor elements individually and in combination to attest the status of corrosion control and to provide data for the evaluation of future performance is highlighted.

  19. Corrosion Detection Devices

    SciTech Connect

    Howard, B.

    2003-12-01

    Nondestructive Examination Systems' (NDE) specialists at the Department of Energy's Savannah River Site have unique, remotely controllable, corrosion detection capabilities. The corrosion detection devices most frequently used are automated ultrasonic mapping systems, digital radiography imaging devices, infrared imaging, and eddy current mapping systems. These devices have been successfully used in a variety of applications, some of which involve high levels of background radiation. Not only is corrosion located and mapped but other types of anomalies such as cracks have been detected and characterized. Examples of actual corrosion that has been detected will be discussed along with the NDE systems that were used.

  20. Corrosion in bioprocessing applications.

    PubMed

    Junker, Beth

    2009-01-01

    Corrosion in bioprocessing applications is described for a 25-year-old bioprocessing pilot plant facility. Various available stainless steel alloys differ greatly in properties owing to the impact of specific alloying elements and their concentrations. The alloy property evaluated was corrosion resistance as a function of composition under typical bioprocessing conditions such as sterilization, fermentation, and cleaning. Several non-uniform forms of corrosion relevant to bioprocessing applications (e.g., pitting, crevice corrosion, intergranular attack) were investigated for their typical causes and effects, as well as alloy susceptibility. Next, the corrosion resistance of various alloys to specific bioprocessing-relevant sources of corrosion (e.g., medium components, acids/bases used for pH adjustment, organic acid by-products) was evaluated, along with the impact of temperature on corrosion progression. Best practices to minimize corrosion included considerations for fabrication (e.g., welding, heat treatments) and operational (e.g., sterilization, media component selection, cleaning) approaches. Assessments and repair strategies for observed corrosion events were developed and implemented, resulting in improved vessel and overall facility longevity. PMID:18512080

  1. Atomistic insights into aqueous corrosion of copper.

    SciTech Connect

    Jeon, B.; Sankaranarayanan, S. K. R. S.; van Duin, A. C. T.; Ramanathan, S.

    2011-06-21

    Corrosion is a fundamental problem in electrochemistry and represents a mode of failure of technologically important materials. Understanding the basic mechanism of aqueous corrosion of metals such as Cu in presence of halide ions is hence essential. Using molecular dynamics simulations incorporating reactive force-field (ReaxFF), the interaction of copper substrates and chlorine under aqueous conditions has been investigated. These simulations incorporate effects of proton transfer in the aqueous media and are suitable for modeling the bond formation and bond breakage phenomenon that is associated with complex aqueous corrosion phenomena. Systematic investigation of the corrosion process has been carried out by simulating different chlorine concentration and solution states. The structural and morphological differences associated with metal dissolution in the presence of chloride ions are evaluated using dynamical correlation functions. The simulated atomic trajectories are used to analyze the charged states, molecular structure and ion density distribution which are utilized to understand the atomic scale mechanism of corrosion of copper substrates under aqueous conditions. Increased concentration of chlorine and higher ambient temperature were found to expedite the corrosion of copper. In order to study the effect of solution states on the corrosion resistance of Cu, partial fractions of proton or hydroxide in water were configured, and higher corrosion rate at partial fraction hydroxide environment was observed. When the Cl{sup -} concentration is low, oxygen or hydroxide ion adsorption onto Cu surface has been confirmed in partial fraction hydroxide environment. Our study provides new atomic scale insights into the early stages of aqueous corrosion of metals such as copper.

  2. Irradiation-Accelerated Corrosion of Reactor Core Materials. Final Report

    SciTech Connect

    Jiao, Zhujie; Was, Gary; Bartels, David

    2015-04-02

    This project aims to understand how radiation accelerates corrosion of reactor core materials. The combination of high temperature, chemically aggressive coolants, a high radiation flux and mechanical stress poses a major challenge for the life extension of current light water reactors, as well as the success of most all GenIV concepts. Of these four drivers, the combination of radiation and corrosion places the most severe demands on materials, for which an understanding of the fundamental science is simply absent. Only a few experiments have been conducted to understand how corrosion occurs under irradiation, yet the limited data indicates that the effect is large; irradiation causes order of magnitude increases in corrosion rates. Without a firm understanding of the mechanisms by which radiation and corrosion interact in film formation, growth, breakdown and repair, the extension of the current LWR fleet beyond 60 years and the success of advanced nuclear energy systems are questionable. The proposed work will address the process of irradiation-accelerated corrosion that is important to all current and advanced reactor designs, but remains very poorly understood. An improved understanding of the role of irradiation in the corrosion process will provide the community with the tools to develop predictive models for in-reactor corrosion, and to address specific, important forms of corrosion such as irradiation assisted stress corrosion cracking.

  3. Environmentally Friendly Coating Technology for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael; Hanna, Joshua S.; Rawlins, James W.

    2016-01-01

    This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.

  4. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways. PMID:26114392

  5. Study of iron structure stability in high temperature molten lead-bismuth eutectic with oxygen injection using molecular dynamics simulation

    SciTech Connect

    Arkundato, Artoto; Su'ud, Zaki; Sudarko; Shafii, Mohammad Ali; Celino, Massimo

    2014-09-30

    Corrosion of structural materials in high temperature molten lead-bismuth eutectic is a major problem for design of PbBi cooled reactor. One technique to inhibit corrosion process is to inject oxygen into coolant. In this paper we study and focus on a way of inhibiting the corrosion of iron using molecular dynamics method. For the simulation results we concluded that effective corrosion inhibition of iron may be achieved by injection 0.0532 wt% to 0.1156 wt% oxygen into liquid lead-bismuth. At this oxygen concentration the structure of iron material will be maintained at about 70% in bcc crystal structure during interaction with liquid metal.

  6. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  7. IMPACT OF NUCLEAR MATERIAL DISSOLUTION ON VESSEL CORROSION

    SciTech Connect

    Mickalonis, J.; Dunn, K.; Clifton, B.

    2012-10-01

    Different nuclear materials require different processing conditions. In order to maximize the dissolver vessel lifetime, corrosion testing was conducted for a range of chemistries and temperature used in fuel dissolution. Compositional ranges of elements regularly in the dissolver were evaluated for corrosion of 304L, the material of construction. Corrosion rates of AISI Type 304 stainless steel coupons, both welded and non-welded coupons, were calculated from measured weight losses and post-test concentrations of soluble Fe, Cr and Ni.

  8. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  9. Fireside Corrosion USC Steering

    SciTech Connect

    G. R. Holcomb; J. Tylczak

    2011-09-07

    Oxy-Fuel Fireside Research goals are: (1) Determine the effect of oxy-fuel combustion on fireside corrosion - (a) Flue gas recycle choice, Staged combustion ramifications, (c) JCOAL Collaboration; and (2) Develop methods to use chromia solubility in ash as an 'ash corrosivity' measurement - (a) Synthetic ashes at first, then boiler and burner rig ashes, (b) Applicable to SH/RH conditions.

  10. Review of critical factors affecting crude corrosivity

    SciTech Connect

    Tebbal, S.; Kane, R.D.

    1996-08-01

    Lower quality opportunity crudes are now processed in most refineries and the source of the crudes may vary daily. These feedstocks, if not properly handled, can result in reduction in service life of equipment as well as costly failure and downtime. Analytical tools are needed to predict their high temperature corrosivity toward distillation units. Threshold in total sulfur and total acid number (TAN) have been used for many years as rules of thumb for predicting crude corrosivity, However, it is now realized that they are not accurate in their predictive ability. Crudes with similar composition and comparable with respect to process considerations have been found to be entirely different in their impact on corrosion. Naphthenic acid content, sulfur content, velocity, temperature, and materials of construction are the main factors affecting the corrosion process, Despite progress made in elucidating the role of the different parameters on the crude corrosivity process, the main problem is in calculating their combined effect, especially when the corroding stream is such a complex mixture. The TAN is usually related directly to naphthenic acid content. However, discrepancies between analytical methods and interference of numerous components of the crude itself lead to unreliable reported content of naphthenic acid. The sulfur compounds, with respect to corrosivity, appear to relate more to their decomposition at elevated temperature to form hydrogen sulfide than to their total content in crude. This paper reviews the present situation regarding crude corrosivity in distillation units, with the aim of indicating the extent of available information, and areas where further research is necessary.

  11. Prediction of Corrosion of Advanced Materials and Fabricated Components

    SciTech Connect

    A. Anderko; G. Engelhardt; M.M. Lencka; M.A. Jakab; G. Tormoen; N. Sridhar

    2007-09-29

    The goal of this project is to provide materials engineers, chemical engineers and plant operators with a software tool that will enable them to predict localized corrosion of process equipment including fabricated components as well as base alloys. For design and revamp purposes, the software predicts the occurrence of localized corrosion as a function of environment chemistry and assists the user in selecting the optimum alloy for a given environment. For the operation of existing plants, the software enables the users to predict the remaining life of equipment and help in scheduling maintenance activities. This project combined fundamental understanding of mechanisms of corrosion with focused experimental results to predict the corrosion of advanced, base or fabricated, alloys in real-world environments encountered in the chemical industry. At the heart of this approach is the development of models that predict the fundamental parameters that control the occurrence of localized corrosion as a function of environmental conditions and alloy composition. The fundamental parameters that dictate the occurrence of localized corrosion are the corrosion and repassivation potentials. The program team, OLI Systems and Southwest Research Institute, has developed theoretical models for these parameters. These theoretical models have been applied to predict the occurrence of localized corrosion of base materials and heat-treated components in a variety of environments containing aggressive and non-aggressive species. As a result of this project, a comprehensive model has been established and extensively verified for predicting the occurrence of localized corrosion as a function of environment chemistry and temperature by calculating the corrosion and repassivation potentials.To support and calibrate the model, an experimental database has been developed to elucidate (1) the effects of various inhibiting species as well as aggressive species on localized corrosion of nickel

  12. Conducting polymers as corrosion resistant coatings

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1994-09-01

    Although the majority of top coatings used for corrosion protection are electrically insulating, previous workers have proposed using an electrically active barrier for corrosion control. The most effective corrosion resistant undercoatings in use today are based on chromium compounds. Coatings based on other materials will need to replace these coatings by the turn of the century because of environmental and health concerns. For this reason the authors have begun an investigation of the use of conducting polymers as corrosion resistant coatings as an alternative to metal-based coatings. Conducting polymers have long been considered to be unsuitable for commercial processing, hindering their use for practical applications. Research in the field of electrically conducting polymers has recently produced a number of polymers such as polyaniline and its derivatives which are readily soluble in common organic solvents. The authors coating system, consisting of a conducting polyaniline primer layer, topcoated with epoxy or polyurethane, has been evaluated for corrosion resistance on mild steel substrates. In this paper, the authors report the results of laboratory testing under acidic and saline conditions and the results of testing in the severe launch environment at the Beach Testing Facility at Kennedy Space Center. The launch environment consists of exposure to corrosive HCl exhaust fumes and the salt spray from the Atlantic Ocean.

  13. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  14. Microbial Iron Respiration Can Protect Steel from Corrosion

    PubMed Central

    Dubiel, M.; Hsu, C. H.; Chien, C. C.; Mansfeld, F.; Newman, D. K.

    2002-01-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  15. Microbial iron respiration can protect steel from corrosion.

    PubMed

    Dubiel, M; Hsu, C H; Chien, C C; Mansfeld, F; Newman, D K

    2002-03-01

    Microbiologically influenced corrosion (MC) of steel has been attributed to the activity of biofilms that include anaerobic microorganisms such as iron-respiring bacteria, yet the mechanisms by which these organisms influence corrosion have been unclear. To study this process, we generated mutants of the iron-respiring bacterium Shewanella oneidensis strain MR-1 that were defective in biofilm formation and/or iron reduction. Electrochemical impedance spectroscopy was used to determine changes in the corrosion rate and corrosion potential as a function of time for these mutants in comparison to the wild type. Counter to prevailing theories of MC, our results indicate that biofilms comprising iron-respiring bacteria may reduce rather than accelerate the corrosion rate of steel. Corrosion inhibition appears to be due to reduction of ferric ions to ferrous ions and increased consumption of oxygen, both of which are direct consequences of microbial respiration. PMID:11872499

  16. Study on stainless steel electrode based on dynamic aluminum liquid corrosion mechanism.

    PubMed

    Hou, Hua; Yang, Ruifeng

    2009-01-01

    Scanning electrion microscope (SEM) was performed for investigations on the corrosion mechanism of stainless steel electrode in dynamic melting aluminum liquid. Microstructures and composition analysis was made by electron probe analysis (EPA) combined with metallic phase analysis. It can be concluded that the corrosion process is mainly composed of physical corrosion (flowing and scouring corrosion) and chemical corrosion (forming FeAl and Fe2Al5) and the two mechanisms usually exist simultaneously. The corrosion interface thickness is about 10 μm, which is different to usual interface width of hundreds μm in the static melting Al with iron matrix. PMID:25084422

  17. Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454

    SciTech Connect

    Frankel, G.S.; Xia, Z.

    1999-02-01

    The susceptibility of welded and unwelded samples of Al 5454 (UNS A95454) in the -O and -H34 tempers to pitting corrosion and stress corrosion cracking (SCC) in chloride solutions was studied. Welded samples were fabricated using the relatively new friction stir welding (FSW) process as well as a standard gas-tungsten arc welding process for comparison. Pitting corrosion was assessed through potentiodynamic polarization experiments. U-bend and slow strain rate tests were used to determine SCC resistance. The FSW samples exhibited superior resistance to pitting corrosion compared to the base metal and arc-welded samples. U-bend tests indicated adequate SCC resistance for the FSW samples. However, the FSW samples exhibited discontinuities that probably were associated with remnant boundaries of the original plates. These defects resulted in intermittent increased susceptibility to pitting and, particularly for Al 5454-H34 samples, poor mechanical properties in general.

  18. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells.

    PubMed

    Bozzini, Benedetto; Gianoncelli, Alessandra; Kaulich, Burkhard; Kiskinova, Maya; Prasciolu, Mauro; Sgura, Ivonne

    2010-07-19

    Nafion contamination by ferrous-alloy corrosion products, resulting in dramatic drops of the Ohmic potential, is a suspected major failure mode of polymer electrolyte membrane fuel cells that make use of metallic bipolar plates. This study demonstrates the potential of scanning transmission X-ray microscopy combined with X-ray absorption and fluorescence microspectroscopy for exploring corrosion processes of Ni and Fe electrodes in contact with a hydrated Nafion film in a thin-layer cell. The imaged morphology changes of the Ni and Fe electrodes and surrounding Nafion film that result from relevant electrochemical processes are correlated to the spatial distribution, local concentration, and chemical state of Fe and Ni species. The X-ray fluorescence maps and absorption spectra, sampled at different locations, show diffusion of corrosion products within the Nafion film only in the case of the Fe electrodes, whereas the Ni electrodes appear corrosion resistant. PMID:20564283

  19. Polarization-based optical fiber sensor of steel corrosion

    NASA Astrophysics Data System (ADS)

    Hu, Wenbin; Zhu, Cheng; Zheng, Xing; Gao, Min; Guo, Donglai; Chen, Wei

    2015-08-01

    Metal-coated D-shape optical fiber is serving as a polarizer by using its attenuation difference for two orthogonal fundamental modes. This paper presents a novel corrosion sensor, based on an iron-coated optical fiber polarizer. The sensor is fabricated by sputtering a Fe-C film on a side-polished single mode fiber. The extinction ratio and the optical power loss are varying during the corrosion process when the iron-coated sensor is exposed to a corrosive environment. The proposed sensor provides a new approach for monitoring the early-age corrosion of steel structures by tracing the variation of polarization characteristics.

  20. Microbiologically influenced corrosion (MIC) of storage tank bottom plates

    NASA Astrophysics Data System (ADS)

    Syafaat, Taufik A.; Ismail, Mokhtar Che

    2015-07-01

    Aboveground atmospheric storage tanks (AST) receive crude oil from offshore for storage and further processing. Integrity issue of AST storing crude oil is not only affected by external corrosion but also internal corrosion from crude oil that supports the growth of the microorganisms originating from the reservoir. The objective of this research is to study the effect of sulfate reduction bacteria (SRB) on the corrosion of AST. The results indicates that SRB has significant effect on the corrosion rate of storage tank bottom plate.

  1. Localized Corrosion of Alloy 22 -Fabrication Effects-

    SciTech Connect

    Rebak, R B

    2005-11-05

    This report deals with the impact of fabrication processes on the localized corrosion behavior of Alloy 22 (N06022). The four fabrication processes that were analyzed are: (1) Surface stress mitigation of final closure weld, (2) Manufacturing of the mockup container, (3) Black annealing of the container and (4) Use of different heats of Alloy 22 for container fabrication. Immersion and Electrochemical tests performed in the laboratory are generally aggressive and do not represent actual repository environments in Yucca Mountain. For example, to determine the intergranular attack in the heat affected zone of a weldment, tests are conducted in boiling acidic and oxidizing solutions according to ASTM standards. These solutions are used to compare the behavior of differently treated metallic coupons. Similarly for electrochemical tests many times pure sodium chloride or calcium chloride solutions are used. Pure chloride solutions are not representative of the repository environment. (1) Surface Stress Mitigation: When metallic plates are welded, for example using the Gas Tungsten Arc Welding (GTAW) method, residual tensile stresses may develop in the vicinity of the weld seam. Processes such as Low Plasticity Burnishing (LPB) and Laser Shock Peening (LSP) could be applied locally to eliminate the residual stresses produced by welding. In this study, Alloy 22 plates were welded and then the above-mentioned surface treatments were applied to eliminate the residual tensile stresses. The aim of the current study was to comparatively test the corrosion behavior of as-welded (ASW) plates with the corrosion behavior of plates with stress mitigated surfaces. Immersion and electrochemical tests were performed. Results from both immersion and electrochemical corrosion tests show that the corrosion resistance of the mitigated plates was not affected by the surface treatments applied. (2) Behavior of Specimens from a Mockup container: Alloy 22 has been extensively tested for

  2. The Corrosion and Preservation of Iron Antiques.

    ERIC Educational Resources Information Center

    Walker, Robert

    1982-01-01

    Discusses general corrosion reactions (iron to rust), including corrosion of iron, sulfur dioxide, chlorides, immersed corrosion, and underground corrosion. Also discusses corrosion inhibition, including corrosion inhibitors (anodic, cathodic, mixed, organic); safe/dangerous inhibitors; and corrosion/inhibition in concrete/marble, showcases/boxes,…

  3. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    SciTech Connect

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

  4. Detection of Intergranular Corrosion in Cold Plate Face Sheets

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Smith, Stephen W.; Piascik, Robert S.; Howell, Patricia A.

    2002-01-01

    Cold plates are critical for cooling electronic systems in the shuttle. As a result of the environmental conditions in which they operate, water can condense between them and a support shelf. In some cases, this water results in intergranular corrosion in the face sheet. If the intergranular corrosion sufficiently penetrates the face sheet, a coolant leak could occur and jeopardize cold plate operation. This paper examines techniques for detecting and characterizing the intergranular corrosion, to enable recertification of cold plates that have been in operation for 15 plus years. Intergranular corrosion was artificially induced in the face sheets of a series of cold plate specimens using an electrochemical process. Some of the cold plate specimens were separated for destructive characterization of the extent of corrosion produced by the electrochemical process and to insure the induced corrosion was intergranular. The rest of the specimens were characterized nondestructively using several techniques. X-ray tomography and ultrasonic techniques provided the best indication of corrosion in these specimens and will be the focus of this paper. An x-ray tomography technique was shown to be the most effective technique for characterizing depth of the intergranular corrosion. From these measurements, corrosion profile maps were developed that were consistent with subsequent destructive evaluations of the specimens. This enabled the assessment of NDE (ondestructive evaluation) standards to evaluate the viability of other NDE techniques. Due to system constraints, a different technique must be used to inspect an entire cold plate. An ultrasonic technique was shown to be very reliable for detection of corrosion in the unbacked regions of the face sheet. The ultrasonic technique was performed in an alcohol bath to avoid additional corrosion during the NDE evaluation. A pulse echo technique that focuses on the RMS value of the signal is shown to be very sensitive to the

  5. In-situ electrochemical study of corrosion of steel and aluminum/steel couples during cyclic corrosion test

    SciTech Connect

    Gao, G.

    1998-12-31

    Use of aluminum alloys for automotive applications is growing steadily. Galvanic corrosion is a major concern for those alloys. Because of the predominate use of steels in the automotive industry, the majority of accelerated test procedures commonly accepted by the industry are designed for cosmetic corrosion and perforation of steels. SAE 52334 and Ford Arizona Proving Ground (Ford APG) tests are two examples. Adopting those tests for galvanic corrosion of Al alloys without any fundamental understanding of the process may lead to misleading results. In this paper, electrochemical studies were conducted to examine the acceleration effects of several parameters on different types of corrosion. Galvanic corrosion of aluminum 6111 alloy and cold rolled steel (Al/ CRS) couples and general corrosion of cold rolled steel substrates were studied.

