Science.gov

Sample records for pce-contaminated drinking water

  1. Adult Neuropsychological Performance Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Vieira, Veronica; Aschengrau, Ann

    2012-01-01

    This population-based retrospective cohort study examined adult performance on a battery of neuropsychological tests in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and a Geographic Information System (GIS). Results of crude and multivariate analyses among 35 exposed and 28 unexposed subjects showed no association between prenatal and early postnatal exposure and decrements on tests that assess abilities in the domains of omnibus intelligence, academic achievement or language. The results were suggestive of an association between prenatal and early postnatal PCE exposure and diminished performance on tests that assessed abilities in the domains of visuospatial functioning, learning and memory, motor, attention and mood. Because the sample size was small, most findings were not statistically significant. Future studies with larger sample sizes should be conducted to further define the neuropsychological consequences of early developmental PCE exposure. PMID:22522125

  2. Affinity for risky behaviors following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study

    PubMed Central

    2011-01-01

    Background Many studies of adults with acute and chronic solvent exposure have shown adverse effects on cognition, behavior and mood. No prior study has investigated the long-term impact of prenatal and early childhood exposure to the solvent tetrachloroethylene (PCE) on the affinity for risky behaviors, defined as smoking, drinking or drug use as a teen or adult. Objectives This retrospective cohort study examined whether early life exposure to PCE-contaminated drinking water influenced the occurrence of cigarette smoking, alcohol consumption, and drug use among adults from Cape Cod, Massachusetts. Methods Eight hundred and thirty-one subjects with prenatal and early childhood PCE exposure and 547 unexposed subjects were studied. Participants completed questionnaires to gather information on risky behaviors as a teenager and young adult, demographic characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure was estimated using the U.S. EPA's water distribution system modeling software (EPANET) that was modified to incorporate a leaching and transport model to estimate PCE exposures from pipe linings. Results Individuals who were highly exposed to PCE-contaminated drinking water during gestation and early childhood experienced 50-60% increases in the risk of using two or more major illicit drugs as a teenager or as an adult (Relative Risk (RR) for teen use = 1.6, 95% CI: 1.2-2.2; and RR for adult use = 1.5, 95% CI: 1.2-1.9). Specific drugs for which increased risks were observed included crack/cocaine, psychedelics/hallucinogens, club/designer drugs, Ritalin without a prescription, and heroin (RRs:1.4-2.1). Thirty to 60% increases in the risk of certain smoking and drinking behaviors were also seen among highly exposed subjects. Conclusions The results of this study suggest that risky behaviors, particularly drug use, are more frequent among adults with high PCE exposure levels during gestation and early childhood

  3. Structural Magnetic Resonance Imaging in an adult cohort following prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water.

    PubMed

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on the measures of white matter hypointensities (β: 127.5mm(3), 95% CI: -259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: β: 21230.0mm(3), 95% CI: -4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: β: 11976.0mm(3), 95% CI: -13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  4. Structural Magnetic Resonance Imaging in an Adult Cohort Following Prenatal and Early Postnatal Exposure to Tetrachloroethylene (PCE)-contaminated Drinking Water

    PubMed Central

    Janulewicz, Patricia A; Killiany, Ronald J; White, Roberta F; Martin, Brett M; Winter, Michael R; Weinberg, Janice M; Aschengrau, Ann

    2013-01-01

    This population-based retrospective cohort study examined Structural Magnetic Resonance Imaging (MRI) of the brain in relation to prenatal and early postnatal exposure to tetrachloroethylene (PCE)-contaminated drinking water on Cape Cod, Massachusetts. Subjects were identified through birth records from 1969 through 1983. Exposure was modeled using pipe network information from town water departments, a PCE leaching and transport algorithm, EPANet water flow modeling software, and Geographic Information System (GIS) methodology. Brain imaging was performed on 26 exposed and 16 unexposed subjects. Scans were acquired on a Philips 3T whole body scanner using the ADNI T1-weighted MP-RAGE scan. The scans were processed by FreeSurfer version 4.3.1 software to obtain measurements of specific brain regions. There were no statistically significant differences between exposed and unexposed subjects on measures of white matter hypointensities (β: 127.5 mm3, 95% CI: −259.1, 1514.0), white matter volumes (e.g. total cerebral white matter: β: 21230.0 mm3, 95% CI: −4512.6, 46971.7) or gray matter volumes (e.g. total cerebral gray matter: β: 11976.0 mm3, 95% CI: −13657.2, 37609.3). The results of this study suggest that exposure to PCE during gestation and early childhood, at the levels observed in this population, is not associated with alterations in the brain structures studied. PMID:23571160

  5. Occurrence of mental illness following prenatal and early childhood exposure to tetrachloroethylene (PCE)-contaminated drinking water: a retrospective cohort study

    PubMed Central

    2012-01-01

    Background While many studies of adults with solvent exposure have shown increased risks of anxiety and depressive disorders, there is little information on the impact of prenatal and early childhood exposure on the subsequent risk of mental illness. This retrospective cohort study examined whether early life exposure to tetrachloroethylene (PCE)-contaminated drinking water influenced the occurrence of depression, bipolar disorder, post-traumatic stress disorder, and schizophrenia among adults from Cape Cod, Massachusetts. Methods A total of 1,512 subjects born between 1969 and 1983 were studied, including 831 subjects with both prenatal and early childhood PCE exposure and 547 unexposed subjects. Participants completed questionnaires to gather information on mental illnesses, demographic and medical characteristics, other sources of solvent exposure, and residences from birth through 1990. PCE exposure originating from the vinyl-liner of water distribution pipes was assessed using water distribution system modeling software that incorporated a leaching and transport algorithm. Results No meaningful increases in risk ratios (RR) for depression were observed among subjects with prenatal and early childhood exposure (RR: 1.1, 95% CI: 0.9-1.4). However, subjects with prenatal and early childhood exposure had a 1.8-fold increased risk of bipolar disorder (N = 36 exposed cases, 95% CI: 0.9-1.4), a 1.5-fold increased risk post-traumatic stress disorder (N = 47 exposed cases, 95% CI: 0.9-2.5), and a 2.1-fold increased risk of schizophrenia (N = 3 exposed cases, 95% CI: 0.2-20.0). Further increases in the risk ratio were observed for bipolar disorder (N = 18 exposed cases, RR; 2.7, 95% CI: 1.3-5.6) and post-traumatic stress disorder (N = 18 exposed cases, RR: 1.7, 95% CI: 0.9-3.2) among subjects with the highest exposure levels. Conclusions The results of this study provide evidence against an impact of early life exposure to PCE on the risk of depression. In contrast, the

  6. Drinking Water

    MedlinePlus

    We all need to drink water. How much you need depends on your size, activity level, and the weather where you live. The water you drink is a combination of surface water and groundwater. Surface water ...

  7. Drinking Water

    MedlinePlus

    ... safest water supplies in the world, but drinking water quality can vary from place to place. It depends on the condition of the source water and the treatment it receives. Treatment may include ...

  8. Drinking Water

    EPA Science Inventory

    This encyclopedic entry deals with various aspects of microbiology as it relates to drinking water treatment. The use of microbial indicators for assessing fecal contamination is discussed as well as current national drinking water regulations (U.S. EPA) and guidelines proposed ...

  9. Drinking Water FAQ

    MedlinePlus

    ... Water & Nutrition Camping, Hiking, Travel Drinking Water Treatment & Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Drinking Water Healthy Swimming / Recreational Water Global Water, Sanitation, & Hygiene Other Uses of Water Water-related Emergencies & ...

  10. Prenatal exposure to tetrachloroethylene-contaminated drinking water and the risk of congenital anomalies: a retrospective cohort study

    PubMed Central

    2009-01-01

    Background Prior animal and human studies of prenatal exposure to solvents including tetrachloroethylene (PCE) have shown increases in the risk of certain congenital anomalies among exposed offspring. Objectives This retrospective cohort study examined whether PCE contamination of public drinking water supplies in Massachusetts influenced the occurrence of congenital anomalies among children whose mothers were exposed around the time of conception. Methods The study included 1,658 children whose mothers were exposed to PCE-contaminated drinking water and a comparable group of 2,999 children of unexposed mothers. Mothers completed a self-administered questionnaire to gather information on all of their prior births, including the presence of anomalies, residential histories and confounding variables. PCE exposure was estimated using EPANET water distribution system modeling software that incorporated a fate and transport model. Results Children whose mothers had high exposure levels around the time of conception had an increased risk of congenital anomalies. The adjusted odds ratio of all anomalies combined among children with prenatal exposure in the uppermost quartile was 1.5 (95% CI: 0.9, 2.5). No meaningful increases in the risk were seen for lower exposure levels. Increases were also observed in the risk of neural tube defects (OR: 3.5, 95% CI: 0.8, 14.0) and oral clefts (OR 3.2, 95% CI: 0.7, 15.0) among offspring with any prenatal exposure. Conclusion The results of this study suggest that the risk of certain congenital anomalies is increased among the offspring of women who were exposed to PCE-contaminated drinking water around the time of conception. Because these results are limited by the small number of children with congenital anomalies that were based on maternal reports, a follow-up investigation should be conducted with a larger number of affected children who are identified by independent records. PMID:19778411

  11. AIRCRAFT DRINKING WATER RULE

    EPA Science Inventory

    Under the Safe Drinking Water Act (SDWA), any interstate carrier conveyance (ICC) that regularly serves drinking water to an average of at least 25 individuals daily, at least 60 days per year, is subject to the National Primary Drinking Water Regulations (NPDWR). An ICC is a car...

  12. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  13. Drinking Water and Health.

    ERIC Educational Resources Information Center

    National Academy of Sciences, Washington, DC.

    In response to a provision of the Safe Drinking Water Act of 1974 which called for a study that would serve as a scientific basis for revising the primary drinking water regulations that were promulgated under the Act, a study of the scientific literature was undertaken in order to assess the implications for human health of the constituents of…

  14. Safe drinking water act

    SciTech Connect

    Calabrese, E.J.; Gilbert, C.E. )

    1989-01-01

    This book covers drinking water regulations such as disinfectant by-products, synthetic organics, inorganic chemicals, microbiological contaminants, volatile organic chemicals, radionuclides, fluoride, toxicological approaches to setting new national drinking water regulations, and trihalomethanes. Gives organic and inorganic compounds scheduled to be regulated in 1989 and candidates for the 1990s regulations.

  15. Drinking water and cancer.

    PubMed Central

    Morris, R D

    1995-01-01

    Any and all chemicals generated by human activity can and will find their way into water supplies. The types and quantities of carcinogens present in drinking water at the point of consumption will differ depending on whether they result from contamination of the source water, arise as a consequence of treatment processes, or enter as the water is conveyed to the user. Source-water contaminants of concern include arsenic, asbestos, radon, agricultural chemicals, and hazardous waste. Of these, the strongest evidence for a cancer risk involves arsenic, which is linked to cancers of the liver, lung, bladder, and kidney. The use of chlorine for water treatment to reduce the risk of infectious disease may account for a substantial portion of the cancer risk associated with drinking water. The by-products of chlorination are associated with increased risk of bladder and rectal cancer, possibly accounting for 5000 cases of bladder cancer and 8000 cases of rectal cancer per year in the United States. Fluoridation of water has received great scrutiny but appears to pose little or no cancer risk. Further research is needed to identify and quantify risks posed by contaminants from drinking-water distribution pipes, linings, joints, and fixtures and by biologically active micropollutants, such as microbial agents. We need more cost-effective methods for monitoring drinking-water quality and further research on interventions to minimize cancer risks from drinking water. PMID:8741788

  16. Prenatal Exposure to Tetrachloroethylene-Contaminated Drinking Water and the Risk of Adverse Birth Outcomes

    PubMed Central

    Aschengrau, Ann; Weinberg, Janice; Rogers, Sarah; Gallagher, Lisa; Winter, Michael; Vieira, Veronica; Webster, Thomas; Ozonoff, David

    2008-01-01

    Background Prior studies of prenatal exposure to tetrachloroethylene (PCE) have shown mixed results regarding its effect on birth weight and gestational age. Objectives In this retrospective cohort study we examined whether PCE contamination of public drinking-water supplies in Massachusetts influenced the birth weight and gestational duration of children whose mothers were exposed before the child’s delivery. Methods The study included 1,353 children whose mothers were exposed to PCE-contaminated drinking water and a comparable group of 772 children of unexposed mothers. Birth records were used to identify subjects and provide information on the outcomes. Mothers completed a questionnaire to gather information on residential histories and confounding variables. PCE exposure was estimated using EPANET water distribution system modeling software that incorporated a fate and transport model. Results We found no meaningful associations between PCE exposure and birth weight or gestational duration. Compared with children whose mothers were unexposed during the year of the last menstrual period (LMP), adjusted mean differences in birth weight were 20.9, 6.2, 30.1, and 15.2 g for children whose mothers’ average monthly exposure during the LMP year ranged from the lowest to highest quartile. Similarly, compared with unexposed children, adjusted mean differences in gestational age were −0.2, 0.1, −0.1, and −0.2 weeks for children whose mothers’ average monthly exposure ranged from the lowest to highest quartile. Similar results were observed for two other measures of prenatal exposure. Conclusions These results suggest that prenatal PCE exposure does not have an adverse effect on these birth outcomes at the exposure levels experienced by this population. PMID:18560539

  17. REGULATED CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    Safe drinking water is critical to protecting human health. More than 260 million Americans rely on the safety of tap water provided by water systems that comply with national drinking water standards. EPA's strategy for ensuring safe drinking water includes four key elements, ...

  18. Water Fit to Drink.

    ERIC Educational Resources Information Center

    Donovan, Edward P.

    The major objective of this module is to help students understand how water from a source such as a lake is treated to make it fit to drink. The module, consisting of five major activities and a test, is patterned after Individualized Science Instructional System (ISIS) modules. The first activity (Planning) consists of a brief introduction and a…

  19. DRINKING WATER ISSUES

    EPA Science Inventory

    According to recent reports by the California Department of Health Services, the State of Maine, and the United State Geological Survey (USGS); the fuel oxygenate methyl teri-butyl ether (MTBE) is present in 5 to 20 percent of the drinking water sources in California and the nort...

  20. DRINKING WATER INFRASTRUCTURE NEEDS SURVEY

    EPA Science Inventory

    Conducted every 4 years, the Drinking Water Infrastructure Needs Survey (DWINS) is an EPA-conducted statistically-based survey of the infrastructure investment needs of the Nation's drinking water systems for the next 20 years.

  1. Drink Water, Stay Slimmer?

    MedlinePlus

    ... than slimmer ones, the study authors said. While coffee and other caffeine-containing drinks can act as ... Chang said, ''but I wouldn't recommend drinking coffee to hydrate." The study was published in the ...

  2. Lead in School Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    Lead levels in school drinking water merit special concern because children are more at risk than adults from exposure to lead. This manual provides ways in which school officials can minimize this risk. It assists administrators by providing: (1) general information on the significance of lead in school drinking water and its effects on children;…

  3. Drinking Water Treatability Database (Database)

    EPA Science Inventory

    The drinking Water Treatability Database (TDB) will provide data taken from the literature on the control of contaminants in drinking water, and will be housed on an interactive, publicly-available USEPA web site. It can be used for identifying effective treatment processes, rec...

  4. Drinking Water Database

    NASA Technical Reports Server (NTRS)

    Murray, ShaTerea R.

    2004-01-01

    This summer I had the opportunity to work in the Environmental Management Office (EMO) under the Chemical Sampling and Analysis Team or CS&AT. This team s mission is to support Glenn Research Center (GRC) and EM0 by providing chemical sampling and analysis services and expert consulting. Services include sampling and chemical analysis of water, soil, fbels, oils, paint, insulation materials, etc. One of this team s major projects is the Drinking Water Project. This is a project that is done on Glenn s water coolers and ten percent of its sink every two years. For the past two summers an intern had been putting together a database for this team to record the test they had perform. She had successfully created a database but hadn't worked out all the quirks. So this summer William Wilder (an intern from Cleveland State University) and I worked together to perfect her database. We began be finding out exactly what every member of the team thought about the database and what they would change if any. After collecting this data we both had to take some courses in Microsoft Access in order to fix the problems. Next we began looking at what exactly how the database worked from the outside inward. Then we began trying to change the database but we quickly found out that this would be virtually impossible.

  5. DRINKING WATER AND CANCER MORTALITY

    EPA Science Inventory

    The problem of understanding the possible adverse health effects of organic chemical contaminants in drinking water is not new, but national concern has intensified in recent years. Despite this concern and regulatory efforts, no definitive relationship has been established betwe...

  6. The risks of drinking water

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1984-04-01

    Three researchers from the Energy and Environmental Policy Center at Harvard University have come up with a new method of calculating the risk from contaminants in drinking water, one that they believe takes into account some of the uncertainties in pronouncing water safe or dangerous to drink. The new method concentrates on the risk of cancer, which authors Edmund Crouch, Richard Wilson, and Lauren Zeise believe has not been properly considered in establishing drinking water standards.Writing in the December 1983 issue of Water Resources Research, the authors state that “current [drinking water] standards for a given chemical or class of chemicals do not account for the presence of other pollutants” that could combine to create dangerous substances. According to Wilson, “Over a hundred industrial pollutants and chlorination byproducts have been found in various samples of drinking water, some of which are known carcinogens, others suspected carcinogens.” The same chlorine that solves one major health problem—the threat of bacterial disease—can thus contribute to another, according to the authors, by increasing the long-term risk of cancer. The largest risks are due to halomethanes such as chloroform and bromoform, produced as chlorine reacts with organic matter in drinking water.

  7. INJURED COLIFORMS IN DRINKING WATER

    EPA Science Inventory

    Coliforms were enumerated by using m-Endo agar LES and m-T7 agar in 102 routine samples of drinking water from three New England community water systems to investigate the occurrence and significance of injured coliforms. Samples included water collected immediately after convent...

  8. How dogs drink water

    NASA Astrophysics Data System (ADS)

    Gart, Sean; Socha, Jake; Vlachos, Pavlos; Jung, Sunghwan

    2014-11-01

    Animals with incomplete cheeks (i.e. dogs and cats) need to move fluid against gravity into the body by means other than suction. They do this by lapping fluid with their tongue. When a dog drinks, it curls its tongue posteriorly while plunging it into the fluid and then quickly withdraws its tongue back into the mouth. During this fast retraction fluid sticks to the ventral part of the curled tongue and is drawn into the mouth due to inertia. We show several variations of this drinking behavior among many dog breeds, specifically, the relationship between tongue dynamics and geometry, lapping frequency, and dog weight. We also compare the results with the physical experiment of a rounded rod impact onto a fluid surface. Supported by NSF PoLS #1205642.

  9. Lead and Drinking Water from Private Wells

    MedlinePlus

    ... Nutrition Camping, Hiking, Travel Drinking Water Treatment and Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related Hygiene Related Sites Get Email Updates ...

  10. Giardia and Drinking Water from Private Wells

    MedlinePlus

    ... Nutrition Camping, Hiking, Travel Drinking Water Treatment and Sanitation for Backcountry & Travel Use Emergency Disinfection of Drinking ... Uses of Water WASH-related Emergencies & Outbreaks Water, Sanitation, & Environmentally-related Hygiene Related Sites Get Email Updates ...

  11. Uranium in Kosovo's drinking water.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-11-01

    The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L(-1), which was also our limit of quantification. Concentrations up to 166 μg L(-1) were found with a mean of 5 μg L(-1) and median 1.6 μg L(-1) were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L(-1), and 44.2% of the samples exceeded the 2 μg L(-1) German maximum acceptable concentrations recommended for infant food preparations. PMID:24070912

  12. DRINKING WATER MULTI-YEAR PLAN

    EPA Science Inventory

    The Safe Drinking Water Act Amendments of 1996 direct EPA to conduct research to strengthen the scientific foundation for standards that limit public exposure to drinking water contaminants. The Amendments contain specific requirements for research on waterborne pathogens, such a...

  13. Drinking More Water May Help Your Diet

    MedlinePlus

    ... gov/medlineplus/news/fullstory_157636.html Drinking More Water May Help Your Diet Sugar, salt and overall ... March 7, 2016 (HealthDay News) -- Plain old tap water might be the best diet drink around, scientists ...

  14. Drinking water safely during cancer treatment

    MedlinePlus

    ... Disease Control and Prevention. A guide to drinking water treatment technologies for household use. http://www.cdc.gov/healthywater/drinking/travel/household_water_treatment.html. Accessed May 7, 2014.

  15. DRINKING WATER TREATMENT

    EPA Science Inventory

    The purpose of water treatment is threefold: 1. To improve the aethetic quality ofwater, 2. to remove toxic or health-hazardous chemicals, 3. to remove and/or inactivate any disease causing microorganisms. These objectives should be accomplished using a reasonable safety factor...

  16. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  17. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  18. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  19. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  20. 30 CFR 75.1718 - Drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water. 75.1718 Section 75.1718 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718 Drinking water. An adequate supply of potable water shall be provided for drinking purposes in the active workings of the mine, and such...

  1. THE DRINKING WATER TREATABILITY DATABASE (Slides)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  2. THE DRINKING WATER TREATABILITY DATABASE (Conference Paper)

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) assembles referenced data on the control of contaminants in drinking water, housed on an interactive, publicly-available, USEPA web site (www.epa.gov/tdb). The TDB is of use to drinking water utilities, treatment process design engin...

  3. Cleaning Up Our Drinking Water

    SciTech Connect

    Manke, Kristin L.

    2007-08-01

    Imagine drinking water that you wring out of the sponge you’ve just used to wash your car. This is what is happening around the world. Rain and snow pass through soil polluted with pesticides, poisonous metals and radionuclides into the underground lakes and streams that supply our drinking water. “We need to understand this natural system better to protect our groundwater and, by extension, our drinking water,” said Pacific Northwest National Laboratory’s Applied Geology and Geochemistry Group Manager, Wayne Martin. Biologists, statisticians, hydrologists, geochemists, geologists and computer scientists at PNNL work together to clean up contaminated soils and groundwater. The teams begin by looking at the complexities of the whole environment, not just the soil or just the groundwater. PNNL researchers also perform work for private industries under a unique use agreement between the Department of Energy and Battelle, which operates the laboratory for DOE. This research leads to new remediation methods and technologies to tackle problems ranging from arsenic at old fertilizer plants to uranium at former nuclear sites. Our results help regulators, policy makers and the public make critical decisions on complex environmental issues.

  4. Naphthalene: Drinking water health advisory

    SciTech Connect

    Not Available

    1990-03-01

    The Drinking Water Health Advisory, Office of Water, U.S. Environmental Protection Agency, has issued its report on the chemical, naphthalene. Naphthalene is used in the manufacture of phthalic and anthranilic acids and other derivatives, and in making dyes; in the manufacture of resins, celluloid, lampblack and smokeless gunpowder; and as moth repellant, insecticide, anthelmintic, vermicide, and intestinal antiseptic. The report covers the following areas: the occurrence of the chemical in the environment; its environmental fate; the chemical's absorption, distribution, metabolism, and excretion in the human body; and its health effects on humans and animals, including its mutagenicity and carcinogenicity characteristics. Also included is the quantification of its toxicological effects.

  5. Fungi contamination of drinking water.

    PubMed

    Al-Gabr, Hamid Mohammad; Zheng, Tianling; Yu, Xin

    2014-01-01

    Aquatic fungi commonly infest various aqueous environments and play potentially crucial roles in nutrient and carbon cycling. Aquatic fungi also interact with other organisms to influence food web dynamics. In recent decades, numerous studies have been conducted to address the problem of microorganism contamination of water. The major concern has been potential effects on human health from exposure to certain bacteria, viruses, and protozoa that inhabit water and the microbial metabolites,pigments, and odors which are produced in the water, and their effects on human health and animals. Fungi are potentially important contaminants because they produce certain toxic metabolites that can cause severe health hazards to humans and animals. Despite the potential hazard posed by fungi, relatively few studies on them as contaminants have been reported for some countries.A wide variety of fungi species have been isolated from drinking water, and some of them are known to be strongly allergenic and to cause skin irritation, or immunosuppression in immunocompromised individuals (e.g., AIDS, cancer, or organ transplant patients). Mycotoxins are naturally produced as secondary metabolites by some fungi species, and exposure of humans or animals to them can cause health problems. Such exposure is likely to occur from dietary intake of either food,water or beverages made with water. However, mycotoxins, as residues in water,may be aerosolized when showering or when being sprayed for various purposes and then be subject to inhalation. Mycotoxins, or at least some of them, are regarded to be carcinogenic. There is also some concern that toxic mycotoxins or other secondary metabolites of fungi could be used by terrorists as a biochemical weapon by adding amounts of them to drinking water or non drinking water. Therefore, actions to prevent mycotoxin contaminated water from affecting either humans or animals are important and are needed. Water treatment plants may serve to partially

  6. Tetrachloroethylene-contaminated drinking water in Massachusetts and the risk of colon-rectum, lung, and other cancers.

    PubMed Central

    Paulu, C; Aschengrau, A; Ozonoff, D

    1999-01-01

    We conducted a population-based case-control study to evaluate the relationship between cancer of the colon-rectum (n = 326), lung (n = 252), brain (n = 37), and pancreas (n = 37), and exposure to tetrachloroethylene (PCE) from public drinking water. Subjects were exposed to PCE when it leached from the vinyl lining of drinking-water distribution pipes. Relative delivered dose of PCE was estimated using a model that took into account residential location, years of residence, water flow, and pipe characteristics. Adjusted odds ratios (ORs) for lung cancer were moderately elevated among subjects whose exposure level was above the 90th percentile whether or not a latent period was assumed [ORs and 95% confidence intervals (CIs), 3.7 (1.0-11.7), 3.3 (0.6-13.4), 6.2 (1.1-31.6), and 19.3 (2.5-141.7) for 0, 5, 7, and 9 years of latency, respectively]. The adjusted ORs for colon-rectum cancer were modestly elevated among ever-exposed subjects as more years of latency were assumed [OR and CI, 1.7 (0.8-3.8) and 2.0 (0.6-5.8) for 11 and 13 years of latency, respectively]. These elevated ORs stemmed mainly from associations with rectal cancer. Adjusted ORs for rectal cancer among ever-exposed subjects were more elevated [OR and CI, 2.6 (0. 8-6.7) and 3.1 (0.7-10.9) for 11 and 13 years of latency, respectively] than were corresponding estimates for colon cancer [OR and CI, 1.3 (0.5-3.5) and 1.5 (0.3-5.8) for 11 and 13 years of latency, respectively]. These results provide evidence for an association between PCE-contaminated public drinking water and cancer of the lung and, possibly, cancer of the colon-rectum. PMID:10090704

  7. Water Treatment: Can You Purify Water for Drinking?

    ERIC Educational Resources Information Center

    Harris, Mary E.

    1996-01-01

    Presents a three-day mini unit on purification of drinking water that uses the learning cycle approach. Demonstrates the typical technology that water companies use to provide high-quality drinking water. (JRH)

  8. MINI PILOT PLANT FOR DRINKING WATER RESEARCH

    EPA Science Inventory

    The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...

  9. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest. PMID:12830937

  10. Chemical Contamination of California Drinking Water

    PubMed Central

    Russell, Hanafi H.; Jackson, Richard J.; Spath, David P.; Book, Steven A.

    1987-01-01

    Drinking water contamination by toxic chemicals has become widely recognized as a public health concern since the discovery of 1,2-dibromo-3-chloropropane in California's Central Valley in 1979. Increased monitoring since then has shown that other pesticides and industrial chemicals are present in drinking water. Contaminants of drinking water also include naturally occurring substances such as asbestos and even the by-products of water chlorination. Public water systems, commercially bottled and vended water and mineral water are regulated, and California is also taking measures to prevent water pollution by chemicals through various new laws and programs. PMID:3321714

  11. Drinking water regulations and health advisories

    SciTech Connect

    Not Available

    1994-05-01

    The report provides maximum contaminant level of goals, maximum contaminant levels, reference doses, and drinking water equivalent levels for over 250 organic and inorganic chemicals, radionuclides, and microbes.

  12. EPA’s Drinking Water Treatability Database: A Tool for All Drinking Water Professionals

    EPA Science Inventory

    The Drinking Water Treatability Database (TDB) is being developed by the USEPA Office of Research and Development to allow drinking water professionals and others to access referenced information gathered from thousands of literature sources and assembled on one site. Currently, ...

  13. New approaches to safe drinking water.

    PubMed

    Barron, Gerald; Buchanan, Sharunda; Hase, Denise; Mainzer, Hugh; Ransom, Montrece McNeill; Sarisky, John

    2002-01-01

    Up to half the population of some states in the United States drink water from small systems not regulated by the Safe Drinking Water Act. The quality of the drinking water from these systems is generally unknown and may be suspect. In many jurisdictions, private wells are the primary source of water. In some instances, construction of wells may have met regulatory requirements but may not have adequately prevented disease transmission. Anecdotal information, periodic water-borne outbreaks, and recent well surveys suggest that there are public health concerns associated with these and similar systems. This article provides an assessment of the need for governmental oversight (regulatory and non-regulatory) of drinking water supplies, describes how a "systems-based" approach might be used to evaluate water supply systems and to identify and prevent possible contamination, and presents case studies describing the systems-based approach as well as a comprehensive approach to environmental health that includes drinking water regulation. PMID:12508511

  14. Drinking Water (Environmental Health Student Portal)

    MedlinePlus

    ... water. A Guide to Drinking Water Treatment and Sanitation for Backcountry & Travel Use (Centers for Disease Control ... runoff is and its hazardous effects on the environment. Commercially Bottled Water (Centers for Disease Control and ...

  15. DISINFECTION OF WATER: DRINKING WATER, RECREATIONAL WATER, AND WASTEWATER

    EPA Science Inventory

    This chapter describes and categorizes the methodology used for disinfection of drinking water, recreational water and wastewater including wastewater sludges. It largely is a literature summary and references articles covering the years of 1939 through 1999, with a few reference...

  16. Drinking Water: A Community Action Guide.

    ERIC Educational Resources Information Center

    Boyd, Susan, Ed.; And Others

    While much of the drinking water in the United States is safe for consumption, protecting its quality and assuring its availability are becoming increasingly difficult. This booklet is written for individuals and groups who are concerned about the drinking water in their communities. It provides a general introduction to the complex issues of…

  17. DRINKING WATER ARSENIC AND PERINATAL OUTCOMES

    EPA Science Inventory

    Drinking Water Arsenic and Perinatal Outcomes
    DT Lobdell, Z Ning, RK Kwok, JL Mumford, ZY Liu, P Mendola

    Many studies have documented an association between drinking water arsenic (DWA) and cancer, vascular diseases, and dermatological outcomes, but few have investigate...

