Science.gov

Sample records for pd nanoparticles supported

  1. Carbon nanofiber supported bimetallic PdAu nanoparticles for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Qin, Yuan-Hang; Jiang, Yue; Niu, Dong-Fang; Zhang, Xin-Sheng; Zhou, Xing-Gui; Niu, Li; Yuan, Wei-Kang

    2012-10-01

    Carbon nanofiber (CNF) supported PdAu nanoparticles are synthesized with sodium citrate as the stabilizing agent and sodium borohydride as the reducing agent. High resolution transmission electron microscopy (HRTEM) characterization indicates that the synthesized PdAu particles are well dispersed on the CNF surface and X-ray diffraction (XRD) characterization indicates that the alloying degree of the synthesized PdAu nanoparticles can be improved by adding tetrahydrofuran to the synthesis solution. The results of electrochemical characterization indicate that the addition of Au can promote the electrocatalytic activity of Pd/C catalyst for formic acid oxidation and the CNF supported high-alloying PdAu catalyst possesses better electrocatalytic activity and stability for formic acid oxidation than either the CNF supported low-alloying PdAu catalyst or the CNF supported Pd catalyst.

  2. Effect of metal support interaction on surface segregation in Pd Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    De Sarkar, A.; Menon, Mahesh; Khanra, Badal C.

    2001-10-01

    In this work, we present the results of our Monte Carlo (MC) simulation studies for the segregation behavior of supported, clean and gas-covered Pd-Pt nanoparticles as a function of the metal-support interaction. For preferential Pd-support interaction, the base of the nanoparticle is found to get enriched with Pd atoms; while for preferential interaction of Pt atoms with the support the base gets enriched in Pt. The composition of the rest of the particle changes slightly with the metal-support interaction. The presence of oxygen and hydrogen atoms does not influence the role of the metal-support interaction on the surface composition of Pd-Pt nanoparticles. The simulation results are found to be in total agreement with the known experimental results.

  3. Pd-nanoparticle-supported, PDDA-functionalized graphene as a promising catalyst for alcohol oxidation.

    PubMed

    Bin, Duan; Ren, Fangfang; Wang, Ying; Zhai, Chunyang; Wang, Caiqin; Guo, Jun; Yang, Ping; Du, Yukou

    2015-03-01

    Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as-synthesized Pd/PDDA-graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA-graphene catalyst showed improved electrocatalytic activity toward alcohol-oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd-based catalysts. This study demonstrates the great potential of PDDA-functionalized graphene as a support for the development of metal-graphene nanocomposites for important applications in fuel cells. PMID:25601138

  4. Large faceted Pd nanocrystals supported small Pt nanoparticles as highly durable electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Lu, Wangting; Cao, Longsheng; Qin, Xiaoping; Ding, Fei; Tang, Shun; Shao, Zhi-Gang; Yi, Baolian

    2016-09-01

    The reduction of Pt content together with the improvement of the durability of the catalyst for oxygen reduction reaction (ORR) is required to the large-scale commercialization of proton exchange membrane fuel cells. In this work, a novel ORR catalyst consisting of large Pd nanocrystal as the core with small Pt nanoparticles supported on the Pd core is prepared by a facile one-step synthesis method. The Pd substrate is presented in the form of well-defined cuboctahedrons and icosahedrons. The type of metal precursors and Pt/Pd molar ratio are important factors to obtain this Pd-supporting-Pt structure. The Pd2-s-Pt1 catalyst with a nominal Pt/Pd atomic ratio at 1/2 shows improved ORR activity: its mass specific activity and area specific activity is 2.5 and 3.5 times that of commercial Pt/C, respectively. More importantly, the Pd2-s-Pt1 catalyst demonstrates outstanding durability against potential cycling which can be ascribed to the slow dissolution of Pd core and the structure transformation from Pd@Pt to hollow PdPt alloyed nanocages. This exciting result provides a new pathway to the design of ORR catalyst with excellent durability.

  5. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  6. Selective Hydrogenation of Acetylene over Pd, Au, and PdAu Supported Nanoparticles

    NASA Astrophysics Data System (ADS)

    Walker, Michael P.

    The removal of trace amounts of acetylene in ethylene streams is a high-volume industrial process that must possess high selectivity of alkyne hydrogenation over hydrogenation of alkenes. Current technology uses metallic nanoparticles, typically palladium or platinum, for acetylene removal. However, problems arise due to the deactivation of the catalysts at high temperatures as well as low selectivities at high conversions. Pore expanded MCM-41 is synthesized via a two-step strategy in which MCM-41 was prepared via cetyltrimethylammonium bromide (CTMABr) followed by the hydrothermal treatment with N,N-dimethyldecylamine (DMDA). This material was washed with ethanol to remove DMDA, or calcined to remove both surfactants. PE-MCM-41 based materials were impregnated with palladium, gold, and palladium-gold nanoparticles. The removal of DMDA had an effect on both the conversion and selectivity, in which they were found to drop significantly. However, by using the bimetallic PdAu catalysts, higher selectivity could be achieved due to increased electron density.

  7. Plasma Syntheses of Carbon Nanotube-Supported Pt-Pd Nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Ye; Wang, Qi; Meng, Yuedong

    2016-04-01

    It is reported that the highly dispersed Pt nanoparticles on carbon nanotubes can be synthesized under mild conditions by in situ plasma treatment. The carbon nanotube was pretreated by O2 plasma to transform into oxide carbon nanotubes (O-CNTs), and then it was mixed with the precursors (the mixture of H2PtCl6 and PdCl6). After that, the O-CNTs and the precursors were simultaneously treated by H2 plasma. The precursors were transformed into Pt-Pd nanoparticles (NPs) and the O-CNTs transformed into CNT. The synthesized CNT-based Pt-Pd nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. All the analysis showed that the Pt-Pd nanoparticles were deposited on CNT as a form of face-centered cubical structure. supported by National Natural Science Foundation of China (Nos. 11305218,11575253), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2015262), the CASHIPS Director's Fund (No. YZJJ201505) and Anhui Provincial Natural Science Foundation for Distinguished Young Scholars of China (No. 1608085J03)

  8. Investigation of carbon supported Pd-Cu nanoparticles as anode catalysts for direct borohydride fuel cell

    NASA Astrophysics Data System (ADS)

    Behmenyar, Gamze; Akın, Ayşe Nilgün

    2014-03-01

    Carbon supported Pd and bimetallic Pd-Cu nanoparticles with different compositions are prepared by a modified polyol method and used as anode catalysts for direct borohydride fuel cell (DBFC). The physical and electrochemical properties of the as-prepared electrocatalysts are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), ICP-AES, cyclic voltammetry (CV), chronoamperometry (CA), and fuel cell experiments. The results show that the carbon supported Pd-Cu bimetallic catalysts have much higher catalytic activity for the direct oxidation of BH4- than the carbon supported pure nanosized Pd catalyst, especially the Pd50Cu50/C catalyst presents the highest catalytic activity among all as-prepared catalysts, and the DBFC using Pd50Cu50/C as anode catalyst and Pt/C as cathode catalyst gives the best performance, and the maximum power density is 98 mW cm-2 at a current density of 223 mA cm-2 at 60 °C.

  9. Thermodynamics of hydride formation and decomposition in supported sub-10 nm Pd nanoparticles of different sizes

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Pingel, Torben; Olsson, Eva; Zorić, Igor; Zhdanov, Vladimir P.; Langhammer, Christoph

    2014-05-01

    Hydrogen storage properties of supported Pd nanoparticles with average sizes in the range 2.7-7.6 nm were studied using indirect nanoplasmonic sensing. For each particle size, a series of isotherms was measured and, through Van't Hoff analysis, the changes in enthalpy upon hydride formation/decomposition were determined. Contrary to the expected decrease of the enthalpy, due to increasing importance of surface tension in smaller particles, we observe a very weak size dependence in the size range under consideration. We attribute this to a compensation effect due to an increased fraction of hydrogen atoms occupying energetically favorable subsurface sites in smaller nanoparticles.

  10. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  11. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties

    NASA Astrophysics Data System (ADS)

    Liu, Chang-Hai; Liu, Rui-Hua; Sun, Qi-Jun; Chang, Jian-Bing; Gao, Xu; Liu, Yang; Lee, Shuit-Tong; Kang, Zhen-Hui; Wang, Sui-Dong

    2015-03-01

    Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical to the catalysis of reduction reaction. By the present method, the bimetallic combination can be tailored for distinct types of catalytic reactions.Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical

  12. One-Pot Synthesis of Graphene-Supported Monodisperse Pd Nanoparticles as Catalyst for Formic Acid Electro-oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Sudong; Dong, Jing; Yao, Zhaohui; Shen, Chengmin; Shi, Xuezhao; Tian, Yuan; Lin, Shaoxiong; Zhang, Xiaogang

    2014-03-01

    To synthesize monodisperse palladium nanoparticles dispersed on reduced graphene oxide (RGO) sheets, we have developed an easy and scalable solvothermal reduction method from an organic solution system. The RGO-supported palladium nanoparticles with a diameter of 3.8 nm are synthesized in N-methyl-2-pyrrolidone (NMP) and in the presence of oleylamine and trioctylphosphine, which facilitates simultaneous reduction of graphene oxide and formation of Pd nanocrystals. So-produced Pd/RGO was tested for potential use as electrocatalyst for the electro-oxidation of formic acid. Pd/RGO catalyzes formic acid oxidation very well compared to Pd/Vulcan XC-72 catalyst. This synthesis method is a new way to prepare excellent electrocatalysts, which is of great significance in energy-related catalysis.

  13. Ni-Supported Pd Nanoparticles with Ca Promoter: A New Catalyst for Low-Temperature Ammonia Cracking

    PubMed Central

    Polanski, Jaroslaw; Bartczak, Piotr; Ambrozkiewicz, Weronika; Sitko, Rafal; Siudyga, Tomasz; Mianowski, Andrzej; Szade, Jacek; Balin, Katarzyna; Lelątko, Józef

    2015-01-01

    In this paper we report a new nanometallic, self-activating catalyst, namely, Ni-supported Pd nanoparticles (PdNPs/Ni) for low temperature ammonia cracking, which was prepared using a novel approach involving the transfer of nanoparticles from the intermediate carrier, i.e. nano-spherical SiO2, to the target carrier technical grade Ni (t-Ni) or high purity Ni (p-Ni) grains. The method that was developed allows a uniform nanoparticle size distribution (4,4±0.8 nm) to be obtained. Unexpectedly, the t-Ni-supported Pd NPs, which seemed to have a surface Ca impurity, appeared to be more active than the Ca-free (p-Ni) system. A comparison of the novel PdNPs/Ni catalyst with these reported in the literature clearly indicates the much better hydrogen productivity of the new system, which seems to be a highly efficient, flexible and durable catalyst for gas-phase heterogeneous ammonia cracking in which the TOF reaches a value of 2615 mmolH2/gPd min (10,570 molNH3/molPd(NP) h) at 600°C under a flow of 12 dm3/h (t-Ni). PMID:26308929

  14. Multi-walled carbon nanotube supported Pd and Pt nanoparticles with high solution affinity for effective electrocatalysis

    NASA Astrophysics Data System (ADS)

    Ye, Weichun; Hu, Haiyuan; Zhang, Hong; Zhou, Feng; Liu, Weimin

    2010-09-01

    Multi-walled carbon nanotubes (MWCNTs) are easily wrapped with a functional biopolymer—polydopamine (Pdop) through self-polymerization of dopamine in a mild basic solution. The MWCNTs@Pdop exhibits long term dispersivity in water for at least one month. The Pdop has large capacity to coordinate [PdCl 4] 2- and [PtCl 6] 2- that upon reduction transform to corresponding metal nanoparticles. The nanoparticles strongly adhere to Pdop layer and can be used for the electrooxidation of haydrazine and methanol, respectively. Compared to Pd and Pt supported on unmodified MWCNTs, the Pd and Pt nanoparticle decorated on MWCNTs@Pdop exhibit much higher electrocatalytic activity and enhanced stability.

  15. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  16. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    PubMed

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-01

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. PMID:25900368

  17. Au and Pd nanoparticles supported on CeO2, TiO2, and Mn2O3 oxides

    NASA Astrophysics Data System (ADS)

    Nascente, P. A. P.; Maluf, S. S.; Afonso, C. R. M.; Landers, R.; Pinheiro, A. N.; Leite, E. R.

    2014-10-01

    Gold and palladium nanoparticles were incorporated on CeO2, TiO2, and Mn2O3 supports prepared by a sol-gel method. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning TEM (STEM) in high angle annular dark field mode (HAADF), and energy filtered TEM (EFTEM) using electron energy loss spectroscopy (EELS). The XRD diffractograms presented sharp and intense peaks indicating that the samples are highly crystalline, but it did not detected any peak corresponding to Au or Pd phases. This indicates that the Au and Pd NPs were incorporated into the structures of the oxides. It was not possible to obtain an Au 4f spectrum for Au/Mn2O3 due to an overlap with the Mn 3p spectrum. The XPS Au 4f spectra for Au/CeO2 and Au/TiO2 present negative chemical shifts that could be attributed to particle-size-related properties. The XPS Pd 3d spectra indicate that for both CeO2 and TiO2 substrates, the Pd NPs were in the metallic state, while for the Mn2O3 substrate, the Pd NPs were oxidized. The HRTEM results show the formation of nanocrystalline oxides having particles sizes between 50 and 200 nm. TEM micrographs show that the addition of Au caused the formation of Au clusters in between the CeO2 NPS, formation of Au NPs for the TiO2 support, and homogeneous distribution of Au clusters for the Mn2O3 support. The addition of Pd yielded a homogeneous dispersion throughout the CeO2 and TiO2, but caused the formation of Pd clusters for the Mn2O3 support.

  18. Facile preparation of Pd nanoparticles supported on single-layer graphene oxide and application for the Suzuki-Miyaura cross-coupling reaction

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shun-Ichi; Kinoshita, Hiroshi; Hashimoto, Hideki; Nishina, Yuta

    2014-05-01

    Pd nanoparticles supported on single layer graphene oxide (Pd-slGO) were prepared by gentle heating of palladium(ii) acetate (Pd(OAc)2) and GO in ethanol that served as a mild reductant of the Pd precursor. Pd-slGO showed a high catalytic performance (TON and TOF = 237 000) in the Suzuki-Miyaura cross-coupling reaction.Pd nanoparticles supported on single layer graphene oxide (Pd-slGO) were prepared by gentle heating of palladium(ii) acetate (Pd(OAc)2) and GO in ethanol that served as a mild reductant of the Pd precursor. Pd-slGO showed a high catalytic performance (TON and TOF = 237 000) in the Suzuki-Miyaura cross-coupling reaction. Electronic supplementary information (ESI) available: Synthesis details, peak separation of XPS spectra of GO and Pd-slGO composites, TEM and XPS analyses of the spent composite catalysts. See DOI: 10.1039/c4nr00715h

  19. Remarkable activity of PdIr nanoparticles supported on the surface of carbon nanotubes pretreated via a sonochemical process for formic acid electro-oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Jinwei; Li, Yuanjie; Liu, Shuangren; Wang, Gang; Tian, Jing; Jiang, Chunping; Zhu, Shifu; Wang, Ruilin

    2013-12-01

    It was reported for the first time that the surface treated multi-walled carbon nanotubes supported PdIr (PdIr/CNT-SCP) catalyst presents remarkable electrocatalytic activity and stability for formic acid electro-oxidation (FAEO). The surface of CNTs was functionalized by a sonochemical process for the deposition of PdIr nanoparticles (NPs). The XRD and TEM characterizations show that the prepared PdIr/CNT-SCP catalyst has small mean size and good dispersion of PdIr NPs on CNTs. The electrochemical measurements show that the onset and anodic peak potentials of FAEO on PdIr/CNT-SCP catalyst are 60 and 50 mV more negative than that on the commercial Pd/C catalyst. The mass-normalized peak current density of PdIr/CNT-SCP is 3365 mA mg-1Pd, which is 4.5, 1.4 and 2.7 times higher than that of PdIr/CNT-Untreated, PdIr/C-SCP and commercial Pd/C, respectively. It demonstrates the promotion of Ir and functionalized CNTs to Pd for FAEO.

  20. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. A.; Millet, P.; Fateev, V. N.

    Carbon-supported Pt and Pd nanoparticles (CSNs) were synthesized and electrochemically characterized in view of potential application in proton exchange membrane (PEM) water electrolysers. Electroactive metallic nanoparticles were obtained by chemical reduction of precursor salts adsorbed to the surface of Vulcan XC-72 carbon carrier, using ethylene glycol as initial reductant and with final addition of formaldehyde. CSNs were then coated over the surface of electron-conducting working electrodes using an alcoholic solution of perfluorinated polymer. Their electrocatalytic activities with regard to the hydrogen evolution reaction (HER) were measured in sulfuric acid solution using cyclic voltammetry, and in a PEM cell during water electrolysis. Results obtained show that palladium can be advantageously used as an alternative electrocatalyst to platinum for the HER in PEM water electrolysers. Developed electrocatalysts could also be used in PEM fuel cells.

  1. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles.

    SciTech Connect

    Gao, Feng; Goodman, Wayne D.

    2012-12-21

    Pd-Au bimetallic catalysts often display enhanced catalytic activities and selectivities compared with Pd-alone catalysts. This enhancement is often caused by two alloy effects, i.e., ensemble and ligand effects. The ensemble effect is dilution of surface Pd by Au. With increasing surface Au coverages, contiguous Pd ensembles disappear and isolated Pd ensembles form. For certain reactions, for example vinyl acetate synthesis, this effect is responsible for reaction rate enhancement via the formation of highly active surface sites, e.g., isolated Pd pairs. The disappearance of contiguous Pd ensembles also switches off side reactions catalyzed by these sites. This explains selectivity increase of certain reactions, for example direct H2O2 synthesis. The ligand effect is electronic perturbation of Au to Pd. By direct charge transfer or affecting bond length, the ligand effect causes the Pd d band to be more filled and the d-band center away from the Fermi level. Both changes make Pd more "atomic like" therefore binding reactants and products weaker. For certain reactions, this eliminates the so-called "self poisoning" and enhances activity/selectivity.

  2. Application of aluminum-supported Pd, Rh, and Rh-Pd nanoparticles in supercritical carbon dioxide system for hydrodebromination of polybrominated diphenyl ethers.

    PubMed

    Wu, Ben-Zen; Sun, Yu-Jie; Chen, Yan-Hua; Yak, Hwa Kwang; Yu, Jya-Jyun; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming

    2016-08-01

    Al-powder-supported Pd, Rh, and Rh-Pd catalysts were synthesized through a spontaneous redox reaction in aqueous solutions. These catalysts hydrodebrominated 4- and 4,4'-bromodiphenyl ethers in supercritical carbon dioxide at 200 atm CO2 containing 10 atm H2 and 80 °C in 1 h. Diphenyl ether was the major product of Pd/Al. Rh/Al and Rh-Pd/Al further hydrogenated two benzene rings of diphenyl ether to form dicyclohexyl ether. The hydrogenolysis of CO bonds on diphenyl ether over Rh/Al and Rh-Pd/Al was observed to generate cyclohexanol and cyclohexane (<1%). With respect to hydrodebromination efficiency and catalyst stability, Rh-Pd/Al among three catalysts is suggested to be used for ex situ degradation of polybrominated diphenyl ethers in supercritical carbon dioxide. PMID:27213240

  3. Selective photocatalytic oxidation of benzene for the synthesis of phenol using engineered Au-Pd alloy nanoparticles supported on titanium dioxide.

    PubMed

    Su, Ren; Kesavan, Lokesh; Jensen, Mads M; Tiruvalam, Ramchandra; He, Qian; Dimitratos, Nikolaos; Wendt, Stefan; Glasius, Marianne; Kiely, Christopher J; Hutchings, Graham J; Besenbacher, Flemming

    2014-10-28

    The selectivity of photocatalytic phenol production from the direct oxidation of benzene can be enhanced by fine adjustment of the morphology and composition of Au-Pd metal nanoparticles supported on titanium dioxide thereby suppressing the decomposition of benzene and evolution of phenolic compounds. PMID:25032752

  4. Hydrogen sensing using reduced graphene oxide sheets supported by Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Yatskiv, Roman; Grym, Jan

    2013-06-01

    We investigated Schottky diode hydrogen sensors prepared by the deposition of reduced graphene oxide functionalized by nanocrystals of Pd on InP substrate. Schottky diodes were investigated by the measurement of current voltage characteristics and further tested for their sensitivity to hydrogen in a cell with a through-flow gas system. Pd nanocrystals which are in direct contact with the semiconductor substrate serve to dissociate hydrogen molecules into atomic hydrogen, lowering the work function of Pd, and resulting in the decreased Schottky barrier height.

  5. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 1

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Godínez-Garcia, A.; Solorza-Feria, O.; Pérez-Robles, J. F.

    2015-02-01

    Silver (Ag) nanoparticles enriched with platinum (Pt) and palladium (Pd) on their surfaces (Ag@Pt0.1Pd0.1) are supported on Vulcan XC-72 carbon (C) to form a new catalyst (Ag@Pt0.1Pd0.1/C) for the oxygen reduction reaction (ORR) in acid electrolytes. This catalyst is prepared in one pot by reducing Ag and then Pt and Pd metal salts with sodium borohydride in the presence of trisodium citrate then adding XC-72 while applying intense ultrasound. The metallic Ag@Pt0.1Pd0.1 nanoparticles contain 2 weight percent of Pt, are spherical and have an average size less than 10 nm as determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). At the ORR potentials, Ag nanoparticles on carbon (Ag/C) rapidly lose Ag by dissolution and show no more catalytic activity for the ORR than the carbon support, whereas Ag@Pt0.1Pd0.1/C is a stable catalyst and exhibits 1.4 and 1.6 fold greater specific activity, also 3.6 and 2.8 fold greater mass activity for ORR in 0.5 M H2SO4 solution than comparable Pt/C and Pt0.5Pd0.5/C catalysts with the same Pt loading as determined for thin-films of these catalysts on a rotating-disk electrode (TF-RDE). Using silver nanoparticles increases Pt utilization and therefore decreases Pt-loading and cost of a catalyst for a proton exchange membrane fuel cell (PEMFC) electrode.

  6. Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid

    NASA Astrophysics Data System (ADS)

    Yang, Sudong; Zhang, Xiaogang; Mi, Hongyu; Ye, Xiangguo

    To improve the utilization and activity of anodic catalysts for formic acid electrooxidation, palladium (Pd) particles were loaded on the MWCNTs, which were functionalized in a mixture of 96% sulfuric acid and 4-aminobenzenesulfonic acid, using sodium nitrite to produce intermediate diazonium salts from substituted anilines. The composition, particle size, and crystallinity of the Pd/f-MWCNTs catalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS) measurements. The electrocatalytic properties of the Pd/f-MWCNTs catalysts for formic acid oxidation were investigated by cyclic voltammetry (CV) and linear sweep voltammetry (LSV) in 0.5 mol L -1 H 2SO 4 solution. The results demonstrated that the catalytic activity was greatly enhanced due to the improved water-solubility and dispersion of the f-MWCNTs, which were facile to make the small particle size (3.8 nm) and uniform dispersion of Pd particles loading on the surface of the MWCNTs. In addition, the functionalized MWCNTs with benzenesulfonic group can provide benzenesulfonic anions in aqueous solution, which may combine with hydrogen cation and then promote the oxidation of formic acid reactive intermediates. So the Pd/f-MWCNTs composites showed excellent electrocatalytic activity for formic acid oxidation.

  7. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    PubMed

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs. PMID:27125360

  8. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Li, Lingzhi; Chen, Mingxi; Huang, Guanbo; Yang, Nian; Zhang, Li; Wang, Huan; Liu, Yu; Wang, Wei; Gao, Jianping

    2014-10-01

    Bimetallic palladium-silver nanoparticles (NPs) supported on reduced oxide graphene (RGO) with different Pd/Ag ratios (Pd-Ag/RGO) were prepared by an easy green method which did not use any additional reducing agents or a dispersing agent. During the process, simultaneous redox reactions between AgNO3, K2PdCl4 and graphene oxide (GO) led to bimetallic Pd-Ag NPs. The morphology and composition of the Pd-Ag/RGO were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis and Raman spectroscopy. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of these Pd-Ag/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. Among the different Pd/Ag ratios, the Pd-Ag (1:1)/RGO had the best catalytic activities and stability. So it is a promising catalyst for direct alcohol fuel cell applications.

  9. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    EPA Science Inventory

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  10. Pd nanoparticles supported on MIL-101/reduced graphene oxide photocatalyst: an efficient and recyclable photocatalyst for triphenylmethane dye degradation.

    PubMed

    Wu, Yan; Luo, Hanjin; Zhang, Li

    2015-11-01

    To improve the photocatalytic efficiency of chromium-based metal-organic framework (MIL-101) photocatalyst, Pd nanoparticles and reduced graphene oxide were used to modify the MIL-101 via a facile method. The resulting novel photocatalyst was characterized by UV-vis diffuse reflectance spectra (DRS), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It was indicated that the photocatalyst afforded high photocatalytic efficiency for degradation of two triphenylmethane dyes, brilliant green and acid fuchsin, under exposure to visible light irradiation. Cyclic experiments demonstrated that the photocatalyst showed good reusability and stability for the dye degradation. PMID:26392090

  11. Direct interactions between metal nanoparticles and support: STM studies of Pd on TiO 2(1 1 0)

    NASA Astrophysics Data System (ADS)

    Bowker, Michael; Fourré, Elodie

    2008-05-01

    We have fabricated ultra-nanoparticulate model catalysts of Pd on TiO 2(1 1 0) using metal vapour deposition (MVD) to form particles in the size range 1-50 nm, which can be imaged at very high spatial resolution (and in some cases at atomic resolution) using scanning tunnelling microscopy (STM). Using these methods we are able to identify the atomic level mechanism responsible for certain phenomena in catalysis, for which molecular level models have previously been proposed from macroscopic measurements. In this paper we address two such phenomena, namely spillover and the so-called strong metal-support interaction (SMSI) effect. Oxygen spillover from Pd particles to the titania support occurs due to the fast adsorption of oxygen on Pd compared with titania, and is driven by reaction with Ti 3+ ions in the vicinity of the particles. The SMSI state is identified at atomic resolution as being due to the appearance of Ti at the surface of the Pd particles. These Ti layers are partially oxidised and form very well defined structures of two main types—a rectangular lattice and hexagonal unit cells of large dimension. These layers passivate the surface for the adsorption of CO.

  12. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    NASA Astrophysics Data System (ADS)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained ~ 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was ~ 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  13. Morphology and structural stability of Pt-Pd bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Tun-Dong; Zheng, Ji-Wen; Shao, Gui-Fang; Fan, Tian-E.; Wen, Yu-Hua

    2015-03-01

    The morphologies and structures of Pt-Pd bimetallic nanoparticles determine their chemical and physical properties. Therefore, a fundamental understanding of their morphologies and structural stabilities is of crucial importance to their applications. In this article, we have performed Monte Carlo simulations to systematically explore the structural stability and structural features of Pt-Pd alloy nanoparticles. Different Pt/Pd ratios, and particle sizes and shapes were considered. The simulated results reveal that the truncated octahedron, which has the remarkably lowest energy among all the considered shapes, exhibits the best structural stability while the tetrahedron has the worst invariably. Furthermore, all the structures of Pt-Pd alloy nanoparticles present Pd-rich in the outmost layer but Pt-rich in the sub-outmost layer. Especially, atomic distribution and chemical short-range order parameter were applied to further characterize the structural features of Pt-Pd alloy nanoparticles. This study provides a significant insight not only into the structural stability of Pt-Pd alloy nanoparticles with different compositions, and particle sizes and shapes but also to the design of bimetallic nanoparticles. Project supported by the National Natural Science Foundation of China (Grant No. 51271156) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2013J01255 and 2013J06002).

  14. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles.