  6. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  7. Corrosion-resistant uranium

    SciTech Connect

    Bell, R.T.; Hovis, V.M.; Kollie, T.G.; Pullen, W.C.

    1983-05-31

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  8. Irritants and corrosives.

    PubMed

    Tovar, Richard; Leikin, Jerrold B

    2015-02-01

    This article reviews toxic chemicals that cause irritation and damage to single and multiple organ systems (corrosion) in an acute fashion. An irritant toxic chemical causes reversible damage to skin or other organ system, whereas a corrosive agent produces irreversible damage, namely, visible necrosis into integumentary layers, following application of a substance for up to 4 hours. Corrosive reactions can cause coagulation or liquefaction necrosis. Damaged areas are typified by ulcers, bleeding, bloody scabs, and eventual discoloration caused by blanching of the skin, complete areas of alopecia, and scars. Histopathology should be considered to evaluate questionable lesions. PMID:25455665

  9. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  10. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: HD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  11. Corrosion Preventive Compounds Lifetime Testing

    NASA Technical Reports Server (NTRS)

    Hale, Stephanie M.; Kammerer, Catherine C.; Copp, Tracy L.

    2007-01-01

    Lifetime Testing of Corrosion Preventive Compounds (CPCs) was performed to quantify performance in the various environments to which the Space Shuttle Orbiter is exposed during a flight cycle. Three CPCs are approved for use on the Orbiter: RD Calcium Grease, Dinitrol AV-30, and Braycote 601 EF. These CPCs have been rigorously tested to prove that they mitigate corrosion in typical environments, but little information is available on how they perform in the unique combination of the coastal environment at the launch pad, the vacuum of low-earth orbit, and the extreme heat of reentry. Currently, there is no lifetime or reapplication schedule established for these compounds that is based on this combination of environmental conditions. Aluminum 2024 coupons were coated with the three CPCs and exposed to conditions that simulate the environments to which the Orbiter is exposed. Uncoated Aluminum 2024 coupons were exposed to the environmental conditions as a control. Visual inspection and Electro- Impedance Spectroscopy (EIS) were performed on the samples in order to determine the effectiveness of the CPCs. The samples were processed through five mission life cycles or until the visual inspection revealed the initiation of corrosion and EIS indicated severe degradation of the coating.

  12. Control of metallic corrosion through microbiological route.

    PubMed

    Maruthamuthu, S; Ponmariappan, S; Mohanan, S; Palaniswamy, N; Palaniappan, R; Rengaswamy, N S

    2003-09-01

    Involvement of biofilm or microorganisms in corrosion processes is widely acknowledged. Although majority of the studies on microbiologically induced corrosion (MIC) have concentrated on aerobic/anaerobic bacteria. There are numerous aerobic bacteria, which could hinder the corrosion process. The microbiologically produced exopolymers provide the structural frame work for the biofilm. These polymers combine with dissolved metal ions and form organometallic complexes. Generally heterotrophic bacteria contribute to three major processes: (i) synthesis of polymers (ii) accumulation of reserve materials like poly-beta-hydroxy butrate (iii) production of high molecular weight extracellular polysaccharides. Poly-beta-hydroxy butyrate is a polymer of D(-)beta-hydroxy butrate and has a molecular weight between 60,000 and 2,50,000. Some extracellular polymers also have higher molecular weights. It seems that higher molecular weight polymer acts as biocoating. In the present review, role of biochemistry on corrosion inhibition and possibilities of corrosion inhibition by various microbes are discussed. The role of bacteria on current demand during cathodic protection is also debated. In addition, some of the significant contributions made by CECRI in this promising area are highlighted. PMID:15242295

  13. Constituent Particle Clustering and Pitting Corrosion

    NASA Astrophysics Data System (ADS)

    Harlow, D. Gary

    2012-08-01

    Corrosion is a primary degradation mechanism that affects the durability and integrity of structures made of aluminum alloys, and it is a concern for commercial transport and military aircraft. In aluminum alloys, corrosion results from local galvanic coupling between constituent particles and the metal matrix. Due to variability in particle sizes, spatial location, and chemical composition, to name a few critical variables, corrosion is a complex stochastic process. Severe pitting is caused by particle clusters that are located near the material surface, which, in turn, serve as nucleation sites for subsequent corrosion fatigue crack growth. These evolution processes are highly dependent on the spatial statistics of particles. The localized corrosion growth rate is primarily dependent on the galvanic process perpetuated by particle-to-particle interactions and electrochemical potentials. Frequently, severe pits are millimeters in length, and these pits have a dominant impact on the structural prognosis. To accommodate large sizes, a model for three-dimensional (3-D) constituent particle microstructure is proposed. To describe the constituent particle microstructure in three dimensions, the model employs a fusion of classic stereological techniques, spatial point pattern analyses, and qualitative observations. The methodology can be carried out using standard optical microscopy and image analysis techniques.

  14. The role of NaCl in flame chemistry, in the deposition process, and in its reactions with protective oxides as related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium chloride is believed to be the primary source of turbine engine contamination that contributes to hot corrosion. The behavior of NaCl-containing aerosols ingested with turbine intake air is very complex; some of the NaCl may vaporize during combustion while some may remain as particulates. The NaCl can lead to Na2SO4 formation by several possible routes or it can contribute to corrosion directly. Hydrogen or oxygen atom reaction with NaCl(c) was shown to result in the release of Na(g). Gaseous NaCl in flames can be partially converted to gaseous Na2SO4 by homogeneous reactions. The remaining gaseous NaCl and other Na-containing molecules can act as sodium carriers for condensate deposition of Na2SO4 on cool surfaces. A frozen boundary layer theory was developed to predict the rates of deposition. The condensed phase NaCl can be converted directly to condensed Na2SO4 by reaction with sulfur oxides and O2. Reaction of gaseous NaCl with Cr2O3 results in the vapor phase transport of chromium by the formation of complex Cr-containing gaseous molecules. Similar gaseous complexes are formed with molybdenum. The presence of gaseous NaCl was shown to affect the oxidation kinetics of Ni-Cr alloys. It also causes changes in the surface morphology of Al2O3 scales formed on Al-containing alloys.

  15. The Proposed Yucca Mountain Repository From A Corrosion Perspective

    SciTech Connect

    J.H. Payer

    2005-04-12

    Corrosion is a primary determinant of waste package performance at the proposed Yucca Mountain Repository and will control the delay time for radionuclide transport from the waste package. Corrosion is the most probable and most likely degradation process that will determine when packages will be penetrated and the shape, size, and distribution of those penetrations. The general issues in corrosion science, materials science and electrochemistry are well defined, and the knowledge base is substantial for understanding corrosion processes. In this paper, the Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control.

  16. Electrochemical study of aluminum corrosion in boiling high purity water

    NASA Technical Reports Server (NTRS)

    Draley, J. E.; Legault, R. A.

    1969-01-01

    Electrochemical study of aluminum corrosion in boiling high-purity water includes an equation relating current and electrochemical potential derived on the basis of a physical model of the corrosion process. The work involved an examination of the cathodic polarization behavior of 1100 aluminum during aqueous oxidation.

  17. Less-Toxic Coatings for Inhibiting Corrosion of Aluminum

    NASA Technical Reports Server (NTRS)

    Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl

    2003-01-01

    Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.

  18. BWR steel containment corrosion

    SciTech Connect

    Tan, C.P.; Bagchi, G.

    1996-04-01

    The report describes regulatory actions taken after corrosion was discovered in the drywell at the Oyster Creek Plant and in the torus at the Nine Mile Point 1 Plant. The report describes the causes of corrosion, requirements for monitoring corrosion, and measures to mitigate the corrosive environment for the two plants. The report describes the issuances of generic letters and information notices either to collect information to determine whether the problem is generic or to alert the licensees of similar plants about the existence of such a problem. Implementation of measures to enhance the containment performance under severe accident conditions is discussed. A study by Brookhaven National Laboratory (BNL) of the performance of a degraded containment under severe accident conditions is summarized. The details of the BNL study are in the appendix to the report.

  19. Corrosion Inhibitors for Aluminum.

    ERIC Educational Resources Information Center

    Muller, Bodo

    1995-01-01

    Describes a simple and reliable test method used to investigate the corrosion-inhibiting effects of various chelating agents on aluminum pigments in aqueous alkaline media. The experiments that are presented require no complicated or expensive electronic equipment. (DDR)

  20. Method for inhibiting corrosion

    SciTech Connect

    Wu, Y.; Stapp, P. R.

    1985-12-03

    A composition comprising the reaction adduct or neutralized product resulting from the reaction of a maleic anhydride and an oil containing a polynuclear aromatic compound is provided which, when applied to a metal surface, forms a corrosion-inhibiting film thereon. The composition is particularly useful in the treatment of down-hole metal surfaces in oil and gas wells to inhibit the corrosion of the metal.

  1. Corrosion resistant filter unit

    SciTech Connect

    Gentry, J.M.

    1992-02-18

    This patent describes a fluid filter assembly adapted for the filtration of corrosive fluid to be injected into a well bore at pressure levels which may exceed 10,000 pounds per square. It comprises: a frame assembly for the mounting of a portion of the fluid filter assembly therein, the frame assembly; filter pods, the plurality of filter pods forming at least two banks of filter pods, each bank having at least two filter pods therein, each bank of the filter pods being supported by one or more the supports of the plurality of supports secured to selected struts of the frame assembly; an inlet manifold to direct the corrosive fluid to the plurality of filter pods, the inlet manifold being interconnected to the banks of filter pods formed by the filter pods whereby flow of the corrosive fluid can be directed to each bank of the filter pods; an outlet manifold to direct the corrosive fluid from the filter pods, the outlet manifold being interconnected to the banks of filter pods formed by the filter pods; a first valve means to control the flow of the corrosive fluid between banks of filter pods formed by the filter pods whereby the flow of the corrosive fluid can be selectively directed to each bank of the filter pods; a second valve means to selectively control the flow of the corrosive fluid between the inlet manifold and the outlet manifold; and union means for interconnecting the filter pods, inlet manifold and outlet manifold, each of the union means including mechanical connection means and internal seal means for isolating the corrosive fluids from the mechanical connection means.

  2. 49 CFR 192.925 - What are the requirements for using External Corrosion Direct Assessment (ECDA)?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Corrosion Direct Assessment (ECDA)? 192.925 Section 192.925 Transportation Other Regulations Relating to... External Corrosion Direct Assessment (ECDA)? (a) Definition. ECDA is a four-step process that combines... corrosion to the integrity of a pipeline. (b) General requirements. An operator that uses direct...

  3. 49 CFR 192.925 - What are the requirements for using External Corrosion Direct Assessment (ECDA)?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Corrosion Direct Assessment (ECDA)? 192.925 Section 192.925 Transportation Other Regulations Relating to... External Corrosion Direct Assessment (ECDA)? (a) Definition. ECDA is a four-step process that combines... corrosion to the integrity of a pipeline. (b) General requirements. An operator that uses direct...

  4. 49 CFR 192.925 - What are the requirements for using External Corrosion Direct Assessment (ECDA)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Corrosion Direct Assessment (ECDA)? 192.925 Section 192.925 Transportation Other Regulations Relating to... External Corrosion Direct Assessment (ECDA)? (a) Definition. ECDA is a four-step process that combines... corrosion to the integrity of a pipeline. (b) General requirements. An operator that uses direct...

  5. Corrosion Behavior of an Abradable Seal Coating System

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Xu, Cunguan; Lan, Hao; Huang, Chuanbing; Zhou, Yang; Du, Lingzhong; Zhang, Weigang

    2014-08-01

    A novel NiTi/BN composite abradable coating and two traditional Ni/C and Ni/BN coatings were manufactured with NiAl as the bond layer using thermal spray technology and their corrosion behaviors were investigated. In salt spray corrosion testing of the Ni/BN coating, defective sites of the metal matrix were corroded preferentially. Simulated occlusion experiments and electrochemical tests indicated that migration of ions resulted in pH decrease and Cl- enrichment in defects, and a more aggressive electrolyte led to a decrease of the corrosion potential of the metal inside defects but an increase of the corrosion current density, representing an autocatalytic corrosion process. Moreover, galvanic corrosion between the top and bond coatings of the abradable system was studied via the electrochemical technique. The results showed that, for the NiTi/BN, Ni/BN, and Ni/graphite coatings with a NiAl bond coating, current flow was generated between the anode and cathode. The NiTi/BN coating acted as the cathode due to its passivation, while the Ni/BN and Ni/graphite coatings acted as the anode because of their lower corrosion potential compared with the NiAl coating. The anode suffered serious corrosion damage due to galvanic corrosion, while the cathode corroded only slightly.

  6. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  7. Remote measurement of corrosion using ultrasonic techniques

    SciTech Connect

    Garcia, K.M.; Porter, A.M.

    1995-02-01

    Supercritical water oxidation (SCWO) technology has the potential of meeting the US Department of Energy`s treatment requirements for mixed radioactive waste. A major technical constraint of the SCWO process is corrosion. Safe operation of a pilot plant requires monitoring of the corrosion rate of the materials of construction. A method is needed for measurement of the corrosion rate taking place during operation. One approach is to directly measure the change in wall thickness or growth of oxide layer at critical points in the SCWO process. In FY-93, a brief survey of the industry was performed to evaluate nondestructive evaluation (NDE) methods for remote corrosion monitoring in supercritical vessels. As a result of this survey, it was determined that ultrasonic testing (UT) methods would be the most cost-effective and suitable method of achieving this. Therefore, the objective for FY-94 was to prove the feasibility of using UT to monitor corrosion of supercritical vessels remotely during operation without removal of the insulation.

  8. Corrosion Behaviour of A380 Aluminiun Alloy by Semi-Solid Rheocasting

    SciTech Connect

    Forn, A.; Ruperez, E.; Baile, M. T.; Campillo, M.; Menargues, S.; Espinosa, I.

    2007-04-07

    A comparative study was performed on the corrosion behavior of a component of A380 aluminium alloy obtained by Semi-Solid Rheocasting (SSR). The effect of heat treatments T5 and T6 on corrosion resistance was compared with components without heat treatment by SSR processes. Corrosion studies were performed using an acetic acid salt spray test, impedance measurements and polarization curves using a 3,5%Na Cl test solution. The corrosion progress is described by micrographic analysis.

  9. Perspectives on Localized Corrosion in Thin Layers of Particulate

    SciTech Connect

    Payer, Joe H.; Kelly, Robert G.

    2007-07-01

    The requirements for the initiation and propagation of localized corrosion are reviewed, and the stability criteria for sustained localized corrosion are discussed. A conceptual framework is applied to a specific scenario of a hot metal surface covered by a thin layer of particulate containing dissolvable salts in the presence of air of limited humidity. A number of processes are demonstrated to affect the crevice corrosion propagation, stifling and arrest. Contributions of the particulate layer properties, the anode, cathode and coupled processes are identified, showing that any of these can control localized corrosion propagation. Whether stifling or arrest occur will depend upon the material and environmental conditions for a given case. The findings add to the technical basis for the analysis of localized corrosion by a decision tree methodology. (authors)

  10. Vapor aluminum diffused steels for high-temperature corrosion resistance

    SciTech Connect

    Bayer, G.T.

    1995-08-01

    Steel products and fabrications that are vapor aluminum diffused by the pack cementation process offer greatly enhanced corrosion resistance in high-temperature oxidizing, sulfidizing, carburizing, and hydrogen-containing environments. Pipes and tubing are most frequently diffused with aluminum for use as transfer lines, heat exchangers, reactors, or in process furnaces handling corrosive materials. Vapor aluminum diffusion by the pack cementation process is the only practical way of providing this form of high-temperature corrosion resistance on the inside of pipes and tubes.

  11. Research needs for corrosion control and prevention in energy conservation systems

    SciTech Connect

    Brooman, E.W.; Hurwitch, J.W.

    1985-06-01

    A group of 28 electrochemists, materials scientists and corrosion engineers was brought together to determine if the government could have a role as a focal point for corrosion R and D, discuss opportunities in fundamental research and solving corrosion problems, and develop a research agenda. Participants from government, industry and academia assembled into four technical discussion groups: localized corrosion, general corrosion, high temperature corrosion, and corrosion control and prevention. Research needs were identified, discussed, then assigned a figure of merit. Some 44 corrosion control and prevention topics were identified as having a high priority for consideration for funding. Another 35 topics were identified as having a medium priority for funding. When classified according to corrosion phenomenon, the areas which should receive the most attention are molten salt attack, crevice corrosion, stress-corrosion cracking, erosion-corrosion, pitting attack, intergranular attack and corrosion fatigue. When classified according to the sector or system involved, those which should receive the most attention are chemical processes, transportation, buildings and structures, electric power generation, and batteries and fuel cells.

  12. Coating Prospects in Corrosion Prevention of Aluminized Steel and Its Coupling with Magnesium

    NASA Astrophysics Data System (ADS)

    Sun, Fuyan

    In this study, a plasma electrolytic oxidation (PEO) process was used to form oxide coating on aluminized steel, heated aluminized steel and magnesium. A potentiodynamic polarization corrosion test was employed to investigate the general corrosion properties. Galvanic corrosion of steel samples and magnesium samples was studied by zero resistance ammeter (ZRA) tests and boiling tests. Scanning electron microscopy (SEM) and EDS were used to investigate the coating microstructure and the coating/substrate interface. In general, the PEO coatings on all three substrate can help prevent general corrosion. 6-min coated magnesium with unipolar current mode performs best in most galvanic couplings for preventing both general corrosion and galvanic corrosion. Factors which could influence galvanic corrosion behaviors of tested samples were discussed based on area ratios of anode/cathode and cell potential driving force during the ZRA corrosion tests and boiling tests.

  13. Corrosion testing using isotopes

    DOEpatents

    Hohorst, F.A.

    1995-12-05

    A method is described for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested is described composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness. 3 figs.

  14. Corrosion testing using isotopes

    DOEpatents

    Hohorst, Frederick A.

    1995-12-05

    A method for determining the corrosion behavior of a material with respect to a medium in contact with the material by: implanting a substantially chemically inert gas in a matrix so that corrosion experienced by the material causes the inert gas to enter the medium; placing the medium in contact with the material; and measuring the amount of inert gas which enters the medium. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a body of the material, which body has a surface to be contacted by the medium; and a substantially chemically inert gas implanted into the body to a depth below the surface. A test sample of a material whose resistance to corrosion by a medium is to be tested, composed of: a substrate of material which is easily corroded by the medium, the substrate having a surface; a substantially chemically inert gas implanted into the substrate; and a sheet of the material whose resistance to corrosion is to be tested, the sheet being disposed against the surface of the substrate and having a defined thickness.

  15. Detecting Corrosion Under Paint and Insulation

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2011-01-01

    Corrosion is a major concern at the Kennedy Space Center in Florida due to the proximity of the center to the Atlantic Ocean and to salt water lagoons. High humidity, salt fogs, and ocean breezes, provide an ideal environment in which painted steel structures become corroded. Maintenance of painted steel structures is a never-ending process.

  16. Kinetic studies of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1977-01-01

    Use of time-to-failure curves for stress-corrosion cracking processes may lead to incorrect estimates of structural life, if material is strongly dependent upon prestress levels. Technique characterizes kinetics of crackgrowth rates and intermediate arrest times by load-level changes.

  17. Strong, corrosion-resistant aluminum tubing

    NASA Technical Reports Server (NTRS)

    Reed, M. W.; Adams, F. F.

    1980-01-01

    When aluminum tubing having good corrosion resistance and postweld strength is needed, type 5083 alloy should be considered. Chemical composition is carefully controlled and can be drawn into thin-wall tubing with excellent mechanical properties. Uses of tubing are in aircraft, boats, docks, and process equipment.

  18. Corrosion Monitoring System

    SciTech Connect

    Dr. Russ Braunling

    2004-10-31

    The Corrosion Monitoring System (CMS) program developed and demonstrated a continuously on-line system that provides real-time corrosion information. The program focused on detecting pitting corrosion in its early stages. A new invention called the Intelligent Ultrasonic Probe (IUP) was patented on the program. The IUP uses ultrasonic guided waves to detect small defects and a Synthetic Aperture Focusing Technique (SAFT) algorithm to provide an image of the pits. Testing of the CMS demonstrated the capability to detect pits with dimensionality in the sub-millimeter range. The CMS was tested in both the laboratory and in a pulp and paper industrial plant. The system is capable of monitoring the plant from a remote location using the internet.

  19. A model of corrosion expertise

    SciTech Connect

    Trethewey, K.R.; Roberge, P.R.

    1996-10-01

    This paper describes an approach to reduce the complexity of knowledge engineering projects in corrosion by developing an object-oriented framework to guide the elicitation and organization of corrosion and materials engineering expertise. A model is presented into which corrosion expertise can be structured in a qualitative and quantitative way. This model could be used as the framework for a corrosion management expert system.

  20. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  1. Characterization of anode stub corrosion in Hall reduction cells

    SciTech Connect

    Wang, X.; Peterson, R.D.