  18. ARSENIC COMPLIANCE DATABASE FOR DRINKING WATER

    EPA Science Inventory

    Resource Purpose:Section 1412(b)(12)(A) of the Safe Drinking Water Act (SDWA) (42 U.S.C. ? 300f-300j), as amended in 1996, required EPA to propose a National Primary Drinking Water Regulation for arsenic by January 1, 2000, and to issue a final regulation by January 1, 20...

  19. Monitoring of Microbes in Drinking Water

    EPA Science Inventory

    Internationally there is a move towards managing the provision of safe drinking water by direct assessment of the performance of key pathogen barriers (critical control points), rather than end point testing (i.e. in drinking water). For fecal pathogens that breakthrough the vari...

  20. GENOTOXICITY STUDIES OF DRINKING WATER MIXTURES

    EPA Science Inventory

    Investigations into the mutagenicity and mutational mechanisms of single chemicals within drinking water as well as of organic extracts of drinking water are being pursued using the Salmonella (Ames) mutagenicity assay as well as in human samples. For example, the semi-volatile ...

  1. Radon in private drinking water wells.

    PubMed

    Otahal, P; Merta, J; Burian, I

    2014-07-01

    At least 10% of inhabitants in the Czech Republic are supplied with water from private sources (private wells, boreholes). With the increasing cost of water, the number of people using their own sources of drinking water will be likely to increase. According to the Decree of the State Office for Nuclear Safety about the Radiation Protection 307/2002 as amended by Decree 499/2005, the guideline limit for the supplied drinking water ('drinking water for public supply') for radon concentration is 50 Bq·l(-1). This guideline does not apply to private sources of drinking water. Radon in water influences human health by ingestion and also by inhalation when radon is released from water during showering and cooking. This paper presents results of measurements of radon concentrations in water from private wells in more than 300 cases. The gross concentration of alpha-emitting radionuclides and the concentrations of radium and uranium were also determined. PMID:24714110

  2. OVERVIEW OF RADIONUCLIDES IN DRINKING WATER SYSTEMS

    EPA Science Inventory

    Invited presentation at the 2007 National Rural Water Association National Conference, Philadelphia, PA, September 23-26, 2007. The presentation reviews the chemistry of radium and uranium in drinking water sources, treatment options, and guidelines for disposal. Presentation giv...

  3. THE EPIDEMIOLOGY OF CHEMICAL CONTAMINANTS OF DRINKING WATER

    EPA Science Inventory



    A number of chemical contaminants have been identified in drinking water. These contaminants reach drinking water supplies from various sources, including municipal and industrial discharges, urban and rural run-off, natural geological formations, drinking water distrib...

  4. Drinking Water Program 1992 annual report

    SciTech Connect

    Andersen, B.D.; Peterson-Wright, L.J.

    1993-08-01

    EG&G Idaho, Inc., initiated a monitoring program for drinking water in 1988 for the US Department of Energy at the Idaho National Engineering Laboratory. EG&G Idaho structured this monitoring program to ensure that they exceeded the minimum regulatory requirements for monitoring drinking water. This program involves tracking the bacteriological, chemical, and radiological parameters that are required for a {open_quotes}community water system{close_quotes} (maximum requirements). This annual report describes the drinking water monitoring activities conducted at the 17 EG&G Idaho operated production wells and 11 distribution systems. It also contains all of the drinking water parameters that were detected and the regulatory limits that were exceeded during 1992. In addition, ground water quality is discussed as it relates to contaminants identified at the wellhead for EG&G Idaho production wells.

  5. Investigation of Drinking Water Quality in Kosovo

    PubMed Central

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  6. Investigation of drinking water quality in Kosovo.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  7. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  8. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  9. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  10. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  11. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drinking water provided shall conform to the Public Health Service Drinking Water Standards, 42 CFR part 72... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions...

  12. Smart Water: Energy-Water Optimization in Drinking Water Systems

    EPA Science Inventory

    This project aims to develop and commercialize a Smart Water Platform – Sensor-based Data-driven Energy-Water Optimization technology in drinking water systems. The key technological advances rely on cross-platform data acquisition and management system, model-based real-time sys...

  13. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  14. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  15. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  16. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  17. 30 CFR 71.603 - Drinking water; dispensing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; dispensing requirements. 71.603... COAL MINES Drinking Water § 71.603 Drinking water; dispensing requirements. (a) Water shall be dispensed through a drinking fountain or from a water storage container with an adequate supply of...

  18. A WATERSHED APPROACH TO DRINKING WATER QUALITY

    EPA Science Inventory

    The purpose of this presentation is to describe emerging technologies and strategies managing watersheds with the goal of protecting drinking water sources. Included are discussions on decentralized wastewater treatment, whole organism biomonitor detection systems, treatment of...

  19. ALTERNATIVE DISINFECTANTS FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-year study at Jefferson Parish, Louisiana the chemical, microbiological, and mutagenic effects of using the major drinking water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. ests were performed on samples collected from various treatm...

  20. SCOPING THE CHEMICALS IN YOUR DRINKING WATER

    EPA Science Inventory

    Chlorine, the most common drinking water disinfectant in the United States, is effective for killing harmful microorganisms, but it produces a few disinfection byproducts (DBPS) about which health concerns have been raised. mong the more predominant chlorination DBPs are trihalom...

  1. THE FATE OF FLUOROSILICATE DRINKING WATER ADDITIVES

    EPA Science Inventory

    Periodically, the EPA reexamines its information on regulated drinking water contaminants to deterime if further study is required. Fluoride is one such contaminant undergoing review. The chemical literature indicates that some deficiencies exist in our understanding of the spe...

  2. Drinking Water: Health Hazards Still Not Resolved

    ERIC Educational Resources Information Center

    Wade, Nicholas

    1977-01-01

    Despite the suggested link between cancer deaths and drinking obtained from the Mississippi River, New Orleans still treats its water supply in the same manner as before the Environmental Defense Fund's epidemiological study. (BT)

  3. Condition Assessment for Drinking Water Systems

    EPA Science Inventory

    This project will enable a systematic approach to characterizing the value of condition assessment of drinking water mains that will provide the basis for better communication among, and decisions by, stakeholders regarding goals and priorities for research, development, and tech...

  4. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost. PMID:12696647

  5. Sustaining Waters: From Hydrology to Drinking Water

    NASA Astrophysics Data System (ADS)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  6. Drinking water quality monitoring using trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control. PMID:24937217

  7. REMOVAL OF RADIUM FROM DRINKING WATER

    EPA Science Inventory

    This report summarizes processes for removal of radium from drinking water. Ion exchange, including strong acid and weak acid resin, is discussed. Both processes remove better than 95 percent of the radium from the water. Weak acid ion exchange does not add sodium to the water...

  8. Renal effects of uranium in drinking water.

    PubMed Central

    Kurttio, Päivi; Auvinen, Anssi; Salonen, Laina; Saha, Heikki; Pekkanen, Juha; Mäkeläinen, Ilona; Väisänen, Sari B; Penttilä, Ilkka M; Komulainen, Hannu

    2002-01-01

    Animal studies and small studies in humans have shown that uranium is nephrotoxic. However, more information about its renal effects in humans following chronic exposure through drinking water is required. We measured uranium concentrations in drinking water and urine in 325 persons who had used drilled wells for drinking water. We measured urine and serum concentrations of calcium, phosphate, glucose, albumin, creatinine, and beta-2-microglobulin to evaluate possible renal effects. The median uranium concentration in drinking water was 28 microg/L (interquartile range 6-135, max. 1,920 microg/L) and in urine 13 ng/mmol creatinine (2-75), resulting in the median daily uranium intake of 39 microg (7-224). Uranium concentration in urine was statistically significantly associated with increased fractional excretion of calcium and phosphate. Increase of uranium in urine by 1 microg/mmol creatinine increased fractional excretion of calcium by 1.5% [95% confidence interval (CI), 0.6-2.3], phosphate by 13% (1.4-25), and glucose excretion by 0.7 micromol/min (-0.4-1.8). Uranium concentrations in drinking water and daily intake of uranium were statistically significantly associated with calcium fractional excretion, but not with phosphate or glucose excretion. Uranium exposure was not associated with creatinine clearance or urinary albumin, which reflect glomerular function. In conclusion, uranium exposure is weakly associated with altered proximal tubulus function without a clear threshold, which suggests that even low uranium concentrations in drinking water can cause nephrotoxic effects. Despite chronic intake of water with high uranium concentration, we observed no effect on glomerular function. The clinical and public health relevance of the findings are not easily established, but our results suggest that the safe concentration of uranium in drinking water may be within the range of the proposed guideline values of 2-30 microg/L. PMID:11940450

  9. Small Drinking Water Systems Research and Development

    EPA Science Inventory

    In the United States, there are 152,002 public water systems (PWS) in operation. Of these, 97% are considered small systems under the Safe Drinking Water Act (SDWA)—meaning they serve 10,000 or fewer people. While many of these small systems consistently provide safe, relia...

  10. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbes...

  11. ASBESTOS IN DRINKING WATER PERFORMANCE EVALUATION STUDIES

    EPA Science Inventory

    Performance evaluations of laboratories testing for asbestos in drinking water according to USEPA Test Method 100.1 or 100.2 are complicated by the difficulty of providing stable sample dispersions of asbestos in water. Reference samples of a graduated series of chrysotile asbest...

  12. DETERMINING THE NUTRIENT STATUS OF DRINKING WATER

    EPA Science Inventory

    The presence of biodegradable organic matter in drinking water can result in biologically unstable water that has been linked to various taste, odor and color problems. hen the implicated bacteria are members of the total coliform group, those occurrences can result if major comp...

  13. EPA’s Drinking Water Treatment Research

    EPA Science Inventory

    Riverbank filtration has been utilized for decades as a pretreatment for waters that will be used for drinking water. A study investigating the occurrence and potential for removal of suspected endocrine disrupting compounds (EDCs) during riverbank filtration at a municipal well...

  14. SAFE DRINKING WATER INFORMATION SYSTEM (STATE)

    EPA Science Inventory

    Resource Purpose:The Safe Drinking Water Information System (STATE) (SDWIS/STATE) is an information system OGWDW is developing for states and EPA regions to manage their water industry. SDWIS/STATE is not an information system for which EPA HQ is using to store or retrie...

  15. REMOVAL OF ALACHLOR FROM DRINKING WATER

    EPA Science Inventory

    Alachlor (Lasso) is a pre-emergent herbicide used in the production of corn and soybeans. U.S. EPA has studied control of alachlor in drinking water treatment processes to define treatability before setting maximum contaminant levels and to assist water utilities in selecting con...

  16. Anencephalus, drinking water, geomagnetism and cosmic radiation.

    PubMed

    Archer, V E

    1979-01-01

    The mortality rates from anencephalus from 1950-1969 in Canadian cities are shown to be strongly correlated with city growth rate and with horizontal geomagnetic flux, which is directly related to the intensity of cosmic radiation. They are also shown to have some association with the magnesium content of drinking water. Prior work with these data which showed associations with magnesium in drinking water, mean income, latitude and longitude was found to be inadequate because it dismissed the observed geographic associations as having little biological meaning, and because the important variables of geomagnetism and city growth rate were overlooked. PMID:433919

  17. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  18. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  19. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  20. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  1. 30 CFR 71.602 - Drinking water; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; distribution. 71.602 Section 71... Drinking Water § 71.602 Drinking water; distribution. (a) Water shall be piped or transported in sanitary containers. Water systems and appurtenances thereto shall be constructed and maintained in accordance...

  2. Climate change influence on drinking water quality

    NASA Astrophysics Data System (ADS)

    Kovacs, Melinda Haydee; Ristoiu, Dumitru; Voica, Cezara; Moldovan, Zaharie

    2013-11-01

    Although it are quite well known the possible effects of climate changes on surface waters availability and their hydrological risks, their consequences on drinking water quality is not well defined yet. Disinfection agents (as Cl2, O3, etc.) or multiple combinations of them for water treatment and disinfection purposes are applied by water treatment plants at worldwide level. Unfortunately, besides the benefits of these processes were also highlighted some undesirable effects such as formation of several disinfection by-products (DBPs) after reaction of disinfection agent with natural organic matter (NOM) from water body. DBPs formation in drinking water, suspected to posses adverse health effects to humans are strongly regulated in our days. Thus, throughout this study kinetics experiments both the main physicochemical factors that influencing the quality of drinking waters were evaluated as well how they act through possible warming or the consequences of extreme events. Increasing water temperatures with 1 - 5 °C above its normal value has showed that NOMs are presented in higher amount which led to the need for greater amount of disinfectant agent (5 - 15 %). Increasing the amount of disinfecting agent resulted in the formation of DBPs in significantly higher concentrations (between 5 - 30 %).

  3. Compliance Monitoring of Drinking Water Supplies

    ERIC Educational Resources Information Center

    Haukebo, Thomas; Bernius, Jean

    1977-01-01

    The most frequent testing required under the Safe Drinking Water Act of 1974 is for turbidity and coliform. Free chlorine residual testing can be substituted for part of the coliform requirement. Described are chemical procedures for performing this test. References are given. (Author/MA)

  4. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  5. MUTAGENICITY OF DRINKING WATER FOLLOWING DISINFECTION

    EPA Science Inventory

    Many drinking water utilities in the USA are considering alternatives to chlorine for disinfection in order to comply with federal regulations regarding disinfection by-products. An evaluation is thus needed of the potential risks associated with the use of alternative disinfecta...

  6. Microfiltration and Ultrafiltration Membranes for Drinking Water

    EPA Science Inventory

    This article provides a concise and abbreviated summary of AWWA Manual of Practice M53, Microfiltration and Ultrafiltration Membranes for Drinking Water, to serve as a quick point of reference. For convenience, the article’s organization matches that of M53, as follows: • wate...

  7. CONTROL OF ZOONOTIC DISEASES IN DRINKING WATER

    EPA Science Inventory

    For over a century, the process of providing hygienically safe drinking water has focused on utilizing treatment processes to provide barriers to the passage of infectious disease-causing organisms to humans. This concept is often considered the cornerstone of sanitary engineerin...

  8. TREATABILITY DATABASE FOR DRINKING WATER CHEMICALS (CCL)

    EPA Science Inventory

    The Treatability Data Base will assemble referenced data on the control of contaminants in drinking water. It will be an interactive data base, housed in an EPA, web-accessible site. It may be used for many purposes, including: identifying an effective treatment process or a se...

  9. DEFLUORIDATION OF DRINKING WATER IN SMALL COMMUNITIES

    EPA Science Inventory

    The report discusses the results of a study of defluoridation of drinking water in small communities using either central or point-of-use treatment. The ten sites used for project data collection had natural fluoride in their groundwater supplies in excess of the Maximum Contamin...

  10. SMALL DRINKING WATER SYSTEM PEER REVIEW PROGRAM

    EPA Science Inventory

    The United South and Eastern Tribes, Inc., which is made up of twenty-four (24) tribes, ranging in location, geographically, from Maine to Texas, AND three (3) states, Mississippi, Kentucky, and Georgia, participated in a program, "The Small Drinking Water System Peer Review Prog...

  11. UPTAKE OF URANIUM FROM DRINKING WATER

    EPA Science Inventory

    The gastrointestinal absorption (G.I.) of uranium in man from drinking water was determined by measuring urinary and fecal excretion of 234U and 238U in eight subjects. In order to establish their normal backgrounds of uranium intake and excretion, the subjects collected 24 hour ...

  12. Treatment Strategies for Lead in Drinking Water

    EPA Science Inventory

    Lead pipes are capable of lasting hundreds of years. Conservatively, there are over 12 million, still serving drinking water in the US. Probably, this is a substantial underestimate. Leaded solder joining copper pipe abounds. Leaded brasses have dominated the materials used for...

  13. Drinking Water. The Food Guide Pyramid.

    ERIC Educational Resources Information Center

    Frost, Helen

    This booklet for young children is part of a series that supports national science standards related to physical health and nutrition, describing and illustrating the importance of drinking water. Colorful photographs support early readers in understanding the text. The repetition of words and phrases helps early readers learn new words. The book…

  14. Emerging Contaminants in the Drinking Water Cycle.

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  15. CHLORINE DIOXIDE FOR DRINKING WATER RESEARCH DIVISION

    EPA Science Inventory

    In order to comply with the trihalomethane regulation, many drinking water utilities have had to alter their treatment methods. ne option available to these utilities is to use a disinfectant other than chlorine such as chlorine dioxide. ith chlorine dioxide disinfection, trihalo...

  16. DRINKING WATER SUPPLY MANAGEMENT: AN INTERACTIVE APPROACH

    EPA Science Inventory

    In February 1977, a massive discharge of carbon tetrachloride into the Kanawha River in West Virginia threatened much of the Ohio River Valley with contaminated drinking water potentially affecting over one million consumers. The episode heightened the awareness of consumers and ...

  17. Lead in the School's Drinking Water.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    The purpose of this manual is to assist school officials by providing information on the effects of lead in school drinking water on children, how to detect the presence of lead, how to reduce the lead, and how to provide training for sampling and remedial programs. A protocol is provided for procedures to determine the location and source of lead…

  18. Emerging Contaminants in the Drinking Water Cycle

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-µg/L) in surface, ground and drinking water. The most common...

  19. COST EQUATIONS FOR SMALL DRINKING WATER SYSTEMS

    EPA Science Inventory

    This report presents capital and operation/maintenance cost equations for 33 drinking water treatment processes as applied to small flows (2,500 gpd to 1 mgd). The equations are based on previous cost data development work performed under contract to EPA. These equations provide ...

  20. DRINKING WATER CRITERIA DOCUMENT FOR CHLORAMINES

    EPA Science Inventory

    Critical to establishing a regulatory strategy for drinking water is identifying those contaminants which pose the greatest risk to human health and consequently, what treatments could be developed to address those risks and at what cost. The National Center for Environmental Ass...

  1. Bromide affecting drinking water mutagenicity.

    PubMed

    Myllykangas, T; Nissinen, T K; Mäki-Paakkanen, J; Hirvonen, A; Vartiainen, T

    2003-11-01

    The effect of bromide on the mutagenicity of artificially recharged groundwater and purified artificially recharged groundwater after chlorine, ozone, hydrogen peroxide, permanganate, and UV treatments alone and in various combinations was studied. The highest mutagenicity was observed after chlorination, while hydrogen peroxide-ozone-chlorine treatment produced the lowest value for both waters. Chlorinated waters, which were spiked with bromide, had up to 3.7 times more mutagenic activity than waters without bromide after every preoxidation method. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was found to correspond as much as 76% of the overall mutagenicity in the waters not spiked with bromide. MX formation was found to be lower when the treated water contained bromide, implicating the formation of brominated MX analogues. Trihalomethane formation increased when the treated water contained bromide. PMID:13129514

  2. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Food and drinking water requirements..., and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking water requirements. (a) Those marine mammals that require drinking water must be offered potable water within 4...

  3. CASE FOR DRINKING WATER SYSTEMS

    EPA Science Inventory

    The purpose of the study was to present a tool useful to water utilities that not only could analyze historical distribution system reliability data, but also provide a flexible and expandable mechanism for record-keeping enabling overall management of water work's facilities and...

  4. Drinking Water Supplies: Protection Through Watershed Management

    NASA Astrophysics Data System (ADS)

    Page, G. William

    1984-04-01

    The practice of purchasing land to protect surface water supply sources is rarely practical today. This is particularly true near urban areas. Therefore, Drinking Water Supplies attempts to provide an action-oriented guidebook on how to develop and implement watershed management strategies to protect surface water supplies from contamination under the constraints of today's economic, legal, institutional, and political conditions. The book succeeds in providing a very clear and useful guide to the process of developing such a strategy. It should be helpful to small and moderate-sized water supply systems and local governments interested in taking action to protect their surface water supply sources.

  5. A Drop to Drink. . .A Report on the Quality of Our Drinking Water.

    ERIC Educational Resources Information Center

    Tait, Jack

    Basic information about the quality of our nation's drinking water is contained in this brochure. Written for the general public to familiarize them with the situation, it will also help them evaluate the state of the nation's drinking water as well as that of their own communities. The need to assure reliable sources of healthful drinking water…

  6. DISINFECTION BY-PRODUCTS IN DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  7. 6 Million Americans Drink Water Tainted with Toxic Chemicals

    MedlinePlus

    ... news/fullstory_160327.html 6 Million Americans Drink Water Tainted With Toxic Chemicals: Report Many systems contain ... unsafe levels of dangerous chemicals in their drinking water that may trigger a host of health problems, ...

  8. CHARACTERIZING TOXICOLOGICALLY IMPORTANT DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Due to concerns over trihalomethanes (THMs) and other halogenated by-products that can be formed during chlorination of drinking water, alternative disinfectants are being explored. Several drinking water treatment plants in the United States have altered their treatment methods...

  9. An Environmental Assessment of United States Drinking Water Watersheds

    EPA Science Inventory

    There is an emerging recognition that natural lands and their conservation are important elements of a sustainable drinking water infrastructure. We conducted a national, watershed-level environmental assessment of drinking water watersheds using data on land cover, hydrography a...

  10. EPA's Drinking Water Treatability Database and Treatment Cost Models

    EPA Science Inventory

    USEPA Drinking Water Treatability Database and Drinking Water Treatment Cost Models are valuable tools for determining the effectiveness and cost of treatment for contaminants of emerging concern. The models will be introduced, explained, and demonstrated.

  11. RESPONDING TO THREATS AND INCIDENTS OF INTENTIONAL DRINKING WATER CONTAMINATION

    EPA Science Inventory

    All drinking water systems have some degree of vulnerability to contamination, and analysis shows that it is possible to contaminate drinking water at levels causing varying degrees of harm. Furthermore, experience indicates that the threat of contamination, overt or circumstant...

  12. ENDOTOXINS, ALGAE AND 'LIMULUS' AMOEBOCYTE LYSATE TEST IN DRINKING WATER

    EPA Science Inventory

    Field and laboratory studies were conducted to determine the distribution of algae and bacteria, and investigate sources of endotoxins (lipopolysaccharides) in drinking water. The field survey was performed on five drinking water systems located in Allegheny County, Pennsylvania ...

  13. Regulatory Considerations to Ensure Clean and Safe Drinking Water

    EPA Science Inventory

    Federal drinking water regulations are based on risk assessment of human health effects and research conducted on source water, treatment technologies, residuals, and distribution systems. The book chapter summarizes the role that EPA research plays in ensuring pure drinking wat...

  14. Emergency Disinfection of Drinking Water

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  15. DRINKING WATER AND LEGIONNAIRES' DISEASE

    EPA Science Inventory

    Pneumonia outbreaks caused by Legionella species recently have been epidemiologically linked to potable water distribution systems in hospitals and hotels. Showerheads were confirmed as the immediate source of the Legionella in many of the outbreaks, however, the organism also wa...

  16. Improving Drinking Water Quality by Remineralisation.

    PubMed

    Luptáková, Anna; Derco, Ján

    2015-01-01

    The reason of low mineral content in source water is its origin in poorly soluble mineral geological structures. There are many areas with very soft low-mineralised water around the world. All people involved in drinking water treatment as well as some public health experts and producers of chemicals used for water treatment may be interested in the study. Enrichment of drinking water by minerals including calcium and magnesium is very important particularly in regions where drinking water is prepared by desalination. The aim of this work was to study and intensify the recarbonization process. Half-calcined dolomite in combination with carbon dioxide constitutes the chemistry of the applied method. Advantages of using a fluidised bed reactor contributed also significantly to the process efficiency enhancement. Continuous input of carbon dioxide into the fluidised bed recarbonization reactor resulted in an increase in the recarbonization rate by about one order of magnitude compared with the process in without carbon dioxide addition. Very good fit of experimental data for hydrodynamic characteristics of fluidised bed was obtained using simple model based on the Richardson and Zaki expansion equation. The first order model describes kinetic data from the recarbonization process with a good accuracy. Higher recarbonization rates were observed with smaller particles of half-calcined dolomite. PMID:26680713

  17. Drinking water health advisory for boron

    SciTech Connect

    Cantilli, R.

    1991-04-01

    The Health Advisory Program, sponsored by the Environmental Protection Agency's Office of Water, has issued its report on the element boron: included are the compounds boric acid and borax(sodium tetraborate). It provides information on the health effects, analytical methodology, and treatment technology that would be useful in dealing with the contamination of drinking water. Health Advisories (HAs) describe nonregulatory concentrations of drinking water contaminants at which adverse health effects would not be anticipated to occur over specific exposure durations. HAs serve as informal technical guidance to assist Federal, State, and local officials responsible for protecting public health when emergency spills or contamination situations occur. They are not legally enforceable Federal Standards and are subject to change as new information becomes available.

  18. [Isolation of Escherichia vulneris in drinking water].

    PubMed

    Le Querler, L; Donnio, P Y; Poisson, M; Rouzet-Gras, S; Avril, J L

    1997-01-01

    Over a 2-year period, we performed 33 bacteriological controls of drinking water supplied by refrigerated fountains located in a nursing home. Amongst 24 strains of gram-negative bacilli isolated from 16 samples. 10 were identified as belonging to the species Escherichia vulneris. Viable bacterial counts were always less than 10 ufc/100 ml. During the same period no clinical isolate of E. vulneris was recovered from the nursing home. The signification of E. vulneris in drinking water is unknown. However, considering that E. vulneris has been implicated as cause of various infections, its presence in potable water supply systems would seem to be a potential risk factor for severely immunocompromised patients. PMID:9099249

  19. Climate vulnerability of drinking water supplies

    NASA Astrophysics Data System (ADS)

    Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes

    2016-04-01

    Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified

  20. Solar purifier of drinking water

    SciTech Connect

    Fawzy, I.O.

    1987-01-01

    Around 1920, ultraviolet radiation was used in Switzerland and France for water purification. Now, it is in use in more than 2000 European water works. In the United States, between 1916 and 1928, four municipal water installations of ultraviolet apparatus were in operation. By 1939, they were all abandoned in favor of chlorination primarily because of economy and the inadequacy of technology available at that time. In recent years, ultraviolet purification has had a comeback, partly because of the realization of what chlorination is doing to the environment and partly due to the vast advances in UV technology. Although solar ultraviolet radiation has a marginal biocidal effect, a property designed solar purifier could be a viable option in certain application. Among possible uses are: (1) rural single-family dwellings; (2) underdeveloped countries; and (3) small usage rates where electric power is not available. A solar purifier model is presented in this study. The data it provided illustrates that it can be effective in treating partially contaminated water.

  1. SMALL DRINKING WATER SYSTEMS RESEARCH

    EPA Science Inventory

    There are 159,796 Community Water Systems (CWSs) in the United States. Ninety-three percent of CWSs are considered very small to medium-sized systems that serve roughly 19% of the CWS population. In contrast, large to very large systems comprise just 7% of CWSs, but serve 81% of ...

  2. GLYPHOSATE REMOVAL FROM DRINKING WATER

    EPA Science Inventory

    Activated-carbon, oxidation, conventional-treatment, filtration, and membrane studies are conducted to determine which process is best suited to remove the herbicide glyphosate from potable water. Both bench-scale and pilot-scale studies are completed. Computer models are used ...

  3. SAFE DRINKING WATER INFORMATION SYSTEM/FEDERAL COMPONENT

    EPA Science Inventory

    Resource Purpose:The Safe Drinking Water Act (SDWA) gives EPA the authority to regulate public drinking water supplies. Using its authority under law, EPA has set health-based standards for contaminants that may be found in drinking water. EPA regulates over 80 contaminant...

  4. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  5. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  6. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  7. 21 CFR 520.2325a - Sulfaquinoxaline drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaquinoxaline drinking water. 520.2325a Section... Sulfaquinoxaline drinking water. (a) Sponsor. See § 510.600(c) of this chapter for identification of the sponsors... tolerances. See § 556.685 of this chapter. (c) Conditions of use. It is used in drinking water as follows:...

  8. BOOK REVIEW OF "DRINKING WATER REGULATION AND HEALTH"

    EPA Science Inventory

    Since the enactment of the Safe Drinking Water Act (SDWA) in 1974, several amendments and other new regulations have been developed for drinking water. The book, "Drinking Water Regulation and Health", explains these regulations and provides background on why they were developed ...

  9. Arsenic in drinking water and pregnancy outcomes.

    PubMed Central

    Ahmad, S A; Sayed, M H; Barua, S; Khan, M H; Faruquee, M H; Jalil, A; Hadi, S A; Talukder, H K

    2001-01-01

    We studied a group of women of reproductive age (15-49 years) who were chronically exposed to arsenic through drinking water to identify the pregnancy outcomes in terms of live birth, stillbirth, spontaneous abortion, and preterm birth. We compared pregnancy outcomes of exposed respondents with pregnancy outcomes of women of reproductive age (15-49 years) who were not exposed to arsenic-contaminated water. In a cross-sectional study, we matched the women in both exposed and nonexposed groups for age, socioeconomic status, education, and age at marriage. The total sample size was 192, with 96 women in each group (i.e., exposed and nonexposed). Of the respondents in the exposed group, 98% had been drinking water containing [Greater and equal to] 0.10 mg/L arsenic and 43.8% had been drinking arsenic-contaminated water for 5-10 years. Skin manifestation due to chronic arsenic exposure was present in 22.9% of the respondents. Adverse pregnancy outcomes in terms of spontaneous abortion, stillbirth, and preterm birth rates were significantly higher in the exposed group than those in the nonexposed group (p = 0.008, p = 0.046, and p = 0.018, respectively). PMID:11445518

  10. Water, Water Everywhere, But is it Safe to Drink?

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  11. 75 FR 48329 - Tribal Drinking Water Operator Certification Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... AGENCY Tribal Drinking Water Operator Certification Program AGENCY: Environmental Protection Agency (EPA... Water Operator Certification Program, effective October 1, 2010. The program enables qualified drinking water operators at public water systems in Indian country to be recognized as certified operators by...

  12. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  13. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  14. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  15. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  16. 30 CFR 71.600 - Drinking water; general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; general. 71.600 Section 71.600 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH... Water § 71.600 Drinking water; general. An adequate supply of potable water shall be provided...

  17. ATRAZOME CHLORINATION TRANSFORMATION PRODUCTS UNDER DRINKING WATER DISTRIBUTION SYSTEM CONDITIONS

    EPA Science Inventory

    Chlorination is a commonly-used disinfectant step in drinking water treatment. Should free chlorine be added to water used as a drinking water source, it is widely understood that many biological species in the water, along with dissolved organic and inorganic chemicals, will rea...

  18. Why Drinking Water Is the Way to Go

    MedlinePlus

    ... Here's Help White House Lunch Recipes Why Drinking Water Is the Way to Go KidsHealth > For Kids > Why Drinking Water Is the Way to Go Print A A ... have in common? Give up? You all need water. All living things must have water to survive, ...

