Science.gov

Sample records for pea mosaic virus

  1. QTL may explain a tolerance response to Pea enation mosaic virus in pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pea enation mosaic virus (PEMV) is a serious disease of fresh market and dry pea in the Pacific Northwest region of the U.S. The dominant En gene confers resistance to PEMV in pea, however, only a limited number of available cultivars contain the gene. While some cultivars have been reported with ...

  2. Evidence that QTL may be involved in a tolerance response to Pea enation mosaic virus in pea (Pisum sativum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pea enation mosaic virus (PEMV) is a serious disease of fresh market and dry pea in the Pacific Northwest region of the U.S. The En gene confers resistance to PEMV in pea, however a limited number of available cultivars contain the gene, and sources of tolerance have not been reported. In 2007, ad...

  3. Molecular evidence for lack of seed transmission of Pea enation mosaic virus in Pisum sativum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pea enation mosaic virus (PEMV) has never been definitively demonstrated to be seed transmitted and as such, has been a point of issue in movement of pea seed to other countries such as Australia and New Zealand. To determine whether the virus is seed-borne and the likelihood that it may be seed tr...

  4. Identification of novel sources of resistance to Pea enation mosaic virus in chickpea germplasm.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chickpea (Cicer arietinum) can be seriously affected by Pea enation mosaic virus (PEMV) in the Pacific Northwest of the USA and other areas of the world when viruliferous aphid populations are high. Use of pesticides to manage PEMV vector transmission is ineffective and PEMV-resistant chickpeas hav...

  5. Detection of Alfalfa mosaic virus (AMV) in pea field in Iran.

    PubMed

    Esfandiari, N; Kohi Habibi, M; Mosahebi, G H; Mozafari, J

    2005-01-01

    During the spring and summer, in 2003-2004, pea viruses were identified in twenty pea fields of Tehran. Some leaf samples were collected randomly from pea fields of Tehran. Samples were tested by Double Antibody Sandwich Enzyme Linked Immunosorbent Assay (DAS-ELISA) technique using polyclonal antiserum of Alfalfa mosaic virus (AMV), AS-0001, DSMZ, Braunschweig, Germany). The samples were extracted in 0.1 M Phosphate buffer pH 7 to 7.5 and inoculated on Chenopodium amaranticolor, Chenopodium quina, Phaseolus valgaris, Vicia faba, Vignia unguiculata. Pea cultivars were infected by AMV, causing mild mosaic, translucent veins and a diffuse green-yellow of tender parts and spots may also was involved necrosis of tissue. Infected plants grow slowly and malformed pods produce fewer ovules. In Chenopodium amranticolor, C. quina chlorotic and necrotic flecks, and Vicia faba systemic mosaic had produced. Phaselous vulgaris and Viginia unguiculata are good assay hosts for strains that produce local lesions after 3-5 days in these plants. Back inoculated on Pisum sativum and Vicia faba and tested with DAS-ELISA that had been confirmed the results. This is the first report of AMV on pea from Iran. PMID:16637206

  6. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel

    SciTech Connect

    Liu Sijun; Sivakumar, S.; Sparks, Wendy O.; Miller, W. Allen; Bonning, Bryony C.

    2010-05-25

    Development of ways to block virus transmission by aphids could lead to novel and broad-spectrum means of controlling plant viruses. Viruses in the Luteoviridae enhanced are obligately transmitted by aphids in a persistent manner that requires virion accumulation in the aphid hemocoel. To enter the hemocoel, the virion must bind and traverse the aphid gut epithelium. By screening a phage display library, we identified a 12-residue gut binding peptide (GBP3.1) that binds to the midgut and hindgut of the pea aphid Acyrthosiphon pisum. Binding was confirmed by labeling the aphid gut with a GBP3.1-green fluorescent protein fusion. GBP3.1 reduced uptake of Pea enation mosaic virus (Luteoviridae) from the pea aphid gut into the hemocoel. GBP3.1 also bound to the gut epithelia of the green peach aphid and the soybean aphid. These results suggest a novel strategy for inhibiting plant virus transmission by at least three major aphid pest species.

  7. Baculovirus expressed virus-like particles of Pea eation mosaic virus vary in size and encapsidate baculovirus mRNAs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pea enation mosaic virus (PEMV: family Luteoviridae) is transmitted in a persistent, circulative manner by aphids. We inserted cDNAs encoding the structural proteins of PEMV, the coat protein (CP) and coat protein-read through domain (CPRT) into the genome of the baculovirus Autographa californica m...

  8. Apple latent spherical virus vector as vaccine for the prevention and treatment of mosaic diseases in pea, broad bean, and eustoma plants by bean yellow mosaic virus.

    PubMed

    Satoh, Nozomi; Kon, Tatsuya; Yamagishi, Noriko; Takahashi, Tsubasa; Natsuaki, Tomohide; Yoshikawa, Nobuyuki

    2014-11-01

    We investigated the protective effects of a viral vector based on an Apple latent spherical virus (ALSV) harboring a segment of the Bean yellow mosaic virus (BYMV) genome against mosaic diseases in pea, broad bean, and eustoma plants caused by BYMV infection. In pea plants pre-inoculated with the ALSV vaccine and challenge inoculated with BYMV expressing green fluorescence protein, BYMV multiplication occurred in inoculated leaves, but was markedly inhibited in the upper leaves. No mosaic symptoms due to BYMV infection were observed in the challenged plants pre-inoculated with the ALSV vaccine. Simultaneous inoculation with the ALSV vaccine and BYMV also prevented mosaic symptoms in broad bean and eustoma plants, and BYMV accumulation was strongly inhibited in the upper leaves of plants treated with the ALSV vaccine. Pea and eustoma plants were pre-inoculated with BYMV followed by inoculation with the ALSV vaccine to investigate the curative effects of the ALSV vaccine. In both plant species, recovery from mosaic symptoms was observed in upper leaves and BYMV accumulation was inhibited in leaves developing post-ALSV vaccination. These results show that ALSV vaccination not only prevents mosaic diseases in pea, broad bean, and eustoma, but that it is also effective in curing these diseases. PMID:25386843

  9. Conditional Facilitation of an Aphid Vector, Acyrthosiphon pisum, by the Plant Pathogen, Pea Enation Mosaic Virus

    PubMed Central

    Hodge, Simon; Powell, Glen

    2010-01-01

    Plant pathogens can induce symptoms that affect the performance of insect herbivores utilizing the same host plant. Previous studies examining the effects of infection of tic bean, Vicia faba L. (Fabales: Fabaceae), by pea enation mosaic virus (PEMV), an important disease of legume crops, indicated there were no changes in the growth and reproductive rate of its primary vector the pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Here, we report the results of laboratory experiments investigating how A. pisum responded to PEMV infection of a different host plant, Pisum sativum L., at different stages of symptom development. Aphid growth rate was negatively related to the age of the host plant, but when they were introduced onto older plants with well-developed PEMV symptoms they exhibited a higher growth rate compared to those developing on uninfected plants of the same age. In choice tests using leaf discs A. pisum showed a strong preference for discs from PEMV-infected peas, probably in response to visual cues from the yellowed and mottled infected leaves. When adults were crowded onto leaves using clip-cages they produced more winged progeny on PEMV-infected plants. The results indicate that PEMV produces symptoms in the host plant that can enhance the performance of A. pisum as a vector, modify the production of winged progeny and affect their spatial distribution. The findings provide further evidence that some insect vector/plant pathogen interactions could be regarded as mutualistic rather than commensal when certain conditions regarding the age, stage of infection and species of host plant are met. PMID:21067425

  10. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus.

    PubMed

    Gao, Feng; Simon, Anne E

    2016-01-29

    Programmed -1 ribosomal frameshifting (-1 PRF) is used by many positive-strand RNA viruses for translation of required products. Despite extensive studies, it remains unresolved how cis-elements just downstream of the recoding site promote a precise level of frameshifting. The Umbravirus Pea enation mosaic virus RNA2 expresses its RNA polymerase by -1 PRF of the 5'-proximal ORF (p33). Three hairpins located in the vicinity of the recoding site are phylogenetically conserved among Umbraviruses. The central Recoding Stimulatory Element (RSE), located downstream of the p33 termination codon, is a large hairpin with two asymmetric internal loops. Mutational analyses revealed that sequences throughout the RSE and the RSE lower stem (LS) structure are important for frameshifting. SHAPE probing of mutants indicated the presence of higher order structure, and sequences in the LS may also adapt an alternative conformation. Long-distance pairing between the RSE and a 3' terminal hairpin was less critical when the LS structure was stabilized. A basal level of frameshifting occurring in the absence of the RSE increases to 72% of wild-type when a hairpin upstream of the slippery site is also deleted. These results suggest that suppression of frameshifting may be needed in the absence of an active RSE conformation. PMID:26578603

  11. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus

    PubMed Central

    Gao, Feng; Simon, Anne E.

    2016-01-01

    Programmed -1 ribosomal frameshifting (-1 PRF) is used by many positive-strand RNA viruses for translation of required products. Despite extensive studies, it remains unresolved how cis-elements just downstream of the recoding site promote a precise level of frameshifting. The Umbravirus Pea enation mosaic virus RNA2 expresses its RNA polymerase by -1 PRF of the 5′-proximal ORF (p33). Three hairpins located in the vicinity of the recoding site are phylogenetically conserved among Umbraviruses. The central Recoding Stimulatory Element (RSE), located downstream of the p33 termination codon, is a large hairpin with two asymmetric internal loops. Mutational analyses revealed that sequences throughout the RSE and the RSE lower stem (LS) structure are important for frameshifting. SHAPE probing of mutants indicated the presence of higher order structure, and sequences in the LS may also adapt an alternative conformation. Long-distance pairing between the RSE and a 3′ terminal hairpin was less critical when the LS structure was stabilized. A basal level of frameshifting occurring in the absence of the RSE increases to 72% of wild-type when a hairpin upstream of the slippery site is also deleted. These results suggest that suppression of frameshifting may be needed in the absence of an active RSE conformation. PMID:26578603

  12. Nucleotide sequence of the 3'-terminal region of the genome confirms that pea mosaic virus is a strain of bean yellow mosaic potyvirus.

    PubMed

    Xiao, X W; Frenkel, M J; Ward, C W; Shukla, D D

    1994-01-01

    The 1,035 nucleotides at the 3'end of the I strain of pea mosaic potyvirus (PMV-I) genomic RNA, encoding the coat protein, have been cloned and sequenced. A comparison of the derived coat protein sequence with those of the bean yellow mosaic virus (BYMV) strains, CS, S, D and GDD, indicates that PMV-I is a strain of BYMV. Sequence comparisons and hybridisation studies using the 3'-noncoding region support this classification. The nucleotide and protein sequence data also suggest that PMV-I and BYMV-CS form one subset of BYMV strains while the other three strains form another. PMID:8031241

  13. Genetic and biological diversity of the Pea seed-borne mosaic virus isolates occurring in Czech Republic.

    PubMed

    Safárová, D; Navrátil, M; Petrusová, J; Pokorný, R; Piáková, Z

    2008-01-01

    Eight isolates of the Pea seed-borne mosaic virus (PSbMV) from the Czech Republic were studied regarding their biological and molecular characteristics. Molecular characterization using RT-PCR was done on the 5'(Nter)NIb-CP-UTR3' region amplified using universal CPUP/P9502 primer pair and the newly designed PSB8812/PSB944, and PSB8800/PSB9440 primer pairs, respectively. Sequential and phylogenetic analysis of CP-UTR3' region from all isolates showed that the available Czech and GenBank PSbMV isolates were distributed into 4 clusters in agreement with their diversification and according to their biological characteristics (i.e. pathotype). The molecular data were confirmed by biological testing on different pea cultivars. The Czech isolates were distributed into two pathotypes, the P-1 (7 isolates) and P-4 (1 isolate). PMID:18459836

  14. Automated Solution-Phase Synthesis of Insect Glycans to Probe the Binding Affinity of Pea Enation Mosaic Virus.

    PubMed

    Tang, Shu-Lun; Linz, Lucas B; Bonning, Bryony C; Pohl, Nicola L B

    2015-11-01

    Pea enation mosaic virus (PEMV)--a plant RNA virus transmitted exclusively by aphids--causes disease in multiple food crops. However, the aphid-virus interactions required for disease transmission are poorly understood. For virus transmission, PEMV binds to a heavily glycosylated receptor aminopeptidase N in the pea aphid gut and is transcytosed across the gut epithelium into the aphid body cavity prior to release in saliva as the aphid feeds. To investigate the role of glycans in PEMV-aphid interactions and explore the possibility of viral control through blocking a glycan interaction, we synthesized insect N-glycan terminal trimannosides by automated solution-phase synthesis. The route features a mannose building block with C-5 ester enforcing a β-linkage, which also provides a site for subsequent chain extension. The resulting insect N-glycan terminal trimannosides with fluorous tags were used in a fluorous microarray to analyze binding with fluorescein isothiocyanate-labeled PEMV; however, no specific binding between the insect glycan and PEMV was detected. To confirm these microarray results, we removed the fluorous tag from the trimannosides for isothermal titration calorimetry studies with unlabeled PEMV. The ITC studies confirmed the microarray results and suggested that this particular glycan-PEMV interaction is not involved in virus uptake and transport through the aphid. PMID:26457763

  15. Occurrence of viruses infecting pea in Iran.

    PubMed

    Esfandiari, N; Kohi-Habibi, M; Mosahebi, Gh

    2006-01-01

    A survey was conducted to determine the incidence of Alfalfa mosaic virus (AMV), Bean yellow mosaic virus (BYMV), Broad bean wilt virus-1 (BBWV), Pea leafroll virus (PLRV), Pea enation mosaic virus (PEMV), Pea seed borne mosaic virus (PSbMV), Potato virus x(PVX), Tomato mosaic virus (ToMV), Tomato spotted wilt virus (TSWV) on pea (Pisum sativum) in Iran. A Total of 1276 random and 684 symptomatic pea samples were collected during the spring and summer of 2002-2004 in Tehran province of Iran, where pea is grown, and tested by enzyme-linked immunosorbent assay (ELISA) using specific polyclonal antibodies. Serological diagnoses were confirmed by electron microscopy and host range studies. Incidence of viruses in decreasing order was PVX (69%), ToMV (59%), PSbMV (36.6%), BBWV-1 (26.1%), BYMV (20.3%), AMV (17.77%), TSWV (12.6%), PEMV (10.9%), PLRV (6.78%). In this survey, natural occurrence of AMV, BBWV-1, PSbMV, TSWV, PVX and ToMV was reported for the first time on the pea in Iran. PMID:17390891

  16. P3N-PIPO of Clover yellow vein virus exacerbates symptoms in pea infected with white clover mosaic virus and is implicated in viral synergism.

    PubMed

    Hisa, Yusuke; Suzuki, Haruka; Atsumi, Go; Choi, Sun Hee; Nakahara, Kenji S; Uyeda, Ichiro

    2014-01-20

    Mixed infection of pea (Pisum sativum) with Clover yellow vein virus (ClYVV) and White clover mosaic virus (WClMV) led to more severe disease symptoms (a phenomenon called viral synergism). Similar to the mixed ClYVV/WClMV infection, a WClMV-based vector encoding P3N-PIPO of ClYVV exacerbated the disease symptoms. Infection with the WClMV vector encoding ClYVV HC-Pro (a suppressor of RNA silencing involved in potyviral synergisms), also resulted in more severe symptoms, although to a lesser extent than infection with the vector encoding P3N-PIPO. Viral genomic RNA accumulated soon after inoculation (at 2 and 4 days) at higher levels in leaves inoculated with WClMV encoding HC-Pro but at lower levels in leaves inoculated with WClMV encoding P3N-PIPO than in peas infected with WClMV encoding GFP. Our results suggest that ClYVV P3N-PIPO is involved in the synergism between ClYVV and WClMV during pea infection through an unknown mechanism different from suppression of RNA silencing. PMID:24418553

  17. Monoclonal antibodies produced to bean yellow mosaic virus, clover yellow vein virus, and pea mosaic virus which cross-react among the three viruses.

    PubMed

    Scott, S W; McLaughlin, M R; Ainsworth, A J

    1989-01-01

    Monoclonal antibodies prepared against individual potyviruses that infect forage legumes cross-reacted among the viruses. The reaction occurs between capsid subunits and presumably involves epitopes located in the trypsin-resistant core of the coat protein. PMID:2480762

  18. Genetic variability of the coat protein sequence of pea seed-borne mosaic virus isolates and the current relationship between phylogenetic placement and resistance groups.

    PubMed

    Wylie, S J; Coutts, B A; Jones, R A C

    2011-07-01

    Nucleotide sequences of complete or partial coat protein (CP) genes were determined for 11 isolates of pea seed-borne mosaic virus (PSbMV) from Australia and one from China, and compared with known sequences of 20 other isolates. On phylogenetic analysis, the isolates from Australia and China grouped into 2 of 3 clades. Clade A contained three sub-clades (Ai, Aii and Aiii), Australian isolates were in Ai or Aiii, and the Chinese isolate in Aii. Clade A contained isolates in pathotypes P-1, P-2 and U-2; clade B, one isolate in P-2; and clade C, only isolates in P-4. PMID:21519930

  19. The 3′ Untranslated Region of Pea Enation Mosaic Virus Contains Two T-Shaped, Ribosome-Binding, Cap-Independent Translation Enhancers

    PubMed Central

    Gao, Feng; Kasprzak, Wojciech K.; Szarko, Christine; Shapiro, Bruce A.

    2014-01-01

    ABSTRACT Many plant viruses without 5′caps or 3′ poly(A) tails contain 3′ proximal, cap-independent translation enhancers (3′CITEs) that bind to ribosomal subunits or translation factors thought to assist in ribosome recruitment. Most 3′CITEs participate in a long-distance kissing-loop interaction with a 5′ proximal hairpin to deliver ribosomal subunits to the 5′ end for translation initiation. Pea Enation Mosaic Virus (PEMV) contains two adjacent 3′CITEs in the center of its 703-nucleotide 3′ untranslated region (3′UTR), the ribosome-binding, kissing-loop T-shaped structure (kl-TSS) and eukaryotic translation initiation factor 4E-binding Panicum mosaic virus-like translation enhance (PTE). We now report that PEMV contains a third, independent 3′CITE located near the 3′ terminus. This 3′CITE is composed of three hairpins and two pseudoknots, similar to the TSS 3′CITE of the carmovirus Turnip crinkle virus (TCV). As with the TCV TSS, the PEMV 3′TSS is predicted to fold into a T-shaped structure that binds to 80S ribosomes and 60S ribosomal subunits. A small hairpin (kl-H) upstream of the 3′TSS contains an apical loop capable of forming a kissing-loop interaction with a 5′ proximal hairpin and is critical for the accumulation of full-length PEMV in protoplasts. Although the kl-H and 3′TSS are dispensable for the translation of a reporter construct containing the complete PEMV 3′UTR in vitro, deleting the normally required kl-TSS and PTE 3′CITEs and placing the kl-H and 3′TSS proximal to the reporter termination codon restores translation to near wild-type levels. This suggests that PEMV requires three 3′CITEs for proper translation and that additional translation enhancers may have been missed if reporter constructs were used in 3′CITE identification. IMPORTANCE The rapid life cycle of viruses requires efficient translation of viral-encoded proteins. Many plant RNA viruses contain 3′ cap-independent translation

  20. Genomic heterogeneity in Pea seed-borne mosaic virus isolates from Pakistan, the centre of diversity of the host species, Pisum sativum.