    1996-10-01

    Mild steel is widely used as a structural material in the aluminum smelting industry. In prebaked-anode reduction cells, the stability of the steel used as an anode stub against high temperature oxidation and corrosion is very important with regard to its full service life and maintaining aluminum purity. This paper deals with the accelerated corrosion of the steel material used as anode stubs in the presence of the sulfur-containing anode gases. Oxidized scale and the interface region of the oxidation reaction zone in a stub from a reduction cell were fully examined using SEM and X-ray diffraction. The sulfur from the bath and the anode carbon, released as SO{sub 2}, plays an important role in accelerating the anode stub corrosion process. A sulfidation-oxidation corrosion mechanism is proposed to support the corrosion phenomena observed on the steel anode pieces.

  2. Corrosion analysis of accumulative roll bonded aluminum 6016

    NASA Astrophysics Data System (ADS)

    Searcy, Jacquelyn Alisha

    Accumulative Roll Bonding is a Severe Plastic Deformation Process that is used to strengthen a material and promote grain refinement. Accumulative Roll Bonded Aluminum 6016 samples were investigated to determine their corrosion properties. The tests performed consisted of standard techniques including Cyclic Polarization Potentials, Exfoliation Corrosion (EXCO), Electrochemical Impedance Spectroscopy (EIS), Light Microscopy, and Electron Microprobe Analysis. From these tests, it was determined that for Al 6016, the Ultra Fine Grained samples obtained by Accumulative Roll Bonding are in general more susceptible to corrosion than the coarse grained sample. The higher corrosion rate was caused by the additional cold work, which increased the number of grain boundaries and rolled-in debris. The advantage however was that the corrosion was parallel to the surface and rather than deep into the sample as with the as-received 6016.

  3. Tribological and corrosion behaviors of carburized AISI 4340 steel

    NASA Astrophysics Data System (ADS)

    Thong-on, Atcharawadi; Boonruang, Chatdanai

    2016-01-01

    AISI 4340 steel is widely used in automotive and aircraft industries as gear components. In such applications, surface hardening processes such as carburizing are required in order to improve the life time of the components. There are many studies showing the tribological behavior of the carburized steel, but the corrosion behavior has not yet been clarified. This paper reports on both tribological and corrosion behaviors of the carburized AISI 4340 steel. Factor associated with carburizing, such as the quantities of deposited carbon, dissolved carbon, and formed Cr23C6 and Fe3C, affect the tribological and corrosion behaviors of the steel by improving hardness, friction, lubrication, and wear resistance; but corrosion resistance is reduced. The dissolved carbon affects the formation of the oxide layer of the carburized steel, by obstructing the continuous oxide layer formation and by decreasing the chromium content of the steel, leading to the decrease in the corrosion resistance of the steel.

  4. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  5. Corrosion resistant PEM fuel cell

    DOEpatents

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K. NY); Cunningham, Kevin M.

    2011-06-07

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  6. DWPF corrosion study

    SciTech Connect

    Selby, C.L.

    1986-12-17

    Corrosion of candidate alloys for the DWPF SRAT, SME, and melter was tested in the large (1/3 scale) SRAT/SME, the 200th scale SRAT/SME, and the LSFM. Flat or twisted coupons with or without a weld bead and U-bend specimens (specimens bent into a ''U'' shape and bolted together at the ends to stress the bend area) were installed on racks that ensured electrical isolation to avoid galvanic effects. Teflon/reg sign/ washers isolated the low temperature exposure racks and ceramic washers isolated the high temperature exposure racks. Serrated washers simulated crevices, but crevice corrosion did not result. 9 refs., 9 tabs.

  7. Aqueous corrosion behavior of uranium-molybdenum alloys

    NASA Astrophysics Data System (ADS)

    Gardner, Levi D.

    Nuclear fuel characterization requires understanding of the various conditions to which materials are exposed in-reactor. One of these important conditions is corrosion, particularly that of fuel constituents. Therefore, corrosion behavior is of special interest and an essential part of nuclear materials characterization efforts. In support of the Office of Material Management and Minimization's Reactor Conversion Program, monolithic uranium-10 wt% molybdenum alloy (U-Mo) is being investigated as a low enriched uranium alternative to highly enriched uranium dispersion fuel currently used in domestic high performance research reactors. The aqueous corrosion behavior of U-Mo is being examined at Pacific Northwest National Laboratory (PNNL) as part of U-Mo fuel fabrication capability activity. No prior study adequately represents this behavior given the current state of alloy composition and thermomechanical processing methods, and research reactor water chemistry. Two main measurement techniques were employed to evaluate U-Mo corrosion behavior. Low-temperature corrosion rate values were determined by means of U-Mo immersion testing and subsequent mass-loss measurements. The electrochemical behavior of each processing condition was also qualitatively examined using the techniques of corrosion potential and anodic potentiodynamic polarization. Scanning electron microscopy (SEM) and optical metallography (OM) imagery and hardness measurements provided supplemental corrosion analysis in an effort to relate material corrosion behavior to processing. The processing effects investigated as part of this were those of homogenization heat treatment (employed to mitigate the effects of coring in castings) and sub-eutectoid heat treatment, meant to represent additional steps in fabrication (such as hot isostatic pressing) performed at similar temperatures. Immersion mass loss measurements and electrochemical results both showed very little appreciable difference between

  8. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    PubMed

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. PMID:25150521

  9. Application of simulation techniques for internal corrosion prediction

    SciTech Connect

    Palacios T, C.A.; Hernandez, Y.

    1997-08-01

    Characterization of corrosion in the oil and gas industry is becoming of increasing importance for safety reasons as well as for the preservation of production facilities; to prevent down time and damage to the environment. This article presents the methodology used by this company to characterize the corrosion behavior of the whole production facility, taking into consideration the hydrodynamic and thermodynamic conditions of the produced fluids (flow velocities, flow pattern, liquid holdup, pressure, temperature, etc.) as they flow from the reservoir through the surface installations (flowlines, gas/oil gathering and transmission lines, gas processing plants, artificial lift systems, etc.). The methodology uses Petroleum Engineering and Two-Phase modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate taking into consideration the corrosive/erosive nature of the produced fluid and (2) characterize the corrosive nature of the produced fluid as it flows through the above mentioned installations. The modeling techniques were performed using commercially available simulators and CO{sub 2} corrosion rates were determined using well known published correlations. For H{sub 2}S corrosion, NACE MR0175 criteria is applied. The application of this methodology has allowed corrosion control strategies, protection and monitoring criteria, inhibitor optimization and increased the effectiveness of already existing corrosion control systems.

  10. Treatment Prevents Corrosion in Steel and Concrete Structures

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In the mid-1990s, to protect rebar from corrosion, NASA developed an electromigration technique that sends corrosion-inhibiting ions into rebar to prevent rust, corrosion, and separation from the surrounding concrete. Kennedy Space Center worked with Surtreat Holding LLC, of Pittsburgh, Pennsylvania, a company that had developed a chemical option to fight structural corrosion, combining Surtreat's TPS-II anti-corrosive solution and electromigration. Kennedy's materials scientists reviewed the applicability of the chemical treatment to the electromigration process and determined that it was an effective and environmentally friendly match. Ten years later, NASA is still using this approach to fight concrete corrosion, and it has also developed a new technology that will further advance these efforts-a liquid galvanic coating applied to the outer surface of reinforced concrete to protect the embedded rebar from corrosion. Surtreat licensed this new coating technology and put it to use at the U.S. Army Naha Port, in Okinawa, Japan. The new coating prevents corrosion of steel in concrete in several applications, including highway and bridge infrastructures, piers and docks, concrete balconies and ceilings, parking garages, cooling towers, and pipelines. A natural compliment to the new coating, Surtreat's Total Performance System provides diagnostic testing and site analysis to identify the scope of problems for each project, manufactures and prescribes site-specific solutions, controls material application, and verifies performance through follow-up testing and analysis.

  11. Steel reinforcement corrosion detection with coaxial cable sensors

    NASA Astrophysics Data System (ADS)

    Muchaidze, Iana; Pommerenke, David; Chen, Genda

    2011-04-01

    Corrosion processes in the steel reinforced structures can result in structural deficiency and with time create a threat to human lives. Millions of dollars are lost each year because of corrosion. According to the U. S. Federal Highway Administration (FHWA) the average annual cost of corrosion in the infrastructure sector by the end of 2002 was estimated to be $22.6 billion. Timely remediation/retrofit and effective maintenance can extend the structure's live span for much less expense. Thus the considerable effort should be done to deploy corrosion monitoring techniques to have realistic information on the location and the severity of damage. Nowadays commercially available techniques for corrosion monitoring require costly equipment and certain interpretational skills. In addition, none of them is designed for the real time quality assessment. In this study the crack sensor developed at Missouri University of Science and Technology is proposed as a distributed sensor for real time corrosion monitoring. Implementation of this technology may ease the pressure on the bridge owners restrained with the federal budget by allowing the timely remediation with the minimal financial and labor expenses. The sensor is instrumented in such a way that the location of any discontinuity developed along its length can be easily detected. When the sensor is placed in immediate vicinity to the steel reinforcement it is subjected to the same chemical process as the steel reinforcement. And corrosion pitting is expected to develop on the sensor exactly at the same location as in the rebar. Thus it is expected to be an effective tool for active corrosion zones detection within reinforced concrete (RC) members. A series of laboratory tests were conducted to validate the effectiveness of the proposed methodology. Nine sensors were manufactured and placed in the artificially created corrosive environment and observed over the time. To induce accelerated corrosion 3% and 5% Na

  12. Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon-steel corrosion in acidic media.

    PubMed

    Oguzie, E E; Enenebeaku, C K; Akalezi, C O; Okoro, S C; Ayuk, A A; Ejike, E N

    2010-09-01

    The inhibition of low-carbon-steel corrosion in 1M HCl and 0.5M H(2)SO(4) by extracts of Dacryodis edulis (DE) was investigated using gravimetric and electrochemical techniques. DE extract was found to inhibit the uniform and localized corrosion of carbon steel in the acidic media, affecting both the cathodic and anodic partial reactions. The corrosion process was inhibited by adsorption of the extracted organic matter onto the steel surface in a concentration-dependent manner and involved both protonated and molecular species. Molecular dynamics simulations were performed to illustrate the process of adsorption of some specific components of the extract. PMID:20609846

  13. De-alloying and stress-corrosion cracking. Final report

    SciTech Connect

    Sieradzki, K.

    1998-09-01

    This research program has had two major areas of focus that are related: (1) alloy corrosion and (2) the role of selective dissolution in the stress corrosion cracking of alloy systems. These interrelated issues were examined using model systems such as Ag-Au and Cu-Au by conventional electrochemical techniques, in situ scanning tunneling microscopy (STM), in situ small angle neutron scattering (SANS), ultrahigh speed digital photography of fracture events, and computer simulations. The STM and SANS work were specifically aimed at addressing a roughening transition known to occur in alloy systems undergoing corrosion at electrochemical potentials greater than the so-called critical potential. Analytical models of de-alloying processes including the roughening transition were developed that specifically include curvature effects that are important in alloy corrosion processes. Stress-corrosion experiments were performed on the same model systems using rapid optical and electrochemical techniques on 50 {micro}m--250 {micro}m thick sheets and small diameter wires. The primary goal of this work was to develop a fundamental understanding of the corrosion and electrochemistry of alloys and the stress-corrosion cracking processes these alloys undergo. Computer simulations and analytical work identified surface stress and an important parameter in environmentally assisted fracture. The major results of the research on this program since the summer of 1993 are briefly summarized.

  14. General Corrosion and Localized Corrosion of the Drip Shield

    SciTech Connect

    F. Hua; K. Mon

    2003-06-24

    The recommended waste package (WP) design is described in BSC (2001a). The design includes a double-wall WP underneath a protective drip shield (DS) (BSC 2003a). The purpose of the process-level models developed in this report is to model dry oxidation (DOX), general corrosion (GC) and localized corrosion (LC) of the DS plate material, which is made of Ti Grade 7. The DS design also includes structural supports fabricated from Ti Grade 24. Degradation of Ti Grade 24 is not considered in this report. The DS provides protection for the waste package outer barrier (WPOB) both as a barrier to seepage water contact and a physical barrier to potential rockfall. This Model Report (MR) serves as a feed to the Integrated Waste Package Degradation Model (IWPD) analyses, and was developed in accordance with the Technical Work Plan (TWP) (BSC 2002a). The models contained in this report serve as a basis to determine whether or not the performance requirements for the DS can be met.

  15. Vanadium corrosion studies. Final report, 1 February 1989-30 June 1993

    SciTech Connect

    Bornstein, N.; Roth, H.; Pike, R.

    1993-06-30

    Vanadium present in certain crude and residual fuel oils, is converted within the burner of the gas turbine engine to the refractory dioxide, which in flight is fully oxidized to the pentoxide. Yttrium oxide, stable in the presence of the oxides of sulfur is identified and verified as a corrosion inhibitor. A chelation process to produce a hydrolytic stable fuel soluble yttrium additive is described.... Vanadium oxide corrosion, Hot corrosion, Sulfidation corrosion, Hot corrosion attenuation, Fuel additives, Water stable fuel soluble yttrium compounds, Chelation.

  16. Development of regional corrosion maps for galvanized steel by linking the RADM engineering model with an atmospheric corrosion model

    NASA Astrophysics Data System (ADS)

    Spence, John W.; McHenry, John N.

    Annual corrosion rates for galvanized steel standard panels were estimated for eastern North America and part of southern Canada using the Regional Acid Deposition Model Engineering Model Model (ACM). The galvanized steel ACM examines the contributions of wet and dry deposition, including anthropogenic and naturally occurring atmospheric species to galvanized steel structure corrosion. The results show agreement between model-predicted and field-measured annual corrosion rates of galvanized steel panel except for an exposure site located in up-state New York. Further comparison of corrosion rates showed some spatial disagreement of the relative contributions to the individual corrosion processes, particularly for the New York site. In addition, RADM EM MM-4 was used to predict the change in ambient sulfur (S) concentrations and hydrogen ion deposition from a hypothetical uniform 50°, reduction in S emissions. Using the ACM, the effects of the emission reduction on the annually estimated corrosion rates were modeled. The results show a beneficial reduction in regional corrosion rates estimated annually. However, due to nonlinearities associated with wet and dry deposition, the corrosion rates decline in a less than 1:1 proportion to the emissions reduction.

  17. TRU drum corrosion task team report

    SciTech Connect

    Kooda, K.E.; Lavery, C.A.; Zeek, D.P.

    1996-05-01

    During routine inspections in March 1996, transuranic (TRU) waste drums stored at the Radioactive Waste Management Complex (RWMC) were found with pinholes and leaking fluid. These drums were overpacked, and further inspection discovered over 200 drums with similar corrosion. A task team was assigned to investigate the problem with four specific objectives: to identify any other drums in RWMC TRU storage with pinhole corrosion; to evaluate the adequacy of the RWMC inspection process; to determine the precise mechanism(s) generating the pinhole drum corrosion; and to assess the implications of this event for WIPP certifiability of waste drums. The task team investigations analyzed the source of the pinholes to be Hcl-induced localized pitting corrosion. Hcl formation is directly related to the polychlorinated hydrocarbon volatile organic compounds (VOCs) in the waste. Most of the drums showing pinhole corrosion are from Content Code-003 (CC-003) because they contain the highest amounts of polychlorinated VOCs as determined by headspace gas analysis. CC-001 drums represent the only other content code with a significant number of pinhole corrosion drums because their headspace gas VOC content, although significantly less than CC-003, is far greater than that of the other content codes. The exact mechanisms of Hcl formation could not be determined, but radiolytic and reductive dechlorination and direct reduction of halocarbons were analyzed as the likely operable reactions. The team considered the entire range of feasible options, ranked and prioritized the alternatives, and recommended the optimal solution that maximizes protection of worker and public safety while minimizing impacts on RWMC and TRU program operations.

  18. Corrosion performance of alumina scales in coal gasification environments

    SciTech Connect

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  19. Ultrasonic monitoring of pitting corrosion

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J. C.; Cegla, F. B.; Bazaz, H.; Lozev, M.

    2013-01-01

    Exposure to corrosive substances in high temperature environments can cause damage accumulation in structural steels, particularly in the chemical and petrochemical industries. The interaction mechanisms are complex and varied; however initial damage propagation often manifests itself in the form of localized areas of increased material loss. Recent development of an ultrasonic wall thickness monitoring sensor capable of withstanding temperatures in excess of 500°C has allowed permanent monitoring within such hostile environments, providing information on how the shape of a pulse which has reflected from a corroding surface can change over time. Reconstructing localized corrosion depth and position may be possible by tracking such changes in reflected pulse shape, providing extra information on the state of the backwall and whether process conditions should be altered to increase plant life. This paper aims to experimentally investigate the effect certain localized features have on reflected pulse shape by `growing' artificial defects into the backwall while wall thickness is monitored using the sensor. The size and complexity of the three dimensional scattering problem lead to the development of a semi-analytical simulation based on the distributed point source method (DPSM) which is capable of simulating pulse reflection from complex surfaces measuring approximately 17×10λ Comparison to experimental results show that amplitude changes are predicted to within approximately 1dB and that pulse shape changes are accurately modelled. All experiments were carried out at room temperature, measurements at high temperature will be studied in the future.

  20. Corrosion and repairs of ammonium carbamate decomposers

    SciTech Connect

    De Romero, M.F.; Galban, J.P.

    1996-05-01

    Corrosion-erosion problems occurred in the carbon steel base metal of the ammonium carbamate decomposers in an urea extraction process lined with type 316L (UNS S31603) urea grade stainless steel. The cladding was replaced by weld overlay using a semiautomatic gas metal arc welding process. The first layer was alloy 25%Cr-15%Ni-2%Mo (UNS W30923); the second layer was alloy 25%Cr-22%Ni-2%Mo (UNS W31020).

  1. Experimental Study on Rebar Corrosion Using the Galvanic Sensor Combined with the Electronic Resistance Technique.

    PubMed

    Xu, Yunze; Li, Kaiqiang; Liu, Liang; Yang, Lujia; Wang, Xiaona; Huang, Yi

    2016-01-01

    In this paper, a new kind of carbon steel (CS) and stainless steel (SS) galvanic sensor system was developed for the study of rebar corrosion in different pore solution conditions. Through the special design of the CS and SS electronic coupons, the electronic resistance (ER) method and zero resistance ammeter (ZRA) technique were used simultaneously for the measurement of both the galvanic current and the corrosion depth. The corrosion processes in different solution conditions were also studied by linear polarization resistance (LPR) and the measurements of polarization curves. The test result shows that the galvanic current noise can provide detailed information of the corrosion processes. When localized corrosion occurs, the corrosion rate measured by the ER method is lower than the real corrosion rate. However, the value measured by the LPR method is higher than the real corrosion rate. The galvanic current and the corrosion current measured by the LPR method shows linear correlation in chloride-containing saturated Ca(OH)₂ solution. The relationship between the corrosion current differences measured by the CS electronic coupons and the galvanic current between the CS and SS electronic coupons can also be used to evaluate the localized corrosion in reinforced concrete. PMID:27618054

  2. Detecting corrosion in plastic encapsulated micro-electronics packages

    SciTech Connect

    Sorensen, N.R.; Braithwaite, J.W.; Peterson, D.W.; Sweet, J.N.

    1998-08-01

    In the past, most defense microelectronics components were packaged in ceramic, hermetic enclosures. PEMs are not hermetic because the plastic molding compounds are permeable to moisture. This lack of hermeticity creates an unknown liability, especially with respect to corrosion of the metallization features. This potential liability must be addressed to ensure long-term reliability of these systems is maintained under conditions of long-term dormant storage. However, the corrosion process is difficult to monitor because it occurs under the encapsulating plastic and is therefore not visible. The authors have developed techniques that allow them to study corrosion of Al bondpads and traces under relevant atmospheric corrosion conditions. The cornerstone of this capability is the ATC 2.6, a microelectronic test device designed at Sandia National Laboratories. Corrosion tests were performed by exposing test chips to aggressive environments. The electrical response of the ATC indicated an increase in bondpad resistance with exposure time. Note that the change in resistance is not uniform from one bondpad to another. This illustrates the stochastic nature of the corrosion process. The change in resistance correlated with visual observation of corrosion of the bondpads on the unencapsulated test chips.

  3. Use this ``tool box`` to detect corrosion through insulation

    SciTech Connect

    Carriveau, G.W.

    1997-09-01

    There is a need for appropriate nondestructive evaluation (NDE) inspection techniques that can detect corrosion (or conditions that would enhance the corrosion process) without the necessary downtime and expense of removing the insulation, and then replacing and repairing it. Recognizing how severe and costly the problem is, the Materials Technology Institute of the Chemical Processing Industries (MTI) authorized a state-of-the-art survey (unpublished), Detection of Corrosion Through Insulation. This article summarizes MTI`s report and discusses the application of NDE methods for the detection of corrosion through insulation (CTI). This entails inspection for defects (corrosion, erosion, pitting, cracking, thinning, and others) in components covered with insulation, without disturbing the insulation. The defects may be located on the inside diameter, the outside diameter, or within the wall of the component. A portion (subset) of this corrosion problem is often called corrosion under insulation (CUI). This refers only to damage occurring between the inside layer of the insulation and the outside surface of the metal component.