    PubMed

    Wu, Dan; Wang, Yaoguang; Zhang, Yong; Ma, Hongmin; Yan, Tao; Du, Bin; Wei, Qin

    2016-01-01

    A novel sandwich-type electrochemical immunosensor using the new amino group functionalized silicoaluminophosphates molecular sieves (NH2-SAPO-34) supported Pd/Co nanoparticles (NH2-SAPO-34-Pd/Co NPs) as labels for the detection of bladder cancer biomarker nuclear matrix protein-22 (NMP-22) was developed in this work. The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1). Due to the excellent catalytic activity toward hydrogen peroxide, NH2-SAPO-34-Pd/Co NPs were used as labels and immobilized secondary antibody (Ab2) through adsorption capacity of Pd/Co NPs to protein. The immunosensor displayed a wide linear range (0.001-20 ng/mL) and low detection limit (0.33 pg/mL). Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples. This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers. PMID:27086763

  15. Sensitive Electrochemical Immunosensor for Detection of Nuclear Matrix Protein-22 based on NH2-SAPO-34 Supported Pd/Co Nanoparticles

    PubMed Central

    Wu, Dan; Wang, Yaoguang; Zhang, Yong; Ma, Hongmin; Yan, Tao; Du, Bin; Wei, Qin

    2016-01-01

    A novel sandwich-type electrochemical immunosensor using the new amino group functionalized silicoaluminophosphates molecular sieves (NH2-SAPO-34) supported Pd/Co nanoparticles (NH2-SAPO-34-Pd/Co NPs) as labels for the detection of bladder cancer biomarker nuclear matrix protein-22 (NMP-22) was developed in this work. The reduced graphene oxide-NH (rGO-NH) with good conductivity and large surface area was used to immobilize primary antibody (Ab1). Due to the excellent catalytic activity toward hydrogen peroxide, NH2-SAPO-34-Pd/Co NPs were used as labels and immobilized secondary antibody (Ab2) through adsorption capacity of Pd/Co NPs to protein. The immunosensor displayed a wide linear range (0.001–20 ng/mL) and low detection limit (0.33 pg/mL). Good reproducibility and stability have showed satisfying results in the analysis of clinical urine samples. This novel and ultrasensitive immunosensor may have the potential application in the detection of different tumor markers. PMID:27086763

  16. Development of a Sulfur-Modified Glass-Supported Pd Nanoparticle Catalyst for Suzuki-Miyaura Coupling.

    PubMed

    Xiao, Mincen; Hoshiya, Naoyuki; Fujiki, Katsumasa; Honma, Tetsuo; Tamenori, Yusuke; Shuto, Satoshi; Fujioka, Hiromichi; Arisawa, Mitsuhiro

    2016-01-01

    A safe, facile and low-leaching (up to 0.17 ppm) sulfur-modified glass-supported palladium nanoparticle catalyst has been developed for the Suzuki-Miyaura coupling of aryl halides with aryl boronic acids. Most notably, this catalyst was highly recyclable and could be used up to 10 times without any discernible decrease in its activity. PMID:27477655

  17. State of Supported Pd during Catalysis in Water

    SciTech Connect

    Chase, Zizwe; Fulton, John L.; Camaioni, Donald M.; Mei, Donghai; Balasubramanian, Mahalingam; Pham, Van Thai; Zhao, Chen; Weber, Robert S.; Wang, Yong; Lercher, Johannes A.

    2013-08-29

    In operando X-ray absorption was used to measure the structure and chemical state of supported Pd nanoparticles with 3 -10 nm diameter in contact with H2 saturated water at 298-473 K. The Pd-Pd distances determined were consistent with the presence of subsurface hydrogen, i.e., longer than those measured by others for bare, reduced Pd particles, and within the range of distances for Pd hydrides. During the Pd-catalyzed hydrogenation of phenol, cyclohexanone, cyclohexanol or cyclohexene in the presence of water, the Pd nanoparticles exhibited a lengthening of the Pd-Pd bond that we attribute to a change in the concentration of sorbed H related to the steady state of H at the surface of the Pd particles. This steady state is established by all reactions involving H2, i.e., the sorption/desorption into the bulk, the sorption at the surface, and the reaction with adsorbed unsaturated reactants. Thus, first insight into the chemical state of Pd and the H/Pd ratio during catalysis in water is provided. The Pd particles did not change upon their exposure to water or reactants; nor did the spectra show any effect from the interaction of the Pd particles with various supports. The experimental results are consistent with ab initio molecular dynamic simulations, which indicate that Pd-water interactions are relatively weak for Pd metal and that these interactions become even weaker, when hydrogen is incorporated into the metal particles. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is a multi-program national laboratory operated for DOE by Battelle through Contract DE-AC05-76RL01830.

  18. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the

  19. Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49-155 atoms

    NASA Astrophysics Data System (ADS)

    Kozlov, Sergey M.; Aleksandrov, Hristiyan A.; Goniakowski, Jacek; Neyman, Konstantin M.

    2013-08-01

    Presently, density functional computational studies of nanostructures in heterogeneous catalysts consider either sufficiently big ("scalable with size") unsupported metal nanoparticles (NPs) or small supported metal clusters. Both models may not be sufficiently representative of a few nm in size supported transition metal NPs dealt with in experiment. As a first step in closing the gap between theoretical models and prepared systems, we investigate the effect of a rather chemically inert oxide support, MgO(100), on relative energies and various properties of Pd and Pt NPs that consist of 49-155 atoms (1.2-1.6 nm in size) and exhibit bulk-like fcc structural arrangements. Shapes and interface configurations of metal NPs on MgO were obtained as a result of thorough optimization within the fcc motif using interatomic potentials. Then the stability and properties of the NPs were studied with a density functional method. We comprehensively characterize interaction between the NPs and MgO(100) support, their interface and effect of the support on NP properties. While the effect of MgO on relative stabilities of NPs with different shapes is found to be significant, other properties of the NPs such as electronic structure and interatomic distances within NP do not notably change upon deposition. This work paves the way to large-scale first-principles computational studies of more realistic models of oxide-supported metal catalysts.

  20. Hydrogen catalysis and scavenging action of Pd-POSS nanoparticles

    SciTech Connect

    Maiti, A; Gee, R H; Maxwell, R; Saab, A

    2007-02-01

    Prompted by the need for a self-supported, chemically stable, and functionally flexible catalytic nanoparticle system, we explore a system involving Pd clusters coated with a monolayer of polyhedral oligomeric silsesquioxane (POSS) cages. With an initial theoretical focus on hydrogen catalysis and sequestration in the Pd-POSS system, we report Density Functional Theory (DFT) results on POSS binding energies to the Pd(110) surface, hydrogen storing ability of POSS, and possible pathways of hydrogen radicals from the catalyst surface to unsaturated bonds away from the surface.

  1. Synthesis and characterization of Pd(0), PdS, and Pd@PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster

    NASA Astrophysics Data System (ADS)

    Jose, Deepa; Jagirdar, Balaji R.

    2010-09-01

    Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8±0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC 12H 25) 2] 6 but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS, and Pd@PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods.

  2. Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition : enhanced stability and reactivity.

    SciTech Connect

    Feng, H.; Lu, J.; Stair, P. C.; Elam, J. W.

    2011-04-01

    ALD Alumina was utilized as a protective layer to inhibit the sintering of supported nano-sized ALD Pd catalysts in the methanol decomposition reaction carried out at elevated temperatures. The protective ALD alumina layers were synthesized on Pd nanoparticles (1-2 nm) supported on high surface area alumina substrates. Up to a certain over-coat thickness, the alumina protective layers preserved or even slightly enhanced the catalytic activity and prevented sintering of the Pd nanoparticles up to 500 C.

  3. CO adsorption over Pd nanoparticles: A general framework for IR simulations on nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeinalipour-Yazdi, Constantinos D.; Willock, David J.; Thomas, Liam; Wilson, Karen; Lee, Adam F.

    2016-04-01

    CO vibrational spectra over catalytic nanoparticles under high coverages/pressures are discussed from a DFT perspective. Hybrid B3LYP and PBE DFT calculations of CO chemisorbed over Pd4 and Pd13 nanoclusters, and a 1.1 nm Pd38 nanoparticle, have been performed in order to simulate the corresponding coverage dependent infrared (IR) absorption spectra, and hence provide a quantitative foundation for the interpretation of experimental IR spectra of CO over Pd nanocatalysts. B3LYP simulated IR intensities are used to quantify site occupation numbers through comparison with experimental DRIFTS spectra, allowing an atomistic model of CO surface coverage to be created. DFT adsorption energetics for low CO coverage (θ → 0) suggest the CO binding strength follows the order hollow > bridge > linear, even for dispersion-corrected functionals for sub-nanometre Pd nanoclusters. For a Pd38 nanoparticle, hollow and bridge-bound are energetically similar (hollow ≈ bridge > atop). It is well known that this ordering has not been found at the high coverages used experimentally, wherein atop CO has a much higher population than observed over Pd(111), confirmed by our DRIFTS spectra for Pd nanoparticles supported on a KIT-6 silica, and hence site populations were calculated through a comparison of DFT and spectroscopic data. At high CO coverage (θ = 1), all three adsorbed CO species co-exist on Pd38, and their interdiffusion is thermally feasible at STP. Under such high surface coverages, DFT predicts that bridge-bound CO chains are thermodynamically stable and isoenergetic to an entirely hollow bound Pd/CO system. The Pd38 nanoparticle undergoes a linear (3.5%), isotropic expansion with increasing CO coverage, accompanied by 63 and 30 cm- 1 blue-shifts of hollow and linear bound CO respectively.

  4. Synthesis and characterization of Pd(0), PdS, and Pd-PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster

    SciTech Connect

    Jose, Deepa; Jagirdar, Balaji R.

    2010-09-15

    Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8{+-}0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, [Pd(SC{sub 12}H{sub 25}){sub 2}]{sub 6} but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS, and Pd-PdO core-shell nanoparticles thus demonstrating its versatility. These Pd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. - Graphical abstract: Solventless thermolysis of a single palladium-thiolate cluster affords various Pd systems such as Pd(0), Pd-PdO core-shell, and PdS nanoparticles demonstrating the versatility of the precursor and the methodology.

  5. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes.

    PubMed

    Nasrollahzadeh, Mahmoud; Sajadi, S Mohammad; Rostami-Vartooni, Akbar; Alizadeh, Mohammad; Bagherzadeh, Mojtaba

    2016-03-15

    Through this manuscript the green synthesis of palladium nanoparticles supported on reduced graphene oxide (Pd NPs/RGO) under the mild conditions through reduction of the graphene oxide and Pd(2+) ions using barberry fruit extract as reducing and stabilizing agent is reported. The as-prepared Pd NPs/RGO was characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). The Pd NPs/RGO could be used as an efficient and heterogeneous catalyst for reduction of nitroarenes using sodium borohydride in an environmental friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity. PMID:26752431

  6. An efficient photochemical route to Pd nanoparticles; application to the one-step synthesis of Pd@polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Wolak, Séverine; Vidal, Loïc; Becht, Jean-Michel; Michelin, Laure; Balan, Lavinia

    2016-08-01

    We have developed a facile, efficient, low cost and ‘green’ photochemical approach to preparing surfactant-free Pd nanoparticles and Pd-immobilized@acrylate photo-polymer films at room temperature, under air and without any additional treatment. The reaction system only includes a photo-initiator used as a generator of free radicals and a Pd(II) salt. In ethanol solution, the photochemical reduction of Pd(II) to Pd(0) generates very small metal particles with a narrow size distribution (2–4 nm). Furthermore, we have shown that the formation of Pd nanoparticles from a Pd(II) salt can be reversible thus allowing easy handling and safe storage with the possibility of generating the nanoparticles just before use. In the presence of an acrylate bifunctional monomer, Pd@polymer film was obtained through a ‘one-pot, one-step’ process resulting from a simultaneous photo-reduction of Pd(II) and photo-polymerization of acrylate units. The simultaneous generation of a 3D polymer network and of metal particles leads to a homogeneous distribution of Pd nanoparticles in the photo-polymer matrix with an average diameter of approximately 3.7 ± 1.1 nm. Such as-prepared Pd@polymer films were found to efficiently catalyze the Mizoroki–Heck reaction in the presence of only 0.9 mequiv. of supported palladium. The major interest of this arrangement is its recoverability and reusability, which makes it very attractive both from a practical and economical viewpoint. Finally, it is worth noting that this innovation offers a great advantage over concurrent methods in that it is simply generated within minutes, it is highly stable, and there is sharp monodispersity in the size of the Pd nanoparticles that can be stored for months without alteration of their physico-chemical properties and catalytic activity.

  7. An efficient photochemical route to Pd nanoparticles; application to the one-step synthesis of Pd@polymer nanocomposite films.

    PubMed

    Wolak, Séverine; Vidal, Loïc; Becht, Jean-Michel; Michelin, Laure; Balan, Lavinia

    2016-08-26

    We have developed a facile, efficient, low cost and 'green' photochemical approach to preparing surfactant-free Pd nanoparticles and Pd-immobilized@acrylate photo-polymer films at room temperature, under air and without any additional treatment. The reaction system only includes a photo-initiator used as a generator of free radicals and a Pd(II) salt. In ethanol solution, the photochemical reduction of Pd(II) to Pd(0) generates very small metal particles with a narrow size distribution (2-4 nm). Furthermore, we have shown that the formation of Pd nanoparticles from a Pd(II) salt can be reversible thus allowing easy handling and safe storage with the possibility of generating the nanoparticles just before use. In the presence of an acrylate bifunctional monomer, Pd@polymer film was obtained through a 'one-pot, one-step' process resulting from a simultaneous photo-reduction of Pd(II) and photo-polymerization of acrylate units. The simultaneous generation of a 3D polymer network and of metal particles leads to a homogeneous distribution of Pd nanoparticles in the photo-polymer matrix with an average diameter of approximately 3.7 ± 1.1 nm. Such as-prepared Pd@polymer films were found to efficiently catalyze the Mizoroki-Heck reaction in the presence of only 0.9 mequiv. of supported palladium. The major interest of this arrangement is its recoverability and reusability, which makes it very attractive both from a practical and economical viewpoint. Finally, it is worth noting that this innovation offers a great advantage over concurrent methods in that it is simply generated within minutes, it is highly stable, and there is sharp monodispersity in the size of the Pd nanoparticles that can be stored for months without alteration of their physico-chemical properties and catalytic activity. PMID:27418591

  8. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang

    2015-01-01

    To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.

  9. A Pd/silica composite with highly uniform Pd nanoparticles on silica lamella via layered silicate

    NASA Astrophysics Data System (ADS)

    Hao, Jing; Cui, Zhi-Min; Cao, Chang-Yan; Song, Weiguo

    2016-08-01

    Pd nanoparticles was loaded on silica lamella via layered silicate through a simple ion-exchange and in situ reduction method. The obtained Pd/silica composite has Pd nanoparticles with highly uniform size dispersed well on the silica lamella. The Pd/silica composite is active and recoverable catalyst for the hydrogenation reaction and the reaction can be completed in a short time of 2 h at room temperature and 1 atm H2 pressure.

  10. Nanoparticles of Ag with a Pt and Pd rich surface supported on carbon as a new catalyst for the oxygen electroreduction reaction (ORR) in acid electrolytes: Part 2

    NASA Astrophysics Data System (ADS)

    Pech-Pech, I. E.; Gervasio, Dominic F.; Pérez-Robles, J. F.

    2015-02-01

    In the first part of this work, the feasibility of developing a catalyst with high activity for the oxygen electroreduction reaction (ORR) in acid media and with low Pt loading was demonstrated by over coating a silver (Ag) nanoparticle with a shell of platinum (Pt) and palladium (Pd) [7]. The results show that best activity is not directly related to a higher PtPd loading on the surface of the Ag. The best catalyst in a series of this type of catalyst is found with Ag@Pt0.3Pd0.3/C which gives a specific activity for oxygen reduction, jk (in units of mA cm-2 of real area), of 0.07 mA cm-2 at 0.85 V vs. NHE, as compared to 0.04 mA cm-2 when with a commercial Pt on carbon catalyst (Pt20/C) is used in an identical electrode except for the catalyst. The mass activity, jm (in units of mA μg-1 of Pt), for Ag@Pt0.3Pd0.3/C is 0.04 mA μg-1 of Pt at 0.85 V vs. NHE, whereas that for the Pt20/C gives 0.02 mA μg-1 of Pt, showing Ag@Pt0.3Pd0.3/C is a lower-cost catalyst, because using a Ag core and Pd with Pt in the shell gives the highest catalytic activity using less Pt.

  11. Pt-Decorated PdCo@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction

    SciTech Connect

    Wang, Deli; Xin, Huolin L.; Yu, Yingchao; Wang, Hongsen; Rus, Eric; Muller, David A.; Abruña, Héctor D.

    2010-11-24

    A simple method for the preparation of PdCo@Pd core-shell nanoparticles supported on carbon based on an adsorbate-induced surface segregation effect has been developed. The stability of these PdCo@Pd nanoparticles and their electrocatalytic activity for the oxygen reduction reaction (ORR) were enhanced by decoration with a small amount of Pt deposited via a spontaneous displacement reaction. The facile method described herein is suitable for large-scale, lower-cost production and significantly lowers the Pt loading and thus the cost. The as-prepared PdCo@Pd and Pd-decorated PdCo@Pd nanocatalysts have a higher methanol tolerance than Pt/C in the ORR and are promising cathode catalysts for fuel cell applications.

  12. Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application.

    PubMed

    Zielinska, Beata; Michalkiewicz, Beata; Mijowska, Ewa; Kalenczuk, Ryszard Józef

    2015-12-01

    Pd nanoparticles with different sizes and diameter distributions were successfully deposited on the surface of disordered mesoporous carbon spheres (DMHCS). The size and diameter distribution of the Pd particles were controlled by the application of different experimental conditions. Two methods of synthesis (reflux and impregnation) and two Pd precursors (palladium (II) acetyloacetonate (Pd(acac) 2) and palladium (II) acetate (Pd(OAc)2)) were investigated and compared for the preparation of Pd-decorated DMHCS. The hydrogen storage properties of the pristine DMHCS and Pd-modified DMHCS at 40 °C and a pressure range of 0-45 bar were studied. The results showed that Pd-supported carbon samples synthesized in the presence of Pd(OAc)2 exhibited enhanced hydrogen storage capacity in respect to the pristine DMHCS. The maximum hydrogen storage of 0.38 wt.% exhibited the sample with the Pd nanoparticle diameter distribution of 2-14 nm and the average Pd crystallite size of 7.6 nm. It was found that the Pd nanoparticle content, size, and diameter distribution have a noticeable influence on H2 storage capacity. PMID:26518029

  13. Advances in Pd Nanoparticle Size Decoration of Mesoporous Carbon Spheres for Energy Application

    NASA Astrophysics Data System (ADS)

    Zielinska, Beata; Michalkiewicz, Beata; Mijowska, Ewa; Kalenczuk, Ryszard Józef

    2015-10-01

    Pd nanoparticles with different sizes and diameter distributions were successfully deposited on the surface of disordered mesoporous carbon spheres (DMHCS). The size and diameter distribution of the Pd particles were controlled by the application of different experimental conditions. Two methods of synthesis (reflux and impregnation) and two Pd precursors (palladium (II) acetyloacetonate (Pd (acac ) 2) and palladium (II) acetate (Pd(OAc)2)) were investigated and compared for the preparation of Pd-decorated DMHCS. The hydrogen storage properties of the pristine DMHCS and Pd-modified DMHCS at 40 °C and a pressure range of 0-45 bar were studied. The results showed that Pd-supported carbon samples synthesized in the presence of Pd(OAc)2 exhibited enhanced hydrogen storage capacity in respect to the pristine DMHCS. The maximum hydrogen storage of 0.38 wt.% exhibited the sample with the Pd nanoparticle diameter distribution of 2-14 nm and the average Pd crystallite size of 7.6 nm. It was found that the Pd nanoparticle content, size, and diameter distribution have a noticeable influence on H2 storage capacity.

  14. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  15. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  16. Electronic Structure and Phase Stability of PdPt Nanoparticles.

    PubMed

    Ishimoto, Takayoshi; Koyama, Michihisa

    2016-03-01

    To understand the origin of the physicochemical nature of bimetallic PdPt nanoparticles, we theoretically investigated the phase stability and electronic structure employing the PdPt nanoparticles models consisting of 711 atoms (ca. 3 nm). For the Pd-Pt core-shell nanoparticle, the PdPt solid-solution phase was found to be a thermodynamically stable phase in the nanoparticle as the result of difference in surface energy of Pd and Pt nanoparticles and configurational entropy effect, while it is well known that the Pd and Pt are the immiscible combination in the bulk phase. The electronic structure of nanoparticles is conducted to find that the electron transfer occurs locally within surface and subsurface layers. In addition, the electron transfer from Pd to Pt at the interfacial layers in core-shell nanoparticles is observed, which leads to unique geometrical and electronic structure changes. Our results show a clue for the tunability of the electronic structure of nanoparticles by controlling the arrangement in the nanoparticles. PMID:26862885

  17. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions.

    PubMed

    Boucher, Matthew B; Zugic, Branko; Cladaras, George; Kammert, James; Marcinkowski, Matthew D; Lawton, Timothy J; Sykes, E Charles H; Flytzani-Stephanopoulos, Maria

    2013-08-01

    We report a novel synthesis of nanoparticle Pd-Cu catalysts, containing only trace amounts of Pd, for selective hydrogenation reactions. Pd-Cu nanoparticles were designed based on model single atom alloy (SAA) surfaces, in which individual, isolated Pd atoms act as sites for hydrogen uptake, dissociation, and spillover onto the surrounding Cu surface. Pd-Cu nanoparticles were prepared by addition of trace amounts of Pd (0.18 atomic (at)%) to Cu nanoparticles supported on Al2O3 by galvanic replacement (GR). The catalytic performance of the resulting materials for the partial hydrogenation of phenylacetylene was investigated at ambient temperature in a batch reactor under a head pressure of hydrogen (6.9 bar). The bimetallic Pd-Cu nanoparticles have over an order of magnitude higher activity for phenylacetylene hydrogenation when compared to their monometallic Cu counterpart, while maintaining a high selectivity to styrene over many hours at high conversion. Greater than 94% selectivity to styrene is observed at all times, which is a marked improvement when compared to monometallic Pd catalysts with the same Pd loading, at the same total conversion. X-ray photoelectron spectroscopy and UV-visible spectroscopy measurements confirm the complete uptake and alloying of Pd with Cu by GR. Scanning tunneling microscopy and thermal desorption spectroscopy of model SAA surfaces confirmed the feasibility of hydrogen spillover onto an otherwise inert Cu surface. These model studies addressed a wide range of Pd concentrations related to the bimetallic nanoparticles. PMID:23793350

  18. Enhanced hydrogenation and reduced lattice distortion in size selected Pd-Ag and Pd-Cu alloy nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.; Khan, S. A.

    2013-10-21

    Important correlation between valence band spectra and hydrogenation properties in Pd alloy nanoparticles is established by studying the properties of size selected and monocrystalline Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles. The X-ray photoelectron spectroscopy and elastic recoil detection analysis show that size induced Pd4d centroid shift is related to enhanced hydrogenation with H/Pd ratio of 0.57 and 0.49 in Pd-Ag and Pd-Cu nanoparticles in comparison to reported bulk values of 0.2 and 0.1, respectively. Pd-alloy nanoparticles show lower hydrogen induced lattice distortion. The reduced distortion and higher hydrogen reactivity of Pd-alloy nanoparticles is important for numerous hydrogen related applications.

  19. Synthesis of Pt-Pd bimetallic nanoparticles anchored on graphene for highly active methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuting; Chang, Gang; Shu, Honghui; Oyama, Munetaka; Liu, Xiong; He, Yunbin

    2014-09-01

    A simple, one-step reduction route was employed to synthesize bimetallic Pt-Pd nanoparticles (Pt-PdNPs) supported on graphene (G) sheets, in which the reduction of graphite oxide and metal precursor was carried out simultaneously using ascorbic acid as a soft reductant. The morphology and structure of Pt-PdNPs/G composites were characterized using X-ray diffraction, Transmission Electron Microscopy, Field Emission Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy analysis. The results show that Pt-Pd bimetallic nanoparticles were successfully synthesized and evenly anchored on the graphene sheets. Electrochemical experiments, including cyclic voltammetry and chronoamperometric measurements, were performed to investigate the electrochemical and electrocatalytic properties of the Pt-PdNPs/G composites. It was found that Pt-PdNPs/G composites show better electrocatalytic activity and stability towards the electro-oxidation of methanol than its counterparts such as composites composed of graphene-supported monometallic nanoparticles (PtNPs/G, PdNPs/G) and free-standing (Pt-PdNPs) and Vulcan-supported bimetallic Pt-Pd nanoparticles (Pt-PdNPs/V). The results could be attributed to the synergetic effects of the Pt-Pd nanoparticles and the enhanced electron transfer of graphene. The electrocatalytic activity of Pt-PdNPs/G changed with the Pd content in the Pt-Pd alloy, and the best performance was achieved with a Pt-Pd ratio of 1/3 in an alkaline environment. Our study indicates the potential use of Pt-PdNPs/G as new anode catalyst materials for direct methanol fuel cells.

  20. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  1. In situ oxidation study of Pd-Rh nanoparticles on MgAl₂O₄(001).

    PubMed

    Müller, Patrick; Hejral, Uta; Rütt, Uta; Stierle, Andreas

    2014-07-21

    Alloy nanoparticles on oxide supports are widely used as heterogeneous catalysts in reactions involving oxygen. Here we discuss the oxidation behavior of Pd-Rh alloy nanoparticles on MgAl2O4(001) supports with a particle diameter from 6-11 nm. As an In situ tool, we employed high energy grazing incidence X-ray diffraction at a photon energy of 85 keV. We find that physical vapor deposited Pd-Rh nanoparticles grow epitaxially on MgAl2O4(001) with a truncated octahedral shape over the whole concentration range. During our systematic oxidation experiments performed at 670 K in the pressure range from 10(-3) to 0.1 mbar, we observe for Rh containing nanoparticles the formation of two different Rh oxide phases, namely RhO2 and a spinel-like Rh3O4 phase. PdO formation is only observed for pure Pd nanoparticles. This oxidation induced segregation behavior is also reflected in the oxidation induced enlargement of the average nanoparticle lattice parameter towards to value for pure Pd. Our results have ramifications for the phase separation behavior of alloy nanocatalysts under varying reducing and oxidizing environments. PMID:24894349

  2. Nanoalloying and phase transformations during thermal treatment of physical mixtures of Pd and Cu nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukundan, Vineetha; Yin, Jun; Joseph, Pharrah; Luo, Jin; Shan, Shiyao; Zakharov, Dmitri N.; Zhong, Chuan-Jian; Malis, Oana

    2014-04-01

    Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles are investigated in real time with in situ synchrotron-based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. The combination of metal-support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. At 300 °C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (> 450 °C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals segregated at 300 °C to produce almost pure fcc Cu and Pd phases. Upon further annealing of the mixture on alumina above 600 °C, the two metals interdiffused, forming two distinct disordered alloys of compositions 30% and 90% Pd. The annealing atmosphere also plays a major role in the structural evolution of these bimetallic nanoparticles. The nanoparticles annealed in forming gas are larger than the nanoparticles annealing in helium due to reduction of the surface oxides that promotes coalescence and sintering.

  3. Direct synthesis of graphene nanosheets support Pd nanodendrites for electrocatalytic formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Su-Dong; Chen, Lin

    2015-11-01

    We report a solvothermal method preparation of dendritic Pd nanoparticles (DPNs) and spherical Pd nanoparticles (SPNs) supported on reduced graphene oxide (RGO). Drastically different morphologies of Pd NPs with nanodendritic structures or spherical structures were observed on graphene by controlling the reduction degree of graphene oxide (GO) under mild conditions. In addition to being a commonplace substrate, GO plays a more important role that relies on its surface groups, which serves as a shape-directing agent to direct the dendritic growth. As a result, the obtained DPNs/RGO catalyst exhibits a significantly enhanced electro-catalytic behavior for the oxidation of formic acid compared to the SPNs/RGO catalyst.

  4. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    SciTech Connect

    Shendage, Suresh S. Singh, Abilash S.; Nagarkar, Jayashree M.

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  5. Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM

    NASA Astrophysics Data System (ADS)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren; Skoglundh, Magnus; Helveg, Stig

    2016-06-01

    The coarsening of supported palladium nanoparticles in an oxidizing atmosphere was studied in situ by means of transmission electron microscopy (TEM). Specifically, the Pd nanoparticles were dispersed on a planar and amorphous Al2O3 support and were observed during the exposure to 10 mbar technical air at 650 °C. Time-resolved TEM image series reveal that the Pd nanoparticles were immobile and that a few percent of the nanoparticles grew or shrank, indicating a coarsening process mediated by the Ostwald ripening mechanism. The TEM image contrast suggests that the largest nanoparticles tended to wet the Al2O3 support to a higher degree than the smaller nanoparticles and that the distribution of projected particle sizes consequently broadens by the appearance of an asymmetric tail toward the larger particle sizes. A comparison with computer simulations based on a simple mean-field model for the Ostwald ripening process indicates that the observed change in the particle size distribution can be accounted for by wetting of the Al2O3 support by the larger Pd nanoparticles.

  6. Size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2014-03-28

    In this report, X-ray photoelectron spectroscopy studies have been carried out on Pd, Ag, Cu, Pd-Ag, and Pd-Cu nanoparticles having identical sizes corresponding to mobility equivalent diameters of 60, 40, and 20 nm. The nanoparticles were prepared by the gas phase synthesis method. The effect of size on valence and core levels in metal and alloy nanoparticles has been studied by comparing the values to those with the 60 nm nanoparticles. The effect of alloying has been investigated by comparing the valence and core level binding energies of Pd-Cu and Pd-Ag alloy nanoparticles with the corresponding values for Pd, Ag, and Cu nanoparticles of identical sizes. These effects have been explained in terms of size induced lattice contractions, alloying induced charge transfer, and hybridization effects. The observation of alloying and size induced binding energy shifts in bimetallic nanoparticles is important from the point of view of hydrogen reactivity.