    PubMed

    Ali, A; Randles, J W

    2001-10-01

    A range of isolates of Pea seed-borne mosaic virus (PSbMV) was compared in the segments of the genome representing the partial NIb/CP/UTR and the partial P1-Pro/HC-Pro coding regions. Nucleotide and amino acid sequences, and a phylogenetic analysis of the CP region, divided isolates with available sequence information into two groups, one representing pathotype 4, the other pathotype 1. The pathotype 1 group showed greater diversity than the pathotype 4 group. A comparison of 14 isolates, S6 (a pathotype 4 isolate), US (a pathotype 1 isolate) and 12 isolates from Pakistan, by ribonuclease protection assay (RPA) using cRNA transcripts of the cloned partial NIb/CP/UTR regions of the S6, US and Pakistani isolate PK9 placed them into three distinct phylogenetic groups. RPA with a partial P1-Pro/HC-Pro cRNA probe identified a greater level of variation which was too high to be used for generating an overall phylogeny. Thus, RPA identified greater molecular diversity in PSbMV than described hitherto. We conclude that, in addition to the pathotypes 1 and 4 typified by US and S6 respectively, isolates of PSbMV from Pakistan include previously unrecognised molecular variants, and this accords with our previous recognition of new pathotypes from Pakistan. PMID:11722010

  1. Multiple determinants in the coding region of Pea seed-borne mosaic virus P3 are involved in virulence against sbm-2 resistance.

    PubMed

    Hjulsager, Charlotte Kristiane; Olsen, Birgit Schlichter; Jensen, Ditte Marie Kjaer; Cordea, Mirela Irina; Krath, Britta N; Johansen, I Elisabeth; Lund, Ole Søgaard

    2006-11-10

    Viral determinants for overcoming Pisum sativum recessive resistance, sbm-2, against the potyvirus Pea seed-borne mosaic virus (PSbMV) were identified in the region encoding the N-terminal part of the P3 protein. Codons conserved between sbm-2 virulent isolates in this region: Q21, K30 and H122 were found to specifically impair sbm-2 virulence when mutated in selected genetic backgrounds. The corresponding amino acids, Gln21 and Lys30, are neighbored by P3 residues strongly conserved among potyviruses and His122 is conserved particularly in potyviral species infecting legumes. The strongest selective inhibition of sbm-2 virulence, however, was observed by elimination of isolate specific length polymorphisms also located in the N-terminal part of the P3 protein. Length variation in N-terminal P3 is common between potyviral species. However, intra-species length polymorphism in this region was found only among PSbMV isolates. Our findings comply with a model for PSbMV pathotypes having evolved by a diversification of the P3 protein likely to extend to the level of function. PMID:16908044

  2. The Tobacco Mosaic Virus.

    ERIC Educational Resources Information Center

    Sulzinski, Michael A.

    1992-01-01

    Explains how the tobacco mosaic virus can be used to study virology. Presents facts about the virus, procedures to handle the virus in the laboratory, and four laboratory exercises involving the viruses' survival under inactivating conditions, dilution end point, filterability, and microscopy. (MDH)

  3. The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin.

    PubMed

    Gao, Feng; Gulay, Suna P; Kasprzak, Wojciech; Dinman, Jonathan D; Shapiro, Bruce A; Simon, Anne E

    2013-11-01

    The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation. PMID:23986599

  4. The Kissing-Loop T-Shaped Structure Translational Enhancer of Pea Enation Mosaic Virus Can Bind Simultaneously to Ribosomes and a 5′ Proximal Hairpin

    PubMed Central

    Gao, Feng; Gulay, Suna P.; Kasprzak, Wojciech; Dinman, Jonathan D.

    2013-01-01

    The Pea Enation Mosaic Virus (PEMV) 3′ translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5′-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5′ and 3′ PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3′ translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2′-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5′ hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5′ end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation. PMID:23986599

  5. Immunochromatographic purification of Bean Yellow Mosaic Virus.

    PubMed

    Bujarski, J J; Wiatroszak, I

    1981-01-01

    The method of immunoadsorptional purification of Bean Yellow Mosaic Virus has been worked out. Immunosorbents were obtained by coupling the antibody (IgG) fraction isolated from anti-BYMV and anti-pea leaf protein antisera with CNBr-activated 1% agarose beads. Conditions for preparation of immunosorbents, for BYMV adsorption and elution as well as the method of plant protein separation from BYMV were pointed out. The purity of BYMV was checked by double immunodiffusion as well as by SDS-acrylamide gel electrophoresis. Also biological activity was determined. TMV was used as the model virus for further BYMV studies. PMID:7025790

  6. Turnip Yellow Mosaic Virus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using proteins crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the unexpected hypothesis that the virus releases its RNA by essentially chemical-mechanical means. Most viruses have fairly flat coats, but in TYNV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early stuties of TYMV, but McPherson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central void on the inside, the hexameric units contain peptides linked to each other, forming a ring or, more accurately, rings to fill the void. Credit: Dr. Alexander McPherson, University of California, Irvine

  7. Effect of Sugarcane Mosaic caused by Sorghum mosaic virus on sugarcane in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane mosaic is caused by two viruses, Sugarcane mosaic virus (SCVM) or Sorghum mosaic virus (SrMV). In Louisiana, SrMV is the predominant mosaic pathogen affecting sugarcane. In a field experiment established in 2012, plots were planted with seed cane with or without mosaic symptoms. The mosaic...

  8. Virus diseases of peas, beans, and faba bean in the Mediterranean region.

    PubMed

    Makkouk, Khaled; Pappu, Hanu; Kumari, Safaa G

    2012-01-01

    In the Mediterranean region, pea, bean, and faba bean production is affected by around 17 major viruses. These viruses do not have the same ecology and consequently require a variety of different preventive measures to control them. Some of these viruses have a narrow host range, such as Faba bean necrotic yellows virus (FBNYV), and others, such as Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV), a very wide host range. Such features are important when identifying sources of virus inoculum in a region, and the vectors can transmit viruses from natural reservoirs to the crop plants. Some of these viruses are seed borne and, consequently, can be disseminated long distances through infected seeds. Crop losses caused by these viruses are variable, depending on the sensitivity and susceptibility of the crop to infection. Host resistance genes have been identified for some of these viruses, but in others, such as FBNYV, no resistance genes in faba bean have been identified yet. Significant progress was made in developing precise methods for the identification of these viruses, and new virus problems are being identified every year. This chapter is not intended to be a review for pea, bean, and faba bean viruses, but rather focuses on the major viruses which affect these crops in the Mediterranean basin with focus on the progress made over the past two decades. PMID:22682174

  9. Pea Aphid Outbreaks and Virus Epidemics on Peas in the U.S. Pacific Northwest: Histories, Mysteries, and Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pea aphid adversely affects the health and vigor of peas in the U.S. Pacific Northwest by sucking sap from leaves, stems, and pods and by transmitting four different pathogenic viruses. In eastern Washington, field peas are devastated by pea aphid feeding damage and legume viruses during periodi...

  10. Pea embryonic tissues show common responses to the replication of a wide range of viruses.

    PubMed

    Escaler, M; Aranda, M A; Thomas, C L; Maule, A J

    2000-02-15

    The response of pea embryonic tissues to the replication of a range of different viruses was investigated using in situ hybridization to analyze changes in the expression of two host genes, heat shock protein 70 (hsp70) and lipoxygenase (lox1). Excised pea embryos were infected using microprojectile bombardment with a nonseed transmissible strain of Pea seed-borne mosaic potyvirus, or with Pea early browning tobravirus (PEBV), White Clover mosaic potexvirus, or Beet curly top geminivirus. Collectively, these examples represent families of viruses with differing genomic features, differing numbers of genomic components and differing replication strategies. In all cases, there was an induction of hsp70 associated with virus replication and, in most cases, a downregulation of lox1. Hence, either each virus has a direct inducer of these common responses or the induction is indirectly the result of a generic feature of virus infection. By exploiting the bipartite nature of the PEBV genome, the coat protein gene and genes involved in vector transmission were excluded as potential inducers. PMID:10662627

  11. [Characteristic of one-paired pea virus].

    PubMed

    Kakareka, N N; Kozlovskaia, Z N; Volkov, Iu G

    2010-01-01

    The new virus isolated from Vicia unijuga A.Br. with filament particles with size 1000-1200 x 10-12 nm is revealed. A thermal inactivation point is 55 degrees C; dilution end point - 10(-5)-10(-6) longevity in vitro in broad bean sap--less than one day. It is transferred by aphids and by pea, bean and broad bean seeds. The plants of Fabaceae, Solanaceae and Chenopodiaceae fam. were affected by this virus isolate. The virus yield was 40-50 mg per 100 g of leaves. The ratio of absorption E260/E280 corresponded to 1.4-1.5. The molecular mass of a core protein of the virus was 34 kD. The virus has a high immunogenic properties--titer is 1:256000 (indirect method of ELISA). It is presumably identified as a member of Closteroviridae. PMID:20695230

  12. Genetic mechanisms of Maize dwarf mosaic virus resistance in maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize resistance to viruses has been well-characterized at the genetic level, and loci responsible for resistance to potyviruses including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and Johnsongrass mosaic virus (JGMV), have been mapped in several ge...

  13. The complete nucleotide sequence and genome organization of Red clover vein mosaic virus (genus Carlavirus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red clover vein mosaic virus (RCVMV) is a serious pathogen of legume crops including pea, chickpea and lentil. The complete nucleotide sequence was generated from an isolate obtained from chickpea in Washington State. The complete genome of RCVMV consists of 8605 nucleotides excluding the poly(A) ...

  14. Diseases Caused by Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symptoms, causal agents, epidemiology and management of important virus diseases in chickpea and lentil crops were reviewed in depth. The virus diseases include.Alflafa mosaic virus, Cucumber mosaiv virus, Faba bean necrotic yellows virus, Pea enation mosaic virus, Pea seed-borne mosaci virus,...

  15. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  16. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  17. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  18. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  19. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. 174.514... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow...

  20. Turnip Yellow Mosaic Virus Structure

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The bumpy exterior of the turnip yellow mosaic virus (TYMV) protein coat, or capsid, was defined in detail by Dr. Alexander McPherson of the University of California, Irvin using protein crystallized in space for analysis on Earth. TYMV is an icosahedral virus constructed from 180 copies of the same protein arranged into 12 clusters of five proteins (pentamers), and 20 clusters of six proteins (hexamers). The final TYMV structure led to the enexpected hypothesis that the virus release its RNA by essentially chemical-mechanical means. Most viruses have farly flat coats, but in TYMV, the fold in each protein, called the jellyroll, is clustered at the points where the protein pentamers and hexamers join. The jellyrolls are almost standing on end, producing a bumpy surface with knobs at all of the pentamers and hexamers. At the inside surface of the pentamers is a void that is not present at the hexamers. The coating had been seen in early studies of TYMV, but McPhereson's atomic structure shows much more detail. The inside surface is strikingly, and unexpectedly, different than the outside. While the pentamers contain a central viod on the inside, the hexameric units contain peptides liked to each other, forming a ring or, more accurately, rings to fill the voild. Credit: Dr. Alexander McPherson, University of California, Irvine.

  1. Satellite Tobacco Mosaic Virus (STMV)

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The structure of the Satellite Tobacco Mosaic Virus (STMV)--one of the smallest viruses known--has been successfully deduced using STMV crystals grown aboard the Space Shuttle in 1992 and 1994. The STMV crystals were up to 30 times the volume of any seen in the laboratory. At the same time they gave the best resolution data ever obtained on any virus crystal. STMV is a small icosahedral plant virus, consisting of a protein shell made up of 60 identical protein subunits of molecular weight 17,500. Particularly noteworthy is the fact that, in contrast to the crystal grown on Earth, the crystals grown under microgravity conditions were viusally perfect, with no striations or clumping of crystals. Furthermore, the X-ray diffraction data obtained from the space-grown crystals was of a much higher quality than the best data available at that time from ground-based crystals. This computer model shows the external coating or capsid. STMV is used because it is a simple protein to work with; studies are unrelated to tobacco. Credit: Dr. Alex McPherson, Univeristy of California at Irvin.

  2. Bean yellow mosaic, clover yellow vein, and pea mosaic are distinct potyviruses: evidence from coat protein gene sequences and molecular hybridization involving the 3' non-coding regions.

    PubMed

    Tracy, S L; Frenkel, M J; Gough, K H; Hanna, P J; Shukla, D D

    1992-01-01

    The sequences of the 3' 1019 nucleotides of the genome of an atypical strain of bean yellow mosaic virus (BYMV-S) and of the 3' 1018 nucleotides of the clover yellow vein virus (CYVV-B) genome have been determined. These sequences contain the complete coding region of the viral coat protein followed by a 3' non-coding region of 173 and 178 nucleotides for BYMV-S and CYVV-B, respectively. When the deduced amino acid sequences of the coat protein coding regions were compared, a sequence identity of 77% was found between the two viruses, and optimal alignment of the 3' untranslated regions of BYMV-S and CYVV-B gave a 65% identity. However, the degree of homology of the amino acid sequences of coat proteins of BYMV-S with the published sequences for three other strains of BYMV ranged from 88% to 94%, while the sequence homology of the 3' untranslated regions between the four strains of BYMV ranged between 86% and 95%. Amplified DNA probes corresponding to the 3' non-coding regions of BYMV-S and CYVV-B showed strong hybridization only with the strains of their respective viruses and not with strains of other potyviruses, including pea mosaic virus (PMV). The relatively low sequence identities between the BYMV-S and CYVV-B coat proteins and their 3' non-coding regions, together with the hybridization results, indicate that BYMV, CYVV, and PMV are distinct potyviruses. PMID:1731696

  3. Satellite Tobacco Mosaic Virus Structure

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The structure of the Satellite Tobacco Mosaic Viurus (STMV)--one of the smallest viruses known--has been successfully reduced using STMV crystals grown aboard the Space Shuttle in 1992 and 1994. The STMV crystals were up to 30 times the volume of any seen in the laboratory. At the time they gave the best resolution data ever obtained on any virus crystal. STMV is a small icosahedral plant virus, consisting of a protein shell made up of 60 identical protein subunits of molecular weight 17,500. Particularly noteworthy is the fact that, in contrast to the crystals grown on Earth, the crystals grown under microgravity conditions were visually perfect, with no striations or clumping of crystals. Furthermore, the x-ray diffraction data obtained from the space-grown crystals was of a much higher quality than the best data available at that time from ground-based crystals. This stylized ribbon model shows the protein coat in white and the nucleic acid in yellow. STMV is used because it is a simple protein to work with; studies are unrelated to tobacco. Credit: Dr. Alex McPherson, University of California at Irvin.

  4. Multiplex Real Time PCR For Detection of Wheat Streak Mosaic Virus and Triticum Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TRIMV) are widespread throughout the southwestern Great Plains states. Using conventional diagnostics such as Enzyme-Linked Immunosorbent Assays (ELISA), these two viruses are commonly found together in infected wheat samples. Methods for m...

  5. Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus (Genus Potyvirus; Potyviridae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) are species within the genus Potyvirus, family Potyviridae and cause some of the most economically important diseases of legume crops worldwide. Both viruses occur essentially wherever bean and cowpea (including Phaseolus...

  6. Incidence of Wheat streak mosaic virus, Triticum mosaic virus, and Wheat mosaic virus in wheat curl mites recovered from maturing winter wheat spikes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat curl mites (WCM; Aceria tosichella) transmit Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and Wheat mosaic virus (WMoV) to wheat (Triticum aestivum L.) in the Great Plains region of the United States. These viruses can be detected in single, double, or triple combinations i...

  7. A heat shock transcription factor in pea is differentially controlled by heat and virus replication.

    PubMed

    Aranda, M A; Escaler, M; Thomas, C L; Maule, A J

    1999-10-01

    Since some heat-inducible genes [heat shock (hs) genes] can be induced by virus infection in pea [e.g. Hsp70; Aranda et al. 1996, Proc. Natl Acad. Sci. USA 93, 15289-15293], we have investigated the effect that heat and virus replication may have on the expression of a heat-shock transcription factor gene (Hsf). We have characterized what appears to be the only member of the Hsf family in pea, PsHsfA. Similar to Hsp70, PsHsfA is heat-inducible in vegetative and embryonic tissues, which is concordant with the presence of heat shock elements (HSEs) and stress responsive elements (STREs) on its promoter sequence. The expression of PsHsfA during virus replication was studied in pea cotyledons and leaves, and compared to that of Hsp70. In situ hybridization experiments showed that whereas Hsp70 is induced, there is no detectable increased accumulation of PsHsfA RNA associated with the replication of pea seed-borne mosaic potyvirus (PSbMV). These experiments indicate that there is a selective control of virus-induced hs gene expression, and suggest that different regulatory pathways control hs gene expression during heat shock and virus replication. PMID:10571875

  8. Predation Determines Different Selective Pressure on Pea Aphid Host Races in a Complex Agricultural Mosaic

    PubMed Central

    Balog, Adalbert; Schmitz, Oswald J.

    2013-01-01

    Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR) and alfalfa race (AR) pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover) and fitness benefits when on red clover (higher fitness on red clover relative to broad bean), whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants. PMID:23409081

  9. Predation determines different selective pressure on pea aphid host races in a complex agricultural mosaic.

    PubMed

    Balog, Adalbert; Schmitz, Oswald J

    2013-01-01

    Field assessments were conducted to examine the interplay between host plant and predation in complex agricultural mosaic on pea aphid clover and alfalfa races. In one experiment, we examined the relative fitness on clover race (CR) and alfalfa race (AR) pea aphids on broad bean, red clover and alfalfa alone. But because clover is typically grown in a more complex agricultural mosaic with alfalfa and broad bean, a second experiment was conducted to assess the fitness consequences under predation in a more complex agricultural field setting that also included potential apparent competition with AR pea aphids. In a third experiment we tested for the effect of differential host race density on the fitness of the other host race mediated by a predator effect. CR pea aphids always had fitness losses when on broad bean (had lower fitness on broad bean relative to red clover) and fitness benefits when on red clover (higher fitness on red clover relative to broad bean), whether or not in apparent competition with alfalfa race aphids on bean and alfalfa. AR suffered fitness loss on both alfalfa and bean in apparent competition with CR on clover. Therefore we can conclude that the predation rate between host races was highly asymmetrical. The complexity of the agricultural mosaic thus can influence prey selection by predators on different host plants. These may have evolutionary consequences through context dependent fitness benefits on particular host plants. PMID:23409081

  10. Genetics of seed transmission Soybean mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean mosaic virus (SMV) is an aphid- and seed-transmitted member of the Potyviridae that infects soybean plants and, in years when virus infections are widespread, can cause significant reductions in the quantity and quality of seed harvested. Because seed-borne infections are the primary sources...

  11. Triticum mosaic virus isolates in the southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, a Wheat streak mosaic virus (WSMV)-resistant wheat variety RonL was found to have mosaic symptoms similar to WSMV. The virus inducing the symptoms was determined to be previously unknown and given the name Triticum mosaic virus (TriMV). Since, TriMV has been found in plant samples isolate...

  12. Characterization of the Triticum Mosaic Virus Genome and Interactions between Triticum Mosaic Virus and Wheat Streak Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of Triticum mosaic virus (TriMV) has been determined to be 10,266 nucleotides encoding a large polyprotein of 3,112 amino acids. The proteins of TriMV possess only 33-44% (with NIb protein) and 15-29% (with P1 protein) amino acid identity with the reported members of Pot...