  4. Corrosion behavior of coated 2 1/4 Cr-1 Mo and carbon steels in a simulated high p/sub S/sub 2// waste heat recovery system environment of a coal gasifier. [Al and/or Cr coatings applied by pack-diffusion process

    SciTech Connect

    Baxter, D.J.

    1986-03-01

    Corrosion tests have been conducted on coated 2-1/4Cr-1Mo and A106 carbon steels in a gaseous environment typical of that expected in a downstream waste-heat recovery system of a coal gasifier. The environment contained controlled oxygen and sulfur partial pressures, and the tests were run in a rig designed to expose specimens under simulated heat-exchanger conditions. Uncoated steel substrates exhibited breakaway corrosion behavior. Incoloy 800 also exhibited breakaway corrosion behavior. Coatings containing the stable oxide-forming elements Al and/or Cr were applied by pack-diffusion processes by several commercial vendors. Coatings containing Al contained numerous internal oxide particles and cracks while chromizing occasionally resulted in coatings containing voids. Results indicate that a minimum Cr concentration of approximately 20 to 22 wt % is required to suppress rapid corrosive degradation in the most aggressive environment used in the investigation. A minimum Al concentration could not be as closely defined, but would appear to lie in the range of 14 to 20 wt %. A minimum total concentration of combined additions of Al and Cr could not be defined. The presence of cracks in the aluminized materials promotes internal oxidation. Two Ni-base weld metals were used to simulate joining or repair operations of prior aluminized steel substrates. Both Inconel 625 and Inconel 72 exhibited breakaway corrosion behavior, the former at an unacceptable rate and the latter at a rate on the borderline of acceptability. The corrosion behavior of all coated and coated/welded materials is described and the results used to formulate a provisional specification for the procurement of coatings for eventual commercial application. 11 refs., 15 figs., 5 tabs.

  5. Hot corrosion of S-57, 1 cobalt-base alloy

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1977-01-01

    A cobalt base alloy, S-57, was hot corrosion tested in Mach 0.3 burner rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2, 5, and 10 ppm synthetic sea salt and 4 ppm sodium sulfate (Na2SO4). S-57 underwent accelerated corrosion only under the most severe test conditions, for example, 4 ppm Na2SO4 at 900 C. The process of the accelerated corrosion was primarily sulfidation.

  6. Process technology and effects of spallation products: Circuit components, maintenance, and handling

    SciTech Connect

    Sigg, B.; Haines, S.J.; Dressler, R.; McManamy, T.

    1996-06-01

    Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handling needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.

  7. Experiments and models of general corrosion and flow-assisted corrosion of materials in nuclear reactor environments

    NASA Astrophysics Data System (ADS)

    Cook, William Gordon

    Corrosion and material degradation issues are of concern to all industries. However, the nuclear power industry must conform to more stringent construction, fabrication and operational guidelines due to the perceived additional risk of operating with radioactive components. Thus corrosion and material integrity are of considerable concern for the operators of nuclear power plants and the bodies that govern their operations. In order to keep corrosion low and maintain adequate material integrity, knowledge of the processes that govern the material's breakdown and failure in a given environment are essential. The work presented here details the current understanding of the general corrosion of stainless steel and carbon steel in nuclear reactor primary heat transport systems (PHTS) and examines the mechanisms and possible mitigation techniques for flow-assisted corrosion (FAC) in CANDU outlet feeder pipes. Mechanistic models have been developed based on first principles and a 'solution-pores' mechanism of metal corrosion. The models predict corrosion rates and material transport in the PHTS of a pressurized water reactor (PWR) and the influence of electrochemistry on the corrosion and flow-assisted corrosion of carbon steel in the CANDU outlet feeders. In-situ probes, based on an electrical resistance technique, were developed to measure the real-time corrosion rate of reactor materials in high-temperature water. The probes were used to evaluate the effects of coolant pH and flow on FAC of carbon steel as well as demonstrate of the use of titanium dioxide as a coolant additive to mitigated FAC in CANDU outlet feeder pipes.

  8. 219-S CORROSION STUDY

    SciTech Connect

    DIVINE JR; PARSONS GL

    2008-12-01

    A minor leak was detected in a drain line for Hood 2B located in the 222-S Laboratory. The line transfers radioactive waste, spent analytical standards, and chemicals used in various analytical procedures. Details are in the report provided by David Comstock, 2B NDE June 2008, work package LAB-WO-07-2012. Including the noted leak, the 222-S Laboratory has experienced two drain line leaks in approximately the last two years of operation. As a consequence, CH2M HILL Hanford Group, Inc. (CH2M HILL) requested the support of ChemMet, Ltd., PC (ChemMet) at the Hanford Site 222-S Laboratory. The corrosion expertise from ChemMet was required prior to preparation of a compatibility assessment for the 222-S Laboratory waste transfer system to assure the expected life of the piping system is extended as much as practicable. The system includes piping within the 222-S Laboratory and the 219-S Waste Storage and Transfer Facility and Operations Process. The ChemMet support was required for an assessment by 222-S staff to analyze what improvements to operational activities may be implemented to extend the tank/piping system life. This assessment will include a summary of the various material types, age, and locations throughout the facility. The assessment will also include a discussion of materials that are safe for drain line disposal on a regular basis, materials that are safe for disposal on a case-by-case basis including specific additional requirements such as flushing, neutralization to a specific pH, and materials prohibited from disposal. The assessment shall include adequate information for 222-S Laboratory personnel to make informed decisions in the future disposal of specific material types by discussing types of compatibility of system materials and potential wastes. The assessment is expected to contain some listing of acceptable waste materials but is not anticipated to be a complete or comprehensive list. Finally the assessment will encompass a brief discussion of

  9. Development of an Accelerated Test Method for the Determination of Susceptibility to Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    Ambrose, John R.

    1991-01-01

    The theoretical rationale is presented for use of a repetitive cyclic current reversal voltammetric technique for characterization of localized corrosion processes, including atmospheric corrosion. Applicability of this proposed experimental protocol is applied to characterization of susceptibility to crevice and pitting corrosion, atmospheric corrosion and stress corrosion cracking. Criteria upon which relative susceptibility is based were determined and tested using two iron based alloys commonly in use at NASA-Kennedy; A36 (a low carbon steel) and 4130 (a low alloy steel). Practicality of the procedure was demonstrated by measuring changes in anodic polarization behavior during high frequency current reversal cycles of 25 cycles per second with 1 mA/sq cm current density amplitude in solutions containing Cl anions. The results demonstrated that, due to excessive polarization which affects conductivity of barrier corrosion product layers, A36 was less resistant to atmospheric corrosion than its 4130 counterpart; behavior which was also demonstrated during exposure tests.

  10. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  11. Thermal sprayed zirconium coatings for corrosion resistance

    SciTech Connect

    Bamola, R.K.

    1992-01-01

    Vacuum Plasma Spraying (VPS) is conducted in inert reduced pressures. This results in higher particle velocities than in atmospheric plasma spraying. Reverse arc sputter cleaning and pre-heating of the workpiece lead to elevated substrate temperatures during deposition, allowing sintering of the coating and, thus, enhanced densities and bond strengths. Inert Environment Electric Arc Spraying (IEAS) is performed in inert gas chambers, utilizing wire as the feedstock. This leads to lower gas content in the coating, since the initial gas content in wire is lower than that of the powder feedstock used in VPS. Controlled atmosphere sprayed zirconium coatings had inferior mechanical and corrosion properties when compared with bulk zirconium. The VPS coatings displayed higher bond strengths and better cavitation erosion resistance than did the IEAS coatings. The IEAS coatings had lower gas content and showed better electrochemical and corrosion behavior. The lower gas content for IEAS was due to a lower initial gas level in the wire feedstock used in this process. Also, scanning electron microscopy revealed that larger particles result in the IEAS process. Thus, a smaller surface-area-to-volume ratio is available for gas-metal reactions to occur. Improvements in mechanical and corrosion properties for the IEAS coatings were due to elevated substrate temperatures during deposition. Compressive surface stresses induced by post-spray shot-peening enhanced corrosion and cavitation resistance of IEAS coatings. Coating porosity caused failure during immersion testing. Therefore, it was concluded that controlled environment thermal spraying of zirconium is not suitable for forming corrosion resistant coatings on steel. ZrN coatings were formed by electric arc spraying using a nitrogen shroud and post-spray nitriding. Two phases; ZrN and zirconium solid solution, exist in the as-sprayed coating. Nitriding increases the proportion of ZrN.

  12. THE PROPOSED YUCCA MOUNTAIN REPOSITORY FROM A CORROSION PERSPECTIVE

    SciTech Connect

    J.H. Payer

    2005-07-29

    In this paper, the proposed Yucca Mountain Repository is viewed from a corrosion perspective. A major component of the long-term strategy for safe disposal of nuclear waste at the Yucca Mountain Repository is first to completely isolate the radionuclides in the waste packages for long times and to greatly retard the egress and transport of radionuclides from penetrated packages. Therefore, long-lived waste packages are important. The corrosion resistance of the waste package outer canister is reviewed, and a framework for the analysis of localized corrosion processes is presented. An overview is presented of the Materials Performance targeted thrust of the U.S. Department of Energy/Office of Civilian Radioactive Waste Management's Office of Science and Technology and International. The thrust program strives for increased scientific understanding, enhanced process models and advanced technologies for corrosion control.

  13. Inhibition of sweet corrosion in subsea flowlines

    SciTech Connect

    Simon Thomas, M.J.J.; Hebert, P.B.; Jordan, K.G.; Lorimer, S.E.

    1998-12-31

    Corrosion inhibition is the principal means of corrosion control in sweet service flowlines between subsea wells and processing platforms in the Gulf of Mexico. In view of the temperatures and the well conditions, hydrate control chemicals have to be injected as well. The paper addresses the challenges of selecting corrosion inhibitors that are suitable for the prevailing flowline conditions, are compatible with hydrate inhibition, and with the materials of the subsea umbilical. Initial experience based on limited field monitoring data is reviewed. Key findings include the need to carefully consider partitioning of inhibitor components in the various liquid and gas phases along the line, the difficulties experienced with interpreting monitoring results and the perceived need for more detailed in-line corrosion monitoring. Inhibitor effectiveness is discussed in terms of a surface blocking model. One candidate inhibitor was rejected as it was ineffective under conditions of low water cut in hexane (simulated dense gas phase). Another inhibitor appears to exhibit different steady states depending on its concentration in the aqueous phase.

  14. Wall thickness design and corrosion management

    SciTech Connect

    Gestel, W.M. van; Guijt, J.

    1994-12-31

    In 1995, Norske Shell will install two 36-in. sweet wet gas pipe lines in the Norwegian sector of the North Sea. The lines cross the Norwegian trench with water depths up to 350 meter. For the last 3.5 km. of the route the pipelines will be laid in a tunnel which will be flooded after construction. The two lines will transport largely untreated well fluids from the Troll field to an onshore processing plant at Kollsness, North of Bergen. From there sales gas will be transported to the continent via the Furopipe and Zeepipe systems. Gas contracts covering 30 years have been concluded with gas utilities on the continent. The maximum wall thickness that could be installed was limited by the capabilities of the present generation of lay barges and pipe mill capacities. The over-thickness, i.e. beyond that what is required for pressure containment and external collapse, is available as corrosion allowance. The paper discusses a novel probabilistic approach to define the corrosion control measures. The corrosion control system is based on the injection of glycol for corrosion mitigation and inspection by ultrasonic internal smart pigs, which in combination with identified fall back options, ensure a minimum 50 year service life.

  15. Automated corrosion system in a moist environment

    SciTech Connect

    Hallman, R.L. Jr.; Calhoun, C.L.

    1999-03-19

    In an effort to assist researchers investigating the moisture-generated corrosion of metals and ceramics, a unique exposure system was developed. The initial goal of this system was to monitor corrosion ranging from a few monolayers at the outset of the corrosion process to high mass gains in more extensively corroded material. The new system uses a small robot arm for sample manipulation; gravimetric and Fourier transform infrared (FTIR) spectroscopy for corrosion-product determination; and a gas blending system to control the moisture content of the glove box in which the system is housed. The system's computer control can be configured to coordinate the examination of as many as 20 samples by periodic weighing and FTIR scanning. The computer also performs such functions as data logging of the temperature and pressure of the system and of the flow rate and moisture content of the purge gas. One main benefit of the computer-controlled robotic system is its ability to monitor samples 2 4 hours a day with precision control; this reduces problems stemming from human error or inconsistency of human technique.

  16. Corrosion studies with pixe

    NASA Astrophysics Data System (ADS)

    Anwar Chaudhri, M.; Crawford, A.

    1981-03-01

    To investigate the possible causes of corrosion of some of the tooth paste tubes of a major international cosmetic product manufacturer, the elemental compositions of corroded and clean unused tubes were compared, using PIXE. It was observed that some of the corroded tubes contained much higher amounts of Ti, Fe, Ga and Zn than the clean tubes, while the concentrations of Cr and Ni showed no significant difference between the two types of tubes. Only certain regions of one of the tubes were found to contain higher concentrations of Cu. Those regions were badly corroded and had the highest concentrations of Ti, Fe, Ga and Zn, too. It is suggested that the presence of higher amounts of Ti, Fe, Ga and Zn, and especially of Cu, in the aluminium sheets used to manufacture the tooth paste tubes, may be one of the reasons for the corrosion of some of the tooth paste tubes.

  17. Space Shuttle Orbiter corrosion history, 1981-1993: A review and analysis of issues involving structures and subsystems

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes past corrosion issues experienced by the NASA space shuttle orbiter fleet. Design considerations for corrosion prevention and inspection methods are reviewed. Significant corrosion issues involving structures and subsystems are analyzed, including corrective actions taken. Notable successes and failures of corrosion mitigation systems and procedures are discussed. The projected operating environment used for design is contrasted with current conditions in flight and conditions during ground processing.

  18. CORROSION PROTECTION OF ALUMINUM

    DOEpatents

    Dalrymple, R.S.; Nelson, W.B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

  19. Corrosion Protection of Aluminum

    DOEpatents

    Dalrymple, R. S.; Nelson, W. B.

    1963-07-01

    Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred.

  20. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  1. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  2. Stress Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Advanced testing of structural materials was developed by Lewis Research Center and Langley Research Center working with the American Society for Testing and Materials (ASTM). Under contract, Aluminum Company of America (Alcoa) conducted a study for evaluating stress corrosion cracking, and recommended the "breaking load" method which determines fracture strengths as well as measuring environmental degradation. Alcoa and Langley plan to submit the procedure to ASTM as a new testing method.

  3. Papering Over Corrosion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Kennedy Space Center's battle against corrosion led to a new coating that was licensed to GeoTech and is commercially sold as Catize. The coating uses ligno sulfonic acid doped polyaniline (Ligno-Pani), also known as synthetic metal. Ligno-Pani can be used to extend the operating lives of steel bridges as one example of its applications. future applications include computers, televisions, cellular phones, conductive inks, and stealth technology.

  4. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  5. Corrosion in supercritical fluids

    SciTech Connect

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  6. Corrosion detection by induction

    NASA Astrophysics Data System (ADS)

    Roddenberry, Joshua L.

    Bridges in Florida are exposed to high amounts of humidity due to the state's geography. This excess moisture results in a high incidence of corrosion on the bridge's steel support cables. Also, the inclusion of ineffective waterproofing has resulted in additional corrosion. As this corrosion increases, the steel cables, responsible for maintaining bridge integrity, deteriorate and eventually break. If enough of these cables break, the bridge will experience a catastrophic failure resulting in collapse. Repairing and replacing these cables is very expensive and only increases with further damage. As each of the cables is steel, they have strong conductive properties. By inducing a current along each group of cables and measuring its dissipation over distance, a picture of structural integrity can be determined. The purpose of this thesis is to prove the effectiveness of using electromagnetic techniques to determine cable integrity. By comparing known conductive values (determined in a lab setting) to actual bridge values, the tester will be able to determine the location and severity of any damage, if present.

  7. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  8. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    PubMed Central

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  9. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  10. Corrosion behavior of engineering alloys in synthetic wastewater

    NASA Astrophysics Data System (ADS)

    Sandoval-Jabalera, R.; Arias-Del Campo, E.; Chacón-Nava, J. G.; Martínez-Villafañe, A.; Malo-Tamayo, J. M.; Mora-Mendoza, J. L.

    2006-02-01

    The corrosion behavior of 1018, 410, and 800 steels exposed to synthetic wastewater have been studied using linear polarization resistance, cyclic potentiodynamic curves (CPCs), electrochemical noise (EN), and electrochemical impedance spectroscopy (EIS) tests. The conditions were: a biochemical oxygen demand of 776 ppm; a chemical oxygen demand of 1293 ppm; a pH of 8; and a cell temperature of 25 °C. From the CPC and EN results, no localized corrosion was found for the stainless steels. However, small indications of a possible localized corrosion process were detected for the 1018 steel. The EIS results revealed that different corrosion mechanisms occurred in the carbon steel compared with the stainless steels. The results show that the corrosion mechanism strongly depends on the type of steel. Overall, the 1018 steel exhibited the highest corrosion rate, followed by the 410 alloy. The highest corrosion resistance was achieved by the 800 alloy. In addition, scanning electron microscopy analyses were carried out to explain the experimental findings.

  11. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%. PMID:22561212

  12. [Microbial corrosion of dental alloy].

    PubMed

    Li, Lele; Liu, Li

    2004-10-01

    There is a very complicated electrolytical environment in oral cavity with plenty of microorganisms existing there. Various forms of corrosion would develop when metallic prosthesis functions in mouth. One important corrosive form is microbial corrosion. The metabolic products, including organic acid and inorganic acid, will affect the pH of the surface or interface of metallic prosthesis and make a change in composition of the medium, thus influencing the electron-chemical reaction and promoting the development of corrosion. The problem of develpoment of microbial corrosion on dental alloy in the oral environment lies in the primary condition that the bacteria adhere to the surface of alloy and form a relatively independent environment that promotes corrosion. PMID:15553877

  13. Corrosion by oxygen in oil and gas well casings

    SciTech Connect

    Martucci, S.; Dinon, M. )

    1993-10-01

    In September 1987, the Della 1 gas well in the Cooper Basin in South Australia blew out to surface. Originally, it was believed that sulfate-reducing bacteria (SRB) had perforated the casings, but numerous workovers on other wells and subsequent investigations indicated that SRB were not the major problem but that corrosion was simply occurring by an oxygen-reduction cathode process. The paper describes the failures and investigates the mechanism of corrosion.

  14. Corrosion experience with a slurry-fed ceramic melter

    SciTech Connect

    Barnes, S.M.; Sevigny, G.J.; Goles, R.W.

    1982-03-01

    This report presents the findings of an investigation into the long-term performance of construction materials for joule-heated, ceramic-lined melters. The materials investigated include: the glass contact refractories, the melter electrodes, and the process off-gas containment materials. The corrosion rate and mechanism for these materials are presented. The report also includes the initial corrosion data from testing of improved effluent containment materials.

  15. Electrochemical and Mechanical Behavior of Lead-Silver and Lead-Bismuth Casting Alloys for Lead-Acid Battery Components

    NASA Astrophysics Data System (ADS)

    Osório, Wislei R.; Peixoto, Leandro C.; Garcia, Amauri

    2015-09-01

    The present study focuses on the interrelation of microstructure, mechanical properties, and corrosion resistance of Pb-Ag and Pb-Bi casting alloys, which can be used in the manufacture of lead-acid battery components, as potential alternatives to alloys currently used. A water-cooled solidification system is used, in which vertical upward directional solidification is promoted permitting a wide range of microstructures to be investigated. Correlations between microstructural arrays, tensile strengths, and corrosion resistances of Pb-1 wt pct Ag, Pb-2.5 wt pct Ag, Pb-1 wt pct Bi, and Pb-2.5 wt pct Bi alloys are envisaged. It is shown that a compromise between corrosion resistance (represented by the corrosion current density) and mechanical properties (represented by the ultimate tensile strength) can be obtained. Comparisons between specific strengths and mechanical/corrosion ratios are also made. It is also shown that, for microstructures solidified under cooling rates higher than 10 K/s, the Pb-Ag alloys exhibit higher specific strength and mechanical/corrosion ratio. In contrast, for casting processes in which the cooling rates are lower than 5 K/s, the dilute Pb-Bi alloy ( i.e., 1 wt pct Bi) is shown to have more appropriate requirements for lead-acid battery components. Comparisons between specific strengths, mechanical/corrosion ratio, and relative weight and cost with Pb-Sn and Pb-Sb alloys are also made.

  16. Chemical corrosion potential in boilers

    SciTech Connect

    Bairr, D.L.; McDonough, C.J.

    1998-12-31

    Misuse or abuse of chelants has long been recognized as a potential corrosion problem in boilers. In recent years all polymer chemical treatment programs have been introduced and although they are much more benign even all polymer programs must be properly designed and controlled. Under extreme conditions a similar corrosion potential exists. This paper discusses the potential for chelant or polymer corrosion in boilers and the proper safeguards. Case histories are presented.