  7. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-05-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  8. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    NASA Astrophysics Data System (ADS)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-08-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  9. Catalytic oxidation of carbon monoxide over supported palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Soni, Keshav Chand; Krishna, R.; Chandra Shekar, S.; Singh, Beer

    2016-01-01

    Catalytic oxidation of CO with ozone had been studied over Al2O3 and SiO2 supported Pd nanoparticles which was synthesized by two different methods. The polyol method mainly resulted in highly dispersed Pd particles on the support, while the impregnation method resulted in agglomeration Pd particles on the support. Supported Pd nanoparticles synthesized from PdCl2 in the presence of poly ( N-vinylpyrrolidone) (PVP) by chemical reduction. The catalysts were characterized by X-ray diffraction, N2 BET surface area, pore size distributions, CO chemisorption, TEM and H2-temperature programmed reduction. The physico-chemical properties were well correlated with activity data. Characterizations of XRD and TEM show that the surface Pd nanoparticles are highly dispersed over Al2O3 and SiO2. The catalytic activity was dependent upon ozone/CO ratio, contact times, and the reaction temperature. The extent of carbon monoxide oxidation was proportional to the catalytically ozone decomposition. The PVP synthesized Pd/A2O3 catalyst had been found to be highly active for complete CO removal at room temperature. The higher activity of the nanocatalyst was attributed to small particle size and higher dispersion of Pd over support.

  10. Hydrodechlorination Catalysis of Pd-on-Au Nanoparticles Varies with Particle Size

    SciTech Connect

    Pretzer, Lori A.; Song, Hyun J.; Fang, Yu-Lun; Zhao, Zhun; Guo, Neng; Wu, Tianpin; Arslan, Ilke; Miller, Jeffrey T.; Wong, Michael S.

    2013-02-01

    The dependence of bimetallic PdAu catalytic activity on the relative ratios of Pd and Au has been theoretically predicted and experimentally observed for a number of reactions. Trichloroethene (TCE), a common carcinogenic solvent that is difficult to remove from contaminated groundwater in many industrialized nations, can be chemically degraded especially rapidly with Au nanoparticles partially coated with Pd ("Pd-on-Au NPs"). These NPs catalyze the room-temperature water-phase TCE hydrodechlorination (HDC) reaction with activities that follow a volcano-shape dependence on Pd surface coverage. The effect of particle size is not known, though. Pd-on-Au NPs synthesized with 3, 7, and 10 nm Au NPs and Pd surface coverages between 0 and 150% were studied in detail. Volcano-shape dependence on Au particle size and Pd surface coverage was observed, with 7 nm Au NPs with a Pd coverage of 60-70% having the highest TCE HDC activity. Extended x-ray absorption fine-structure spectroscopy (EXAFS) revealed the correlation was strongest between catalytic activity and the presence of non-oxidized Pd ensembles of ~2-3 atoms in contact with ~8-10 Au atoms. Isolated Pd atoms and Pd ensembles were visualized for the first time through aberration-corrected scanning transmission electron microscopy (STEM). This study provides the most direct evidence yet for Pd-on-Au NPs containing 2-dimensional Pd ensembles as the active sites for TCE HDC and likely for other chemical reactions. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. This research was supported by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  11. Pd nanoparticles formation inside porous polymeric scaffolds followed by in situ XANES/SAXS

    NASA Astrophysics Data System (ADS)

    Longo, A.; Lamberti, C.; Agostini, G.; Borfecchia, E.; Lazzarini, A.; Liu, W.; Giannici, F.; Portale, G.; Groppo, E.

    2016-05-01

    Simultaneous time-resolved SAXS and XANES techniques were employed to follow in situ the formation of Pd nanoparticles from palladium acetate precursor in two porous polymeric supports: polystyrene (PS) and poly(4-vinyl-pyridine) (P4VP). In this study we have investigated the effect of the use of different reducing agents (H2 and CO) from the gas phase. These results, in conjunction with data obtained by diffuse reflectance IR (DRIFT) spectroscopy and TEM measurements, allowed us to unravel the different roles played by gaseous H2 and CO in the formation of the Pd nanoparticles for both PS and P4VP hosting scaffolds.

  12. Polyethersulfone hollow fiber modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction

    NASA Astrophysics Data System (ADS)

    Emin, C.; Gu, Y.; Remigy, J.-C.; Lahitte, J.-F.

    2015-07-01

    The aim of this work is the synthesis of polymer-stabilized Pd nanoparticles (PdNP) inside a functionalized polymeric porous membrane in order to develop hybrid catalytic membrane reactors and to test them in model metal-catalyzed organic reactions. For this goal, a polymeric membrane support (Polyethersulfone hollow fiber-shaped) was firstly functionalized with an ionogenic polymer (i.e. poly(styrenesulfonate) capable to retain PdNP precursors using an UV photo-grafting method. PdNP were then generated inside the polymeric matrix by chemical reduction of precursor salts (intermatrix synthesis). The catalytic performance of the PdNP catalytic membranes was evaluated using reduction of nitrophenol by sodium borohydride (NaBH4) in water.

  13. Monodispersed bimetallic PdAg nanoparticles with twinned structures: formation and enhancement for the methanol oxidation.

    PubMed

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd₈₀Ag₂₀, Pd₆₅Ag₃₅ and Pd₄₆Ag₅₄ can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd₈₀Ag₂₀ nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  14. Ion beam induced effects on the ferromagnetism in Pd nanoparticles

    SciTech Connect

    Kulriya, P. K.; Mehta, B. R.; Agarwal, D. C.; Agarwal, Kanika; Kumar, Praveen; Shivaprasad, S. M.; Avasthi, D. K.

    2012-06-05

    Present study demonstrates the role of metal-insulator interface and ion irradiation induced defects on the ferromagnetic properties of the non-magnetic materials. Magnetic properties of the Pd nanoparticles(NPs) embedded in the a-silica matrix synthesized using atom beam sputtering technique, were determined using SQUID magnetometry measurements which showed that ferromagnetic response of Pd increased by 3.5 times on swift heavy ion(SHI) irradiation. The ferromagnetic behavior of the as-deposited Pd NPs is due to strain induced by the surrounding matrix and modification in the electronic structure at the Pd-silica interface as revealed by insitu XRD and XPS investigations, respectively. The defects created by the SHI bombardment are responsible for enhancement of the magnetization in the Pd NPs.

  15. Thermally stable nanoparticles on supports

    DOEpatents

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  16. Physico-chemical properties of Pd nanoparticles produced by Pulsed Laser Ablation in different organic solvents

    NASA Astrophysics Data System (ADS)

    Cristoforetti, Gabriele; Pitzalis, Emanuela; Spiniello, Roberto; Ishak, Randa; Giammanco, Francesco; Muniz-Miranda, Maurizio; Caporali, Stefano

    2012-01-01

    Palladium nanoparticles are arousing an increasing interest because of their strong activity in heterogeneous catalysis in a wide range of reactions. Driven by the interest of producing Pd nanoparticles to be deposited for catalysis over hydrophobic supports, we investigated their synthesis via Pulsed Laser Ablation in Liquid in several organic solvents, as acetone, ethanol, 2-propanol, toluene, n-hexane. The colloids were produced by using a Nd:YAG ns laser and without the addition of surfactant agents. The morphology, composition, stability and oxidation state of the obtained nanoparticles were investigated by TEM-EDS analysis, UV-vis spectroscopy, X-ray Photoelectron Spectroscopy and micro-Raman spectroscopy. The results evidence that the nature of the solvent influences both the yield and the physico-chemical properties of the produced nanoparticles. While in acetone and alcohols spheroidal, non aggregated and stable particles are obtained, in case of toluene and n-hexane few unstable particles surrounded by a gel-like material are produced. Raman/XPS measurements suggest the presence of amorphous or graphitic carbon onto crystalline Pd nanoparticles, which could have hindered their growth and determined the observed smaller sizes if compared to nanoparticles produced in water. The stability of Pd colloids obtained in acetone and alcohols was attributed to adsorbed anions like enolates or alcoholates; non polar solvents like toluene and n-hexane, unable to give rise to adsorbed anionic species, cannot provide any stabilization to the palladium nanoparticles. XPS analyses also evidenced a partial oxidation of particles surface, with a ratio Pd2+:Pd0 of 1:2.5 and 1:4 in acetone and ethanol, respectively.

  17. Catalytic hydrodechlorination of trichloroethylene in water with supported CMC-stabilized palladium nanoparticles.

    PubMed

    Zhang, Man; Bacik, Deborah B; Roberts, Christopher B; Zhao, Dongye

    2013-07-01

    In this work, we developed and tested a new class of supported Pd catalysts by immobilizing CMC (carboxymethyl cellulose) stabilized Pd nanoparticles onto alumina support. The alumina supported Pd nanoparticles were able to facilitate rapid and complete hydrodechlorination of TCE (trichloroethylene) without intermediate by-products detected. With a Pd mass loading of 0.33 wt% of the alumina mass, the observed pseudo first order reaction rate constant, k(obs), for the catalyst was increased from 28 to 109 L/min/g when CMC concentration was raised from 0.005 to 0.15 wt%. The activity increase was in accord with an increase of the Pd dispersion (measured via CO chemisorption) from 30.4% to 45.1%. Compared to the commercial alumina supported Pd, which has a lower Pd dispersion of 21%, our CMC-stabilized Pd nanoparticles offered more than 7 times greater activity. Pre-calcination treatment of the supported catalyst resulted in minor drop in activity, yet greatly reduced bleeding (<6%) of the Pd nanoparticles from the support during multiple cycles of applications. The presence of DOM (dissolved organic matter) at up to 10 mg/L as TOC had negligible effect on the catalytic activity. The alumina supported CMC-stabilized Pd nanoparticles may serve as a class of more effective catalysts for water treatment uses. PMID:23726707

  18. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C.M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A.T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-05-01

    We report studies of bimetallic nanoparticles with 15%-16% atomic crystal parameters size mismatch. The degree of alloying was probed in a 2-nm Pt core (smallest attainable core size) of Pt-Ag nanoparticles (completely immiscible in bulk) and 20-nm-diameter Pd-Ag nanowires (completely miscible in bulk). Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical (nanowire) morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd-Ag nanowires alloy similar to previously reported spherical Pd-Ag particles of similar diameter and composition.

  19. A pathway for the growth of core-shell Pt-Pd nanoparticles

    SciTech Connect

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joining together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.

  20. Nitrogen-doped carbon-TiO2 composite as support of Pd electrocatalyst for formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Qin, Yuan-Hang; Li, Yunfeng; Lam, Thomas; Xing, Yangchuan

    2015-06-01

    We report Pd nanoparticles supported on a composite consisting of oxide TiO2 and nitrogen-doped carbon for formic acid oxidation (FAO). The nitrogen-doped carbon-TiO2 (NCx-TiO2) composite support was prepared by a simple polymerization-pyrolysis process using commercial TiO2 nanoparticles (P25). Surface analysis showed that elements of Ti, C, O, and N were present on the composite surface, on which nitrogen existed in both pyridinic and quaternary forms. Pd nanoparticles with a mean size of ca. 4 nm were uniformly deposited on the composite via a polyol process. Electrochemical characterizations showed that the NCx-TiO2-supported Pd particles (Pd/NCx-TiO2) exhibited an electrocatalytic activity towards FAO that almost doubled that of the carbon black-supported Pd particles (Pd/C) with much enhanced electrocatalytic stability. The better performance of the composite supported Pd was attributed to a possible electronic structure modification in the metallic Pd particles and bifunctional effect produced by the NCx-TiO2 composite.

  1. Electrocatalytic reduction of bromate based on Pd nanoparticles uniformly anchored on polyaniline/SBA-15.

    PubMed

    Sun, Chencheng; Deng, Ning; An, Hao; Cui, Hao; Zhai, Jianping

    2015-12-01

    A nano-composite electrocatalyst of Pd nanoparticles (Pd-NPs) anchored on polyaniline (PANI) supported by mesoporous SBA-15 (Pd-NPs/PANI/SBA-15), was synthesized using an in situ chemical method. Transmission electron microscopy showed that the Pd-NPs were homogeneously dispersed. Fourier-transform infrared and X-ray photoelectron spectroscopies confirmed that the Pd-NPs in the metallic state (Pd(0)) were predominantly immobilized on nitrogen sites in the PANI chains. The electrochemical performance of Pd-NPs/PANI/SBA-15 for electrocatalytic reduction of bromate (BrO3(-)) in an acidic medium was investigated by cyclic voltammetry (CV) and amperometric measurement. The reduction peak in the CV curves in the region 0.12 to -0.22V (vs. SCE) corresponded to response of BrO3(-) electroreduction, and the reduction peak current was well fitted linearly to the BrO3(-) concentration. It is proposed that the bromate ions diffuse to the Pd-NPs active sites and then the electrocatalytic reduction occurred with the H(+) doped in PANI. Furthermore, by amperometric measurement, Pd-NPs/PANI/SBA-15 showed relatively high sensitivity with respect to BrO3(-) concentration in the range of 8μmolL(-1) to 40mmolL(-1). Continuous CV for 200 cycles proved that Pd-NPs/PANI/SBA-15 had excellent electrocatalytic stability. These results show that Pd-NPs/PANI/SBA-15 is effective for electrocatalytic reduction of BrO3(-) and has great potential for the fabrication of BrO3(-) electrochemical sensor. PMID:26277081

  2. Observation of Single Pt Nanoparticle Collisions: Enhanced Electrocatalytic Activity on a Pd Ultramicroelectrode.

    PubMed

    Shin, Changhwan; Park, Tae Eun; Park, Changki; Kwon, Seong Jung

    2016-06-01

    Single Pt nanoparticle (NP) collisions on an electrode surface were detected by using an electrocatalytic amplification method with a Pd ultramicroelectrode (UME). Pd is not a preferred material for UMEs for the detection of single Pt NP collisions, because Pd shows similar electrocatalytic activity compared with Pt for hydrazine oxidation, thus resulting in a high background current level. However, a Pt NP colliding on the Pd UME shows greatly enhanced activity compared with a Pt NP on an inert UME, such as a Au UME, which is usually used for the detection of single Pt NP collisions. The use of an electroactive UME material instead of an inert one facilitated the study of single-NP activity on the various solid supports, which is important in many NP applications. PMID:26955784

  3. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR

    NASA Astrophysics Data System (ADS)

    Xiao, Weiping; Zhu, Jing; Han, Lili; Liu, Sufen; Wang, Jie; Wu, Zexing; Lei, Wen; Xuan, Cuijuan; Xin, Huolin L.; Wang, Deli

    2016-08-01

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd8CoZn/C nanoparticles show a substantial enhancement in both the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N2-saturated 0.1 M HClO4 solution, Pd8CoZn@Pt/C shows improved mass activity (2.62 A mg-1Pt) and specific activity (4.76 A m-2total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O2-saturated 0.1 M HClO4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. The results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation.Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8

  4. Support Morphology-Dependent Catalytic Activity of Pd/CeO₂ for Formaldehyde Oxidation.

    PubMed

    Tan, Hongyi; Wang, Jin; Yu, Shuzhen; Zhou, Kebin

    2015-07-21

    To eliminate indoor formaldehyde (HCHO) pollution, Pd/CeO2 catalysts with different morphologies of ceria support were employed. The palladium nanoparticles loaded on {100}-faceted CeO2 nanocubes exhibited much higher activity than those loaded on {111}-faceted ceria nanooctahedrons and nanorods (enclosed by {100} and {111} facets). The HCHO could be fully converted into CO2 over the Pd/CeO2 nanocubes at a GHSV of 10,000 h(-1) and a HCHO inlet concentration of 600 ppm at ambient temperature. The prepared catalysts were characterized by a series of techniques. The HRTEM, ICP-MS and XRD results confirmed the exposed facets of the ceria and the sizes (1-2 nm) of the palladium nanoparticles with loading amounts close to 1%. According to the Pd 3d XPS and H2-TPR results, the status of the Pd-species was dependent on the morphologies of the supports. The {100} facets of ceria could maintain the metallic Pd species rather than the {111} facets, which promoted HCHO catalytic combustion. The Raman and O 1s XPS results revealed that the nanorods with more defect sites and oxygen vacancies were responsible for the easy oxidation of the Pd-species and low catalytic activity. PMID:26120873

  5. Heterostructured Au/Pd-M (M = Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity.

    PubMed

    Lutz, Patrick S; Bae, In-Tae; Maye, Mathew M

    2015-10-14

    The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had high activity attributed to the porous nature of the platinum domains. PMID:26351824

  6. Sonogashira couplings on the surface of montmorillonite-supported Pd/Cu nanoalloys.

    PubMed

    Xu, Wei; Sun, Huaming; Yu, Bo; Zhang, Guofang; Zhang, Weiqiang; Gao, Ziwei

    2014-11-26

    To explore the true identity of palladium-catalyzed Sonogashira coupling reaction, montmorillonite (MMT)-supported transition metal nanoparticles (MMT@M, M=Pd, Cu, Fe, and Ni) were prepared, characterized, and evaluated systematically. Among all MMT@M catalysts, MMT@Pd/Cu showed the highest activity, and it was successfully extended to 20 examples with 57%-97% yields. The morphology characterization of MMT@Pd/Cu revealed that the crystalline bimetallic particles were dispersed on a MMT layer as nanoalloy with diameters ranged from 10 to 11 nm. In situ IR analysis using CO as molecular probe and XPS characterization found that the surface of Pd/Cu particles consisted of both catalytic active sites of Pd(0) and Cu(I). The experiments on the catalytic activities of MMT@M found that Pd/Cu catalyst system exhibited high activity only in nanoalloy form. Therefore, the Pd/Cu nanoalloy was identified as catalyst, on which the interatom Pd/Cu transmetalation between surfaces was proposed to be responsible for its synergistic activity. PMID:25315209

  7. Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity

    NASA Astrophysics Data System (ADS)

    Fang, Youxing; Wang, Erkang

    2013-02-01

    A concise synthesis of Pd nanoparticles encapsulated in a sponge-like carbonaceous support (Pd/C) was achieved by mixing a solution containing water, ethylene glycol and Pd(ii) with diphosphorus pentoxide, leading to excellent catalytic performance of Pd/C towards the reduction of the model aromatic nitro compound.A concise synthesis of Pd nanoparticles encapsulated in a sponge-like carbonaceous support (Pd/C) was achieved by mixing a solution containing water, ethylene glycol and Pd(ii) with diphosphorus pentoxide, leading to excellent catalytic performance of Pd/C towards the reduction of the model aromatic nitro compound. Electronic supplementary information (ESI) available: Materials, CVs experimental section and supplementary materials. See DOI: 10.1039/c3nr34004j

  8. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao; Zhu, Jianbing; Liang, Liang; Liu, Changpeng; Liao, Jianhui; Xing, Wei

    2012-07-01

    The preparation of highly dispersed precious metal catalysts is an important subject for fuel cell applications. Here, using a phosphomolybdic acid (PMo12)-assisted method, a Pd-PMo12/C catalyst with uniform Pd nanoparticles is prepared. The TEM results show that the presence of PMo12 facilitates the formation of uniform Pd particles with an average particle size of 3.2 nm. More importantly, the Pd-PMo12/C catalyst displays an enhanced activity and stability for formic acid electro-oxidation and a better tolerance toward CO poisoning than Pd nanocatalysts prepared with sodium citrate as a stabilizer. A combination of the composition and structure analyses show that the reasons for the improved electro-catalytic activity of the Pd-PMo12/C catalyst involve the metal-support interaction, the richer Pd oxide/hydrous oxide content and the inherent properties of PMo12.

  9. Surfactant-induced postsynthetic modulation of Pd nanoparticle crystallinity.

    SciTech Connect

    Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S.

    2011-02-01

    Modulation of Pd nanoparticle (NP) crystallinity is achieved by switching the surfactants of different binding strengths. Pd NPs synthesized in the presence of weak binding surfactants such as oleylamine possess polyhedral shapes and a polycrystalline nature. When oleylamine is substituted by trioctylphosphine, a much stronger binding surfactant, the particles become spherical and their crystallinity decreases significantly. Moreover, the Pd NPs reconvert their polycrystalline structure when the surfactant is switched back to oleylamine. Through control experiments and molecular dynamics simulation, we propose that this unusual nanocrystallinity transition induced by surfactant exchange was resulted from a counterbalance between the surfactant binding energy and the nanocrystal adhesive energy. The findings represent a novel postsynthetic approach to tailoring the structure and corresponding functional performance of nanomaterials.

  10. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  11. Highly efficient hydrogen generation from methanolysis of ammonia borane on CuPd alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Pengyao; Xiao, Zhengli; Liu, Zhaoyan; Huang, Jiale; Li, Qingbiao; Sun, Daohua

    2015-01-01

    A low-cost and facile route has been developed for the synthesis of monodisperse CuPd nanoparticles with tunable composition. (Scanning transmission electron microscopy-energy-dispersive x-ray spectroscopy) STEM-EDX results verified the structure of the alloy for the obtained nanoparticles. These CuPd nanoparticles supported on carbon were active catalysts for hydrogen generation from the methanolysis of ammonia borane (AB) at room temperature, and their activities were closely related with the compositions. Cu48Pd52 NPs exhibited the highest activity among the tested catalysts. Moreover, their activity can be further improved by thermal annealing at 300 °C under nitrogen flow, with a very high total turnover frequency value of 53.2 min-1. The reusability test indicated that the Cu48Pd52/C catalyst retains 86% of its initial activity and 100% conversion after 8 cycles. The catalyst, which features lost cost and high efficiency, may help move forward the practical application of AB as a sustainable hydrogen storage material.

  12. Pt skin on Pd-Co-Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR.

    PubMed

    Xiao, Weiping; Zhu, Jing; Han, Lili; Liu, Sufen; Wang, Jie; Wu, Zexing; Lei, Wen; Xuan, Cuijuan; Xin, Huolin L; Wang, Deli

    2016-08-21

    Exploring highly active, stable and relatively low-cost nanomaterials for the oxygen reduction reaction (ORR) is of vital importance for the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, a highly active, durable, carbon supported, and monolayer Pt coated Pd-Co-Zn nanoparticle is synthesized via a simple impregnation-reduction method, followed by spontaneous displacement of Pt. By tuning the atomic ratios, we obtain the composition-activity volcano curve for the Pd-Co-Zn nanoparticles and determined that Pd : Co : Zn = 8 : 1 : 1 is the optimal composition. Compared with pure Pd/C, the Pd8CoZn/C nanoparticles show a substantial enhancement in both the catalytic activity and the durability toward the ORR. Moreover, the durability and activity are further enhanced by forming a Pt skin on Pd8CoZn/C nanocatalysts. Interestingly, after 10 000 potential cycles in N2-saturated 0.1 M HClO4 solution, Pd8CoZn@Pt/C shows improved mass activity (2.62 A mg(-1)Pt) and specific activity (4.76 A m(-2)total), which are about 1.4 and 4.4 times higher than the initial values, and 37.4 and 5.5 times higher than those of Pt/C catalysts, respectively. After accelerated stability testing in O2-saturated 0.1 M HClO4 solution for 30 000 potential cycles, the half-wave potential negatively shifts about 6 mV. The results show that the Pt skin plays an important role in enhancing the activity as well as preventing degradation. PMID:27445114

  13. Morphology and oxidation state of ALD-grown Pd nanoparticles on TiO2- and SrO-terminated SrTiO3 nanocuboids

    NASA Astrophysics Data System (ADS)

    Chen, Bor-Rong; George, Cassandra; Lin, Yuyuan; Hu, Linhua; Crosby, Lawrence; Hu, Xianyi; Stair, Peter C.; Marks, Laurence D.; Poeppelmeier, Kenneth R.; Van Duyne, Richard P.; Bedzyk, Michael J.

    2016-06-01

    We employ SrTiO3 nanocuboid single crystals with well-defined (001) surfaces that are synthesized to have either a TiO2- or SrO-terminated surface to investigate the influence of surface termination on the morphology and the chemical property of supported metallic nanoparticles. Using such monodispersed STO nanocuboids allows for practical catalytic reaction studies as well as surface studies comparable to a single crystal model catalyst. Pd nanoparticles were grown by atomic layer deposition, which is able to control the effective coverage, chemical state, and the size of the Pd nanoparticles. The properties of Pd nanoparticles were examined by transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoemission spectroscopy. The morphology and growth pattern for the Pd nanoparticles supported on the SrTiO3 nanocuboids are shown to depend on the surface termination.

  14. Electrodeposition and characterization of Pd nanoparticles doped amorphous hydrogenated carbon films

    NASA Astrophysics Data System (ADS)

    Yu, Yuanlie; Zhang, Junyan

    2009-11-01

    Palladium (0) nanoparticles incorporated hydrogenated amorphous carbon (Pd/a-C:H) films were synthesized on single crystal silicon (100) substrates by electrochemical deposition route using methanol and camphor as carbon source, and Pd nanoparticles as dopant. The characterization results indicate that Pd nanocrystalline particles with diameter in the range of 1-5 nm dispersed in the amorphous carbon matrix. Compared with pure a-C:H films, the introduction of Pd nanoparticles didn't change the structure of carbon films. At the end, the growth mechanism of the Pd/a-C:H composite films was discussed.

  15. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourov; Sahu, Ranjan K.; Retna Raj, C.

    2012-09-01

    We describe the decoration of multiwalled carbon nanotubes (MCNTs) with Pt-Pd alloy nanoelectrocatalysts of three different compositions and their electrocatalytic performance toward the oxygen reduction reaction (ORR). The decoration of the MCNTs involves polymer-assisted impregnation of metal precursors {{PtCl}}_{6}^{2-} and {{PdCl}}_{4}^{2-} and the subsequent reduction of the impregnated precursors by a modified polyol route. The composition of the catalyst was controlled by tuning the molar ratio of the precursors during their impregnation. Electron probe microscopic analysis shows that the catalysts have compositions of Pt46Pd54, Pt64Pd36 and Pt28Pd72. The Pt46Pd54 and Pt64Pd36 catalysts have truncated octahedral and icosahedral shapes with a size ranging from 8 to 10 nm. On the other hand, the catalyst of Pt28Pd72 composition has a spherical/quasispherical shape with a size distribution of 1-2 nm. The XPS measurement confirms the signature of metallic Pt and Pd. The Pt46Pd54 catalyst has a pronounced electrocatalytic activity toward the ORR with a specific and mass activity of 378 ~\\mu {A}~{{cm}}_{{Pt}-{Pd}}^{-2} and 6 4~\\mu {A}~\\mu {{g}}_{{Pt}-{Pd}}^{-1}, respectively at 0.8 V. Moreover, the Pt46Pd54 nanoelectrocatalyst is highly durable and it retains its initial catalytic activity even after 1000 extensive cycles. Interestingly, this catalyst has a very high tolerance toward methanol and it does not favor the oxidation of methanol in the potential window of 0.1-1.4 V. The electrocatalytic activity of the alloy electrocatalyst is compared with commercially available Pt black and MCNT-supported spherical Pt nanoparticles. The catalytic activity of the Pt46Pd54 nanoelectrocatalyst is higher than the other catalysts. The Pt46Pd54 catalyst outperforms the electrocatalytic activity of all other catalysts.

  16. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    SciTech Connect

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  17. Structure and magnetism in Fe/FexPd1-x core/shell nanoparticles formed by alloying in Pd-embedded Fe nanoparticles

    NASA Astrophysics Data System (ADS)

    Baker, S. H.; Lees, M.; Roy, M.; Binns, C.

    2013-09-01

    We have investigated atomic structure and magnetism in Fe nanoparticles with a diameter of 2 nm embedded in a Pd matrix. The samples for these studies were prepared directly from the gas phase by co-deposition, using a gas aggregation source and an MBE-type source for the Fe nanoparticles and Pd matrix respectively. Extended absorption fine structure (EXAFS) measurements indicate that there is an appreciable degree of alloying at the nanoparticle/matrix interface; at dilute nanoparticle concentrations, more than half of the Fe atoms are alloyed with Pd. This leads to a core/shell structure in the embedded nanoparticles, with an FexPd1-x shell surrounding a reduced pure Fe core. Magnetism in the nanocomposite samples was probed by means of magnetometry measurements, which were interpreted in the light of their atomic structure. These point to a magnetized cloud of Pd atoms surrounding the embedded nanoparticles which is significantly larger than around single Fe atoms in Pd. The coercivities in the Fe/Pd nanocomposite samples are larger than in FexPd1-x atomic alloys of corresponding composition, which is consistent with exchange coupling between the magnetically harder and softer regions in the nanocomposite samples.