  13. Infection of Plants by Tobacco Mosaic Virus.

    ERIC Educational Resources Information Center

    McDaniel, Larry; Maratos, Marina; Farabaugh, Joan

    1998-01-01

    Provides three exercises that introduce high school and college students to a common strain of the tobacco mosaic virus and the study of some basic biological processes. Activities involve inoculation of plants and observing and recording symptom development in infected plants. (DDR)

  14. Tobacco mosaic virus: Proof by synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A linear, non-self-replicating DNA molecule encoding Tobacco mosaic virus (TMV) was enzymatically synthesized in vitro from DNA templates made from overlapping oligonucleotides. The molecule was a replica of the alphabetic text rendering of the first TMV genome sequence elucidated by Goelet et al. ...

  15. Quantification of yield loss caused by Triticum mosaic virus and Wheat streak mosaic virus in winter wheat under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) and Wheat streak mosaic virus (WSMV) infect winter wheat in the Great Plains region of the United States. The two viruses are transmitted by wheat curl mites, which also transmit High Plains virus. In a field study conducted in 2011 and 2012, winter wheat cultivars Mi...

  16. Resistance to wheat streak mosaic virus and Triticum mosaic virus in wheat lines carrying Wsm1 and Wsm3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are important viruses of wheat (Triticum aestivum L.) in the Great Plains of United States. In addition to agronomic practices to prevent damage from these viruses, temperature sensitive resistance genes Wsm1, Wsm2 and Wsm3, have bee...

  17. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes..

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  18. A 2014 nationwide survey of the distribution of Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYMMV) and Soybean yellow common mosaic virus (SYCMV) major viruses in South Korean soybean fields, and changes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2014 symptomatic soybean samples were collected throughout Korea, and were tested for the most important soybean viruses found in Korea, namely Soybean mosaic virus (SMV), Soybean yellow common mosaic virus (SYCMV), and Soybean yellow mottle mosaic virus (SYMMV). SYMMV was most commonly detected,...

  19. Activation of the salicylic acid signaling pathway enhances Clover yellow vein virus virulence in susceptible pea cultivars.

    PubMed

    Atsumi, Go; Kagaya, Uiko; Kitazawa, Hiroaki; Nakahara, Kenji Suto; Uyeda, Ichiro

    2009-02-01

    The wild-type strain (Cl-WT) of Clover yellow vein virus (ClYVV) systemically induces cell death in pea cv. Plant introduction (PI) 118501 but not in PI 226564. A single incompletely dominant gene, Cyn1, controls systemic cell death in PI 118501. Here, we show that activation of the salicylic acid (SA) signaling pathway enhances ClYVV virulence in susceptible pea cultivars. The kinetics of virus accumulation was not significantly different between PI 118501 (Cyn1) and PI 226564 (cyn1); however, the SA-responsive chitinase gene (SA-CHI) and the hypersensitive response (HR)-related gene homologous to tobacco HSR203J were induced only in PI 118501 (Cyn1). Two mutant viruses with mutations in P1/HCPro, which is an RNA-silencing suppressor, reduced the ability to induce cell death and SA-CHI expression. The application of SA and of its analog benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH) partially complemented the reduced virulence of mutant viruses. These results suggest that high activation of the SA signaling pathway is required for ClYVV virulence. Interestingly, BTH could enhance Cl-WT symptoms in PI 226564 (cyn1). However, it could not enhance symptoms induced by White clover mosaic virus and Bean yellow mosaic virus. Our report suggests that the SA signaling pathway has opposing functions in compatible interactions, depending on the virus-host combination. PMID:19132869

  20. An Experimental Host Range of Triticum Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a newly discovered virus isolated from wheat. This study was conducted to determine an experimental host range for TriMV and identify species that could serve as differential hosts for isolating TriMV from Wheat streak mosaic virus (WSMV). Plants tested were mechan...

  1. Response of maize (Zea mays L.) lines carrying Wsm1, Wsm2 and Wsm3 to the potyviruses Johnsongrass mosaic virus and Sorghum mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize dwarf mosaic disease is one of the most important viral diseases of maize throughout the world. It is caused by a set of related viruses in the family Potyviridae, genus Potyvirus, including Maize dwarf mosaic virus (MDMV), Sugarcane mosaic virus (SCMV), Johnsongrass mosaic virus (JGMV), and S...

  2. Attempts to Improve the Method of Screening Cowpea Germplasm for Resistance to Cucumber Mosaic Virus and Blackeye Cowpea Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of visual symptom screening for cowpea plants in field plots improved screening for Blackeye Cowpea Mosaic Virus (BICMV)-resistance. However, the method failed to improve the speed or accuracy of screening for Cucumber Mosaic Virus (CMV)-resistance. Plants that displayed few visual virus sympt...

  3. Barley stripe mosaic virus: Structure and relationship to the tobamoviruses

    SciTech Connect

    Kendall, Amy; Williams, Dewight; Bian, Wen; Stewart, Phoebe L.; Stubbs, Gerald

    2013-09-01

    Barley stripe mosaic virus (BSMV) is the type member of the genus Hordeivirus, rigid, rod-shaped viruses in the family Virgaviridae. We have used fiber diffraction and cryo-electron microscopy to determine the helical symmetry of BSMV to be 23.2 subunits per turn of the viral helix, and to obtain a low-resolution model of the virus by helical reconstruction methods. Features in the model support a structural relationship between the coat proteins of the hordeiviruses and the tobamoviruses. - Highlights: • We report a low-resolution structure of barley stripe mosaic virus. • Barley stripe mosaic virus has 23.2 subunits per turn of the viral helix. • We compare barley stripe mosaic virus with tobacco mosaic virus.

  4. Genetic diversity of viruses causing mosaic in Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosaic caused by Sugarcane mosaic virus (SCMV) contributed to the near collapse of Louisiana’s sugarcane industry in the early 20th Century. By the 1950s, the cultivation of resistant cultivars eliminated mosaic as a major disease problem; however, new strains arose among previously resistant cultiv...

  5. New Viruses Identified in Fig Trees Exhibiting Fig Mosaic Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fig mosaic disease has been known for decades, but the causal agent has been elusive. Here we present data on the incidence of at least four new viruses isolated from fig trees exhibiting mosaic symptoms. One of the viruses is closely related to the recently identified European mountain ash ringspo...

  6. Comparison of barley stripe mosaic virus strains.

    PubMed

    Hafez, Elsayed E; Abdel Aleem, Engy E; Fattouh, Faiza A

    2008-01-01

    BSMV (barley stripe mosaic virus) particles were obtained in a pure state from infected host plant tissues of Hordeum vulgare. The three genomic parities (alpha, beta and gamma) were amplified by PCR using specific primers for each particle; each was cloned. Partial sequence of the alpha, beta and gamma segments was determined for the Egyptian isolate of barley stripe mosaic virus (BSMV AE1). Alignment of nucleotide sequences with that of other known strains of the virus, BSMV type strains (CV17, ND18 and China), and the generation of phylogenetic trees was performed. A low level of homology was detected comparing 467 bp of the a and 643 bp of the segments to that of the other strains, and thus BSMV alpha and beta segments were in separate clusters. However, 1154 bp of the gamma segments of BSMV AE1 showed a high level of homology especially to strain BSMV ND18, as they both formed a distinct cluster. Northern blotting of pure BSMV AE1 virus and H. vulgare-infected tissue were compared using an alpha ND18 specific probe. Western blotting using antibodies specific for the coat protein (CP) and the triple gene block 1 (TGB1) protein, which are both encoded by the beta ND18 segment, still indicated a high level of similarity between proteins produced by BSMV ND18 and AE1. We suggest that the BSMV AE1 isolate is a distinct strain of BSMV which reflects the genetic evolutionary divergence among BSMV strains and members of the Hordeivirus group. PMID:18533473

  7. Development of a multiplexed PCR detection method for Barley and Cereal Yellow Dwarf Viruses, Wheat Spindle Streak Virus, Wheat Streak Mosaic Virus and Soil-Borne Wheat Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley and Cereal Yellow Dwarf Viruses (B/CYDVs), Wheat Spindle Streak Mosaic (WSSMV), Soil-Borne Wheat Mosaic (SBWMV) Mosaic Virus and Wheat Streak Mosaic Virus (WSMV) constitute the most economically important group of wheat viruses. In this paper, a multiplex reverse transcription polymerase chai...

  8. Effects of single and double infections of winter wheat by Triticum mosaic virus and Wheat streak mosaic virus on yield determinants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a recently discovered virus infecting wheat (Triticum aestivum L.) in the Great Plains region of the United States. It is transmitted by wheat curl mites (Aceria tosichella Keifer) which also transmit Wheat streak mosaic virus (WSMV) and Wheat mosaic virus. In a gree...

  9. The Use of Green Fluorescent Protein-Tagged Recombinant Viruses to Test Lettuce mosaic virus Resistance in Lettuce.

    PubMed

    Candresse, T; Le Gall, O; Maisonneuve, B; German-Retana, S; Redondo, E

    2002-02-01

    ABSTRACT Seed certification and the use of cultivars containing one of two, probably allelic, recessive genes, mo1(1) and mo1(2), are the principal control methods for Lettuce mosaic virus (LMV) in lettuce. Although for a few LMV isolates, mo1(2) confers resistance with most isolates, the genes mo1(1) or mo1(2) confer a tolerance, and virus accumulation is readily detected in mo1-carrying plants. This phenotype complicates evaluation of the resistance status, in particular for mo1(1), for which there are no viral strains against which a true resistance is expressed. Two green fluorescent protein (GFP)-tagged viruses were constructed, derived from a non-resistance breaking isolate (LMV-0) and from a resistance-breaking isolate (LMV-E). An evaluation of 101 cultivars of known status was carried out with these recombinant viruses. Using the LMV-0-derived recombinant, identification of mo1-carrying cultivars was simple because, contrary to its wild-type parent, systemic movement of LMV-0-GFP was abolished in resistant plants. This assay detected four cases of misidentification of resistance status. In all these cases, further tests confirmed that the prior resistance status information was incorrect, so that a 100% correlation was observed between LMV-0-GFP behavior and the mo1 resistance status. Similarly, the LMV-E-derived recombinant allowed the identification of mo1(2) lettuce lines because its systemic movement was restricted in mo1(2) lines but not in susceptible or in mo1(1) lines. The tagged viruses were able to systemically invade another host, pea, irrespective of its resistance status against another member of the genus Potyvirus, Pea seed-borne mosaic virus. The use of these recombinant viruses could therefore greatly facilitate LMV resistance evaluation and speed up lettuce breeding programs. PMID:18943090

  10. Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus: Relationships, Biology, and Prospects for Control.

    PubMed

    Worrall, Elizabeth A; Wamonje, Francis O; Mukeshimana, Gerardine; Harvey, Jagger J W; Carr, John P; Mitter, Neena

    2015-01-01

    The closely related potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) are major constraints on common bean (Phaseolus vulgaris) production. Crop losses caused by BCMV and BCMNV impact severely not only on commercial scale cultivation of this high-value crop but also on production by smallholder farmers in the developing world, where bean serves as a key source of dietary protein and mineral nutrition. In many parts of the world, progress has been made in combating BCMV through breeding bean varieties possessing the I gene, a dominant gene conferring resistance to most BCMV strains. However, in Africa, and in particular in Central and East Africa, BCMNV is endemic and this presents a serious problem for deployment of the I gene because this virus triggers systemic necrosis (black root disease) in plants possessing this resistance gene. Information on these two important viruses is scattered throughout the literature from 1917 onward, and although reviews on resistance to BCMV and BCMNV exist, there is currently no comprehensive review on the biology and taxonomy of BCMV and BCMNV. In this chapter, we discuss the current state of our knowledge of these two potyviruses including fundamental aspects of classification and phylogeny, molecular biology, host interactions, transmission through seed and by aphid vectors, geographic distribution, as well as current and future prospects for the control of these important viruses. PMID:26111585

  11. Pea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of gene technology methods for plants has allowed novel genes to be introduced, where natural variation is lacking, irrespective of hybridization barriers. Pea, an important agricultural crop worldwide, lacks certain genes for disease resistance and would benefit from introduction of nov...

  12. Sequence diversity of wheat mosaic virus isolates.

    PubMed

    Stewart, Lucy R

    2016-02-01

    Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of High Plains disease in wheat and maize. WMoV and other members of the genus Emaravirus evaded thorough molecular characterization for many years due to the experimental challenges of mite transmission and manipulating multisegmented negative sense RNA genomes. Recently, the complete genome sequence of a Nebraska isolate of WMoV revealed eight segments, plus a variant sequence of the nucleocapsid protein-encoding segment. Here, near-complete and partial consensus sequences of five more WMoV isolates are reported and compared to the Nebraska isolate: an Ohio maize isolate (GG1), a Kansas barley isolate (KS7), and three Ohio wheat isolates (H1, K1, W1). Results show two distinct groups of WMoV isolates: Ohio wheat isolate RNA segments had 84% or lower nucleotide sequence identity to the NE isolate, whereas GG1 and KS7 had 98% or higher nucleotide sequence identity to the NE isolate. Knowledge of the sequence variability of WMoV isolates is a step toward understanding virus biology, and potentially explaining observed biological variation. PMID:26590326

  13. Occurrance in Korea of three major soybean viruses, Soybean mosaic virus (SMV), Soybean yellow mottle mosaic virus (SYCMV), and Soybean yellow common mosaic virus (SYCMV) revealed by a nationwide survey of soybean fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean yellow mottle mosaic virus (SYMMV) and soybean yellow common mosaic virus (SYCMV) were recently isolated in Korea, and it hasn’t been reported how these two viruses were dispersed in Korea. In 2012, we performed a nationwide survey of subsistence soybean farms in Korea. Leaves that appeared ...

  14. Characterisation and diagnosis of frangipani mosaic virus from India.

    PubMed

    Kumar, Alok; Solanki, Vikas; Verma, H N; Mandal, Bikash

    2015-10-01

    Frangipani mosaic virus (FrMV) is known to infect frangipani tree (Plumeria rubra f. acutifolia) in India but the virus has not been characterized at genomic level and diagnosis is not available. In the present study, an isolate of FrMV (FrMV-Ind-1) showing greenish mosaic and vein-banding symptoms in P. rubra f. acutifolia in New Delhi was characterized based on host reactions, serology and genome sequence. The virus isolate induced local symptoms on several new experimental host species: Capsicum annuum (chilli), Nicotiana benthamiana, Solanum lycopersicum and S. melongena. N. benthamiana could be used as an efficient propagation host as it developed systemic mottle mosaic symptoms all round the year. The genome of FrMV-Ind-1 was 6643 (JN555602) nucleotides long with genome organization similar to tobamoviruses. The Indian isolate of FrMV shared a very close genome sequence identity (98.3 %) with the lone isolate of FrMV-P from Australia. FrMV-Ind-1 together with FrMV-P formed a new phylogenetic group i.e. Apocynaceae-infecting tobamovirus. The polyclonal antiserum generated through the purified virus preparation was successfully utilized to detect the virus in field samples of frangipani by ELISA. Of the eight different tobamoviruses tested, FrMV-Ind-1 shared distant serological relationships with only cucumber green mottle mosaic virus, tobacco mosaic virus, bell pepper mottle virus and kyuri green mottle mosaic virus. RT-PCR based on coat protein gene primer successfully detected the virus in frangipani plants. This study is the first comprehensive description of FrMV occurring in India. PMID:26239043

  15. Zucchini tigre mosaic virus infection of cucurbits in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zucchini tigre mosaic virus (ZTMV) was identified infecting cucurbits in Florida in 2002 and again in 2015. This is the first report of ZTMV in the U.S. This report provides an overview of this emerging virus for growers, extension workers, crop consultants, and research and regulatory scientists....

  16. EXPRESSION OF THE MAIZE MOSAIC VIRUS GLYCOPROTEIN IN INSECT CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize mosaic virus (genus Nucleorhabdovirus, family Rhabdoviridae) is transmitted in a persistent-propagative manner by Peregrinus maidis, the corn planthopper. Like other rhabdoviruses, the MMV genome encodes a surface glycoprotein that is likely involved in virus attachment and entry into host ce...

  17. First report of apple mosaic virus in Alaska

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple mosaic virus (ApMV, family Bromoviridae, genus Ilarvirus) is one of the oldest and most economically important viruses of apples (Malus x domestica Borkh.). Yield losses may vary from negligible to as high as fifty percent, depending on the affected cultivar. Although ApMV is found worldwide...

  18. Transmission of Switchgrass mosaic virus by Graminella aureovitatta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass mosaic virus (SwMV) was identified in switchgrass (Panicum virgatum) and was proposed as a new marafivirus based on its genome sequence and comparison with its closest relative, Maize rayado fino virus (MRFV), a type member of the genus, Marafivirus. MRFV only infects maize (Zea mays) an...

  19. Variants of Triticum mosaic virus isolated from wheat in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a recently discovered virus infecting wheat. We compared the Colorado isolates C10-492 and C11-775 with the 06-123 isolate of TriMV from Kansas (TriMV-K). Comparisons were made using enzyme-linked immunosorbent assay (ELISA), infectivity assay, host range, dry weig...

  20. Bemisia tabaci (Homoptera: Aleyrodidae) and Indian cassava mosaic virus transmission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bemisia tabaci (Gennadius) adults from colonies reared on cassava or sweet potato plants were studied to determine their ability to transmit Indian cassava mosaic virus (ICMV) (Geminiviridae: Begomovirus) from cassava to cassava. Virus acquisition access (feeding) periods (AAP) of 48 h on ICMV-infec...

  1. First Complete Genome Sequence of a Watermelon Mosaic Virus Isolated from Watermelon in the United States

    PubMed Central

    Rajbanshi, Naveen

    2016-01-01

    Watermelon mosaic virus was first reported in 1965 from the Rio Grande Valley, TX. We report here the first complete genome sequence of a watermelon mosaic virus isolate from watermelon collected from the Rio Grande Valley of Texas. PMID:27103724

  2. First Complete Genome Sequence of a Watermelon Mosaic Virus Isolated from Watermelon in the United States.

    PubMed

    Rajbanshi, Naveen; Ali, Akhtar

    2016-01-01

    Watermelon mosaic virus was first reported in 1965 from the Rio Grande Valley, TX. We report here the first complete genome sequence of a watermelon mosaic virus isolate from watermelon collected from the Rio Grande Valley of Texas. PMID:27103724

  3. Complete Genome Sequence of Tomato Mosaic Virus Isolated from Jasmine in the United States.

    PubMed

    Fillmer, Kornelia; Adkins, Scott; Pongam, Patchara; D'Elia, Tom

    2015-01-01

    Tomato mosaic virus was reported from jasmine in Florida. We present the first complete genome sequence of a tomato mosaic virus isolate from this woody perennial plant in the United States. PMID:26159525

  4. Expression of tobacco mosaic virus RNA in transgenic plants.

    PubMed

    Yamaya, J; Yoshioka, M; Meshi, T; Okada, Y; Ohno, T

    1988-03-01

    Tobacco mosaic virus (TMV) is a message-sense, single-stranded RNA virus that infects many Solanaceae plants. A full-length cDNA copy of TMV genomic RNA was constructed and introduced into the genomic DNA of tobacco plants using a disarmed Ti plasmid vector. Transformed plants showed typical symptoms of TMV infection, and their leaves contained infectious TMV particles. This is the first example of the expression of RNA virus genomic RNAs in plants. PMID:2835637

  5. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells

    PubMed Central

    Steinmetz, Nicole F; Cho, Choi-Fong; Ablack, Amber; Lewis, John D; Manchester, Marianne

    2011-01-01

    Aims Vimentin, a type III intermediate filament, is upregulated during epithelial–mesenchymal transition and tumor progression. Vimentin is surface-expressed on cells involved in inflammation; the function remains unknown. We investigated the expression of surface vimentin on cancer cells and evaluated targeting nanoparticles to tumors exploiting vimentin. Materials & methods Cowpea mosaic virus nanoparticles that interact with surface vimentin were used as probes. Tumor homing was tested using the chick chorioallantoic membrane model with human tumor xenografts. Results & discussion Surface vimentin levels varied during cell cycle and among the cell lines tested. Surface vimentin expression correlated with cowpea mosaic virus uptake, underscoring the utility of cowpea mosaic virus to detect invasive cancer cells. Targeting to tumor xenografts was observed; homing was based on the enhanced permeability and retention effect. Our data provide novel insights into the role of surface vimentin in cancer and targeting nanoparticles in vivo. PMID:21385137

  6. Detection of Corchorus golden mosaic virus Associated with Yellow Mosaic Disease of Jute (Corchorus capsularis).

    PubMed

    Ghosh, Raju; Palit, Paramita; Paul, Sujay; Ghosh, Subrata Kumar; Roy, Anirban

    2012-06-01

    Yellow mosaic disease, caused by a whitefly transmitted New World Begomovirus, named Corchorus golden mosaic virus (CoGMV), is emerging as a serious biotic constraint for jute fibre production in Asia. For rapid and sensitive diagnosis of the Begomovirus associated with this disease, a non-radiolabelled diagnostic probe, developed against the DNA A component of the east Indian isolate of CoGMV, detected the presence of the virus in infected plants and viruliferous whiteflies following Southern hybridization and nucleic acid spot hybridization tests. Presence of the virus was also confirmed when polymerase chain reaction amplification was performed using virus-specific primers on DNA templates isolated from infected plants and viruliferous whiteflies. PMID:23730007

  7. In Vitro Evidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector

    PubMed Central

    Linz, Lucas B.; Liu, Sijun; Chougule, Nanasaheb P.