  17. Accelerated Stress-Corrosion Testing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Test procedures for accelerated stress-corrosion testing of high-strength aluminum alloys faster and provide more quantitative information than traditional pass/fail tests. Method uses data from tests on specimen sets exposed to corrosive environment at several levels of applied static tensile stress for selected exposure times then subsequently tensile tested to failure. Method potentially applicable to other degrading phenomena (such as fatigue, corrosion fatigue, fretting, wear, and creep) that promote development and growth of cracklike flaws within material.

  18. Corrosion and mechanical behavior of materials for coal gasification applications

    SciTech Connect

    Natesan, K.

    1980-05-01

    A state-of-the-art review is presented on the corrosion and mechanical behavior of materials at elevated temperatures in coal-gasification environments. The gas atmosphere in coal-conversion processes are, in general, complex mixtures which contain sulfur-bearing components (H/sub 2/S, SO/sub 2/, and COS) as well as oxidants (CO/sub 2//CO and H/sub 2/O/H/sub 2/). The information developed over the last five years clearly shows sulfidation to be the major mode of material degradation in these environments. The corrosion behavior of structural materials in complex gas environments is examined to evaluate the interrelationships between gas chemistry, alloy chemistry, temperature, and pressure. Thermodynamic aspects of high-temperature corrosion processes that pertain to coal conversion are discussed, and kinetic data are used to compare the behavior of different commercial materials of interest. The influence of complex gas environments on the mechanical properties such as tensile, stress-rupture, and impact on selected alloys is presented. The data have been analyzed, wherever possible, to examine the role of environment on the property variation. The results from ongoing programs on char effects on corrosion and on alloy protection via coatings, cladding, and weld overlay are presented. Areas of additional research with particular emphasis on the development of a better understanding of corrosion processes in complex environments and on alloy design for improved corrosion resistance are discussed. 54 references, 65 figures, 24 tables.

  19. Examination of Corrosion Products and the Alloy Surface After Crevice Corrosion of a Ni-Cr-Mo- Alloy

    SciTech Connect

    X. Shan; J.H. Payer

    2006-06-09

    The objective of this study is to investigate the composition of corrosion products and the metal surface within a crevice after localized corrosion. The analysis provides insight into the propagation, stifling and arrest processes for crevice corrosion and is part of a program to analyze the evolution of localized corrosion damage over long periods of time, i.e. 10,000 years and longer. The approach is to force the initiation of crevice corrosion by applying anodic polarization to a multiple crevice assembly (MCA). Results are reported here for alloy C-22, a Ni-Cr-Mo alloy, exposed to a high temperature, concentrated chloride solution. Controlled crevice corrosion tests were performed on C-22 under highly aggressive, accelerated condition, i.e. 4M NaCl, 100 C and anodic polarization to -0.15V-SCE. The crevice contacts were by either a polymer tape (PTFE) compressed by a ceramic former or by a polymer (PTFE) crevice former. Figure 1 shows the polarization current during a crevice corrosion test. After an incubation period, several initiation-stifle-arrest events were indicated. The low current at the end of the test indicated that the metal surface had repassivated.

  20. Effect of Heat Treatment on Corrosion and Stress Corrosion Cracking of S32205 Duplex Stainless Steel in Caustic Solution

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya; Singh, Preet M.

    2009-06-01

    Duplex stainless steels (DSSs) have generally performed very well in caustic environments. However, some corrosion and stress corrosion cracking (SCC) of DSSs have been reported in different pulp mill environments employing caustic solutions. Studies have shown that the corrosion and SCC susceptibility of DSSs depend on the alloy composition and microstructure of the steel. In this study, the effect of a sulfide-containing caustic environment (pulping liquor) and material properties (DSS alloy composition and microstructure) on the corrosion and SCC of DSSs was evaluated. During metal fabrication processes, localized areas of DSSs may be exposed to different temperatures and cooling rates, which may lead to changes in the microstructure in these regions. This change in microstructure, in turn, may affect the general and localized corrosion or SCC susceptibility of the affected area as compared to the rest of the metal. Hence, the effect of different annealing and aging temperatures as well as cooling rates on the microstructure and corrosion behavior of S32205 DSSs in caustic environment was evaluated. The results showed that changes in the microstructure of S32205 DSSs due to selected heat treatments did not have a significant effect on the general corrosion susceptibility of the steel in caustic environment, but its SCC susceptibility varied with changes in microstructures.

  1. 49 CFR 172.558 - CORROSIVE placard.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SECURITY PLANS Placarding § 172.558 CORROSIVE placard. (a) Except for size and color, the CORROSIVE placard... the CORROSIVE placard must be black in the lower portion with a white triangle in the upper...

  2. 49 CFR 172.558 - CORROSIVE placard.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SECURITY PLANS Placarding § 172.558 CORROSIVE placard. (a) Except for size and color, the CORROSIVE placard... the CORROSIVE placard must be black in the lower portion with a white triangle in the upper...

  3. Electrochemical noise measurements of sustained microbially influenced pitting corrosion in a laboratory flow loop system.

    SciTech Connect

    Lin, Y. J.

    1999-01-13

    Because of the chaotic nature of the corrosion process and the complexity of the electrochemical noise signals that are generated, there is no generally accepted method of measuring and interpreting these signals that allows the consistent detection and identification of sustained localized pitting (SLP) as compared to general corrosion. We have reexamined electrochemical noise analysis (ENA) of localized corrosion using different hardware, signal collection, and signal processing designs than those used in conventional ENA techniques. The new data acquisition system was designed to identify and monitor the progress of SLP by analyzing the power spectral density (PSD) of the trend of the corrosion current noise level (CNL) and potential noise level (PNL). Each CNL and PNL data point was calculated from the root-mean- square value of the ac components of current and potential fluctuation signals, which were measured simultaneously during a short time period. The PSD analysis results consistently demonstrated that the trends of PNL and CNL contain information that can be used to differentiate between SLP and general corrosion mechanisms. The degree of linear slope in the low-frequency portion of the PSD analysis was correlated with the SLP process. Laboratory metal coupons as well as commercial corrosion probes were tested to ensure the reproducibility and consistency of the results. The on-line monitoring capability of this new ENA method was evaluated in a bench-scale flow-loop system, which simulated microbially influenced corrosion (MIC) activity. The conditions in the test flow-loop system were controlled by the addition of microbes and different substrates to favor accelerated corrosion. The ENA results demonstrated that this in-situ corrosion monitoring system could effectively identify SLP corrosion associated with MIC, compared to a more uniform general corrosion mechanism. A reduction in SLP activity could be clearly detected by the ENA monitoring system

  4. Alloys For Corrosive, Hydrogen-Rich Environments

    NASA Technical Reports Server (NTRS)

    Mcpherson, William B.; Bhat, Biliyar N.; Chen, Po-Shou; Kuruvilla, A. K.; Panda, Binayak

    1993-01-01

    "NASA-23" denotes class of alloys resisting both embrittlement by hydrogen and corrosion. Weldable and castable and formed by such standard processes as rolling, forging, and wire drawing. Heat-treated to obtain desired combinations of strength and ductility in ranges of 100 to 180 kpsi yield strength, 120 to 200 kpsi ultimate tensile strength, and 10 to 30 percent elongation at break. Used in place of most common aerospace structural alloy, Inconel(R) 718.

  5. Corrosion and fatigue of surgical implants

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.

    1975-01-01

    Implants for the treatment of femoral fractures, mechanisms leading to the failure or degradation of such structures, and current perspectives on surgical implants are discussed. Under the first heading, general usage, materials and procedures, environmental conditions, and laboratory analyses of implants after service are considered. Corrosion, crevice corrosion, stress corrosion cracking, intergranular corrosion, pitting corrosion, fatigue, and corrosion fatigue are the principal degradation mechanisms described. The need for improvement in the reliability of implants is emphasized.

  6. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    NASA Astrophysics Data System (ADS)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  7. CURRENT CORROSION BY-PRODUCTS AND CORROSION CONTROL RESEARCH

    EPA Science Inventory

    USEPA research in the area of corrosion control consists of a combination of in-house research and extramural projects. he extramural projects have recently addressed the corrosion of solder in some Long Island water supplies, impacts of municipal ion-exchange softening on corros...

  8. EFFECTS OF CORROSIVE TREATMENT ON STAINLESS STEEL SURFACE FINISHES AND BACTERIAL ATTACHMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corrosion, an important factor for the durability of a metal finish after exposure to water and chemicals during processing, is a real concern for many wet process industries. The effects of rouging, corrosion, and biofouling are costly problems on the surface of stainless steel, the most common mat...

  9. The mechanism of borosilicate glass corrosion revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Nagel, Thorsten; Kilburn, Matt R.; Janssen, Arne; Icenhower, Jonathan P.; Fonseca, Raúl O. C.; Grange, Marion; Nemchin, Alexander A.

    2015-06-01

    Currently accepted mechanistic models describing aqueous corrosion of borosilicate glasses are based on diffusion-controlled hydrolysis, hydration, ion exchange reactions, and subsequent re-condensation of the hydrolyzed glass network, leaving behind a residual hydrated glass or gel layer. Here, we report results of novel oxygen and silicon isotope tracer experiments with ternary Na borosilicate glasses that can be better explained by a process that involves the congruent dissolution of the glass, which is spatially and temporally coupled to the precipitation and growth of an amorphous silica layer at an inwardly moving reaction interface. Such a process is thermodynamically driven by the solubility difference between the glass and amorphous silica, and kinetically controlled by glass dissolution reactions at the reaction front, which, in turn, are controlled by the transport of water and solute elements through the growing corrosion zone. Understanding the coupling of these reactions is the key to understand the formation of laminar or more complex structural and chemical patterns observed in natural corrosion zones of ancient glasses. We suggest that these coupled processes also have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  10. ELECTROCHEMICAL STUDIES ON THE CORROSION OF CARBON STEEL IN OXALIC ACID CLEANING SOLUTIONS

    SciTech Connect

    Wiersma, B; John Mickalonis, J

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS has utilized oxalic acid to accomplish this task. Since the waste tanks are constructed of carbon steel, a significant amount of corrosion may occur. Although the total amount of corrosion may be insignificant for a short contact time, a significant amount of hydrogen may be generated due to the corrosion reaction. Linear polarization resistance and anodic/cathodic polarization tests were performed to investigate the corrosion behavior during the process. The effect of process variables such as temperature, agitation, aeration, sample orientation, light as well as surface finish on the corrosion behavior were evaluated. The results of the tests provided insight into the corrosion mechanism for the iron-oxalic acid system.

  11. Corrosion resistance of premodeled wires made of stainless steel used for heart electrotherapy leaders

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.; Młynarski, R.; Szatka, W.

    2012-05-01

    The purpose of the study is to evaluate resistance to electrochemical corrosion of wire made of X10CrNi18-8 stainless steel designed for use in cardiology treatment. The influence of strain formed in the premodeling process and methods of wire surface preparation to corrosive resistance in artificial plasma solution were analysed. Wire corrosion tests were carried out in the solution of artificial plasma. Resistance to electrochemical corrosion was evaluated on the ground of recorded curves of anodic polarization by means of potentiodynamic method. Potentiodynamic tests carried out enabled to determine how the resistance to pitting corrosion of wire changes, depending on strain formed in the premodeling process as well as on the method of wire surface preparation. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied. Deterioration of corrosive properties of wire along with the increase in the formed strain hardening was observed.

  12. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water

    NASA Astrophysics Data System (ADS)

    Zhang, Haiya; Tian, Yimei; Wan, Jianmei; Zhao, Peng

    2015-12-01

    Biofilm influenced corrosion on cast iron pipes in reclaimed water was systemically studied using the weight loss method and electrochemical impedance spectroscopy (EIS). The results demonstrated that compared to sterile water, the existence of the biofilm in reclaimed water promoted the corrosion process significantly. The characteristics of biofilm on cast iron coupons were examined by the surface profiler, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The bacterial counts in the biofilm were determined using the standard plate count method and the most probable number (MPN). The results demonstrated that the corrosion process was influenced by the settled bacteria, EPS, and corrosion products in the biofilm comprehensively. But, the corrosion mechanisms were different with respect to time and could be divided into three stages in our study. Furthermore, several corresponding corrosion mechanisms were proposed for different immersion times.

  13. Metal corrosion coupon contamination, corrosion study design, and interpretation problems

    SciTech Connect

    Lytle, D.A.; Schock, M.R.; Tackett, S.

    1992-01-01

    As a result of the new Lead and Copper Rule, some water utilities in the United States have begun or will soon begin corrosion demonstration studies. Demonstration studies may include pipe rig/loop tests, metal coupon tests, and partial-system tests (full-scale). Evaluation of corrosion control treatment through testing may be accomplished by weight loss measurement, metal leaching, corrosion rate, or coupon surface inspection techniques. The purpose of the paper is to (1) briefly introduce 2 corrosion control studies being conducted at the EPA Research Facility, (2) discuss design and operational problems and considerations associated with each of the studies, and (3) present solutions to the problems. The experiences related to the paper may provide useful and time-saving insights into the design, operation, and interpretation of corrosion control studies to water utilities and suppliers.

  14. Mechanisms for the atmospheric corrosion of carbonate stone

    SciTech Connect

    Graedel, T.E.

    2000-03-01

    The physical and chemical phenomena responsible for the atmospheric corrosion of carbonate stone are presented. Corrosion product formation, morphology, and chemical makeup are discussed in the context of calcium-containing minerals and other crystalline structures that thermodynamics and kinetics suggest are likely to be present. Formation pathways for the minerals most often reported to occur in carbonate corrosion layers are shown in schematic diagrams. The dominant corrosion products are sulfates and oxalates, the former resulting from interactions with atmospheric sulfur dioxide or sulfate ions, the latter from oxalate secretions from the biological organisms. present (and perhaps to some extent from oxalate deposited from the atmosphere). The degradation processes are enhanced by the catalytic action of transition metal ions present in the stone and of soot deposited from the atmosphere.

  15. Corrosive wear behavior of 2014 and 6061 aluminum alloy composites

    SciTech Connect

    Varma, S.K.; Andrews, S.; Vasquez, G.

    1999-02-01

    Alloys of 2014 and 6061 aluminum reinforced with 0.1 volume fraction of alumina particles (VFAP) were subjected to impact scratching during a corrosive wear process. The transient currents generated due to the impact were measured in the two composites as well as in their respective monoliths. The effect of solutionizing time on the transient currents was correlated to the near surface microstructures, scratch morphology, concentration of quenched-in vacancies, and changes in grain sizes. It was observed that the transient current values increase with an increase in solutionizing time, indicating that the corrosive wear behavior is not strongly affected by the grain boundaries. However, a combination of pitting and the galvanic corrosion may account for the typical corrosive wear behavior exhibited by the alloys and the composites of this study.

  16. Corrosion inhibitor film formation studied by ATR-FTIR

    SciTech Connect

    Campbell, S.; Jovancicevic, V.

    1999-11-01

    The development of an inhibitor film is essential for the effective performance of a corrosion inhibitor. The use of attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) allows the development of inhibitor films on iron oxides to be monitored. For two distinct corrosion inhibitor chemistries, oleic imidazoline and phosphate ester, the film formation and corrosion processes are monitored on Fe{sub 3}O{sub 4} in a powdered form (a model surface). Additional data following on the physical and chemical properties are obtained using XPS and SEM techniques, which allows for a more complete characterization of the model inhibitor/oxide system. By the proper choice of system and measurement techniques, the complex phenomenon of corrosion inhibition may be analyzed directly.

  17. Corrosion inhibition by control of gas composition during mist drilling

    SciTech Connect

    Hinkebein, T.E.; Snyder, T.L.

    1981-05-01

    Chemical compositional specifications have been generated for inert gases which reduce drill string corrosion when used in conjunction with mist drilling processes. These specifications are based on the assumption that the corrosion rate is dependent on the dissolved gaseous species concentrations. Data taken both from the literature and from a mist drilling field test with nitrogen in Valle Grande, NM, relate corrosion rates to fluid compositions. These solution compositions are then associated with gas phase compositions using equilibrium data available from the literature and material balances. Two sources of gas were considered: cryogenically purified nitrogen from air and exhaust gas from a diesel engine, which contain (in addition to N/sub 2/ and O/sub 2/) CO/sub 2/, NO/sub x/, SO/sub 2/, H/sub 2/O, and CO. A maximum concentration of 50 ppM O/sub 2/ in the gas phase is recommended to alleviate pitting corrosion.

  18. Protect nuclear plant fasteners from boric acid corrosion

    SciTech Connect

    Moisidis, N.; Popescu, M.; Ratiu, M. )

    1992-03-01

    Boric acid corrosion of pump and valve fasteners in pressurized water reactor (PWR) power plants can be prevented by implementing appropriate fastener steel replacement and extended inspections to detect and correct the cause of leakage. In this paper a three-phase corrosion protection program based on system operability, outage-related accessibility, and cost of fastener replacement versus maintenance frequency increase is presented. A selection criteria for fastener material is also presented. Degradation or failure of pressure retaining fasteners at pumps and valves has been reported in several areas exposed to leakage of closures in long-term service. The resulting boric acid corrosion experienced in PWR systems is defined as an accelerated process produced when water evaporates from leaking coolant. The primary detrimental effect of boric acid leakage is wastage (or general dissolution corrosion) of low-alloy carbon steel fasteners.

  19. Corrosion assessment of refractory materials for high temperature waste vitrification

    SciTech Connect

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosion coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.

  20. INHIBITION OF CORROSION

    DOEpatents

    Atherton, J.E. Jr.; Gurinsky, D.H.

    1958-06-24

    A method is described for preventing corrosion of metallic container materials by a high-temperature liquid bismuth flowing therein. The method comprises fabricating the containment means from a steel which contains between 2 and 12% chromium, between 0.5 and 1.5% of either molybdenum and silicon, and a minimum of nickel and manganese, and maintaining zirconium dissolved in the liquid bismuth at a concentration between 50 parts per million and its saturation value at the lowest temperature in the system.

  1. Hot-salt stress-corrosion of titanium alloys as related to turbine engine operation.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Demonstration that the major variables influencing hot-salt stress-corrosion of titanium alloys are alloy processing conditions, heat-to-heat variations and composition, surface condition, and cyclic exposures. Under simulated compressor environmental conditions the commonly used 64 alloy is creep limited and not stress-corrosion limited. Cyclic exposures to stress-corrosion conditions are not as detrimental as continuous exposures for equivalent total times.

  2. Vacuum Ampoule Isolates Corrosive Materials

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Debnam, W. J.; Taylor, R.

    1983-01-01

    Quartz vacuum ampoule confines corrosive sample wafer between two quartz plugs inserted in quartz tube. One quartz plug is window for measuring sample thermodynamic properties while laser pulse entering other quartz plug heats sample to molten state. Confinement of sample in vacuum prevents contamination of measurement system by hot corrosive vapors and any interference by preferential evaporation of melt.

  3. Atlas 5013 tank corrosion test

    NASA Technical Reports Server (NTRS)

    Sutherland, W. M.; Girton, L. D.; Treadway, D. G.

    1978-01-01

    The type and cause of corrosion in spot welded joints were determined by X-ray and chemical analysis. Fatigue and static tests showed the degree of degradation of mechanical properties. The corrosion inhibiting effectiveness of WD-40 compound and required renewal period by exposing typical joint specimens were examined.

  4. INTERNAL CORROSION AND DEPOSITION CONTROL

    EPA Science Inventory

    Corrosion is one of the most important problems in the drinking water industry. It can affect public health, public acceptance of a water supply, and the cost of providing safe water. Deterioration of materials resulting from corrosion can necessitate huge yearly expenditures o...

  5. Agricultural Polymers as Corrosion Inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural polymers were composed of extra-cellular polysaccharides secreted by Leuconostoc mesenteroides have been shown to inhibit corrosion on corrosion-sensitive metals. The substantially pure exopolysaccharide has a general structure consisting of alpha(1-6)-linked D-glucose backbone and appr...

  6. DPC materials and corrosion environments.

    SciTech Connect

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest; Clarity, J.

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  7. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    SciTech Connect

    Anderko, Andrzej; Wang, Peiming; Young, Robert D.; Riemer, Douglas P.; McKenzie, Patrice; Lencka, Malgorzata M.; Babu, Sudarsanam Suresh; Angelini, Peter

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  8. CORROSION TESTING IN SIMULATED TANK SOLUTIONS

    SciTech Connect

    Hoffman, E.

    2010-12-09

    surface, efforts are needed to compare the polished surfaces to corroded and mill-scale surfaces, which are more likely to occur in application. Additionally, due to the change in liquid waste levels within the tanks, salt deposits are highly likely to be present along the tank wall. When the level of the tank decreases, a salt deposit will form as the solution evaporates. The effects of this pre-existing salt, or supernate deposit, are unknown at this time on the corrosion effect and thus require investigation. Additionally, in the presence of radiation, moist air undergoes radiolysis, forming a corrosive nitric acid condensate. This condensate could accelerate the corrosion process in the vapor space. To investigate this process, an experimental apparatus simulating the effects of radiation was designed and constructed to provide gamma irradiation while coupons are exposed to a simulate tank solution. Additionally, ammonia vapors will also be introduced to further represent the tank environment.