  18. Structure and reactivity of zero-, two- and three-dimensional Pd supported on SrTiO3(001)

    NASA Astrophysics Data System (ADS)

    Stoltz, S. E.; Ellis, D. E.; Bedzyk, M. J.

    2014-12-01

    Interactions of Pd atoms, films and nanoparticles with a SrTiO3(001) substrate are studied via first principles Density Functional Theory. Effects of the substrate upon structural, electronic and chemical properties of the supported Pd are considered. By comparison of different experimentally observed particle shapes and orientation, and with atomic and planar Pd adsorbates, some detailed understanding is obtained about particle-support interactions. Adsorption of atoms (H, C, O) and small molecules (OH, CO, CH3) is used as a probe of chemical activity of different faces, edges and vertices of the particles.

  19. Polysugar-stabilized Pd nanoparticles exhibiting high catalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene.

    PubMed

    Liu, Juncheng; He, Feng; Durham, Ed; Zhao, Dongye; Roberts, Christopher B

    2008-01-01

    In this paper, we present a straightforward and environmentally friendly aqueous-phase synthesis of small Pd nanoparticles (approximately 2.4 nm under the best stabilization) by employing a "green", inexpensive, and biodegradable/biocompatible polysugar, sodium carboxymethylcellulose (CMC), as a capping agent. The Pd nanoparticles exhibited rather high catalytic activity (observed pseudo-first-order reaction kinetic rate constant, k(obs), is up to 828 L g(-1) min(-1)) for the hydrodechlorination of environmentally deleterious trichloroethene (TCE) in water. Fourier transform IR (FT-IR) spectra indicate that CMC molecules interact with the Pd nanoparticles via both carboxyl (-COO-) and hydroxyl (-OH) groups, thereby functioning to passivate the surface and suppress the growth of the Pd nanoparticles. Hydrodechlorination of TCE using differently sized CMC-capped Pd nanoparticles as catalyst was systematically investigated in this work. Both the catalytic activity (k(obs)) and the surface catalytic activity (turnover frequency, TOF) of these CMC-capped Pd nanoparticles for TCE degradation are highly size-dependent. This point was further verified by a comparison of the catalytic activities and surface catalytic activities of CMC-capped Pd nanoparticles with those of beta-D-glucose-capped Pd and neat Pd nanoparticles for TCE degradation. PMID:18044944

  20. Electrodeposition of Pd Nanowires and Nanorods on Carbon Nanoparticles

    SciTech Connect

    Bliznakov, S.; Vukmirovic, M.; Sutter, E.; Adzic, R.

    2011-06-01

    We report on the method for synthesizing palladium nanowires and nanorods involving the electrodeposition on oxidized amorphous carbon nanoparticles from chloride containing solutions. The effect of the deposition overpotential and the concentration of palladium ions on the morphology of the Pd electrodeposits have been established. Palladium grows predominately in the shape of nanowires if electrodeposited at potentials in the H underpotential deposition potential (UPD) range, where chloride ions are adsorbed only at the edges of nucleated monolayer-thick clusters on the carbon surface. The effect of the concentration of palladium ions on deposits morphology is also discussed. The mechanism of electrodeposition of Pd nanowires and nanorods in the H UPD potential range has been proposed.

  1. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the

  2. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    DOE PAGESBeta

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhancedmore » significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.« less

  3. Heterostructured Au/Pd-M (M = Au, Pd, Pt) nanoparticles with compartmentalized composition, morphology, and electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lutz, Patrick S.; Bae, In-Tae; Maye, Mathew M.

    2015-09-01

    The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had high activity attributed to the porous nature of the platinum domains.The synthesis, processing, and galvanic exchange of three heterostructured nanoparticle systems is described. The surface accessibility and redox potential of a Au/Pd-Ag dumbbell nanoparticle, where a Au/Pd core/shell region, and a silver region make up the domains, was used to prepare the new nanostructures with controlled composition, morphology, and microstructure. Results indicate that the silver domain was particularly susceptible to galvanic displacement, and was exchanged to Au/Pd-M (M = Au, Pd, Pt). Interestingly, the dumbbell morphology remained after exchange, and the silver region was transformed to hollow, parachute, or concentric domains respectively. The morphology and microstructure change was visualized via TEM and HRTEM, and the composition changes were probed via STEM-EDS imaging and XPS. The electrocatalytic activity of the Au/Pd-M towards methanol oxidation was studied, with results indicating that the Au/Pd-Pt nanoparticles had

  4. Effect of post heat-treatment of composition-controlled PdFe nanoparticles for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, Yun Sik; Choi, Kwang-Hyun; Ahn, Docheon; Lee, Myeong Jae; Baik, Jaeyoon; Chung, Dong Young; Kim, Mi-Ju; Lee, Stanfield Youngwon; Kim, Minhyoung; Shin, Heejong; Lee, Kug-Seung; Sung, Yung-Eun

    2016-01-01

    Composition-controlled and carbon-supported PdFe nanoparticles (NPs) were prepared via a modified chemical synthesis after heat-treatment at high temperature under a reductive atmosphere. This novel synthesis, which combines the polyol reduction method and hydride method, was used to obtain monodispersed PdFe NPs. In addition, to induce structural modifications, the as-prepared PdFe NPs received heat-treatment under a reductive atmosphere. Structural characterization, including high-resolution powder diffraction (HRPD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS) analysis, indicated that heat-treated PdFe NPs exhibited a higher degree of alloying and surface Pd atomic composition compared with as-prepared ones. Furthermore, new crystalline phases were detected after heat-treatment. Thanks to the structural alterations, heat-treated PdFe NPs showed ∼3 and ∼18 times higher mass- and area-normalized oxygen reduction reaction (ORR) activities, respectively than commercial Pt/C. Single cell testing with heat-treated PdFe catalysts exhibited a ∼2.5 times higher mass-normalized maximum power density than the reference cell. Surface structure analyses, including cyclic voltammetry (CV), COad oxidation, and XPS, revealed that, after heat-treatment, a downshift of the Pd d-band center occurred, which led to a decrease in the affinity of Pd for oxygen species, resulting in more favorable ORR kinetics.

  5. Water-soluble Pd nanoparticles capped with glutathione: synthesis, characterization, and magnetic properties.

    PubMed

    Sharma, Sachil; Kim, Bit; Lee, Dongil

    2012-11-13

    The synthesis, characterization, and magnetic properties of water-soluble Pd nanoparticles capped with glutathione are described. The glutathione-capped Pd nanoparticles were synthesized under argon and air atmospheres at room temperature. Whereas the former exhibits a bulklike lattice parameter, the lattice parameter of the latter is found to be considerably greater, indicating anomalous lattice expansion. Comparative structural and compositional studies of these nanoparticles suggest the presence of oxygen in the core lattice when Pd nanoparticles are prepared under an air atmosphere. Both Pd nanoparticles prepared under argon and air show ferromagnetism at 5 K, but the latter exhibits significantly greater coercivity (88 Oe) and magnetization (0.09 emu/g at 50 kOe). The enhanced ferromagnetic properties are explained by the electronic effect of the incorporated oxygen that increases the 4d density of holes at the Pd site and localizes magnetic moments. PMID:23092154

  6. Coalescence-induced crystallisation wave in Pd nanoparticles

    PubMed Central

    Grammatikopoulos, Panagiotis; Cassidy, Cathal; Singh, Vidyadhar; Sowwan, Mukhles

    2014-01-01

    Palladium nanoparticles offer an attractive alternative to bulk palladium for catalysis, hydrogen storage and gas sensing applications. Their performance depends strongly on surface structure; therefore, nanoparticle coalescence can play an important role, as it determines the resultant structure of the active sites where reactions (e.g. catalysis) actually take place, i.e. facets, edges, vertices or protrusions. With this in mind, we performed classical molecular dynamics (MD) simulations and magnetron-sputtering inert gas condensation depositions of palladium nanoparticles, supported by high-resolution transmission electron microscopy (HRTEM), to study the mechanisms that govern their coalescence. Surface energy minimisation drove the interactions initially, leading to the formation of an interface/neck, as expected. Intriguingly, at a later stage, atomic rearrangements triggered a crystallisation wave propagating through the amorphous nanoparticles, leading to mono- or polycrystalline fcc structures. In the case of crystalline nanoparticles, almost-epitaxial alignment occurred and the formation of twins and surface protrusions were observed. PMID:25047807

  7. Counting electrons on supported nanoparticles

    NASA Astrophysics Data System (ADS)

    Lykhach, Yaroslava; Kozlov, Sergey M.; Skála, Tomáš; Tovt, Andrii; Stetsovych, Vitalii; Tsud, Nataliya; Dvořák, Filip; Johánek, Viktor; Neitzel, Armin; Mysliveček, Josef; Fabris, Stefano; Matolín, Vladimír; Neyman, Konstantin M.; Libuda, Jörg

    2016-03-01

    Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials.

  8. Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles.

    PubMed

    Ahmadi, M; Behafarid, F; Cuenya, B Roldan

    2016-06-01

    Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ∼6 nm) having lower adhesion energies than smaller NPs (e.g. ∼1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd. PMID:27216883

  9. Core-shell Au@Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell Au@Ag/Pd constructions

    PubMed Central

    Chen, Dong; Li, Chengyin; Liu, Hui; Ye, Feng; Yang, Jun

    2015-01-01

    Core-shell nanoparticles often exhibit improved catalytic properties due to the lattice strain created in these core-shell particles. Herein, we demonstrate the synthesis of core-shell Au@Pd nanoparticles from their core-shell Au@Ag/Pd parents. This strategy begins with the preparation of core-shell Au@Ag nanoparticles in an organic solvent. Then, the pure Ag shells are converted into the shells made of Ag/Pd alloy by galvanic replacement reaction between the Ag shells and Pd2+ precursors. Subsequently, the Ag component is removed from the alloy shell using saturated NaCl solution to form core-shell Au@Pd nanoparticles with an Au core and a Pd shell. In comparison with the core-shell Au@Pd nanoparticles upon directly depositing Pd shell on the Au seeds and commercial Pd/C catalysts, the core-shell Au@Pd nanoparticles via their core-shell Au@Ag/Pd templates display superior activity and durability in catalyzing oxygen reduction reaction, mainly due to the larger lattice tensile effect in Pd shell induced by the Au core and Ag removal. PMID:26144550

  10. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE PAGESBeta

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; Pennycook, Stephen J; Lupini, Andrew R

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  11. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  12. Carbon Nano Tube Supported Pd Catalyst: Effect of Support Textual Properties with Pre-Treatment Method of Pd Particle.

    PubMed

    Ryu, Young Bok; Kim, Ji Sun; Baek, Jae Ho; Kim, Myung Hwan; Kim, Yangdo; Lee, Man Sig

    2015-11-01

    The aim of this work is to be compared the effect of supports textural properties with pre-treatment method on dispersion of Pd particle. The CNTs were functionalized by different concentration of acid in order to obtain materials with different chemical and physical properties. The characteristics of functionalized CNTs were investigated by FT-IR and Rama spectropy. The Pd/CNTs catalysts prepared on support having the different surface properties were characterized by XRD, FE-TEM and CO-chemisorption. When pretreated 8M concentration, the CNTs has the highest amount of oxygen functional group and ID/IG ratio, in this study. Pd/CNT8M has high dispersion and small particle size. From these results, we confirmed that characteristics of Pd/CNTs catalyst such as particle size and dispersion of Pd are influenced by density of oxygen functional group and disorder of CNTs. And we have observed that acid treatment concentration of 8M is sufficient to functionalize the CNTs by introducing -COOH group of CNTs surfaces. PMID:26726641

  13. In-situ deposition of Pd nanoparticles on tubular halloysite template for initiation of metallization.

    PubMed

    Fu, Yubin; Zhang, Lide; Zheng, Jiyong

    2005-04-01

    Halloysite template has a tubular microstructure; its wall has a multi-layer aluminosilicate structure. A new catalytic method is adopted here, through the in-situ reduction of Pd ions on the surface of tubular halloysite by methanol to initiate electroless plating; the detailed deposition features of Pd nanoparticles are investigated for the first time. The results indicate that an in-situ reduction and deposition of Pd occurs at room temperature, in which the halloysite template plays an important role. Impurities in halloysite (such as ferric oxide) influence the formation and distribution of the Pd nanoparticles. The Pd nanoparticles are of a non-spherical shape in most cases, which would be caused by the irregular appearance of halloysite. No intercalation of the nanoparticles occurs between the aluminosilicate layers in the halloysite. The diameter of Pd nanoparticles increases with time; the average diameter ranges from 1 nm to 4 nm. Pd nanoparticles on a halloysite template can catalyze electroless deposition of Ni to prepare a novel nano-sized cermet at low cost. This practicable catalytic method could also be used on other clay substrates for the initiation of metallization. PMID:16004119

  14. Palladium nanoparticles supported on vertically oriented reduced graphene oxide for methanol electro-oxidation.

    PubMed

    Yang, Liming; Tang, Yanhong; Luo, Shenglian; Liu, Chengbin; Song, Hejie; Yan, Dafeng

    2014-10-01

    Reduced graphene oxide (rGO) is a promising support material for nanosized electrocatalysts. However, the conventional stacking arrangement of rGO sheets confines the electrocatalysts between rGO layers, which decreases the number of catalytic sites substantially. We report here a facile synthesis of vertically oriented reduced graphene oxide (VrGO) through cyclic voltammetric electrolysis of graphene oxide (GO) in the presence of Na2 PdCl4 . Experiments without Pd nanoparticles or with a low loading amount of Pd nanoparticles results in the deposition of rGO parallel to the electrodes. The vertical orientation of Pd/rGO nanoflakes causes a remarkable enhancement of the catalytic activity toward methanol electro-oxidation. The mass activity (620.1 A gPd (-1) ) of Pd/VrGO is 1.9 and 6.2 times that of Pd/flat-lying rGO (331.8 A gPd (-1) ) and commercial Pd/C (100.5 A gPd (-1) ), respectively. Furthermore, the Pd/VrGO catalyst shows excellent resistance to CO poisoning. This work provides a simple wet-chemical method for VrGO preparation. PMID:25163894

  15. Shape-directional growth of Pt and Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Leong, G. Jeremy; Ebnonnasir, Abbas; Schulze, Maxwell C.; Strand, Matthew B.; Ngo, Chilan; Maloney, David; Frisco, Sarah L.; Dinh, Huyen N.; Pivovar, Bryan; Gilmer, George H.; Kodambaka, Suneel; Ciobanu, Cristian V.; Richards, Ryan M.

    2014-09-01

    The design and synthesis of shape-directed nanoscale noble metal particles have attracted much attention due to their enhanced catalytic properties and the opportunities to study fundamental aspects of nanoscale systems. As such, numerous methods have been developed to synthesize crystals with tunable shapes, sizes, and facets by adding foreign species that promote or restrict growth on specific sites. Many hypotheses regarding how and why certain species direct growth have been put forward, however there has been no consensus on a unifying mechanism of nanocrystal growth. Herein, we develop and demonstrate the capabilities of a mathematical growth model for predicting metal nanoparticle shapes by studying a well known procedure that employs AgNO3 to produce {111} faceted Pt nanocrystals. The insight gained about the role of auxiliary species is then utilized to predict the shape of Pd nanocrystals and to corroborate other shape-directing syntheses reported in literature. The fundamental understanding obtained herein by combining modeling with experimentation is a step toward computationally guided syntheses and, in principle, applicable to predictive design of the growth of crystalline solids at all length scales (nano to bulk).The design and synthesis of shape-directed nanoscale noble metal particles have attracted much attention due to their enhanced catalytic properties and the opportunities to study fundamental aspects of nanoscale systems. As such, numerous methods have been developed to synthesize crystals with tunable shapes, sizes, and facets by adding foreign species that promote or restrict growth on specific sites. Many hypotheses regarding how and why certain species direct growth have been put forward, however there has been no consensus on a unifying mechanism of nanocrystal growth. Herein, we develop and demonstrate the capabilities of a mathematical growth model for predicting metal nanoparticle shapes by studying a well known procedure that

  16. Counting electrons on supported nanoparticles.

    PubMed

    Lykhach, Yaroslava; Kozlov, Sergey M; Skála, Tomáš; Tovt, Andrii; Stetsovych, Vitalii; Tsud, Nataliya; Dvořák, Filip; Johánek, Viktor; Neitzel, Armin; Mysliveček, Josef; Fabris, Stefano; Matolín, Vladimír; Neyman, Konstantin M; Libuda, Jörg

    2016-03-01

    Electronic interactions between metal nanoparticles and oxide supports control the functionality of nanomaterials, for example, the stability, the activity and the selectivity of catalysts. Such interactions involve electron transfer across the metal/support interface. In this work we quantify this charge transfer on a well-defined platinum/ceria catalyst at particle sizes relevant for heterogeneous catalysis. Combining synchrotron-radiation photoelectron spectroscopy, scanning tunnelling microscopy and density functional calculations we show that the charge transfer per Pt atom is largest for Pt particles of around 50 atoms. Here, approximately one electron is transferred per ten Pt atoms from the nanoparticle to the support. For larger particles, the charge transfer reaches its intrinsic limit set by the support. For smaller particles, charge transfer is partially suppressed by nucleation at defects. These mechanistic and quantitative insights into charge transfer will help to make better use of particle size effects and electronic metal-support interactions in metal/oxide nanomaterials. PMID:26657332

  17. Stabilization of Palladium Nanoparticles on Nanodiamond-Graphene Core-Shell Supports for CO Oxidation.

    PubMed

    Zhang, Liyun; Liu, Hongyang; Huang, Xing; Sun, Xueping; Jiang, Zheng; Schlögl, Robert; Su, Dangsheng

    2015-12-21

    Nanodiamond-graphene core-shell materials have several unique properties compared with purely sp(2) -bonded nanocarbons and perform remarkably well as metal-free catalysts. In this work, we report that palladium nanoparticles supported on nanodiamond-graphene core-shell materials (Pd/ND@G) exhibit superior catalytic activity in CO oxidation compared to Pd NPs supported on an sp(2) -bonded onion-like carbon (Pd/OLC) material. Characterization revealed that the Pd NPs in Pd/ND@G have a special morphology with reduced crystallinity and are more stable towards sintering at high temperature than the Pd NPs in Pd/OLC. The electronic structure of Pd is changed in Pd/ND@G, resulting in weak CO chemisorption on the Pd NPs. Our work indicates that strong metal-support interactions can be achieved on a non-reducible support, as exemplified for nanocarbon, by carefully tuning the surface structure of the support, thus providing a good example for designing a high-performance nanostructured catalyst. PMID:26568172

  18. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  19. Fabrication of Au–Pd nanoparticles/graphene oxide and their excellent catalytic performance

    SciTech Connect

    He, Yongqiang; Zhang, Nana; Zhang, Lei; Gong, Qiaojuan; Yi, Maocong; Wang, Wei; Qiu, Haixia; Gao, Jianping

    2014-03-01

    Graphical abstract: - Highlights: • Au and Pd nanoparticles loaded on GO were fabricated without adding any reducing agents. • The Au–Pd NPs/GO were excellent catalysts for the reduction of 4-nitrophenol. • The Au–Pd NPs/GO showed superior catalytic activity for the Suzuki reaction. • The Au–Pd NPs/GO exhibit good reusability. - Abstract: A simple method to fabricate clean Au–Pd nanoparticles on graphene oxide (Au–Pd NPs/GO) without using any reducing agent or surfactant has been developed. GO simultaneously reduced the Au and Pd precursors to form a stable suspension of the Au–Pd NPs/GO. The nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and inductively coupled plasma. The Au–Pd NPs/GO exhibited catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol and for the Suzuki–Miyaura coupling reaction of chlorobenzene and phenylboronic acid in aqueous media.

  20. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  1. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions.

    PubMed

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-14

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs. PMID:27043428

  2. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Sun, Yu; Hsieh, Yu-Chi; Chang, Li-Chung; Wu, Pu-Wei; Lee, Jyh-Fu

    2015-03-01

    Nanoparticles of PdRu, Pd3Ru, and Pd9Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x = 1/3/9), suggest successful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd9Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1 M aqueous HClO4 solution. Subsequently, the Pd9Ru/C undergoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd9Ru surface (Pd9Ru@Pt). The Pd9Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg-1Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg-1Pt). The mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd9Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.

  3. Chemisorption of CO on Pd particles supported on mica

    NASA Technical Reports Server (NTRS)

    Thomas, M.; Poppa, H.; Dickinson, J. T.; Pound, G. M.

    1978-01-01

    A UHV technique is presented for evaluating the adsorption-desorption properties of UHV vapor-deposited metal particles supported on insulating substrates. Desorption studies of CO from particulate and continuous Pd films supported on mica were performed. The desorption results indicate that: the CO desorption energies from the deposited metals are much lower than those from bulk single crystals; two desorption states exist for the vapor-deposited films; and the lower energy desorption peak of the vapor-deposited films is coverage dependent. Possible reasons for the difference between previously reported CO desorption studies on bulk substrates and the present results are discussed.

  4. Preparation of PdAg and PdAu nanoparticle-loaded carbon black catalysts and their electrocatalytic activity for the glycerol oxidation reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lam, Binh Thi Xuan; Chiku, Masanobu; Higuchi, Eiji; Inoue, Hiroshi

    2015-11-01

    PdAg and PdAu alloy nanoparticle catalysts for the glycerol oxidation reaction (GOR) were prepared at room temperature by a wet method. The molar ratio of the precursors controlled the bulk composition of the PdAg and PdAu alloys, and their surface composition was Ag-enriched and Pd-enriched, respectively. On PdAg-loaded carbon black (PdAg/CB) electrodes, the onset potential of GOR was 0.10-0.15 V more negative than on the Pd/CB electrode due to the electronic effect. The ratio of GOR peak current densities in the backward and forward sweeps of CVs (ib/if) was smaller because of the improved tolerance to the poisoning species. The ratio of the GOR current density at 60 and 5 min (i60/i5) for the PdAg/CB electrodes was higher for more negative potentials than the Pd/CB electrode. In contrast, the PdAu-loaded CB (PdAu/CB) electrodes had an onset potential of GOR similar to the Pd/CB electrode and a higher GOR peak current density owing to the bi-functional effect. However, the ib/if ratio was higher for PdAu/CB because of the increase in ib as the Pd surface was recovered, and the i60/i5 ratio was higher for more positive potentials, similar to the Pd/CB electrode.

  5. Pd supported ordered mesoporous hollow carbon spheres (OMHCS) for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Zielinska, Beata; Michalkiewicz, Beata; Chen, Xuecheng; Mijowska, Ewa; Kalenczuk, Ryszard J.

    2016-03-01

    Two synthesis methods (reflux and impregnation) have been compared for the preparation of Pd supported OMHCS. The hydrogen storage properties of OMHCS and OMHCS@Pd were studied. OMHCS@Pd samples exhibited enhanced hydrogen storage capacity in respect to the pristine OMHCS. The significant differences between the hydrogen storage capacities of OMHCS@Pd produced via reflux and impregnation routes were observed. It was found that among OMHCS@Pd samples, the one with higher surface area and broader Pd particle distribution showed the highest hydrogen sorption properties. The results indicated that reflux doping method is more appropriate for the preparation of OMHCS@Pd with high hydrogen capacity.

  6. Pd2+ reduction and gasochromic properties of colloidal tungsten oxide nanoparticles synthesized by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Tahmasebi Garavand, N.; Mahdavi, S. M.; Iraji zad, A.

    2012-08-01

    Tungsten oxide nanoparticles were fabricated by a pulsed laser ablation method in deionized water using the first harmonic of a Nd:YAG laser ( λ=1064 nm) at three different laser pulse energies (E1 =160, E2 =370 and E3 =500 mJ/pulse), respectively. The aim is to investigate the effect of laser pulse energy on the size distribution and gasochromic property of colloidal nanoparticles. The products were characterized by dynamic light scattering (DLS), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and UV-Vis spectroscopy. The results indicated that WO3 nanoparticles were formed. After ablation, a 0.2 g/l PdCl2 solution was added to activate the solution against hydrogen gas. In this process Pd2+ ions were reduced to deposit fine metallic Pd particles on the surface of tungsten oxide nanoparticles. The gasochromic response was measured by H2 and O2 gases bubbling into the produced colloidal Pd-WO3. The results indicate that the number of unreduced ions (Pd2+) decreases with increasing laser pulse energy; therefore, for colloidal nanoparticles synthesized at the highest laser pulse energy approximately all Pd2+ ions have been reduced. Hence, the gasochromic response for this sample is nearly reversible in all cycles, whereas those due to other samples are not reversible in the first cycle.

  7. Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties.

    PubMed

    Zlotea, Claudia; Campesi, Renato; Cuevas, Fermin; Leroy, Eric; Dibandjo, Philippe; Volkringer, Christophe; Loiseau, Thierry; Férey, Gérard; Latroche, Michel

    2010-03-10

    The metal-organic framework MIL-100(Al) has been used as a host to synthesize Pd nanoparticles (around 2.0 nm) embedded within the pores of the MIL, showing one of the highest metal contents (10 wt %) without degradation of the porous host. Textural properties of MIL-100(Al) are strongly modified by Pd insertion, leading to significant changes in gas sorption properties. The loss of excess hydrogen storage at low temperature can be correlated with the decrease of the specific surface area and pore volume after Pd impregnation. At room temperature, the hydrogen uptake in the composite MIL-100(Al)/Pd is almost twice that of the pristine material. This can be only partially accounted by Pd hydride formation, and a "spillover" mechanism is expected to take place promoting the dissociation of molecular hydrogen at the surface of the metal nanoparticles and the diffusion of monatomic hydrogen into the porosity of the host metal-organic framework. PMID:20155921

  8. Enhanced electrocatalytic activity and stability of Pd3V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction

    SciTech Connect

    Liu, Sufen; Han, Lili; Zhu, Jing; Xiao, Weiping; Wang, Jie; Liu, Hongfang; Xin, Huolin; Wang, Deli

    2015-09-14

    In this study, carbon supported Pd3V bimetallic alloy nanoparticles (Pd3V/C) have been successfully synthesized via a simple impregnation–reduction method, followed by high temperature treatment under a H2 atmosphere. Electrochemical tests reveal that the half-wave potential of Pd3V/C-500 shifts positively 40 mV compared with Pd/C. However, the catalytic activity of Pd3V/C-500 suffers from serious degradation after 1k cycles. By a spontaneous displacement reaction or co-reduction method, a trace amount of Pt was decorated on the surface or inside of the Pd3V/C nanoparticles. The catalytic activity and stability of the Pd3V@Pt/C and Pt-Pd3V/C catalysts for the oxygen reduction reaction (ORR) are enhanced significantly, and are comparable to commercial Pt/C. In addition, the Pt mass activity of Pd3V@Pt/C and Pt-Pd3V/C improves by factors of 10.9 and 6.5 at 0.80 V relative to Pt/C. Moreover, Pt-decorated Pd3V/C nanoparticles show almost no obvious morphology change after durability tests, because the Pt-rich shell plays an important role in preventing degradation.

  9. Study of coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle during heating

    NASA Astrophysics Data System (ADS)

    Nishimura, Y. F.; Hamaguchi, T.; Yamaguchi, S.; Takagi, H.; Dohmae, K.; Nonaka, T.; Nagai, Y.

    2016-05-01

    Local coordination environments around Pd and Pt in a Pd-core Pt-shell nanoparticle (NP) at temperatures ranging from 473 to 873 K was evaluated by utilizing in situ XAFS measurement technique to investigate the temperature range in which a core-shell structure is preserved. The core-shell structure was considered to be kept up to 673 K and start to change at about 773 K. Heating to 873 K accelerated atomic mixing in the core-shell NPs. Catalytic properties of the present Pd-core Pt-shell NP are available in the stoichiometric C3H6-O2 atmosphere at temperatures less than 773 K at most.

  10. Characterization of Na+- beta-Zeolite Supported Pd and Pd Ag Bimetallic Catalysts using EXAFS, TEM and Flow Reactor

    SciTech Connect

    Huang,W.; Lobo, R.; Chen, J.

    2008-01-01

    Flow reactor studies of the selective hydrogenation of acetylene in the presence of ethylene have been performed on Na+ exchanged {beta}-zeolite supported Pd, Ag and PdAg catalysts, as an extension of our previous batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. Results from flow reactor studies show that the PdAg/Na+-{beta}-zeolite bimetallic catalyst has lower activity than Pd/Na+-{beta}-zeolite monometallic catalyst, while Ag/Na+-{beta}-zeolite does not show any activity for acetylene hydrogenation. However, the selectivity for the PdAg bimetallic catalyst is much higher than that for either the Pd catalyst or Ag catalyst. The selectivity to byproduct (ethane) is greatly inhibited on the PdAg bimetallic catalyst as well. The results from the current flow reactor studies confirmed the pervious results from batch reactor studies [W. Huang, J.R. McCormick, R.F. Lobo, J.G. Chen, J. Catal. 246 (2007) 40-51]. In addition, we used transmission electron microscope (TEM), extended X-ray absorption fine structure (EXAFS), and FTIR of CO adsorption to confirm the formation of Pd-Ag bimetallic alloy in the PdAg/Na+-{beta}-zeolite catalyst.