    2015-01-01

    ABSTRACT Insect-borne plant viruses cause significant agricultural losses and jeopardize sustainable global food production. Although blocking plant virus transmission would allow for crop protection, virus receptors in insect vectors are unknown. Here we identify membrane alanyl aminopeptidase N (APN) as a receptor for pea enation mosaic virus (PEMV) coat protein (CP) in the gut of the pea aphid, Acyrthosiphon pisum, using a far-Western blot method. Pulldown and immunofluorescence binding assays and surface plasmon resonance were used to confirm and characterize CP-APN interaction. PEMV virions and a peptide comprised of PEMV CP fused to a proline-rich hinge (-P-) and green fluorescent protein (CP-P-GFP) specifically bound to APN. Recombinant APN expressed in Sf9 cells resulted in internalization of CP-P-GFP, which was visualized by confocal microscopy; such internalization is an expected hallmark of a functional gut receptor. Finally, in assays with aphid gut-derived brush border membrane vesicles, binding of CP-P-GFP competed with binding of GBP3.1, a peptide previously demonstrated to bind to APN in the aphid gut and to impede PEMV uptake into the hemocoel; this finding supports the hypothesis that GBP3.1 and PEMV bind to and compete for the same APN receptor. These in vitro data combined with previously published in vivo experiments (S. Liu, S. Sivakumar, W. O. Sparks, W. A. Miller, and B. C. Bonning, Virology 401:107–116, 2010, http://dx.doi.org/10.1016/j.virol.2010.02.009) support the identification of APN as the first receptor in a plant virus vector. Knowledge of this receptor will provide for technologies based on PEMV-APN interaction designed to block plant virus transmission and to suppress aphid populations. IMPORTANCE A significant proportion of global food production is lost to insect pests. Aphids, in addition to weakening plants by feeding on their sap, are responsible for transmitting about half of the plant viruses vectored by insects. Growers

  8. Wheat streak mosaic virus-Structural parameters for a Potyvirus

    SciTech Connect

    Parker, Lauren; Kendall, Amy; Berger, P.H.; Shiel, P.J.; Stubbs, Gerald . E-mail: gerald.stubbs@vanderbilt.edu

    2005-09-15

    Wheat streak mosaic virus is a Tritimovirus, a member of the Potyviridae family, which includes the very large Potyvirus genus. We have examined wheat streak mosaic virus by electron microscopy and fiber diffraction from partially oriented sols, and analyzed the results to estimate the symmetry and structural parameters of the viral helix. The virions have an apparent radius of 63 {+-} 5 A. The viral helix has a pitch of 33.4 A {+-} 0.6 A. There appear to be 6.9 subunits per turn of the helix, although we cannot completely eliminate values of 5.9 or 7.9 for this parameter.

  9. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  10. Relationship of lychnis ringspot virus to barley stripe mosaic virus and poa semilatent virus.

    PubMed

    Hunter, B G; Smith, J; Fattouh, F; Jackson, A O

    1989-01-01

    Barley stripe mosaic virus (BSMV), poa semilatent virus (PSLV), and lychnis ringspot virus (LRSV) have previously been assigned to the hordeivirus group because of similarities in their particle morphology, physicochemical properties and serological analyses. However, the serological relationships of the three viruses have not been determined by direct comparison. The present study evaluated the relatedness of these viruses by Western and dot immunoblotting and by nucleic acid hybridizations. Serological analyses of the coat proteins separated by gel electrophoresis and of intact virus particles bound to nitrocellulose membranes revealed that BSMV and PSLV are distantly related, but that they are more closely related to each other than to LRSV. The genomic RNAs of the viruses failed to cross-hybridize in northern hybridization tests conducted at different temperatures. These comparisons showed that BSMV, PSLV and LRSV are distinct viruses with little nucleotide sequence relatedness. Thus our data provide additional support for their inclusion as separate members of the hordeivirus group. PMID:2722469

  11. Capsicum annum, a new host of watermelon mosaic virus.

    PubMed

    Hajizadeh, Mohammad; Mohammadi, Kazhal

    2016-03-01

    The occurrence of Watermelon mosaic virus (WMV) in sweet pepper (Capsicum annuum L.) in Kurdistan province, Iran was confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR) and partial characterization of coat protein. To the best of our knowledge, this is the first report of WMV infecting C. annuum, adding a new host to list of more than 170 species infected by this virus. PMID:26925452

  12. A DNA polymerase activity is associated with Cauliflower Mosaic Virus.

    PubMed Central

    Menissier, J; Laquel, P; Lebeurier, G; Hirth, L

    1984-01-01

    A DNA polymerase activity is found within the Cauliflower Mosaic Virus (CaMV) particle. Analysis of the reaction product reveals that the linear form of the virion DNA is preferentially labelled. The molecular weight of the DNA polymerase as determined on an "activity gel" is 76 kDa. Images PMID:6514573

  13. RNAi mediated, stable resistance to Triticum mosaic virus in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV), discovered in 2006, affects wheat production systems in the Great Plains of the United States. There are no available TriMV resistant commercial varieties. RNA interference (RNAi) was evaluated as an alternative strategy to generate resistance to TriMV. An RNAi pANDA...

  14. Variability in alternanthera mosaic virus isolates from different hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have determined the complete genome sequences of Alternanthera mosaic virus phlox isolate PA (AltMV-PA) and four infectious clone variants derived from AltMV-SP, as well as partial sequences of other isolates from various types of phlox, and from portulaca, nandina, and cineraria. Phylogenetic co...

  15. New Viruses Found in Fig Exhibiting Mosaic Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosaic is the most widespread viral disease of fig, affecting the crop wherever it is grown. The causal agent of the disease was poorly characterized, and until recently it was considered a virus-like agent with double membrane bound semispherical bodies transmitted by eriophyid mites. During the mo...

  16. Heterologous expression of viral suppressors of RNA silencing complements virulence of the HC-Pro mutant of clover yellow vein virus in pea.

    PubMed

    Atsumi, Go; Nakahara, Kenji S; Wada, Tomoko Sugikawa; Choi, Sun Hee; Masuta, Chikara; Uyeda, Ichiro

    2012-06-01

    Many plant viruses encode suppressors of RNA silencing, including the helper component-proteinase (HC-Pro) of potyviruses. Our previous studies showed that a D-to-Y mutation at amino acid position 193 in HC-Pro (HC-Pro-D193Y) drastically attenuated the virulence of clover yellow vein virus (ClYVV) in legume plants. Furthermore, RNA-silencing suppression (RSS) activity of HC-Pro-D193Y was significantly reduced in Nicotiana benthamiana. Here, we examine the effect of expression of heterologous suppressors of RNA silencing, i.e., tomato bushy stunt virus p19, cucumber mosaic virus 2b, and their mutants, on the virulence of the ClYVV point mutant with D193Y (Cl-D193Y) in pea. P19 and 2b fully and partially complemented Cl-D193Y multiplication and virulence, including lethal systemic HR in pea, respectively, but the P19 and 2b mutants with defects in their RSS activity did not. Our findings strongly suggest that the D193Y mutation exclusively affects RSS activity of HC-Pro and that RSS activity is necessary for ClYVV multiplication and virulence in pea. PMID:22398917

  17. A compensating wheat-Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and Triticum mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV), is a potentially devastating disease of common wheat in the Great Plains of North America. So far, two genes conferring resistance to WSMV have been named and used in cultivar improvement. Here we report a new source of resistance that was derived from a wheat-Th. i...

  18. Spiranthes Mosaic Virus 3 and Bidens Mottle Virus,Two Potyviruses Detected in Phlox divaricata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is the first report of Spiranthes mosaic virus in Florida and the first report of Bidens mottle virus in Phlox divaricata. This report provides an overview of this virus for growers, extension workers, crop consultants and research and regulatory scientists....

  19. Role of wheat streak mosaic virus-encoded proteins in disease development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eriophyid mite-transmitted wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are the type species of Tritimovirus and Poacevirus genera, respectively, in the family Potyviridae. TriMV and WSMV exhibit differential symptom phenotypes on wheat: TriMV elicits mild mosaic and mottling ...

  20. First report of Sugarcane mosaic virus infecting Columbus Grass (Sorghum almum) in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosaic symptoms in sorghum can be caused by several potyviruses [family Potyviridae], including Sorghum mosaic virus (SrMV) and Sugarcane mosaic virus (SCMV). SrMV and SCMV are responsible for global economic losses in sorghum, maize, and sugarcane. Ten plants of Columbus grass (Sorghum almum) exhib...

  1. PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity.

    PubMed

    Bagewadi, Basavaraj; Chen, Shoajiang; Lal, Sunil K; Choudhury, Nirupam Roy; Mukherjee, Sunil K

    2004-11-01

    Proliferative cell nuclear antigen (PCNA), a conserved plant protein as well as an important replication factor, is induced in response to geminivirus infection in the resting cells of the phloem tissues. The biochemical role of PCNA in rolling circle replication (RCR) of geminivirus DNA has not been explored in detail. The initiation of RCR of the bipartite genome of a geminivirus, Indian mung bean yellow mosaic virus (IMYMV), is mainly controlled by viral protein Rep (or AL1 or AC1). The role of host PCNA in RCR of IMYMV was revealed by studying the physical and functional interactions between recombinant PCNA and recombinant IMYMV Rep. Pea nuclear PCNA as well as recombinant pea PCNA showed binding to recombinant Rep in experiments involving both affinity chromatography and yeast two-hybrid approaches. The contacting amino acid residues of PCNA seemed to be present throughout a wide region of the trimeric protein, while those of Rep appeared to be localized only in the middle part of the protein. The site-specific nicking-closing activity and the ATPase function of IMYMV Rep were impaired by PCNA. These observations lead to interesting speculations about the control of viral RCR and dynamic profiles of protein-protein interactions at the RCR origin of the geminiviruses. PMID:15479830

  2. Soil-borne wheat mosaic virus infectious clone and manipulation for gene-carrying capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborne wheat mosaic virus (SBWMV) is a bipartite single stranded positive sense RNA virus with rigid-rod shaped virions. Taxonomically the virus is in the family Viragviridae, as are commonly used gene silencing or expression viral vectors, Tobacco rattle virus (TRV) and Barley stripe mosaic viru...

  3. Genome sequence of vanilla distortion mosaic virus infecting Coriandrum sativum.

    PubMed

    Adams, I P; Rai, S; Deka, M; Harju, V; Hodges, T; Hayward, G; Skelton, A; Fox, A; Boonham, N

    2014-12-01

    The 9573-nucleotide genome of a potyvirus was sequenced from a Coriandrum sativum plant from India with viral symptoms. On analysis, this virus was shown to have greater than 85 % nucleotide sequence identity to vanilla distortion mosaic virus (VDMV). Analysis of the putative coat protein sequence confirmed that this virus was in fact VDMV, with greater than 91 % amino acid sequence identity. The genome appears to encode a 3083-amino-acid polyprotein potentially cleaved into the 10 mature proteins expected in potyviruses. Phylogenetic analysis confirmed that VDMV is a distinct but ungrouped member of the genus Potyvirus. PMID:25252813

  4. Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses.

    PubMed

    Gell, Gyöngyvér; Sebestyén, Endre; Balázs, Ervin

    2015-02-01

    Recombination among RNA viruses is a natural phenomenon that appears to have played a significant role in the species development and the evolution of many strains. It also has particular significance for the risk assessment of plants which have been genetically modified for disease resistance by incorporating viral sequences into their genomes. However, the exact recombination events taking place in viral genomes are not investigated in detail for many virus groups. In this analysis, different single-stranded positive-sense RNA potyviruses were compared using various in silico recombination detection methods and new recombination events in the Sugarcane mosaic virus (SCMV) subgroup were detected. For an extended in silico recombination analysis, two of the analyzed Maize dwarf mosaic virus full-length genomes were sequenced additionally during this work. These results strengthen the evidence that recombination is a major driving force in virus evolution, and the emergence of new virus variants in the SCMV subgroup, paired with mutations, could generate viruses with altered biological properties. The intra- and interspecific homolog recombinations seem to be a general trait in this virus group, causing little or no changes to the amino acid of the progenies. However, we found a few breakpoints between the members of SCMV subgroup and the weed-infecting distant relatives, but only a few methods of the RDP3 package predicted these events with low significance level. PMID:25392089

  5. The E116 isolate of Dutch pea early-browning virus is a recombinant virus.

    PubMed

    Swanson, M M; MacFarlane, S A

    1999-03-01

    The complete nucleotide sequence of RNA2 of the E116 isolate of Dutch pea early-browning virus (PEBV-D) was obtained from overlapping cDNA clones. The RNA was found to encode three open reading frames corresponding to, in 5' to 3' order, the coat protein, the 2b nematode transmission protein and the C-terminal part of the cysteine-rich 1b protein derived from RNA1. The 3' non-coding region of PEBV-D RNA2 was also shown to be derived from RNA1. This is the first demonstration that recombination of PEBV occurs in nature. Comparison of the amino acid sequences of the PEBV-D RNA2 proteins with those of British PEBV and several isolates of tobacco rattle virus reveals complex patterns of mixing of the genomes of these two viruses. PMID:10225277

  6. Catharanthus mosaic virus: A potyvirus from a gymnosperm, Welwitschia mirabilis.

    PubMed

    Koh, Shu Hui; Li, Hua; Admiraal, Ryan; Jones, Michael G K; Wylie, Stephen J

    2015-05-01

    A virus from a symptomatic plant of the gymnosperm Welwitschia mirabilis Hook. growing as an ornamental plant in a domestic garden in Western Australia was inoculated to a plant of Nicotiana benthamiana where it established a systemic infection. The complete genome sequence of 9636 nucleotides was determined using high-throughput and Sanger sequencing technologies. The genome sequence shared greatest identity (83% nucleotides and 91% amino acids) with available partial sequences of catharanthus mosaic virus, indicating that the new isolate belonged to that taxon. Analysis of the phylogeny of the complete virus sequence placed it in a monotypic group in the genus Potyvirus. This is the first record of a virus from W. mirabilis, the first complete genome sequence of catharanthus mosaic virus determined, and the first record from Australia. This finding illustrates the risk to natural and managed systems posed by the international trade in live plants and propagules, which enables viruses to establish in new regions and infect new hosts. PMID:25804761

  7. Multiplex PCR for the detection of African cassava mosaic virus and East African cassava mosaic Cameroon virus in cassava.

    PubMed

    Alabi, Olufemi J; Kumar, P Lava; Naidu, Rayapati A

    2008-12-01

    A multiplex PCR was developed for simultaneous detection of African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in cassava affected with cassava mosaic disease (CMD). One set of three primers consisting of an upstream primer common for both viruses and two down stream virus-specific primers were designed for simultaneous amplification of 368 base pair (bp) and 650 bp DNA fragments specific to the replicase gene of ACMV and EACMCV, respectively. Similarly, a second set of three primers were designed for simultaneous amplification of 540 bp and 655 bp fragments specific to the coat protein gene of EACMCV and ACMV, respectively. Primers that can amplify a 171 bp fragment of the large subunit of ribulose bisphosphate carboxylase oxygenase L were included as an internal control in these assays to determine the reliability of multiplex PCR. A simplified, cost-effective and rapid sample preparation method was adapted in place of the conventional plant DNA extraction procedure for multiplex PCR detection of ACMV and EACMCV. The method was validated using CMD-infected cassava samples obtained from farmers' fields in Nigeria. The multiplex PCR is useful for reliable assessment of the prevalence of CMBs in epidemiological studies and for crop improvement and phytosanitary programs in African countries. PMID:18789974

  8. Precise Determination of the Helical Repeat of Tobacco Mosaic Virus

    SciTech Connect

    Kendall, A.; McDonald, M.; Stubbs, G.

    2009-06-01

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 {angstrom}. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-}0.03 {angstrom} by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  9. Precise determination of the helical repeat of tobacco mosaic virus

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Stubbs, Gerald

    2007-12-05

    Tobacco mosaic virus (TMV) is widely used as a distance standard in electron microscopy, fiber diffraction, and other imaging techniques. The dimension used as a reference is the pitch of the viral helix, 23 A. This distance, however, has never been measured with any great degree of precision. The helical pitch of TMV has been determined to be 22.92 {+-} 0.03 A by X-ray fiber diffraction methods using highly collimated synchrotron radiation.

  10. Fixation of Emerging Interviral Recombinants in Cucumber Mosaic Virus Populations

    PubMed Central

    Pita, Justin S.