  9. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  10. Corrosion of Titanium Matrix Composites

    SciTech Connect

    Covino, B.S., Jr.; Alman, D.E.

    2002-09-22

    The corrosion behavior of unalloyed Ti and titanium matrix composites containing up to 20 vol% of TiC or TiB{sub 2} was determined in deaerated 2 wt% HCl at 50, 70, and 90 degrees C. Corrosion rates were calculated from corrosion currents determined by extrapolation of the tafel slopes. All curves exhibited active-passive behavior but no transpassive region. Corrosion rates for Ti + TiC composites were similar to those for unalloyed Ti except at 90 degrees C where the composites were slightly higher. Corrosion rates for Ti + TiB{sub 2} composites were generally higher than those for unalloyed Ti and increased with higher concentrations of TiB{sub 2}. XRD and SEM-EDS analyses showed that the TiC reinforcement did not react with the Ti matrix during fabrication while the TiB{sub 2} reacted to form a TiB phase.

  11. pH Sensitive Microcapsules for Delivery of Corrosion Inhibitors

    NASA Technical Reports Server (NTRS)

    Li, Wenyan; Calle, Luz M.

    2006-01-01

    A considerable number of corrosion problems can be solved by coatings. However, even the best protective coatings can fail by allowing the slow diffusion of oxygen and moisture to the metal surface. Corrosion accelerates when a coating delaminates. Often, the problems start when microscopic nicks or pits on the surface develop during manufacturing or through wear and tear. This problem can be solved by the incorporation of a self-healing function into the coating. Several new concepts are currently under development to incorporate this function into a coating. Conductive polymers, nanoparticles, and microcapsules are used to release corrosion-inhibiting ions at a defect site. The objective of this investigation is to develop a smart coating for the early detection and inhibition of corrosion. The dual function of this new smart coating system is performed by pH-triggered release microcapsules. The microcapsules can be used to deliver healing agents to terminate the corrosion process at its early stage or as corrosion indicators by releasing dyes at the localized corrosion sites. The dyes can be color dyes or fluorescent dyes, with or without pH sensitivity. Microcapsules were formed through the interfacial polymerization process. The average size of the microcapsules can be adjusted from 1 to 100 micron by adjusting the emulsion formula and the microcapsule forming conditions. A typical microcapsule size is around 10 microns with a narrow size distribution. The pH sensitivity of the microcapsule can also be controlled by adjusting the emulsion formula and the polymerization reaction time. Both corrosion indicator (pH indicator) and corrosion inhibitor containing microcapsules were formed and incorporated into paint systems. Test panels of selected steels and aluminum alloys were painted using these paints. Testing of compatibility between the microcapsule system and different paint systems are in progress. Initial experiments with the microcapsule containing paint

  12. Electrochemical noise measurement for corrosion applications

    SciTech Connect

    Kearns, J.R.; Scully, J.R.; Roberge, P.R.; Reichert, D.L.; Dawson, J.L.

    1996-12-31

    The First International Symposium on Electrochemical Noise Measurement for Corrosion Applications was held in Montreal, Quebec, Canada on 15--16 May 1994. Electrochemical noise measurement (ENM) is a controversial subject. There are no established test methods, and there is no consensus on a theoretical framework for interpreting data. The ASTM Committee G-1 Task Group on ENM and the symposium authors were charged with the task of developing consensus on three basic issues: (1) how should a measurement be made so that it can be compared with confidence to others, (2) what electric measurement capabilities and calibration procedures are necessary to make a valid measurement, and (3) how can the data be most efficiently analyzed and reliably interpreted. The presentations covered data analysis, industrial applications, pitting corrosion, methods of measurement, and standardization. Twenty five papers were processed separately for inclusion on the data base.

  13. Chemical Corrosion of Liquid-Phase Sintered SiC in Acidic/Alkaline Solutions Part 1. Corrosion in HNO3 Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang, Ming; He, Xinnong; Tang, Wenming

    2016-03-01

    The corrosion behavior of the liquid-phase sintered SiC (LPS-SiC) was studied by dipping in 3.53 mol/L HNO3 aqueous solution at room temperature and 70 °C, respectively. The weight loss, strength reduction and morphology evolution of the SiC specimens during corroding were revealed and also the chemical corrosion process and mechanism of the SiC specimens in the acidic solution were clarified. The results show that the corrosion of the LPS-SiC specimens in the HNO3 solution is selective. The SiC particles are almost free from corrosion, but the secondary phases of BaAl2Si2O8 (BAS) and Y2Si2O7 are corroded via an acid-alkali neutralization reaction. BAS has a higher corrosion rate than Y2Si2O7, resulting in the formation of the bamboo-leaf-like corrosion pits. As the SiC specimens etched in the HNO3 solution at room temperature for 75 days, about 80 μm thickness corrosion layer forms. The weight loss and bending strength reduction of the etched SiC specimens are 2.6 mg/cm2 and 52%, respectively. The corrosion of the SiC specimens is accelerated in the 70 °C HNO3 solution with a rate about five times bigger than that in the same corrosion medium at room temperature.

  14. [Corrosion of stainless steel 201, 304 and 316L in the simulated sewage pipes reactor].

    PubMed

    Bao, Guo-Dong; Zuo, Jian-E; Wang, Ya-Jiao; Gan, Li-Li

    2014-08-01

    The corrosion behavior of stainless steel 201, 304 and 316L which would be used as sewer in-situ rehabilitation materials was studied in the simulated sewage pipes reactor. The corrosion potential and corrosion rate of these three materials were studied by potentiodynamic method on the 7th, 14th, 21st, 56th day under two different conditions which were full immersion condition or batch immersion condition with a 2-day cycle. The electrode process was studied by Electrochemical Impedance Spectroscopy (EIS) on the 56th day. The microstructure and composition of the corrosion pitting were analyzed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometer (EDS) on the 56th day. The results showed that 304 and 316L had much better corrosion resistance than 201 under both conditions. 304 and 316L had much smaller corrosion rate than 201 under both conditions. The corrosion resistance of all three kinds of stainless steel under the batch immersion condition was much better than those under the full immersion condition. The corrosion rate of all three kinds of stainless steel under the batch immersion condition was much smaller than those under the full immersion condition. Point pitting corrosion was formed on the surfaces of 304 and 316L. In comparison, a large area of corrosion was formed in the surface of 201. PMID:25338372

  15. Characterization of corrosion scale formed on stainless steel delivery pipe for reclaimed water treatment.

    PubMed

    Cui, Yong; Liu, Shuming; Smith, Kate; Yu, Kanghua; Hu, Hongying; Jiang, Wei; Li, Yuhong

    2016-01-01

    To reveal corrosion behavior of stainless steel delivery pipe used in reclaimed water treatment, this research focused on the morphological, mineralogical and chemical characteristics of stainless steel corrosion scale and corroded passive film. Corrosion scale and coupon samples were taken from a type 304 pipe delivering reclaimed water to a clear well in service for more than 12 years. Stainless steel corrosion scales and four representative pipe coupons were investigated using mineralogy and material science research methods. The results showed corrosion scale was predominantly composed of goethite, lepidocrocite, hematite, magnetite, ferrous oxide, siderite, chrome green and chromite, the same as that of corroded pipe coupons. Hence, corrosion scale can be identified as podiform chromite deposit. The loss of chromium in passive film is a critical phenomenon when stainless steel passive film is damaged by localized corrosion. This may provide key insights toward improving a better comprehension of the formation of stainless steel corrosion scale and the process of localized corrosion. The localized corrosion behavior of stainless steel is directly connected with reclaimed water quality parameters such as residual chlorine, DO, Cl(-) and SO4(2-). In particular, when a certain amount of residual chlorine in reclaimed water is present as an oxidant, ferric iron is the main chemical state of iron minerals. PMID:26605686

  16. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    SciTech Connect

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33½ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  17. Corrosion considerations for life management of Hanford high-level waste tanks

    SciTech Connect

    Ohl, P.C.; Vollert, F.R.; Thomson, J.D.

    1993-10-01

    The potential for corrosion-related aging mechanisms to be active in the Hanford Site waste tanks is frequently questioned and there are related uncertainties. This paper considers surveillance and analyses for evaluating the potential influence of corrosion processes such as stress corrosion cracking, pitting, crevice corrosion of the reinforced concrete steel on the useful life of Hanford radioactive waste tanks. There are two types of Hanford Site underground reinforced concrete, carbon steel lined waste tank structures. They primarily store caustic nitrate wastes, some at elevated temperatures, from defense reprocessing of spent nuclear fuels. Some of the Hanford waste tanks have leaked radioactive liquid waste to the soil. These leaks are possibly due to nitrate-induced stress corrosion cracking. Major efforts prescribed to avoid nitrate-induced stress corrosion cracking in newer tank designs appear successful. A potential for pitting and crevice corrosion cracking in the carbon steel liners exists. There has been no evidence of significant uniform corrosion of the carbon steel liners and there has been no evidence of waste tank degradation caused by corrosion of the concrete reinforcing steel. A waste tank life management program is being developed to qualify the Hanford waste tanks for continued safe storage of these wastes. Corrosion evaluations, structural analyses, and surveillance are required to qualify the tanks and to promptly detect evidence of possible distress.

  18. Corrosion of Ga-doped Sn-0.7Cu Solder in Simulated Marine Atmosphere

    NASA Astrophysics Data System (ADS)

    Yan, Zhong; Xian, Ai-Ping

    2013-03-01

    The surface corrosion behaviors of Sn and Sn-0.7Cu solder in simulated marine atmosphere have been studied. The results showed that pitting and uniform corrosion are the two main initial damage types in the corrosion process. During uniform corrosion, the initial corrosion products, which gradually develop a laminated corrosion film with microcracks, are fragile and easily spall off the surface, thus giving little resistance to further corrosion. XRD of the long-term corrosion products showed that they are mainly amorphous SnO and crystalline Sn(OH)2 and SnO· xH2O. Doping the Sn-0.7Cu with gallium significantly improved the corrosion resistance of the alloy in the salt spray test. X-ray photoelectron spectroscopy results showed that the trace amount of Ga significantly segregates to the surface of Sn-0.7Cu alloy and forms a composite oxide layer after solidification in air, thus improving the corrosion resistance. On the other hand, doping the Sn-0.7Cu alloy with phosphorus had little effect.

  19. Naval electrochemical corrosion reducer

    DOEpatents

    Clark, Howard L.

    1991-10-01

    A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

  20. Tunneling corrosion mechanism of 25% chromium-20% nickel-niobium stainless steel in highly oxidizing nitric acid

    SciTech Connect

    Kajimura, H.; Harada, M.; Okada, T.; Nagano, H.; Okubo, M.

    1995-07-01

    Austenitic stainless steel (SS) is used commonly in chemical plants dealing with nitric acid (HNO{sub 3}) because of its high corrosion resistance. However, even SS tends to corrode intergranularly in highly oxidizing HNO{sub 3} containing oxidizing chromium or cerium ions, such as Cr{sup 6+} or Ce{sup 4+}. Furthermore, pitting corrosion, so-called tunneling corrosion or end-grain attack, occurs on the forgings in highly oxidizing HNO{sub 3}. The mechanism of tunneling corrosion and its countermeasures for a 25% Cr-20% Ni-Nb steel (UNS S31040) in a mock reprocessing plant were studied. Results indicated tunneling corrosion was a type of pitting corrosion with general and intergranular attack on pit surfaces. It propagated along metal flows with penetrations up to 2 mm in diameter and 6 mm in depth. Rates of tunneling corrosion were 3 to 13 times faster than general corrosion. Tunneling corrosion initiated and propagated parallel to metal flows on the local parts where chromium content was depleted. This method of corrosion was caused both by preferential corrosion of a low-chromium part and corrosion accelerated by the galvanic action between a low-chromium part as an anode and a high-chromium part as a cathode. The electroslag remelting process completely resolved this problem by making ingots free from continuous chromium segregation.

  1. Characterization of corrosion damage in prestressed concrete using acoustic emission

    NASA Astrophysics Data System (ADS)

    Mangual, Jesé; ElBatanouny, Mohamed K.; Vélez, William; Ziehl, Paul; Matta, Fabio; González, Miguel

    2012-04-01

    The corrosion of reinforced concrete structures is a major issue from both a structural safety and maintenance management point of view. Early detection of the internal degradation process provides the owner with sufficient options to develop a plan of action. An accelerated corrosion test was conducted in a small scale concrete specimen reinforced with a 0.5 inch (13 mm) diameter prestressing strand to investigate the correlation between corrosion rate and acoustic emission (AE). Corrosion was accelerated in the laboratory by supplying anodic current via a rectifier while continuously monitoring acoustic emission activity. Results were correlated with traditional electrochemical techniques such as half-cell potential and linear polarization. The location of the active corrosion activity was found through a location algorithm based on time of flight of the stress waves. Intensity analysis was used to plot the relative significance of the damage states present in the specimen and a preliminary grading chart is presented. Results indicate that AE may be a useful non-intrusive technique for the detection and quantification of corrosion damage.

  2. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  3. Corrosion behavior of rapidly solidified magnesium-aluminium-zinc alloys

    SciTech Connect

    Daloz, D.; Michot, G.; Steinmetz, P.

    1997-12-01

    Rapidly solidified magnesium alloys with 8 at%, 15 at%, and 20 at% Al and 1 at% and 3 at% Zn were fabricated by centrifugal atomization followed by hot extrusion. Microstructure of the alloys was composed of a fine-grain magnesium matrix (0.5 {micro}m) with {beta}-Mg{sub 17}Al{sub 12} precipitates. Electrochemical and weight-loss tests were performed in borate and ASTM D 1384 solution (chloride, carbonate, and sulfate). In both media, corrosion current f the alloys decreased with increases in aluminum or zinc content. In borate solution, a passivating plateau was observed from the corrosion potential (E{sub corr}) to E{sub corr} + 1,200 mV. Current density decreased with aluminum and zinc concentrations. Electrochemical behavior of the synthesized matrix and precipitates was characterized. Zinc increased E{sub corr} of the two phases, with a corresponding decrease of corrosion current. The same trend was noticed for aluminum but with a less dramatic effect. The corrosion mechanism was suggested result from galvanic coupling of the matrix and the second phase. The galvanic corrosion, however, was reduced strongly by passivation of the matrix as a result of the surrounding precipitates. The positive influence of rapid solidification (corrosion rate decreased 1 order of magnitude) was the creation of a fine, highly homogeneous microstructure through this fabrication process.

  4. Application of new experimental methods to pipeline stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Schmidt, C. G.; Kobayashi, T.; Crocker, J. E.; Kanazawa, C. H.; Kempf, J. A.

    1992-07-01

    The objective of the investigation is to develop a physically based understanding of the mechanisms of stress corrosion cracking (SCC) in pipeline steels by applying advanced fracture surface and electrochemical characterization techniques to samples taken from fielded pipeline and to laboratory corrosion test specimens. SCC is a well-known concern of the gas industry that occasionally affects natural gas treatment plants, gathering lines, and transmission lines. The research program is designed to increase the understanding of pipeline degradation by identifying the specific mechanisms that control SCC. From the results, the authors expect to improve the ability to identify features in the metallurgy of pipeline steel, the environmental conditions that affect the susceptibility to SCC. The effect of overloads (possibly from hydrotests or pressure fluctuations) on the propagation of stress corrosion cracks was readily evident from an analysis of the topographies of conjugate fracture surfaces. Crack branching usually resulted from overloads. Corrosion products were removed from the fracture surfaces of a stress corrosion crack in a pipeline specimen recovered from service. The topography of the underlying metal surface appears to be preserved with little corrosion damage after crack formation. This allowed the cracking process to be reconstructed and details to be investigated.

  5. The effects of NOM and coagulation on copper corrosion

    SciTech Connect

    Rehring, J.P.; Edwards, M.

    1994-12-31

    Copper corrosion was examined in solutions containing natural organic matter (NOM) and in situations where NOM was removed by enhanced coagulation with alum or ferric chloride. Electrochemical methods were used to evaluate the long-term effects of each water quality on copper corrosion. In experiments exploring the role of NOM in copper corrosion, corrosion rates increased with NOM concentration at pH 6, whereas at pH 7.5 and 9 the NOM had less significant effects. Waters treated by enhanced alum coagulation had higher corrosion rates than untreated waters, but enhanced ferric chloride coagulation had the opposite effect. This difference was attributed to the relative effects of added sulfate via alum coagulation versus added chloride via ferric chloride coagulation. Compliance with the EPA Lead and Copper Rule and disinfection byproduct regulations may require that utilities address both regulations simultaneously. That is, water treatment processes, NOM concentration, and copper corrosion behavior are clearly interdependent and should be considered when contemplating changes to meet DBP regulations.

  6. Dissolution and corrosion inhibition of copper, zinc, and their alloys

    SciTech Connect

    Jinturkar, P.; Guan, Y.C.; Han, K.N.

    1998-02-01

    The corrosion behavior of copper, zinc, and their alloys in sulfuric acid (H{sub 2}SO{sub 4}) solutions with oxygen and ferric ions (Fe{sup 3+}) was studied using a potentiostat. Oxygen and Fe{sup 3+} ions were shown to play an important role in corrosion of copper and copper-zinc alloys. Cathodic reduction of oxygen mainly was controlled by chemical reaction, and that of Fe{sup 3+} ions was controlled by diffusion. The overall cathodic process was the summation of the reduction of oxygen and Fe{sup 3+} ions. Corrosion of zinc was controlled mainly by reduction of water. Corrosion inhibition using benzotriazole (BTAH) also was investigated in aerated and deaerated solutions. BTAH was found to be a useful inhibitor, and the inhibition layer was shown to be stable and persistent. Morphology of the surface of copper, zinc, and brasses after corrosion in the presence and absence of BTAH was examined by scanning electron microscopy. BTAH formed a protective layer on the surface, thereby inhibiting corrosion. Solution analysis of the dissolution of brasses showed that zinc dissolved preferentially in the initial stages, followed by simultaneous dissolution of copper and zinc.

  7. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  8. Hydroxyapatite microparticles as feedback-active reservoirs of corrosion inhibitors.

    PubMed

    Snihirova, D; Lamaka, S V; Taryba, M; Salak, A N; Kallip, S; Zheludkevich, M L; Ferreira, M G S; Montemor, M F

    2010-11-01

    This work contributes to the development of new feedback-active anticorrosion systems. Inhibitor-doped hydroxyapatite microparticles (HAP) are used as reservoirs, storing corrosion inhibitor to be released on demand. Release of the entrapped inhibitor is triggered by redox reactions associated with the corrosion process. HAP were used as reservoirs for several inhibiting species: cerium(III), lanthanum(III), salicylaldoxime, and 8-hydroxyquinoline. These species are effective corrosion inhibitors for a 2024 aluminum alloy (AA2024), used here as a model metallic substrate. Dissolution of the microparticles and release of the inhibitor are triggered by local acidification resulting from the anodic half-reaction during corrosion of AA2024. Calculated values and experimentally measured local acidification over the aluminum anode (down to pH = 3.65) are presented. The anticorrosion properties of inhibitor-doped HAP were assessed using electrochemical impedance spectroscopy. The microparticles impregnated with the corrosion inhibitors were introduced into a hybrid silica-zirconia sol-gel film, acting as a thin protective coating for AA2024, an alloy used for aeronautical applications. The protective properties of the sol-gel films were improved by the addition of HAP, proving their applicability as submicrometer-sized reservoirs of corrosion inhibitors for active anticorrosion coatings. PMID:20942404

  9. Accelerated atmospheric corrosion testing of electroplated gold mirror coatings

    NASA Astrophysics Data System (ADS)

    Chu, C.-T.; Alaan, D. R.; Taylor, D. P.

    2010-08-01

    Gold-coated mirrors are widely used in infrared optics for industrial, space, and military applications. These mirrors are often made of aluminum or beryllium substrates with polished nickel plating. Gold is deposited on the nickel layer by either electroplating or vacuum deposition processes. Atmospheric corrosion of gold-coated electrical connectors and contacts was a well-known problem in the electronic industry and studied extensively. However, there is limited literature data that correlates atmospheric corrosion to the optical properties of gold mirror coatings. In this paper, the atmospheric corrosion of different electroplated gold mirror coatings were investigated with an accelerated mixed flowing gas (MFG) test for up to 50 days. The MFG test utilizes a combination of low-level air pollutants, humidity, and temperatures to achieve a simulated indoor environment. Depending on the gold coating thickness, pore corrosion started to appear on samples after about 10 days of the MFG exposure. The corrosion behavior of the gold mirror coatings demonstrated the porous nature of the electroplated gold coatings as well as the variation of porosity to the coating thickness. The changes of optical properties of the gold mirrors were correlated to the morphology of corrosion features on the mirror surface.