  11. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.

    PubMed

    Huang, Rao; Wen, Yu-Hua; Zhu, Zi-Zhong; Sun, Shi-Gang

    2016-03-30

    Atomic-scale understanding of structures and thermodynamic stability of core-shell nanoparticles is important for both their synthesis and application. In this study, we systematically investigated the structural stability and thermodynamic evolution of core-shell structured Pd-Ni nanoparticles by molecular dynamics simulations. It has been revealed that dislocations and stacking faults occur in the shell and their amounts are strongly dependent on the core/shell ratio. The presence of these defects lowers the structural and thermal stability of these nanoparticles, resulting in even lower melting points than both Pd and Ni monometallic nanoparticles. Furthermore, different melting behaviors have been disclosed in Pd-core/Ni-shell and Ni-core/Pd-shell nanoparticles. These diverse behaviors cause different relationships between the melting temperature and the amount of stacking faults. Our results display direct evidence for the tunable stability of bimetallic nanoparticles. This study provides a fundamental perspective on core-shell structured nanoparticles and has important implications for further tailoring their structural and thermodynamic stability by core/shell ratio or composition controlling. PMID:27003035

  12. Thermal diffusivity of nanofluids containing Au/Pd bimetallic nanoparticles of different compositions.

    PubMed

    Sánchez-Ramírez, J F; Jiménez Pérez, J L; Cruz Orea, A; Gutierrez Fuentes, R; Bautista-Hernández, A; Pal, U

    2006-03-01

    Colloidal suspensions of bimetallic Au/Pd nanoparticles were prepared by simultaneous reduction of the metal ions from their corresponding chloride salts with polymer (PVP) stabilizer. Thermal properties of water containing bimetallic nanoparticles with different nominal compositions (Au/Pd = 12/1, 5/1, 1/1, 1/5) were measured using the mode mismatched dual-beam thermal lens technique to determine the effect of particle composition on the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (water, containing Au/Pd bimetallic nanoparticles) is seen to be strongly dependent on the composition of the particles. The maximum diffusivity was achieved for the nanoparticles with highest Au/Pd molar ratio. A possible mechanism for such high thermal diffusivity of the nanofluids with bimetallic particles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HREM) techniques were used to characterize the Au/Pd bimetallic nanoparticles. PMID:16573121

  13. Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3–Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes

    EPA Science Inventory

    A nanocatalyst comprising ultra-small Pd/PdO nanoparticles (<5 nm) supported on maghemite was prepared by a co-precipitation protocol using inexpensive raw materials and was deployed successfully in various significant synthetic transformations, namely the Heck–Mizoroki olefinati...

  14. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    DOE PAGESBeta

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic -more » oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria« less

  15. The influence of nano-architectured CeOx supports in RhPd/CeO₂ for the catalytic ethanol steam reforming reaction

    SciTech Connect

    Divins, N. J.; Senanayake, S. D.; Casanovas, A.; Xu, W.; Trovarelli, A.; Llorca, J.

    2015-01-19

    The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO₂ cubes and CeO₂ rods tailored towards the production of hydrogen. At 650-700 K the hydrogen yield follows the trend RhPd/CeO₂-cubes > RhPd/CeO₂ -rods > RhPd/CeO₂- polycrystalline, whereas at temperatures higher than 800 K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO₂-cubes and RhPd/CeO₂ -rods for ESR at low temperature is mainly ascribed to higher water-gas shift activity and a strong interaction between the bimetallic - oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria

  16. Synthesis and Microstructural Investigations of Organometallic Pd(II) Thiol-Gold Nanoparticles Hybrids

    PubMed Central

    2008-01-01

    In this work the synthesis and characterization of gold nanoparticles functionalized by a novel thiol-organometallic complex containing Pd(II) centers is presented. Pd(II) thiol,trans, trans-[dithiolate-dibis(tributylphosphine)dipalladium(II)-4,4′-diethynylbiphenyl] was synthesized and linked to Au nanoparticles by the chemical reduction of a metal salt precursor. The new hybrid made of organometallic Pd(II) thiol-gold nanoparticles, shows through a single S bridge a direct link between Pd(II) and Au nanoparticles. The size-control of the Au nanoparticles (diameter range 2–10 nm) was achieved by choosing the suitable AuCl4−/thiol molar ratio. The size, strain, shape, and crystalline structure of these functionalized nanoparticles were determined by a full-pattern X-ray powder diffraction analysis, high-resolution TEM, and X-ray photoelectron spectroscopy. Photoluminescence spectroscopy measurements of the hybrid system show emission peaks at 418 and 440 nm. The hybrid was exposed to gaseous NOxwith the aim to evaluate the suitability for applications in sensor devices; XPS measurements permitted to ascertain and investigate the hybrid –gas interaction. PMID:21350592

  17. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd-Au bimetallic nanoparticle tubes.

    PubMed

    Cui, Chun-Hua; Yu, Jin-Wen; Li, Hui-Hui; Gao, Min-Rui; Liang, Hai-Wei; Yu, Shu-Hong

    2011-05-24

    The interface, which formed in a bimetallic system, is a critical issue to investigate the fundamental mechanism of enhanced catalytic activity. Here, we designed unsupported Pd-Au bimetallic nanoparticle tubes with a tunable interface, which was qualitatively controlled by the proportion of Pd and Au nanoparticles (NPs), to demonstrate the remarkably enhanced effect of Pd and Au NPs in electro-oxidation of ethanol. The results demonstrated that the electrocatalytic activity is highly relative to the interface and has no direct relation with individual metal component in the Pd-Au system. This effect helps us in achieving a fundamental understanding of the relationship between their activity and the interface structure and chemical properties and, consequently, is helpful in designing new catalysts with high performances. PMID:21506570

  18. G6PD testing in support of treatment and elimination of malaria: recommendations for evaluation of G6PD tests

    PubMed Central

    2013-01-01

    Malaria elimination will be possible only with serious attempts to address asymptomatic infection and chronic infection by both Plasmodium falciparum and Plasmodium vivax. Currently available drugs that can completely clear a human of P. vivax (known as “radical cure”), and that can reduce transmission of malaria parasites, are those in the 8-aminoquinoline drug family, such as primaquine. Unfortunately, people with glucose-6-phosphate dehydrogenase (G6PD) deficiency risk having severe adverse reactions if exposed to these drugs at certain doses. G6PD deficiency is the most common human enzyme defect, affecting approximately 400 million people worldwide. Scaling up radical cure regimens will require testing for G6PD deficiency, at two levels: 1) the individual level to ensure safe case management, and 2) the population level to understand the risk in the local population to guide Plasmodium vivax treatment policy. Several technical and operational knowledge gaps must be addressed to expand access to G6PD deficiency testing and to ensure that a patient’s G6PD status is known before deciding to administer an 8-aminoquinoline-based drug. In this report from a stakeholder meeting held in Thailand on October 4 and 5, 2012, G6PD testing in support of radical cure is discussed in detail. The focus is on challenges to the development and evaluation of G6PD diagnostic tests, and on challenges related to the operational aspects of implementing G6PD testing in support of radical cure. The report also describes recommendations for evaluation of diagnostic tests for G6PD deficiency in support of radical cure. PMID:24188096

  19. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offers a general approach to enhance Pd catalysis in acid for ORB.

  20. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGESBeta

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offersmore » a general approach to enhance Pd catalysis in acid for ORB.« less

  1. Green Synthesis of Fe and Fe/Pd Bimetallic Nanoparticles in Membranes for Reductive Degradation of Chlorinated Organics

    PubMed Central

    Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D.

    2011-01-01

    Membranes containing reactive nanoparticles (Fe and Fe/Pd) immobilized in a polymer film (polyacrylic acid, PAA-coated polyvinylidene fluoride, PVDF membrane) are prepared by a new method. In the present work a biodegradable, non-toxic -“green” reducing agent, green tea extract was used for nanoparticle (NP) synthesis, instead of the well-known sodium borohydride. Green tea extract contains a number of polyphenols that can act as both chelating/reducing and capping agents for the nanoparticles. Therefore, the particles are protected from oxidation and aggregation, which increases their stability and longevity. The membrane supported NPs were successfully used for the degradation of a common and highly important pollutant, trichloroethylene (TCE). The rate of TCE degradation was found to increase linearly with the amount of Fe immobilized on the membrane, the surface normalized rate constant (kSA) being 0.005 L/m2h. The addition of a second catalytic metal, Pd, to form bimetallic Fe/Pd increased the kSA value to 0.008 L/m2h. For comparison purposes, Fe and Fe/Pd nanoparticles were synthesized in membranes using sodium borohydride as a reducing agent. Although the initial kSA values for this case (for Fe) are one order of magnitude higher than the tea extract synthesized NPs, the rapid oxidation reduced their reactivity to less than 20 % within 4 cycles. For the green tea extract NPs, the initial reactivity in the membrane domain was preserved even after 3 months of repeated use. The reactivity of TCE was verified with “real” water system. PMID:22228920

  2. PdNi hollow nanoparticles for improved electrocatalytic oxygen reduction in alkaline environments.

    PubMed

    Wang, Meng; Zhang, Weimin; Wang, Jiazhao; Wexler, David; Poynton, Simon D; Slade, Robert C T; Liu, Huakun; Winther-Jensen, Bjorn; Kerr, Robert; Shi, Dongqi; Chen, Jun

    2013-12-11

    Palladium-nickel (PdNi) hollow nanoparticles were synthesized via a modified galvanic replacement method using Ni nanoparticles as sacrificial templates in an aqueous medium. X-ray diffraction and transmission electron microscopy show that the as-synthesized nanoparticles are alloyed nanostructures and have hollow interiors with an average particle size of 30 nm and shell thickness of 5 nm. Compared with the commercially available Pt/C or Pd/C catalysts, the synthesized PdNi/C has superior electrocatalytic performance towards the oxygen reduction reaction, which makes it a promising electrocatalyst for alkaline anion exchange membrane fuel cells and alkali-based air-batteries. The electrocatalyst is finally examined in a H2/O2 alkaline anion exchange membrane fuel cell; the results show that such electrocatalysts could work in a real fuel cell application as a more efficient catalyst than state-of-the-art commercially available Pt/C. PMID:24199836

  3. Hydrogen sensing with optical microfibers coated with Pd/Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Monzón-Hernández, David; Luna-Moreno, Donato; Martínez-Escobar, Dalia; Villatoro, Joel

    2010-10-01

    Optical microfibers decorated with PdAu nanoparticles are proposed for fast hydrogen sensing. The microfibers were obtained by simply tapering conventional telecommunications fiber down to dimensions comparable to the wavelength of the guided light. A few millimeters of the microfiber were coated with a PdAu layer in island form by depositing the layer at low evaporation rate (0.1 Å/s). Then the islands were grown with a thermal annealing process until composite nanoparticles were formed. The PdAu nanoparticles deposited on the optical microfibers experience optical and physical changes when they exposed to hydrogen. This gives rise to reversible transmission changes with an unusual pulsed like behavior which is attributed to scattering of the guided light. The devices are promising for detecting low concentrations of hydrogen (up to 8%) at room temperature with response and recovery times on the order of seconds.

  4. Development of a highly active electrocatalyst via ultrafine Pd nanoparticles dispersed on pristine graphene.

    PubMed

    Zhao, Jian; Liu, Zhensheng; Li, Hongqi; Hu, Wenbin; Zhao, Changzhi; Zhao, Peng; Shi, Donglu

    2015-03-01

    A unique synthesis was developed to immobilize Pd nanoparticles on pristine graphene (PG) sheets via a facile supercritical carbon dioxide route. Pristine graphene was obtained by sonication-assisted exfoliation of graphite in an organic solvent. Finely dispersed worm-like Pd nanoparticles are homogeneously deposited on the hydrophobic graphene surfaces. The combination of pristine graphene sheets and well-dispersed Pd nanoparticles provided large electrochemically active surface areas (ECSA) for both direct formic acid fuel cell (DFAFC) and methanol fuel cell (DMFC). The ECSA values are more than twice as large as those of reduced graphene oxide and carbon nanotube based counterparts or six times those of conventional XC-72 carbon black. Significant enhancements were also observed in the electrocatalytic activity and stability measurements. The excellent electrochemical property of Pd/PG is attributable to the well-preserved graphene structure that ensures electrical conductivity and stability of the composite. Its large surface area also allows for the deposition of small size and high dispersion of the Pd nanoparticles. This straightforward synthesis offers a new pathway for developing highly active electrocatalysts based on pristine graphene with fully optimized properties. PMID:25692321

  5. Structural studies of Au-Pd bimetallic nanoparticles by a genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Shao, Gui-Fang; Tu, Na-Na; Liu, Tun-Dong; Xu, Liang-You; Wen, Yu-Hua

    2015-06-01

    Metallic nanoparticles have attracted particular interests due to their excellent electronic, catalytic and optical properties over the past decades. Atomic-level understanding of structural characteristics of metallic nanoparticles is of great importance for their syntheses and applications because the structural characteristics strongly determine their chemical and physical properties. In this article, we systematically investigated the structural stability and structural features of Au-Pd nanoparticles by using the genetic algorithm with the quantum correction Sutton-Chen potentials. Layered coordinate ranking method and an effective fitness function have been introduced into the genetic algorithm to enhance its searching ability of low-energy configurations. Here were addressed eight representative nanoshapes including single-crystalline and multiple-twinned structures. The results reveal that the developed genetic algorithm exhibits superior searching ability. In all polyhedra, the truncated octahedron possessed the best stability, while the icosahedron did the worst. Moreover, segregation of Au to the surface and that of Pd to the core were disclosed in these polyhedral Au-Pd nanoparticles. Particularly, for Au composition of 50%, the optimized structures of Au-Pd nanoparticles were predicted to exhibit core-shell structures.

  6. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    SciTech Connect

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  7. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR

    DOE PAGESBeta

    Johnson, Robert L.; Perras, Frédéric A.; Kobayashi, Takeshi; Schwartz, Thomas J.; Dumesic, James A.; Shanks, Brent H.; Pruski, Marek

    2015-11-20

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticles. In addition, by offering >2500-fold time savings, the technique enabled the observation of 13C-13C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface.

  8. Identifying low-coverage surface species on supported noble metal nanoparticle catalysts by DNP-NMR.

    PubMed

    Johnson, Robert L; Perras, Frédéric A; Kobayashi, Takeshi; Schwartz, Thomas J; Dumesic, James A; Shanks, Brent H; Pruski, Marek

    2016-01-31

    DNP-NMR spectroscopy has been applied to enhance the signal for organic molecules adsorbed on γ-Al2O3-supported Pd nanoparticle catalysts. By offering >2500-fold time savings, the technique enabled the observation of (13)C-(13)C cross-peaks for low coverage species, which were assigned to products from oxidative degradation of methionine adsorbed on the nanoparticle surface. PMID:26675287

  9. The effect of external magnetic fields on the catalytic activity of Pd nanoparticles in Suzuki cross-coupling reactions

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Wang, Changlai; Li, Ren; Li, Ran; Chen, Qianwang

    2016-04-01

    Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the adsorption system, which is beneficial to the reaction. From the analysis of the partial density states, it could be seen that the 2p orbital of the carbon atom in bromobenzene and the 4d orbital of the Pd atom overlap more closely in the presence of MFs, which is beneficial for the electron transfer from the Pd substrate to the bromobenzene molecule. This study is helpful in understanding the interaction between MFs and catalysts and regulating the process of catalytic reactions via MFs.Pd nanoparticles supported on Co3[Co(CN)6]2 nanoparticles (marked as Pd@Co3[Co(CN)6]2 nanoparticles) were prepared as catalysts for the Suzuki cross-coupling reaction under external magnetic fields (MFs). It is shown that a weak external MF can increase the rate of the Suzuki cross-coupling reaction at room temperature, and with the increase of the strength of external MFs the reaction rate also increased. At 30 °C, the yield was increased by nearly 50% under a 0.5 T external MF after 24 hours compared to that without a MF applied. Theoretical calculations revealed that the adsorption energy changed from -1.07 to -1.12 eV in the presence of MFs, which increased by 5% compared with the absence of MFs, leading to a lower total energy of the

  10. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting AuPD on oxygen functionalized carbon nanofibers

    DOE PAGESBeta

    Villa, Alberto; Freakley, Simon J.; Schiavoni, Marco; Edwards, Jennifer K.; Hammond, Ceri; Wang, Wu; Wang, Di; Prati, Laura; Dimitratos, Nikolaos; Hutchings, Graham J.; et al

    2015-12-03

    In this work, we show that the introduction of acidic oxygen functionalities to the surface of carbon nanofibers serves to depress the hydrogenation and the decomposition of hydrogen peroxide during the direct synthesis of H2O2. Furthermore, the presence of acidic groups enhances the H2O2 productivity in the case of supported AuPd nanoparticles.

  11. Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Panpan; Li, Feng; Ma, Jianxin; Liu, Yang; Zhang, Xueyao; Huo, Hongfei; Jin, Jun; Ma, Jiantai

    2016-01-01

    The catalytic activity of noble-metal nanoparticles (NPs) often has closely connection with their sizes and geometric shape. In the work, polyhedral NPs of palladium (Pd) with controlled sizes, shapes, and different proportions of {100} to {111} facets on the surface were prepared by a seed-mediated approach. Electrochemical experiment demonstrates that the catalytic performance of the Pd nanocubes (NCs) enclosed by {100} facets is more active than Pd octahedrons enclosed by {111} facets for the hydrogen evolution reaction (HER), which is consistent with density functional theory (DFT) calculation results. Meanwhile, with the assistance of a polyethyleneimine-reduced graphene oxide (PEI-rGO) support, the examined Pd cube/PEI-rGO50:1 (10 wt. %) electrocatalyst presents outstanding HER activity comparable with that of commercial Pt/C catalyst. This correlation between the HER catalytic activity and surface structure will contribute to the reasonable design of Pd catalysts for HER with high efficiency and low metal loading.

  12. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II.

    PubMed

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2016-02-13

    To reduce cost and enhance reactivity, bimetallic Fe/Pd nanoparticles (NPs) were firstly synthesized using grape leaf aqueous extract to remove Orange II. Green synthesized bimetallic Fe/Pd NPs (98.0%) demonstrated a far higher ability to remove Orange II in 12h compared to Fe NPs (16.0%). Meanwhile, all precursors, e.g., grape leaf extract, Fe(2+) and Pd(2+), had no obvious effect on removing Orange II since less than 2.0% was removed. Kinetics study revealed that the removal rate fitted well to the pseudo-first-order reduction and pseudo-second-order adsorption model, meaning that removing Orange II via Fe/Pd NPs involved both adsorption and catalytic reduction. The remarkable stability of Fe/Pd NPs showed the potential application for removing azo dyes. Furthermore, Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) confirmed the changes in Fe/Pd NPs before and after reaction with Orange II. High Performance Liquid Chromatography-Mass Spectrum (HPLC-MS) identified the degraded products in the removal of Orange II, and finally a removal mechanism was proposed. This one-step strategy using grape leaf aqueous extract to synthesize Fe/Pd NPs is simple, cost-effective and environmentally benign, making possible the large-scale production of Fe/Pd NPs for field remediation. PMID:26530891

  13. Ordered PdCu-Based Nanoparticles as Bifunctional Oxygen-Reduction and Ethanol-Oxidation Electrocatalysts.

    PubMed

    Jiang, Kezhu; Wang, Pengtang; Guo, Shaojun; Zhang, Xu; Shen, Xuan; Lu, Gang; Su, Dong; Huang, Xiaoqing

    2016-07-25

    The development of superior non-platinum electrocatalysts for enhancing the electrocatalytic activity and stability for the oxygen-reduction reaction (ORR) and liquid fuel oxidation reaction is very important for the commercialization of fuel cells, but still a great challenge. Herein, we demonstrate a new colloidal chemistry technique for making structurally ordered PdCu-based nanoparticles (NPs) with composition control from PdCu to PdCuNi and PtCuCo. Under the dual tuning on the composition and intermetallic phase, the ordered PdCuCo NPs exhibit better activity and much enhanced stability for ORR and ethanol-oxidation reaction (EOR) than those of disordered PdCuM NPs, the commercial Pt/C and Pd/C catalysts. The density functional theory (DFT) calculations reveal that the improved ORR activity on the PdCuM NPs stems from the catalytically active hollow sites arising from the ligand effect and the compressive strain on the Pd surface owing to the smaller atomic size of Cu, Co, and Ni. PMID:27253520

  14. Supports and modified nano-particles for designing model catalysts.

    PubMed

    O'Brien, C P; Dostert, K-H; Hollerer, M; Stiehler, C; Calaza, F; Schauermann, S; Shaikhutdinov, S; Sterrer, M; Freund, H-J

    2016-07-01

    In order to design catalytic materials, we need to understand the essential causes for material properties resulting from its composite nature. In this paper we discuss two, at first sight, diverse aspects: (a) the effect of the oxide-metal interface on metal nanoparticle properties and (b) the consequences of metal particle modification after activation on the selectivity of hydrogenation reactions. However, these two aspects are intimately linked. The metal nanoparticle's electronic structure changes at the interface as a catalyst is brought to different reaction temperatures due to morphological modifications in the metal and, as we will discuss, these changes in the chemistry lead to changes in the reaction path. As the morphology of the particle varies, facets of different orientations and sizes are exposed, which may lead to a change in the surface chemistry as well. We use two specific reactions to address these issues in some detail. To the best of our knowledge, the present paper reports the first observations of this kind for well-defined model systems. The changes in the electronic structure of Au nanoparticles due to their size and interaction with a supporting oxide are revealed as a function of temperature using CO2 activation as a probe. The presence of spectator species (oxopropyl), formed during an activation step of acrolein hydrogenation, strongly controls the selectivity of the reaction towards hydrogenation of the unsaturated C[double bond, length as m-dash]O bond vs. the C[double bond, length as m-dash]C bond on Pd(111) when compared with oxide-supported Pd nanoparticles. PMID:27064816

  15. Influence of support morphology on the bonding of molecules to nanoparticles

    PubMed Central

    Yim, Chi Ming; Pang, Chi L.; Hermoso, Diego R.; Dover, Coinneach M.; Muryn, Christopher A.; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Pérez, Rubén; Thornton, Geoff

    2015-01-01

    Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO–metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation. PMID:26080433

  16. Influence of support morphology on the bonding of molecules to nanoparticles.

    PubMed

    Yim, Chi Ming; Pang, Chi L; Hermoso, Diego R; Dover, Coinneach M; Muryn, Christopher A; Maccherozzi, Francesco; Dhesi, Sarnjeet S; Pérez, Rubén; Thornton, Geoff

    2015-06-30

    Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO-metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation. PMID:26080433

  17. Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles.

    PubMed

    Vidal-Iglesias, Francisco J; Arán-Ais, Rosa M; Solla-Gullón, José; Garnier, Emmanuel; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2012-08-01

    The electrocatalytic properties of palladium nanocubes towards the electrochemical oxidation of formic acid were studied in H(2)SO(4) and HClO(4) solutions and compared with those of spherical Pd nanoparticles. The spherical and cubic Pd nanoparticles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The intrinsic electrocatalytic properties of both nanoparticles were shown to be strongly dependent on the amount of metal deposited on the gold substrate. Thus, to properly compare the activity of both systems (spheres and nanocubes), the amount of sample has to be optimized to avoid problems due to a lower diffusion flux of reactants in the internal parts of the catalyst layer resulting in a lower apparent activity. Under the optimized conditions, the activity of the spheres and nanocubes was very similar between 0.1 and 0.35 V. From this potential value, the activity of the Pd nanocubes was remarkably higher. This enhanced electrocatalytic activity was attributed to the prevalence of Pd(100) facets in agreement with previous studies with Pd single crystal electrodes. The effect of HSO(4)(-)/SO(4)(2-) desorption-adsorption was also evaluated. The activity found in HClO(4) was significantly higher than that obtained in H(2)SO(4) in the whole potential range. PMID:22722609

  18. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    PubMed

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air. PMID:26477631

  19. High-performance flexible hydrogen sensor made of WS2 nanosheet–Pd nanoparticle composite film

    NASA Astrophysics Data System (ADS)

    Kuru, Cihan; Choi, Duyoung; Kargar, Alireza; Liu, Chin Hung; Yavuz, Serdar; Choi, Chulmin; Jin, Sungho; Bandaru, Prabhakar R.

    2016-05-01

    We report a flexible hydrogen sensor, composed of WS2 nanosheet–Pd nanoparticle composite film, fabricated on a flexible polyimide substrate. The sensor offers the advantages of light-weight, mechanical durability, room temperature operation, and high sensitivity. The WS2–Pd composite film exhibits sensitivity (R 1/R 2, the ratio of the initial resistance to final resistance of the sensor) of 7.8 to 50 000 ppm hydrogen. Moreover, the WS2–Pd composite film distinctly outperforms the graphene–Pd composite, whose sensitivity is only 1.14. Furthermore, the ease of fabrication holds great potential for scalable and low-cost manufacturing of hydrogen sensors.

  20. Long-range chemical orders in Au-Pd nanoparticles revealed by aberration-corrected electron microscopy.

    PubMed

    Nelayah, Jaysen; Nguyen, Nhat Tai; Alloyeau, Damien; Wang, Guillaume Yangshu; Ricolleau, Christian

    2014-09-01

    Despite the importance of gold-palladium nanoalloys in heterogeneous catalysis, the phase stability of Au-Pd alloys still remains unclear. We report here on the alloying and chemical ordering in epitaxially-grown and post-annealed gold-palladium nanoparticles (NPs) using aberration-corrected transmission electron microscopy. Au-Pd NPs with a controlled size, composition and structure were grown by pulsed laser deposition on freshly-cleaved NaCl(001) single crystals heated at 300 °C. After transfer to an amorphous carbon support, the NPs were annealed in vacuum at elevated temperatures above 400 °C for a few hours (6-10 hours) to promote chemical ordering. The as-grown NPs were mostly monocrystalline with a chemically-disordered face-centered cubic structure. Upon high-temperature annealing, a high degree of chemical ordering was observed in nanometer-sized NPs. Electron microscopy measurements showed that both L10 and L12 orders are stabilized in the Au-rich region of the Au-Pd phase diagram. These ordered phases exist at temperatures as high as 600 °C. Moreover, compositional analysis of single annealed particles revealed that the observed chemical ordering occurs in parallel to a two-tiered Ostwald ripening process. Due to this ripening process, a clear dependence between chemical composition and particle size is established during annealing with an enrichment in Pd as the NPs grow in size. Our results, besides clarifying some controversial aspects about long-range order in Au-Pd alloys, shed light on the structural stability of Au-Pd nanoalloys at elevated temperatures. PMID:25079393

  1. Electroreductive dechlorination of chlorophenols with Pd catalyst supported on solid electrode.

    PubMed

    Caixia; Matsunaga, Atsushi; Tezuka, Meguru

    2013-12-01

    Electroreductive dechlorination of chlorophenols with Pd catalyst supported on solidelectrode was studied. As solid electrodes, carbon cloth (CC), carbon felt (CF) and titanium mesh were used, and palladium was plated on solid electrodes by either electrolytic or electroless method. On each electrode with Pd, chlorophenols were qualitatively dechlorinated to phenol, while they were entirely intact on electrodes without Pd. Moreover, neither base electrode nor plating method significantly affected the activity of Pd as far as it was sufficiently loaded on the electrode. Based on the results in the experiments using one electrode repeatedly, Pd catalyst proved to possess a satisfactory duarability under the present condition. It was suggested that the reactive species responsinble for the dechlorination of chlorophenols could be formed during preliminary electrolysis. Thus, (Pd)x-H resulting from the adsorption of electrogenerated hydrogen on metallic Pd might be assumed most probable. PMID:25078820

  2. Structural optimization of Pt-Pd alloy nanoparticles using an improved discrete particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Shao, Gui-Fang; Wang, Ting-Na; Liu, Tun-Dong; Chen, Jun-Ren; Zheng, Ji-Wen; Wen, Yu-Hua

    2015-01-01

    Pt-Pd alloy nanoparticles, as potential catalyst candidates for new-energy resources such as fuel cells and lithium ion batteries owing to their excellent reactivity and selectivity, have aroused growing attention in the past years. Since structure determines physical and chemical properties of nanoparticles, the development of a reliable method for searching the stable structures of Pt-Pd alloy nanoparticles has become of increasing importance to exploring the origination of their properties. In this article, we have employed the particle swarm optimization algorithm to investigate the stable structures of alloy nanoparticles with fixed shape and atomic proportion. An improved discrete particle swarm optimization algorithm has been proposed and the corresponding scheme has been presented. Subsequently, the swap operator and swap sequence have been applied to reduce the probability of premature convergence to the local optima. Furthermore, the parameters of the exchange probability and the 'particle' size have also been considered in this article. Finally, tetrahexahedral Pt-Pd alloy nanoparticles has been used to test the effectiveness of the proposed method. The calculated results verify that the improved particle swarm optimization algorithm has superior convergence and stability compared with the traditional one.