    2013-01-01

    Interstrain recombinants were observed in the progenies of the Cucumber mosaic virus (CMV) reassortant L1L2F3 containing RNAs 1 and 2 from LS-CMV and RNA 3 from Fny-CMV. We characterized these recombinants, and we found that their fixation was controlled by the nature of the replicating RNAs 1 and 2. We demonstrate that the 2b gene partially affects this fixation process, but only in the context of homologous RNAs 1 and 2. PMID:23115282

  11. Beijerinck's work on tobacco mosaic virus: historical context and legacy.

    PubMed Central

    Bos, L

    1999-01-01

    Beijerinck's entirely new concept, launched in 1898, of a filterable contagium vivum fluidum which multiplied in close association with the host's metabolism and was distributed in phloem vessels together with plant nutrients, did not match the then prevailing bacteriological germ theory. At the time, tools and concepts to handle such a new kind of agent (the viruses) were non-existent. Beijerinck's novel idea, therefore, did not revolutionize biological science or immediately alter human understanding of contagious diseases. That is how bacteriological dogma persisted, as voiced by Loeffler and Frosch when showing the filterability of an animal virus (1898), and especially by Ivanovsky who had already in 1892 detected filterability of the agent of tobacco mosaic but kept looking for a microbe and finally (1903) claimed its multiplication in an artificial medium. The dogma was also strongly advocated by Roux in 1903 when writing the first review on viruses, which he named 'so-called "invisible" microbes', unwittingly including the agent of bovine pleuropneumonia, only much later proved to be caused by a mycoplasma. In 1904, Baur was the first to advocate strongly the chemical view of viruses. But uncertainty about the true nature of viruses, with their similarities to enzymes and genes, continued until the 1930s when at long last tobacco mosaic virus particles were isolated as an enzyme-like protein (1935), soon to be better characterized as a nucleoprotein (1937). Physicochemical virus studies were a key element in triggering molecular biology which was to provide further means to reveal the true nature of viruses 'at the threshold of life'. Beijerinck's 1898 vision was not appreciated or verified during his lifetime. But Beijerinck already had a clear notion of the mechanism behind the phenomena he observed. Developments in virology and molecular biology since 1935 indicate how close Beijerinck (and even Mayer, Beijerinck's predecessor in research on tobacco

  12. High sequence conservation among cucumber mosaic virus isolates from lily.

    PubMed

    Chen, Y K; Derks, A F; Langeveld, S; Goldbach, R; Prins, M

    2001-08-01

    For classification of Cucumber mosaic virus (CMV) isolates from ornamental crops of different geographical areas, these were characterized by comparing the nucleotide sequences of RNAs 4 and the encoded coat proteins. Within the ornamental-infecting CMV viruses both subgroups were represented. CMV isolates of Alstroemeria and crocus were classified as subgroup II isolates, whereas 8 other isolates, from lily, gladiolus, amaranthus, larkspur, and lisianthus, were identified as subgroup I members. In general, nucleotide sequence comparisons correlated well with geographic distribution, with one notable exception: the analyzed nucleotide sequences of 5 lily isolates showed remarkably high homology despite different origins. PMID:11676424

  13. Blueberry mosaic associated virus – A putative, new member of Ophioviridae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry mosaic initially was reported more than 50 years ago and is now known from different parts of the world. A new virus, closely associated with the disease has been identified recently. The virus tentatively named as Blueberry mosaic associated virus (BlMaV), is a putative member of the gen...

  14. Triticum Mosaic Virus: A New Virus Isolated From Wheat in Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006 a mechanically-transmissible and previously uncharacterized virus was isolated in Kansas from wheat with mosaic symptoms. The physio-chemical properties of the virus were examined by purification on cesium chloride density gradients, electron microscopy, sodium dodecyl sulfate polyacrylalmid...

  15. First report of Alfalfa mosaic virus and Soybean dwarf virus on soybean in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max [L.] Merr.) is the major oilseed crop in North Dakota with production concentrated in the eastern half of the state. Only one virus, Soybean mosaic virus, has been reported from soybean in North Dakota. In 2010, 200 soybean fields from 25 counties that have the majority of soybe...

  16. Phosphorylation of alfalfa mosaic virus movement protein in vivo.

    PubMed

    Kim, Bong-Suk; Halk, Edward L; Merlo, Donald J; Nelson, Steven E; Loesch-Fries, L Sue

    2014-07-01

    The 32-kDa movement protein, P3, of alfalfa mosaic virus (AMV) is essential for cell-to-cell spread of the virus in plants. P3 shares many properties with other virus movement proteins (MPs); however, it is not known if P3 is posttranslationally modified by phosphorylation, which is important for the function of other MPs. When expressed in Nicotiana tabacum, P3 accumulated primarily in the cell walls of older leaves or in the cytosol of younger leaves. When expressed in Pischia pastoris, P3 accumulated primarily in a soluble form. Metabolic labeling indicated that a portion of P3 was phosphorylated in both tobacco and yeast, suggesting that phosphorylation regulates the function of this protein as it does for other virus MPs. PMID:24435161

  17. Redox-active ferrocene-modified Cowpea mosaic virus nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Butt, Julea N; Lomonossoff, George P; Evans, David J

    2010-08-28

    A naturally occurring nanoparticle, the plant virus Cowpea mosaic virus, can be decorated with ferrocene derivatives, of various linker lengths with amine and carboxylate groups, on the external surface using a range of conjugation strategies. The multiple, organometallic, redox-active ferrocene moieties on the outer surface of the virus are electrochemically independent with reduction potentials that span a potential window of 0.16 V that are dependent on the site of modification and the nature of the ferrocene derivative. The number of ferrocenes coupled to each virus ranges from about 100 to 240 depending upon the conjugation site and the linker length and these redox active units can provide multielectron reservoirs. PMID:20623052

  18. Quantitative and qualitative involvement of P3N-PIPO in overcoming recessive resistance against Clover yellow vein virus in pea carrying the cyv1 gene.

    PubMed

    Choi, Sun Hee; Hagiwara-Komoda, Yuka; Nakahara, Kenji S; Atsumi, Go; Shimada, Ryoko; Hisa, Yusuke; Naito, Satoshi; Uyeda, Ichiro

    2013-07-01

    In pea carrying cyv1, a recessive gene for resistance to Clover yellow vein virus (ClYVV), ClYVV isolate Cl-no30 was restricted to the initially infected cells, whereas isolate 90-1 Br2 overcame this resistance. We mapped the region responsible for breaking of cyv1-mediated resistance by examining infection of cyv1 pea with chimeric viruses constructed from parts of Cl-no30 and 90-1 Br2. The breaking of resistance was attributed to the P3 cistron, which is known to produce two proteins: P3, from the main open reading frame (ORF), and P3N-PIPO, which has the N-terminal part of P3 fused to amino acids encoded by a small open reading frame (ORF) called PIPO in the +2 reading frame. We introduced point mutations that were synonymous with respect to the P3 protein but nonsynonymous with respect to the P3N-PIPO protein, and vice versa, into the chimeric viruses. Infection of plants with these mutant viruses revealed that both P3 and P3N-PIPO were involved in overcoming cyv1-mediated resistance. Moreover, P3N-PIPO quantitatively affected the virulence of Cl-no30 in cyv1 pea. Additional expression in trans of the P3N-PIPO derived from Cl-no30, using White clover mosaic virus as a vector, enabled Cl-no30 to move to systemic leaves in cyv1 pea. Susceptible pea plants infected with chimeric ClYVV possessing the P3 cistron of 90-1 Br2, and which were therefore virulent toward cyv1 pea, accumulated more P3N-PIPO than did those infected with Cl-no30, suggesting that the higher level of P3N-PIPO in infected cells contributed to the breaking of resistance by 90-1 Br2. This is the first report showing that P3N-PIPO is a virulence determinant in plants resistant to a potyvirus. PMID:23616656

  19. Computer analysis between nucleotide and amino acid sequences of bean golden mosaic virus and those of maize streak, wheat dwarf, chloris striate mosaic, and beet curly top viruses.

    PubMed

    Ikegami, M

    1989-01-01

    Bean golden mosaic virus (BGMV) DNA 1 and 2 have little sequence homology with maize streak virus (MSV), wheat dwarf virus (WDV), and chloris striate mosaic virus (CSMV) DNAs. BGMV DNA 1 and beet curly top virus (BCTV) DNA are closely related, whereas BGMV DNA 2 and BCTV DNA are not related. Direct amino acid homologies of predicted proteins between BGMV ORFs and MSV ORFs, WDV ORFs or CSMV ORFs were 40-50%. BGMV 1L1 and BCTV L1, and BGMV IL3 and BCTV L4 were highly conserved. The sequence TAATATTAC was detected in the loops of hairpin structures of 5 gemini-viruses. PMID:2615677

  20. Reactions of some cucurbitaceous species Tozucchini yellow mosaic virus (ZYMV).

    PubMed

    Csorba, R; Kiss, E F; Molnár, L

    2004-01-01

    Zucchini yellow mosaic virus (ZYMV) is a widespread serious pathogen of cucurbitaceous plants. ZYMV was first detected in Hungary in 1995. Since then it has become one of the most dangerous viruses of the Cucurbitaceae family causing serious epidemics. The virus has many hosts, which - particularly perennial ones - may play important role as virus reservoirs and infection sources in virus epidemiology. On the other hand wild weed species maybe sources of resistance to viruses. Our research was carried out on a total of 15 wild species from 8 genera (Cucumis, Cucurbita, Cyclanthera, Ecballium Momordica, Lagenaria, Zehneria, Bryonia). Test plants were mechanically inoculated with ZYMV. Local and systemic symptoms were determined and 5 weeks after inoculation DAS-ELISA tests were also carried out. Symptomless plants were reinoculated to Cucumis sativus cv. Accordia test plants. On the basis of the results we determined the percentages of infections and so we classified the test-plants into sensitive and resistance categories. On the basis of the results new host plants of ZYMV are the followings: Bryonia dioica, Cyclanthera pedata, Ecballium elaterium, Momordica balsamina, Momordica rostrata, and Zehneria scabra. Among them Momordica balsamina and Ecballium elaterium showed latent to ZYMV. Bryonia alba and Zehneria indica are especially remarkable, because they proved resistant to ZYMV on the basis of symptomatology and serology. Our results might have significant role in the field of research of host range, virus resistance and virus differentiation. PMID:15756830

  1. Properties of a virus causing mosaic and leaf curl disease of Celosia argentea L. in Nigeria.

    PubMed

    Owolabi, T A; Taiwo, M A; Thottappilly, G A; Shoyinka, S A; Proll, E; Rabenstein, F

    1998-06-01

    A sap transmissible virus, causing mosaic and leaf curl disease of Celosia argentea, was isolated at vegetable farms in Amuwo Odofin, Tejuoso, and Abule Ado, Lagos, Nigeria. The virus had a restricted host range confined to a few species of the Amaranthaceae, Chenopodiaceae and Solanaceae families. It failed to infect several other species of the Aizoaceae, Brassicaceae, Cucurbitaceae, Fabaceae, Lamiaceae, Malvaceae, Poaceae and Tiliaceae families. The virus was transmitted in a non-persistent manner by Aphis spiraecola and Toxoptera citricidus but not by eight other aphid species tested. There was no evidence of transmission by seeds of C. argentae varieties. The viral coat protein had a relative molecular mass (M(r)) of about 30.2 K. Electron microscopy of purified virus preparations revealed flexuous rod shaped particles of about 750 nm in length. Serological studies were performed using the enzyme-linked immunosorbent assay (ELISA), immunosorbent electron microscopy (ISEM) and Western blot analysis. The virus reacted positively with an universal potyvirus group monoclonal antibody (MoAb) and MoAb P-3-3H8 raised against peanut stripe potyvirus. It also reacted with polyclonal antibodies raised against several potyviruses including asparagus virus-1 (AV-1), turnip mosaic virus (TuMV), maize dwarf mosaic virus (MDMV), watermelon mosaic virus (WMV-2), plum pox virus (PPV), soybean mosaic virus (SoyMV), lettuce mosaic virus (LMV), bean common mosaic virus (BCMV) and beet mosaic virus (BMV) in at least one of the serological assays used. On the basis of host range, mode of transmission, and available literature data, the celosia virus seems to be different from potyviruses previously reported to infect vegetables in Nigeria. The name celosia mosaic virus (CIMV) has been proposed for this virus. PMID:9842442

  2. Investigation of RNA structure in satellite panicum mosaic virus

    SciTech Connect

    Makino, D.L. E-mail: dmakino@berkeley.edu; Day, J. E-mail: jsday@uci.edu; Larson, S.B. E-mail: slarson@uci.edu; McPherson, A. E-mail: amcphers@uci.edu

    2006-08-01

    Three new crystal forms of satellite panicum mosaic virus (SPMV) were grown and their structures solved from X-ray diffraction data using molecular replacement techniques. The crystals were grown under conditions of pH and ionic strength that were appreciably different then those used for the original structure determination. In rhombohedral crystals grown at pH 8.5 and low ionic strength PEG 3350 solutions, Fourier syntheses revealed segments, ten amino acid residues long, of amino-terminal polypeptides not previously seen, as well as masses of electron density within concavities on the interior of the capsid, which appeared in the neighborhoods of icosahedral five- and threefold axes. The densities were compatible with secondary structural domains of RNA, and they included a segment of double helical RNA of about four to five base pairs oriented, at least approximately, along the fivefold axes. The distribution of RNA observed for SPMV appears to be distinctly different than the encapsidated nucleic acid conformation previously suggested for another satellite virus, satellite tobacco mosaic virus. This study further shows that analysis of viruses in crystals grown under different chemical conditions may reveal additional information regarding the structure of encapsidated RNA.

  3. Structural Lability of Barley Stripe Mosaic Virus Virions

    PubMed Central

    Semenyuk, Pavel I.; Abashkin, Dmitry A.; Kalinina, Natalya O.; Arutyunyan, Alexsandr M.; Solovyev, Andrey G.; Dobrov, Eugeny N.

    2013-01-01

    Virions of Barley stripe mosaic virus (BSMV) were neglected for more than thirty years after their basic properties were determined. In this paper, the physicochemical characteristics of BSMV virions and virion-derived viral capsid protein (CP) were analyzed, namely, the absorption and intrinsic fluorescence spectra, circular dichroism spectra, differential scanning calorimetry curves, and size distributions by dynamic laser light scattering. The structural properties of BSMV virions proved to be intermediate between those of Tobacco mosaic virus (TMV), a well-characterized virus with rigid rod-shaped virions, and flexuous filamentous plant viruses. The BSMV virions were found to be considerably more labile than expected from their rod-like morphology and a distant sequence relation of the BSMV and TMV CPs. The circular dichroism spectra of BSMV CP subunits incorporated into the virions, but not subunits of free CP, demonstrated a significant proportion of beta-structure elements, which were proposed to be localized mostly in the protein regions exposed on the virion outer surface. These beta-structure elements likely formed during virion assembly can comprise the N- and C-terminal protein regions unstructured in the non-virion CP and can mediate inter-subunit interactions. Based on computer-assisted structure modeling, a model for BSMV CP subunit structural fold compliant with the available experimental data was proposed. PMID:23613760

  4. Differentiation of celosia mosaic virus and asparagus virus 1 based on biological properties.

    PubMed

    Owolabi, A T; Proll, E

    2000-01-01

    An attempt was made to distinguish between celosia mosaic virus (CIMV) and asparagus virus 1 (AV-1) based on biological properties, which hitherto was obscured from serological data from previous work. The host range of AV-1 was found to be a subset of that of CIMV and AV-1 was transmitted by the aphid Myzus persicae which, on the other hand, did not transmit CIMV. No evidence of cross-protection was obtained between these two viruses. PMID:11155362

  5. The complete genome sequence of New World jatropha mosaic virus.

    PubMed

    Polston, J E; Londoño, M A; Capobianco, H

    2014-11-01

    Full-length sequences of a bipartite begomovirus were obtained from a plant of Jatropha multifida in Florida showing symptoms of foliar mosaic, distortion and necrosis. Sequences of four clones each of a DNA-A and DNA-B were obtained, which showed very low sequence diversity among themselves. The clones were infectious when biolistically inoculated to J. multifida, Phaseolus vulgaris and Nicotiana tabacum, but not to J. curcas. The DNA-A sequences had less than 89 % pairwise identity scores with the DNA-A of other begomoviruses. The DNA-A appeared to be a recombinant in that 18 % of the DNA-A (470 nt) had a pairwise identity score of 91.98 % with RhRGMV, indicating that this portion most likely originated from a virus closely related to RhRGMV. The remaining 82 % of the DNA-A had lower identity scores with TbMoLCV (87.84 %) and RhRGMV (87.46 %), which suggests that this part of the component originated from an undescribed virus. There was no evidence for recombination in the DNA-B. Equivalent sequences of the DNA-A had the highest identity score (94.18 %) with a 533-nt sequence obtained from J. multifida from Puerto Rico in 2001 (GenBank accession no. AF058025). Pairwise comparison, recombination and phylogenetic analysis, and biology suggest that these clones are those of jatropha mosaic virus first reported from Puerto Rico. This is the first report of the complete genome sequence of jatropha mosaic virus. PMID:25091738

  6. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-10-26

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  7. Analysis of figwort mosaic virus (plant pararetrovirus) polyadenylation signal.

    PubMed

    Sanfaçon, H

    1994-01-01

    Analysis of the cauliflower mosaic virus (CaMV) polyadenylation (poly(A)) signal has revealed several striking differences to poly(A) signals from animal genes such as the absence of activating sequences downstream from the cleavage site. Instead, upstream sequences were shown to induce recognition of an AAUAAA sequence. To test whether these features are representative of other plant pararetrovirus poly(A) signals, a characterization of the figwort mosaic virus (FMV) poly(A) signal is presented here. The FMV RNAs were isolated from infected plants and mapped, and the different elements composing the FMV poly(A) signal were identified. Multiple upstream sequences were found to be essential for efficient processing at the FMV poly(A) site and could be replaced by the CaMV upstream elements. The FMV upstream sequences showed homologies to other characterized upstream sequences from CaMV, from animal viruses, and from plant poly(A) signals. Surprisingly, neither the FMV nor the CaMV upstream elements could induce recognition of an AAUAAA sequence present in the FMV poly(A) signal, instead a UAUAAA sequence 55 nucleotides further downstream was utilized. It is proposed that additional features may be required for appropriate cleavage such as the context of the AAUAAA-like sequence or perhaps the cleavage site itself. PMID:8259677

  8. Sequence of figwort mosaic virus DNA (caulimovirus group).

    PubMed Central

    Richins, R D; Scholthof, H B; Shepherd, R J

    1987-01-01

    The nucleotide sequence of an infectious clone of figwort mosaic virus (FMV) was determined using the dideoxynucleotide chain termination method. The double-stranded DNA genome (7743 base pairs) contained eight open reading frames (ORFs), seven of which corresponded approximately in size and location to the ORFs found in the genome of cauliflower mosaic virus (CaMV) and carnation etched ring virus (CERV). ORFs I and V of FMV demonstrated the highest degrees of nucleotide and amino acid sequence homology with the equivalent coding regions of CaMV and CERV. Regions II, III and IV showed somewhat less homology with the analogous regions of CaMV and CERV, and ORF VI showed homology with the corresponding gene of CaMV and CERV in only a short segment near the middle of the putative gene product. A 16 nucleotide sequence, complementary to the 3' terminus of methionine initiator tRNA (tRNAimet) and presumed to be the primer binding site for initiation of reverse transcription to produce minus strand DNA, was found in the FMV genome near the discontinuity in the minus strand. Sequences near the three interruptions in the plus strand of FMV DNA bear strong resemblance to similarly located sequences of 3 other caulimoviruses and are inferred to be initiation sites for second strand DNA synthesis. Additional conserved sequences in the small and large intergenic regions are pointed out including a highly conserved 35 bp sequence that occurs in the latter region. PMID:3671088

  9. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize1[OPEN

    PubMed Central

    Mei, Yu; Kernodle, Bliss M.; Hill, John H.

    2016-01-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  10. A Foxtail mosaic virus Vector for Virus-Induced Gene Silencing in Maize.