  10. In situ fluorescence imaging of localized corrosion with a pH-sensitive imaging fiber.

    PubMed

    Panova, A A; Pantano, P; Walt, D R

    1997-04-15

    A fiber-optic pH-imaging sensor array capable of both visualizing remote corrosion sites and measuring local chemical concentrations at these sites was applied to realtime corrosion monitoring. The imaging fiber's distal face, containing an immobilized pH-sensitive fluorescent dye, was brought into contact with metal surfaces submerged in aqueous buffers and fluorescence images were acquired as a function of time. Heterogeneous fluorescence signals were observed due to both pH increases at cathodic surface sites and pH decreases at anodic surface sites. These fluorescence signals showed both localization and rates of corrosion activity. Three corrosion processes were investigated, galvanic corrosion at a copper/aluminum interface and crevice corrosion and pitting at a stainless steel surface. The spatial resolution of the technique was limited by proton/hydroxide diffusion and the diameter of the individually clad optical fibers comprising the imaging bundle. PMID:9109355

  11. Corrosion test plan to guide canister material selection and design for a tuff repository

    SciTech Connect

    McCright, R.D.; van Konynenburg, R.A.; Ballou, L.B.

    1983-11-01

    Corrosion rates and the mode of corrosion attack form a most important basis for selection of canister materials and design of a nuclear waste package. Type 304L stainless steel was selected as the reference material for canister fabrication because of its generally excellent corrosion resistance in water, steam and air. However, 304L may be susceptible to localized and stress-assisted forms of corrosion under certain conditions. Alternative alloys are also investigated; these alloys were chosen because of their improved resistance to these forms of corrosion. The fabrication and welding processes, as well as the glass pouring operation for defense and commercial high-level wastes, may influence the susceptibility of the canister to localized and stress forms of corrosion. 12 references, 2 figures, 4 tables.

  12. Corrosion in Reinforced Concrete Panels: Wireless Monitoring and Wavelet-Based Analysis

    PubMed Central

    Qiao, Guofu; Sun, Guodong; Hong, Yi; Liu, Tiejun; Guan, Xinchun

    2014-01-01

    To realize the efficient data capture and accurate analysis of pitting corrosion of the reinforced concrete (RC) structures, we first design and implement a wireless sensor and network (WSN) to monitor the pitting corrosion of RC panels, and then, we propose a wavelet-based algorithm to analyze the corrosion state with the corrosion data collected by the wireless platform. We design a novel pitting corrosion-detecting mote and a communication protocol such that the monitoring platform can sample the electrochemical emission signals of corrosion process with a configured period, and send these signals to a central computer for the analysis. The proposed algorithm, based on the wavelet domain analysis, returns the energy distribution of the electrochemical emission data, from which close observation and understanding can be further achieved. We also conducted test-bed experiments based on RC panels. The results verify the feasibility and efficiency of the proposed WSN system and algorithms. PMID:24556673

  13. Corrosion tests in brine and steam from the Salton Sea KGRA

    SciTech Connect

    Carter, J.P.; McCawley, F.X.

    1982-03-01

    The Bureau of Mines tested 13 alloys for resistance to general corrosion, pitting corrosion, and stress corrosion cracking in the brine and steam environments produced from geothermal well Magmamax 1 in the Salton Sea Known Geothermal Resources Area in California. The tests provided seven process environments. The alloys most resistant to corrosion in all environments were Inconel 625, Hastelloy C-276, and stainless steel alloy 29-4. Hastelloys G and S were highly resistant to all types of corrosion decreases with time. The stainless steel alloys 430, E-Brite 26-1, and 6X had good resistance to general corrosion but were susceptible to pitting. Unstressed type 316 L stainless steel exhibited severe cracking. The 1020 carbon and 4130 alloy steels were the least resistant.

  14. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    SciTech Connect

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steam purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.

  15. A comparative study of atmospheric corrosion in the Caribbean area

    SciTech Connect

    Maldonado, L.; Castro, P.; Echeverria, M.

    1995-10-01

    Atmospheric corrosion is a phenomenon of such a magnitude that has been cause of study in several countries for decades. Nevertheless, in Mexico, it became of recent interest due to new economic factors that have involved the Peninsula of Yucatan too. The Yucatan Peninsula is limited to the North and West by the Gulf of Mexico and to the East by the Caribbean Sea. This is a non industrialized region so that in the past very little importance was given to the atmospheric corrosion damage or to the quantification of the high corrosion rates, empirically observed. However, in recent times increased tourism, industrial growth and petroleum extraction have exhibited the need for a better understanding of the atmospheric corrosion processes, as well as a realistic correlation to parameters such as time-of-wetness, levels of pollution by airborne salinity, atmospheric S0{sub 2} and corrosivity categories for the metals. To evaluate these parameters, five tests sites were selected following ISO recommendations. Three sites are marines atmospheres, one urban and one rural. Corrosion rates for commercial laminated Cu and carbon steel, as well as deposition rates of pollutants, were determined after one year exposure in the test sites. Applying the standard practice ISO 9223 a categorization of the corrosivity and of the level of pollutants was carried out. The marine environments were classified as of atmospheric corrosivity C{sub 5}, while the urban and the rural could be classified as C{sub 3}, respectively. The pollution values showed that the exposure sites were essentially contaminated with chloride with classification S{sub 1} for the rural site and S{sub 3} for the marine atmosphere.

  16. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  17. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  18. Application of Terahertz Radiation to the Detection of Corrosion under the Shuttle's Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.; Smith, Stephen W.; Seebo, Jeffrey P.; Walker, James L.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    There is currently no method for detecting corrosion under Shuttle tiles except for the expensive process of tile removal and replacement; hence NASA is investigating new NDE methods for detecting hidden corrosion. Time domain terahertz radiation has been applied to corrosion detection under tiles in samples ranging from small lab samples to a Shuttle with positive results. Terahertz imaging methods have been able to detect corrosion at thicknesses of 5 mils or greater under 1" thick Shuttle tiles and 7-12 mils or greater under 2" thick Shuttle tiles.

  19. Millimeter Wave Nondestructive Evaluation of Corrosion Under Paint in Steel Structures

    SciTech Connect

    Kharkovsky, S.; Zoughi, R.

    2006-03-06

    Millimeter wave nondestructive evaluation techniques have shown great potential for detection of corrosion under paint in steel structures. They may also provide for detection of other anomalies associated with the corrosion process such as precursor pitting. This paper presents the results of an extensive investigation spanning a frequency range of 30-100 GHz and using magnitude- and phase-sensitive reflectometers. Using 2D automated scanning mechanisms, raster images of two corrosion patches are produced showing the spatial resolution capabilities of these systems as well as their potential for evaluating localized corrosion severity.

  20. Cathodic protection against crevice corrosion of high-alloy steel in seawater

    SciTech Connect

    Baptista, W.; Pimenta, G.

    1995-10-01

    Localized corrosion of high-alloy steel in seawater, mainly under crevices, limits the alloys` use in such environments. An in-situ test program was conducted to study this corrosive process and possible protective measures. Attention focused on the resistance of several types of high-alloy steels under corrosive conditions and on the response of type 316 stainless steel to cathodic protection (CP) by carbon steel and zinc anodes. It was found that CP could effectively mitigate crevice corrosion in these subsea conditions.

  1. Mechanism of corrosion inhibition of AA2024 by rare-earth compounds.

    PubMed

    Yasakau, Kiryl A; Zheludkevich, Mikhail L; Lamaka, Sviatlana V; Ferreira, Mario G S

    2006-03-23

    The mechanism of corrosion protection of the widely used 2024-T3 aluminum alloy by cerium and lanthanum inhibitors in chloride media is described in detail in the present work. The corrosion process was investigated by means of scanning Kelvin probe force microscopy (SKPFM), in situ atomic force microscopy, and scanning electron microscopy coupled with energy dispersive spectroscopy. Employment of the high-resolution and in situ techniques results in a deep understanding of the details of the physical chemistry and mechanisms of the corrosion processes. The applicability of the SKPFM for mechanistic analysis of the effect of different corrosion inhibitors is demonstrated for the first time. The inhibitors under study show sufficient hindering of the localized corrosion processes especially in the case of pitting formation located around the intermetallic S-phase particles. The main role of Ce(3+) and La(3+) in the corrosion protection is formation of hydroxide deposits on S-phase inclusions buffering the local increase of pH, which is responsible for the acceleration of the intermetallics dealloying. The formed hydroxide precipitates can also act as a diffusion barrier hindering the corrosion processes in active zones. Cerium nitrate exhibits higher inhibition efficiency in comparison with lanthanum nitrate. The higher effect in the case of cerium is obtained due to lower solubility of the respective hydroxide. A detailed mechanism of the corrosion process and its inhibition is proposed based on thermodynamic analysis. PMID:16539491

  2. High-Performance Corrosion-Resistant Iron-Based Amorphous Metals: The Effects of Composition, Structure and Environment on Corrosion Resistance

    SciTech Connect

    Farmer, J; Choi, J S; Haslam, J; Lian, T; Day, S; Yang, N; Blue, C; Peters, W; Bayles, R; Lewandowski, J; Perepezko, J; Hildal, K; Lavernia, E; Ajdelsztajn, A; Grave, O; Aprigliano, L; Kaufman, L; Boudreau, J; Branagan, D J; Beardsley, B

    2006-04-11

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative thermal phase stability, microstructure, mechanical properties, damage tolerance, and corrosion resistance. Some alloy additions are known to promote glass formation and to lower the critical cooling rate [F. Guo, S. J. Poon, Applied Physics Letters, 83 (13) 2575-2577, 2003]. Other elements are known to enhance the corrosion resistance of conventional stainless steels and nickel-based alloys [A. I. Asphahani, Materials Performance, Vol. 19, No. 12, pp. 33-43, 1980] and have been found to provide similar benefits to iron-based amorphous metals. Many of these materials can be cast as relatively thick ingots, or applied as coatings with advanced thermal spray technology. A wide variety of thermal spray processes have been developed by industry, and can be used to apply these new materials as coatings. Any of these can be used for the deposition of the formulations discussed here, with varying degrees of residual porosity and crystalline structure. Thick protective coatings have now been made that are fully dense and completely amorphous in the as-sprayed condition. An overview of the High-Performance Corrosion Resistant Materials (HPCRM) Project will be given, with particular emphasis on the corrosion resistance of several different types of iron-based amorphous metals in various environments of interest. The salt fog test has been used to compare the performance of various wrought alloys, melt-spun ribbons, arc-melted drop-cast ingots, and thermal-spray coatings for their susceptibility to corrosion in marine environments. Electrochemical tests have also been performed in seawater. Spontaneous breakdown of the passive film and localized corrosion require that the open-circuit corrosion potential exceed the critical potential. The resistance to localized corrosion is seawater has been

  3. Bonding-Compatible Corrosion Inhibitor for Rinsing Metals

    NASA Technical Reports Server (NTRS)

    Saunders, C. R.; Wurth, L. A.; Radar, A.

    2005-01-01

    A corrosion-inhibiting mixture of compounds has been developed for addition to the water used to rinse metal parts that have been cleaned with aqueous solutions in preparation for adhesive bonding of the metals to rubber and rubber-like materials. Prior to the development of this corrosion inhibitor, the parts (made, variously, of D6AC steel and 7075-T73 aluminum) were rinsed by deionized water, which caused corrosion in some places on the steel parts especially in such occluded places as sealing surfaces and threaded blind holes. An integral part of the particular cleaning process is the deposition of a thin layer of silicates and silane primers that increase the strength of the adhesive bond. The corrosion inhibitor is formulated, not only to inhibit corrosion of both D6AC steel and 7075- T73 aluminum, but also to either increase or at least not reduce the strength of the adhesive bond to be formed subsequently. The corrosion inhibitor is a mixture of sodium silicate and sodium tetraborate. The sodium silicate functions as both a corrosion inhibitor and a bond-strength promoter in association with the silane primers. The sodium tetraborate buffers the rinse solution at the optimum pH and functions as a secondary corrosion inhibitor for the steel. For a given application, the concentrations of sodium silicate and sodium tetraborate must be chosen in a compromise among the needs to inhibit corrosion of steel, inhibit corrosion of aluminum, and minimize cosmetic staining of both steel and aluminum. Concentrations of sodium silicate in excess of 150 parts of silicon per million parts of solution (ppm Si) have been determined to enhance inhibition of corrosion; unfortunately, because of the alkalinity of sodium silicate, even a small concentration can raise the pH of the rinse solution to such a level that aluminum becomes corroded despite the inhibiting effect. The pH of a solution that contains a high concentration of sodium silicate can be decreased by adding

  4. Corrosion protection of aluminum by silane-based surface treatment

    NASA Astrophysics Data System (ADS)

    Song, Jun

    treatment layers and their stability in the under-film corrosion environment. Salt spray test results showed that two-step BTSE/gamma-APS could provide the same or better corrosion protection than that offered by a standard chromate treatment. Polyester or polyurethane powder-painted Al panels, pretreated with this treatment, also displayed excellent corrosion performances in the salt spray test and filiform corrosion test. Thus, the advantage of this treatment is that is combines a temporary rust prevention and a permanent prepaint treatment into one simple approach. Electrochemical impedance spectroscopy was used to study the various pre-paint treatments under the polyester paint. It provides more detailed mechanistic information about corrosion processes than salt spray test and filiform corrosion test. However, combination of corrosion tests that involve different corrosion mechanisms may still be necessary to have a better understanding of corrosion behavior of a new treatment.

  5. Corrosion of stainless steel, 2. edition

    SciTech Connect

    Sedriks, A.J.

    1996-10-01

    The book describes corrosion characteristics in all the major and minor groups of stainless steels, namely, in austenitic, ferritic, martensitic, duplex, and precipitation hardenable steels. Several chapters are spent on those special forms of corrosion that are investigated in the great detail in stainless steels, namely, pitting corrosion, crevice corrosion, and stress corrosion cracking. The influences of thermal treatment (heat affected zone cases), composition, and microstructure on corrosion are given good coverage. Corrosive environments include high temperature oxidation, sulfidation as well as acids, alkalis, various different petroleum plant environments, and even human body fluids (stainless steels are commonly used prosthetic materials).

  6. Mullite coatings for corrosion protection of silicon carbide

    SciTech Connect

    Mulpuri, R.; Sarin, V.K.

    1995-08-01

    SiC based ceramics have been identified as the leading candidate materials for elevated temperature applications in harsh oxidation/corrosion environments. It has been established that a protective coating can be effectively used to avoid problems with excessive oxidation and hot corrosion. However, to date, no coating configuration has been developed that can satisfy the stringent requirements imposed by such applications. Chemical Vapor Deposited (CVD) mullite coatings due to their desirable properties of toughness, corrosion resistance, and a good coefficient of thermal expansion match with SiC are being investigated as a potential candidate. Since mullite has never been successfully grown via CVD, the thermodynamics and kinetics of its formation were initially established and used as a guideline in determining the initial process conditions. Process optimization was carried out using an iterative process of theoretical analysis and experimental work coupled with characterization and testing. The results of theoretical analysis and the CVD formation characteristics of mullite are presented.

  7. The effect of conditioning agents on the corrosive properties of molten urea

    SciTech Connect

    Nichols, D E; Nguyen, D T; Norton, M M; Parker, B R; Daniels, L E

    1991-01-01

    From the process case histories of the failure of several heat exchanger tube bundles, it was revealed that molten urea containing lignosulfonate as a granulation conditioning-hardening agent (Urea LS[trademark]) is corrosive to Types 304 and 316 stainless steel. The results of field and laboratory immersion corrosion tests indicated that the corrosivity of molten urea is strongly dependent on the process temperature rather than the conditioner composition. At temperatures below 295F, molten Urea LS[trademark] is not aggressive to these stainless steels. However, at temperatures above 300F, the corrosion of these stainless steels is extremely severe. The corrosion rate of Types 304, 304L, 316, and 316L is as high as hundreds of mils per year. The corrosion mechanism tends to be more general than localized. The results of the laboratory corrosion test also revealed that among alloying elements, copper is detrimental to corrosion resistance of stainless steel exposed to molten Urea LS[trademark], chromium is the most beneficial, and nickel has only a minor effect. Thus, copper-free and chromium stainless steels have superior corrosion resistance to the molten Urea LS[trademark] at a wide range of temperatures up to 345F.

  8. Literature review of metal corrosion sensitivity in high temperature, high impurity hot cell atmospheres

    SciTech Connect

    Eberle, C.S.

    1997-09-01

    The pyrochemical conditions of spent nuclear fuel for the purpose of final disposal is being demonstrated at Argonne National Laboratory (ANL). One aspect of this program is to develop a lithium preprocessing stage for the Fuel Conditioning Facility (FCF). One of the design considerations under investigation in this program is the system`s corrosion response in the presence of irradiated commercial fuel as well as atmospheric impurities. Static corrosion coupon tests have been completed which demonstrate the potential corrosivity of the salt matrix in a worse case environment as well as provide a boundary for allowable impurities in the system during operation. The literature concerning corrosion of either fused salts or molten metals consistently emphasizes three similar features which are common to both systems: (1) the overall corrosion rate is strongly dependent on temperature, impurity concentration and flow velocity; (2) many different mechanisms can be involved in a specific corrosion process; and (3) corrosion rates will significantly increase as all three of these independent variables are increased. The qualitative and quantitative understanding of these corrosion results is important for this spent fuel program since all of these variables will increase as the process scale increases. The purpose of this work was to determine if any data existed which could provide a quantitative expectation for corrosion rates of refractory metals in a lithium chloride salt bath.

  9. Atmospheric corrosion model and monitor for low cost solar arrays

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.; Mansfeld, F. B.; Jeanjaquet, S. L.; Kendig, M.

    1981-01-01

    An atmospheric corrosion model and corrosion monitoring system has been developed for low cost solar arrays (LSA). The corrosion model predicts that corrosion rate is the product of the surface condensation probability of water vapor and the diffusion controlled corrosion current. This corrosion model is verified by simultaneous monitoring of weather conditions and corrosion rates at the solar array test site at Mead, Nebraska.

  10. Corrosion and corrosion fatigue of airframe aluminum alloys

    NASA Technical Reports Server (NTRS)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  11. Searching for corrosion intelligence

    SciTech Connect

    Roberge, P.R.

    1999-11-01

    The incredible progress in computing power and availability has created a tremendous wealth of information available at the touch of a few buttons. However, such wealth can easily provoke what is commonly described as `information overload.` The massive number of connections produced by a single search of the Web, for example, can greatly overwhelm users of this new technology. The rapidity of Web searches is due to the synergy between progress made in network connectivity protocols, intelligent search strategies and supporting hardware. This paper will attempt to define the basic elements of machine intelligence in the context of corrosion engineering and examine what has been done or could be done to introduce artificial thinking into daily operations.

  12. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1995-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  13. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, T.D.

    1996-07-23

    Ceramic materials are disclosed which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200--550 C or organic salt (including SO{sub 2} and SO{sub 2}Cl{sub 2}) at temperatures of 25--200 C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components. 1 fig.

  14. Corrosion resistant ceramic materials

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    Ceramic materials which exhibit stability in severely-corrosive environments having high alkali-metal activity, high sulfur/sulfide activity and/or molten halides at temperatures of 200.degree.-550.degree. C. or organic salt (including SO.sub.2 and SO.sub.2 Cl.sub.2) at temperatures of 25.degree.-200.degree. C. These sulfide ceramics form stoichiometric (single-phase) compounds with sulfides of Ca, Li, Na, K, Al, Mg, Si, Y, La, Ce, Ga, Ba, Zr and Sr and show melting-points that are sufficiently low and have excellent wettability with many metals (Fe, Ni, Mo) to easily form metal/ceramic seals. Ceramic compositions are also formulated to adequately match thermal expansion coefficient of adjacent metal components.

  15. Corrosion study of simulated evaporator components

    SciTech Connect

    Schreiber, S.B.; Dunn, S.L.

    1989-07-01

    At the Los Alamos Plutonium Facility, ion exchange effluents and precipitation filtrates containing discardable levels of transuranic elements are concentrated using a thermosiphon evaporator before cement fixation for waste disposal. Because of changing process feed streams and scrap recovery requirements, trace amounts of free chloride ions (Cl/sup /minus//) are being introduced into the stainless steel (SS) evaporator, potentially increasing corrosion rates and thereby reducing its useful life. This study was performed to determine the effects of Cl/sup /minus// in simulated evaporator feed solutions that contain significant amounts of ferric ions (Fe/sup 3+/) in nitric acid (HNO/sub 3/). A simulated environment was produced by heating 316 SS cans that contained various tests solutions. The surface was monitored for signs of pitting or stress cracking, and vessel weight loss was measured on a daily basis to establish a rough corrosion rate. The final conclusion is that the nitric acid solution provides enough free nitrate ions (NO/sub 3//sup /minus//) to maintain minimal corrosion in a dilute ferric chloride environment. 3 refs., 5 figs., 10 tabs.

  16. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  17. [The management of corrosive oesophagitis (author's transl)].