  3. Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere

    NASA Astrophysics Data System (ADS)

    Steinhauer, Stephan; Singh, Vidyadhar; Cassidy, Cathal; Gspan, Christian; Grogger, Werner; Sowwan, Mukhles; Köck, Anton

    2015-05-01

    We report on conductometric gas sensors based on single CuO nanowires and compare the carbon monoxide (CO) sensing properties of pristine as well as Pd nanoparticle decorated devices in humid atmosphere. Magnetron sputter inert gas aggregation combined with a quadrupole mass filter for cluster size selection was used for single-step Pd nanoparticle deposition in the soft landing regime. Uniformly dispersed, crystalline Pd nanoparticles with size-selected diameters around 5 nm were deposited on single CuO nanowire devices in a four point configuration. During gas sensing experiments in humid synthetic air, significantly enhanced CO response for CuO nanowires decorated with Pd nanoparticles was observed, which validates that magnetron sputter gas aggregation is very well suited for the realization of nanoparticle-functionalized sensors with improved performance.

  4. Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere.

    PubMed

    Steinhauer, Stephan; Singh, Vidyadhar; Cassidy, Cathal; Gspan, Christian; Grogger, Werner; Sowwan, Mukhles; Köck, Anton

    2015-05-01

    We report on conductometric gas sensors based on single CuO nanowires and compare the carbon monoxide (CO) sensing properties of pristine as well as Pd nanoparticle decorated devices in humid atmosphere. Magnetron sputter inert gas aggregation combined with a quadrupole mass filter for cluster size selection was used for single-step Pd nanoparticle deposition in the soft landing regime. Uniformly dispersed, crystalline Pd nanoparticles with size-selected diameters around 5 nm were deposited on single CuO nanowire devices in a four point configuration. During gas sensing experiments in humid synthetic air, significantly enhanced CO response for CuO nanowires decorated with Pd nanoparticles was observed, which validates that magnetron sputter gas aggregation is very well suited for the realization of nanoparticle-functionalized sensors with improved performance. PMID:25854640

  5. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Wan, Lei; Liu, Lei; Deng, Yida; Zhong, Cheng; Hu, Wenbin

    2016-02-01

    In this study, a new and convenient one step approach is described for synthesizing shape controlled PdPt bimetallic nanoparticles. It is found that the resultant morphologies of these PdPt nanoparticles can be well controlled by simply altering the participation of different halide ions that serve as shape controlling agents in the reaction solution. The dendritic core-shell PdPt bimetallic nanoparticles generated with Pt atoms adopt usual island growth pattern in the presence of Cl- ions, whereas the introduction of Br- ions with a relatively strong adsorption effect facilitate the formation of a layered core-shell structure due to the layered growth mode of Pt atoms on the exterior surface of the central Pd core. Moreover, the stronger adsorption function of I- ions and the resulting fast atomic diffusion promoted the generation of mesoporous core-shell PdPt bimetallic nanoparticles with many pore channels. In addition, the size of these synthesized PdPt nanoparticles exhibited a significant dependence on the concentration of the halide ions involved. Due to their specific structural features and synergistic effects, these PdPt catalysts exhibited shape-dependent catalytic performance and drastically enhanced electrocatalytic activities relative to that of commercial Pt black and Pt/C toward methanol oxidation.In this study, a new and convenient one step approach is described for synthesizing shape controlled PdPt bimetallic nanoparticles. It is found that the resultant morphologies of these PdPt nanoparticles can be well controlled by simply altering the participation of different halide ions that serve as shape controlling agents in the reaction solution. The dendritic core-shell PdPt bimetallic nanoparticles generated with Pt atoms adopt usual island growth pattern in the presence of Cl- ions, whereas the introduction of Br- ions with a relatively strong adsorption effect facilitate the formation of a layered core-shell structure due to the layered growth

  6. Synthesis of Carbon Nanotube-Supported Catalytic Nanoparticles and Their Applications in Catalysis

    NASA Astrophysics Data System (ADS)

    Pan, Horng-Bin

    The development of metallic nanoparticle catalysts of controllable size and shape has been one of the most active research topics in nanoscience recently. Water-in-oil microemulsion can be used as a nanoreactor and a template for synthesizing nanomaterials of interest to chemists. The microemulsion-templated method produces uniformly-dispersed metallic nanoparticles which can be attached to surfaces of functionalized multiwalled carbon nanotubes (MWNTs). Carbon nanotube (CNT) -supported metallic nanoparticles including Pt, Rh, and bimetallic Pd--Rh produced by this method are highly effective catalysts for hydrogenation of neat benzene at room temperature which can not be achieved by carbon-based Pd and Rh catalysts available commercially. The bimetallic Pd---Rh/MWNTs nanoparticle catalyst exhibits a strong synergistic effect relative to the individual single metal nanoparticles for catalytic hydrogenation of arenes. However, surfactants or capping ligands used in the microemulsion-templated synthesis method can cause contamination and reduce the catalytic activity of the nanocatalyst produced. Therefore, a rapid and surfactant-free sonochemical method was later developed for synthesizing well-dispersed metallic nanoparticles on CNTs for catalysis applications. Fine Rh nanoparticles can be deposited uniformly on surfaces of carboxylate functionalized MWNTs using the one-pot sonochemical method. The CNT-supported Rh nanoparticles show remarkably high catalytic active and are reusable for hydrogenation of arenes at room temperature. Complete ring saturation of polycyclic aromatic hydrocarbons (PAHs) can be achieved under mild hydrogenation conditions using the MWNTs catalyst that can not be done by commercially available Rh nanocatalysts (Rh-Escat 3401). This technique also provides a simple and rapid way of making Rh nanoparticles of different size, which allows us to study particle size effects on catalysis. Furthermore, we extended the sonochemical method to

  7. Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature

    NASA Astrophysics Data System (ADS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2012-07-01

    In the present study, we report the growth of size selected Pd, Ag, and Pd-Ag alloy nanoparticles by an integrated method comprising of the gas phase synthesis, electrical mobility size selection, and in-flight sintering steps. Effect of temperature during in-flight sintering on nanoparticle size, crystal structure, and electronic properties has been studied. XRD studies show lattice expansion in Pd and Ag nanoparticles and lattice contraction in Pd-Ag alloy nanoparticles on increasing the sintering temperatures. In case of Pd and Ag nanoparticles, size induced changes in lattice constants are consistent with the changes in the binding energy positions with respect to bulk values. In case of Pd-Ag alloy nanoparticles, change in nanoparticle size and composition on sintering affect the lattice constant and binding energy positions. Large changes in Pd4d valance band centroid in Pd-Ag nanoparticles are due to size and alloying effects. The results of this study are important for understanding the correlation between electronic properties and Pd-H interaction in Pd alloy nanoparticles.

  8. Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells

    NASA Astrophysics Data System (ADS)

    Xiao, Jia-Wen; Fan, Shi-Xuan; Wang, Feng; Sun, Ling-Dong; Zheng, Xiao-Yu; Yan, Chun-Hua

    2014-03-01

    Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 107 M-1 cm-1), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water and illuminated with an 808 nm laser, the porous Pd NPs give a photothermal conversion efficiency as high as 93.4%, which is comparable to the efficiency of Au nanorods we synthesized (98.6%). As the porous Pd NPs show broadband NIR absorption (650-1200 nm), this allows us to choose multiple laser wavelengths for photothermal therapy. In vitro photothermal heating of HeLa cells in the presence of porous Pd NPs leads to 100% cell death under 808 nm laser irradiation (8 W cm-2, 4 min). For photothermal heating using 730 nm laser, 70% of HeLa cells were killed after 4 min irradiation at a relative low power density of 6 W cm-2. These results demonstrated that the porous Pd nanostructure is an attractive photothermal agent for cancer therapy.Nanoparticle (NP) mediated photothermal effect shows great potential as a noninvasive method for cancer therapy treatment, but the development of photothermal agents with high photothermal conversion efficiency, small size and good biocompatibility is still a big challenge. Herein, we report Pd NPs with a porous structure exhibiting enhanced near infrared (NIR) absorption as compared to Pd nanocubes with a similar size (almost two-fold enhancement with a molar extinction coefficient of 6.3 × 107 M-1 cm-1), and the porous Pd NPs display monotonically rising absorbance from NIR to UV-Vis region. When dispersed in water

  9. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    PubMed Central

    2013-01-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies. PMID:23452438

  10. Au/Pd core-shell nanoparticles with varied hollow Au cores for enhanced formic acid oxidation

    NASA Astrophysics Data System (ADS)

    Hsu, Chiajen; Huang, Chienwen; Hao, Yaowu; Liu, Fuqiang

    2013-03-01

    A facile method has been developed to synthesize Au/Pd core-shell nanoparticles via galvanic replacement of Cu by Pd on hollow Au nanospheres. The unique nanoparticles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy, and electrochemical measurements. When the concentration of the Au solution was decreased, grain size of the polycrystalline hollow Au nanospheres was reduced, and the structures became highly porous. After the Pd shell formed on these Au nanospheres, the morphology and structure of the Au/Pd nanoparticles varied and hence significantly affected the catalytic properties. The Au/Pd nanoparticles synthesized with reduced Au concentrations showed higher formic acid oxidation activity (0.93 mA cm-2 at 0.3 V) than the commercial Pd black (0.85 mA cm-2 at 0.3 V), suggesting a promising candidate as fuel cell catalysts. In addition, the Au/Pd nanoparticles displayed lower CO-stripping potential, improved stability, and higher durability compared to the Pd black due to their unique core-shell structures tuned by Au core morphologies.

  11. Aqueous Co-precipitation of Pd-doped Cerium Oxide Nanoparticles: Chemistry Structure and Particle Growth

    SciTech Connect

    Liang H.; Zhang L.; Raitano J.M.; He G.; Akey A.J.; Herman I.P.; Chan S.-W.

    2012-01-01

    Nanoparticles of palladium-doped cerium oxide (Pd-CeO{sub 2}) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson-Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO{sub 2} in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO{sub 2} lattice inhibits the growth of the 6% Pd-CeO{sub 2} particles compared to pure CeO{sub 2} between 600 and 850 C. Activation energies for grain growth of 54 {+-} 7 and 79 {+-} 8 kJ/mol were determined for 6% Pd-CeO{sub 2} and pure CeO{sub 2}, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide.

  12. Synthesis of size-controlled monodisperse Pd nanoparticles via a non-aqueous seed-mediated growth

    PubMed Central

    2012-01-01

    We demonstrated that stepwise seed-mediated growth could be extended in non-aqueous solution (solvothermal synthesis) and improved as an effective method for controlling the uniform size of palladium nanoparticles (Pd NPs) in a wide range. The monodisperse Pd NPs with the size of about 5 nm were synthesized by simply reducing Pd(acac)2 with formaldehyde in different organic amine solvents. By an improved stepwise seed-mediated synthesis, the size of the monodisperse Pd NPs can be precisely controlled from approximately 5 to 10 nm. The as-prepared Pd NPs could self assemble to well-shaped superlattice crystal without size selection process. PMID:22713177

  13. Composition-dependent electrocatalytic activity of palladium-iridium binary alloy nanoparticles supported on the multiwalled carbon nanotubes for the electro-oxidation of formic acid.

    PubMed

    Bao, Jianming; Dou, Meiling; Liu, Haijing; Wang, Feng; Liu, Jingjun; Li, Zhilin; Ji, Jing

    2015-07-22

    Surface-functionalized multiwalled carbon nanotubes (MWCNTs) supported Pd100-xIrx binary alloy nanoparticles (Pd100-xIrx/MWCNT) with tunable Pd/Ir atomic ratios were synthesized by a thermolytic process at varied ratios of bis(acetylacetonate) palladium(II) and iridium(III) 2,4-pentanedionate precursors and then applied as the electrocatalyst for the formic acid electro-oxidation. The X-ray diffraction pattern (XRD) and transmission electron microscope (TEM) analysis showed that the Pd100-xIrx alloy nanoparticles with the average size of 6.2 nm were uniformly dispersed on the MWCNTs and exhibited a single solid solution phase with a face-centered cubic structure. The electrocatalytic properties were evaluated through the cyclic voltammetry and chronoamperometry tests, and the results indicated that both the activity and stability of Pd100-xIrx/MWCNT were strongly dependent on the Pd/Ir atomic ratios: the best electrocatalytic performance in terms of onset potential, current density, and stability against CO poisoning was obtained for the Pd79Ir21/MWCNT. Moreover, compared with pure Pd nanoparticles supported on MWCNTs (Pd/MWCNT), the Pd79Ir21/MWCNT exhibited enhanced steady-state current density and higher stability, as well as maintained excellent electrocatalytic activity in high concentrated formic acid solution, which was attributed to the bifunctional effect through alloying Pd with transition metal. PMID:26132867

  14. Designed synthesis of Au/Ag/Pd trimetallic nanoparticle-based catalysts for Sonogashira coupling reactions.

    PubMed

    Venkatesan, P; Santhanalakshmi, J

    2010-07-20

    Pdnp and Pd containing trimetallic nanoparticles (tnp) are synthesized by chemical method with cetyltrimethylammonium bromide as the capping agent. Compositionally, four different tnp are prepared and the particle sizes are characterized by UV-vis spectra, HR-TEM, and XRD measurements. The catalytic activities of Pdnp and tnp are tested using the Sonogashira C-C coupling reaction. The product yield and recyclability of the recovered catalysts are studied. tnp (1:1:1) exhibited better catalysis than Pdnp, which may be due to the concerted electronic effects of the Au-Ag core onto the Pd shell atoms. PMID:20462280

  15. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material.

    PubMed

    Kalidindi, Suresh Babu; Oh, Hyunchul; Hirscher, Michael; Esken, Daniel; Wiktor, Christian; Turner, Stuart; Van Tendeloo, Gustaaf; Fischer, Roland A

    2012-08-27

    Three-dimensional covalent organic frameworks (COFs) have been demonstrated as a new class of templates for nanoparticles. Photodecomposition of the [Pd(η(3)-C(3) H(5))(η(5)-C(5)H(5))]@COF-102 inclusion compound (synthesized by a gas-phase infiltration method) led to the formation of the Pd@COF-102 hybrid material. Advanced electron microscopy techniques (including high-angle annular dark-field scanning transmission electron microscopy and electron tomography) along with other conventional characterization techniques unambiguously showed that highly monodisperse Pd nanoparticles ((2.4±0.5) nm) were evenly distributed inside the COF-102 framework. The Pd@COF-102 hybrid material is a rare example of a metal-nanoparticle-loaded porous crystalline material with a very narrow size distribution without any larger agglomerates even at high loadings (30 wt %). Two samples with moderate Pd content (3.5 and 9.5 wt %) were used to study the hydrogen storage properties of the metal-decorated COF surface. The uptakes at room temperature from these samples were higher than those of similar systems such as Pd@metal-organic frameworks (MOFs). The studies show that the H(2) capacities were enhanced by a factor of 2-3 through Pd impregnation on COF-102 at room temperature and 20 bar. This remarkable enhancement is not just due to Pd hydride formation and can be mainly ascribed to hydrogenation of residual organic compounds, such as bicyclopentadiene. The significantly higher reversible hydrogen storage capacity that comes from decomposed products of the employed organometallic Pd precursor suggests that this discovery may be relevant to the discussion of the spillover phenomenon in metal/MOFs and related systems. PMID:22886887

  16. Ag/Pd core-shell nanoparticles by a successive method: Pulsed laser ablation of Ag in water and reduction reaction of PdCl2

    NASA Astrophysics Data System (ADS)

    Mottaghi, N.; Ranjbar, M.; Farrokhpour, H.; Khoshouei, M.; Khoshouei, A.; Kameli, P.; Salamati, H.; Tabrizchi, M.; Jalilian-Nosrati, M.

    2014-02-01

    In this study Ag/Pd nanoparticles (NPs) have been fabricated by a successive method; first, colloids of Ag nanoparticles (NPs) have been prepared in water by pulsed laser ablation in liquid (PLAL) method. Then PdCl2 solution (up to 0.2 g/l) were added to the as-prepared or aged colloidal Ag NPs. Characterizations were done using UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmissions electron microscopy (TEM) techniques. Spectroscopy data showed that surface plasmon resonance (SPR) peaks of as-prepared Ag NPs at about λ = 400 nm were completely extinguished after addition of PdCl2 solution while this effect was not observed when aged Ag NPs are used. XRD and XPS results revealed that by addition of the PdCl2 solution into the as-prepared Ag NPs, metallic palladium, and silver chloride composition products are generated. TEM images revealed that as a result of this reaction, single and core-shell nanoparticles are obtained and their average sizes are 2.4 nm (Ag) and 3.2 nm (Ag/Pd). The calculated d-spacing values form XRD data with observations on high magnification TEM images were able to explain the chemical nature of different parts of Ag/Pd NPs.

  17. Alumina-supported Pd-Ag catalysts for low-temperature CO and methanol oxidation

    NASA Technical Reports Server (NTRS)

    Mccabe, R. W.

    1987-01-01

    Pd-Ag bimetallic catalysts, supported on gamma-Al2O3, have been evaluated as exhaust catalysts for methanol-fueled vehicles. Laboratory studies have shown that a 0.01% Pd-5% Ag catalyst has greater CO and CH3OH oxidation activity than either 0.01% Pd or 5% Ag catalysts alone. Moreover, Pd and Ag interact synergistically in the bimetallic catalyst to produce greater CO and CH3OH oxidation rates and lower yields of methanol partial oxidation products than expected from a mixture of the single-component catalysts. The Pd-Ag synergism results from Pd promoting the rate of O2 adsorption and reaction with CO and CH3OH on Ag. Rate enhancement by the bimetallic catalyst is greatest at short reactor residence times where the oxygen adsorption rate limits the overall reaction rate.

  18. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd-Cu nanoparticles; size and alloying induced modifications in binding energy

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Gupta, Govind

    2011-05-09

    In this letter, effect of size and alloying on the core and valence band shifts of Pd, Cu, and Pd-Cu alloy nanoparticles has been studied. It has been shown that the sign and magnitude of the binding energy shifts is determined by the contributions of different effects; with quantum confinement and lattice distortion effects overlapping for size induced shifts in case of core levels and lattice distortion and charge transfer effects overlapping for alloying induced shifts at smaller sizes. These results are important for understanding gas molecule-solid surface interaction in metal and alloy nanoparticles in terms of valance band positions.

  19. Exchange-coupled fct-FePd/α-Fe nanocomposite magnets converted from Pd/Fe3O4 core/shell nanoparticles.

    PubMed

    Liu, Fei; Dong, Yunhe; Yang, Wenlong; Yu, Jing; Xu, Zhichuan; Hou, Yanglong

    2014-11-10

    We report the controlled synthesis of exchange-coupled face-centered tetragonal (fct) FePd/α-Fe nanocomposite magnets with variable Fe concentration. The composite was converted from Pd/Fe3O4 core/shell nanoparticles through a high-temperature annealing process in a reducing atmosphere. The shell thickness of core/shell Pd/Fe3O4 nanoparticles could be readily tuned, and subsequently the concentration of Fe in nanocomposite magnets was controlled. Upon annealing reduction, the hard magnetic fct-FePd phase was formed by the interdiffusion between reduced α-Fe and face-centered cubic (fcc) Pd, whereas the excessive α-Fe remained around the fct-FePd grains, realizing exchange coupling between the soft magnetic α-Fe and hard magnetic fct-FePd phases. Magnetic measurements showed variation in the magnetic properties of the nanocomposite magnets with different compositions, indicating distinct exchange coupling at the interfaces. The coercivity of the exchange-coupled nanocomposites could be tuned from 0.7 to 2.8 kOe and the saturation magnetization could be controlled from 93 to 160 emu g(-1). This work provides a bottom-up approach using exchange-coupled nanocomposites for engineering advanced permanent magnets with controllable magnetic properties. PMID:25255788

  20. Preparation and characterization of Pd/Al2O3 and Pd nanoparticles as standardized test material for chemical and biochemical studies of traffic related emissions.

    PubMed

    Leopold, K; Maier, M; Schuster, M

    2008-05-01

    Palladium model particles similar to those emitted from catalytic car exhaust converters were prepared and characterized with the intention of providing a standardized material for investigations of the chemical behavior and bioavailability of traffic related Pd emissions. Two series of Pd particles were prepared and characterized in detail: Pd nanoparticles (2-4 nm) dispersed on aluminum oxide particles of a diameter range between 0.1 to 30 microm and "Pd-only" nanoparticles of 5-10 nm in diameter. The Pd/alpha-Al2O3 particles are very similar to particles emitted from catalytic converters by mechanical abrasion. The Pd-only particles are useful e.g. for exposure studies in which the presence of aluminum could lead to interferences when studying biological and biochemical effects. The sample preparation procedure of both series was optimized in order to achieve elemental particles with proper sizes and a narrow size distribution. The obtained particles were characterized by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selective area diffraction (SAD), laser granulometry and graphite furnace atomic absorption spectrometry (GFAAS) for the measurement of Pd concentrations. PMID:18279916

  1. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.

    PubMed

    Wang, Wenhui; He, Ting; Liu, Xuehua; He, Weina; Cong, Hengjiang; Shen, Yangbin; Yan, Liuming; Zhang, Xuetong; Zhang, Jinping; Zhou, Xiaochun

    2016-08-17

    Hydrogen is regarded as a future sustainable and clean energy carrier. Formic acid is a safe and sustainable hydrogen storage medium with many advantages, including high hydrogen content, nontoxicity, and low cost. In this work, a series of highly active catalysts for hydrogen production from formic acid are successfully synthesized by controllably depositing Pd onto Ag nanoplates with different Ag nanofacets, such as Ag{111}, Ag{100}, and the nanofacet on hexagonal close packing Ag crystal (Ag{hcp}). Then, the Pd-Ag nanoplate catalysts are supported on Vulcan XC-72 carbon black to prevent the aggregation of the catalysts. The research reveals that the high activity is attributed to the formation of Pd-Ag alloy nanofacets, such as Pd-Ag{111}, Pd-Ag{100}, and Pd-Ag{hcp}. The activity order of these Pd-decorated Ag nanofacets is Pd-Ag{hcp} > Pd-Ag{111} > Pd-Ag{100}. Particularly, the activity of Pd-Ag{hcp} is up to an extremely high value, i.e., TOF{hcp} = 19 000 ± 1630 h(-1) at 90 °C (lower limit value), which is more than 800 times higher than our previous quasi-spherical Pd-Ag alloy nanocatalyst. The initial activity of Pd-Ag{hcp} even reaches (3.13 ± 0.19) × 10(6) h(-1) at 90 °C. This research not only presents highly active catalysts for hydrogen generation but also shows that the facet on the hcp Ag crystal can act as a potentially highly active catalyst. PMID:27454194

  2. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    EPA Science Inventory

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  3. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities.

    PubMed

    Zhang, Jinfeng; Wan, Lei; Liu, Lei; Deng, Yida; Zhong, Cheng; Hu, Wenbin

    2016-02-21

    In this study, a new and convenient one step approach is described for synthesizing shape controlled PdPt bimetallic nanoparticles. It is found that the resultant morphologies of these PdPt nanoparticles can be well controlled by simply altering the participation of different halide ions that serve as shape controlling agents in the reaction solution. The dendritic core-shell PdPt bimetallic nanoparticles generated with Pt atoms adopt usual island growth pattern in the presence of Cl(-) ions, whereas the introduction of Br(-) ions with a relatively strong adsorption effect facilitate the formation of a layered core-shell structure due to the layered growth mode of Pt atoms on the exterior surface of the central Pd core. Moreover, the stronger adsorption function of I(-) ions and the resulting fast atomic diffusion promoted the generation of mesoporous core-shell PdPt bimetallic nanoparticles with many pore channels. In addition, the size of these synthesized PdPt nanoparticles exhibited a significant dependence on the concentration of the halide ions involved. Due to their specific structural features and synergistic effects, these PdPt catalysts exhibited shape-dependent catalytic performance and drastically enhanced electrocatalytic activities relative to that of commercial Pt black and Pt/C toward methanol oxidation. PMID:26511671

  4. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles-graphene composite modified electrode.

    PubMed

    Shang, Lei; Zhao, Faqiong; Zeng, Baizhao

    2014-05-15

    In this work, graphene oxide was reduced to graphene with an endogenous reducing agent from dimethylformamide, and then AuPd alloy nanoparticles were electrodeposited on the graphene film. The obtained AuPd-graphene hybrid film was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and voltammetry. The electrochemical behavior of vanillin was studied using the AuPd-graphene hybrid based electrode. It presented high electrocatalytic activity and vanillin could produce a sensitive oxidation peak at it. Under the optimal conditions, the peak current was linear to the concentration of vanillin in the ranges of 0.1-7 and 10-40 μM. The sensitivities were 1.60 and 0.170 mA mM(-1) cm(-2), respectively; the detection limit was 20 nM. The electrode was successfully applied to the detection of vanillin in vanilla bean, vanilla tea and biscuit samples. PMID:24423501

  5. Volcano-like Behavior of Au-Pd Core-shell Nanoparticles in the Selective Oxidation of Alcohols

    PubMed Central

    Silva, Tiago A. G.; Teixeira-Neto, Erico; López, Núria; Rossi, Liane M.

    2014-01-01

    Gold-palladium (AuPd) nanoparticles have shown significantly enhanced activity relative to monometallic Au and Pd catalysts. Knowledge of composition and metal domain distributions is crucial to understanding activity and selectivity, but these parameters are difficult to ascertain in catalytic experiments that have primarily been devoted to equimolar nanoparticles. Here, we report AuPd nanoparticles of varying Au:Pd molar ratios that were prepared by a seed growth method. The selective oxidation of benzyl alcohol was used as a model reaction to study catalytic activity and selectivity changes that occurred after varying the composition of Pd in bimetallic catalysts. We observed a remarkable increase in catalytic conversion when using a 10:1 Au:Pd molar ratio. This composition corresponds to the amount of Pd necessary to cover the existing Au cores with a monolayer of Pd as a full-shell cluster. The key to increased catalytic activity derives from the balance between the number of active sites and the ease of product desorption. According to density functional theory calculations, both parameters are extremely sensitive to the Pd content resulting in the volcano-like activity observed. PMID:25042537

  6. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst

    PubMed Central

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability. PMID:24790945

  7. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-09-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  8. Bimetallic Pt-Ag and Pd-Ag nanoparticles

    SciTech Connect

    Lahiri, Debdutta; Bunker, Bruce; Mishra, Bhoopesh; Zhang, Zhenyuan; Meisel, Dan; Doudna, C. M.; Bertino, M. F.; Blum, Frank D.; Tokuhiro, A. T.; Chattopadhyay, Soma; Shibata, Tomohiro; Terry, Jeff

    2005-04-19

    We report studies of bimetallic nanoparticles with 15%–16% atomic crystal parameters size mismatch. The degree of alloying was also probed in a 2-nm Pt core ssmallest attainable core sized of Pt–Ag nanoparticles scompletely immiscible in bulkd and 20-nm-diameter Pd–Ag nanowires scompletely miscible in bulkd. Particles were synthesized radiolytically, and depending on the initial parameters, they assume spherical or cylindrical snanowired morphologies. In all cases, the metals are seen to follow their bulk alloying characteristics. Also, Pt and Ag segregate in both spherical and wire forms, which indicates that strain due to crystallographic mismatch overcomes the excess surface free energy in the small particles. The Pd–Ag nanowires alloy similar to previously reported spherical Pd–Ag particles of similar diameter and composition

  9. Encapsulating Pd Nanoparticles in Double-Shelled Graphene@Carbon Hollow Spheres for Excellent Chemical Catalytic Property

    NASA Astrophysics Data System (ADS)

    Zhang, Zheye; Xiao, Fei; Xi, Jiangbo; Sun, Tai; Xiao, Shuang; Wang, Hairong; Wang, Shuai; Liu, Yunqi

    2014-02-01

    Double-shelled hollow carbon spheres with reduced graphene oxide (RGO) as inner shell and carbon (C) layer as outer shell have been successfully designed and prepared. This tailor-making structure acts as an excellent capsule for encapsulating with ultrafine Pd nanoparticles (Pd NPs), which could effectively prevent Pd NPs from aggregation and leaching. As a result, the as-obtained RGO@Pd@C nanohybid exhibits superior and stable catalytic performance. With the aid of RGO@Pd@C, the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol with NaBH4 as reducing agent can be finished within only 30 s, even the content of Pd is as low as 0.28 wt%. As far as we know, RGO@Pd@C is one of the most effective catalyst for 4-NP reducing reaction up to now.