  19. Fluoride in drinking water and dental fluorosis.

    PubMed

    Mandinic, Zoran; Curcic, Marijana; Antonijevic, Biljana; Carevic, Momir; Mandic, Jelena; Djukic-Cosic, Danijela; Lekic, Charles P

    2010-08-01

    In this study we determined the fluoride content in drinking water and hair of 12-year-old schoolchildren from different Serbian municipalities, i.e. Valjevo, Veliko Gradiste, Kacarevo and Vranjska Banja. The analyses were performed using composite fluoride ion-selective electrode. Average fluoride levels were 0.10, 0.15, 0.79 and 11 ppm in well water, 0.07, 0.10, 0.17 and 0.15 ppm in tap water, 19.3, 21.5, 25.4, and 32.5 ppm in hair samples, in Valjevo, Veliko Gradiste, Kacarevo and Vranjska Banja, respectively. Correlation analysis indicated statistically significant positive relationship between fluoride in wells water and fluoride in hair, for all municipalities: correlation coefficients were 0.54 (p < 0.05), 0.89, 0.97 and 0.99 (p < 0.001), in Vranjska Banja, Valjevo, Veliko Gradiste, and Kacarevo, respectively. Positive correlation was obtained also between fluoride in tap water and hair samples in all regions under the study, with statistical significance only in Valjevo municipality, p < 0.05. Dental examination of schoolchildren confirmed dental fluorosis only in the region of Vranjska Banja. Moreover, in endemic fluorotic region of Vranjska Banja, positive and statistically significant correlations were confirmed between fluoride in well water and dental fluorosis level (r = 0.61; p < 0.01) and additionally between fluoride in hair and dental fluorosis level (0.62; p < 0.01). The primary findings from this study have shown that fluoride content in hair is highly correlated with fluoride content in drinking water and dental fluorosis level, indicating that hair may be regarded as biomaterial of high informative potential in evaluating prolonged exposure to fluorides and to individuate children at risk of fluorosis regardless of the phase of teeth eruption. PMID:20580811

  20. Genotoxicity of drinking water from Chao Lake

    SciTech Connect

    Liu, Q.; Jiao, Q.C.; Huang, X.M.; Jiang, J.P.; Cui, S.Q.; Yao, G.H.; Jiang, Z.R.; Zhao, H.K.; Wang, N.Y.

    1999-02-01

    Genotoxic activity appears to originate primarily from reactions of chlorine with humic substances in the source waters. Comparisons of extracts of settled versus chlorinated water have confirmed that chlorinating during water treatment produces mutagenic activity in the mutagenicity tests. Present work on XAD-2 extracts of raw, chlorinated (treated), and settled water from the Chao Lake region of China has involved a battery of mutagenicity assays for various genetic endpoints: the Salmonella test, the sister-chromatid exchange (SCE) induction in Chinese hamster lung (CHL) cells, and the micronucleus (MN) induction in the peripheral blood erythrocytes of silver carp. Extracts of raw and treated water but not the settled water are mutagenic in the Salmonella assay. On the other hand, extracts of three water samples show activity in the SCE and MN assays, especially the raw and treated water. These data show that contamination and chlorinating contribute mutagens to drinking water and suggest that the mammalian assays may be more sensitive for detecting mutagenicity in aquatic environment than the Salmonella test.

  1. Portable Nanomesh Creates Safer Drinking Water

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Providing astronauts with clean water is essential to space exploration to ensure the health and well-being of crewmembers away from Earth. For the sake of efficient and safe long-term space travel, NASA constantly seeks to improve the process of filtering and re-using wastewater in closed-loop systems. Because it would be impractical for astronauts to bring months (or years) worth of water with them, reducing the weight and space taken by water storage through recycling and filtering as much water as possible is crucial. Closed-loop systems using nanotechnology allow wastewater to be cleaned and reused while keeping to a minimum the amount of drinking water carried on missions. Current high-speed filtration methods usually require electricity, and methods without electricity usually prove impractical or slow. Known for their superior strength and electrical conductivity, carbon nanotubes measure only a few nanometers in diameter; a nanometer is one billionth of a meter, or roughly one hundred-thousandth the width of a human hair. Nanotubes have improved water filtration by eliminating the need for chemical treatments, significant pressure, and heavy water tanks, which makes the new technology especially appealing for applications where small, efficient, lightweight materials are required, whether on Earth or in space. "NASA will need small volume, effective water purification systems for future long-duration space flight," said Johnson Space Center s Karen Pickering. NASA advances in water filtration with nanotechnology are now also protecting human health in the most remote areas of Earth.

  2. Viable but nonculturable bacteria in drinking water.

    PubMed Central

    Byrd, J J; Xu, H S; Colwell, R R

    1991-01-01

    Klebsiella pneumoniae, Enterobacter aerogenes, Agrobacterium tumefaciens, Streptococcus faecalis, Micrococcus flavus, Bacillus subtilis, and Pseudomonas strains L2 and 719 were tested for the ability to grow and maintain viability in drinking water. Microcosms were employed in the study to monitor growth and survival by plate counts, acridine orange direct counts (AODC), and direct viable counts (DVC). Plate counts dropped below the detection limit within 7 days for all strains except those of Bacillus and Pseudomonas. In all cases, the AODC did not change. The DVC also did not change except that the DVC, on average, were ca. 10-fold lower than the AODC. PMID:2039237

  3. DRINKING WATER AND CANCER INCIDENCE IN IOWA. 2. RADIOACTIVITY IN DRINKING WATER

    EPA Science Inventory

    This paper presents a logical epidemiologic exploration into possible associations between exposures to radium-226 in drinking water and incidence rates for cancers of the bladder, breast, colon, lung, prostate, and rectum. The most striking finding is the increasing gradient of ...

  4. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  5. Manganese deposition in drinking water distribution systems.

    PubMed

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. PMID:26409148

  6. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water**

    EPA Science Inventory

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  7. Genotoxicity of Swimming Pool Water and Carcinogenicity of Drinking Water

    EPA Science Inventory

    Among the 11 disinfection by-products (DBPs) in drinking water that are regulated by the U.S. EPA, (a) 2 DBPs (chloroaceticacid and chlorite) are not carcinogenic-in either of2 species; (b) chlorite is not carcinogenic in 3 rodent assays and has never been tested for genotoxicity...

  8. Water drinking as a treatment for orthostatic syndromes

    NASA Technical Reports Server (NTRS)

    Shannon, John R.; Diedrich, Andre; Biaggioni, Italo; Tank, Jens; Robertson, Rose Marie; Robertson, David; Jordan, Jens

    2002-01-01

    PURPOSE: Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS: We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS: In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION: Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.

  9. Can biosensors help to protect drinking water?

    PubMed

    Evans, G P; Briers, M G; Rawson, D M

    1986-01-01

    A large proportion of drinking water is abstracted for treatment from lowland rivers--about 30% in the UK--and this water is at particular risk from sudden and poisonous industrial or agricultural pollution. To cover the range of potential pollutants it may be possible to use biosensors as broadband monitors for toxins. The underlying assumption is that some biological processes, when challenged with a toxin, will be affected in a way analogous to that of man, and that therefore on-line scrutiny of such processes will provide early warning of substances liable to be detrimental to human health. Suitable processes for study might involve multi-cellular organisms, whole cells or enzymes. To date, most practical work has concentrated on fish, but enzymes and single cells hold out the promise of quicker response and, possibly, easier maintenance. PMID:3619957

  10. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  11. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  12. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  13. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  14. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet...

  15. The Next Generation of Drinking Water Disinfection By-Products

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended healt...

  16. ADVANCES IN DRINKING WATER TREATMENT IN THE UNITED STATES

    EPA Science Inventory

    The United States drinking water public health protection goal is to provide water that meets all health-based standards to ninety-five percent of the population served by public drinking water supplies by 2005. In 2002, the level of compliance with some eighty-five health-based ...

  17. Visions of the Future in Drinking Water Microbiology.

    EPA Science Inventory

    Drinking water microbiology will have a tremendous impact on defining a safe drinking water in the future. There will be breakthroughs in realtime testing of process waters for pathogen surrogates with results made available within 1 hour for application to treatment adjustments ...

  18. The Safe Drinking Water Act First 180 Days

    ERIC Educational Resources Information Center

    Lehr, Jay H.

    1975-01-01

    The Safe Drinking Water Act protects our drinking and ground water resources. The Water Advisory Council interprets and implements the law. Implementation principles include high priorities for public health, cost considerations, state and local participation, environmental impact, decentralized decision making, and use of federal and state…

  19. Disinfection By-Products: Formation and Occurrence in Drinking Water

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the twentieth century. Millions of people worldwide receive quality drinking water every day from their public water systems. However, chemical disinfection has also produced an unintended he...

  20. MANAGEMENT OF POINT-OF-USE DRINKING WATER TREATMENT SYSTEMS

    EPA Science Inventory

    One alternative solution to drinking water contamination problems which has received more attention in recent years is treatment of contaminated water at the home, or point-of-use. While point-of-use treatment may provide a cost effective solution to drinking water contamination,...

  1. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  2. [Hydraulic fracturing - a hazard for drinking water?].

    PubMed

    Ewers, U; Gordalla, B; Frimmel, F

    2013-11-01

    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. PMID:24285158

  3. TREATMENT OF VOLATILE ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  4. TREATMENT OF DRINKING WATER CONTAINING TRICHLOROETHYLENE AND RELATED INDUSTRIAL SOLVENTS

    EPA Science Inventory

    Volatile chlorinated and non-chlorinated compounds occur in both untreated and treated drinking water. Because volatilization is restricted, ground waters rather than surface waters are more likely to have high concentrations of these compounds. This document reviews properties, ...

  5. Vulnerability of drinking water supplies to engineered nanoparticles.

    PubMed

    Troester, Martin; Brauch, Heinz-Juergen; Hofmann, Thilo

    2016-06-01

    The production and use of engineered nanoparticles (ENPs) inevitably leads to their release into aquatic environments, with the quantities involved expected to increase significantly in the future. Concerns therefore arise over the possibility that ENPs might pose a threat to drinking water supplies. Investigations into the vulnerability of drinking water supplies to ENPs are hampered by the absence of suitable analytical methods that are capable of detecting and quantifiying ENPs in complex aqueous matrices. Analytical data concerning the presence of ENPs in drinking water supplies is therefore scarce. The eventual fate of ENPs in the natural environment and in processes that are important for drinking water production are currently being investigated through laboratory based-experiments and modelling. Although the information obtained from these studies may not, as yet, be sufficient to allow comprehensive assessment of the complete life-cycle of ENPs, it does provide a valuable starting point for predicting the significance of ENPs to drinking water supplies. This review therefore addresses the vulnerability of drinking water supplies to ENPs. The risk of ENPs entering drinking water is discussed and predicted for drinking water produced from groundwater and from surface water. Our evaluation is based on reviewing published data concerning ENP production amounts and release patterns, the occurrence and behavior of ENPs in aquatic systems relevant for drinking water supply and ENP removability in drinking water purification processes. Quantitative predictions are made based on realistic high-input case scenarios. The results of our synthesis of current knowledge suggest that the risk probability of ENPs being present in surface water resources is generally limited, but that particular local conditions may increase the probability of raw water contamination by ENPs. Drinking water extracted from porous media aquifers are not generally considered to be prone to ENP

  6. Serogroups of Escherichia coli from drinking water.

    PubMed

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently. PMID:17057960

  7. NEUROXOTOXICITY PRODUCED BY DIBROMOACETIC ACID IN DRINKING WATER OF RATS.

    EPA Science Inventory

    The Safe Drinking Water Act requires that EPA consider noncancer endpoints for the assessment of adverse human health effects of disinfection byproducts (DBPs). Dibromoacetic acid (DBA) is one of many DBPs produced by the chlorination of drinking water. Its chlorinated analog, ...

  8. Bilogical Treatment for Ammonia Oxidation in Drinking Water Facilities

    EPA Science Inventory

    Ammonia is an unregulated compound, but is naturally occurring in many drinking water sources. It is also used by some treatment facilities to produce chloramines for disinfection purposes. Because ammonia is non-toxic, its presence in drinking water is often disregarded. Thro...

  9. DRINKING WATER ARSENIC IN UTAH: A COHORT MORTALITY STUDY

    EPA Science Inventory

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected ...

  10. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  11. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  12. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  13. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfaethoxypyridazine drinking water. 520.2240a Section 520.2240a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b)...

  14. SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE

    EPA Science Inventory

    Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...

  15. Removal of dibromochloropropane from drinking water: laboratory and field experiences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dibromochloropropane (1,2-dibromo-3-chloropropane or DBCP) is regulated by the U.S. Environmental Protection Agency under the National Primary Drinking Water Regulations to a maximum of 0.2 µg/L (0.2 ppb) in drinking water. DBCP was primarily used as an unclassified nematicide for vegetables and per...

  16. RESEARCH AND GUIDANCE ON DRINKING WATER CONTAMINANT MIXTURES

    EPA Science Inventory

    Accurate assessment of potential human health risk(s) from multiple-route exposures to multiple chemicals in drinking water is needed because of widespread daily exposure to this complex mixture. Hundreds of chemicals have been identified in drinking water with the mix of chemic...

  17. U.S. DRINKING WATER REGULATIONS: TREATMENT TECHNOLOGIES AND COST.

    EPA Science Inventory

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the U.S. drinking water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of th...

  18. Reducing Lead in School Drinking Water: A Case Study.

    ERIC Educational Resources Information Center

    Odell, Lee

    1991-01-01

    The Seattle School District began a program in 1990 to identify lead levels in the district's drinking water and to implement measures to lower any high lead levels. Recounts each of the seven steps of the program, discusses what the district found, and explains how it lowered lead levels in the drinking water. (MLF)

  19. Studies on Disinfection By-Products and Drinking Water

    USGS Publications Warehouse

    Rostad, Colleen E.

    2007-01-01

    Drinking water is disinfected with chemicals to remove pathogens, such as Giardia and Cryptosproridium, and prevent waterborne diseases such as cholera and typhoid. During disinfection, by-products are formed at trace concentrations. Because some of these by-products are suspected carcinogens, drinking water utilities must maintain the effectiveness of the disinfection process while minimizing the formation of by-products.

  20. DRINKING WATER CRITERIA DOCUMENT FOR ENDRIN (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on endrin. The Criteria Document is an extensive review of the following topics: Physical and chemical properties of endrin, Toxicokinetics and human exposure ...

  1. Disinfection By-Products and Drinking Water Treatment

    EPA Science Inventory

    The disinfection of drinking water has been rightly hailed as a public health triumph of the 20th century. Before its widespread use, millions of people died from waterborne diseases. Now, people in developed nations receive quality drinking water every day from their public wa...

  2. TREATMENT OF ARSENIC RESIDUALS FROM DRINKING WATER REMOVAL PROCESSES

    EPA Science Inventory

    The drinking water MCL was recently lowered from 0.05 mg/L to 0.01 mg/L. One concern was that reduction in the TCLP arsenic limit in response to the drinking water MCL could be problematic with regard to disposal of solid residuals generated at arsenic removal facilities. This pr...

  3. Reducing Lead in Drinking Water: A Manual for Minnesota's Schools.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Health, St. Paul.

    This manual was designed to assist Minnesota's schools in minimizing the consumption of lead in drinking water by students and staff. It offers step-by-step instructions for testing and reducing lead in drinking water. The manual answers: Why is lead a health concern? How are children exposed to lead? Why is lead a special concern for schools? How…

  4. Safety on Tap: A Citizen's Drinking Water Handbook.

    ERIC Educational Resources Information Center

    Loveland, David Gray; Reichheld, Beth

    This citizen's guide to ensuring a safe supply of drinking water for all provides the information and analysis that individuals need to understand the issues and to participate in local decision making. The sources of drinking water, the types of human activities that results in contamination, and the contaminants that are of most concern are…

  5. DRINKING WATER CRITERIA DOCUMENT FOR POLYCHLORINATED BIPHENYLS (PCBS) (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on PCBs. The Criteria Document is an extensive review of the following topics: Physical and chemical properties of PCBs, Toxicokinetics and human exposure to P...

  6. DRINKING WATER CRITERIA DOCUMENT FOR ETHYLBENZENE (FINAL DRAFT)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a Drinking Water Criteria Document on ethylbenzene. This Criteria Document is an extensive review of the following topics: Physical and chemical properties of ethylbenzene; Toxicokinetics and hu...

  7. ARSENIC IN WATER USED FOR DRINKING - AN ENVIRONMENTAL TECHNOLOGY VERIFICATION

    EPA Science Inventory

    In October 2001, the U.S. Environmental Protection Agency (EPA) announced a new federal standard for concentrations of arsenic found in drinking water. The new standard was to be 10 parts-per-million (ppm). This new standard will be required by the Safe Drinking Water Act in...

  8. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    EPA Science Inventory

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  9. SEMINAR PUBLICATION: CONTROL OF LEAD AND COPPER IN DRINKING WATER

    EPA Science Inventory

    This publication presents subjects relating to the control of lead and copper in drinking water systems. t is of interest to system owners, operators, managers, and local decision makers, such as town officials, regarding drinking water treatment requirements and the treatment te...

  10. IDENTIFICATION OF NEW BROMINATED ACIDS IN DRINKING WATER

    EPA Science Inventory

    Since chloroform was identified as the first disinfection by-product (DBP) in drinking water, there has been more than 25 years of research on DBPs. Despite these efforts, more than 50% of the total organic halide (TOX) formed in chlorinated drinking water remains unknown. Ther...

  11. EJ SMALL GRANT: SAFE DRINKING WATER FOR LOW INCOME COMMUNITIES

    EPA Science Inventory

    Legal Aid Services of Oregon (LASO) has determined that both EPA Region 10 and the Oregon Health Division have identified regulatory defects in the Safe Drinking Water Act with respect to migrant farmworker drinking water sources. Lack of mandatory testing, lack of enforcement a...

  12. OVERVIEW OF USEPA MICROBIOLOGICAL RESEARCH IN DRINKING WATER

    EPA Science Inventory

    The Microbial Contaminants Control Branch (MCCB) conducts research on microbiological problems related to drinking water treatment, distribution and storage, and has recently become involved in watershed and source water quality issues such as fecal indicator bacteria and fecal p...

  13. APPLICATION OF USEPA'S DRINKING WATER REGULATIONS TOWARDS RAINWATER CATCHMENT SYSTEMS

    EPA Science Inventory

    Rainwater harvesting is receiving increased attention worldwide as an alternative source of drinking water. Although federal agencies such as the USEPA acknowledge the existence of rainwater collection systems, the monitoring of this water source is still typically carried out b...

  14. PROTOZOAN SOURCES OF SPONTANEOUS COLIFORM OCCURRENCE IN CHLORINATED DRINKING WATER

    EPA Science Inventory

    The spontaneous occurrence of coliforms in chlorinated drinking waters has resulted in concern over their potential source and mechanism(s) of introduction into water delivery systems. Previous observations related to protozoal resistance to chlorine coupled with the ingestion of...

  15. Arsenic in Drinking Water-A Global Environmental Problem

    ERIC Educational Resources Information Center

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  16. 75 FR 61751 - National Drinking Water Advisory Council: Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... National Drinking Water Advisory Council (Council). This 15-member Council was established by the Safe Drinking Water Act (SDWA) to provide practical and independent advice, consultation and recommendations...

  17. Willingness to pay for improvements in drinking water quality

    NASA Astrophysics Data System (ADS)

    Jordan, Jeffrey L.; Elnagheeb, Abdelmoneim H.

    1993-02-01

    In this paper, data from a 1991 survey of Georgia residents were used to study people's willingness to pay (WTP) for improvements in drinking water quality and people's perceptions of potential groundwater contamination. Results showed that 27% of the respondents served by public water supplies rated drinking water quality as poor, and 23% were uncertain about their drinking water quality. The contingent valuation method was used to estimate WTP using a checklist format. The median estimated WTP was 5.49 per month above their current water bills for people on public systems and 7.38 for those using private wells, after rejecting outliers and using the maximum likelihood method. The aggregate WTP for all of Georgia was estimated to be about 111.5 million per year for public water users and 42.3 million per year for private well owners. This aggregate WTP can serve as an estimate of benefits to consumers from improvements in drinking water quality statewide.

  18. SMALL DRINKING WATER SYSTEMS: STATE OF THE INDUSTRY AND TREATMENT TECHNOLOGIES TO MEET THE SAFE DRINKING WATER ACT REQUIREMENTS

    EPA Science Inventory

    This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...

  19. Toxicological relevance of emerging contaminants for drinking water quality.

    PubMed

    Schriks, Merijn; Heringa, Minne B; van der Kooi, Margaretha M E; de Voogt, Pim; van Wezel, Annemarie P

    2010-01-01

    The detection of many new compounds in surface water, groundwater and drinking water raises considerable public concern, especially when human health based guideline values are not available it is questioned if detected concentrations affect human health. In an attempt to address this question, we derived provisional drinking water guideline values for a selection of 50 emerging contaminants relevant for drinking water and the water cycle. For only 10 contaminants, statutory guideline values were available. Provisional drinking water guideline values were based upon toxicological literature data. The maximum concentration levels reported in surface waters, groundwater and/or drinking water were compared to the (provisional) guideline values of the contaminants thus obtained, and expressed as Benchmark Quotient (BQ) values. We focused on occurrence data in the downstream parts of the Rhine and Meuse river basins. The results show that for the majority of compounds a substantial margin of safety exists between the maximum concentration in surface water, groundwater and/or drinking water and the (provisional) guideline value. The present assessment therefore supports the conclusion that the majority of the compounds evaluated pose individually no appreciable concern to human health. PMID:19766285

  20. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Food and drinking water requirements..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking...

  1. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Food and drinking water requirements..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking...

  2. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Food and drinking water requirements..., DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine Mammals Transportation Standards § 3.115 Food and drinking...

  3. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  4. Time to revisit arsenic regulations: comparing drinking water and rice

    PubMed Central

    2014-01-01

    Background Current arsenic regulations focus on drinking water without due consideration for dietary uptake and thus seem incoherent with respect to the risks arising from rice consumption. Existing arsenic guidelines are a cost-benefit compromise and, as such, they should be periodically re-evaluated. Discussion Literature data was used to compare arsenic exposure from rice consumption relative to exposure arising from drinking water. Standard risk assessment paradigms show that arsenic regulations for drinking water should target a maximum concentration of nearly zero to prevent excessive lung and bladder cancer risks (among others). A feasibility threshold of 3 μg As l-1 was determined, but a cost-benefit analysis concluded that it would be too expensive to target a threshold below 10 μg As l-1. Data from the literature was used to compare exposure to arsenic from rice and rice product consumption relative to drinking water consumption. The exposure to arsenic from rice consumption can easily be equivalent to or greater than drinking water exposure that already exceeds standard risks and is based on feasibility and cost-benefit compromises. It must also be emphasized that many may disagree with the implications for their own health given the abnormally high cancer odds expected at the cost-benefit arsenic threshold. Summary Tighter drinking water quality criteria should be implemented to properly protect people from excessive cancer risks. Food safety regulations must be put in place to prevent higher concentrations of arsenic in various drinks than those allowed in drinking water. Arsenic concentrations in rice should be regulated so as to roughly equate the risks and exposure levels observed from drinking water. PMID:24884827

  5. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  6. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  7. Safe and Affordable Drinking Water for Developing Countries

    NASA Astrophysics Data System (ADS)

    Gadgil, Ashok

    2008-09-01

    Safe drinking water remains inaccessible for about 1.2 billion people in the world, and the hourly toll from biological contamination of drinking water is 200 deaths mostly among children under five years of age. This chapter summarizes the need for safe drinking water, the scale of the global problem, and various methods tried to address it. Then it gives the history and current status of an innovation ("UV Waterworks™") developed to address this major public health challenge. It reviews water disinfection technologies applicable to achieve the desired quality of drinking water in developing countries, and specifically, the limitations overcome by one particular invention: UV Waterworks. It then briefly describes the business model and financing option than is accelerating its implementation for affordable access to safe drinking water to the unserved populations in these countries. Thus this chapter describes not only the innovation in design of a UV water disinfection system, but also innovation in the delivery model for safe drinking water, with potential for long term growth and sustainability.

  8. Drinking water infrastructure and environmental disparities: evidence and methodological considerations.

    PubMed

    VanDerslice, James

    2011-12-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States-Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  9. Drinking Water Infrastructure and Environmental Disparities: Evidence and Methodological Considerations

    PubMed Central

    2011-01-01

    Potable drinking water is essential to public health; however, few studies have investigated income or racial disparities in water infrastructure or drinking water quality. There were many case reports documenting a lack of piped water or serious water quality problems in low income and minority communities, including tribal lands, Alaskan Native villages, colonias along the United States–Mexico border, and small communities in agricultural areas. Only 3 studies compared the demographic characteristics of communities by the quality of their drinking water, and the results were mixed in these studies. Further assessments were hampered by difficulties linking specific water systems to the sociodemographic characteristics of communities, as well as little information about how well water systems operated and the effectiveness of governmental oversight. PMID:21836110

  10. The U.S. Geological Survey Drinking Water Initiative

    USGS Publications Warehouse

    U.S. Geological Survey

    1997-01-01

    Safe drinking-water supplies are critical to maintaining and preserving public health. Although the Nation's drinking water is generally safe, natural and introduced contaminants in water supplies throughout the country have adversely affected human health. This new U.S. Geological Survey (USGS) initiative will provide information on the vulnerability of water supplies to be used by water-supply and regulatory agencies who must balance water-supply protection with the wise use of public funds. Using the results of the initiative, they will be better able to focus on the supplies most at risk and the variability of contaminants of most concern, and so address the mandates of the Safe Drinking Water Act. With its store of geologic, hydrologic, and land use and land cover data and its network of information in every State, the USGS can help to identify potential sources of contamination, delineate source areas, determine the vulnerability of waters to potential contamination, and evaluate strategies being used to protect source waters in light of the scientific information available. Many recent and ongoing studies by the USGS concern drinking-water issues. This fact sheet highlights four particular studies begun under the Drinking Water Initiative.

  11. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health. PMID:15371202

  12. INEXPENSIVE DRINKING WATER CHLORINATION UNIT FOR SMALL COMMUNITIES - PHASE I

    EPA Science Inventory

    More than 250 drinking water systems exist for small communities in Puerto Rico that serve between 25 and 500 individuals. These water systems fall outside of the Puerto Rico Aqueduct and Sewer Authority and, thus, have insufficient water treatment systems or no water treatmen...

  13. INEXPENSIVE DRINKING WATER CHLORINATION UNIT FOR SMALL COMMUNITIES - PHASE II

    EPA Science Inventory

    Over 250 drinking water systems exist for small communities in Puerto Rico that serve 25-500 individuals. These water systems fall outside of Puerto Rico Aquaduct and Sewer Authority and, thus, have no or insufficient water treatment systems. Water sources for these communit...

  14. REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES

    EPA Science Inventory

    In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...

  15. Communicating Research to Small Drinking Water Systems: Dissemination by Researchers

    EPA Science Inventory

    This talk discusses the challenges of disseminating research relevant to small systems. The presentation discusses efforts by the U.S. EPA’s Office of Research and Development to effectively communicating drinking water information. In particular, communication approaches ...

  16. EPA Study of Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    In its FY2010 Appropriations Committee Conference Report, Congress directed EPA to study the relationship between hydraulic fracturing and drinking water, using: • Best available science • Independent sources of information • Transparent, peer-reviewed process • Consultatio...

  17. IDENTIFICATION OF NEW DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the potential adverse health effects of trihalomethanes (THMs) and other chlorinated by-products in chlorinated drinking water, alternative disinfectants are being explored. Ozone, chlorine dioxide, and chloramine are popular alternatives, as they produce low...

  18. PERSISTENCE AND DETECTION OF COLIFORMS IN TURBID FINISHED DRINKING WATER

    EPA Science Inventory

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were conducted to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Results indicated that disinfection eff...

  19. APPLICATION OF MULTIMEDIA EXPOSURE ASSESSMENT TO DRINKING WATER

    EPA Science Inventory

    A potentially important exposure route for humans is the ingestion of chemicals via drinking water. If comprehensive exposure assessments are to be completed for either existing or proposed new chemicals and cost effective control strategies develop, then a quantitative understan...

  20. Fate of High Priority Pesticides During Drinking Water Treatment

    EPA Science Inventory

    The fate of organophosphorus (OP) pesticides in the presence of chlorinated oxidants was investigated under drinking water treatment conditions. In the presence of aqueous chlorine, intrinsic rate coefficients were found for the reaction of hypochlorous acid and hypochlorite ion ...

  1. 21 CFR 520.2240a - Sulfaethoxypyridazine drinking water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Sulfaethoxypyridazine drinking water. (a) Chemical name. N′-(6-Ethoxy-3-pyridazinyl) sulfanilamide. (b) Specifications... gallon per 100 pounds of body weight per day for 4 days; as sodium sulfaethoxypyridazine; do not...

  2. Scientific and Regulatory Challenges of Controlling Lead in Drinking Water

    EPA Science Inventory

    Safe Drinking Water Act 1986 Amendments Corrections when necessary, mandatory review every 6 years Lead and Copper Rule section of SDWA Proposed 1988 Proposal revised and promulgated 1991 Many minor revisions, primarily administrative clarifications Major admin. revisions and te...

  3. Radium and Other Radiological Chemicals: Drinking Water Treatment Strategies

    EPA Science Inventory

    Radium and Other Radiological Chemicals: Drinking Water Treatment Technologies Topics include: Introduction to Rad Chemistry, Summary of the Rad, Regulations Treatment Technology, and Disposal. The introductions cover atoms, ions, radium and uranium and the removal of radioac...

  4. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  5. Chloramination of Organophosphorus Pesticides Found in Drinking Water Sources

    EPA Science Inventory

    The degradation of commonly detected organophosphorus (OP) pesticides, in drinking water sources, was investigated under simulated chloramination conditions. Due to monochloramine autodecomposition, it is difficult to observe the direct reaction of monochloramine with each OP pe...

  6. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. PMID:26574105

  7. Monochloramine Cometabolism by Nitrosomonas europaea under Drinking Water Conditions

    EPA Science Inventory

    Chloramine use is widespread in United States drinking water systems as a secondary disinfectant. While beneficial from the perspective of controlling disinfectant by-product formation, chloramination may promote the growth of nitrifying bacteria because ammonia is present. At ...