    PubMed

    Lallemant, Y; Gehanno, P; Flieder, J; Barrier, M; Martin, M

    1978-06-01

    Regardless of the treatment used against corrosive oesophagitis, the laryngologist must play a role from the beginning and throughout the course. The fibroblasts and collagen fibres which results are the natural agents of healing but, at the same time, are responsible for virtually inexorable stenosis if the corrosion has passed through to the muscular layers. Infection is constant and contributes to stenosis. The effectiveness of antibiotics is certain. They must be used from the beginning and continued for as long as necessary. As far as fibroiss is concerned, dilatations remain the basic treatment, their application requiring great experience and much patience and tenacity. Replacement surgery is attractive. It comes up against the stenosing perioesophageal inflammatory process which tends to die down in time but remains active for a long period. The nENT specialist must therefore pay careful attention from the very end of the postoperative period onwards. The gravity of oesophageal burns justifies intensification of preventive measures. Since it impossible to complete eliminate corrosive oesophagitis, efforts must be directed towards the discovery of substances capable of inhibiting collagen synthesis. Corticosteroids used in the treatment of shock do not prevent stenosis. In the laboratory, B.A.P.N. has shown its effectiveness in the rat. Also in the rat, particularly difficult experiments are in progress using penicillinamine. Although such methods have as yet to be extended to human clinical use, there are nevertheless grounds for hope. PMID:742792

  18. Statistical design of a uranium corrosion experiment

    SciTech Connect

    Wendelberger, Joanne R; Moore, Leslie M

    2009-01-01

    This work supports an experiment being conducted by Roland Schulze and Mary Ann Hill to study hydride formation, one of the most important forms of corrosion observed in uranium and uranium alloys. The study goals and objectives are described in Schulze and Hill (2008), and the work described here focuses on development of a statistical experiment plan being used for the study. The results of this study will contribute to the development of a uranium hydriding model for use in lifetime prediction models. A parametric study of the effect of hydrogen pressure, gap size and abrasion on hydride initiation and growth is being planned where results can be analyzed statistically to determine individual effects as well as multi-variable interactions. Input to ESC from this experiment will include expected hydride nucleation, size, distribution, and volume on various uranium surface situations (geometry) as a function of age. This study will also address the effect of hydrogen threshold pressure on corrosion nucleation and the effect of oxide abrasion/breach on hydriding processes. Statistical experiment plans provide for efficient collection of data that aids in understanding the impact of specific experiment factors on initiation and growth of corrosion. The experiment planning methods used here also allow for robust data collection accommodating other sources of variation such as the density of inclusions, assumed to vary linearly along the cast rods from which samples are obtained.

  19. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    NASA Astrophysics Data System (ADS)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  20. Laser surface melting of aluminium alloy 6013 for improving stress corrosion and corrosion fatigue resistance

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Long

    that of the excimer laser formed surface film. When comparing the stress corrosion cracking resistance of the excimer laser and YAG laser treated specimens in terms of elongation reduction, the latter was found to be superior. This is considered to be caused by the tortuous fracture path which occurred in the YAG laser re-melted layer. This has the advantage of reducing the effective stress intensity at the crack front, and thus delays the fracture process. However, it must be recognised that a drop in tensile strength occurred after YAG laser treatment. This drop is primarily considered to be the result of the formation of a relatively thick and soft re-melted and heat affected layer. Considering the pitting corrosion fatigue, though, similar to the case of excimer laser melting, the initiation of fatigue cracks can be effectively retarded after YAG laser treatment, the mode of crack propagation was different for the two situations. Crack propagation within the YAG laser re-melt layer primarily followed interdendritic boundaries, and resulted in a rough fracture surface. A tortuous interdendritic crack path may result in a relatively low fatigue growth rate. By contrast, a relatively flat fracture surface was produced when excimer laser treatment was used. Finally, it was found that the electrochemical noise method is a promising means for in-situ monitoring of pitting corrosion fatigue damage of the laser-melted layer both for excimer and Nd:YAG laser treatments. The results showed that fatigue crack initiation and propagation phenomena could be correlated to the patterns of electrochemical potential and current noise.

  1. Calcium carbonate corrosivity in an Alaskan inland sea

    NASA Astrophysics Data System (ADS)

    Evans, W.; Mathis, J. T.; Cross, J. N.

    2013-12-01

    Ocean acidification is the hydrogen ion increase caused by the oceanic uptake of anthropogenic CO2, and is a focal point in marine biogeochemistry, in part, because this chemical reaction reduces calcium carbonate (CaCO3) saturation states (Ω) to levels that are corrosive (i.e. Ω ≤ 1) to shell-forming marine organisms. However, other processes can drive CaCO3 corrosivity; specifically, the addition of tidewater glacier melt. To highlight this process, we present carbonate system data collected in May (spring) and September (autumn) starting 2009 through 2012 from Prince William Sound (PWS), a semi-enclosed inland sea located on the south-central coast of Alaska that is ringed with fjords containing tidewater glaciers. Initial sampling in PWS covered limited stations in the western sound, and Ω levels corrosive to aragonite, a form of CaCO3, were observed in association with glacial melt during autumn. Beginning in September 2011, expanded sampling spanned the western and central sound, and included two fjords proximal to tidewater glaciers: Icy Bay and Columbia Bay. The observed conditions in these fjords affected CaCO3 corrosivity in the upper water column (< 50 m) in PWS in two ways: (1) as spring-time formation sites of mode water with near-corrosive Ω levels seen below the mixed layer depth across the sound, and (2) as point sources for surface plumes of glacial melt with corrosive Ω levels (Ω for aragonite and calcite down to 0.60 and 1.02, respectively) and carbon dioxide partial pressures (pCO2) well below atmospheric levels. The cumulative effect of glacial melt is likely responsible for the seasonal widespread reduction of Ω in PWS; however, glacial melt-driven CaCO3 corrosivity is poorly reflected by pCO2 or pHT, indicating that any one of those carbonate parameters alone would inadequately track corrosive conditions in PWS. The unique conditions of the carbonate system in the surface glacial melt plumes enhances atmospheric CO2 uptake, which, if

  2. Environmental and alloying effects on corrosion of metals and alloys

    NASA Astrophysics Data System (ADS)

    Liang, Dong

    2009-12-01

    In the first part of this project, corrosion studies were carried out on 304L stainless steel samples welded with Cr-free consumables, which were developed to minimize the concentration of chromate species in the weld fume. The corrosion properties of Ni-Cu and Ni-Cu-Pd Gas Tungsten Arc (GTA) welds and Shielded Metal Arc (SMA) welds are comparable to those of welds fabricated with SS308L consumable, which is the standard consumable for welding 304L. Although the breakdown potentials of the new welds from both welding processes are lower than that of the SS308L weld, the repassivation potential of these new welds is much higher. Generally, the repassivation potential is a more conservative measure of susceptibility to localized corrosion. Our studies showed that the Ni-Cu and Ni-Cu-Pd welds are more resistant to crevice corrosion than SS308L welds, which is related to the high repassivation potential. Also, addition of Pd improved the corrosion resistance of the new welds, which is consistent with previous studies from button samples and bead-on-plate samples. Other corrosion studies such as creviced and uncreviced long time immersion, atmospheric exposure, and slow strain rate testing suggest that Ni-Cu-Pd welds can be a qualified substitute for SS308 weld. In the second part of this project, efforts are put on the connection between lab and field exposure tests because sometimes the correspondence between lab atmospheric corrosion tests (ASTM B117) and field exposures is poor as a result of differences in the critical conditions controlling chemical and electrochemical reactions on surfaces. Recent studies in atmospheric chemistry revealed the formation of extremely reactive species from interactions between UV light, chloride aerosols above oceans and oxidizing agents such as ozone or peroxide. Atmospheric corrosion of metals can be affected by these species which might be transported long distances in the atmosphere to locations far from oceans. However, these

  3. A Comprehensive Investigation of Copper Pitting Corrosion in a Drinking Water Distribution System

    EPA Science Inventory

    Copper pipe pitting is a complicated corrosion process for which exact causes and solutions are uncertain. This paper presents the findings of a comprehensive investigation of a cold water copper pitting corrosion problem in a drinking water distribution system, including a refi...

  4. CRITICAL FACTORS FOR THE TRANSITION FROM CHROMATE TO CHROMATE-FREE CORROSION PROTECTION

    EPA Science Inventory

    The overall objective of this research program is to acquire a fundamental understanding of the chemical and physical processes and mechanisms of corrosion protection by chromate-based coatings applied to metal surfaces with a specific focus on corrosion protection of aluminum al...

  5. Corrosion inhibitor evaluation for a gas compression system

    SciTech Connect

    Perdomo, J.J.; Ramirez, M.; Viloria, A.; Morales, J.L.

    1999-11-01

    The injection of chemicals for gas systems is a common practice to prevent corrosion and asphaltene deposition. A laboratory study was conducted to evaluate 5 commercially available corrosion inhibitors and an asphaltene dispersant for a gas compression plant. This study was set out to look at the compatibility of a pipeline corrosion inhibitor with both an anti asphaltene and a gas compression inhibitor which is required to have a relatively large flammable point and resist the pressure and temperature of the process without igniting or aging. Also, the effect of precorroded surfaces was studied to establish its effect on the performance of the pipeline inhibitor. The efficiency of the products was evaluated through either coupon weight loss tests or polarization resistance. Corrosion inhibitor aging was carried out in autoclaves emulating operating conditions, subsequently, gel permeation chromatography (GPC), total nitrogen and viscosity measurements were performed on the products before and after aging to establish the variation of their physical and chemical properties. Additionally, X-ray diffraction analysis (XRD) and energy dispersion spectroscopy (EDS) were used to identify corrosion products. From the study, an efficiency of 86% was obtained for a line inhibitor at a 45-PPM dosage (at 36 psi pCO{sub 2} and 0.006 psi of H{sub 2}S at 120 F), lowering its efficiency to 76% after precorroding the surface for three days. The presence of asphaltene may reduce the corrosion rate; however, the injection of a dispersant accelerates the corrosion process. No significant changes in efficiency and physical properties were observed during the evaluation of one of the compression-line inhibitor mixtures tested.

  6. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  7. Corrosion inhibition using mercury intensifiers

    SciTech Connect

    Cizek, A.

    1990-03-05

    This patent describes an intensified corrosion inhibitor composition for inhibiting the corrosion of steel in the presence of an acidic medium. It comprises: an effective amount of an acid soluble mercury metal intensifier; and a corrosion inhibitor. This patent also describes a method of treating a subterranean well for enhancement of production within the well, comprising the steps of introducing and positioning within the well a high alloy stec surface exposable to a treatment fluid therewith; introducing into the well and contacting the surface with a treatment fluid comprising an acidic injection medium, an acid corrosion inhibitor, and an intensifier for deposition on or effective treatment contact with the surface, the intensifier comprising an acid soluble mercury metal site circulating the fluid into the well for contact with at least one production zone within the well.

  8. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique

    PubMed Central

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G.; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  9. Non-Destructive Evaluation for Corrosion Monitoring in Concrete: A Review and Capability of Acoustic Emission Technique.

    PubMed

    Zaki, Ahmad; Chai, Hwa Kian; Aggelis, Dimitrios G; Alver, Ninel

    2015-01-01

    Corrosion of reinforced concrete (RC) structures has been one of the major causes of structural failure. Early detection of the corrosion process could help limit the location and the extent of necessary repairs or replacement, as well as reduce the cost associated with rehabilitation work. Non-destructive testing (NDT) methods have been found to be useful for in-situ evaluation of steel corrosion in RC, where the effect of steel corrosion and the integrity of the concrete structure can be assessed effectively. A complementary study of NDT methods for the investigation of corrosion is presented here. In this paper, acoustic emission (AE) effectively detects the corrosion of concrete structures at an early stage. The capability of the AE technique to detect corrosion occurring in real-time makes it a strong candidate for serving as an efficient NDT method, giving it an advantage over other NDT methods. PMID:26251904

  10. Assessing the effect of cement-steel interface on well casing corrosion in aqueous CO2 environments

    SciTech Connect

    Han, Jiabin; Carey, James W; Zhang, Jinsuo

    2010-01-01

    CO{sub 2} leakage is a critical safety concern for geologic storage. In wellbore environments, important leakage paths include the rock-cement and cement-casing interfaces. If the cement-casing interface is filled with escaping CO{sub 2}, the well casing directly contacts the CO{sub 2}. This can cause severe corrosion in the presence of water. This paper studies the effect of steel-cement interface gaps, ranging from 1 mm to 0 um, on casing corrosion. Corrosion kinetics were measured employing electrochemical techniques including linear polarization resistance, open circuit potential and electrochemical impedance spectroscopy. The experimental results showed that the corrosion of steel is not significant where the gap between steel and cement is small ({le} 100 {micro}m). Corrosion rates are controlled by the diffusion of corrosive species (H{sub 2}CO{sub 3} and H{sup +}) along the interface. In contrast, steel corrosion is severe in a broad gap where the corrosion process is limited only by the reaction kinetics of steel and corrosive species. The threshold leading to severe corrosion in terms of the cement-steel interface size (100 {micro}m) was determined. Our research clarifies a corrosion scenario at the cement-steel interface. Casing steel corrosion is initiated when attacked by corrosive species at the cement-steel interface. For relatively tight interfaces, this results in a slow thinning of the casing and expansion of the interface width. If the gap increases beyond the critical threshold size, the corrosion rate increases significantly, and a potentially damaging cycle of corrosion and interface expansion is developed.

  11. CORROSION STUDY OF AMORPHOUS METAL RIBBONS

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-07-31

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of iron-based melt-spun amorphous metal ribbons. Melt-Spun ribbon is made by rapid solidification--a stream of molten metal is dropped onto a spinning copper wheel, a process that enables the manufacture of amorphous metals which are unable to be manufactured by conventional cold or hot rolling techniques. The study of melt-spun ribbon allows quick evaluation of amorphous metals corrosion resistance. The melt-spun ribbons included in this study are DAR40, SAM7, and SAM8, SAM1X series, and SAM2X series. The SAM1X series ribbons have

  12. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  13. Corrosion in volcanic hot springs

    SciTech Connect

    Lichti, K.A.; Swann, S.J.; Sanada, N.

    1997-12-31

    Volcanic hot pool environments on White Island, New Zealand have been used to study the corrosion properties of materials which might be used for engineering plant for energy production from deep-seated and magma-ambient geothermal systems. The corrosion chemistry of hot pools encountered in natural volcanic features varies, from being of near neutral pH- or alkalie pH-chloride type waters to acidic-chloride/sulfate waters which are more aggressive to metals and alloys. Potential-pH (Pourbaix) diagram models of corrosion product phase stability for common alloy elements contained in engineering alloys have been developed for hot pool environments using thermodynamic principles and conventional corrosion theory. These diagramatic models give reasons for the observed corrosion kinetics and can be used to help to predict the performance of other alloys in similar environments. Deficiencies in the knowledge base for selection of materials for aggressive geothermal environments are identified, and directions for future research on materials having suitable corrosion resistance for deep-seated and magma-ambient production fluids which have acidic properties are proposed.

  14. Effect of Hydrogen Plasma on Model Corrosion Layers of Bronze

    NASA Astrophysics Data System (ADS)

    Fojtíková, P.; Sázavská, V.; Mika, F.; Krčma, F.

    2016-05-01

    Our work is about plasmachemical reduction of model corrosion layers. The model corrosion layers were produced on bronze samples with size of 10 × 10 × 5 mm3, containing Cu and Sn. Concentrated hydrochloric acid was used as a corrosive environment. The application of reduction process in low-pressure low-temperature hydrogen plasma followed. A quartz cylindrical reactor with two outer copper electrodes was used. Plasma discharge was generated in pure hydrogen by a RF generator. Each corroded sample was treated in different conditions (supplied power and a continual or pulsed regime with a variable duty cycle mode). Process monitoring was ensured by optical emission spectroscopy. After treatment, samples were analyzed by SEM and EDX.

  15. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  16. Field Test of High Temperature Corrosion Sensors in a Waste to Energy Plant

    SciTech Connect

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Williamson, K.M.

    2008-03-16

    A field trial of electrochemical corrosion rate sensors was conducted over a five month period to monitor fireside corrosion in a waste to energy (WTE) plant. The unique 3-electrode air-cooled corrosion sensors, each including a thermocouple to monitor sensor temperature, were installed in four different ports at approximately the same level of the WTE boiler. A total of twelve sensors were tested, six with electrodes using the carbon steel boiler tube material, and six using the nickel-chromium weld overlay alloy for the electrodes. Corrosion rates and temperatures of the sensors were monitored continuously through the trial. Measurements of sensor thickness loss were used to calibrate the electrochemical corrosion rates. Air cooling of the sensors was found to be necessary in order to bring the sensors to the temperature of the boiler tubes, to better match the corrosion rate of the tubes, and to increase survivability of the sensors and thermocouples. Varying the temperature of the sensors simulated corrosion rates of boiler tubes with steam temperatures above and below that in the actual WTE plant. Temperatures of two of the sensors were successfully held at various controlled temperatures close to the steam temperature for a three hour test period. Corrosion rates of the two materials tested were similar although of different magnitude. An expression relating the corrosion rate of the boiler tube material to the corrosion rate of weld overlay was determined for a 7 day period in the middle of the field trial. Results from the field trial suggest that corrosion rate sensors controlled to the outer waterwall temperature can successfully monitor fireside corrosion in WTE plants and be used as a process control variable by plant operators.

  17. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    PubMed

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. PMID:26652422

  18. Electrochemical noise measurement: The definitive in-situ technique for corrosion applications?

    SciTech Connect

    Dawson, J.L.

    1996-12-31

    A review is presented of electrochemical noise (EN), the generic term given to fluctuations of current and potential seen in high-temperature corrosion, molten salt corrosion, and aqueous corrosion. EN levels in corrosion and particularly localized corrosion are significantly greater than EN observed in redox systems. EN associated with corrosion is the result of stochastic pulses of current generated by, for example, sudden film rupture, crack propagation, discrete events involving metal dissolution at etch pits, grain boundaries and kink sites, and hydrogen discharge with gas bubble formation and detachment. EN in corrosion includes low-frequency, nonstationary, and weakly stationary processes; transients; and cyclic or oscillatory phenomena. The use of EN, obtained either by potentiostatic/galvanostatic measurements or at freely corroding potentials, has been shown to offer advantages over conventional DC and AC techniques in research studies, testing, and corrosion monitoring. In many cases, reaction mechanisms can be elucidated and corrosion rate information can be obtained. Assessment of individual transients, use of signal analysis techniques, modeling of ensembles of transients as developed for electrocrystallization studies, and use of the chaos theory have all been used in EN evaluations.

  19. Effects of acidity and alkalinity on corrosion behaviour of Al-Zn-Mg based anode alloy

    NASA Astrophysics Data System (ADS)

    Ma, Jingling; Wen, Jiuba; Li, Quanan; Zhang, Qin

    2013-03-01

    Effects of 1 M HCl, 0.6 M NaCl with different pH values and 4 M NaOH solutions on the corrosion behaviour of Al-5Zn-1Mg-0.02In-0.05Ti-0.5Mn (wt%) alloy have been investigated using measurements of self-corrosion, potentiodynamic polarization, cyclic polarization experiment combined with open circuit potential technique and scanning electron microscopy. The corrosion behaviour of the alloy was found to be dependant on the Cl-, OH- ions and pH value. In acidic or slightly neutral solutions, general and pitting corrosion occurred simultaneously. In contrast, exposure to alkaline solutions results in general corrosion which was traced back to the dissolution of the resistive oxidation film on the surface of the alloy. Experience revealed that the alloy was susceptible to pitting corrosion in all chloride solution. The alloy undergoes two types of localized corrosion process, leading to the formation of hemispherical and crystallographic pits. Polarization resistance measurements which are in good agreement with those of self-corrosion, show that the corrosion kinetic is minimized in slightly neutral solutions (pH = 7).

  20. Corrosion behavior of ASTM A106 and AISI 316SS in KOH and nickel acetate solutions

    SciTech Connect

    Gonzalez, J.J.; Baron, E.; Saldeho, J.

    1999-11-01

    The present work is concerned with the corrosion behavior of ASTM A106 B grade and AISI 316 stainless steel in the presence of three different environments: a mixture or an emulsion formed by oil-KOH-nickel acetate solution, a KOH (40 wt. %) solution and a nickel acetate (14 wt. %) solution, which are representative fluids used during a PDVSA proprietary process for improving heavy crude oils. Corrosion rate measurements and stress corrosion cracking (SCC) behavior were evaluated through weight loss (in the laboratory and in situ measurements), and mechanical testing (constant load and slow strain rate tests). In the emulsion the corrosion rate was almost undetectable for both steels and the evidence suggested that no SCC had taken place. However, the corrosion rate of the carbon steel in 40wt.% KOH solution at 130 C was 2.8 mm/y, showing the presence of pitting corrosion. On the other hand, the stainless steel showed an undetectable corrosion rate. Though SCC was not observed in any of the materials tested in presence of KOH at both 30 and 130 C, a deterioration in the mechanical properties was found for the high temperature case for carbon steel. During nickel acetate solution tests at 130 C, the A 106 steel showed a relatively high corrosion rate (5.9 mm/y) and the formation of pits. For the stainless steel case, acetate solution had no corrosive effect whatsoever. This last environment offered no SCC susceptibility for any material at both temperatures tested.