    PubMed

    Mei, Yu; Zhang, Chunquan; Kernodle, Bliss M; Hill, John H; Whitham, Steven A

    2016-06-01

    Plant viruses have been widely used as vectors for foreign gene expression and virus-induced gene silencing (VIGS). A limited number of viruses have been developed into viral vectors for the purposes of gene expression or VIGS in monocotyledonous plants, and among these, the tripartite viruses Brome mosaic virus and Cucumber mosaic virus have been shown to induce VIGS in maize (Zea mays). We describe here a new DNA-based VIGS system derived from Foxtail mosaic virus (FoMV), a monopartite virus that is able to establish systemic infection and silencing of endogenous maize genes homologous to gene fragments inserted into the FoMV genome. To demonstrate VIGS applications of this FoMV vector system, four genes, phytoene desaturase (functions in carotenoid biosynthesis), lesion mimic22 (encodes a key enzyme of the porphyrin pathway), iojap (functions in plastid development), and brown midrib3 (caffeic acid O-methyltransferase), were silenced and characterized in the sweet corn line Golden × Bantam. Furthermore, we demonstrate that the FoMV infectious clone establishes systemic infection in maize inbred lines, sorghum (Sorghum bicolor), and green foxtail (Setaria viridis), indicating the potential wide applications of this viral vector system for functional genomics studies in maize and other monocots. PMID:27208311

  11. [Kidney bean "Pervomayskaya" as the indicator plant for tobacco mosaic virus].

    PubMed

    Kraiev, V H

    2005-01-01

    It was shown that garden beans of "Pervomayskaya" variety respond to mechanical inoculation of leaves with tobacco mosaic virus by formation of local lesions, and thus it may be the indicator plant for the virus. PMID:16250238

  12. First Report of Soybean Yellow Mottle Mosaic Virus in Soybean in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean yellow mottle mosaic virus (SYMMV) is a soybean-infecting virus recently described in Korea that initially induces bright yellow mosaic on leaves followed by stunting and reduced growth of older leaves. Nucleotide sequence analysis of genomic RNA of the Korean isolate of SYMMV suggested tha...

  13. Winter wheat cultivars with temperature sensitive resistance to wheat streak mosaic virus do not recover from early season infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV), Triticum mosaic virus, and Wheat mosaic virus, all vectored by the wheat curl mite Aceria tosichella Keifer, frequently cause devastating losses to winter wheat production throughout the central and western Great Plains. Resistant 'Mace' and 'RonL' are commercially ...

  14. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  15. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  16. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  17. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  18. 40 CFR 174.516 - Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Coat protein of cucumber mosaic virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.516 Coat protein of cucumber mosaic virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Cucumber Mosaic Virus are...

  19. The entry of cucumber mosaic virus into cucumber xylem is facilitated by co-infection with zucchini yellow mosaic virus.

    PubMed

    Mochizuki, Tomofumi; Nobuhara, Shinya; Nishimura, Miho; Ryang, Bo-Song; Naoe, Masaki; Matsumoto, Tadashi; Kosaka, Yoshitaka; Ohki, Satoshi T

    2016-10-01

    We investigated the synergistic effects of co-infection by zucchini yellow mosaic virus (ZYMV) and cucumber mosaic virus (CMV) on viral distribution in the vascular tissues of cucumber. Immunohistochemical observations indicated that ZYMV was present in both the phloem and xylem tissues. ZYMV-RNA was detected in both the xylem wash and guttation fluid of ZYMV-inoculated cucumber. Steam treatment at a stem internode indicated that ZYMV enters the xylem vessels and moves through them but does not cause systemic infection in the plant. CMV distribution in singly infected cucumbers was restricted to phloem tissue. By contrast, CMV was detected in the xylem tissue of cotyledons in plants co-infected with CMV and ZYMV. Although both ZYMV-RNA and CMV-RNA were detected in the xylem wash and upper internodes of steam-treated, co-infected cucumbers grown at 24 °C, neither virus was detected in the upper leaves using an ELISA assay. Genetically modified CMV harboring the ZYMV HC-Pro gene was distributed in the xylem and phloem tissues of singly inoculated cucumber cotyledons. These results indicate that the ZYMV HC-Pro gene facilitates CMV entry into the xylem vessels of co-infected cucumbers. PMID:27400992

  20. Analysis of small RNAs derived from Chinese wheat mosaic virus.

    PubMed

    Yang, Jian; Zheng, Shi-Ling; Zhang, Heng-Mu; Liu, Xiao-Ya; Li, Jing; Li, Jun-Min; Chen, Jian-Ping

    2014-11-01

    The virus-derived small interfering RNAs (vsiRNAs) of Chinese wheat mosaic virus (CWMV), a member of the genus Furovirus, were characterised from wheat plants by deep sequencing. CWMV vsiRNAs of 21-22 nt in length predominated, suggesting that there might be a conserved mechanism of DCL2 and DCL4 involvement in the biogenesis of vsiRNAs, as well as a common RNA silencing pathway in CWMV-infected wheat plants. The 5'-terminal base of vsiRNAs was biased towards A/U, suggesting that CWMV vsiRNAs might be loaded into diverse AGO-containing RISCs to disturb the gene expression of host plants. Possible targets for some of the vsiRNAs were predicted. PMID:24997977

  1. Arabidopsis thaliana is an asymptomatic host of Alfalfa mosaic virus.

    PubMed

    Balasubramaniam, Muthukumar; Ibrahim, Amr; Kim, Bong-Suk; Loesch-Fries, L Sue

    2006-11-01

    The susceptibility of Arabidopsis thaliana ecotypes to infection by Alfalfa mosaic virus (AMV) was evaluated. Thirty-nine ecotypes supported both local and systemic infection, 26 ecotypes supported only local infection, and three ecotypes could not be infected. No obvious symptoms characteristic of virus infection developed on the susceptible ecotypes under standard conditions of culture. Parameters of AMV infection were characterized in ecotype Col-0, which supported systemic infection and accumulated higher levels of AMV than the symptomatic host Nicotiana tabacum. The formation of infectious AMV particles in infected Col-0 was confirmed by infectivity assays on a hypersensitive host and by electron microscopy of purified virions. Replication and transcription of AMV was confirmed by de novo synthesis of AMV subgenomic RNA in Col-0 protoplasts transfected with AMV RNA or plasmids harboring AMV cDNAs. PMID:16875753

  2. Evolutionary liberties of the Abutilon mosaic virus cluster.

    PubMed

    Fischer, Alexander; Strohmeier, Stephan; Krenz, Björn; Jeske, Holger

    2015-02-01

    Two new strains of Abutilon mosaic virus (AbMV; Geminiviridae) from Germany (Stuttgart) and France (Paris) have been characterized by circomics, direct pyrosequencing of rolling circle amplification (RCA) products, as well as conventional cloning and Sanger sequencing. RCA combined with an analysis of restriction fragment length polymorphisms confirmed the completeness of the sequence determination and a close relationship of both isolates for DNA A with 99 % nucleotide sequence identity. Phylogenetic tree reconstruction supported their clustering with other AbMV strains in a clade with Middle American begomoviruses, whereas South American begomoviruses that infect Abutilon or Sida micrantha are less closely related. Comparing the coat protein (CP) genes of the AbMV cluster, with those of related Middle and South American begomoviruses revealed a remarkable overrepresentation for non-synonymous nucleotide exchanges for certain amino acid positions in the AbMV cluster. Projection of these positions to a structural model of the African cassava mosaic virus CP yielded a non-random distribution at the periphery and, most importantly, highlighted those amino acids that had been identified in whitefly-transmission experiments before. These results establish the basis for an analysis of the evolutionary liberty of certain amino acid positions of the CP, and their impact on the deciphering of insect transmission determinants is discussed. PMID:25315632

  3. Methods for Virus-Induced Gene Silencing in Hexaploid Wheat using barley stripe mosaic virus vectors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus-induced gene silencing (VIGS) is a useful functional genomics tool for rapidly creating gene knockout phenotypes that can be used to infer gene function. Until recently, VIGS has only been possible in dicotyledonous plants. However, the development of vectors based on barley stripe mosaic vi...

  4. CHARACTERIZATION AND PRESENCE OF BEAN COMMON MOSAIC NECROSIS VIRUS IN THE DOMINICAN REPUBLIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of virus symptoms in the San Juan Valley of the southeastern part of the Dominican Republic during the 1999/2000 dry bean production season was studied. The virus was determined by USDA-ARS at Prosser, WA, to be the NL-8 strain of bean common mosaic necrosis virus. The virus was observed...

  5. Gold nanostructures using tobacco mosaic viruses for optical metamaterials

    NASA Astrophysics Data System (ADS)

    Kobayashi, Mime; Yamashita, Ichiro; Uraoka, Yukiharu; Shiba, Kiyotaka; Tomita, Satoshi

    2011-05-01

    We have succeeded in aligning gold nanoparticles (Au NPs) in three-dimensions using tobacco mosaic virus (TMV) in order to realize new optical properties. TMV is a tube-shaped plant virus about 300 nm in length with an outer- and inner-diameter of 18 nm and 4 nm. We genetically fused material-binding peptides that can promote metal crystallization, namely a gold-binding peptide (GBP) and a titanium-binding peptide (TBP), to the outer-surface of TMV. By reducing potassium chloroaurate with sodium borohydride in the presence of the engineered viruses in 5% acetic acid solution, Au NPs were deposited on the outer-surface of the viruses. Using TBP-fused TMV, NPs of 5 nm were obtained, with a standard deviation smaller than those deposited on wild-type TMV. The diameter of the NPs on GBP-fused TMV was 10 nm. These results indicate that genetically-modified TMVs are promising templates for the construction of optical metamaterials.

  6. Polyamine biosynthesis and the replication of turnip yellow mosaic virus

    SciTech Connect

    Balint, R.F.

    1984-01-01

    Turnip yellow mosaic virus (TYMV) contains large amounts of nonexchangeable spermidine and induces an accumulation of spermidine in infected Chinese cabbage. By seven days after inoculation, a majority of protoplasts isolated from newly-emerging leaves stain with fluorescent antibody to the virus. These protoplasts contain 1-2 x 10/sup 6/ virions per cell and continue to produce virus in culture for at least 48 hours. (/sup 14/C)-Spermidine (10 ..mu..M) was taken up by these cells in amounts comparable to the original endogenous pool within 24 hours. However, the spermidine content of the cell was only marginally affected, implying considerable regulation of the endogenous pool(s). Putrescine and spermine were major products of the metabolism of exogenous spermidine. Radioactivity from exogenous (/sup 14/C)-spermidine was also readily incorporated into the nucleic acid-containing component of the virus, where it appeared as both spermidine and spermine. Thus, newly-formed virions contained predominantly newly-synthesized spermidine and spermine. However, inhibition of spermidine synthesis by dicyclohexylamine (DCHA) led to incorporation of pre-existing spermidine and increased amounts of spermine into newly-formed virions. The latter results were tested and confirmed in a second cellular system, consisting of health protoplasts infected with TYMC in vitro.

  7. Co-infection and disease severity of Ohio Maize dwarf mosaic virus and Maize chlorotic dwarf virus strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two major maize viruses have been reported in the United States: Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV). These viruses co-occur in regions where maize is grown such that co-infections are likely. Co-infection of different strains of MCDV is also observed frequently...

  8. Immunological detection of bean common mosaic virus in French bean (Phaseolus vulgaris L.) leaves.

    PubMed

    Verma, Poonam; Gupta, U P

    2010-09-01

    Bean common mosaic potyvirus (BCMV) is an important seed borne pathogen of French bean. Differential inoculation with bean common mosaic virus at cotylodonary trifoliate leaf stage and pre-flowering stage of crop growth revealed that cotyledonary leaf infection favored maximum disease expression. Under immunosorbent electron microscopy (ISEM) the virus particles of filamentous structure having a diameter of 750 nm (l) and 15 nm (w) were observed. These particles gave positive precipitin tests with polyclonal antiserum of Potato virus Y. PMID:23100839

  9. Proton dependence of tobacco mosaic virus dissociation by pressure.

    PubMed

    Santos, Jose L R; Bispo, Jose A C; Landini, Gustavo F; Bonafe, Carlos F S

    2004-09-01

    Tobacco mosaic virus (TMV) is an intensely studied model of viruses. This paper reports an investigation into the dissociation of TMV by pH and pressure up to 220 MPa. The viral solution (0.25 mg/ml) incubated at 277 K showed a significant decrease in light scattering with increasing pH, suggesting dissociation. This observation was confirmed by HPLC gel filtration and electron microscopy. The calculated volume change of dissociation (DeltaV) decreased (absolute value) from -49.7 ml/mol of subunit at pH 3.8 to -21.7 ml/mol of subunit at pH 9.0. The decrease from pH 9.0 to 3.8 caused a stabilization of 14.1 kJ/mol of TMV subunit. The estimated proton release calculated from pressure-induced dissociation curves was 0.584 mol H(+)/mol of TMV subunit. These results suggest that the degree of virus inactivation by pressure and the immunogenicity of the inactivated structures can be optimized by modulating the surrounding pH. PMID:15450375

  10. The RNA of turnip yellow mosaic virus exhibits icosahedral order

    SciTech Connect

    Larson, Steven B.; Lucas, Robert W.; Greenwood, Aaron; McPherson, Alexander . E-mail: amcphers@uci.edu

    2005-04-10

    Difference electron density maps, based on structure factor amplitudes and experimental phases from crystals of wild-type turnip yellow mosaic virus and those of empty capsids prepared by freeze-thawing, show a large portion of the encapsidated RNA to have an icosahedral distribution. Four unique segments of base-paired, double-helical RNA, one to two turns in length, lie between 33-A and 101-A radius and are organized about either 2-fold or 5-fold icosahedral axes. In addition, single-stranded loops of RNA invade the pentameric and hexameric capsomeres where they contact the interior capsid surface. The remaining RNA, not seen in electron density maps, must serve as connecting links between these secondary structural elements and is likely icosahedrally disordered. The distribution of RNA observed crystallographically appears to be in agreement with models based on biochemical data and secondary structural analyses.

  11. The nucleotide sequence of cowpea mosaic virus B RNA

    PubMed Central

    Lomonossoff, G.P.; Shanks, M.

    1983-01-01

    The complete sequence of the bottom component RNA (B RNA) of cowpea mosaic virus (CPMV) has been determined. Restriction enzyme fragments of double-stranded cDNA were cloned in M13 and the sequence of the inserts was determined by a combination of enzymatic and chemical sequencing techniques. Additional sequence information was obtained by primed synthesis on first strand cDNA. The complete sequence deduced is 5889 nucleotides long excluding the 3' poly(A), and contains an open reading frame sufficient to code for a polypeptide of mol. wt. 207 760. The coding region is flanked by a 5' leader sequence of 206 nucleotides and a 3' non-coding region of 82 residues which does not contain a polyadenylation signal. PMID:16453487

  12. Daphne mosaic virus (DapMV), a new potyvirus from Daphne mezereum in the Czech Republic.

    PubMed

    Fránová, J; Petrzik, K; Lesemann, D-E; Navrátil, M

    2006-04-01

    Daphne shrubs with light green rings and mosaic on leaves contained flexuous filamentous virions (696 x 13 nm) and cylindrical inclusions typical of the subdivision III of Edwardson's classification for inclusions induced by members of the family Potyviridae. Decoration tests using antisera to 67 potyviruses revealed distant serological relations among chilli veinal mottle virus, Colombian datura virus, papaya ringspot virus, tobacco vein mottling virus and yam mosaic virus. The 3' terminal region of the virus genome was amplified by RT-PCR using primers specific for cloned and sequenced members of the family Potyviridae. The most similar sequences in the GenBank were those of isolates of wild potato mosaic virus (WPMV) and yam mild mosaic virus (YMMV), originating from Peru and Guadeloupe, respectively. The new sequence had 63.2% and 61.9% nucleotide identity to WPMV and YMMV in the coat protein gene. The results suggest that the Czech isolate from daphne should be regarded as a new member of the genus Potyvirus. The name daphne mosaic virus (DapMV) is suggested for this virus. PMID:16292598

  13. Mosaicism

    MedlinePlus

    ... A diagnosis of mosaicism may cause confusion and uncertainty. A genetic counselor may help answer any questions ... member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www. ...

  14. Genetic Composition of Pepino mosaic virus Population in North American Greenhouse Tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pepino mosaic virus (PepMV) is a member of the genus Potexvirus within the family Flexiviridae. Pepino mosaic is an emerging disease in greenhouse tomato in Europe, North America and South America. Previous research in several laboratories suggests that PepMV consists of numerous sequence variants...

  15. Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China.

    PubMed

    Zhou, Cui-Ji; Xiang, Hai-Ying; Zhuo, Tao; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2012-07-01

    We determined the genome sequence of a new polerovirus that infects field pea and faba bean in China. Its entire nucleotide sequence (6021 nt) was most closely related (83.3% identity) to that of an Ethiopian isolate of chickpea chlorotic stunt virus (CpCSV-Eth). With the exception of the coat protein (encoded by ORF3), amino acid sequence identities of all gene products of this virus to those of CpCSV-Eth and other poleroviruses were <90%. This suggests that it is a new member of the genus Polerovirus, and the name pea mild chlorosis virus is proposed. PMID:22476900

  16. First report of tomato mottle mosaic virus infecting tomato in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato mottle mosaic virus was identified in tomato in Florida, the first report of this virus in the U.S. Host range and genetic diversity were characterized. This report provides an overview of this emerging virus for growers, extension workers, crop consultants and research and regulatory scien...

  17. Odontonema cuspidatum and Psychotria punctata, two new cucumber mosaic virus hosts identified in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide host range of Cucumber mosaic virus (CMV) has been expanded by the identification of Odontonema cuspidatum (firespike) and Psychotria punctata (dotted wild coffee) as CMV hosts in Florida....

  18. Foxtail Mosaic Virus-Induced Gene Silencing in Monocot Plants.

    PubMed

    Liu, Na; Xie, Ke; Jia, Qi; Zhao, Jinping; Chen, Tianyuan; Li, Huangai; Wei, Xiang; Diao, Xianmin; Hong, Yiguo; Liu, Yule

    2016-07-01

    Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops. PMID:27225900

  19. Potentiating Cancer Immunotherapy Using Papaya Mosaic Virus-Derived Nanoparticles.

    PubMed

    Lebel, Marie-Ève; Chartrand, Karine; Tarrab, Esther; Savard, Pierre; Leclerc, Denis; Lamarre, Alain

    2016-03-01

    The recent development of novel immunotherapies is revolutionizing cancer treatment. These include, for example, immune checkpoint blockade, immunomodulation, or therapeutic vaccination. Although effective on their own, combining multiple approaches will most likely be required in order to achieve the maximal therapeutic benefit. In this regard, the papaya mosaic virus nanoparticle (PapMV) has shown tremendous potential as (i) an immunostimulatory molecule, (ii) an adjuvant, and (iii) a vaccine platform through its intrinsic capacity to activate the innate immune response in an IFN-α-dependent manner. Here, we demonstrate that intratumor administration of PapMV significantly slows down melanoma progression and prolongs survival. This correlates with enhanced chemokine and pro-inflammatory-cytokine production in the tumor and increased immune-cell infiltration. Proportions of total and tumor-specific CD8(+) T cells dramatically increase following PapMV treatment whereas those of myeloid-derived suppressor cells (MDSC) concomitantly decrease. Moreover, systemic PapMV administration prevents metastatic tumor-implantation in the lungs. Importantly, PapMV also synergistically improves the therapeutic benefit of dendritic cell (DC)-based vaccination and PD-1 blockade by potentiating antitumor immune responses. This study illustrates the immunostimulatory potential of a plant virus-derived nanoparticle for cancer therapy either alone or in conjunction with other promising immunotherapies in clinical development. PMID:26891174

  20. Two Resistance Modes to Clover yellow vein virus in Pea Characterized by a Green Fluorescent Protein-Tagged Virus.

    PubMed

    Andrade, Marcelo; Sato, Masanao; Uyeda, Ichiro

    2007-05-01

    ABSTRACT This study characterized resistance in pea lines PI 347295 and PI 378159 to Clover yellow vein virus (ClYVV). Genetic cross experiments showed that a single recessive gene controls resistance in both lines. Conventional mechanical inoculation did not result in infection; however, particle bombardment with infectious plasmid or mechanical inoculation with concentrated viral inocula did cause infection. When ClYVV No. 30 isolate was tagged with a green fluorescent protein (GFP) and used to monitor infection, viral cell-to-cell movement differed in the two pea lines. In PI 347595, ClYVV replicated at a single-cell level, but did not move to neighboring cells, indicating that resistance operated at a cell-to-cell step. In PI 378159, the virus moved to cells around the infection site and reached the leaf veins, but viral movement was slower than that in the susceptible line. The viruses observed around the infection sites and in the veins were then recovered and inoculated again by a conventional mechanical inoculation method onto PI 378159 demonstrating that ClYVV probably had mutated and newly emerged mutant viruses can move to neighboring cells and systemically infect the plants. Tagging the virus with GFP was an efficient tool for characterizing resistance modes. Implications of the two resistance modes are discussed. PMID:18943572

  1. Phylogenetic and serological analysis of turnip ringspot virus and radish mosaic virus isolates.

    PubMed

    Koloniuk, Igor; Petrzik, Karel

    2012-03-01

    Turnip ringspot virus (TuRSV) has been proposed to be a member of a new species in the genus Comovirus. Its remarkable host-range similarity to radish mosaic virus (RaMV) may have led to its misrecognition in the past. Findings from both sequence analysis and serological tests support the assignment of TuRSV to a new comovirus species. In addition, phylogenetic analysis suggests that the two genome segments of some TuRSV isolates have a heterogeneous origin. PMID:22160585

  2. 2014 nationwide survey revealed Turnip mosaic virus, Radish mosaic virus and Cucumber mosaic virus as the major viruses in Korean Radish Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Korea, recent climate change has caused increased insect populations and migration from neighboring countries. As insect migration increases newly emerging virus diseases have been reported. In 2014, we performed a nationwide survey in radish fields to investigate the distribution of common virus...