  8. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  9. DEVELOPING APPROACHES TO ESTIMATE CUMULATIVE RISKS OF DRINKING WATER CONTAMINANTS

    EPA Science Inventory

    Humans are exposed daily to complex mixtures of drinking water disinfection by-products (DBPs) via oral, dermal, and inhalation routes. Some positive epidemiological studies suggest reproductive and developmental effects and cancer are associated with consumption of chlorinated d...

  10. MOLECULAR DIVERSITY OF DRINKING WATER MICROBIAL COMMUNITIES: A PHYLOGENETIC APPROACH

    EPA Science Inventory

    Culture-based methods are traditionally used to determine microbiological quality of drinking water even though these methods are highly selective and tend to underestimate the densities and diversity bacterial populations inhabiting distribution systems. In order to better under...

  11. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  12. INTERACTIONS OF SILICA PARTICLES IN DRINKING WATER TREATMENT PROCESSES

    EPA Science Inventory

    EPA Identifier: U915331
    Title: Interactions of Silica Particles in Drinking Water Treatment Processes
    Fellow (Principal Investigator): Christina L. Clarkson
    Institution: Virginia Polytechnic Institute and State University
    EPA GRANT R...

  13. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  14. EPIDEMIOLOGICAL EVIDENCE OF CARCINOGENICITY OF CHLORINATED ORGANICS IN DRINKING WATER

    EPA Science Inventory

    Concern has recently been voiced over possible chronic toxicity associated with chlorination of public drinking water supplies in the United States. This paper reviews the available evidence and the studies underway to further evaluate hypothesized associations between cancer ris...

  15. Isotopic Fingerprint for Phosphorus in Drinking Water Supplies.

    PubMed

    Gooddy, Daren C; Lapworth, Dan J; Ascott, Matthew J; Bennett, Sarah A; Heaton, Timothy H E; Surridge, Ben W J

    2015-08-01

    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ(18)OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ(18)OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ(18)OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ(18)OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from -0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from -4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ(18)OPO4 within drinking water supplies. PMID:26042958

  16. Determination of fluoride in the bottled drinking waters in iran.

    PubMed

    Amanlou, Massoud; Hosseinpour, Maedeh; Azizian, Homa; Khoshayand, Mohammad Reza; Navabpoor, Mojtaba; Souri, Effat

    2010-01-01

    Fluoride is recognized as an effective agent for dental caries prevention. Generally, the main source of fluoride intake is drinking water. In this study, fluoride content in 18 commercial brands of bottled waters was investigated. Six samples from each batch of 18 Iranian commercial brands of bottled waters were supplied. The fluoride content of samples was analyzed by Fluoride Ion Selective Electrode. The mean ± SD fluoride content of the bottled waters was 0.202 ± 0.00152 mg/L with a range from 0.039 to 0.628 mg/L which was lower than the accepted limits for fluoride content of drinking water (1 mg/L). This finding suggested that in the region which water has high fluoride content, drinking bottled water is preferred to drinking tap water, as it could lower the risk of fluorosis. However, the risk of dental caries increases in people who mainly drink bottled waters; thus, they should use fluoride supplements. PMID:24363704

  17. INTERGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  18. INTEGRATING SOURCE WATER PROTECTION AND DRINKING WATER TREATMENT: U.S. ENVIRONMENTAL PROTECTION AGENCY'S WATER SUPPLY AND WATER RESOURCES DIVISION

    EPA Science Inventory

    The U.S. Environmental Protection Agency's (EPA) Water Supply and Water Resources Division (WSWRD) is an internationally recognized water research organization established to assist in responding to public health concerns related to drinking water supplies. WSWRD has evolved from...

  19. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER — PALL/KINETICO PUREFECTA DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Pall/Kinetico Purefecta™ POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The Purefecta™ employs several compon...

  20. Biological Instability in a Chlorinated Drinking Water Distribution Network

    PubMed Central

    Nescerecka, Alina; Rubulis, Janis; Vital, Marius; Juhna, Talis; Hammes, Frederik

    2014-01-01

    The purpose of a drinking water distribution system is to deliver drinking water to the consumer, preferably with the same quality as when it left the treatment plant. In this context, the maintenance of good microbiological quality is often referred to as biological stability, and the addition of sufficient chlorine residuals is regarded as one way to achieve this. The full-scale drinking water distribution system of Riga (Latvia) was investigated with respect to biological stability in chlorinated drinking water. Flow cytometric (FCM) intact cell concentrations, intracellular adenosine tri-phosphate (ATP), heterotrophic plate counts and residual chlorine measurements were performed to evaluate the drinking water quality and stability at 49 sampling points throughout the distribution network. Cell viability methods were compared and the importance of extracellular ATP measurements was examined as well. FCM intact cell concentrations varied from 5×103 cells mL−1 to 4.66×105 cells mL−1 in the network. While this parameter did not exceed 2.1×104 cells mL−1 in the effluent from any water treatment plant, 50% of all the network samples contained more than 1.06×105 cells mL−1. This indisputably demonstrates biological instability in this particular drinking water distribution system, which was ascribed to a loss of disinfectant residuals and concomitant bacterial growth. The study highlights the potential of using cultivation-independent methods for the assessment of chlorinated water samples. In addition, it underlines the complexity of full-scale drinking water distribution systems, and the resulting challenges to establish the causes of biological instability. PMID:24796923

  1. 76 FR 72703 - Meeting of the National Drinking Water Advisory Council-Notice of Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... AGENCY Meeting of the National Drinking Water Advisory Council--Notice of Public Meeting AGENCY... meeting of the National Drinking Water Advisory Council (NDWAC or Council), established under the Safe Drinking Water Act. The Council will consider various issues associated with drinking water protection...

  2. 75 FR 39935 - Drinking Water Strategy Contaminants as Group(s)-Notice of Web Dialogue

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...On March 22, 2010, Administrator Lisa P. Jackson announced the Drinking Water Strategy, a new vision to expand public health protection for drinking water by going beyond the traditional framework. The Drinking Water Strategy includes the following four principles: Addressing some contaminants as group(s) rather than one at a time so that enhancement of drinking water protection can be......

  3. A review of arsenic presence in China drinking water

    NASA Astrophysics Data System (ADS)

    He, Jing; Charlet, Laurent

    2013-06-01

    Chronic endemic arsenicosis areas have been discovered in China since 1960s. Up to 2012, 19 provinces had been found to have As concentration in drinking water exceeding the standard level (0.05 mg/L). Inner Mongolia, Xinjiang and Shanxi Province are historical well-known “hotspots” of geogenic As-contaminated drinking water. The goal of this review is to examine, summarize and discuss the information of As in drinking water for all provinces and territories in China. Possible natural As sources for elevating As level in drinking water, were documented. Geogenic As-contaminated drinking water examples were taken to introduce typical environmental conditions where the problems occurred: closed basins in arid or semi-arid areas and reducing aquifers under high pH conditions. Geothermal water or mineral water in mountains areas can be high-As water as well. For undiscovered areas, prediction of potential As-affected groundwater has been carried out by some research groups by use of logistic regression. Modeled maps of probability of geogenic As contamination in groundwater are promising to be used as references to discover unknown areas. Furthermore, anthropogenic As contaminations were summarized and mining, smelters and chemical industries were found to be major sources for As pollution in China.

  4. Condition Assessment for Drinking Water Transmission and Distribution Mains

    EPA Science Inventory

    This project seeks to improve the capability to characterize the condition of water infrastructure. The integrity of buried drinking water mains is critical, as it influences water quality, losses, pressure and cost. This research complements the U.S. Environmental Protection A...

  5. DETECTION OF ENTERIC VIRUSES IN TREATED DRINKING WATER

    EPA Science Inventory

    The occurrence of viruses in conventionally treated drinking water derived from a heavily polluted source was evaluated by collecting and analyzing 38 large volume (65 to 756 liter) samples of water from a 9m3/sec (205 mgd) water treatment plant. Samples of raw, clarified, filter...

  6. REDUCING ARSENIC LEVELS IN DRINKING WATER: APPROACHES AND CONSIDERATIONS

    EPA Science Inventory

    The recently promulgated Arsenic Rule will require that many new drinking water systems treat their water to remove arsenic. It has been projected that the State of Ohio will have nearly 140 community and non-community non-transient water systems in violation of the Rule. This ...

  7. Particulate Arsenic Release in a Drinking Water Distribution System

    EPA Science Inventory

    Trace contaminants, such as arsenic, have been shown to accumulate in solids found in drinking water distribution systems. The obvious concern is that the contaminants in these solids could be released back into the water resulting in elevated levels in a consumer’s tap water. Th...

  8. MYCOBACTERIUM AVIUM AND DRINKING WATER WHAT ARE THE CONNECTIONS?

    EPA Science Inventory

    Background: Human Mycobacterium avium infections are only known to be acquired from environmental sources such as water and soil. We compared M. avium isolates from clinical and drinking water sources using molecular tools. Methods: M. avium was isolated from water samples colle...

  9. Drinking water treatment residuals: A Review of recent uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coagulants such as alum [Al2(SO4)3•14H2O], FeCl3, or Fe2(SO4)3 are commonly used to remove particulate and dissolved constituents from water supplies in the production of drinking water. The resulting waste product, called water-treatment residuals (WTR), contains precipitated Al and Fe oxyhydroxide...

  10. Microflora of drinking water distributed through decentralized supply systems (Tomsk)

    NASA Astrophysics Data System (ADS)

    Khvaschevskaya, A. A.; Nalivaiko, N. G.; Shestakova, A. V.

    2016-03-01

    The paper considers microbiological quality of waters from decentralized water supply systems in Tomsk. It has been proved that there are numerous microbial contaminants of different types. The authors claim that the water distributed through decentralized supply systems is not safe to drink without preliminary treatment.

  11. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea.

    PubMed

    Luby, Stephen P; Halder, Amal K; Huda, Tarique Md; Unicomb, Leanne; Islam, M Sirajul; Arnold, Benjamin F; Johnston, Richard B

    2015-11-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031

  12. Microbiological Contamination of Drinking Water Associated with Subsequent Child Diarrhea

    PubMed Central

    Luby, Stephen P.; Halder, Amal K.; Huda, Tarique Md.; Unicomb, Leanne; Sirajul Islam, M.; Arnold, Benjamin F.; Johnston, Richard B.

    2015-01-01

    We used a prospective, longitudinal cohort enrolled as part of a program evaluation to assess the relationship between drinking water microbiological quality and child diarrhea. We included 50 villages across rural Bangladesh. Within each village field-workers enrolled a systematic random sample of 10 households with a child under the age of 3 years. Community monitors visited households monthly and recorded whether children under the age of 5 years had diarrhea in the preceding 2 days. Every 3 months, a research assistant visited the household and requested a water sample from the source or container used to provide drinking water to the child. Laboratory technicians measured the concentration of Escherichia coli in the water samples using membrane filtration. Of drinking water samples, 59% (2,273/3,833) were contaminated with E. coli. Of 12,192 monthly follow-up visits over 2 years, mothers reported that their child had diarrhea in the preceding 2 days in 1,156 (9.5%) visits. In a multivariable general linear model, the log10 of E. coli contamination of the preceding drinking water sample was associated with an increased prevalence of child diarrhea (prevalence ratio = 1.14, 95% CI = 1.05, 1.23). These data provide further evidence of the health benefits of improved microbiological quality of drinking water. PMID:26438031

  13. [The occurrence of salmonellae in drinking water (author's transl)].

    PubMed

    Müller, H E

    1979-01-01

    A total of 7187 samples of drinking water from different areas of the Lower Saxonian District of Braunschweig was investigated according to regulations of the Trinkwasser-Verordnung during June 1977 and May 1979. The bacteriological results are given in Tab. 1 and 2. Salmonellae were isolated in three samples of drinking water and in one sample of sludge from a municipal pipe of drinking water (see also Tab. 2). Additional experiments confirm that growth of salmonellae and other enterobacteria is possible in that sludge (Fig. 1 and 2). These findings implicate some considerations: E. coli and coliforms are the most important microbial water quality indicators of the Trinkwasser-Verordnung. It is presupposed that, when the indicator density is low (less than 1 per 100 ml) the probability that pathogen are present also will be very low. But the question is how low. The risk factor may be estimated on the base of the E. coli-Salmonella ratio in raw sewage of about 10(6). But this relation lessens already in effluents of sewage treatment plants to 10(3) and it seems to be often 10(2) in inadequately disinfected drinking water. For example, we have found four Salmonella serotypes and 408 E. coli during two years. Therefore, the judgement of the presence of E. coli or coliforms in samples of drinking water must impact highly on the improvement of the water quality by disinfection in future. PMID:397701

  14. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... the document. DATES: The fifth in-person CRWU Working Group meeting will take place on September 23... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC)....

  15. Drinking-Water Standards and Regulations. Volume 2. Manual for 1982-88

    SciTech Connect

    Wang, L.K.; Wang, M.H.S.

    1988-04-10

    The following 11 important documents are compiled for Drinking Water Standards and Regulations: (1) U.S. Environmental Agency Water Programs, National Interim Primary Drinking Water Regulations; (2) New Jersey Safe Drinking Water Act; (3) Summary of New Jersey Drinking Water Standards; (4) U.S. Environmental Protection Agency Safe Drinking Water Act of 1986 Amendments; (5) U.S. Environmental Protection Agency National Primary Drinking Water Standards; (6) Canadian National Health and Welfare Drinking Water Quality Guidelines--Maximum Acceptable Concentrations; (7) U.S. Environmental Protection Agency, National Primary Drinking Water Regulations, Filtration and Disinfection Turbidity, Giardia Lamblia, Viruses, Legionella, and Heterotrophic Bacteria; (8) Public Water Supply Manual--Guide to the Safe Drinking Water Program; (9) Public Water Supply Manual--Emergency Response; (10) U.S. EPA Approved Krofta Chemicals; (11) NY-DOH Approved Krofta Chemicals.

  16. Are endocrine disrupting compounds a health risk in drinking water?

    PubMed

    Falconer, Ian R

    2006-06-01

    There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17Beta-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water

  17. Occurrence and hygienic relevance of fungi in drinking water.

    PubMed

    Kanzler, D; Buzina, W; Paulitsch, A; Haas, D; Platzer, S; Marth, E; Mascher, F

    2008-03-01

    Fungi, above all filamentous fungi, can occur almost everywhere, even in water. They can grow in such a quantity in water that they can affect the health of the population or have negative effects on food production. There are several reports of fungal growth in water from different countries, but to our knowledge none from Austria so far. The aim of this study was to gain an overview of the spectrum of filamentous fungi and yeasts in drinking water systems. Thirty-eight water samples from drinking water and groundwater were analysed. Fungi were isolated by using membrane filtration and plating method with subsequent cultivation on agar plates. The different taxa of fungi were identified using routine techniques as well as molecular methods. Fungi were isolated in all water samples examined. The mean value for drinking water was 9.1 CFU per 100 ml and for groundwater 5400 CFU per 100 ml. Altogether 32 different taxa of fungi were found. The taxa which occurred most frequently were Cladosporium spp., Basidiomycetes and Penicillium spp. (74.6%, 56.4% and 48.7%, respectively). This study shows that drinking water can be a reservoir for fungi, among them opportunists, which can cause infections in immunosuppressed patients. PMID:18254755

  18. German drinking water regulations, pesticides, and axiom of concern

    NASA Astrophysics Data System (ADS)

    Dieter, Hermann H.

    1992-01-01

    The limit value of 0.1 µg/liter for “substances used in plant treatment and pest control including their main toxic degradation products” (PBSM) established in the German Drinking Water Regulations (Trinkwasserverordnung) serves comprehensively to protect drinking water from unexpected toxicological risks and thus corresponds to the axiom of concern (Besorgnisgrundsatz) contained in §11,2 of the Federal Communicable Disease Control Act (Bundesseuchengesetz), which is an essential cornerstone of the Drinking Water Regulations. Furthermore, precautionary values that are specific to the particular substance and near the valid limit can be found for about 10% of all registered active substances. The goal of the PBSM Recommendations of the Federal Health Office (BGA) issued in July 1989 is to preserve and restore groundwater and drinking water through measures to be taken by the causal party, while reducing consumer health risks to the greatest extent possible. The EC commission's drawbacks on these recommendations and the imminent EC-wide directive for the uniform registration of pesticides being based solely on Article 43 of the European Treaty would seriously endanger this goal. Therefore, a situation threatens in Europe similar to that in the United States, where at least 18 active ingredients have been detected in groundwater in concentrations of up to 1000 times the toxicologically established limits for drinking water.

  19. Health risks due to radon in drinking water

    USGS Publications Warehouse

    Hopke, P.K.; Borak, T.B.; Doull, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; Mckone, T.E.; Sextro, R.G.; Simon, S.L.

    2000-01-01

    Following more than a decade of scientific debate about the setting of a standard for 222Rn in drinking water, Congress established a timetable for the promulgation of a standard in the 1996 Amendments to the Safe Drinking Water Act. As a result of those Amendments, the EPA contracted with the National Academy of Sciences to undertake a risk assessment for exposure to radon in drinking water. In addition, the resulting committee was asked to address several other scientific issues including the national average ambient 222Rn concentration and the increment of 222Rn to the indoor- air concentration arising from the use of drinking water in a home. A new dosimetric analysis of the cancer risk to the stomach from ingestion was performed. The recently reported risk estimates developed by the BEIR VI Committee for inhalation of radon decay products were adopted. Because the 1996 Amendments permit states to develop programs in which mitigation of air- producing health-risk reductions equivalent to that which would be achieved by treating the drinking water, the scientific issues involved in such 'multimedia mitigation programs' were explored.

  20. Photocatalytic Coats in Glass Drinking-Water Bottles

    NASA Technical Reports Server (NTRS)

    Andren, Anders W.; Armstrong, David E.; Anderson, Marc A.

    2005-01-01

    According to a proposal, the insides of glass bottles used to store drinking water would be coated with films consisting of or containing TiO2. In the presence of ultraviolet light, these films would help to remove bacteria, viruses, and trace organic contaminants from the water.

  1. NITRATE REMOVAL FROM DRINKING WATER IN GLENDALE, ARIZONA

    EPA Science Inventory

    A 15-month pilot-scale study of nitrate removal from drinking water by ion exchange (IX), reverse osmosis (RO), and electrodialysis (ED) was carried out in Glendale, Arizona, where the raw water contained 18 to 25 mg/L NO3-N. The experiments were carried out using the University ...

  2. UNREGULATED DRINKING WATER CONTAMINANTS AND INNOVATIVE APPROACHES FOR DETERMINING NEUROTOXICITY

    EPA Science Inventory

    EPA's Office of Water (OW) is concerned about potential neurotoxicity of monomethyl, dimethyl, monobutyl, and dibutyl organotins that can leach into drinking water from PVC pipe. NTD’s evaluation of these organotins indicated that they were not likely to be a significant risk at ...

  3. Wastewater to Drinking Water: Are Emerging Contaminants Making it Through?

    EPA Science Inventory

    Lake Mead serves as the primary drinking water source for Las Vegas, Nevada and surrounding communities. Besides snow-melt from the Rockies water levels in the lake are supplemented by the inflow of treated wastewater from communities along the Colorado River, including Las Vegas...

  4. Occurrence, Monitoring and Treatment of Cyanobacterial Toxins in Drinking Water

    EPA Science Inventory

    In the summer of 2014 a number of drinking water treatment plants (DWTPs) on Lake Erie supplied water samples on a monthly basis for analysis. Chlorophyll-a measurements, LC/MS/MS and ELISA techniques specific to microcystins were employed to measure potential harmful algal bloom...

  5. EVALUATION OF DRINKING WATER TREATMENT TECHNIQUES FOR EDC REMOVAL

    EPA Science Inventory

    Many of the chemicals identified as potential endocrine disrupting chemicals (EDCs) may be present in surface or ground waters used as drinking water sources, due to their disposal via domestic and industrial sewage treatment systems and wet-weather runoff. In order to decrease t...

  6. Oxidative decomposition of vitamin C in drinking water.

    PubMed

    Jansson, Patric J; Jung, Hye R; Lindqvist, Christer; Nordström, Tommy

    2004-08-01

    We have previously shown that vitamin C (ascorbic acid) can initiate hydroxyl radical formation in copper contaminated household drinking water. In the present study, we have examined the stability of vitamin C in copper and bicarbonate containing household drinking water. In drinking water samples, contaminated with copper from the pipes and buffered with bicarbonate, 35% of the added vitamin C was oxidized to dehydroascorbic acid within 15 min. After 3h incubation at room temperature, 93% of the added (2 mM) ascorbic acid had been oxidized. The dehydroascorbic acid formed was further decomposed to oxalic acid and threonic acid by the hydrogen peroxide generated from the copper (I) autooxidation in the presence of oxygen. A very modest oxidation of vitamin C occurred in Milli-Q water and in household water samples not contaminated by copper ions. Moreover, addition of vitamin C to commercially sold domestic bottled water samples did not result in vitamin C oxidation. Our results demonstrate that ascorbic acid is rapidly oxidized to dehydroascorbic acid and further decomposed to oxalic- and threonic acid in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed. PMID:15493459

  7. DRINKING WATER DISINFECTION USING A UV/PHOTOCATALYST

    EPA Science Inventory

    Worldwide, lack of safe drinking water takes an inestimable toll on human health. The objective of this project is to develop a small-scale sustainable water disinfection technology requiring a minimum of treatment time. The technology to be developed will be simple, sustain...

  8. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  9. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    EPA Science Inventory

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  10. NUTRIENTS FOR BACTERIAL GROWTH IN DRINKING WATER: BIOASSAY EVALUATION

    EPA Science Inventory

    The regrowth of bacteria in drinking water distribution systems can lead to the deterioration of water quality. Pathogenic bacteria are heterotrophs, and heterotrophs are probably the dominant bacteria associated with the regrowth phenomenon. Only a portion of the total organic c...

  11. PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    A computer model has been developed for use in estimating the performance and associated costs of proposed and existing water supply systems. Design procedures and cost-estimating relationships for 25 unit processes that can be used for drinking water treatment are contained with...

  12. The Accumulation of Radioactive Contaminants in Drinking Water Distribution Systems

    EPA Science Inventory

    The accumulation of trace contaminants in drinking water distribution systems has been documented and the subsequent release of the contaminants back to the water is a potential exposure pathway. Radioactive contaminants are of particular concern because of their known health eff...

  13. ARSENIC REMOVAL FROM DRINKING WATER BY IRON REMOVAL PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two iron removal water treatment plants to remove arsenic from drinking water sources. Performance information was collected from one system located in midwest for one full year and at the second system located in the farwest...

  14. TREATMENT ALTERNATIVES FOR CONTROLLING CHLORINATED ORGANIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    A pilot plant study was conducted by the City of Thornton, Colorado, to evaluate techniques for controlling chlorinated organic compounds formed in drinking water as a result of breakpoint, or free, chlorination. The pilot plant was operated for 46 months using the raw water sour...

  15. SAFE DRINKING WATER FOR THE LITTLE GUY: OPTIONS AND ALTERNATIVES

    EPA Science Inventory

    The Safe Drinking Water Act (SDWA) and its Amendments sets regulations applicable to all community water systems that have 15 or more service connections and/or serve at least 25 people. t first glance, this may appear most inclusive, but in reality there are numerous private hom...

  16. USEPA'S RESEARCH EFFORTS IN SMALL DRINKING WATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Currently, in the United States there are approximately 50,000 small community and 130,000 non-community systems providing water to over 25 million people. The drinking water treatment systems at these locations are not always adequate to comply with current and pending regulati...

  17. SAFE DRINKING WATER FROM SMALL SYSTEMS: TREATMENT OPTIONS

    EPA Science Inventory

    Bringing small water systems into compliance with the ever-increasing number of regulations will require flexibility in terms of technology application and institional procedures. his article looks at the means by which small systems can provide safe drinking water, focusing on t...

  18. SMALL DRINKING WATER TREATMENT TECHNOLOGIES FOR COMPLIANCE WITH THE ENHANCED SURFACE WATER TREATMENT RULES

    EPA Science Inventory

    According to FY2003 statistics compiled by the Office of Ground Water and Drinking Water, the U.S. regulates about 160,000 small drinking water systems that impact close to 70 million people. Small systems (serving transient and non-transient populations of 10,000 people or less...

  19. Pathogens in drinking water: Are there any new ones

    SciTech Connect

    Reasoner, D.J.

    1993-01-01

    Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogens and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.

  20. Postexercise rehydration: potassium-rich drinks versus water and a sports drink.

    PubMed

    Pérez-Idárraga, Alexandra; Aragón-Vargas, Luis Fernando

    2014-10-01

    Fluid retention, thirst quenching, tolerance, and palatability of different drinks were assessed. On 4 different days, 12 healthy, physically active volunteers (24.4 ± 3.2 years old, 74.75 ± 11.36 kg body mass (mean ± S.D)), were dehydrated to 2.10% ± 0.24% body mass by exercising in an environmental chamber (32.0 ± 0.4 °C dry bulb, 53.8 ± 5.2% relative humidity). Each day they drank 1 of 4 beverages in random order: fresh coconut water (FCW), bottled water (W), sports drink (SD), or potassium-rich drink (NEW); volume was 120% of weight loss. Urine was collected and perceptions self-reported for 3 h. Urine output was higher (p < 0.05) for W (894 ± 178 mL) than SD (605 ± 297 mL) and NEW (599 ± 254 mL). FCW (686 ± 250 mL) was not different from any other drink (p > 0.05). Fluid retention was higher for SD than W (68.2% ± 13.0% vs. 51.3% ± 12.6%, p = 0.013), but not for FCW and NEW (62.5% ± 15.4% and 65.9% ± 15.4%, p > 0.05). All beverages were palatable and well tolerated; none maintained a positive net fluid balance after 3 h, but deficit was greater in W versus SD (p = 0.001). FCW scored higher for sweetness (p = 0.03). Thirst increased immediately after exercise but returned to baseline after drinking a small volume (p < 0.0005). In conclusion, additional potassium in FCW and NEW did not result in additional rehydration benefits over those already found in a conventional sports drink with sodium. PMID:25017113

  1. [The protection of drinking water in a public health department].

    PubMed

    Monari, R; Petrolo, A; Mascelli, M; Vannucchi, G

    2008-01-01

    The protection of drinking water is a key issue in a Public Health Department's activity. A substantial amount of planning and monitoring work is involved in the development and implementation of a water safety plan, aimed not only at the enforcement of public health regulations, but also at the improvement of the quality water. We provide an overview of the quality monitoring program of the municipality of Prato, a highly populated and industrialized area, where ground water is contaminated by anthropogenic pollutants such as trichloroethylene, tetrachloroethylene and nitrate. We show how, in spite of the intrinsically poor quality of the basic water resource, the careful application of an appropriate prevention plan, with the cooperation of the local water authority, allows the delivery of drinking water of increasing safety and quality. PMID:19238879

  2. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes.

    PubMed

    Takagi, Sokichi; Adachi, Fumie; Miyano, Keiichi; Koizumi, Yoshihiko; Tanaka, Hidetsugu; Watanabe, Isao; Tanabe, Shinsuke; Kannan, Kurunthachalam

    2011-07-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) have been recognized as global environmental pollutants. Although PFOS and PFOA have been detected in tap water from Japan and several other countries, very few studies have examined the fate, especially removal, of perfluorinated compounds (PFCs) in drinking water treatment processes. In this study, we analyzed PFOS and PFOA at every stages of drinking water treatment processes in several water purification plants that employ advanced water treatment technologies. PFOS and PFOA concentrations did not vary considerably in raw water, sand filtered water, settled water, and ozonated water. Sand filtration and ozonation did not have an effect on the removal of PFOS and PFOA in drinking water. PFOS and PFOA were removed effectively by activated carbon that had been used for less than one year. However, activated carbon that had been used for a longer period of time (>1 year) was not effective in removing PFOS and PFOA from water. Variations in the removal ratios of PFOS and PFOA by activated carbon were found between summer and winter months. PMID:21628066

  3. The Occurrence and Comparative Toxicity of Haloacetaldehyde Disinfection Byproducts in Drinking Water

    EPA Science Inventory

    The introduction of drinking water disinfection greatly reduced the incidence of waterborne diseases. However, the reaction between disinfectants and natural organic matter in the source water can lead to an unintended consequence, which is the formation of drinking water disinfe...

  4. CHEMICAL AND BIOLOGICAL CHARACTERIZATION OF NEWLY DISCOVERED IODOACID DRINKING WATER DISINFECTION BYPRODUCTS

    EPA Science Inventory

    Iodoacid drinking water disinfection byproducts (DBPs) were recently uncovered in drinking water samples from source water with a high bromide/iodide concentration that was disinfected with chloramines. The purpose of this paper is to report the analytical chemical identification...

  5. Development of EPA Method 525.3 for the Analysis of Semivolatiles in Drinking Water

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water (OGWDW) collects nationwide occurrence data on contaminants in drinking water using the Unregulated Contaminant Monitoring Regulations (UCMRs). The unregulated contaminants, which ar...

  6. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters.

    PubMed

    Rumsby, Paul C; McLaughlin, Clare L; Hall, Tom

    2009-10-13

    Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) are chemicals that have been used for many years as surfactants in a variety of industrial and consumer products. Owing to their persistent, bioaccumulative and toxic (PBT) characteristics, PFOS has been phased out by its principal producer and the use of PFOA has been reduced. This PBT potential and a number of pollution incidents have led in recent years to an increase in studies surveying the concentrations of PFOS and PFOA in environmental waters worldwide. This paper reviews the results of these studies, as well as the monitoring that was conducted after the pollution incidents. The results of surveys suggest that PFOS and PFOA are found in environmental waters worldwide at low levels. In general, these levels are below health-based values set by international authoritative bodies for drinking water. There have been limited measurements of these chemicals in drinking water, but again these are below health-based values, except in some cases following pollution incidents. Monitoring studies suggested that where PFOS and PFOA were detected, they were at similar levels in both source and drinking water, suggesting that drinking water treatment does not remove these chemicals. However, new data show that PFOS and PFOA are effectively removed by granular activated carbon absorbers in practice. Further research is required on the newer perfluorinated chemicals that appear to be safer, but their degradation products have not as yet been fully studied. PMID:19736236

  7. New Perspectives in Monitoring Drinking Water Microbial Quality

    PubMed Central

    Figueras, Ma José; Borrego, Juan J.

    2010-01-01

    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated. PMID:21318002

  8. BIOFILM IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Throughout the world there are millions of miles of water distribution pipe lines which provide potable water for use by individuals and industry. Some of these water distribution systems have been in service well over one hundred years. Treated water moving through a distributio...