  10. Encapsulating Pd Nanoparticles in Double-Shelled Graphene@Carbon Hollow Spheres for Excellent Chemical Catalytic Property

    PubMed Central

    Zhang, Zheye; Xiao, Fei; Xi, Jiangbo; Sun, Tai; Xiao, Shuang; Wang, Hairong; Wang, Shuai; Liu, Yunqi

    2014-01-01

    Double-shelled hollow carbon spheres with reduced graphene oxide (RGO) as inner shell and carbon (C) layer as outer shell have been successfully designed and prepared. This tailor-making structure acts as an excellent capsule for encapsulating with ultrafine Pd nanoparticles (Pd NPs), which could effectively prevent Pd NPs from aggregation and leaching. As a result, the as-obtained RGO@Pd@C nanohybid exhibits superior and stable catalytic performance. With the aid of RGO@Pd@C, the reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol with NaBH4 as reducing agent can be finished within only 30 s, even the content of Pd is as low as 0.28 wt%. As far as we know, RGO@Pd@C is one of the most effective catalyst for 4-NP reducing reaction up to now. PMID:24514577

  11. Behavior of Supported Palladium Oxide Nanoparticles under Reaction Conditions, Studied with near Ambient Pressure XPS.

    PubMed

    Jürgensen, Astrid; Heutz, Niels; Raschke, Hannes; Merz, Klaus; Hergenröder, Roland

    2015-08-01

    Near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is a promising method to close the "pressure gap", and thus, study the surface composition during heterogeneous reactions in situ. The specialized spectrometers necessary for this analytical technique have recently been adapted to operate with a conventional X-ray source, making it available for routine quantitative analysis in the laboratory. This is shown in the present in situ study of the partial oxidation of 2-propanol catalyzed with PdO nanoparticles supported on TiO2, which was investigated under reaction conditions as a function of gas composition (alcohol-to-oxygen ratio) and temperature. Exposure of the nanoparticles to 2-propanol at 30 °C leads to immediate partial reduction of the PdO, followed by a continuous reduction of the remaining PdO during heating. However, gaseous oxygen inhibits the reduction of PdO below 90 °C, and the oxidation of 2-propanol to carboxylates only occurs in the presence of oxygen above 90 °C. These results support the theory that metallic palladium is the active catalyst material, and they show that environmental conditions affect the nanoparticles and the reaction process significantly. The study also revealed challenges and limitations of this analytical method. Specifically, the intensity and fixed photon energy of a conventional X-ray source limit the spectral resolution and surface sensitivity of lab-based NAP-XPS, which affect precision and accuracy of the quantitative analysis. PMID:26144222

  12. Pd nanoparticles on ZnO-passivated porous carbon by atomic layer deposition: an effective electrochemical catalyst for Li-O2 battery.

    PubMed

    Luo, Xiangyi; Piernavieja-Hermida, Mar; Lu, Jun; Wu, Tianpin; Wen, Jianguo; Ren, Yang; Miller, Dean; Zak Fang, Zhigang; Lei, Yu; Amine, Khalil

    2015-04-24

    Uniformly dispersed Pd nanoparticles on ZnO-passivated porous carbon were synthesized via an atomic layer deposition (ALD) technique, which was tested as a cathode material in a rechargeable Li-O2 battery, showing a highly active catalytic effect toward the electrochemical reactions-in particular, the oxygen evolution reaction. Transmission electron microscopy (TEM) showed discrete crystalline nanoparticles decorating the surface of the ZnO-passivated porous carbon support in which the size could be controlled in the range of 3-6 nm, depending on the number of Pd ALD cycles performed. X-ray absorption spectroscopy (XAS) at the Pd K-edge revealed that the carbon-supported Pd existed in a mixed phase of metallic palladium and palladium oxide. The ZnO-passivated layer effectively blocks the defect sites on the carbon surface, minimizing the electrolyte decomposition. Our results suggest that ALD is a promising technique for tailoring the surface composition and structure of nanoporous supports for Li-O2 batteries. PMID:25829367

  13. Production of palladium nanoparticles supported on multiwalled carbon nanotubes by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Rojas, J. V.; Castano, C. H.

    2012-01-01

    Palladium nanoparticles were produced and supported on multiwalled carbon nanotubes (MWCNT) by gamma irradiation. A solution with a specific ratio of 2:1 of water-isopropanol was prepared and mixed with palladium chloride and the surfactant sodium dodecyl sulfate (SDS). The gamma radiolysis of water ultimately produces Pd metallic particles that serve as nucleation seeds. Isopropanol is used as an ion scavenger to balance the reaction, and the coalescence of the metal nanoparticles was controlled by the addition of SDS as a stabilizer. The size and distribution of nanoparticles on the carbon nanotubes (CNT) were studied at different surfactant concentrations and radiation doses. SEM, STEM and XPS were used for morphological, chemical and structural characterization of the nanostructure. Nanoparticles obtained for doses between 10 and 40 kGy, ranged in size 5-30 nm. The smaller nanoparticles were obtained at the higher doses and vice versa. Histograms of particle size distributions at different doses are presented.

  14. Dendrimer-templated Pd nanoparticles and Pd nanoparticles synthesized by reverse microemulsions as efficient nanocatalysts for the Heck reaction: A comparative study.

    PubMed

    Noh, Ji-Hyang; Meijboom, Reinout

    2014-02-01

    Palladium nanoparticles (NPs) were prepared using a dendrimer-templated method using G4, G5 and G6 PAMAM-OH dendrimers as well as a reverse microemulsion method using the water/dioctyl sulfosuccinate sodium salt (aerosol-OT, AOT) surfactant/isooctane system with water to surfactant ratios (ω0) of 5, 10 and 13. These 6 catalysts were characterized by UV-Vis spectroscopy, TEM, EDX, and XRD. TEM micrographs showed that the average sizes of 2.74-3.32nm with narrower size distribution were achieved by using dendrimer-templated synthetic methods, whereas the reverse microemulsion method resulted in broad size distribution with an average size of 3.87-5.06nm. The influence of various reaction parameters such as base, catalyst dosing, alkene, aryl halide and temperature on the Heck C-C coupling reaction was evaluated. The activation parameters were derived from the reaction rate of each catalyst obtained at various temperatures. A correlation of catalytic activity, enthalpy of activation and particle size is discussed. Particle size changes of each catalyst were investigated after the catalytic reaction. Overall results indicated that dendrimer-templated Pd NP catalysts showed superior activity as compared to the Pd NPs synthesized by reverse microemulsions, with the dendrimer-templated G5-OH(Pd80) showing the best activity. These catalysts were also reusable for 3 cycles, retaining high yield and showing excellent yields under mild conditions. Therefore, the dendrimer-templated Pd NPs are efficient catalyst systems for the ligand-free Heck C-C coupling reaction. PMID:24267330

  15. Engineering of air-stable Fe/C/Pd composite nanoparticles for environmental remediation applications

    NASA Astrophysics Data System (ADS)

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-09-01

    The present manuscript presents a convenient method for the synthesis of iron/carbon (Fe/C) nanoparticles (NPs) coated with much smaller Pd NPs for the removal of halogenated organic pollutants. For this purpose, iron oxide/polyvinylpyrrolidone (IO/PVP) NPs were first prepared by the thermal decomposition of ferrocene mixed with PVP at 350 °C under an inert atmosphere. IO,Fe/C and Fe/C NPs coated with graphitic and amorphous carbon layers were then produced by annealing the IO/PVP NPs at 500 and 600 °C, respectively, under an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area and magnetic properties of the IO/PVP, IO,Fe/C and Fe/C NPs has been elucidated. Air-stable Fe/C/Pd NPs were produced by mixing the precursor palladium acetate with the air-stable Fe/C NPs in ethanol. The obtained Fe/C/Pd NPs demonstrated significantly higher environmental activity than the Fe/C NPs on eosin Y, a model halogenated organic pollutant. The environmental activity of the Fe/C/Pd NPs also increased with their increasing Pd content.

  16. Temperature dependent carrier mobility in graphene: Effect of Pd nanoparticle functionalization and hydrogenation

    NASA Astrophysics Data System (ADS)

    Zhong, Bochen; Uddin, Md Ahsan; Singh, Amol; Webb, Richard; Koley, Goutam

    2016-02-01

    The two dimensional nature of graphene, with charge carriers confined within one atomic layer thickness, causes its electrical, optical, and sensing properties to be strongly influenced by the surrounding media and functionalization layers. In this study, the effect of catalytically active Pd nanoparticle (NP) functionalization and subsequent hydrogenation on the hall mobility and carrier density of chemical vapor deposition synthesized graphene has been investigated as a function of temperature. Prior to functionalization, the mobility decreased monotonically as the temperature was reduced from 298 to 10 K, indicating coulomb scattering as the dominant scattering mechanism as expected for bilayer graphene. Similar decreasing trend with temperature was also observed after 2 nm Pd deposition, however, hydrogenation of the Pd NP led to significant enhancement in mobility from ˜2250 to 3840 cm2/V s at room temperature, which further monotonically increased to 5280 cm2/V s at 10 K. We attribute this contrasting trend in temperature dependent mobility to a switch in the dominant scattering mechanism from coulomb to surface optical (SO) phonon scattering due to higher dielectric constant and polar nature of PdHx formed upon hydrogenation of the Pd NPs.

  17. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.

    PubMed

    Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki

    2015-06-01

    Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst. PMID:25990616

  18. Temperature, pressure, and size dependence of Pd-H interaction in size selected Pd-Ag and Pd-Cu alloy nanoparticles: In-situ X-ray diffraction studies

    SciTech Connect

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.

    2014-03-21

    In this study, in-situ X-ray diffraction has been carried out to investigate the effect of temperature and pressure on hydrogen induced lattice parameter variation in size selected Pd-Ag and Pd-Cu alloy nanoparticles. The nanoparticles of three different mobility equivalent diameters (20, 40, and 60 nm) having a narrow size distribution were prepared by gas phase synthesis method. In the present range of temperature (350 K to 250 K) and pressure (10{sup −4} to 100 millibars), no α (H/Pd ≤ 0.03) ↔ β (H/Pd ≥ 0.54) phase transition is observed. At temperature higher than 300 °C or pressure lower than 25 millibars, there is a large difference in the rate at which lattice constant varies as a function of pressure and temperature. Further, the lattice variation with temperature and pressure is also observed to depend upon the nanoparticle size. At lower temperature or higher pressure, size of the nanoparticle seems to be relatively less important. These results are explained on the basis of the relative dominance of physical absorption and diffusion of H in Pd alloy nanoparticles at different temperature and pressure. In the present study, absence of α ↔ β phase transition points towards the advantage of using Pd-alloy nanoparticles in applications requiring long term and repeated hydrogen cycling.

  19. An ordered bcc CuPd nanoalloy synthesised via the thermal decomposition of Pd nanoparticles covered with a metal-organic framework under hydrogen gas.

    PubMed

    Li, Guangqin; Kobayashi, Hirokazu; Kusada, Kohei; Taylor, Jared M; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi

    2014-11-18

    Presented here is the synthesis of an ordered bcc copper-palladium nanoalloy, via the decomposition of a Pd nanoparticle@metal-organic framework composite material. In situ XRD measurements were performed in order to understand the mechanism of the decomposition process. This result gives a further perspective into the synthesis of new nanomaterials via metal-organic framework decomposition. PMID:25251225

  20. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    PubMed Central

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method. PMID:27198855

  1. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  2. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation.

    PubMed

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method. PMID:27198855

  3. Synthesis of PD particles by alcohols-assisted photoreduction for use in supported catalysts

    DOEpatents

    Burton, Patrick David; Boyle, Timothy J; Datye, Abhaya

    2015-02-24

    The present disclosure provides a novel synthesis method for palladium nanoparticles and palladium nanoparticles made using the method. The nanoparticles resulting from the method are highly reactive and, when deposited on a support, are highly suitable for use as catalytic material.

  4. In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors.

    PubMed

    Zhong, Xia; Yuan, Ruo; Chai, Yaqin

    2012-01-14

    Novel spherical Pd@Cys-C(60) nanoparticles were synthesized using an in situ spontaneous reduction process without any other reducing agent. A nonenzymatic electrochemical biosensor was developed for the detection of glucose based on the spherical nanoparticles film. PMID:22113340

  5. Beet juice utilization: Expeditious green synthesis of nobel metal nanoparticles (Ag, Au, Pt, and Pd) using microwaves

    EPA Science Inventory

    Metal nanoparticles of Ag, Au, Pt, and Pd were prepared in aqueous solutions via a rapid microwave-assisted green method using beet juice, an abundant sugar-rich agricultural produce, served as both a reducing and a capping reagent. The Ag nanoparticles with capping prepared by b...

  6. Trimetallic nanostructures: the case of AgPd/Pt multiply twinned nanoparticles

    PubMed Central

    Khanal, Subarna; Bhattarai, Nabraj; Velázquez-Salazar, J. Jesús; Bahena, Daniel; Soldano, German; Ponce, Arturo; Mariscal, Marcelo M.; Mejía-Rosales, Sergio; José-Yacamán, Miguel

    2013-01-01

    We report the synthesis, structural characterization, and atomistic simulations of AgPd/Pt trimetallic (TM) nanoparticles. Two types of structure were synthesized using a relatively facile chemical method: multiply twinned core-shell, and hollow particles. The nanoparticles were small in size, with an average diameter of 11 nm and a narrow distribution, and their characterization by aberration corrected scanning transmission electron microscopy allowed us to probe the structure of the particles at atomistic level. In some nanoparticles, the formation of a hollow structure was also observed, that facilitates the alloying of Ag and Pt in the shell region and the segregation of Ag atoms in the surface, affecting the catalytic activity and stability. We also investigated the growth mechanism of the nanoparticles using grand canonical Monte Carlo simulations, and we have found that Pt regions grow at overpotentials on the AgPd nanoalloys, forming 3D islands at the early stages of the deposition process. We found very good agreement between the simulated structures and those observed experimentally. PMID:24165796

  7. Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst

    NASA Astrophysics Data System (ADS)

    Hosseini-Sarvari, Mona; Razmi, Zahra

    2015-01-01

    A novel Pd supported on ZnO nanoparticles was readily synthesized and characterized. The amount of palladium on ZnO is 9.84 wt% which was determined by ICP analysis and atomic absorption spectroscopy (AAS). Percentage of accessible Pd as active catalyst is also estimated to 2.72% based on the thermogravimetric (TG) analysis. This nano-sized Pd/ZnO with an average particle size of 20-25 nm and specific surface area 40.61 m2 g-1 was used as a new reusable heterogeneous catalyst for direct hydrogenation and one-pot reductive amidation of nitro compounds without the use of any ligands under atmospheric pressure. The catalyst can be recovered and recycled several times without marked loss of activity.

  8. Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region

    NASA Astrophysics Data System (ADS)

    Yang, Weiwei; Xiong, Yunjie; Zou, Liangliang; Zou, Zhiqing; Li, Dongdong; Mi, Qixi; Wang, Yanshan; Yang, Hui

    2016-06-01

    The photoelectrochemical (PEC) water splitting performance of BiVO4 is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO4 electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with different surface plasmon resonance (SPR) features delivered an enhanced PEC water splitting performance in the visible and near-infrared (NIR) regions, respectively. Considering that there is barely no absorption overlap between Pd nanostructures and BiVO4 and the finite-difference time domain (FDTD) simulation indicating there are substantial energetic hot electrons in the vicinity of Pd nanostructures, the enhanced PEC performance of Pd NP-decorated BiVO4 and Pd NR-decorated BiVO4 could both benefit from the hot electron injection mechanism instead of the plasmon resonance energy transfer process. Moreover, a combination of Pd NPs and NRs decorated on the BiVO4 electrodes leads to a broad-band enhancement across visible-NIR region.

  9. Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region.

    PubMed

    Yang, Weiwei; Xiong, Yunjie; Zou, Liangliang; Zou, Zhiqing; Li, Dongdong; Mi, Qixi; Wang, Yanshan; Yang, Hui

    2016-12-01

    The photoelectrochemical (PEC) water splitting performance of BiVO4 is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO4 electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with different surface plasmon resonance (SPR) features delivered an enhanced PEC water splitting performance in the visible and near-infrared (NIR) regions, respectively. Considering that there is barely no absorption overlap between Pd nanostructures and BiVO4 and the finite-difference time domain (FDTD) simulation indicating there are substantial energetic hot electrons in the vicinity of Pd nanostructures, the enhanced PEC performance of Pd NP-decorated BiVO4 and Pd NR-decorated BiVO4 could both benefit from the hot electron injection mechanism instead of the plasmon resonance energy transfer process. Moreover, a combination of Pd NPs and NRs decorated on the BiVO4 electrodes leads to a broad-band enhancement across visible-NIR region. PMID:27259504

  10. Revealing local variations in nanoparticle size distributions in supported catalysts: a generic TEM specimen preparation method.

    PubMed

    Pingel, Torben; Skoglundh, Magnus; Grönbeck, Henrik; Olsson, Eva

    2015-11-01

    The specimen preparation method is crucial for how much information can be gained from transmission electron microscopy (TEM) studies of supported nanoparticle catalysts. The aim of this work is to develop a method that allows for observation of size and location of nanoparticles deposited on a porous oxide support material. A bimetallic Pt-Pd/Al(2)O(3) catalyst in powder form was embedded in acrylic resin and lift-out specimens were extracted using combined focused ion beam/scanning electron microscopy (FIB/SEM). These specimens allow for a cross-section view across individual oxide support particles, including the unaltered near surface region of these particles. A site-dependent size distribution of Pt-Pd nanoparticles was revealed along the radial direction of the support particles by scanning transmission electron microscopy (STEM) imaging. The developed specimen preparation method enables obtaining information about the spatial distribution of nanoparticles in complex support structures which commonly is a challenge in heterogeneous catalysis. PMID:26139081

  11. Synthesis of Pd9Ru@Pt nanoparticles for oxygen reduction reaction in acidic electrolytes

    DOE PAGESBeta

    Sun, Yu; Hsieh, Yu -Chi; Chang, Li -Chung; Wu, Pu -Wei; Lee, Jyh -Fu

    2014-11-22

    Nanoparticles of PdRu, Pd₃Ru, and Pd₉Ru are synthesized and impregnated on carbon black via a wet chemical reflux process. X-ray diffraction patterns of the as-synthesized samples, PdxRu/C (x=1/3/9), suggest succesful formation of alloy without presence of individual Pd and Ru nanoparticles. Images from transmission electron microscope confirm irregularly-shaped nanoparticles with average size below 3 nm. Analysis from extended X-ray absorption fine structure on both Pd and Ru K-edge absorption profiles indicate the Ru atoms are enriched on the surface of PdxRu/C. Among these samples, the Pd₉Ru/C exhibits the strongest electrocatalytic activity for oxygen reduction reaction (ORR) in an oxygen-saturated 0.1more » M aqueous HClO₄ solution. Subsequently, the Pd₉Ru/C undegoes Cu under potential deposition, followed by a galvanic displacement reaction to deposit a Pt monolayer on the Pd₉Ru surface (Pd₉Ru@Pt). The Pd₉Ru@Pt reveals better ORR performance than that of Pt, reaching a mass activity of 0.38 mA μg⁻¹ Pt, as compared to that of commercially available Pt nanoparticles (0.107 mA μg⁻¹ Pt). Thus, the mechanisms responsible for the ORR enhancement are attributed to the combined effects of lattice strain and ligand interaction. In addition, this core-shell Pd₉Ru@Pt electrocatalyst represents a substantial reduction in the amount of Pt consumption and raw material cost.« less

  12. Depressing the hydrogenation and decomposition reaction in H2O2 synthesis by supporting AuPD on oxygen functionalized carbon nanofibers

    SciTech Connect

    Villa, Alberto; Freakley, Simon J.; Schiavoni, Marco; Edwards, Jennifer K.; Hammond, Ceri; Wang, Wu; Wang, Di; Prati, Laura; Dimitratos, Nikolaos; Hutchings, Graham J.; Veith, Gabriel M.

    2015-12-03

    In this work, we show that the introduction of acidic oxygen functionalities to the surface of carbon nanofibers serves to depress the hydrogenation and the decomposition of hydrogen peroxide during the direct synthesis of H2O2. Furthermore, the presence of acidic groups enhances the H2O2 productivity in the case of supported AuPd nanoparticles.

  13. Dechlorination Mechanism of 2,4-Dichlorophenol by Magnetic MWCNTs Supported Pd/Fe Nanohybrids: Rapid Adsorption, Gradual Dechlorination, and Desorption of Phenol.

    PubMed

    Xu, Jiang; Liu, Xue; Lowry, Gregory Victor; Cao, Zhen; Zhao, Heng; Zhou, John L; Xu, Xinhua

    2016-03-23

    2,4-dichlorophenol was effectively removed from water using magnetic Pd/Fe nanoparticles supported on multiwalled carbon nanotubes (MWCNTs). The adsorption kinetics, isotherms, and energy for 2,4-dichlorophenol and its partially (4-chlorophenol, 2-chlorophenol) and completely (phenol) dechlorinated products are presented and discussed. The adsorption capacity was 2,4-dichlorophenol > 4-chlorophenol > 2-chlorophenol > phenol for MWCNTs. MWCNTs-Fe3O4-Pd/Fe nanohybrids provided rapid adsorption, gradual dechlorination, and final desorption of phenol, which is attractive as a remediation technology. Over 82.7% of the phenol was desorbed and released to the aqueous phase after 72 h due to its low adsorption capacity, leaving the majority of active sites available on the surface of MWCNTs-Fe3O4-Pd/Fe. The nanohybrids maintained high activity in five consecutive in situ experiments, and they were retrievable using magnetic separation. MWCNTs-Fe3O4-Pd/Fe nanohybrids outperform unsupported Pd/Fe nanoparticles, which were difficult to retrieve, and were easily passivated and aggregated. PMID:26938876

  14. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid

    NASA Astrophysics Data System (ADS)

    Yang, Sudong; Shen, Chengmin; Tian, Yuan; Zhang, Xiaogang; Gao, Hong-Jun

    2014-10-01

    Single-crystal palladium nanoparticles (NPs) with controllable morphology were synthesized on the surface of reduced graphene oxide (RGO) by a novel procedure, namely reducing palladium acetylacetonate [Pd(acac)2] with the N-methylpyrrolidone (NMP) solvent in the presence of poly(vinylpyrrolidone) (PVP). The resulting Pd nanocrystals (8 nm in diameter) were uniformly distributed on the RGO. A possible formation mechanism is discussed. The electrocatalytic performance of Pd nanocrystal/RGO catalysts during formic acid oxidation was investigated, which revealed that the cubic Pd/RGO catalyst performed significantly better than the spherical Pd/RGO catalyst. The shape of Pd nanocrystals on the surface of graphene nanosheets can be easily controlled via tuning the synthesis parameters, resulting in tunable catalytic properties. Moreover, this method can be easily extended to fabricate other noble metal nanostructures.

  15. Study of Ag-Pd bimetallic nanoparticles modified glassy carbon electrode for detection of L-cysteine

    NASA Astrophysics Data System (ADS)

    Murugavelu, M.; Karthikeyan, B.

    2014-11-01

    Ag-Pd bimetallic nanoparticles (Ag-Pd BNPs) as an enhanced sensing material with improved electronic transmission rates in the electrochemical sensing of L-cysteine (L-cys) has been reported. The morphology of Ag-Pd BNPs was characterized with X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and cyclic voltammetry (CV). Oxidation of L-cys on Ag-Pd BNPs is investigated in detail by discussing the effect of the structure and from the electrocatalytic oxidation of L-cys. We found that the Ag-Pd BNPs exhibited high electrocatalytic activity towards L-cys oxidation in neutral condition and could be used for the development of nonenzymatic L-cys sensor. Based on the efficient catalytic ability of Ag-Pd BNPs, the fabricated biosensor exhibited a wide linear range of responses to the L-cys with the concentration detection limit of nearly down to 2 mM with fast response time.

  16. Water-soluble Pd nanoparticles synthesized from ω-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts.

    PubMed

    Gavia, Diego J; Maung, May S; Shon, Young-Seok

    2013-12-11

    This report describes a two-phase synthesis of water-soluble carboxylate-functionalized alkanethiolate-capped Pd nanoparticles from ω-carboxyl-S-alkanethiosulfate sodium salts. The two-phase methodology using the thiosulfate ligand passivation protocol allowed a highly specific control over the surface ligand coverage of these nanoparticles, which are lost in a one-phase aqueous system because of the base-catalyzed hydrolysis of thiosulfate to thiolate. Systematic synthetic variations investigated in this study included the concentration of ω-carboxyl-S-alkanethiosulfate ligand precursors and reducing agent, NaBH4, and the overall ligand chain length. The resulting water-soluble Pd nanoparticles were isolated and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), (1)H NMR, UV-vis, and FT-IR spectroscopy. Among different variations, a decrease in the molar equivalent of NaBH4 resulted in a reduction in the surface ligand density while maintaining a similar particle core size. Additionally, reducing the chain length of the thiosulfate ligand precursor also led to the formation of stable nanoparticles with a lower surface coverage. Since the metal core size of these Pd nanoparticle variations remained quite consistent, direct correlation studies between ligand properties and catalytic activities against hydrogenation/isomerization of allyl alcohol could be performed. Briefly, Pd nanoparticles dissolved in water favored the hydrogenation of allyl alcohol to 1-propanol whereas Pd nanoparticles heterogeneously dispersed in chloroform exhibited a rather high selectivity towards the isomerization product (propanal). The results suggested that the surrounding ligand environments, such as the ligand structure, conformation, and surface coverage, were crucial in determining the overall activity and selectivity of the Pd nanoparticle catalysts. PMID:24246150

  17. Water-Soluble Pd Nanoparticles Synthesized from ω-Carboxyl-S-Alkanethiosulfate Ligand Precursors as Unimolecular Micelle Catalysts

    PubMed Central

    Gavia, Diego J.; Maung, May S.; Shon, Young-Seok

    2014-01-01

    This report describes a two-phase synthesis of water-soluble carboxylate-functionalized alkanethiolate-capped Pd nanoparticles from ω-carboxyl-S-alkanethiosulfate sodium salts. The two-phase methodology using the thiosulfate ligand passivation protocol allowed a highly specific control over the surface ligand coverage of these nanoparticles, which are lost in a one-phase aqueous system because of the base-catalyzed hydrolysis of thiosulfate to thiolate. Systematic synthetic variations investigated in this study included the concentration of ω-carboxyl-S-alkanethiosulfate ligand precursors and reducing agent, NaBH4, and the overall ligand chain length. The resulting water-soluble Pd nanoparticles were isolated and characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), 1H NMR, UV–vis, and FT-IR spectroscopy. Among different variations, a decrease in the molar equivalent of NaBH4 resulted in a reduction in the surface ligand density while maintaining a similar particle core size. Additionally, reducing the chain length of the thiosulfate ligand precursor also led to the formation of stable nanoparticles with a lower surface coverage. Since the metal core size of these Pd nanoparticle variations remained quite consistent, direct correlation studies between ligand properties and catalytic activities against hydrogenation/isomerization of allyl alcohol could be performed. Briefly, Pd nanoparticles dissolved in water favored the hydrogenation of allyl alcohol to 1-propanol whereas Pd nanoparticles heterogeneously dispersed in chloroform exhibited a rather high selectivity towards the isomerization product (propanal). The results suggested that the surrounding ligand environments, such as the ligand structure, conformation, and surface coverage, were crucial in determining the overall activity and selectivity of the Pd nanoparticle catalysts. PMID:24246150

  18. Pulse-driven micro gas sensor fitted with clustered Pd/SnO2 nanoparticles.

    PubMed

    Suematsu, Koichi; Shin, Yuka; Ma, Nan; Oyama, Tokiharu; Sasaki, Miyuki; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2015-08-18

    Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 μm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device. PMID:26196499

  19. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts

    PubMed Central

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M.; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  20. Continuous flow room temperature reductive aqueous homo-coupling of aryl halides using supported Pd catalysts.

    PubMed

    Feiz, Afsaneh; Bazgir, Ayoob; Balu, Alina M; Luque, Rafael

    2016-01-01

    A convenient and environmentally friendly protocol for the preparation of biaryls at room temperature under continuous flow conditions is reported. A simple reductive homo-coupling Ullmann-type reaction was performed in an H-Cube mini using commercially available supported Pd catalysts under mild reaction conditions, with quantitative conversion to target products. Commercial Pd catalysts were found to be highly stable under the investigated reaction conditions, with a minimum Pd leaching into solution after several reaction runs (ca. 20 h on stream). PMID:27600989

  1. Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing.