  3. Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants.

    PubMed

    Lewsey, Mathew G; Carr, John P

    2009-12-01

    Salicylic acid (SA)-mediated resistance and RNA silencing are both important plant antiviral defence mechanisms. To investigate overlap between these resistance phenomena, we examined the ability of mutant Arabidopsis thaliana plants lacking DICER-like (DCL) endoribonucleases 2, 3 and 4 to exhibit SA-induced defence. We found that in dcl2/3/4 triple mutant plants, treatment with exogenous SA stimulated resistance to two positive-sense RNA viruses: cucumber mosaic virus and tobacco mosaic virus. We conclude that DCLs 2, 3 and 4, which are the predominant DCL endoribonucleases involved in silencing of positive-sense RNA viruses, are not required for effective SA-induced resistance to these viruses. However, the findings do not exclude RNA silencing from making a contribution to SA-mediated resistance in wild-type plants. PMID:19710258

  4. Quantification of African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV-UG) in single and mixed infected Cassava (Manihot esculenta Crantz) using quantitative PCR.

    PubMed

    Naseem, Saadia; Winter, Stephan

    2016-01-01

    The quantity of genomic DNA-A and DNA-B of African cassava mosaic virus (ACMV) and East African cassava mosaic virus Uganda (Uganda variant, EACMV-UG) was analysed using quantitative PCR to assess virus concentrations in plants from susceptible and tolerant cultivars. The concentrations of genome components in absolute and relative quantification experiments in single and mixed viral infections were determined. Virus concentration was much higher in symptomatic leaf tissues compared to non-symptomatic leaves and corresponded with the severity of disease symptoms. In general, higher titres were recorded for EACMV-UG Ca055 compared to ACMV DRC6. The quantitative assessment also showed that the distribution of both viruses in the moderately resistant cassava cv. TMS 30572 was not different from the highly susceptible cv. TME 117. Natural mixed infections with both viruses gave severe disease symptoms. Relative quantification of virus genomes in mixed infections showed higher concentrations of EACMV-UG DNA-A compared to ACMV DNA-A, but a marked reduction of EACMV-UG DNA-B. The higher concentrations of EACMV-UG DNA-B compared to EACMV DNA-A accumulation in single infections were consistent. Since DNA-B is implicated in virus cell-to-cell spread and systemic movement, the abundance of the EACMV-UG DNA-B may be an important factor driving cassava mosaic disease epidemic. PMID:26456453

  5. The specific involvement of coat protein in tobacco mosaic virus cross protection.

    PubMed

    Sherwood, J L; Fulton, R W

    1982-05-01

    Nicotiana sylvestris infected by strains of tobacco mosaic virus (TMV) causing mosaic can be superinfected in the dark green leaf tissue, but not light green tissue, by necrotizing strains of TMV. The dark green tissue, however, is much less susceptible than healthy tissue, to some extent, even to unrelated viruses. The RNA of necrotizing strains of TMV was relatively more infectious than intact virus on mosaic than on healthy leaves and caused lesions in both light and dark green tissues. The same relationship was found in Nicotiana longiflora and, when the protecting strain in N. sylvestris could be used as a challenge, in Capsicum baccatum. The efficiency of superinfection by RNA was not found with viruses unrelated to TMV. When bentonite at 1 mg/ml, which is known to strip protein from TMV, was included in the inoculum of intact TMV it superinfected in the same manner as RNA. RNA of a necrotizing strain of TMV, encapsidated in brome mosaic virus protein and used as a challenge, superinfected in the same manner as RNA. When encapsidated in common TMV protein, however, it behaved as native virus. Cross protection apparently results from the prevention of uncoating of related challenge virus in light green tissue of N. sylvestris. Locally inoculated N. sylvestris leaves were insusceptible to challenge RNA or intact virus when the protecting virus was increasing. After increase ceased, RNA was more infectious than intact virus. PMID:18635142

  6. Making a Virus Visible: Francis O. Holmes and a biological assay for tobacco mosaic virus.

    PubMed

    Scholthof, Karen-Beth G

    2014-01-01

    In the early twentieth century, viruses had yet to be defined in a material way. Instead, they were known better by what they were not - not bacteria, not culturable, and not visible with a light microscope. As with the ill-defined "gene" of genetics, viruses were microbes whose nature had not been revealed. Some clarity arrived in 1929 when Francis O. Holmes, a scientist at the Boyce Thompson Institute for Plant Research (Yonkers, NY) reported that Tobacco mosaic virus (TMV) could produce local necrotic lesions on tobacco plants and that these lesions were in proportion to dilutions of the inoculum. Holmes' method, the local lesion assay, provided the first evidence that viruses were discrete infectious particles, thus setting the stage for physicochemical studies of plant viruses. In a field where there are few eponymous methods or diseases, Holmes' assay continues to be a useful tool for the study of plant viruses. TMV was a success because the local lesion assay "made the virus visible" and standardized the work of virology towards determining the nature of the virus. PMID:23494396

  7. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  8. Trastuzumab-binding peptide display by Tobacco mosaic virus

    SciTech Connect

    Frolova, Olga Y.; Petrunia, Igor V.; Komarova, Tatiana V.; Kosorukov, Vyacheslav S.; Sheval, Eugene V.; Gleba, Yuri Y.; Dorokhov, Yuri L.

    2010-11-10

    Human epidermal growth factor receptor-2 (HER2/neu) is a target for the humanized monoclonal antibody trastuzumab. Recently, trastuzumab-binding peptides (TBP) of HER2/neu that inhibit proliferation of breast cancer cells were identified. We have now studied conditions of efficient assembly in vivo of Tobacco mosaic virus (TMV)-based particles displaying TBP on its surface. The system is based on an Agrobacterium-mediated co-delivery of binary vectors encoding TMV RNA and coat protein (CP) with TBP in its C-terminal extension into plant leaves. We show how the fusion of amino acid substituted TBP (sTBP) to CP via a flexible peptide linker can improve the manufacturability of recombinant TMV (rTMV). We also reveal that rTMV particles with exposed sTBP retained trastuzumab-binding capacity but lost an anti-HER2/neu immunogenic scaffold function. Mouse antibodies against rTMV did not recognize HER2/neu on surface of human SK-BR-3 cells.

  9. Complete genome sequence of bean rugose mosaic virus, genus Comovirus.

    PubMed

    Picoli, M H S; Garcia, A; Barboza, A A L; de Souto, Eliezer Rodrigues; Almeida, A M R

    2016-06-01

    Since the first report in Costa Rica in 1971, bean rugose mosaic virus (BRMV) has been found in Colombia, El Salvador, Guatemala and Brazil. In this study, the complete genome sequence of a soybean isolate of BRMV from Paraná State, Brazil, was determined. The BRMV genome consists of two polyadenylated RNAs. RNA1 is 5909 nucleotides long and encodes a single polypeptide of 1856 amino acids (aa), with an estimated molecular weight of 210 kDa. The RNA1 polyprotein contains the polypeptides for viral replication and proteolytic processing. RNA2 is 3644 nucleotides long and codes for a single polypeptide of 1097 aa, containing the movement and coat proteins. This is the first complete genome sequence of BRMV. When compared with available aa sequences of comoviruses, the highest identities of BRMV coat proteins and proteinase polymerase were 57.5 and 58 %, respectively. These were below the 75 and 80 % identity limits, respectively, established for species demarcation in the genus. This confirms that BRMV is a member of a distinct species in the genus Comovirus. PMID:26973227

  10. Seeing tobacco mosaic virus through direct electron detectors.

    PubMed

    Fromm, Simon A; Bharat, Tanmay A M; Jakobi, Arjen J; Hagen, Wim J H; Sachse, Carsten

    2015-02-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2Å in resolution using cryo-EM. PMID:25528571

  11. Seeing tobacco mosaic virus through direct electron detectors

    PubMed Central

    Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten

    2015-01-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571

  12. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  13. Virus factories of cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission.

    PubMed

    Bak, Aurélie; Gargani, Daniel; Macia, Jean-Luc; Malouvet, Enrick; Vernerey, Marie-Stéphanie; Blanc, Stéphane; Drucker, Martin

    2013-11-01

    Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction. PMID:24006440

  14. A Game-Theoretic Model of Interactions between Hibiscus Latent Singapore Virus and Tobacco Mosaic Virus

    PubMed Central

    Wen, Yi; Niu, Shengniao; Wong, Sek-Man

    2012-01-01

    Mixed virus infections in plants are common in nature and their interactions affecting host plants would depend mainly on plant species, virus strains, the order of infection and initial amount of inoculum. Hence, the prediction of outcome of virus competition in plants is not easy. In this study, we applied evolutionary game theory to model the interactions between Hibiscus latent Singapore virus (HLSV) and Tobacco mosaic virus (TMV) in Nicotiana benthamiana under co-infection in a plant host. The accumulation of viral RNA was quantified using qPCR at 1, 2 and 8 days post infection (dpi), and two different methods were employed to predict the dominating virus. TMV was predicted to dominate the game in the long run and this prediction was confirmed by both qRT-PCR at 8 dpi and the death of co-infected plants after 15 dpi. In addition, we validated our model by using data reported in the literature. Ten out of fourteen reported co-infection outcomes agreed with our predictions. Explanations were given for the four interactions that did not agree with our model. Hence, it serves as a valuable tool in making long term predictions using short term data obtained in virus co-infections. PMID:22623970

  15. THE PREPARATION AND USE OF TOBACCO MOSAIC VIRUS CONTAINING RADIOACTIVE PHOSPHORUS

    PubMed Central

    Stanley, W. M.

    1942-01-01

    Normal and tobacco mosaic-diseased Turkish tobacco plants were grown in sand for a period of several weeks, during which they were fed daily a complete nutrient solution to which had been added disodium phosphate containing radioactive phosphorus. Determinations were made of the distribution of radioactive phosphorus in different fractions such as the wash from the sand and roots, the press cake obtained on pressing the juice from the plants, the protein and protein-free portions of the supernatant liquids obtained on ultracentrifugation of the juices, and the purified tobacco mosaic virus isolated from the diseased plants. Chemical analyses as well as radiographs of the normal and diseased leaves indicated that they contained the same amount of phosphorus. Approximately 30 per cent of the radioactive phosphorus absorbed by the diseased plants was found to be combined with the purified tobacco mosaic virus that was isolated from these plants. Following the inoculation of purified tobacco mosaic virus possessing high radioactivity to normal Turkish tobacco plants, most of the radioactivity was found to be associated with non-virus components of which about 40 per cent was in the inoculated and 60 per cent in the uninoculated portions of the plants. Although a small amount of radioactive virus was isolated from the uninoculated portions of the plants, it was impossible, because of a number of complicating factors which have been discussed, to draw from the results any reliable conclusions regarding the mode of reproduction of tobacco mosaic virus. PMID:19873320

  16. Identification and Utility of Markers Linked to the Zucchini Yellow Mosaic Virus Resistance Gene in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zucchini yellow mosaic virus Florida stain (ZYMV-FL) is one of the most economically important viruses affecting watermelon in the United States. Inheritance of resistance to ZYMV-FL is conferred by a single recessive gene. Described here is single-reaction, polymerase chain reaction-based marker l...

  17. Identification and Utility of Markers Linked to the Zucchini Yellow Mosaic Virus Resistance Gene in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zucchini yellow mosaic virus (ZYMV) is one of the most economically important viruses affecting watermelon in the United States. The ZYMV-Florida strain (ZYMV-FL) is considered a major limitation to commercial watermelon production in the entire United States. Experiments with F2 and BC1 plants, d...

  18. Complete Genome Sequence of a Tomato-Infecting Tomato Mottle Mosaic Virus in New York

    PubMed Central

    Padmanabhan, Chellappan; Zheng, Yi; Li, Rugang; Martin, Gregory B.; Fei, Zhangjun

    2015-01-01

    The complete genome sequence of an isolate of tomato mottle mosaic virus (ToMMV) infecting tomatoes in New York was obtained using small RNA (sRNA) deep sequencing. ToMMV_NY-13 shared 99% sequence identity with isolates from Mexico and Florida. Broader distribution of this emerging virus is a cause for concern to the tomato industry. PMID:26701086

  19. The complete nucleotide sequence and genomic characterization of tropical soda apple mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropical soda apple mosaic virus (TSAMV) was first identified in tropical soda apple (Solanum viarum), a noxious weed, in Florida in 2002. This report provides the first full genome sequence of TSAMV. The full genome sequence of this virus will enable research scientists to develop additional spec...

  20. Complete genome sequence of Tomato mosaic virus isolated from jasmine in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato mosaic virus (ToMV) was first identified in jasmine in the U.S. in Florida in 1999. This report provides the first full genome sequence of a ToMV isolate from jasmine. The full genome sequence of this virus will enable research scientists to develop additional specific diagnostic tests for ...

  1. Complete genome sequence of a Tomato mottle mosaic virus isolate from the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato mottle mosaic virus (ToMMV) was first identified in the U.S. in tomatoes in Florida in 2010. This report provides the first full genome sequence of a U.S. ToMMV isolate from 2010. The full genome sequence of this emerging virus will enable research scientists to develop additional specific ...

  2. Genome sequencing, genetic diversity and field detection of Cucumber green mottle mosaic virus using LAMP technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The recent outbreaks of Cucumber green mottle mosaic virus on cucumber, melon and watermelon in Australia, Canada, and the U.S. highlight the importance in implementing a cleaned seed program to manage this seed-borne virus from introduction. Both Canadian and Australian isolates were closely relate...

  3. Identification of the Wheat Curl Mite as the Vector of Triticum Mosaic Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum mosaic virus (TriMV) is a newly discovered virus found infecting wheat (Triticum aestivum L.) in Kansas. This study was conducted to determine if the wheat curl mite (WCM, Aceria tosichella Keifer) and the bird cherry oat aphid (Rhopalosiphum padi L. ) could transmit TriMV. Using diffe...

  4. Economic impact of wheat streak mosaic virus in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV), vectored by the wheat curl mite Aceria tosichella Keifer, is a major limiting factor in wheat production in the Texas Panhandle. It is the most frequently encountered virus in the region, affecting both shoot and root biomass, and consequently it can drastically red...

  5. Radial density distribution and symmetry of a Potexvirus, narcissus mosaic virus

    SciTech Connect

    Kendall, Amy; Bian, Wen; Junn, Justin; McCullough, Ian; Gore, David; Stubbs, Gerald . E-mail: gerald.stubbs@vanderbilt.edu

    2007-01-20

    Narcissus mosaic virus is a Potexvirus, a member of the Flexiviridae family of filamentous plant viruses. Fiber diffraction patterns from oriented sols of narcissus mosaic virus have been used to determine the symmetry and structural parameters of the viral helix. The virions have a radius of 55 {+-} 5 A. The viral helix has a pitch of 34.45 {+-} 0.5 A, with 7.8 subunits per turn of the helix. We conclude that all members of the Potexvirus genus have close to 8 subunits per helical turn.

  6. Systemic transport of Alfalfa mosaic virus can be mediated by the movement proteins of several viruses assigned to five genera of the 30K family.

    PubMed

    Fajardo, Thor V M; Peiró, Ana; Pallás, Vicente; Sánchez-Navarro, Jesús

    2013-03-01

    We previously showed that the movement protein (MP) gene of Alfalfa mosaic virus (AMV) is functionally exchangeable for the cell-to-cell transport of the corresponding genes of Tobacco mosaic virus (TMV), Brome mosaic virus, Prunus necrotic ringspot virus, Cucumber mosaic virus and Cowpea mosaic virus. We have analysed the capacity of the heterologous MPs to systemically transport the corresponding chimeric AMV genome. All MPs were competent in systemic transport but required the fusion at their C terminus of the coat protein-interacting C-terminal 44 aa (A44) of the AMV MP. Except for the TMV MP, the presence of the hybrid virus in upper leaves correlated with the capacity to move locally. These results suggest that all the MPs assigned to the 30K superfamily should be exchangeable not only for local virus movement but also for systemic transport when the A44 fragment is present. PMID:23136366

  7. The "tobacco mosaic virus" 126-kDa protein associated with virus replication and movement suppresses RNA silencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Systemic symptoms induced on "Nicotiana tabacum" cv. Xanthi by "Tobacco mosaic virus" (TMV) are modulated by one or both amino-coterminal viral 126- and 183-kDa proteins, proteins involved in virus replication and cell-to-cell movement. Here we compare the systemic accumulation and gene silencing c...

  8. First Report of Pepino Mosaic Virus Infecting Tomato in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pepino mosaic has become endemic greenhouse tomato disease in many countries around the world. Its occurrence in Mexico has yet to be determined. In early spring of 2010, symptoms of yellow mosaic, chlorotic patches and fruit marbling were observed in approximately 50% of tomato plants in a commerc...

  9. Simultaneous detection of papaya ringspot virus, papaya leaf distortion mosaic virus, and papaya mosaic virus by multiplex real-time reverse transcription PCR.