  9. Recent advances in drinking water disinfection: successes and challenges.

    PubMed

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    Drinking water is the most important single source of human exposure to gastroenteric diseases, mainly as a result of the ingestion of microbial contaminated water. Waterborne microbial agents that pose a health risk to humans include enteropathogenic bacteria, viruses, and protozoa. Therefore, properly assessing whether these hazardous agents enter drinking water supplies, and if they do, whether they are disinfected adequately, are undoubtedly aspects critical to protecting public health. As new pathogens emerge, monitoring for relevant indicator microorganisms (e.g., process microbial indicators, fecal indicators, and index and model organisms) is crucial to ensuring drinking water safety. Another crucially important step to maintaining public health is implementing Water Safety Plans (WSPs), as is recommended by the current WHO Guidelines for Drinking Water Quality. Good WSPs include creating health-based targets that aim to reduce microbial risks and adverse health effects to which a population is exposed through drinking water. The use of disinfectants to inactivate microbial pathogens in drinking water has played a central role in reducing the incidence of waterborne diseases and is considered to be among the most successful interventions for preserving and promoting public health. Chlorine-based disinfectants are the most commonly used disinfectants and are cheap and easy to use. Free chlorine is an effective disinfectant for bacteria and viruses; however, it is not always effective against C. parvum and G. lamblia. Another limitation of using chlorination is that it produces disinfection by-products (DBPs), which pose potential health risks of their own. Currently, most drinking water regulations aggressively address DBP problems in public water distribution systems. The DBPs of most concern include the trihalomethanes (THMs), the haloacetic acids (HAAs), bromate, and chlorite. However, in the latest edition of the WHO Guidelines for Drinking Water Quality

  10. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. PMID:25086698

  11. Demineralization of drinking water: Is it prudent?

    PubMed

    Verma, K C; Kushwaha, A S

    2014-10-01

    Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed. PMID:25382914

  12. Demineralization of drinking water: Is it prudent?

    PubMed Central

    Verma, K.C.; Kushwaha, A.S.

    2014-01-01

    Water is the elixir of life. The requirement of water for very existence of life and preservation of health has driven man to devise methods for maintaining its purity and wholesomeness. The water can get contaminated, polluted and become a potential hazard to human health. Water in its purest form devoid of natural minerals can also be the other end of spectrum where health could be adversely affected. Limited availability of fresh water and increased requirements has led to an increased usage of personal, domestic and commercial methods of purification of water. Desalination of saline water where fresh water is in limited supply has led to development of the latest technology of reverse osmosis but is it going to be safe to use such demineralized water over a long duration needs to be debated and discussed. PMID:25382914

  13. Removal of estrogens and estrogenicity through drinking water treatment.

    PubMed

    Schenck, Kathleen; Rosenblum, Laura; Wiese, Thomas E; Wymer, Larry; Dugan, Nicholas; Williams, Daniel; Mash, Heath; Merriman, Betty; Speth, Thomas

    2012-03-01

    Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol. Treatment of the estrogens with chlorine, either alone or with coagulant, resulted in approximately 98% reductions in the concentrations of the parent estrogens, accompanied by formation of by-products. The MVLN reporter gene and MCF-7 cell proliferation assays were used to characterize the estrogenic activity of the water before and after treatment. The observed estrogenic activities of the chlorinated samples showed that estrogenicity of the water was reduced commensurate with removal of the parent estrogen. Therefore, the estrogen chlorination by-products did not contribute appreciably to the estrogenic activity of the water. Coagulation alone did not result in significant removals of the estrogens. However, addition of PAC, at a typical drinking water plant dose, resulted in removals ranging from approximately 20 to 80%. PMID:22361701

  14. Giardia and Cryptosporidium spp. in filtered drinking water supplies.

    PubMed

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-09-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level. PMID:1768135

  15. Giardia and Cryptosporidium spp. in filtered drinking water supplies.

    PubMed Central

    LeChevallier, M W; Norton, W D; Lee, R G

    1991-01-01

    Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level. PMID:1768135

  16. Minerals leached into drinking water from rubber stoppers

    SciTech Connect

    Kennedy, B.W.; Beal, T.S. )

    1991-06-01

    Drinking water and its delivery system are potential sources of variation in animal research. Concern arose that rubber stoppers used to cork water bottles might be a source of some nutritionally required minerals which could leach into drinking water. Six types of stoppers, each having different compositions, were cleaned with stainless-steel sipper tubes inserted into them and attached to polypropylene bottles filled with either deionized water (pH 4.5) or acidified-deionized water (pH 2.5). After six days of contact, water levels of copper, magnesium, iron, manganese, zinc, chromium, and selenium were determined by atomic absorption spectroscopy. Additionally, three of the stopper types were analyzed for mineral content. Minerals were present in both stoppers and drinking water. Acidified-deionized water generally leached minerals from the stoppers than did deionized water. The black stopper which is commonly used in animal facilities contained and leached measurable levels of some minerals, but it still can be recommended for typical animal husbandry uses, although other types of stoppers would be more suitable for specific nutritional and toxicologic studies.

  17. OCCURRENCE OF ALUMINUM IN DRINKING WATER

    EPA Science Inventory

    A random selection of 186 water utilities was used for this study in which raw and finished water samples were collected from each facility five times throughout a year and analyzed for iron and aluminum by atomic absorption techniques. The water samples were categorized by the s...

  18. EMERGING CONTAMINANTS IN THE DRINKING WATER CYCLE

    EPA Science Inventory

    PRESENTATION OUTLINE: I. General overview of the water cycle;

    II. USEPA and USGS Research;

    a. Wastewater treatment plant (WWTP) effluents and downstream surface waters;

    b. Groundwater down gradient from WW lagoon;

    c. Source and finished water fro...

  19. Trihalomethane hydrolysis in drinking water at elevated temperatures.

    PubMed

    Zhang, Xiao-Lu; Yang, Hong-Wei; Wang, Xiao-Mao; Karanfil, Tanju; Xie, Yuefeng F

    2015-07-01

    Hydrolysis could contribute to the loss of trihalomethanes (THMs) in the drinking water at elevated temperatures. This study was aimed at investigating THM hydrolysis pertaining to the storage of hot boiled water in enclosed containers. The water pH value was in the range of 6.1-8.2 and the water temperature was varied from 65 to 95 °C. The effects of halide ions, natural organic matter, and drinking water matrix were investigated. Results showed that the hydrolysis rates declined in the order following CHBrCl2 > CHBr2Cl > CHBr3 > CHCl3. THM hydrolysis was primarily through the alkaline pathway, except for CHCl3 in water at relatively low pH value. The activation energies for the alkaline hydrolysis of CHCl3, CHBrCl2, CHBr2Cl and CHBr3 were 109, 113, 115 and 116 kJ/mol, respectively. No hydrolysis intermediates could accumulate in the water. The natural organic matter, and probably other constituents, in drinking water could substantially decrease THM hydrolysis rates by more than 50%. When a drinking water was at 90 °C or above, the first order rate constants for THM hydrolysis were in the magnitude of 10(-2)‒10(-1) 1/h. When the boiled real tap water was stored in an enclosed container, THMs continued increasing during the first few hours and then kept decreasing later on due to the competition between hydrolysis and further formation. The removal of THMs, especially brominated THMs, by hydrolysis would greatly reduce one's exposure to disinfection by-products by consuming the boiled water stored in enclosed containers. PMID:25898249

  20. Arsenic in drinking water in bangladesh: factors affecting child health.

    PubMed

    Aziz, Sonia N; Aziz, Khwaja M S; Boyle, Kevin J

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people's individuals' time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children's health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  1. Arsenic in Drinking Water in Bangladesh: Factors Affecting Child Health

    PubMed Central

    Aziz, Sonia N.; Aziz, Khwaja M. S.; Boyle, Kevin J.

    2014-01-01

    The focus of this paper is to present an empirical model of factors affecting child health by observing actions households take to avoid exposure to arsenic in drinking water. Millions of Bangladeshis face multiple health hazards from high levels of arsenic in drinking water. Safe water sources are either expensive or difficult to access, affecting people’s individuals’ time available for work and ultimately affecting the health of household members. Since children are particularly susceptible and live with parents who are primary decision makers for sustenance, parental actions linking child health outcomes is used in the empirical model. Empirical results suggest that child health is significantly affected by the age and gender of the household water procurer. Adults with a high degree of concern for children’s health risk from arsenic contamination, and who actively mitigate their arsenic contaminated water have a positive effect on child health. PMID:24982854

  2. Evaluation of minerals content of drinking water in Malaysia.

    PubMed

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  3. Fluoride occurrence in publicly supplied drinking water in Estonia

    NASA Astrophysics Data System (ADS)

    Karro, Enn; Indermitte, Ene; Saava, Astrid; Haamer, Kadri; Marandi, Andres

    2006-06-01

    A study was undertaken to examine the content and spatial distribution of fluoride in drinking water. Water samples (735) from public water systems covering all Estonian territory were analysed using SPADNS method. In order to specify the natural source of fluoride, the chemistry data from five aquifer systems utilised for water supply were included into the study. Fluoride concentrations in tap water, to a great extent, ranged from 0.01 to 6.95 mg/l. Drinking water in southern Estonia, where terrigenous Middle-Devonian aquifer system is exploited, has a fluoride concentration lower than recommended level (0.5 mg/l), thus promoting susceptibility to dental caries. The western part of the country is supplied by water with excess fluoride content (1.5-6.9 mg/l). Groundwater abstracted for drinking purposes originates from Ordovician and Silurian carbonate rocks. The content of fluoride in Silurian-Ordovician aquifer system is associated with the groundwater abstraction depth and the main controlling factors of dissolved fluoride are the pH value and the chemical type of water.

  4. Nephrotoxicity of uranium in drinking water from private drilled wells

    SciTech Connect

    Selden, Anders I.; Lundholm, Cecilia; Edlund, Bror; Hoegdahl, Camilla; Ek, Britt-Marie; Bergstroem, Bernt E.; Ohlson, Carl-Goeran

    2009-05-15

    Objectives: To investigate the association between uranium in drinking water from drilled wells and aspects of kidney function measured by sensitive urine tests. Methods: Three hundred and one of 398 eligible subjects (75.6%) aged 18-74 years with daily drinking water supplies from private drilled wells located in uranium-rich bedrock (exposed group) volunteered to participate along with 153 of 271 local controls (56.4%) who used municipal water. Participants responded to a questionnaire on their water consumption and general health, and provided a morning urine sample and drinking water for analysis. Results: The uranium content of well water samples (n=153) varied considerably (range <0.20-470 {mu}g/l, median 6.7 {mu}g/l, 5% >100 {mu}g/l), while uranium levels in all samples of municipal water (n=14) were below the limit of quantification (0.2 {mu}g/l). Urinary levels of uranium were more than eight times higher in exposed subjects than in controls (geometric means 38 and 4.3 ng/l, respectively; p<0.001), but their mean urine lead levels were not significantly different. There was a strong curvilinear correlation between uranium in drinking water and in urine (r{sup 2}=0.66). Levels of albumin, {beta}{sub 2}-microglobulin, protein HC as well as kappa and lambda immunoglobulin chains in urine from exposed and controls were similar. The N-acetyl-{beta}-D-glucosaminidase (NAG) activity was significantly lower in the exposed group vs. controls, possibly secondary to differential storage duration of samples from the two groups. Even in regression models adjusting for gender, age and smoking no association of uranium in water and the kidney function parameters was observed. Using uranium in urine in the entire study group as a marker of exposure, however, a tendency of exposure-related increases of {beta}{sub 2}-microglobulin, protein HC and kappa chains were noted. This tendency was enhanced after exclusion of subjects with diabetes mellitus from the analysis

  5. Mineralogical Evidence of Galvanic Corrosion in Domestic, Drinking Water Pipes

    EPA Science Inventory

    Drinking water distribution system (DWDS) piping contains numerous examples of galvanically-coupled metals (e.g., soldered copper pipe joints, copper-lead pipes joined during partial replacements of lead service lines). The possible role of galvanic corrosion in the release of l...

  6. RESEARCH FOR THE TREATMENT OF ORGANICS IN DRINKING WATER

    EPA Science Inventory

    The U.S. Environmental Protection Agency-Drinking Water Research Division uses a three tiered approach to research. The first step is bench-scale, where the chemical behavior of the organic contaminant can be investigated in a closely controlled environment. The next level, pilot...

  7. METHODS FOR THE DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Thirteen analytical methods for the identification and measurement of organic compounds in drinking water are described in detail. ix of the methods are for volatile organic compounds (VOC's) and certain disinfection byproducts and these methods were cited in the Federal Register...

  8. ABSORPTION OF LEAD FROM DRINKING WATER WITH VARYING MINERAL CONTENT

    EPA Science Inventory

    Lead (Pb) (200 ppm) was administered via drinking water to rats for nine weeks. In addition, the rats were grouped so that they received 75, 100, 150 and 250% of the minimum daily requirements (MDR) of calcium (Ca), iron (Fe), and magnesium (Mg) as required for normal growth. The...

  9. Potential Relationships Between Hydraulic Fracturing and Drinking Water Resources

    EPA Science Inventory

    The conferees urge the Agency to carry out a study on the relationship between hydraulic fracturing and drinking water, using a credible approach that relies on the best available science, as well as independent sources of information. The conferees expect the study to be conduct...

  10. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. quations relating disinfectant residual to the disinfectant's reaction rate, the tank volume, and the fill and drain rates are presented. n analytical solution for the...

  11. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    Chlorpyrifos (CP) was used as a model compound to develop experimental methods and prototype modeling tools to forecast the fate of organophosphate (OP) pesticides under drinking water treatment conditions. CP was found to rapidly oxidize to chlorpyrifos oxon (CPO) in the presen...

  12. URBAN DRINKING WATER DISTRIBUTION SYSTEMS: A U.S. PERSPECTIVE

    EPA Science Inventory

    This paper will examine several case studies that illustrate the critical role drinking water treatment and distribution systems play in protecting public health. It will also present a case study that documents the dramatic impact that the regulations promulgated under the Safe...

  13. DBP CONTROL IN DRINKING WATER: COST AND PERFORMANCE

    EPA Science Inventory

    The U.S. Environmental Protection Agency (U.S. EPA) is currently attempting to balance the complex trade-offs in chemical and microbial risks associated with controlling disinfection and disinfection byproducts (D/DBP) in drinking water. In attempting to achieve this balance, the...

  14. MODELING DISINFECTANT RESIDUALS IN DRINKING-WATER STORAGE TANKS

    EPA Science Inventory

    The factors leading to the loss of disinfectant residual in well-mixed drinking-water storage tanks are studied. Equations relating disinfectant residual to the disinfectant's reation rate, the tank volume, and the fill and drain rates are presented. An analytical solution for ...

  15. ORGANOPHOSPHATE PESTICIDE DEGRADATION UNDER DRINKING WATER TREATMENT CONDITIONS

    EPA Science Inventory

    The Food Quality Protection Act (FQPA) of 1996 requires that all tolerances for pesticide chemical residuals in or on food be considered for anticipated exposure. Drinking water is considered a potential pathway for dietary exposure and there is reliable monitoring data for the ...

  16. FETOTOXIC EFFECTS OF NICKEL IN DRINKING WATER IN MICE

    EPA Science Inventory

    Nickel chloride was administered in drinking water to pregnant mice from the 2nd through the 17th day of gestation at nickel doses of 0, 500, or 1000 ppm. Fetal or maternal toxicity was not seen after administration of 500 ppm of nickel. However, the higher dose caused spontaneou...

  17. METHODS FOR REMOVING URANIUM FROM DRINKING WATER (JOURNAL VERSION)

    EPA Science Inventory

    The number of water supplies with high uranium levels and the possibility of a national uranium regulation has stimulated greater interest in uranium removal technology. The paper summarizes recent information on the effectiveness of various methods for uranium removal from drink...

  18. CONTROL OF MICROBES AND DBPS IN DRINKING WATER: AN OVERVIEW

    EPA Science Inventory

    Historically drinking water utilities in the United States (U.S.) have played a major role in protecting public health through the reduction of waterborne disease. These reductions in waterborne disease outbreaks were brought about by the use of sand filtration, disinfection and...

  19. ELEVATED LEVELS OF SODIUM IN COMMUNITY DRINKING WATER

    EPA Science Inventory

    A comparison study of students from towns with differing levels of sodium in drinking water revealed statistically significantly higher blood pressure distributions among the students from the town with high sodium levels. Differences were found in both systolic and diastolic rea...

  20. REAL-TIME REMOTE MONITORING OF DRINKING WATER QUALITY

    EPA Science Inventory

    Over the past eight years, the U.S. Environmental Protection Agency's (EPA) Office of Research and Development (ORD) has funded the testing and evaluation of various online "real-time" technologies for monitoring drinking water quality. The events of 9/11 and subsequent threats t...

  1. Dimethylamine biodegradation by mixed culture enriched from drinking water biofilter.

    PubMed

    Liao, Xiaobin; Chen, Chao; Zhang, Jingxu; Dai, Yu; Zhang, Xiaojian; Xie, Shuguang

    2015-01-01

    Dimethylamine (DMA) is one of the important precursors of drinking water disinfection by-product N-nitrosodimethylamine (NDMA). Reduction of DMA to minimize the formation of carcinogenic NDMA in drinking water is of practical importance. Biodegradation plays a major role in elimination of DMA pollution in the environment, yet information on DMA removal by drinking water biofilter is still lacking. In this study, microcosms with different treatments were constructed to investigate the potential of DMA removal by a mixed culture enriched from a drinking water biofilter and the effects of carbon and nitrogen sources. DMA could be quickly mineralized by the enrichment culture. Amendment of a carbon source, instead of a nitrogen source, had a profound impact on DMA removal. A shift in bacterial community structure was observed with DMA biodegradation, affected by carbon and nitrogen sources. Proteobacteria was the predominant phylum group in DMA-degrading microcosms. Microorganisms from a variety of bacterial genera might be responsible for the rapid DMA mineralization. PMID:25280176

  2. TREATMENT TECHNIQUES FOR CONTROLLING TRIHALOMETHANES IN DRINKING WATER

    EPA Science Inventory

    In this volume, the authors attempt to bring together information developed over the past 6 years, on all aspects of trihalomethanes as they relate to drinking water. Section I summarizes with references to the primary literature the discovery of the trihalomethane problem, healt...

  3. Drinking Water Activities for Students, Teachers, and Parents.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This guide provides teachers with materials, information, and classroom activities to enhance any drinking water curriculum. Students can use the activity sheets to further lessons and stimulate thought. Parents can use the guide to develop science projects that will provoke thought, encourage research, and provide a scientific approach to…

  4. REMOVING ESOTERIC CONTAMINANTS FROM DRINKING WATERS: IMPACTS OF TREATMENT IMPLEMENTATION

    EPA Science Inventory

    At first blush, the production and distribution of drinking water seems to be a very straight forward process. There is a need to remove microbial agents and any anthropogenic or autochthonous contaminants that may be of health concern. Finally, a disinfectant is usually added to...

  5. Environmental health perspectives. Volume 46. Drinking water disinfectants - December 1982

    SciTech Connect

    Lucier, G.W.; Hook, G.E.R.

    1982-01-01

    Among subjects considered are chlorine dioxide, N-chloramines, mutagenic activity by disinfectant reaction products, trihalomethane and behavioral toxicity, and carcinogenic risk estimation. There are 27 papers on these and related topics. The volume stems from a symposium on drinking water disinfectants and disinfectant by-products.

  6. COMPUTER ASSISTED PRELIMINARY DESIGN FOR DRINKING WATER TREATMENT PROCESS SYSTEMS

    EPA Science Inventory

    The purpose of the study was to develop an interactive computer program to aid the design engineer in evaluating the performance and cost for any proposed drinking water treatment system consisting of individual unit processes. The 25 unit process models currently in the program ...

  7. COMPARATIVE RISK DILEMNAS IN DRINKING WATER DISINFECTION [EDITORIAL

    EPA Science Inventory

    Disinfection of drinking water supplies has been one of the most succesful public health interventions of the twentieth century. It has virtually eliminated outbreaks of serious waterborne infectious diseases, such as cholera and typhoid. there are still, however, an average of...

  8. FATE OF PESTICIDES AND TOXIC CHEMICALS DURING DRINKING WATER TREATMENT

    EPA Science Inventory

    Regulations require that all relevant routes of human consumption be considered in risk assessments for anthropogenic chemicals. A large percentage of the U.S. population consumes drinking water (DW) that is treated. Limited studies show that some pesticides and toxics occurrin...

  9. MODELING CHLORINE RESIDUALS IN DRINKING-WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    A mass-transfer-based model is developed for predicting chlorine decay in drinking-water distribution networks. The model considers first-order reactions of chlorine to occur both in the bulk flow and at the pipe wall. The overall rate of the wall reaction is a function of the ...

  10. 9 CFR 3.115 - Food and drinking water requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Food and drinking water requirements. 3.115 Section 3.115 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE ANIMAL WELFARE STANDARDS Specifications for the Humane Handling, Care, Treatment, and Transportation of Marine...

  11. Geospatial examination of lithium in drinking water and suicide mortality

    PubMed Central

    2012-01-01

    Background Lithium as a substance occurring naturally in food and drinking water may exert positive effects on mental health. In therapeutic doses, which are more than 100 times higher than natural daily intakes, lithium has been proven to be a mood-stabilizer and suicide preventive. This study examined whether natural lithium content in drinking water is regionally associated with lower suicide rates. Methods Previous statistical approaches were challenged by global and local spatial regression models taking spatial autocorrelation as well as non-stationarity into account. A Geographically Weighted Regression model was applied with significant independent variables as indicated by a spatial autoregressive model. Results The association between lithium levels in drinking water and suicide mortality can be confirmed by the global spatial regression model. In addition, the local spatial regression model showed that the association was mainly driven by the eastern parts of Austria. Conclusions According to old anecdotic reports the results of this study support the hypothesis of positive effects of natural lithium intake on mental health. Both, the new methodological approach and the results relevant for health may open new avenues in the collaboration between Geographic Information Science, medicine, and even criminology, such as exploring the spatial association between violent or impulsive crime and lithium content in drinking water. PMID:22695110

  12. Arsenic in Drinking Water--The Silent Killer

    ERIC Educational Resources Information Center

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  13. DRINKING WATER DISINFECTION BYPRODUCTS AND DURATION OF GESTATION

    EPA Science Inventory

    Recent studies of drinking water disinfection by-products (DBPs) suggest high exposure decreases risk of preterm birth. We examined this association with total trihalomethane (TTHM) and five haloacetic acids (HAA5) among 2,041 women in a prospective pregnancy study conducted from...

  14. TECHNIQUES FOR ANALYZING COMPLEX MIXTURES OF DRINKING WATER DBPS

    EPA Science Inventory

    Although chlorine has been used to disinfect drinking water for approximately 100 years, there have been concerns raised over its use, due to the formation of potentially hazardous by-products. Trihalomethanes (THMs) were the first disinfection by-products (DBPs) identified and ...

  15. Impact of Plumbing Age on Copper Levels in Drinking Water

    EPA Science Inventory

    Theory and limited practical experiences suggest that higher copper levels in drinking water tap samples are typically associated with newer plumbing systems, and levels decrease with increasing plumbing age. Past researchers have developed a conceptual model to explain the “agin...

  16. ELECTRO-REGENERATED ION-EXCHANGE DEIONIZATION OF DRINKING WATER

    EPA Science Inventory

    This report presents the development of a device for removal of inorganic salts from drinking water to facilitate the subsequent concentration of organic solutes for bioassay. Prior attempts to concentrate the organic solutes by reverse osmosis (RO) resulted in precipitation of t...

  17. RESIDENTIAL EXPOSURE TO DRINKING WATER ARSENIC IN INNER MONGOLIA, CHINA

    EPA Science Inventory

    Residential exposure to drinking water arsenic in Inner Mongolia, China
    Zhixiong Ning1, Richard K. Kwok2, Zhiyi Liu1, Shiying Zhang1, Chenglong Ma1, Danelle T. Lobdell2, Michael Riediker3 and Judy L. Mumford2
    1) Institute of Endemic Disease for Prevention and Treatment in I...

  18. ENUMERATION AND IDENTIFICATION OF HETEROTROPHIC BACTERIA FROM DRINKING WATER

    EPA Science Inventory

    Various spread-plating enumeration media and procedures have been tested to determine the method of choice for the enumeration of the highest numbers of heterotrophic bacteria from chlorinated drinking waters. Dilute media, including a caseinate peptone starch medium, a dilute pe...

  19. Decontamination Methods For Drinking Water Treatment And Distribution Systems

    EPA Science Inventory

    Once contamination has occurred in drinking water systems and the contaminated segment has been isolated from other parts of the system, there will be great urgency to decontaminate the areas as rapidly and cost effectively as possible. This article describes available and deve...

  20. MOLECULAR DIVERSITY OF DRINKING WATER MICROBIAL COMMUNITIES: A PHYLOGENETIC APPROACH

    EPA Science Inventory

    The microbiological quality of drinking water is assessed using culture-based methods that are highly selective and that tend to underestimate the densities and diversity of microbial populations inhabiting distribution systems. In order to better understand the effect of differe...

  1. USING WATERSHED ECOLOGICAL RISK ASSESSMENT FOR PROTECTING DRINKING WATER

    EPA Science Inventory

    The first manuscript describes the application of watershed ERA principles to the development of a strategic watershed management plan for Victoria, British Columbia, Canada, where the primary focus was on the protection of drinking water quality, a concern typically addressed by...

  2. Emerging Contaminants in the Drinking Water Cycle - MCEARD

    EPA Science Inventory

    In the past decade, the scientific community and general public have become increasingly aware of the potential for the presence of unregulated, and generally unmonitored contaminants, found at low concentrations (sub-g/L) in surface, ground and drinking water. The most common...

  3. Metagenomic Analyses of Drinking Water Receiving Different Disinfection Treatments

    EPA Science Inventory

    A metagenome-based approach was utilized for assessing the taxonomic affiliation and function potential of microbial populations in free chlorine (CHL) and monochloramine (CHM) treated drinking water (DW). A total of 1,024, 242 (averaging 544 bp) and 849, 349 (averaging 554 bp) ...

  4. Safe Drinking Water for Alaska: Curriculum for Grades 1-6.

    ERIC Educational Resources Information Center

    South East Regional Resource Center, Juneau, AK.

    Presented is a set of 10 lessons on safe drinking water in Alaska for use by elementary school teachers. The aim is to provide students with an understanding of the sources of the water they drink, how drinking water can be made safe, and the health threat that unsafe water represents. Although this curriculum relates primarily to science, health,…

  5. MEETING THE REQUIREMENTS OF THE U.S. SAFE DRINKING WATER ACT: THE ROLE OF TECHNOLOGY

    EPA Science Inventory

    The passage of the U.S. Safe Drinking Water Act (SDWA) in 1974 has had a major impact on the way water is treated and delivered in the United States. The Act established national drinking water regulations for more than 170,000 public drinking water systems serving over 250 mill...

  6. ACIDIC DEPOSITION AND CISTERN DRINKING WATER SUPPLIES

    EPA Science Inventory

    The Water quality charecteristics, including the trace element Cd, cu, Pb, and Zn, in rainwater cistern supplies representing an area receiving acidic deposition were compared to cistern water chemistry in a control area that does not receive a significant input of acidic deposit...

  7. Nitrate removal from drinking water -- Review

    SciTech Connect

    Kapoor, A.; Viraraghavan, T.

    1997-04-01

    Nitrate concentrations in surface water and especially in ground water have increased in Canada, the US, Europe, and other areas of the world. This trend has raised concern because nitrates cause methemoglobiinemia in infants. Several treatment processes including ion exchange, biological denitrification, chemical denitrification, reverse osmosis, electrodialysis, and catalytic denitrification can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that ion exchange and biological denitrification are more acceptable for nitrate removal than reverse osmosis. Ion exchange is more viable for ground water while biological denitrification is the preferred alternative for surface water. This paper reviews the developments in the field of nitrate removal processes.