    PubMed

    Yang, Jiang; Deng, Shengyuan; Lei, Jianping; Ju, Huangxian; Gunasekaran, Sundaram

    2011-11-15

    A simple, fast, green and controllable approach was developed for electrochemical synthesis of a novel nanocomposite of electrochemically reduced graphene oxide (ERGO) and gold-palladium (1:1) bimetallic nanoparticles (AuPdNPs), without the aid of any reducing reagent. The electrochemical reduction efficiently removed oxygen-containing groups in ERGO, which was then modified with homogeneously dispersed AuPdNPs in a good size distribution. ERGO-AuPdNPs nanocomposite showed excellent biocompatibility, enhanced electron transfer kinetics and large electroactive surface area, and were highly sensitive and stable towards oxygen reduction. A biosensor was constructed by immobilizing glucose oxidase as a model enzyme on the nanocomposites for glucose detection through oxygen consumption during the enzymatic reaction. The biosensor had a detection limit of 6.9μM, a linear range up to 3.5mM and a sensitivity of 266.6μAmM(-1)cm(-2). It exhibited acceptable reproducibility and good accuracy with negligible interferences from common oxidizable interfering species. These characteristics make ERGO-AuPdNPs nanocomposite highly suitable for oxidase-based biosensing. PMID:21903376

  2. Electrochemistry of cholesterol biosensor based on a novel Pt-Pd bimetallic nanoparticle decorated graphene catalyst.

    PubMed

    Cao, Shurui; Zhang, Lei; Chai, Yaqin; Yuan, Ruo

    2013-05-15

    A new electrochemical biosensor with enhanced sensitivity was developed for detection of cholesterol by using platinum-palladium-chitosan-graphene hybrid nanocomposites (PtPd-CS-GS) functionalized glassy carbon electrode (GCE). An electrodeposition method was applied to form PtPd nanoparticles-doped chitosan-graphene hybrid nanocomposites (PtPd-CS-GS), which were characterized by scanning electron microscopy (SEM) and electrochemical methods. The presence of the PtPd-CS-GS nanocomposites not only accelerated direct electron transfer from the redox enzyme to the electrode surface, but also enhanced the immobilized amount of cholesterol oxidase (ChOx). Under optimal conditions, the fabricated biosensor exhibited wide linear ranges of responses to cholesterol in the concentration ranges of 2.2×10(-6) to 5.2×10(-4)M, the limit of detection was 0.75 μM (S/N=3). The response time was less than 7s and the Michaelis-Menten constant (Km(app)) was found as 0.11 mM. In addition, the biosensor also exhibited excellent reproducibility and stability. Along with these attractive features, the biosensor also displayed very high specificity to cholesterol with complete elimination of interference from UA, AA, and glucose. PMID:23618155

  3. Controlling Surface Ligand Density and Core Size of Alkanethiolate-Capped Pd Nanoparticles and Their Effects on Catalysis

    PubMed Central

    Gavia, Diego J.; Shon, Young-Seok

    2016-01-01

    This article presents systematic investigations on the relationship between the catalytic property and the surface ligand density/core size of thiolate ligand-capped Pd nanoparticles (PdNPs). The systematic variations in the two-phase synthesis of PdNPs generated from sodium S-dodecylthiosulfate were performed. The resulting PdNPs were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and 1H NMR and UV–vis spectroscopy. The decrease in the molar equivalent of sodium S-dodecylthiosulfate (Bunte salts) resulted in the formation of nanoparticles with lower surface ligand density and larger particle core size. A decrease in the molar equivalent of tetra-n-octylammonium bromide or an increase in reaction temperature generated nanoparticles with higher surface ligand density and smaller particle core size. As the molar equivalent of NaBH4 decreased, the particle core size increased. The catalysis studies on various PdNPs with different surface ligand density and average core size showed a strong correlation between the PdNP composition and the turnover frequency (TOF) of the isomerization of allyl alcohol. Optimized “good” PdNPs with lower surface ligand coverage and larger core size catalyzed the isomerization of various allyl alcohols to carbonyl analogues with high activity and selectivity. PMID:22924990

  4. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.

    PubMed

    Guo, Shaojun; Zhang, Xu; Zhu, Wenlei; He, Kai; Su, Dong; Mendoza-Garcia, Adriana; Ho, Sally Fae; Lu, Gang; Sun, Shouheng

    2014-10-22

    Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal surface strain and composition and may surpass Pt in catalyzing oxygen reduction reactions. We synthesized monodisperse M/CuPd NPs by the coreduction of palladium acetylacetonate and copper acetylacetonate in the presence of Ag (or Au) nanoparticles with controlled shell thicknesses of 0.4, 0.75, and 1.1 nm and CuPd compositions and evaluated their catalysis for the oxygen reduction reaction in 0.1 M KOH solution. As predicted, our Ag/Cu37Pd63 and Au/Cu40Pd60 catalysts with 0.75 and 1.1 nm shells were more efficient catalysts than the commercial Pt catalyst (Fuel Cells Store), with their mass activity reaching 0.20 A/mg of noble metal at -0.1 V vs Ag/AgCl (4 M KCl); this was over 3 times higher than that (0.06 A/mg Pt) from the commercial Pt. These Ag(Au)/CuPd nanoparticles are promising non-Pt catalysts for oxygen reduction reactions. PMID:25279704

  5. Reductive dechlorination of 2,4-dichlorophenol by Pd/Fe nanoparticles prepared in the presence of ultrasonic irradiation.

    PubMed

    Zhao, Deming; Li, Min; Zhang, Dexing; Baig, Shams Ali; Xu, Xinhua

    2013-05-01

    Palladium/Iron (Pd/Fe) nanoparticles were prepared by using ultrasound strengthened liquid phase reductive method to enhance dispersion and avoid agglomeration. The dechlorination of 2,4-dichlorophenol (2,4-DCP) by Pd/Fe nanoparticles was investigated to understand its feasibility for an in situ remediation of contaminated groundwater. Results showed that 2,4-DCP was first adsorbed by Pd/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The induction of ultrasound during the preparation of Pd/Fe nanoparticles further enhanced the removal efficiency of 2,4-DCP, as a result, the phenol production rates increased from 65% (in the absence of ultrasonic irradiation) to 91% (in the presence of ultrasonic irradiation) within 2h. Our data suggested that the dechlorination rate was dependent on various factors including Pd loading percentage over Fe(0), Pd/Fe nanoparticles availability, temperature, mechanical stirring speed, and initial pH values. Up to 99.2% of 2,4-DCP was removed after 300min reaction with these conditions: Pd loading percentage over Fe(0) 0.3wt.%, initial 2,4-DCP concentration 20mgL(-1), Pd/Fe dosage 3gL(-1), initial pH value 3.0, and reaction temperature 25°C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0468min(-1). PMID:23266438

  6. Enhanced dechlorination of m-DCB using iron@graphite/palladium (Fe@C/Pd) nanoparticles produced by pulsed laser ablation in liquid.

    PubMed

    Yu, Yiseul; Jung, Hyeon Jin; Je, Mingyu; Choi, Hyun Chul; Choi, Myong Yong

    2016-07-01

    In this work, the zero valent Fe (ZVI) and graphite-encapsulated Fe (Fe@C) nanoparticles (NPs) were easily and selectively prepared by a pulsed laser ablation (PLA) method in an aqueous sodium borohydride solution and ascorbic acid dissolved in methanol, respectively. Here, the Fe@C NPs were uniquely synthesized by PLA in methanol, where the solvent is used as both a carbon source for the graphitic layers and solvent, which is very unique. Furthermore, Pd NPs were loaded onto the surface of the Fe@C NPs to prepare bimetallic (Fe@C/Pd) NPs for the enhancement of the degradation efficiency of m-dichlorobenzene (m-DCB). The morphology, crystallinity, and surface composition of the prepared NPs were carefully characterized by high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray spectrometer (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The degradation rate of m-DCB using single (Fe and Pd) or bimetallic (Fe/Pd and Fe@C/Pd) NPs were compared by using gas chromatography. Among these NPs produced in this work, the Fe@C/Pd NPs with 1.71 wt % of Pd showed an excellent dechlorination efficiency for m-DCB with 100% degradation within 75 min. The graphitic layer on the Fe NPs played as not only an oxidation resistant for the Fe NPs to surroundings, but also a supporter of the Pd NPs for the enhanced degradation efficiency of m-DCB. PMID:27129061

  7. Pd Nanoparticle Formation in Ionic Liquid Thin Films Monitored by in situ Vibrational Spectroscopy.

    PubMed

    Mehl, Sascha; Toghan, Arafat; Bauer, Tanja; Brummel, Olaf; Taccardi, Nicola; Wasserscheid, Peter; Libuda, Jörg

    2015-11-10

    Ionic liquids (ILs) are flexible reaction media and solvents for the synthesis of metal nanoparticles (NPs). Here, we describe a new preparation method for metallic NPs in nanometer thick films of ultraclean ILs in an ultrahigh vacuum (UHV) environment. CO-covered Pd NPs are formed by simultaneous and by sequential physical vapor deposition (PVD) of the IL and the metal in the presence of low partial pressures of CO. The film thickness and the particle size can be controlled by the deposition parameters. We followed the formation of the NPs and their thermal behavior by time-resolved IR reflection absorption spectroscopy (TP-IRAS) and by temperature-programmed IRAS (TR-IRAS). Codeposition of Pd and [C1C2Im][OTf] in CO at 100 K leads to the growth of homogeneous multilayer films of CO-covered Pd aggregates in an IL matrix. The size of these NPs can be controlled by the metal fraction in the co-deposit. With increasing metal fraction, the size of the Pd NPs also increases. At very low metal content, small Pd carbonyl-like species are formed, which bind CO in on-top geometry only. Upon annealing, the [OTf](-) anion coadsorbs at the NP surface and partially displaces CO. Co-adsorption of CO and IL is indicated by a strong red-shift of the CO stretching bands. While the weakly bound on-top CO is mainly replaced below the melting transition of the IL, coadsorbate shells with bridge-bonded CO and IL are stable well above the melting point. Larger three-dimensional Pd NPs can be prepared by PVD of Pd onto a solid [C1C2Im][OTf] film at 100 K. Upon annealing, on-top CO desorbs from these NPs below 200 K. Upon melting of the IL film, the CO-covered Pd NPs immerse into the IL and again form a stable coadsorbate shell that consists of bridge-bonded CO and the IL. PMID:26479118

  8. Preparation and characterization of Pd/Fe bimetallic nanoparticles immobilized on Al2O3/PVDF membrane: Parameter optimization and dechlorination of dichloroacetic acid.

    PubMed

    Zhang, Lijuan; Meng, Zhaohong; Zang, Shuying

    2015-05-01

    Using a liquid-solid phase inversion method, a hybrid matrix poly(vinylidene fluoride) (PVDF) membrane was prepared with alumina (Al2O3) nanoparticle addition. Pd/Fe nanoparticles (NPs) were successfully immobilized on the Al2O3/PVDF membrane, which was characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The micrographs showed that the Pd/Fe NPs were dispersed homogeneously. Several important experimental parameters were optimized, including the mechanical properties, contact angle and surface area of Al2O3/PVDF composite membranes with different Al2O3 contents. At the same time, the ferrous ion concentration and the effect of hydrophilization were studied. The results showed that the modified Al2O3/PVDF membrane functioned well as a support. The Al2O3/PVDF membrane with immobilized Pd/Fe NPs exhibited high efficiency in terms of dichloroacetic acid (DCAA) dechlorination. Additionally, a reaction pathway for DCAA dechlorination by Pd/Fe NPs immobilized on the Al2O3/PVDF membrane system was proposed. PMID:25968273

  9. A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis

    NASA Astrophysics Data System (ADS)

    Guo, Liping; Bai, Jie; Li, Chunping; Meng, Qingrun; Liang, Haiou; Sun, Weiyan; Li, Hongqiang; Liu, Huan

    2013-10-01

    This paper studied the preparation of Pd nanoparticles/PVP composite nanofiber membranes catalyst. In the experiment, reductant was ethanol and PVP (polyvinyl pyrrolidone) served as the protecting agent as well as supporter of palladium nanoparticles. Pd nanoparticles/PVP sol was examined by UV-vis absorbance spectra (UV-vis); Pd NPs/PVP nanofibers were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). The Pd NPs/PVP nanofibers films catalyst was applied to catalytic hydrogenation of aryl nitro compounds reduction and Heck reactions to test the catalytic activity, products were characterized by gas chromatograph (GC) and gas chromatograph mass spectrometer (GC-MS). Results showed that the diameters of Pd NPs were 3-10 nm and the Pd NPs/PVP nanofibers films catalyst possessed high-activity, improved the selectivity and yield, the conversion rate of paratoluidine was 74.36%, N-butyl cinnamate esters conversion rate still exceed 99% after catalyst be used three times. It overcomes the problems that palladium has leached badly and recovery difficultly in conventional homogeneous palladium catalyst field, and have a broad foreground of catalyst applications.

  10. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    SciTech Connect

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.; Colby, Robert J.; Kabius, Bernd C.; Rob van Veen, J. A.; Jentys, Andreas; Lercher, Johannes A.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, which was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.

  11. H2 adsorption and dissociation on PdO(101) films supported on rutile TiO2 (110) facet: elucidating the support effect by DFT calculations.

    PubMed

    Sun, Xiongfei; Peng, Xing; Xu, Xianglan; Jin, Hua; Wang, Hongming; Wang, Xiang

    2016-09-01

    To explore metal oxide-support interactions and their effect, H2 adsorption and dissociation on PdO(101)/TiO2(110) films with different film thicknesses, in comparison with that on pure PdO(101) surface without TiO2(110) support, were studied by density functional theory calculation. A monolayer PdO(101) film supported on TiO2 facet shows different properties to a pure PdO(101) surface. On the monolayer PdO(101)/TiO2(110) film, TiO2 support leads to stronger molecular adsorption of H2 on coordinatively unsaturated Pd top sites than that on a pure PdO surface. H2 dissociation with the formation of OH was preferred thermodynamically but slightly unfavorable kinetically on the monolayer PdO film due to the TiO2 support effect. Graphical abstract On the monolayer PdO(101)/TiO2(110) film, the TiO2 support effect leads to stronger H2 molecular adsorption on coordinatively unsaturated Pd top sites than on pure PdO surface. H2 dissociation with the formation of OH is preferred thermodynamically but slightly unfavorable kinetically on the film due to the TiO2 support effect. PMID:27491853

  12. Functionalized magnetic nanoparticles: A novel heterogeneous catalyst support

    EPA Science Inventory

    Functionalized magnetic nanoparticles have emerged as viable alternatives to conventional materials, as robust, high-surface-area heterogeneous catalyst supports. Post-synthetic surface modification protocol for magnetic nanoparticles has been developed that imparts desirable che...

  13. Configuration of microbially synthesized Pd-Au nanoparticles studied by STEM-based techniques

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Jones, I. P.; Preece, J. A.; Johnston, R. L.; Deplanche, K.; Macaskie, L. E.

    2012-02-01

    Bimetallic Pd-Au particles synthesized using Desulfovibrio desulfuricans bacteria are characterized using scanning transmission electron microscopy (STEM) with a high-angle annular dark field (HAADF) detector combined with energy dispersive x-ray (EDX) silicon drift detector (SDD) elemental mapping and plasmon electron energy-loss spectroscopy (EELS). When combined with EDX, theoretical considerations or EELS, the atomic-number contrast (Z-contrast) provided by HAADF-STEM is effective in characterizing the compositional configuration of the bimetallic nanoparticles. Homogeneous mixing and complex segregations have been found for different particles in this work. The EELS study has also found different behaviours corresponding to surface plasmon resonances in different regions of a single particle due to its heterogeneity and anisotropy. HAADF-STEM tomography has been performed to obtain three-dimensional (3D) visualization of the nanoparticles.

  14. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  15. Morphological and spectroscopic studies on enlargement of Pd nanoparticle in L-cysteine aqueous solution by AFM and XPS

    NASA Astrophysics Data System (ADS)

    Tsukada, C.; Ogawa, S.; Niwa, H.; Nomoto, T.; Kutluk, G.; Namatame, H.; Taniguchi, M.; Yagi, S.

    2013-02-01

    We have revealed the enlargement mechanism of Pd nanoparticles (NPs) on SiO2/Si by the AFM observation and the XPS measurement, when the Pd NPs react with the L-cysteine under water environment. Furthermore, the adsorbates on the Pd NPs/SiO2/Si have been confirmed by the XPS measurement. The Pd NPs with clean surface are fabricated and deposited on the SiO2/Si substrate by the gas evaporation method. In that aspect, the Pd NPs possess an interaction with the SiO2/Si surface. When the Pd NPs/SiO2/Si is reacted into the L-cysteine aqueous solution, the adsorbates originated from the L-cysteine exist on the Pd NPs surface. On the contrary, the L-cysteine hardly adsorb on the SiO2/Si. The enlargement of the Pd NPs is stimulated by the contributions of the H2O and/or the L-cysteine molecules because the Pd NPs can be more easily migrated on the SiO2/Si surface due to those contributions.

  16. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    DOE PAGESBeta

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; Koerner, Hilmar; Ramezani-Dakhel, Hadi; Heinz, Hendrik; Naik, Rajesh R.; Frenkel, Anatoly I.; Knecht, Marc R.

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms aremore » the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.« less

  17. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: Effects of particle surface disorder

    SciTech Connect

    Briggs, Beverly D.; Bedford, Nicholas M.; Seifert, Soenke; Koerner, Hilmar; Ramezani-Dakhel, Hadi; Heinz, Hendrik; Naik, Rajesh R.; Frenkel, Anatoly I.; Knecht, Marc R.

    2015-07-23

    C–C coupling reactions are of great importance in the synthesis of numerous organic compounds, where Pd nanoparticle catalyzed systems represent new materials to efficiently drive these reactions. Despite their pervasive utility, the catalytic mechanism of these particle-based reactions remains highly contested. Herein we present evidence of an atom leaching mechanism for Stille coupling under aqueous conditions using peptide-capped Pd nanoparticles. EXAFS analysis revealed Pd coordination changes in the nanoparticle consistent with Pd atom abstraction, where sizing analysis by SAXS confirmed particle size changes associated with a leaching process. It is likely that recently discovered highly disordered surface Pd atoms are the favored catalytic active sites and are leached during oxidative addition, resulting in smaller particles. Thus, probing the mechanism of nanoparticle-driven C–C coupling reactions through structural analyses provides fundamental information concerning these active sites and their reactivity at the atomic-scale, which can be used to improve catalytic performance to meet important sustainability goals.

  18. Effects of palladium on the optical and hydrogen sensing characteristics of Pd-doped ZnO nanoparticles

    PubMed Central

    Giang, Hong Thai; Do, Thu Thi; Pham, Ngan Quang; Ho, Giang Truong

    2014-01-01

    Summary The effect of palladium doping of zinc oxide nanoparticles on the photoluminescence (PL) properties and hydrogen sensing characteristics of gas sensors is investigated. The PL intensity shows that the carrier dynamics coincides with the buildup of the Pd-related green emission. The comparison between the deep level emission and the gas sensing response characteristics allows us to suggest that the dissociation of hydrogen takes place at PdZn-vacancies ([Pd 2+(4d9)]). The design of this sensor allows for a continuous monitoring in the range of 0–100% LEL H2 concentration with high sensitivity and selectivity. PMID:25247110

  19. In situ XAS studies of Pt{sub x}Pd{sub 1-x} nanoparticles under thermal annealing

    SciTech Connect

    Bernardi, F.; Morais, J.; Alves, M. C. M.

    2009-01-29

    In this work, we have studied Pt{sub x}Pd{sub 1-x}(x = 1, 0.7 or 0.5) nanoparticles subjected to H{sub 2} reduction and sulfidation under H{sub 2}S atmosphere, both at 300 deg. C. The system was studied by in-situ x-ray absorption spectroscopy (in-situ XAS). We observed that the efficiency of sulfidation is directly proportional to the quantity of Pd atoms in the nanoparticle, provided the reduction process has been achieved.

  20. A simple route to water-soluble size-tunable monodispersed Pd nanoparticles from light decomposition of Pd(PPh 3) 4

    NASA Astrophysics Data System (ADS)

    Tan, Hua; Zhan, Tong; Fan, Wai Yip

    2006-09-01

    Water-soluble monodispersed palladium nanoparticles of diameters 2.5, 5 and 10 nm controlled by varying the concentration of CTAB (hexadecyltrimethylammonium bromide) micelles have been prepared from light decomposition of Pd(PPh 3) 4. The size and structure of these single crystalline particles have been confirmed using UV-vis spectroscopy, high resolution transmission electron microscope, energy dispersive X-ray analysis and powder X-ray diffraction methods.

  1. Method for forming thermally stable nanoparticles on supports

    DOEpatents

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2013-08-20

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  2. Controlled Synthesis of Pd/Pt Core Shell Nanoparticles Using Area-selective Atomic Layer Deposition

    PubMed Central

    Cao, Kun; Zhu, Qianqian; Shan, Bin; Chen, Rong

    2015-01-01

    We report an atomic scale controllable synthesis of Pd/Pt core shell nanoparticles (NPs) via area-selective atomic layer deposition (ALD) on a modified surface. The method involves utilizing octadecyltrichlorosilane (ODTS) self-assembled monolayers (SAMs) to modify the surface. Take the usage of pinholes on SAMs as active sites for the initial core nucleation, and subsequent selective deposition of the second metal as the shell layer. Since new nucleation sites can be effectively blocked by surface ODTS SAMs in the second deposition stage, we demonstrate the successful growth of Pd/Pt and Pt/Pd NPs with uniform core shell structures and narrow size distribution. The size, shell thickness and composition of the NPs can be controlled precisely by varying the ALD cycles. Such core shell structures can be realized by using regular ALD recipes without special adjustment. This SAMs assisted area-selective ALD method of core shell structure fabrication greatly expands the applicability of ALD in fabricating novel structures and can be readily applied to the growth of NPs with other compositions. PMID:25683469

  3. Carbon-Supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol

    SciTech Connect

    Sun, Junming; Karim, Ayman M.; Zhang, He; Kovarik, Libor; Li, Xiaohong S.; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2013-10-01

    Abstract Carbon supported metal catalysts (Cu/C, Fe/C, Pd/C, Pt/C, PdFe/C and Ru/C) have been prepared, characterized and tested for vapor-phase hydrodeoxygenation (HDO) of guaiacol (GUA) at atmospheric pressure. Phenol was the major intermediate on all catalysts. Over the noble metal catalysts saturation of the aromatic ring was the major pathway observed at low temperature (250 °C), forming predominantly cyclohexanone and cyclohexanol. Substantial ring opening reaction was observed on Pt/C and Ru/C at higher reaction temperatures (e.g., 350 °C). Base metal catalysts, especially Fe/C, were found to exhibit high HDO activity without ring-saturation or ring-opening with the main products being benzene, phenol along with small amounts of cresol, toluene and trimethylbenzene (TMB). A substantial enhancement in HDO activity was observed on the PdFe/C catalysts. Compared with Fe/C, the yield to oxygen-free aromatic products (i.e., benzene/toluene/TMB) on PdFe/C increased by a factor of four at 350 °C, and by approximately a factor of two (83.2% versus 43.3%) at 450 °C. The enhanced activity of PdFe/C is attributed to the formation of PdFe alloy as evidenced by STEM, EDS and TPR.

  4. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition.

    PubMed

    Yang, Chia-Cheng; Wan, Chi-Chao; Wang, Yung-Yun

    2004-11-15

    Ag/Pd nanoparticles have been synthesized with a reactive alcohol-type surfactant, sodium dodecyl sulfate (SDS), without the presence of an external reducing agent. Both UV-vis absorption spectra and X-ray diffraction patterns for the bimetallic and physical mixtures of individual nanoparticles revealed the formation of a bimetallic structure. Based on this method, an ordered 3D grapelike nanostructure was formed, possibly due to transformation of the liquid crystal phase of the micelles. Data from the energy-dispersive X-ray analysis show that the composition of bimetallic nanoparticle is approximately equal to the feeing solution. Furthermore, the Ag/Pd nanoparticles exhibit distinct catalyst for electroless copper deposition and may be a substitute for the conventional palladium system, which is expensive and unstable in operation. PMID:15464808

  5. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing.

    PubMed

    Iulianelli, Adolfo; Alavi, Marjan; Bagnato, Giuseppe; Liguori, Simona; Wilcox, Jennifer; Rahimpour, Mohammad Reza; Eslamlouyan, Reza; Anzelmo, Bryce; Basile, Angelo

    2016-01-01

    A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H₂, H₂, N₂, CO₂, CH₄) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H₂/N₂ ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al₂O₃ catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane. PMID:27171067

  6. One-step electrochemical synthesis of preferentially oriented (111) Pd nanocrystals supported on graphene nanoplatelets for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Qing-Song; Xu, Zhong-Ning; Peng, Si-Yan; Chen, Yu-Min; Lv, Dong-Mei; Wang, Zhi-Qiao; Sun, Jing; Guo, Guo-Cong

    2015-05-01

    Pd nanocrystals supported on graphene nanoplatelets (Pd/GNP) have been successfully synthesized by simultaneously electrochemical milling of Pd wire and graphite rod. It should be stressed that without the assistance of graphite rod, the Pd nanocrystals are unable to be obtained individually from Pd wire under the same conditions. Investigations of SEM and TEM demonstrate that Pd/GNP are preferentially decorated with (111) faceted nanocrystals. XPS studies confirm the strong metal-support interaction in Pd/GNP and reveal the surface is almost composed of Pd(0) species. Electrochemical measurements show that the prepared Pd based catalyst exhibits superior electrocatalytic activity towards formic acid oxidation, which may be attributed to the combined effects involving the preferentially oriented (111) surface structure, specific electronic structure and high dispersion of Pd nanocrystals as well as the support effects of graphene nanoplatelets. The synthesis method is simple and effective to prepare excellent new carbon-supported electrocatalysts, which is of great significance for direct organic molecule fuel cell.

  7. UHV studies of the interaction of CO with small supported metal particles, Pd/mica

    NASA Technical Reports Server (NTRS)

    Doering, D. L.; Poppa, H.; Dickinson, J. T.

    1982-01-01

    The interaction of carbon monoxide with small palladium particles supported on UHV-cleaved and heat-treated single-crystal mica was studied. The Pd particles were characterized and tested using the techniques of flash thermal desorption, Auger electron spectroscopy, core electron energy loss spectroscopy, and transmission electron microscopy. Evidence is presented for CO decomposition on Pd particles during CO adsorption-desorption experiments. The rate of CO decomposition increased rapidly with diminishing particle size. Residual carbon from CO decomposition blocked CO adsorption and had a strong poisoning effect on the CO oxidation reaction.

  8. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts

    SciTech Connect

    Kwak, Ja Hun; Kovarik, Libor; Szanyi, Janos

    2013-11-01

    Temperature programmed reaction and scanning transmission electron microscopy experiments were applied to prove the requirement of two different catalyst functionalities for the reduction of CO2 with hydrogen on Pd/Al2O3 and Pd/MWCNT catalysts. The research described in this paper was supported by the Laboratory Directed Research and Development (LDRD) program of the Pacific Northwest National Laboratory (PNNL) and was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the US DOE by Battelle Memorial Institute.

  9. Green Synthesis of Fe and Fe/Pd Bimetallic Nanoparticles in Membranes for Reductive Degradation of Chlorinated Organics

    EPA Science Inventory

    Membranes containing reactive nanoparticles (Fe and Fe/Pd) immobilized in a polymer film (polyacrylic acid, PAA-coated polyvinylidene fluoride, PVDF membrane) are prepared by a new method. In the present work a biodegradable, non-toxic -“green” reducing agent, green tea extract ...

  10. In situ fabrication of a perfect Pd/ZnO@ZIF-8 core-shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Zhang, Tong; Liu, Haiou; Qiu, Jieshan; Zhang, Xiongfu

    2015-04-01

    Controllable encapsulation of nanoparticles with metal organic frameworks (MOFs) has been an efficient way to impart the unique chemical and physical properties of the nanoparticles to metal organic frameworks and create new types of multifunctional MOF core-shell materials with enhanced properties. Here, a novel ZnO support-induced encapsulation strategy is reported to efficiently fabricate a Pd/ZnO@ZIF-8 core-shell catalyst, with Pd/ZnO as the core and ZIF-8 as the shell. The novel synthesis procedure involves first loading Pd nanoparticles onto the surface of the ZnO microsphere to form a Pd/ZnO core and then coating the core with a layer of defect-free ZIF-8 shell via ZnO-induced in situ ZIF-8 growth to obtain the Pd/ZnO@ZIF-8 core-shell catalyst. It was crucial that the ZIF-8 was in situ formed from the ZnO core in an ethanol solution only containing 2-methylimidazole under mild conditions. This strategy allowed for the growth of ZIF-8 right on the surface of Pd/ZnO via the reaction between ZnO and the 2-methylimidazole ligands, and thus avoided the random deposition of ZIF-8 crystals on the Pd/ZnO core as in the case of the conventional ZIF-8 synthesis solution. Furthermore, use of ethanol as the solvent also favored achievement of the well-defined Pd/ZnO@ZIF-8 structure, since the ethanol solution of 2-methylimidazole was able to keep the balance between ZnO dissolution and ZIF-8 formation. The as-prepared Pd/ZnO@ZIF-8 core-shell microsphere as an efficient catalyst displayed excellent performance in terms of size-selectivity, stability and anti-poisoning in the liquid hydrogenations of alkenes.