  8. Human Health Relevance of Pharmaceutically Active Compounds in Drinking Water.

    PubMed

    Khan, Usman; Nicell, Jim

    2015-05-01

    In Canada, as many as 20 pharmaceutically active compounds (PhACs) have been detected in samples of treated drinking water. The presence of these PhACs in drinking water raises important questions as to the human health risk posed by their potential appearance in drinking water supplies and the extent to which they indicate that other PhACs are present but have not been detected using current analytical methods. Therefore, the goal of the current investigation was to conduct a screening-level assessment of the human health risks posed by the aquatic release of an evaluation set of 335 selected PhACs. Predicted and measured concentrations were used to estimate the exposure of Canadians to each PhAC in the evaluation set. Risk evaluations based on measurements could only be performed for 17 PhACs and, of these, all were found to pose a negligible risk to human health when considered individually. The same approach to risk evaluation, but based on predicted rather than measured environmental concentrations, suggested that 322 PhACs of the evaluation set, when considered individually, are expected to pose a negligible risk to human health due to their potential presence in drinking waters. However, the following 14 PhACs should be prioritized for further study: triiodothyronine, thyroxine, ramipril and its metabolite ramiprilat, candesartan, lisinopril, atorvastatin, lorazepam, fentanyl, atenolol, metformin, enalaprilat, morphine, and irbesartan. Finally, the currently available monitoring data for PhACs in Canadian surface and drinking waters was found to be lacking, irrespective of whether their suitability was assessed based on risk posed, predicted exposure concentrations, or potency. PMID:25739816

  9. Drinking water arsenic in Utah: A cohort mortality study.

    PubMed Central

    Lewis, D R; Southwick, J W; Ouellet-Hellstrom, R; Rench, J; Calderon, R L

    1999-01-01

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected and analyzed under the auspices of the State of Utah Department of Environmental Quality, Division of Drinking Water. Cohort members were assembled using historical documents of the Church of Jesus Christ of Latter-day Saints. Standard mortality ratios (SMRs) were calculated. Using residence history and median drinking water arsenic concentration, a matrix for cumulative arsenic exposure was created. Without regard to specific exposure levels, statistically significant findings include increased mortality from hypertensive heart disease [SMR = 2.20; 95% confidence interval (CI), 1.36-3.36], nephritis and nephrosis (SMR = 1.72; CI, 1.13-2.50), and prostate cancer (SMR = 1.45; CI, 1.07-1. 91) among cohort males. Among cohort females, statistically significant increased mortality was found for hypertensive heart disease (SMR = 1.73; CI, 1.11-2.58) and for the category of all other heart disease, which includes pulmonary heart disease, pericarditis, and other diseases of the pericardium (SMR = 1.43; CI, 1.11-1.80). SMR analysis by low, medium, and high arsenic exposure groups hinted at a dose relationship for prostate cancer. Although the SMRs by exposure category were elevated for hypertensive heart disease for both males and females, the increases were not sequential from low to high groups. Because the relationship between health effects and exposure to drinking water arsenic is not well established in U.S. populations, further evaluation of effects in low-exposure populations is warranted. PMID:10210691

  10. Drinking water arsenic in Utah: A cohort mortality study.

    PubMed

    Lewis, D R; Southwick, J W; Ouellet-Hellstrom, R; Rench, J; Calderon, R L

    1999-05-01

    The association of drinking water arsenic and mortality outcome was investigated in a cohort of residents from Millard County, Utah. Median drinking water arsenic concentrations for selected study towns ranged from 14 to 166 ppb and were from public and private samples collected and analyzed under the auspices of the State of Utah Department of Environmental Quality, Division of Drinking Water. Cohort members were assembled using historical documents of the Church of Jesus Christ of Latter-day Saints. Standard mortality ratios (SMRs) were calculated. Using residence history and median drinking water arsenic concentration, a matrix for cumulative arsenic exposure was created. Without regard to specific exposure levels, statistically significant findings include increased mortality from hypertensive heart disease [SMR = 2.20; 95% confidence interval (CI), 1.36-3.36], nephritis and nephrosis (SMR = 1.72; CI, 1.13-2.50), and prostate cancer (SMR = 1.45; CI, 1.07-1. 91) among cohort males. Among cohort females, statistically significant increased mortality was found for hypertensive heart disease (SMR = 1.73; CI, 1.11-2.58) and for the category of all other heart disease, which includes pulmonary heart disease, pericarditis, and other diseases of the pericardium (SMR = 1.43; CI, 1.11-1.80). SMR analysis by low, medium, and high arsenic exposure groups hinted at a dose relationship for prostate cancer. Although the SMRs by exposure category were elevated for hypertensive heart disease for both males and females, the increases were not sequential from low to high groups. Because the relationship between health effects and exposure to drinking water arsenic is not well established in U.S. populations, further evaluation of effects in low-exposure populations is warranted. PMID:10210691

  11. Chlorine resistance of poliovirus isolants recovered from drinking water.

    PubMed Central

    Shaffer, P T; Metcalf, T G; Sproul, O J

    1980-01-01

    Poliovirus 1 isolants were recovered from finished drinking water produced by a modern, well-operated water treatment plant. These waters contained free chlorine residuals in excess of 1 mg/liter. The chlorine inactivation of purified high-titer preparations of two such isolants was compared with the inactivation behavior of two stock strains of poliovirus 1, LSc and Mahoney. The surviving fraction of virus derived from the two natural isolants was shown to be orders of magnitude greater than that of the standard strains. These results raise the question whether indirect drinking water standards based on free chlorine residuals are adequate public health measures, or whether direct standards based on virus determinations might be necessary. Images PMID:6257162

  12. Purification of drinking water by low cost method in Ethiopia

    NASA Astrophysics Data System (ADS)

    Abatneh, Yasabie; Sahu, Omprakash; Yimer, Seid

    2014-12-01

    Nowadays, water treatment is a big issue in rural areas especially in African country. Due to lack of facilities available in those areas and the treatment are expensive. In this regard's an attempt has been made to find alternative natural way to treat the rural drinking water. The experiment trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were used to treat contaminated water obtained from a number of wells. The results showed that the addition of M. oleifera can considerably improve the quality of drinking water. A 100 % improvement both in turbidity and reduction in Escherichia coli was noted for a number of the samples, together with significant improvements in colour.

  13. [Medical and environmental aspects of the drinking water supply crisis].

    PubMed

    Él'piner, L I

    2013-01-01

    Modern data determining drinking water supply crisis in Russia have been considered. The probability of influence of drinking water quality used by population on current negative demographic indices was shown. The necessity of taking into account interests of public health care in the process of formation of water management decisions was grounded. To achieve this goal the application of medical ecological interdisciplinary approach was proposed Its use is mostly effective in construction of goal-directed medical ecological sections for territorial schemes of the rational use and protection of water resources. Stages of the elaboration of these sections, providing the basing of evaluation and prognostic medical and environmental constructions on similar engineering studies of related disciplinary areas (hydrological, hydrogeological, hydrobiological, hydrochemical, environmental, socio-economic, technical and technological) were determined. PMID:24624819

  14. Arsenic removal from drinking water during coagulation

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.

    1997-08-01

    The efficiency of arsenic removal from source waters and artificial freshwaters during coagulation with ferric chloride and alum was examined in bench-scale studies. Arsenic(V) removal by either ferric chloride or alum was relatively insensitive to variations in source water composition below pH 8. At pH 8 and 9, the efficiency of arsenic(V) removal by ferric chloride was decreased in the presence of natural organic matter. The pH range for arsenic(V) removal with alum was more restricted than with ferric chloride. For source waters spiked with 20 {micro}g/L arsenic(V), final dissolved arsenic(V) concentrations in the product water of less than 2 {micro}g/L were achieved with both coagulants at neutral pH. Removal of arsenic(III) from source waters by ferric chloride was both less efficient and more strongly influenced by source water composition than removal of arsenic(V). The presence of sulfate (at pH 4 and 5) and natural organic matter (at pH 4 through 9) adversely affected the efficiency of arsenic(III) removal by ferric chloride. Arsenic(III) could not be removed from source waters by coagulation with alum.

  15. Pesticides in Drinking Water – The Brazilian Monitoring Program

    PubMed Central

    Barbosa, Auria M. C.; Solano, Marize de L. M.; Umbuzeiro, Gisela de A.

    2015-01-01

    Brazil is the world largest pesticide consumer; therefore, it is important to monitor the levels of these chemicals in the water used by population. The Ministry of Health coordinates the National Drinking Water Quality Surveillance Program (Vigiagua) with the objective to monitor water quality. Water quality data are introduced in the program by state and municipal health secretariats using a database called Sisagua (Information System of Water Quality Monitoring). Brazilian drinking water norm (Ordinance 2914/2011 from Ministry of Health) includes 27 pesticide active ingredients that need to be monitored every 6 months. This number represents <10% of current active ingredients approved for use in the country. In this work, we analyzed data compiled in Sisagua database in a qualitative and quantitative way. From 2007 to 2010, approximately 169,000 pesticide analytical results were prepared and evaluated, although approximately 980,000 would be expected if all municipalities registered their analyses. This shows that only 9–17% of municipalities registered their data in Sisagua. In this dataset, we observed non-compliance with the minimum sampling number required by the norm, lack of information about detection and quantification limits, insufficient standardization in expression of results, and several inconsistencies, leading to low credibility of pesticide data provided by the system. Therefore, it is not possible to evaluate exposure of total Brazilian population to pesticides via drinking water using the current national database system Sisagua. Lessons learned from this study could provide insights into the monitoring and reporting of pesticide residues in drinking water worldwide. PMID:26581345

  16. Pentachlorophenol Contamination of Private Drinking Water From Treated Utility Poles

    PubMed Central

    Cragin, Lori; Center, Gail; Giguere, Cary; Comstock, Jeff; Boccuzzo, Linda; Sumner, Austin

    2013-01-01

    In 2009, after resident calls regarding an odor, the Vermont Department of Health and state partners responded to 2 scenarios of private drinking water contamination from utility poles treated with pentachlorophenol (PCP), an organochlorine wood preservative used in the United States. Public health professionals should consider PCP contamination of private water if they receive calls about a chemical or gasoline-like odor with concurrent history of nearby utility pole replacement. PMID:23237185

  17. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    EPA Science Inventory

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  18. IDENTIFICATION OF DRINKING WATER DISINFECTION BY-PRODUCTS FROM OZONE, CHLORINE DIOXIDE, CHLORAMINE, AND CHLORINE

    EPA Science Inventory

    Many drinking water treatment plants are currently using alternative disinfectants to treat drinking water, with ozone, chlorine dioxide, and chloramine being the most popular. However, compared to chlorine, which has been much more widely studied, there is little information abo...

  19. COMMUNITY HEALTH ASSOCIATED WITH ARSENIC IN DRINKING WATER IN MILLARD COUNTY, UTAH

    EPA Science Inventory

    This study evaluates the health effects of arsenic in drinking water at levels approximately four times the maximum allowed by the National Interim Primary Drinking Water Regulations. Physical examinations of 250 people included evaluating dermatological and neurological health, ...

  20. Nitrogen from Fertilizers Poses Long-Term Threat to Drinking Water

    MedlinePlus

    ... From Fertilizers Poses Long-Term Threat to Drinking Water: Study Signs of contamination detected 8 inches underground ... contaminating rivers and lakes and getting into drinking water wells for more than 80 years, the researchers ...

  1. Roadmap for Interdisciplinary Research on Drinking Water Disinfection By-Products

    EPA Science Inventory

    Slide presentation on interdisciplinary research on drinking water disinfection by-products which summarized important issues with drinking water disinfection by-products and focused on emerging, unregulated DBPs.

  2. A Visual Insight into the Degradation of Metals Used in Drinking Water Distribution Systems Using AFM

    EPA Science Inventory

    Evaluating the fundamental corrosion and passivation of metallic copper used in drinking water distribution materials is important in understanding the overall mechanism of the corrosion process. Copper pipes are widely used for drinking water distribution systems and although it...

  3. Maternal drinking water arsenic exposure and perinatal outcomes in Inner Mongolia, China, Journal

    EPA Science Inventory

    BACKGROUND: Bayingnormen is a region located in western Inner Mongolia China with a population that is exposed to a wide range of drinking water Arsenic concentrations. This study evaluated the relationship between maternal drinking water arsenic exposure and perinatal endpoints ...

  4. GEOCHEMISTRY OF SULFUR IN IRON CORROSION SCALES FOUND IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Iron-sulfur geochemistry is important in many natural and engineered environments, including drinking water systems. In the anaerobic environment beneath scales of corroding iron drinking water distribution system pipes, sulfate reducing bacteria (SRB) produce sulfide from natu...

  5. Treatment Technology to Meet the Interim Primary Drinking Water Regulations for Inorganics: Part 3.

    ERIC Educational Resources Information Center

    Sorg, Thomas J.; And Others

    1978-01-01

    This article is the third in a series summarizing existing treatment technology to meet the inorganic National Interim Primary Drinking Water Regulations. This report deals specifically with treatment methods for removing cadmium, lead, and silver from drinking water. (CS)

  6. PREVENTING HALOFORM FORMATION IN DRINKING WATER

    EPA Science Inventory

    The Huron, South Dakota, water distribution system was monitored for trihalomethanes at several locations. Deposits from within the distribution system were evaluated as potential precursor material and were found to be precursors for the haloform reaction. Field tests designed t...

  7. Drinking Water Contaminants -- Standards and Regulations

    MedlinePlus

    ... menu Learn the Issues Air Chemicals and Toxics Climate Change Emergencies Greener Living Health and Safety Land and Cleanup Pesticides Waste Water Science & Technology Air Climate Change Ecosystems Health Land, Waste and Cleanup Pesticides Substances ...

  8. VIRUS REMOVAL DURING CONVENTIONAL DRINKING WATER TREATMENT

    EPA Science Inventory

    The reduction of enteroviruses and rotaviruses was studied at a full scale 205 mgd water treatment plant involving chemical clarification, sand filtration and chlorination. Reduction of enteroviruses and rotaviruses averaged 81% and 93%, respectively, for the complete treatment p...

  9. DRINKING WATER CRITERIA DOCUMENT FOR PSEUDOMONAS

    EPA Science Inventory

    This document presents the occurrence, health effects and effects of water treatment on the bacterium. The document was developed in support of the unregulated contaminants and the Total Coliform Rule.

  10. ALTERNATIVE DISINFECTION FOR DRINKING WATER TREATMENT

    EPA Science Inventory

    During a one-yr study at Jefferson Parish, La., the chemical, microbiological, and mutagenic effects os using the major drinkgin water disinfectants (chlorine, chlorine dioxide, chloramine, ozone) were evaluated. Tests were performed on samples collected from various treatment s...

  11. THE REMOVAL OF GLYPHOSATE FROM DRINKING WATER

    EPA Science Inventory

    The effectiveness of granulated activated carbon (GAC), packed activated carbon (PAC), conventional treatment, membranes, and oxidation for removing glyphosate from natural waters is evaluated. Results indicate that GAC and PAC are not effective in removing glyphosate, while oxid...

  12. DRINKING WATER AND CANCER INCIDENCE IN IOWA. 1. TRENDS AND INCIDENCE BY SOURCE OF DRINKING WATER AND SIZE OF MUNICIPALITY

    EPA Science Inventory

    The available data resources in the State of Iowa were used to investigate the relationships of drinking water contaminants and cancer incidence rates for communities. Age-adjusted, sex-specific cancer incidence rates for the years 1969-1978 were determined for municipalities hav...

  13. PHYSICAL REMOVAL OF MICROBIAL CONTAMINANTS IN DRINKING WATER – WATTS PREMIER INC. WP-4V DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Watts Premier WP-4V four-stage POU RO system was tested for removal of bacteria and viruses at NSF’s Drinking Water Treatment Systems Laboratory. Five systems were challenged with the bacteriophage viruses fr and MS2, and the bacteria Brevundimonas diminutaEM. The ...

  14. ETV REPORT: REMOVAL OF CHEMICAL CONTAMINANTS IN DRINKING WATER – WATTS PREMIER INC. WP-4V DRINKING WATER TREATMENT SYSTEM

    EPA Science Inventory

    The Watts Premier WP-4V POU drinking water treatment system was tested for removal of aldicarb, benzene, cadmium, carbofuran, cesium, chloroform, dichlorvos, dicrotophos, fenamiphos, mercury, mevinphos, oxamyl, strontium, and strychnine. The WP-4V employs a reverse osmosis (RO) m...

  15. Evaluation of semidecentralized emergency drinking water treatment.

    PubMed

    Eloidin, Océane; Dorea, Caetano C

    2015-01-01

    This study evaluates the potential for a novel semidecentralized approach that uses coagulant disinfectant products (CDPs) for humanitarian water treatment, by testing two commercially available products (CDP-W and CDP-T). Their performances were evaluated against the relevant water quality treatment objectives (The Sphere Project) under laboratory conditions, using a standardized testing protocol with both synthetic and natural surface test waters. Tests indicated a satisfactory performance by one of the products (CDP-W) with respect to humanitarian water quality objectives, (i.e., free chlorine residual, pH, and turbidity) that was dependent on initial water quality characteristics. Adequate bacterial inactivation (final thermotolerant coliform concentration of < 1 cfu/100 mL) was always attained and log reductions of up to 5 were achieved. The other product (CDP-T) did not exhibit any measurable coagulation and disinfection properties, indicating the variability of product quality and the need to conduct evaluations such as the ones presented in this study. Such results are of relevance to relief agencies delivering water supply interventions. PMID:26121019

  16. Impact of Environmental Factors on Legionella Populations in Drinking Water

    PubMed Central

    Schwake, David Otto; Alum, Absar; Abbaszadegan, Morteza

    2015-01-01

    To examine the impact of environmental factors on Legionella in drinking water distribution systems, the growth and survival of Legionella under various conditions was studied. When incubated in tap water at 4 °C, 25 °C, and 32 °C, L. pneumophila survival trends varied amongst the temperatures, with the stable populations maintained for months at 25 °C and 32 °C demonstrating that survival is possible at these temperatures for extended periods in oligotrophic conditions. After inoculating coupons of PVC, copper, brass, and cast iron, L. pneumophila colonized biofilms formed on each within days to a similar extent, with the exception of cast iron, which contained 1-log less Legionella after 90 days. L. pneumophila spiked in a model drinking water distribution system colonized the system within days. Chlorination of the system had a greater effect on biofilm-associated Legionella concentrations, with populations returning to pre-chlorination levels within six weeks. Biofilms sampled from drinking water meters collected from two areas within central Arizona were analyzed via PCR for the presence of Legionella. Occurrence in only one area indicates that environmental differences in water distribution systems may have an impact on the survival of Legionella. These results document the impact of different environmental conditions on the survival of Legionella in water. PMID:25996405

  17. Differences in dissolved organic matter between reclaimed water source and drinking water source.

    PubMed

    Hu, Hong-Ying; Du, Ye; Wu, Qian-Yuan; Zhao, Xin; Tang, Xin; Chen, Zhuo

    2016-05-01

    Dissolved organic matter (DOM) significantly affects the quality of reclaimed water and drinking water. Reclaimed water potable reuse is an effective way to augment drinking water source and de facto reuse exists worldwide. Hence, when reclaimed water source (namely secondary effluent) is blended with drinking water source, understanding the difference in DOM between drinking water source (dDOM) and reclaimed water source (rDOM) is essential. In this study, composition, transformation, and potential risk of dDOM from drinking water source and rDOM from secondary effluent were compared. Generally, the DOC concentration of rDOM and dissolved organic nitrogen (DON) content in reclaimed water source were higher but rDOM exhibited a lower aromaticity. Besides, rDOM comprises a higher proportion of hydrophilic fractions and more low-molecular weight compounds, which are difficult to be removed during coagulation. Although dDOM exhibited higher specific disinfection byproducts formation potential (SDBPFP), rDOM formed more total disinfection byproducts (DBPs) during chlorination including halomethanes (THMs) and haloacetic acids (HAAs) due to high DOC concentration. Likewise, in consideration of DOC basis, rDOM contained more absolute assimilable organic carbon (AOC) despite showing a lower specific AOC (normalized AOC per unit of DOC). Besides, rDOM exhibited higher biotoxicity including genotoxicity and endocrine disruption. Therefore, rDOM presents a greater potential risk than dDOM does. Reclaimed water source needs to be treated carefully when it is blended with drinking water source. PMID:26874770

  18. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems

    PubMed Central

    Husband, S.; Loza, V.; Boxall, J.

    2016-01-01

    ABSTRACT The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. IMPORTANCE This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. PMID:27208119

  19. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water.

    PubMed

    Falkinham, Joseph O; Pruden, Amy; Edwards, Marc

    2015-01-01

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. PMID:26066311

  20. Detection of Salmonella bacterium in drinking water using microring resonator.

    PubMed

    Bahadoran, Mahdi; Noorden, Ahmad Fakhrurrazi Ahmad; Mohajer, Faeze Sadat; Abd Mubin, Mohamad Helmi; Chaudhary, Kashif; Jalil, Muhammad Arif; Ali, Jalil; Yupapin, Preecha

    2016-01-01

    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU. PMID:25133457

  1. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water

    PubMed Central

    Falkinham, Joseph O.; Pruden, Amy; Edwards, Marc

    2015-01-01

    Opportunistic premise plumbing pathogens are responsible for a significant number of infections whose origin has been traced to drinking water. These opportunistic pathogens represent an emerging water borne disease problem with a major economic cost of at least $1 billion annually. The common features of this group of waterborne pathogens include: disinfectant-resistance, pipe surface adherence and biofilm formation, growth in amoebae, growth on low organic concentrations, and growth at low oxygen levels. Their emergence is due to the fact that conditions resulting from drinking water treatment select for them. As such, there is a need for novel approaches to reduce exposure to these pathogens. In addition to much-needed research, controls to reduce numbers and human exposure can be instituted independently by utilities and homeowners and hospital- and building-operators. PMID:26066311

  2. ANALYZING DRINKING WATER FOR DISINFECTION BYPRODUCTS

    EPA Science Inventory

    In the mid 19th Century, Chinese workers on the North American transcontinental railroad suffered less illness than other groups. While generally mysterious at the time, today the reason is obvious. The Chinese preference for tea required heating the water, thus killing many path...

  3. Ultraviolet (UV) Disinfection for Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  4. DRINKING WATER INFRASTRUCTURE NEEDS SURVEY (1999)

    EPA Science Inventory

    Resource Purpose:EPA is conducting the 1999 Needs Survey to meet requirements of the SDWA. Section 1452(h) of the SDWA requires EPA to conduct an assessment every 4 years of capital investments that are needed by public water systems (PWSs). In addition, SDWS sec 1452(i)...

  5. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  6. Bacteria associated with granular activated carbon particles in drinking water.

    PubMed Central

    Camper, A K; LeChevallier, M W; Broadaway, S C; McFeters, G A

    1986-01-01

    A sampling protocol was developed to examine particles released from granular activated carbon filter beds. A gauze filter/Swinnex procedure was used to collect carbon fines from 201 granular activated carbon-treated drinking water samples over 12 months. Application of a homogenization procedure (developed previously) indicated that 41.4% of the water samples had heterotrophic plate count bacteria attached to carbon particles. With the enumeration procedures described, heterotrophic plate count bacteria were recovered at an average rate of 8.6 times higher than by conventional analyses. Over 17% of the samples contained carbon particles colonized with coliform bacteria as enumerated with modified most-probable-number and membrane filter techniques. In some instances coliform recoveries were 122 to 1,194 times higher than by standard procedures. Nearly 28% of the coliforms attached to these particles in drinking water exhibited the fecal biotype. Scanning electron micrographs of carbon fines from treated drinking water showed microcolonies of bacteria on particle surfaces. These data indicate that bacteria attached to carbon fines may be an important mechanism by which microorganisms penetrate treatment barriers and enter potable water supplies. PMID:3767356

  7. Effects of saline drinking water on early gosling development

    USGS Publications Warehouse

    Stolley, D.S.; Bissonette, J.A.; Kadlec, J.A.; Coster, D.

    1999-01-01

    Relatively high levels of saline drinking water may adversely affect the growth, development, and survival of young waterfowl. Saline drinking water was suspect in the low survival rate of Canada goose (Branta canadensis) goslings at Fish Springs National Wildlife Refuge (FSNWR) in western Utah. Hence, we investigated the effects of saline drinking water on the survival and growth of captive, wild-strain goslings from day 1-28 following hatch. We compared survival and growth (as measured by body mass, wing length, and culmen length) between a control group on tap water with a mean specific conductivity of 650 ??S/cm, and 2 saline water treatments: (1) intermediate level (12,000 ??S/cm), and (2) high level (18,000 ??S/cm). Gosling mortality occurred only in the 18,000 ??S/cm treatment group (33%; n = 9). Slopes of regressions of mean body mass, wing length, and culmen length on age were different from each other (P < 0.05), except for culmen length for the intermediate and high treatment levels. We predict that free-ranging wild goslings will experience mortality at even lower salinity levels than captive goslings because of the combined effects of depressed growth and environmental stresses, including hot desert temperatures and variable food quality over summer.

  8. Enhanced drinking water supply through harvested rainwater treatment

    NASA Astrophysics Data System (ADS)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  9. 77 FR 40382 - Notice of Lodging of Consent Decree Under the Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... of Lodging of Consent Decree Under the Safe Drinking Water Act Notice is hereby given that on June 29... the Safe Drinking Water Act (``SDWA''), 42 U.S.C. 300f through 300j-26, including violations of the National Primary Drinking Water Regulations (``NPDWRs''), at Lincoln Road RV Park, Inc.'s...

  10. 78 FR 65981 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). The meeting is scheduled for December 11 and 12, 2013. This meeting of...

  11. 78 FR 68838 - National Drinking Water Advisory Council; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... AGENCY National Drinking Water Advisory Council; Request for Nominations AGENCY: Environmental Protection... candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA) to provide...

  12. 77 FR 64113 - National Drinking Water Advisory Council: Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... AGENCY National Drinking Water Advisory Council: Request for Nominations AGENCY: Environmental Protection... candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA) to provide...

  13. 75 FR 54872 - Drinking Water Strategy Contaminants as Group(s)-Notice of Public Stakeholder Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... (202) 564-0293 or bauman.shari@epa.gov . For more information about the Drinking Water Strategy, visit... AGENCY Drinking Water Strategy Contaminants as Group(s)--Notice of Public Stakeholder Meeting AGENCY... Agency (EPA) Administrator Lisa P. Jackson announced the Drinking Water Strategy, a new vision to...

  14. 78 FR 48158 - Meeting of the National Drinking Water Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-07

    ... AGENCY Meeting of the National Drinking Water Advisory Council AGENCY: Environmental Protection Agency... announcing a meeting of the National Drinking Water Advisory Council (Council), established under the Safe Drinking Water Act (SDWA). This meeting is scheduled for October 9 and 10, 2013, in Arlington, VA....

  15. 76 FR 61355 - National Drinking Water Advisory Council; Request for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... AGENCY National Drinking Water Advisory Council; Request for Nominations AGENCY: Environmental Protection... of qualified candidates to be considered for a three-year appointment to the National Drinking Water Advisory Council (Council). The 15 member Council was established by the Safe Drinking Water Act (SDWA)...

  16. Lead in Drinking Water in Schools and Non-Residential Buildings.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This manual demonstrates how drinking water in schools and non-residential buildings can be tested for lead and how contamination problems can be corrected when found. The manual also provides background information concerning the sources and health effects of lead, how lead gets into drinking water, how lead in drinking water is regulated, and…

  17. 77 FR 67361 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... impacts of hydraulic fracturing on drinking water resources. DATES: EPA will accept data and literature in... scientific research to examine the relationship between hydraulic fracturing and drinking water...

  18. 78 FR 25267 - Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water Resources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-30

    ... AGENCY Request for Information To Inform Hydraulic Fracturing Research Related to Drinking Water... research on the potential impacts of hydraulic fracturing on drinking water resources from April 30, 2013... research to examine the relationship between hydraulic fracturing and drinking water resources. The...

  19. Federal regulation of lead in drinking water

    SciTech Connect

    Reiss, K.M.

    1991-12-31

    The decline of the Roman Empire has been attributed, in part, to lead poisoning. Scholars have reported that Roman food, water and wine all contained excessive amounts of lead. Although Americans ingest considerably less lead than did the ancient Romans, lead poisoning still poses a significant public health threat in this country, particularly to children. The Federal Centers for Disease Control (CDC) recently reported that more than four million children suffer from lead poisoning. The director of the CDC has stated that {open_quotes}lead poisoning is the No. 1 environmental problem facing America`s children.{close_quotes} In addition to threatening children, lead poisoning presents health dangers to adults and, ironically, to federal government officials themselves. For example, at the Environmental Protection Agency (EPA) headquarters, water samples at nineteen sources were found to contain excessive amounts of lead. Additionally, a survey of twelve Capitol Hill buildings found that twenty-one percent of the water sources tested contained excessive lead levels.

  20. Residential exposure to drinking water arsenic in Inner Mongolia, China

    SciTech Connect

    Ning Zhixiong; Lobdell, Danelle T.; Kwok, Richard K. Liu Zhiyi; Zhang Shiying; Ma Chenglong; Riediker, Michael; Mumford, Judy L.

    2007-08-01

    In the Ba Men region of Inner Mongolia, China, a high prevalence of chronic arsenism has been reported in earlier studies. A survey of the arsenic contamination among wells from groundwater was conducted to better understand the occurrence of arsenic (As) in drinking water. A total of 14,866 wells (30% of all wells in the region) were analyzed for their arsenic-content. Methods used to detect arsenic were Spectrophotometric methods with DCC-Ag (detection limit, 0.5 {mu}g of As/L); Spot method (detection limit, 10 {mu}g of As/L); and air assisted Colorimetry method (detection limit, 20 {mu}g of As/L). Arsenic-concentrations ranged from below limit of detection to 1200 {mu}g of As/L. Elevated concentrations were related to well depth (10 to 29 m), the date the well was built (peaks from 1980-1990), and geographic location (near mountain range). Over 25,900 individuals utilized wells with drinking water arsenic concentrations above 20 {mu}g of As/L (14,500 above 50 {mu}g of As/L-the current China national standard in drinking water and 2198 above 300 {mu}g of As/L). The presented database of arsenic in wells of the Ba Men region provides a useful tool for planning future water explorations when combined with geological information as well as support for designing upcoming epidemiological studies on the effects of arsenic in drinking water for this region.

  1. Health significance and occurrence of injured bacteria in drinking water

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; LeChevallier, M. W.; Singh, A.; Kippin, J. S.

    1986-01-01

    Enteropathogenic and indicator bacteria become injured in drinking water with exposure to sublethal levels of various biological, chemical and physical factors. One manifestation of this injury is the inability to grow and form colonies on selective media containing surfactants. The resulting underestimation of indicator bacteria can lead to a false estimation of water potability. m-T7 medium was developed specifically for the recovery of injured coliforms (both "total" and fecal) in drinking water. The m-T7 method was used to survey operating drinking water treatment and distribution systems for the presence of injured coliforms that were undetected with currently used media. The mean recovery with m-Endo LES medium was less than 1/100 ml while it ranged between 6 and 68/100ml with m-T7 agar. The majority of samples giving positive results with m-T7 medium yielded no detectable coliforms with m-Endo LES agar. Over 95% of the coliform bacteria in these samples were injured. Laboratory experiments were also done to ascribe the virulence of injured waterborne pathogens. Enteropathogens including Salmonella typhimurium, Yersinia enterocolitica and Shigella spp. required up to 20 times the chlorine levels to produce the same injury in enterotoxigenic Escherichia coli (ETEC) and nonpathogenic coliforms. Similar results were seen with Y. enterocolitica exposed to copper. The recovery of ETEC was followed by delayed enterotoxin production, both in vitro and in the gut of experimental animals. This indicates that injured waterborne enteropathogenic bacteria can be virulent.

  2. Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran

    PubMed Central

    2013-01-01

    Distribution and seasonal variation of sixteen priority polycyclic aromatic hydrocarbons (PAHs) were investigated in the drinking water of Tehran, the capital of Iran. Detected single and total PAHs concentrations were in the range of 2.01-38.96 and 32.45-733.10 ng/L, respectively, which were quite high compared to the values recorded in other areas of the world. The average occurrence of PAHs with high molecular weights was 79.55%; for example, chrysene occurred in 60.6% of the samples, with a maximum concentration of 438.96 ng/L. In addition, mean carcinogen to non-carcinogen PAHs ratio was 63.84. Although the concentration of benzo[a]pyrene, as an indicator of water pollution to PAHs, was lower than the guideline value proposed by World Health Organization (WHO) as well as that of Iranian National Drinking Water Standards for all of the samples, the obtained results indicated that carcinogen PAHs present in the drinking water of Tehran can cause threats to human health. PMID:24499505

  3. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water. PMID:27483985

  4. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    NASA Astrophysics Data System (ADS)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  5. Mean Residence Time and Emergency Drinking Water Supply.

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  6. Childhood lead poisoning; Case study traces source to drinking water

    SciTech Connect

    Cosgrove, E.; Brown, M.J.; Madigan, P.; McNulty, P.; Okonski, L.; Schmidt, J.

    1989-07-01

    Lead poisoning as a result of drinking water carried through lead service lines has been well-documented in the literature. A case of childhood lead poisoning is presented in which the only identified source of lead was lead solder from newly installed water pipes. Partly as a result of this case, the Massachusetts Bourd of Plumbers and Gas Fitters banned the use of 50/50 lead-tin solder or potable water lines. It is anticipated that this ban will increase the cost of new housing by only $16 per unit but will significantly reduce one environmental source of lead.

  7. Detection of microsporidia in drinking water, wastewater and recreational rivers.

    PubMed

    Izquierdo, Fernando; Castro Hermida, José Antonio; Fenoy, Soledad; Mezo, Mercedes; González-Warleta, Marta; del Aguila, Carmen

    2011-10-15

    Diarrhea is the main health problem caused by human-related microsporidia, and waterborne transmission is one of the main risk factors for intestinal diseases. Recent studies suggest the involvement of water in the epidemiology of human microsporidiosis. However, studies related to the presence of microsporidia in different types of waters from countries where human microsporidiosis has been described are still scarce. Thirty-eight water samples from 8 drinking water treatment plants (DWTPs), 8 wastewater treatment plants (WWTPs) and 6 recreational river areas (RRAs) from Galicia (NW Spain) have been analyzed. One hundred liters of water from DWTPs and 50 L of water from WWTPs and RRAs were filtered to recover parasites, using the IDEXX Filta-Max® system. Microsporidian spores were identified by Weber's stain and positive samples were analyzed by PCR, using specific primers for Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon cuniculi, and Encephalitozoon hellem. Microsporidia spores were identified by staining protocols in eight samples (21.0%): 2 from DWTPs, 5 from WWTPs, and 1 from an RRA. In the RRA sample, the microsporidia were identified as E. intestinalis. To the best of our knowledge, this is the first report of human-pathogenic microsporidia in water samples from DWTPs, WWTPs and RRAs in Spain. These observations add further evidence to support that new and appropriate control and regulations for drinking, wastewater, and recreational waters should be established to avoid health risks from this pathogen. PMID:21774958

  8. Tracking persistent pharmaceutical residues from municipal sewage to drinking water

    NASA Astrophysics Data System (ADS)

    Heberer, Thomas

    2002-09-01

    In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.

  9. Effect of home-used water purifier on fluoride concentration of drinking water in southern Iran

    PubMed Central

    Jaafari-Ashkavandi, Zohreh; Kheirmand, Mehdi

    2013-01-01

    Background: Fluoride in drinking water plays a key role in dental health. Due to the increasing use of water-purifier, the effect of these devices on fluoride concentration of drinking water was evaluated. Materials and Methods: Drinking water samples were collected before and after passing through a home water-purifier, from four different water sources. The fluoride, calcium and magnesium concentration of the samples were measured using the quantitative spectrophotometery technique. Data were analyzed by the Wilcoxon test. P value < 0.1 was considered as significant. Results: The result showed that the concentration of fluoride was 0.05-0.61 ppm before purification and was removed completely afterward. Furthermore, other ions reduced significantly after treatment by the water purifier. Conclusion: This study revealed that this device decreases the fluoride content of water, an issue which should be considered in low and high-fluoridated water sources. PMID:24130584

  10. Infiltration of pesticides in surface water into nearby drinking water supply wells

    NASA Astrophysics Data System (ADS)

    Malaguerra, F.; Albrechtsen, H.; Binning, P. J.

    2010-12-01

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using data of a tracer experiment in a riparian zone. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and persistent, glyphosate (Roundup), a new biodegradable and strongly sorbed pesticide, and its degradation product AMPA. Global sensitivity analysis using the method of Morris was employed to identify the dominant model parameters. Results showed that the presence of an aquitard and its characteristics (degree of fracturing and thickness), pollutant properties and well depth are the crucial factors affecting the risk of drinking water well contamination from surface water. Global sensitivity analysis results were compared with rank correlation statistics between pesticide concentrations and geological parameters derived from a comprehensive database of Danish drinking water wells. Aquitard thickness and well depth are the most critical parameters in both the model and observed data.

  11. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  12. Function of Serum Complement in Drinking Water Arsenic Toxicity

    PubMed Central

    Islam, Laila N.; Zahid, M. Shamim Hasan; Nabi, A. H. M. Nurun; Hossain, Mahmud

    2012-01-01

    Serum complement function was evaluated in 125 affected subjects suffering from drinking water arsenic toxicity. Their mean duration of exposure was 7.4 ± 5.3 yrs, and the levels of arsenic in drinking water and urine samples were 216 ± 211 and 223 ± 302 μg/L, respectively. The mean bactericidal activity of complement from the arsenic patients was 92% and that in the unexposed controls was 99% (P < 0.01), but heat-inactivated serum showed slightly elevated activity than in controls. In patients, the mean complement C3 was 1.56 g/L, and C4 was 0.29 g/L compared to 1.68 g/L and 0.25 g/L, respectively, in the controls. The mean IgG in the arsenic patients was 24.3 g/L that was highly significantly elevated (P < 0.001). Arsenic patients showed a significant direct correlation between C3 and bactericidal activity (P = 0.014). Elevated levels of C4 indicated underutilization and possibly impaired activity of the classical complement pathway. We conclude reduced function of serum complement in drinking water arsenic toxicity. PMID:22545044

  13. Drinking water contaminants and adverse pregnancy outcomes: a review.

    PubMed Central

    Bove, Frank; Shim, Youn; Zeitz, Perri

    2002-01-01

    Concern for exposures to drinking water contaminants and their effects on adverse birth outcomes has prompted several studies evaluating chlorination disinfection by-products and chlorinated solvents. Some of these contaminants are found to be teratogenic in animal studies. This review evaluates 14 studies on chlorination disinfection by-products such as trihalomethanes (THMs) and five studies on chlorinated solvents such as trichloroethylene (TCE). The adverse birth outcomes discussed in this review include small for gestational age (SGA), low birth weight, preterm birth, birth defects, spontaneous abortions, and fetal deaths. Because of heterogeneities across the studies in the characterization of birth outcomes, the assessment and categorization of exposures, and the levels and mixtures of contaminants, a qualitative review was conducted. Generally, the chief bias in these studies was exposure misclassification that most likely underestimated the risk, as well as distorted exposure-response relationships. The general lack of confounding bias by risk factors resulted from these factors not being associated with drinking water exposures. The studies of THMs and adverse birth outcomes provide moderate evidence for associations with SGA, neural tube defects (NTDs), and spontaneous abortions. Because fewer studies have been conducted for the chlorinated solvents than for THMs, the evidence for associations is less clear. Nevertheless, the findings of excess NTDs, oral clefts, cardiac defects, and choanal atresia in studies that evaluated TCE-contaminated drinking water deserve follow-up. PMID:11834464

  14. Arsenic in drinking water and lung cancer: A systematic review

    SciTech Connect

    Celik, Ismail; Gallicchio, Lisa; Boyd, Kristina; Lam, Tram K.; Matanoski, Genevieve; Tao Xuguang; Shiels, Meredith; Hammond, Edward; Chen Liwei; Robinson, Karen A.; Caulfield, Laura E.; Herman, James G.; Guallar, Eliseo; Alberg, Anthony J.

    2008-09-15

    Exposure to inorganic arsenic via drinking water is a growing public health concern. We conducted a systematic review of the literature examining the association between arsenic in drinking water and the risk of lung cancer in humans. Towards this aim, we searched electronic databases for articles published through April 2006. Nine ecological studies, two case-control studies, and six cohort studies were identified. The majority of the studies were conducted in areas of high arsenic exposure (100 {mu}g/L) such as southwestern Taiwan, the Niigata Prefecture, Japan, and Northern Chile. Most of the studies reported markedly higher risks of lung cancer mortality or incidence in high arsenic areas compared to the general population or a low arsenic exposed reference group. The quality assessment showed that, among the studies identified, only four assessed arsenic exposure at the individual level. Further, only one of the ecological studies presented results adjusted for potential confounders other than age; of the cohort and case-control studies, only one-half adjusted for cigarette smoking status in the analysis. Despite these methodologic limitations, the consistent observation of strong, statistically significant associations from different study designs carried out in different regions provide support for a causal association between ingesting drinking water with high concentrations of arsenic and lung cancer. The lung cancer risk at lower exposure concentrations remains uncertain.

  15. Determinants of drinking arsenic-contaminated tubewell water in Bangladesh.

    PubMed

    Khan, M M H; Aklimunnessa, Khandoker; Kabir, M; Mori, Mitsuru

    2007-09-01

    Bangladesh has already experienced the biggest catastrophe in the world due to arsenic contamination of drinking water. This study investigates the association of drinking arsenic-contaminated water (DACW) with both personal and household characteristics of 9116 household respondents using the household data of the Bangladesh Demographic and Health Survey (BDHS) 2004. Here DACW means that arsenic level in the drinking water is greater than the permissible limit (50 microg/l) of Bangladesh. The overall rate of DACW was 7.9%. It was found to be significantly associated with education, currently working, and division of Bangladesh, either by cross tabulation or multivariate logistic regression analyses or both. Similarly, household characteristics -- namely television, bicycle, materials of the wall and floor, total family members, number of sleeping rooms, and availability of foods -- were significantly associated in bivariate analyses. Many household characteristics -- namely electricity, television, wall and floor materials, and number of sleeping rooms -- revealed significant association in the logistic regression analysis when adjusted for age, education and division. This study indicates that respondents from Chittagong division and lower socio-economic groups (indicated by household characteristics) are at significantly higher risk of DACW. These findings should be taken into account during the planning of future intervention activities in Bangladesh. PMID:17584808

  16. Politics and Public Health: The Flint Drinking Water Crisis.

    PubMed

    Gostin, Lawrence O

    2016-07-01

    The Flint, Michigan, lead drinking water crisis is perhaps the most vivid current illustration of health inequalities in the United States. Since 2014, Flint citizens-among the poorest in America, mostly African American-had complained that their tap water was foul and discolored. But city, state, and federal officials took no heed. In March 2016, an independent task force found fault at every level of government and also highlighted what may amount to criminal negligence for workers who seemingly falsified water-quality results, allowing the people of Flint to continue to be exposed to water well above the federally allowed lead levels. It would have been possible to prevent lead seeping into the drinking water by treating the pipes with federally approved anticorrosives for around $100 per day. But today the cost of repairing the Flint water system is estimated at $1.5 billion, and fixing the ageing and lead-laden system across the United States would cost at least $1.3 trillion. How will Flint residents get justice and fair compensation for the wrongs caused by individual and systemic failures? And how will governments rebuild a water infrastructure that is causing and will continue to cause toxic conditions, particularly in economically marginalized cities and towns across America? PMID:27417861

  17. Who is drinking nitrate in their well water?

    SciTech Connect

    Mitchell, T.J.; Harding, A.K.

    1996-10-01

    This study evaluated the health risks for a rural northeastern Oregon population which is exposed to high nitrate levels in well water. The study also identified possible sources of nitrate contamination, and investigated measures the resident had taken to reduce their nitrate exposure from well water. Three data sets were used in the study, including a telephone survey of the residents, existing information collected by the Oregon Department of Environmental Quality about well water nitrate concentrations, and demographic information from census records. Results revealed that 23% of the surveyed population was drinking well water that contained nitrate in excess of the 10 ppm nitrate-nitrogen maximum contaminant level adopted by the US Environmental Protection Agency for drinking water. Seventy-two percent of the households with nitrate levels exceeding the 10 ppm level did not use devices that effectively remove nitrates. The population included few women of childbearing age, and was generally older than other nearby urban or rural populations. Resident infants were not exposed to well water nitrate in excess of the 10 ppm level, and were therefore not at apparent risk for methemoglobinemia (blue-baby syndrome). Although the risk of infant methemoglobinemia was low in this area, it is recommended that alternative water sources be explored, and that follow-up monitoring be performed by state and/or local agencies.

  18. Microbial Characterization of Biological Filters Used for Drinking Water Treatment

    PubMed Central

    Moll, Deborah M.; Summers, R. Scott; Breen, Alec

    1998-01-01

    The impact of preozonation and filter contact time (depth) on microbial communities was examined in drinking water biofilters treating Ohio River water which had undergone conventional treatment (coagulation, flocculation, sedimentation) or solutions of natural organic matter isolated from groundwater (both ozonated and nonozonated). With respect to filter depth, compared to filters treating nonozonated waters, preozonation of treated water led to greater differences in community phospholipid fatty acid (PLFA) profiles, utilization of sole carbon sources (Biolog), and arbitrarily primed PCR fingerprints. PLFA profiles indicated that there was a shift toward anaerobic bacteria in the communities found in the filter treating ozonated water compared to the communities found in the filter treating nonozonated settled water, which had a greater abundance of eukaryotic markers. PMID:9647864

  19. Adaptive forest management for drinking water protection under climate change

    NASA Astrophysics Data System (ADS)

    Koeck, R.; Hochbichler, E.

    2012-04-01

    Drinking water resources drawn from forested catchment areas are prominent for providing water supply on our planet. Despite the fact that source waters stemming from forested watersheds have generally lower water quality problems than those stemming from agriculturally used watersheds, it has to be guaranteed that the forest stands meet high standards regarding their water protection functionality. For fulfilling these, forest management concepts have to be applied, which are adaptive regarding the specific forest site conditions and also regarding climate change scenarios. In the past century forest management in the alpine area of Austria was mainly based on the cultivation of Norway spruce, by the way neglecting specific forest site conditions, what caused in many cases highly vulnerable mono-species forest stands. The GIS based forest hydrotope model (FoHyM) provides a framework for forest management, which defines the most crucial parameters in a spatial explicit form. FoHyM stratifies the spacious drinking water protection catchments into forest hydrotopes, being operational units for forest management. The primary information layer of FoHyM is the potential natural forest community, which reflects the specific forest site conditions regarding geology, soil types, elevation above sea level, exposition and inclination adequately and hence defines the specific forest hydrotopes. For each forest hydrotope, the adequate tree species composition and forest stand structure for drinking water protection functionality was deduced, based on the plant-sociological information base provided by FoHyM. The most important overall purpose for the related elaboration of adaptive forest management concepts and measures was the improvement of forest stand stability, which can be seen as the crucial parameter for drinking water protection. Only stable forest stands can protect the fragile soil and humus layers and hence prevent erosion process which could endanger the water

  20. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings. PMID:27280609

  1. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    PubMed

    Medverec Knežević, Zvonimira; Nadih, Martina; Josipović, Renata; Grgić, Ivanka; Cvitković, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this. PMID:22202469

  2. Human exposure to arsenic from drinking water in Vietnam.

    PubMed

    Agusa, Tetsuro; Trang, Pham Thi Kim; Lan, Vi Mai; Anh, Duong Hong; Tanabe, Shinsuke; Viet, Pham Hung; Berg, Michael

    2014-08-01

    Vietnam is an agricultural country with a population of about 88 million, with some 18 million inhabitants living in the Red River Delta in Northern Vietnam. The present study reports the chemical analyses of 68 water and 213 biological (human hair and urine) samples conducted to investigate arsenic contamination in tube well water and human arsenic exposure in four districts (Tu Liem, Dan Phuong, Ly Nhan, and Hoai Duc) in the Red River Delta. Arsenic concentrations in groundwater in these areas were in the range of <1 to 632 μg/L, with severe contamination found in the communities Ly Nhan, Hoai Duc, and Dan Phuong. Arsenic concentrations were markedly lowered in water treated with sand filters, except for groundwater from Hoai Duc. Human hair samples had arsenic levels in the range of 0.07-7.51 μg/g, and among residents exposed to arsenic levels ≥50 μg/L, 64% of them had hair arsenic concentrations higher than 1 μg/g, which is a level that can cause skin lesions. Urinary arsenic concentrations were 4-435 μg/g creatinine. Concentrations of arsenic in hair and urine increased significantly with increasing arsenic content in drinking water, indicating that drinking water is a significant source of arsenic exposure for these residents. The percentage of inorganic arsenic (IA) in urine decreased with age, whereas the opposite trend was observed for monomethylarsonic acid (MMA) in urine. Significant co-interactions of age and arsenic exposure status were also detected for concentrations of arsenic in hair and the sum of IA, MMA, and dimethylarsinic acid (DMA) in urine and %MMA. In summary, this study demonstrates that a considerable proportion of the Vietnamese population is exposed to arsenic levels of chronic toxicity, even if sand filters reduce exposure in many households. Health problems caused by arsenic ingestion through drinking water are increasingly reported in Vietnam. PMID:24262873

  3. Bioenabled SERS substrates for food safety and drinking water monitoring

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.

    2015-05-01

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L.

  4. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  5. Drinking water treatment for a rural karst region in Indonesia

    NASA Astrophysics Data System (ADS)

    Matthies, K.; Schott, C.; Anggraini, A. K.; Silva, A.; Diedel, R.; Mühlebach, H.; Fuchs, S.; Obst, U.; Brenner-Weiss, G.

    2016-06-01

    An interdisciplinary German-Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed.

  6. [Uranium Concentration in Drinking Water from Small-scale Water Supplies in Schleswig-Holstein, Germany].

    PubMed

    Ostendorp, G

    2015-04-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 µg/lL, the 95(th) percentile was 2.5 µg/L. The maximum level was 14 µg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur. PMID:25356561

  7. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy. PMID:24517328

  8. Drinking and water balance during exercise and heat acclimation

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Brock, P. J.; Keil, L. C.; Morse, J. T.

    1983-01-01

    The interactions between fluid intake and balance, and plasma ion, osmotic, and endocrine responses during dehydration produced by exercise in cool and warm environments during acclimation are explored. Two groups of five male subjects performed 8 days of ergometer exercise in hot and thermoneutral conditions, respectively. The exercise trials lasted 2 hr each. Monitoring was carried out on the PV, osmotic, sodium, and endocrine concentrations, voluntary fluid intake, fluid balances, and fluid deficits. A negative correlation was observed between the plasma sodium and osmolality during acclimation. The presence of hypervolemia during acclimation is suggested as a cause of drinking, while the vasopressin concentration was not found to be a significant factor stimulating drinking. Finally, the predominant mechanism in fluid intake during exercise and heat exposure is concluded to be the renin-angiotensin II system in the presence of reductions in total body water and extracellular plasma volumes.

  9. Selective enumeration strategies for Brevundimonas diminuta from drinking water.

    PubMed

    Donofrio, Robert Scott; Bestervelt, Lorelle L; Saha, Ratul; Bagley, Susan T

    2010-04-01

    Brevundimonas diminuta is used as a control organism for validating the efficiency of water filtration systems. Since these protocols use nonselective growth media, heterotrophic plate count bacteria (HPCs) indigenous to the water distribution system may interfere with B. diminuta enumeration, thus leading to inaccurate assessment of the filter's microbial reduction capability. This could negatively impact public health as unsafe drinking water may be produced. This study was conducted to evaluate different potential routes for selective enumeration of B. diminuta in drinking water. B. diminuta's biochemical and molecular relationships to HPCs recovered from a laboratory drinking-water system were investigated. Of the 24 HPC morphotypes recovered, members of the Alpha- and Betaproteobacteria were most commonly identified. Based on comparisons of catabolic profiles (generated by the Biolog system) using principal component analysis, B. diminuta possessed similar metabolic patterns to several of the Alphaproteobacteria (Sphingomonas and Caulobacter), indicating that development of a selective medium based solely on carbon source was not feasible. Antibiotic susceptibility profiles revealed that the HPCs were least resistant to kanamycin, making it a candidate for future selective applications. Sequence comparisons of partial 16S rRNA sequences did not reveal any distinct similarities. However, basic local alignment search tool (BLAST) alignments of the gyrB and rpoD sequences for B. diminuta did show uniqueness, with the next closest match being to Caulobacter (88% and 79% similarity, respectively). Future investigation will focus on applying molecular assays, such as fluorescent in situ hybridization and quantitative real-time polymerase chain reaction (PCR), and incorporating an antibiotic marker or expressed fluorescent protein into the wild-type strain of B. diminuta for selective enumeration of B. diminuta. PMID:20087629

  10. Drinking Water Contamination Due To Lead-based Solder

    NASA Astrophysics Data System (ADS)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  11. Seawater drinking restores water balance in dehydrated harp seals.

    PubMed

    How, Ole-Jakob; Nordøy, Erling S

    2007-07-01

    The purpose of this study was to answer the question of whether dehydrated harp seals (Phoca groenlandica) are able to obtain a net gain of water from the intake of seawater. Following 24 h of fasting, three subadult female harp seals were dehydrated by intravenous administration of the osmotic diuretic, mannitol. After another 24 h of fasting, the seals were given 1,000 ml seawater via a stomach tube. Urine and blood were collected for measurement of osmolality and osmolytes, while total body water (TBW) was determined by injections of tritiated water. In all seals, the maximum urinary concentrations of Na(+) and Cl(-) were higher than in seawater, reaching 540 and 620 mM, respectively, compared to 444 and 535 mM in seawater. In another experiment, the seals were given ad lib access to seawater for 48 h after mannitol-induced hyper-osmotic dehydration. In animals without access to seawater, the mean blood osmolality increased from 331 to 363 mOsm kg(-1) during dehydration. In contrast, the blood osmolality, hematocrit and TBW returned to normal when the seals were permitted ad lib access to seawater after dehydration. In conclusion, this study shows that harp seals have the capacity to gain net water from mariposa (voluntarily drinking seawater) and are able to restore water balance after profound dehydration by drinking seawater. PMID:17375309

  12. Leaching of heavy metals from water bottle components into the drinking water of rodents.

    PubMed

    Nunamaker, Elizabeth A; Otto, Kevin J; Artwohl, James E; Fortman, Jeffrey D

    2013-01-01

    Providing high-quality, uncontaminated drinking water is an essential component of rodent husbandry. Acidification of drinking water is a common technique to control microbial growth but is not a benign treatment. In addition to its potential biologic effects, acidified water might interact with the water-delivery system, leading to the leaching of heavy metals into the drinking water. The goal of the current study was to evaluate the effects of water acidification and autoclaving on water-bottle assemblies. The individual components of the system (stainless-steel sipper tubes, rubber stoppers, neoprene stoppers, and polysulfone water bottles) were acid-digested and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, selenium, and zinc to quantify the metal composition of each material. In addition the amounts of these metals that leached into tap and acidified water with and without autoclaving were quantified after 1 wk of contact time. On a weight basis, sipper tubes contained the largest quantities of all metals except magnesium and zinc, which were greatest in the neoprene stoppers. Except for cadmium and selenium, all metals had leached into the water after 1 wk, especially under the acidified condition. The quantities of copper, lead, and zinc that leached into the drinking water were the most noteworthy, because the resulting concentrations had the potential to confound animal experiments. On the basis of these findings, we suggest that water-quality monitoring programs include heavy metal analysis at the level of water delivery to animals. PMID:23562029

  13. Climate Adaptation Capacity for Conventional Drinking Water Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Levine, A.; Goodrich, J.; Yang, J.

    2013-12-01

    Water supplies are vulnerable to a host of climate- and weather-related stressors such as droughts, intense storms/flooding, snowpack depletion, sea level changes, and consequences from fires, landslides, and excessive heat or cold. Surface water resources (lakes, reservoirs, rivers, and streams) are especially susceptible to weather-induced changes in water availability and quality. The risks to groundwater systems may also be significant. Typically, water treatment facilities are designed with an underlying assumption that water quality from a given source is relatively predictable based on historical data. However, increasing evidence of the lack of stationarity is raising questions about the validity of traditional design assumptions, particularly since the service life of many facilities can exceed fifty years. Given that there are over 150,000 public water systems in the US that deliver drinking water to over 300 million people every day, it is important to evaluate the capacity for adapting to the impacts of a changing climate. Climate and weather can induce or amplify changes in physical, chemical, and biological water quality, reaction rates, the extent of water-sediment-air interactions, and also impact the performance of treatment technologies. The specific impacts depend on the watershed characteristics and local hydrological and land-use factors. Water quality responses can be transient, such as erosion-induced increases in sediment and runoff. Longer-term impacts include changes in the frequency and intensity of algal blooms, gradual changes in the nature and concentration of dissolved organic matter, dissolved solids, and modulation of the microbiological community structure, sources and survival of pathogens. In addition, waterborne contaminants associated with municipal, industrial, and agricultural activities can also impact water quality. This presentation evaluates relationships between climate and weather induced water quality variability and

  14. Social representations of drinking water: subsidies for water quality surveillance programmes.

    PubMed

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health. PMID:26322753

  15. Bacterial Composition in a Metropolitan Drinking Water Distribution System Utilizing Different Source Waters

    EPA Science Inventory

    The microbial community structure was investigated from bulk phase water samples of multiple collection sites from two service areas within the Cincinnati drinking water distribution system (DWDS). Each area is associated with a different primary source of water (i.e., groundwat...

  16. Comparing drinking water treatment costs to source water protection costs using time series analysis.

    EPA Science Inventory

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reductio...

  17. Water Quality Modeling in the Dead End Sections of Drinking Water Distribution Networks

    EPA Science Inventory

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Wate...

  18. Following the Water: A Controlled Study of Drinking Water Storage in Northern Coastal Ecuador

    PubMed Central

    Levy, Karen; Nelson, Kara L.; Hubbard, Alan; Eisenberg, Joseph N.S.

    2008-01-01

    Background To design the most appropriate interventions to improve water quality and supply, information is needed to assess water contamination in a variety of community settings, including those that rely primarily on unimproved surface sources of drinking water. Objectives We explored the role of initial source water conditions as well as household factors in determining household water quality, and how levels of contamination of drinking water change over time, in a rural setting in northern coastal Ecuador. Methods We sampled source waters concurrently with water collection by household members and followed this water over time, comparing Escherichia coli and enterococci concentrations in water stored in households with water stored under controlled conditions. Results We observed significant natural attenuation of indicator organisms in control containers and significant, although less pronounced, reductions of indicators between the source of drinking water and its point of use through the third day of sampling. These reductions were followed by recontamination in approximately half of the households. Conclusions Water quality improved after water was transferred from the source to household storage containers, but then declined because of recontamination in the home. Our experimental design allowed us to observe these dynamics by controlling for initial source water quality and following changes in water quality over time. These data, because of our controlled experimental design, may explain why recontamination has been reported in the literature as less prominent in areas or households with highly contaminated source waters. Our results also suggest that efforts to improve source water quality and sanitation remain important. PMID:19057707

  19. [Some comments on the 2nd European drinking water guideline].

    PubMed

    Overath, H

    1999-01-01

    It took 18 years before issuing a revised version of the first EU Drinking Water Guideline. As is well known, it did not receive unanimous acclaim neither by the water supply nor by the public health authorities. The second guideline has now been released and can be welcomed as a quite logically constructed and consistent version in comparison to its predecessor. Borderline values are stated only for those microbiological and chemical ingredients of water that are relevant to health. These borderline values must be considered as minimum deadlines and may not be raised by a member country although their severity may be increased. Basing on recent toxicological findings some of the borderline values have been raised or lowered compared to the previous version. On the other hand, however, the aesthetic aspects of drinking water have been neglected. In this respect we may look forward with interest as to how German legislation will implement the new guideline. This will have to be done at the latest by 2000 A.D. end. PMID:10535224

  20. Enteric viruses in New Zealand drinking-water sources.

    PubMed

    Williamson, W M; Ball, A; Wolf, S; Hewitt, J; Lin, S; Scholes, P; Ambrose, V; Robson, B; Greening, G E

    2011-01-01

    This study determined whether human pathogenic viruses are present in two New Zealand surface waters that are used as drinking-water sources. Enteric viruses were concentrated using hollow-fibre ultrafiltration and detected using PCR for adenovirus (AdV), and reverse transcription PCR for norovirus (NOV) genogroups I-III, enterovirus, rotavirus (RoV) and hepatitis E virus (HEV). Target viruses were detected in 106/109 (97%) samples, with 67/109 (61%) samples positive for three or more viral types at any one time. AdV, NoV and ROV were detected the most frequently, and HEV the least frequently. Human NoV was not usually associated with animal NOV. Our results suggest that New Zealand would be well served by assessing the ability of drinking-water treatment plants to remove viruses from the source waters, and that this assessment could be based on the viral concentration of AdV-NoV-RoV. The long-term aim of our work is to use this information to estimate the risk of waterborne viral infection. PMID:21866776

  1. An evaluation of drinking water samples treated with alternative disinfectants

    SciTech Connect

    Patterson, K.S.; Lykins, B.W. Jr.; Garner, L.M.

    1995-10-01

    Due to concern over potential human health risks associated with the use of chlorine (Cl{sub 2}) for disinfection of drinking water, many utilities are considering alternative disinfectants. An evaluation is thus needed of the potential risks associated with the use of alternative disinfectants relative to those posed by Cl{sub 2}. At a pilot-scale drinking water plant in Jefferson Parish, LA., two studies were conducted in which clarified and sand filtered Mississippi River water was treated with either ozone (O{sub 3}), monochloramine (NH{sub 2}Cl), Cl{sub 2} or was not disinfected. Ozonated water was also post-disinfected with either NH{sub 2}Cl or Cl{sub 2}, to provide a disinfectant residual. For each treatment stream total organic carbon (TOC), total organic halide (TOX) and microbiological contaminants were determined. XAD resin concentrates were also prepared for mutagenicity testing in the Ames Salmonella assay. Water samples disinfected with O{sub 3} alone had low levels of mutagenic activity, the same as the non-disinfected water. The level of mutagenicity observed following chlorination was approximately twice that observed following treatment with NH{sub 2}Cl. Disinfection with O{sub 3} prior to treatment with either Cl{sub 2} or NH{sub 2}Cl resulted in a significantly lower level of mutagenicity than when either disinfectant was used alone. The concentrations of TOX present in the water samples showed a pattern similar to that of the mutagenicity data. The levels of TOC, by contrast, were similar for all the treatment streams. No significant baterial contamination was observed in water samples treated with either Cl{sub 2} or NH{sub 2}Cl alone or in combination with O{sub 3}, as determined by heterotrophic plate counts. However, O{sub 3} alone did not insure an acceptable level of disinfection at the end of the treatment stream.

  2. An inflight refill unit for replenishing research animal drinking water

    NASA Technical Reports Server (NTRS)

    Savage, P. D.; Hines, M. L.; Barnes, R.

    1995-01-01

    This paper presents the design process and development approach for a method of maintaining sufficient quantities of water for research animals during a Shuttle mission of long duration. An inflight refill unit (IRU) consisting of two major subsystems, a fluid pumping unit (FPU) and a collapsible water reservoir (CWR), were developed. The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out into the RAHF drinking water tanks. The CWR is a Kevlar (TM) reinforced storage bladder connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system, allowing for transport of the water back to the Spacelab where it is pumped into each of two research animal holding facilities. Additional components of the IRU system include the inlet and outlet fluid hoses, a power cable for providing 29V direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab.

  3. Surface water pesticide modelling for decision support in drinking water production

    NASA Astrophysics Data System (ADS)

    Desmet, Nele; Dams, Jef; Bronders, Jan; Peleman, Gisèle; Verdickt, Liesbeth

    2015-04-01

    The occurrence of pesticides and other contaminants in river systems may compromise the use of surface water for drinking water production. To reduce the cost of removal of pesticides from the raw water, drinking water companies can: search for other raw water sources, invest in water storage capacity to overcome periods with high pesticide concentrations (often related to the application period), or impose measures to reduce the emission of pesticides to surface water (i.e. sustainable application strategies or use restrictions). To select the most appropriate water management options, the costs and effects of the aforementioned actions need to be evaluated. This evaluation requires knowledge on the concentrations and loads of pesticides at the point of drinking water abstraction, as well as insight in the contribution and the temporal variability of different sources or subbasins. In such a case, a modelling approach can assist in generating measurement-based datasets and to compare different scenarios for water management. We illustrate how a modelling approach can provide decision support for water management related to drinking water abstraction from surface water in a catchment that suffers from elevated pesticide concentrations. The study area is a water production center (WPC) located in northwestern Belgium. The WPC abstracts raw water from the river IJzer or from a natural pond and its connected streams. The available quantities as well as the quality of the water vary throughout the year. The WPC uses a reservoir of 3 million m³ to capture and store raw water to overcome periods with limited water availability and/or poor water quality. However, the pressure on water increases and in the future this buffering capacity might be no longer sufficient to fulfill the drinking water production demand. A surface water quality model for the area is set up using InfoWorks RS. The model is applied to obtain insight in the concentrations and loads at the different

  4. 76 FR 72973 - Notice of Lodging of Consent Decree Under the Clean Water Act and Safe Drinking Water Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... ``Fort Gay'') for permanent injunctive relief and civil penalties under the Clean Water Act, 33 U.S.C. 1251-387; the Safe Drinking Water Act, 42 U.S.C. 300f-300j-26; the West Virginia Water Pollution... of Lodging of Consent Decree Under the Clean Water Act and Safe Drinking Water Act Notice is...

  5. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    PubMed

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. PMID:24239814

  6. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    PubMed Central

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  7. In vitro genotoxicity of chlorinated drinking water processed from humus-rich surface water

    SciTech Connect

    Liimatainen, A.; Grummt, T.

    1988-11-01

    Chlorination by-products of drinking waters are capable of inducing sister chromatid exchanges (SCE) and chromosome aberrations (CA) in vitro, in addition to their mutagenic activity in the Ames test. Finnish drinking waters, processed from humus-rich surface water using chlorine disinfection, have been found to be highly mutagenic in the Ames' test. The highest activities have been found in the acidic, non-volatile fraction of the water concentrates using tester strain TA100 without metabolic activation by S9mix. The mutagenicities have varied between 500 and 14,000 induced revertants per liter. These figures are one to two magnitudes higher than those reported elsewhere. The authors studied five Finnish drinking water samples for their potency to exert genotoxic effects, SCEs and CAs, in mammalian cells in vitro (human peripheral lymphocytes and Chinese hamster lung fibroblasts).

  8. Emergency Response Planning to Reduce the Impact of Contaminated Drinking Water during Natural Disasters

    EPA Science Inventory

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water system...

  9. Deriving uncertainty factors for threshold chemical contaminants in drinking water.

    PubMed

    Ritter, Leonard; Totman, Céline; Krishnan, Kannan; Carrier, Richard; Vézina, Anne; Morisset, Véronique

    2007-10-01

    Uncertainty factors are used in the development of drinking-water guidelines to account for uncertainties in the database, including extrapolations of toxicity from animal studies and variability within humans, which result in some uncertainty about risk. The application of uncertainty factors is entrenched in toxicological risk assessment worldwide, but is not applied consistently. This report, prepared in collaboration with Health Canada, provides an assessment of the derivation of the uncertainty factor assumptions used in developing drinking-water quality guidelines for chemical contaminants. Assumptions used by Health Canada in the development of guidelines were compared to several other major regulatory jurisdictions. This assessment has revealed that uncertainty factor assumptions have been substantially influenced by historical practice. While the application of specific uncertainty factors appears to be well entrenched in regulatory practice, a well-documented and disciplined basis for the selection of these factors was not apparent in any of the literature supporting the default assumptions of Canada, the United States, Australia, or the World Health Organization. While there is a basic scheme used in most cases in developing drinking-water quality guidelines for nonthreshold contaminants by the jurisdictions included in this report, additional factors are sometimes included to account for other areas of uncertainty. These factors may include extrapolating subchronic data to anticipated chronic exposure, or use of a LOAEL instead of a NOAEL. The default value attributed to each uncertainty factor is generally a factor of 3 or 10; however, again, no comprehensive guidance to develop and apply these additional uncertainty factors was evident from the literature reviewed. A decision tree has been developed to provide guidance for selection of appropriate uncertainty factors, to account for the range of uncertainty encountered in the risk assessment process

  10. Handbook of ozone technology and applications. Vol. 2. Ozone for drinking water treatment

    SciTech Connect

    Rice, R.G.; Netzer, A.

    1984-01-01

    This volume of the handbook series concerns the application of ozone for the treatment of drinking water. Great emphasis is given ozone's powerful disinfectant and oxidant properties with the added advantage of the non-production of undesirable by-products. European sources have been heavily drawn upon since that is where most of the experience has been. Over one-third of the volume is devoted to a bibliography of some 1600 citations (in addition to 260 as chapter references). Contents: Ozone disinfection of drinking water. Removal of color from drinking water with ozone. Removal of ammonia and other nitrogen derivatives from drinking water with ozone. Raw water preozonation. Recent developments in the treatment of drinking water. Ozone for drinking water treatment - a bibliography. Index.

  11. 7TH JAPAN - U.S. CONFERENCE ON DRINKING WATER QUALITY MANAGEMENT AND WASTEWATER CONTROL

    EPA Science Inventory

    Update on U.S. Drinking Water and Water Quality Research

    The U.S. Environmental Protection Agency's (U.S. EPA) Office of Research and development continues to conduct drinking water and water quality related research to address high priority environmental problems. Curr...

  12. IN-FIELD PRESERVATION OF ARSENIC SPECIES IN DRINKING WATER USING EDTA

    EPA Science Inventory

    The two predominant inorganic arsenic species found in drinking waters are As(III) and As(V). As(III) is commonly associated with ground waters while As(V) is associated with surface waters. The efficiency of arsenic removal from a drinking water supply is dependent on the oxid...

  13. SCREENING MODELS TO PREDICT PROBABILITY OF CONTAMINATION BY PATHOGENIC VIRUSES IN DRINKING WATER AQUIFERS

    EPA Science Inventory

    The Safe Drinking Water Act's 1996 Amendments broadened the definition of public water systems (PWS) to include systems which serve drinking water to as few as 25 individuals. Implementation of the proposed Ground Water Rule for Pathogens will place an increased burden on utiliti...

  14. Performance of Traditional and Molecular Methods for Detecting Biological Agents in Drinking Water

    EPA Science Inventory

    USGS Report - To reduce the impact from a possible bioterrorist attack on drinking-water supplies, analytical methods are needed to rapidly detect the presence of biological agents in water. To this end, 13 drinking-water samples were collected at 9 water-treatment plants in Ohio...

  15. Safe Drinking Water for Alaska: Curriculum for Grades 7-12.

    ERIC Educational Resources Information Center

    South East Regional Resource Center, Juneau, AK.

    The 10 lessons in this manual for secondary school teachers address concerns ranging from water sources and pollutants to government programs and water treatment methods. The materials are intended to help students understand the sources of drinking water, how water can be made safe for drinking, and the health threat that contaminated water…

  16. Physicochemical properties and the concentration of anions, major and trace elements in groundwater, treated drinking water and bottled drinking water in Najran area, KSA

    NASA Astrophysics Data System (ADS)

    Brima, Eid I.

    2014-11-01

    Basic information about major elements in bottled drinking water is provided on product labels. However, more information is needed about trace elements in bottled drinking water and other sources of drinking water to assess its quality and suitability for drinking. This is the first such study to be carried out in Najran city in the Kingdom of Saudi Arabia (KSA). A total of 48 water samples were collected from different sources comprising wells, stations for drinking water treatment and bottled drinking water (purchased from local supermarkets). The concentrations of 24 elements [aluminum (Al), arsenic (As), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molydenum (Mo), sodium (Na), nickel (Ni), lead (Pb), rubidium (Rb), selenium (Se), strontium (Sr), titanium (Ti), vanadium (V), uranium (U) and zinc (Zn)] were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Anions (chlorine (Cl-), fluoride (F-), sulfate (SO4 2-) and nitrate (NO3 -) were determined by ion chromatography (IC). Electrical conductivity (EC), pH, total dissolved salts (TDS) and total hardness (TH) were also measured. All parameters of treated drinking water and bottled drinking water samples did not exceed the World Health Organization (WHO) 2008, US Environmental Protection Agency (USEPA 2009), Gulf Cooperation Council Standardization Organization (GSO) 2008 and Saudi Arabian Standards Organization (SASO) 1984 recommended guidelines. It is noteworthy that groundwater samples were not used for drinking purpose. This study is important to raise public knowledge about drinking water, and to promote public health.

  17. Mutagenicity of the drinking water supply in Bangkok.

    PubMed

    Kusamran, Wannee R; Tanthasri, Nopsarun; Meesiripan, Nuntana; Tepsuwan, Anong

    2003-01-01

    Seventeen samples of tap water in Bangkok and 2 neighboring provinces were collected in winter and summer, concentrated and tested for mutagenic activity using the Ames Salmonella mutagenesis assay. Preliminary results demonstrated that concentrated tap water exhibited clear mutagenicity towards S. typhimurium TA100 and YG1029, but not towards TA98 and YG1024, in the absence of S9 mix, and the addition of S9 mix markedly decreased the mutagenicity to both tester strains. Amberlite( ) XAD-2 resin, but not blue rayon, was able to adsorb mutagens from water at pH 2. Our data clearly demonstrated that all tap water samples prepared by chlorination of Chao Phraya River water were mutagenic to strain TA100 without S9 mix, inducing 3,351 + 741 and 2,216 + 770 revertants/l, in winter and summer, respectively. On the other hand, however, tap water samples prepared from ground water were not mutagenic. Furthermore, it was found that boiling for only 5 min and filtration through home purifying system containing activated charcoal and mixed resin units were very effective to abolish the mutagenicity of water. Storage of water also significantly decreased the mutagenicity, however, it took 2-3 weeks to totally abolish it. Additionally, we also found 1 out of 6 brands of commercially available bottled drinking water to be mutagenic, with about 26 % of the average mutagenicity of tap water. The results in the present study clearly demonstrated that chlorinated tap water in Bangkok and neighboring provinces contain direct-acting mutagens causing capable of causing base-pair substitution. Boiling and filtration of tap water through home purifying systems may be the most effective means to abolish the mutagenicity. Some brands of commercial bottled waters may also contain mutagens which may be derived from tap water. PMID:12718698

  18. Mineralogical and geochemical characteristics of drinking water salt deposits

    NASA Astrophysics Data System (ADS)

    Soktoev, B. R.; Rikhvanov, L. P.; Matveenko, I. A.

    2015-11-01

    The article presents the research results on the features of element and mineral composition of salt deposits (limescale) formed in household conditions in heat exchanging equipment. The major part of limescale is represented by two species of calcium carbonate - calcite and aragonite. We have shown that high concentrations of chemical elements in the limescale promote the formation of their own mineral forms (sulphates, silicates, native forms) in salt deposits. Detecting such mineral formations suggests the salt deposits of drinking water to be a long-term storage media which can be used in the course of eco-geochemical and metallogenic studies.

  19. Microbiological safety of drinking water: United States and global perspectives.

    PubMed Central

    Ford, T E

    1999-01-01

    Waterborne disease statistics only begin to estimate the global burden of infectious diseases from contaminated drinking water. Diarrheal disease is dramatically underreported and etiologies seldom diagnosed. This review examines available data on waterborne disease incidence both in the United States and globally together with its limitations. The waterborne route of transmission is examined for bacterial, protozoal, and viral pathogens that either are frequently associated with drinking water (e.g., Shigella spp.), or for which there is strong evidence implicating the waterborne route of transmission (e.g., Leptospira spp.). In addition, crucial areas of research are discussed, including risks from selection of treatment-resistant pathogens, importance of environmental reservoirs, and new methodologies for pathogen-specific monitoring. To accurately assess risks from waterborne disease, it is necessary to understand pathogen distribution and survival strategies within water distribution systems and to apply methodologies that can detect not only the presence, but also the viability and infectivity of the pathogen. Images Figure 1 Figure 2 PMID:10229718

  20. Assessment of bacterial contamination of drinking water provided to mice.

    PubMed

    Haist, Carrie; Cadillac, Joan; Dysko, Robert

    2004-11-01

    The objective of this study was to evaluate whether an 240-ml water bottle provided to individually housed mice would remain potable for a 2-week interval (based on absence of coliforms). The study used inbred C57BL/6 mice and CB6F1 x C3D2F1 hybrid mice. Test groups were assigned to minimize the variables of strain, caging type (non-ventilated static versus ventilated) and building location. A 3-cc sample of drinking water was removed aseptically from the bottles and vacuum-filtered using a 250-ml filter funnel with a 0.45-mum pore size. The membrane filter was removed using sterile forceps and placed on a blood agar plate for 10 min. The plate was streaked and incubated at 37 degrees C for 5 days. The plates were observed daily, and if growth had occurred, further testing was done to determine specific organisms. Of the 148 samples only 23 had any bacterial growth. Typical bacteria were unspeciated gram-positive bacilli and Staphylococcus, Micrococcus, Streptococcus, and Pantoea species. The absence of coliforms and low percentage of bacterial contamination suggest that drinking water will remain potable for 2 weeks when supplied to an individual mouse. PMID:15636548

  1. Modeling MIC copper release from drinking water pipes.

    PubMed

    Pizarro, Gonzalo E; Vargas, Ignacio T; Pastén, Pablo A; Calle, Gustavo R

    2014-06-01

    Copper is used for household drinking water distribution systems given its physical and chemical properties that make it resistant to corrosion. However, there is evidence that, under certain conditions, it can corrode and release unsafe concentrations of copper to the water. Research on drinking water copper pipes has developed conceptual models that include several physical-chemical mechanisms. Nevertheless, there is still a necessity for the development of mathematical models of this phenomenon, which consider the interaction among physical-chemical processes at different spatial scales. We developed a conceptual and a mathematical model that reproduces the main processes in copper release from copper pipes subject to stagnation and flow cycles, and corrosion is associated with biofilm growth on the surface of the pipes. We discuss the influence of the reactive surface and the copper release curves observed. The modeling and experimental observations indicated that after 10h stagnation, the main concentration of copper is located close to the surface of the pipe. This copper is associated with the reactive surface, which acts as a reservoir of labile copper. Thus, for pipes with the presence of biofilm the complexation of copper with the biomass and the hydrodynamics are the main mechanisms for copper release. PMID:24398414

  2. Unsealed Tubewells Lead to Increased Fecal Contamination of Drinking Water

    PubMed Central

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Mailloux, Brian J.; Ferguson, Andrew S.; Culligan, Patricia J.; Serre, Marc L.; Emch, Michael; Ahmed, Kazi M.; Sayler, Gary S.; van Geen, Alexander

    2013-01-01

    Bangladesh is underlain by shallow aquifers in which millions of drinking water wells are emplaced without annular seals. Fecal contamination has been widely detected in private tubewells. To evaluate the impact of well construction on microbial water quality 35 private tubewells (11 with intact cement platforms, 19 without) and 17 monitoring wells (11 with the annulus sealed with cement, 6 unsealed) were monitored for cultured E. coli over 18 months. Additionally, two “snap shot” sampling events were performed on a subset of wells during late-dry and early-wet seasons, wherein the fecal indicator bacteria (FIB) E. coli, Bacteroidales and the pathogenicity genes eltA (ETEC E. coli), ipaH (Shigella) and 40/41 hexon (adenovirus) were detected using qPCR. No difference in E. coli detection frequency was found between tubewells with and without platforms. Unsealed private wells, however, contained cultured E. coli more frequently and higher concentrations of FIB than sealed monitoring wells (p<0.05), suggestive of rapid downward flow along unsealed annuli. As a group the pathogens ETEC, Shigella and adenovirus were detected more frequently (10/22) during the wet season than the dry season (2/20). This suggests proper sealing of private tubewell annuli may lead to substantial improvements in microbial drinking water quality. PMID:23165714

  3. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  4. [How much water do we really need to drink?].

    PubMed

    Meinders, Arend-Jan; Meinders, Arend E

    2010-01-01

    Everywhere around us we see people sipping bottled water. In healthy people, the fluid balance is strictly regulated via osmoregulation by the hormone vasopressin and the kidneys, in combination with the thirst mechanism and drinking. Fluid intake comes from food, metabolism and beverages, including water. People lose fluid via the skin, respiration, faecal fluid and urinary output. The obligatory urine volume is determined by maximal renal concentrating ability and the solute load which must be excreted. Under normal circumstances of diet, exercise and climate the minimal urine output for healthy subjects is about 500 ml/day. Intake of more than 500 ml of fluids per day will result in the excretion of solute-free water. The recommended total daily fluid intake of 3,000 ml for men and of 2,200 ml for women is more than adequate. Higher fluid intake does not have any convincing health benefits, except perhaps in preventing (recurrent) kidney stones. PMID:20356431

  5. Using naturally occurring radionuclides to determine drinking water age in a community water system

    DOE PAGESBeta

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n =more » 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less

  6. Klebsielleae in drinking water emanating from redwood tanks.

    PubMed Central

    Seidler, R J; Morrow, J E; Bagley, S T

    1977-01-01

    A survey was made of the bacteriological quality and chlorine content of 33 public and private water systems that utilize redwood storage tanks. Coliforms of the genera Klebsiella and Enterobacter were isolated from 9 of 10 private drinking water systems and from 11 of 23 water systems in state and federal parks. Total coliform counts in the private systems exceeded federal membrane filter guidelines by as much as 10-to 40-fold. Coliform counts were highest in the newer reservoirs. Factors contributing to poor water quality are: lack of automated chlorination equipment or an insufficient supply to maintain a residual, common inlet/outlet plumbing design, and lengthy average retention periods. The latter two factors contribute to improper mixing and stagnation of the water, whereas the former allows microbes to multiply on the water-soluble nutrients that leach from the wood. Wooden reservoirs exert a high chlorine demand, and 0.4 ppm of chlorine residual in the incoming tank water proves inadequate. It is suggested that specific water-soluble nutrients in redwood (and in numerous other types of botanical material) induce a natural nutritional selection for coliforms of the tribe Klebsielleae. Images PMID:326189

  7. Nature: "Water, Water, Everywhere, nor Any Drop to Drink"

    ERIC Educational Resources Information Center

    Heinhorst, Sabine; Cannon, Gordon

    2004-01-01

    The difficulties faced by developing countries in obtaining clean water, and its misuse in advanced countries are reported. The new application of zeolites, or molecular synthesis of aluminosilicates in the desalination or purification of water forecasts a brighter future.

  8. An examination of the potential added value of water safety plans to the United States national drinking water legislation.

    PubMed

    Baum, Rachel; Amjad, Urooj; Luh, Jeanne; Bartram, Jamie

    2015-11-01

    National and sub-national governments develop and enforce regulations to ensure the delivery of safe drinking water in the United States (US) and countries worldwide. However, periodic contamination events, waterborne endemic illness and outbreaks of waterborne disease still occur, illustrating that delivery of safe drinking water is not guaranteed. In this study, we examined the potential added value of a preventive risk management approach, specifically, water safety plans (WSPs), in the US in order to improve drinking water quality. We undertook a comparative analysis between US drinking water regulations and WSP steps to analyze the similarities and differences between them, and identify how WSPs might complement drinking water regulations in the US. Findings show that US drinking water regulations and WSP steps were aligned in the areas of describing the water supply system and defining monitoring and controls. However, gaps exist between US drinking water regulations and WSPs in the areas of team procedures and training, internal risk assessment and prioritization, and management procedures and plans. The study contributes to understanding both required and voluntary drinking water management practices in the US and how implementing water safety plans could benefit water systems to improve drinking water quality and human health. PMID:25618192

  9. Sachet drinking water in Ghana’s Accra-Tema metropolitan area: past, present, and future

    PubMed Central

    Weeks, John R.; Fink, Günther

    2013-01-01

    Population growth in West Africa has outpaced local efforts to expand potable water services, and private sector sale of packaged drinking water has filled an important gap in household water security. Consumption of drinking water packaged in plastic sachets has soared in West Africa over the last decade, but the long-term implications of these changing consumption patterns remain unclear and unstudied. This paper reviews recent shifts in drinking water, drawing upon data from the 2003 and 2008 Demographic and Health Surveys, and provides an overview of the history, economics, quality, and regulation of sachet water in Ghana’s Accra-Tema Metropolitan Area. Given the pros and cons of sachet water, we suggest that a more holistic understanding of the drinking water landscape is necessary for municipal planning and sustainable drinking water provision. PMID:24294481

  10. Associations between Perceptions of Drinking Water Service Delivery and Measured Drinking Water Quality in Rural Alabama

    PubMed Central

    Wedgworth, Jessica C.; Brown, Joe; Johnson, Pauline; Olson, Julie B.; Elliott, Mark; Forehand, Rick; Stauber, Christine E.

    2014-01-01

    Although small, rural water supplies may present elevated microbial risks to consumers in some settings, characterizing exposures through representative point-of-consumption sampling is logistically challenging. In order to evaluate the usefulness of consumer self-reported data in predicting measured water quality and risk factors for contamination, we compared matched consumer interview data with point-of-survey, household water quality and pressure data for 910 households served by 14 small water systems in rural Alabama. Participating households completed one survey that included detailed feedback on two key areas of water service conditions: delivery conditions (intermittent service and low water pressure) and general aesthetic characteristics (taste, odor and color), providing five condition values. Microbial water samples were taken at the point-of-use (from kitchen faucets) and as-delivered from the distribution network (from outside flame-sterilized taps, if available), where pressure was also measured. Water samples were analyzed for free and total chlorine, pH, turbidity, and presence of total coliforms and Escherichia coli. Of the 910 households surveyed, 35% of participants reported experiencing low water pressure, 15% reported intermittent service, and almost 20% reported aesthetic problems (taste, odor or color). Consumer-reported low pressure was associated with lower gauge-measured pressure at taps. While total coliforms (TC) were detected in 17% of outside tap samples and 12% of samples from kitchen faucets, no reported water service conditions or aesthetic characteristics were associated with presence of TC. We conclude that consumer-reported data were of limited utility in predicting potential microbial risks associated with small water supplies in this setting, although consumer feedback on low pressure—a risk factor for contamination—may be relatively reliable and therefore useful in future monitoring efforts. PMID:25046635

  11. False cyanide formation during drinking water sample preservation and storage.

    PubMed

    Delaney, Michael F; Blodget, Charles; Hoey, Corinna E; McSweeney, Nancy E; Epelman, Polina A; Rhode, Steven F

    2007-12-15

    Carefully controlled bench-scale and on-site experiments demonstrated that cyanide can form in the treated drinking water sample container during preservation and storage. In the bench-scale experiment, treated tap water samples were collected on 20 days over six months. The tap water samples were split and some of the splits were spiked with formaldehyde, a known ozone disinfection byproduct, held for three hours and tested for cyanide. Then they were preserved and held for 2-10 days. None of the 69 initial samples had cyanide detects, but 22 of 49 formaldehyde-spiked samples and three of the 20 unspiked samples developed detectable cyanide concentrations during storage. In the on-site experiment, six samples were collected at a finished water tap at an ozone/chloramination treatment plant over three days. Each sample was split, and a portion was spiked with formaldehyde. Each portion was analyzed in triplicate after three different procedures: (1) immediately distilled on-site, (2) stabilized on-site in a distillation tube and distilled back at the laboratory several days later, or (3) following the conventional procedure of preserving the sample to pH > 12 in a container and distilling the sample back at the laboratory. Only the samples handled in the conventional way had detectable amounts of cyanide. Both experiments demonstrated that cyanide can form during conventional preservation and storage, and it is likely that the cyanide detected for this treated drinking water was formed in the sample container as a consequence of the preservation and storage conditions. PMID:18200867

  12. Removal of trace organic micropollutants by drinking water biological filters.

    PubMed

    Zearley, Thomas L; Summers, R Scott

    2012-09-01

    The long-term removal of 34 trace organic micropollutants (<1 μg L(-1)) was evaluated and modeled in drinking water biological filters with sand media from a full-scale plant. The micropollutants included pesticides, pharmaceuticals, and personal care products, some of which are endocrine disrupting chemicals, and represent a wide range of uses, chemical structures, adsorbabilities, and biodegradabilities. Micropollutant removal ranged from no measurable removal (<15%) for 13 compounds to removal below the detection limit and followed one of four trends over the one year study period: steady state removal throughout, increasing removal to steady state (acclimation), decreasing removal, or no removal (recalcitrant). Removals for all 19 nonrecalcitrant compounds followed first-order kinetics when at steady state with increased removal at longer empty bed contact times (EBCT). Rate constants were calculated, 0.02-0.37 min(-1), and used in a pseudo-first-order rate model with the EBCT to predict removals in laboratory biofilters at a different EBCT and influent conditions. Drinking water biofiltration has the potential to be an effective process for the control of many trace organic contaminants and a pseudo-first-order model can serve as an appropriate method for approximating performance. PMID:22881485

  13. Modeling the formation of trihalomethanes in drinking waters of Lebanon.

    PubMed

    Semerjian, Lucy; Dennis, John; Ayoub, George

    2009-02-01

    The current research aims at developing predictive models for trihalomethane (THM) formation in Lebanon based on field-scale investigations as well as laboratory controlled experimentations. Statistical analysis on field data revealed significant correlations for TTHM with chlorine dose, Specific UV-A, and UV(254) absorbing organics. Simulated distribution system-THM tests showed significant correlations with applied chlorine dose, total organic carbon, bromides, contact time, and temperature. Predictive models, formulated using multiple regression approaches, exhibiting the highest coefficients of determination were quadratic for the directly after chlorination (DAC; r(2) = 0.39, p < 0.036) and network (r(2) = 0.33, p < 0.064) THM databases, and logarithmic for the laboratory simulated THM database (r(2) = 0.70, p < 0.001). Computed r(2) values implied low correlations for the DAC and network THM database, and high correlation for the laboratory simulated THM database. Significance of the models were at the 0.05 level for DAC database, 0.10 level for the network database, and very high (<0.01 level) for the laboratory simulated THM database. It is noteworthy to mention that no previous attempts to assess, monitor, and predict THM concentrations in public drinking water have been reported for the country although a large fraction of the population consumes chlorinated public drinking water. PMID:18253848

  14. Desorption of arsenic from drinking water distribution system solids.

    PubMed

    Copeland, Rachel C; Lytle, Darren A; Dionysious, Dionysios D

    2007-04-01

    Previous work has shown that arsenic can accumulate in drinking water distribution system (DWDS) solids (Lytle et al., 2004) when arsenic is present in the water. The release of arsenic back into the water through particulate transport and/or chemical release (e.g. desorption, dissolution) could result in elevated arsenic levels at the consumers' tap. The primary objective of this work was to examine the impact of pH and orthophosphate on the chemical release (i.e. desorption) of arsenic from nine DWDS solids collected from utilities located in the Midwest. Arsenic release comparisons were based on the examination of arsenic and other water quality parameters in leach water after contact with the solids over the course of 168~hours. Results showed that arsenic was released from solids and suggested that arsenic release was a result of desorption rather than dissolution. Arsenic release generally increased with increasing initial arsenic concentration in the solid and increasing pH levels (in the test range of 7 to 9). Finally, orthophosphate (3 and 5 mg PO(4)/L) increased arsenic release at all pH values examined. Based on the study results, utilities with measurable levels of arsenic present in their water should be aware that some water quality changes can cause arsenic release in the DWDS potentially resulting in elevated levels at the consumer's tap. PMID:17033727

  15. Survey of the Mutagenicity of Surface Water, Sediments, and Drinking Water from the Penobscot Indian Nation.

    EPA Science Inventory

    Survey of the Mutagenicity of Surface Water, Sediments, andDrinking Water from the Penobscot Indian NationSarah H. Warren, Larry D. Claxton,1, Thomas J. Hughes,*, Adam Swank,Janet Diliberto, Valerie Marshall, Daniel H. Kusnierz, Robert Hillger, David M. DeMariniNational Health a...

  16. Why Do People Stop Treating Contaminated Drinking Water with Solar Water Disinfection (SODIS)?

    ERIC Educational Resources Information Center

    Tamas, Andrea; Mosler, Hans-Joachim

    2011-01-01

    Solar Water Disinfection (SODIS) is a simple method designed to treat microbiologically contaminated drinking water at household level. This article characterizes relapse behavior in comparison with continued SODIS use after a 7-month nonpromotion period. In addition, different subtypes among relapsers and continuers were assumed to diverge mainly…

  17. Asbestos in drinking water. (Latest citations from the Selected Water Resources Abstracts data base). Published Search

    SciTech Connect

    Not Available

    1992-09-01

    The bibliography contains citations concerning the occurrence and problems associated with drinking water contaminated by asbestos fibers. Water supply contamination by asbestos cement pipes and factors involved in the release of asbestos fibers are discussed. Topics also include distribution data, epidemiology studies, health effects, detection, and measurement methods. (Contains a minimum of 114 citations and includes a subject term index and title list.)

  18. Nosocomial outbreak of Pseudomonas aeruginosa associated with a drinking water fountain.

    PubMed

    Costa, D; Bousseau, A; Thevenot, S; Dufour, X; Laland, C; Burucoa, C; Castel, O

    2015-11-01

    Over a four-month period, ten patients were suspected of having acquired nosocomial infection to P. aeruginosa in the ear, nose, and throat department. Environmental and clinical isolates were compared. Only water from a drinking water fountain was contaminated by P. aeruginosa. This isolate and those of three patients had indistinguishable random amplified polymorphic DNA profiles. These patients had serious oncology diseases. The drinking water fountain was used for their alimentation by percutaneous endoscopic gastrostomy and was the origin of the outbreak. Another type of drinking fountain with a terminal ultraviolet treatment was installed, following which no new infections linked to drinking water were identified. PMID:26341271

  19. Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring

    PubMed Central

    Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.

    2016-01-01

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L. PMID:26900205

  20. 76 FR 10899 - Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention of Dental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... dental fluorosis, fluid intake among children, and the contribution of fluoride in drinking water to... HUMAN SERVICES Proposed HHS Recommendation for Fluoride Concentration in Drinking Water for Prevention... extending the comment period for a proposed recommendation that community water systems adjust the amount...