    PubMed

    Huo, P; Shen, W T; Yan, P; Tuo, D C; Li, X Y; Zhou, P

    2015-12-01

    Both the single infection of papaya ringspot virus (PRSV), papaya leaf distortion mosaic virus (PLDMV) or papaya mosaic virus (PapMV) and double infection of PRSV and PLDMV or PapMV which cause indistinguishable symptoms, threaten the papaya industry in Hainan Island, China. In this study, a multiplex real-time reverse transcription PCR (RT-PCR) was developed to detect simultaneously the three viruses based on their distinctive melting temperatures (Tms): 81.0±0.8°C for PRSV, 84.7±0.6°C for PLDMV, and 88.7±0.4°C for PapMV. The multiplex real-time RT-PCR method was specific and sensitive in detecting the three viruses, with a detection limit of 1.0×10(1), 1.0×10(2), and 1.0×10(2) copies for PRSV, PLDMV, and PapMV, respectively. Indeed, the reaction was 100 times more sensitive than the multiplex RT-PCR for PRSV, and 10 times more sensitive than multiplex RT-PCR for PLDMV. Field application of the multiplex real-time RT-PCR demonstrated that some non-symptomatic samples were positive for PLDMV by multiplex real-time RT-PCR but negative by multiplex RT-PCR, whereas some samples were positive for both PRSV and PLDMV by multiplex real-time RT-PCR assay but only positive for PLDMV by multiplex RT-PCR. Therefore, this multiplex real-time RT-PCR assay provides a more rapid, sensitive and reliable method for simultaneous detection of PRSV, PLDMV, PapMV and their mixed infections in papaya. PMID:26666186

  10. Nucleotide sequence of the coat protein genes of alstroemeria mosaic virus and amazon lily mosaic virus, a tentative species of genus potyvirus.

    PubMed

    Fuji, S; Terami, F; Furuya, H; Naito, H; Fukumoto, F

    2004-09-01

    The nucleotide sequences of the 3' terminal region of the genomes of Alstroemeria mosaic virus (AlsMV) and the Amazon lily mosaic virus (ALiMV) have been determined. These sequences contain the complete coding region of the viral coat protein (CP) gene followed by a 3'-untranslated region (3'-UTR). AlsMV and ALiMV share 74.9% identity in the amino acid sequence of the CP, and 55.6% identity in the nucleotide sequence of the 3'-UTR. Phylogenetic analysis of these CP genes and 3'-UTRs in relation to those of 79 potyvirus species revealed that AlsMV and ALiMV should be assigned to the Potato virus Y (PVY) subgroup. AlsMV and ALiMV were concluded to have arisen independently within the PVY subgroup. PMID:15593424

  11. Surface mineralization and characterization of tobacco mosaic virus biotemplated nanoparticles

    NASA Astrophysics Data System (ADS)

    Freer, Alexander S.

    The genetically engineered tobacco mosaic virus (TMV) has been utilized as a biotemplate in the formation of nanoparticles with the intent of furthering the understanding of the biotemplated nanoparticles formed in the absence of an external reducing agent. Specifically, the work aims to provide better knowledge of the final particle characteristics and how these properties could be altered to better fit the need of functional devices. Three achievements have been accomplished including a method for controlling final particle size, characterizing the resistivity of palladium coated TMV, and the application of TMV as an additive in nanometric calcium carbonate synthesis. Until the last 5 years, formation of metal nanoparticles on the surface of TMV has always occurred with the addition of an external reducing agent. The surface functionalities of genetically engineered TMV allow for the reduction of palladium in the absence of an external reducing agent. This process has been furthered to understand how palladium concentration affects the final coating uniformity and thickness. By confirming an ideal ratio of palladium and TMV concentrations, a uniform coat of palladium is formed around the viral nanorod. Altering the number of palladium coating cycles at these concentrations allows for a controllable average diameter of the final nanorods. The average particle diameter was determined by small angle x-ray scattering (SAXS) analysis by comparing the experimental results to the model of scattering by an infinitely long cylinder. The SAXS results were confirmed through transmission electron microscopy images of individual Pd-TMV nanorods. Secondly, methodologies to determine the electrical resistivity of the genetically engineered TMV biotemplated palladium nanoparticles were created to provide valuable previously missing information. Two fairly common nanoelectronic characterization techniques were combined to create the novel approach to obtain the desired

  12. Chemical Reactivity of Brome Mosaic Virus Capsid Protein

    PubMed Central

    Running, W. E.; Ni, P.; Kao, C. C.; Reilly, J. P.

    2012-01-01

    Viral particles are biological machines that have evolved to package, protect, and deliver the viral genome into the host via regulated conformational changes of virions. We have developed a procedure to modify lysine resides with S-methylthioacetimidate (SMTA) across the pH range from 5.5 to 8.5. Lysine residues that are not completely modified are involved in tertiary or quaternary structural interactions, and their extent of modification can be quantified as a function of pH. This procedure was applied to the pH-dependent structural transitions of Brome Mosaic Virus (BMV). As the reaction pH increases from 5.5 to 8.5, the average number of modified lysine residues in the BMV capsid protein increases from six to twelve, correlating well with the known pH dependent swelling behavior of BMV virions. The extent of reaction of each of the capsid protein’s lysine residues has been quantified at eight pH values using coupled liquid chromatography-tandem mass spectrometry. Each lysine can be assigned to one of three structural classes identified by inspection of the BMV virion crystal structure. Several lysine residues display reactivity that indicates their involvement in dynamic interactions that are not obvious in the crystal structure. The influence of several capsid protein mutants on the pH-dependent structural transition of BMV has also been investigated. Mutant H75Q exhibits an altered swelling transition accompanying solution pH increases. The H75Q capsids show increased reactivity at lysine residues 64 and 130, residues distal from the dimer interface occupied by H75, across the entire pH range. PMID:22750573

  13. Red clover necrotic mosaic virus: Biophysics and Biotechnology

    NASA Astrophysics Data System (ADS)

    Lockney, Dustin M.

    Red clover necrotic mosaic virus (RCNMV) is a highly robust (Tm=60 °C), 36 nm icosahedral plant virus. The capsid of RCNMV is assembled from 180 chemically equivalent coat proteins (CPs). The CPs arrange in a T=3 symmetry, in 1 of 3 conformations forming the asymmetric subunit (ASU). There are two Ca(II) binding sites per CP; the removal of divalent cations causes the CP subunits of the ASU to rotate away from each other forming a ˜13 A channel. These channels lead to the highly organized bipartite genome of RCNMV and can be closed by adding back Ca(II). Titrimetric analysis and tryptophan fluorescence was used to determine the affinity of RCNMV for Ca(II) to be ˜Kd < 300 nM. It has been shown that doxorubicin (Dox) can be infused into the capsid at a mole ratio of ˜1000:1, Dox-to-virus, and unlike other nanoparticles, there is no detectable leakage. The high loading of Dox is most likely due to intercalation into the genome and significant intercalation or exposure to denaturants was observed to cause loss of capsid stability. To better understand the limitations of cargo loading, Dox and other intercalating molecules (rhodamine 800, ethidium bromide, and propidium iodide) were assayed to determine optimum infusion conditions. Dox was observed to have a propensity to aggregate. In order to manage the Dox aggregation, the infusion buffer was changed from 50 mM Tris-HCl/50 mM NaOAc/50 mM EDTA or 200 mM EDTA at pH 8.0 to 5 mM HEPES/5 mM Na4EDTA/10 mM NaCl pH 7.8. The Dox:RCNMV infusion mole ratio was also lowered from 5000:1 to 500:1 and the incubation temperature was changed from 4 °C to 22 °C for <12 hours, opposed to 24 hours. To impart targeting functionality to RCNMV, biomimetic peptides were conjugated to either the surface capsid lysines or cysteines using standard bioconjugation methods. For all of the biomimetic peptides screened, sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) was used to orthogonally attach the

  14. Genetic engineering and characterization of Cowpea mosaic virus empty virus-like particles.

    PubMed

    Sainsbury, Frank; Saxena, Pooja; Aljabali, Alaa A A; Saunders, Keith; Evans, David J; Lomonossoff, George P

    2014-01-01

    The development of methods for the production of empty Cowpea mosaic virus (CPMV) virus-like particles (VLPs) that are devoid of RNA, eVLPs, has renewed promise in CPMV capsid technologies. The recombinant nature of CPMV eVLP production means that the extent and variety of genetic modifications that may be incorporated into the particles is theoretically much greater than those that can be made to infectious CPMV virions due to restrictions on viral propagation of the latter. Free of the infectious agent, the genomic RNA, these particles are now finding potential uses in vaccine development, in vivo imaging, drug delivery, and other nanotechnology applications that make use of internal loading of the empty particles. Here we describe methods for the genetic modification and production of CPMV eVLPs and describe techniques useful for their characterization. PMID:24243247

  15. Detection of Cardamom mosaic virus and Banana bract mosaic virus in cardamom using SYBR Green based reverse transcription-quantitative PCR.

    PubMed

    Siljo, A; Bhat, A I; Biju, C N

    2014-01-01

    Cardamom being perennial, propagated vegetatively, detecting viruses in planting material is important to check the spread of viruses through infected material. Thus development of effective and sensitive assay for detection of viruses is need of the time. In this view, assay for the detection of Cardamom mosaic virus (CdMV) and Banana bract mosaic virus (BBrMV), infecting cardamom was developed using SYBR Green one step reverse transcription-quantitative PCR (RT-qPCR). The RT-qPCR assay amplified all isolates of CdMV and BBrMV tested but no amplification was obtained with RNA of healthy plants. Recombinant plasmids carrying target virus regions corresponding to both viruses were quantified, serially diluted and used as standards in qPCR to develop standard curve to enable quantification. When tenfold serial dilutions of the total RNAs from infected plants were tested through RT-qPCR, the detection limit of the assay was estimated to be 16 copies for CdMV and 10 copies for BBrMV, which was approximately 1,000-fold higher than the conventional RT-PCR. The RT-qPCR assay was validated by testing field samples collected from different cardamom growing regions of India. This is the first report of RT-qPCR assay for the detection of CdMV and BBrMV in cardamom. PMID:24426323

  16. Antiviral RNA silencing is restricted to the marginal region of the dark green tissue in the mosaic leaves of tomato mosaic virus-infected tobacco plants.

    PubMed

    Hirai, Katsuyuki; Kubota, Kenji; Mochizuki, Tomofumi; Tsuda, Shinya; Meshi, Tetsuo

    2008-04-01

    Mosaic is a common disease symptom caused by virus infection in plants. Mosaic leaves of Tomato mosaic virus (ToMV)-infected tobacco plants consist of yellow-green and dark green tissues that contain large and small numbers of virions, respectively. Although the involvement of RNA silencing in mosaic development has been suggested, its role in the process that results in an uneven distribution of the virus is unknown. Here, we investigated whether and where ToMV-directed RNA silencing was established in tobacco mosaic leaves. When transgenic tobaccos defective in RNA silencing were infected with ToMV, little or no dark green tissue appeared, implying the involvement of RNA silencing in mosaic development. ToMV-related small interfering RNAs were rarely detected in the dark green areas of the first mosaic leaves, and their interior portions were susceptible to infection. Thus, ToMV-directed RNA silencing was not effective there. By visualizing the cells where ToMV-directed RNA silencing was active, it was found that the effective silencing occurs only in the marginal regions of the dark green tissue ( approximately 0.5 mm in width) and along the major veins. Further, the cells in the margins were resistant against recombinant potato virus X carrying a ToMV-derived sequence. These findings demonstrate that RNA silencing against ToMV is established in the cells located at the margins of the dark green areas, restricting the expansion of yellow-green areas, and consequently defines the mosaic pattern. The mechanism of mosaic symptom development is discussed in relation to the systemic spread of the virus and RNA silencing. PMID:18216118

  17. Antiviral RNA Silencing Is Restricted to the Marginal Region of the Dark Green Tissue in the Mosaic Leaves of Tomato Mosaic Virus-Infected Tobacco Plants▿

    PubMed Central

    Hirai, Katsuyuki; Kubota, Kenji; Mochizuki, Tomofumi; Tsuda, Shinya; Meshi, Tetsuo

    2008-01-01

    Mosaic is a common disease symptom caused by virus infection in plants. Mosaic leaves of Tomato mosaic virus (ToMV)-infected tobacco plants consist of yellow-green and dark green tissues that contain large and small numbers of virions, respectively. Although the involvement of RNA silencing in mosaic development has been suggested, its role in the process that results in an uneven distribution of the virus is unknown. Here, we investigated whether and where ToMV-directed RNA silencing was established in tobacco mosaic leaves. When transgenic tobaccos defective in RNA silencing were infected with ToMV, little or no dark green tissue appeared, implying the involvement of RNA silencing in mosaic development. ToMV-related small interfering RNAs were rarely detected in the dark green areas of the first mosaic leaves, and their interior portions were susceptible to infection. Thus, ToMV-directed RNA silencing was not effective there. By visualizing the cells where ToMV-directed RNA silencing was active, it was found that the effective silencing occurs only in the marginal regions of the dark green tissue (∼0.5 mm in width) and along the major veins. Further, the cells in the margins were resistant against recombinant potato virus X carrying a ToMV-derived sequence. These findings demonstrate that RNA silencing against ToMV is established in the cells located at the margins of the dark green areas, restricting the expansion of yellow-green areas, and consequently defines the mosaic pattern. The mechanism of mosaic symptom development is discussed in relation to the systemic spread of the virus and RNA silencing. PMID:18216118

  18. Immunogenic compositions comprising human immunodeficiency virus (HIV) mosaic Nef proteins

    DOEpatents

    Korber, Bette T.; Perkins, Simon; Bhattacharya, Tanmoy; Fischer, William M.; Theiler, James; Letvin, Norman; Haynes, Barton F.; Hahn, Beatrice H.; Yusim, Karina; Kuiken, Carla

    2012-02-21

    The present invention relates to mosaic clade M HIV-1 Nef polypeptides and to compositions comprising same. The polypeptides of the invention are suitable for use in inducing an immune response to HIV-1 in a human.

  19. Opium poppy mosaic virus, a new umbravirus isolated from Papaver somniferum in New Zealand.

    PubMed

    Tang, Joe; Lebas, Bénédicte; Liefting, Lia; Veerakone, Stella; Wei, Ting; Ward, Lisa

    2016-01-01

    A novel virus, tentatively named "opium poppy mosaic virus" (OPMV), was isolated from Papaver somniferum (opium poppy) with leaf mosaic and mottling symptoms in Auckland, New Zealand, in 2006. The virus was mechanically transmitted to herbaceous plants of several species, in which it induced local and/or systemic symptoms. No virus particles were observed by electron microscopy in the diseased P. somniferum or any of the symptomatic herbaceous plants. The complete genomic sequence of 4230 nucleotides contains four open reading frames (ORF) and is most closely related (59.3 %) to tobacco bushy top virus, a member of the genus Umbravirus. These data suggest that OPMV is a new umbravirus. PMID:26514844

  20. Generation of transgenic watermelon resistant to Zucchini yellow mosaic virus and Papaya ringspot virus type W.

    PubMed

    Yu, Tsong-Ann; Chiang, Chu-Hui; Wu, Hui-Wen; Li, Chin-Mei; Yang, Ching-Fu; Chen, Jun-Han; Chen, Yu-Wen; Yeh, Shyi-Dong

    2011-03-01

    Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus type W (PRSV W) are major limiting factors for production of watermelon worldwide. For the effective control of these two viruses by transgenic resistance, an untranslatable chimeric construct containing truncated ZYMV coat protein (CP) and PRSV W CP genes was transferred to commercial watermelon cultivars by Agrobacterium-mediated transformation. Using our protocol, a total of 27 putative transgenic lines were obtained from three cultivars of 'Feeling' (23 lines), 'China baby' (3 lines), and 'Quality' (1 line). PCR and Southern blot analyses confirmed that the chimeric construct was incorporated into the genomic DNA of the transformants. Greenhouse evaluation of the selected ten transgenic lines of 'Feeling' cultivar revealed that two immune lines conferred complete resistance to ZYMV and PRSV W, from which virus accumulation were not detected by Western blotting 4 weeks after inoculation. The transgenic transcript was not detected, but small interfering RNA (siRNA) was readily detected from the two immune lines and T(1) progeny of line ZW 10 before inoculation, indicating that RNA-mediated post-transcriptional gene silencing (PTGS) is the underlying mechanism for the double-virus resistance. The segregation ratio of T(1) progeny of the immune line ZW10 indicated that the single inserted transgene is nuclearly inherited and associated with the phenotype of double-virus resistance as a dominant trait. The transgenic lines derived from the commercial watermelon cultivars have great potential for control of the two important viruses and can be implemented directly without further breeding. PMID:21079966

  1. First report of blueberry mosaic disease caused by blueberry mosaic associated virus in Kentucky

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2011, a grower in Casey County Kentucky observed persistent yellow, green, and red mosaic patterns on leaves of highbush blueberry plants. Twenty-three randomly-scattered ‘Bluecrop’ plants out of approximately 1,400 5-year-old plants showed symptoms, with coverage ranging from 5% to 100%. Asympto...

  2. First report of Sorghum mosaic virus causing mosaic in Miscanthus sinesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miscanthus is being evaluated as a bioenergy feedstock because of its potentially significant biomass production, perennial habit, and lack of major diseases and pests. It is also a valuable parent in the sugarcane breeding program as source of cold tolerance. Mosaic symptoms were observed on a clo...

  3. The complete nucleotide sequence and genome organization of pea streak virus (genus Carlavirus).

    PubMed

    Su, Li; Li, Zhengnan; Bernardy, Mike; Wiersma, Paul A; Cheng, Zhihui; Xiang, Yu

    2015-10-01

    Pea streak virus (PeSV) is a member of the genus Carlavirus in the family Betaflexiviridae. Here, the first complete genome sequence of PeSV was determined by deep sequencing of a cDNA library constructed from dsRNA extracted from a PeSV-infected sample and Rapid Amplification of cDNA Ends (RACE) PCR. The PeSV genome consists of 8041 nucleotides excluding the poly(A) tail and contains six open reading frames (ORFs). The putative peptide encoded by the PeSV ORF6 has an estimated molecular mass of 6.6 kDa and shows no similarity to any known proteins. This differs from typical carlaviruses, whose ORF6 encodes a 12- to 18-kDa cysteine-rich nucleic-acid-binding protein. PMID:26092422

  4. Association of tomato leaf curl New Delhi virus DNA-B with bhendi yellow vein mosaic virus in okra showing yellow vein mosaic disease symptoms.

    PubMed

    Venkataravanappa, V; Lakshminarayana Reddy, C N; Jalali, S; Krishna Reddy, M

    2015-06-01

    Okra samples showing yellow vein mosaic, vein twisting and bushy appearance were collected from different locations of India during the surveys conducted between years 2005-2009. The dot blot and PCR detection revealed that 75.14% of the samples were associated with monopartite begomovirus and remaining samples with bipartite virus. Whitefly transmission was established for three samples representing widely separated geographical locations which are negative to betasatellites and associated with DNA-B. Genome components of these three representative isolates were cloned and sequenced. The analysis of DNA-A-like sequence revealed that three begomovirus isolates shared more than 93% nucleotide sequence identity with bhendi yellow vein mosaic virus from India (BYVMV), a monopartite begomovirus species that was reported previously as causative agent of bhendi yellow mosaic disease in association of bhendi yellow vein mosaic betasatellite. Further, the DNA-B-like sequences associated with the three virus isolates shared no more than 90% sequence identity with tomato leaf curl New Delhi virus (ToLCNDV). Analyses of putative iteron-binding sequence required for trans-replication suggests that begomovirus sequences shared compatible rep-binding iterons with DNA-B of ToLCNDV. Our data suggest that the monopartite begomovirus associated with okra yellow vein disease has captured DNA-B of ToLCNDV to infect okra. Widespread distribution of the complex shows the increasing trend of the capturing of DNA-B of ToLCNDV by monopartite begomoviruses in the Indian subcontinent. The recombination analysis showed that the DNA-A might have been derived from the inter-specific recombination of begomoviruses, while DNA-B was derived from the ToLCNDV infecting different hosts. PMID:26104329

  5. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea

    PubMed Central

    Kim, Mi-Kyeong; Jeong, Rae-Dong; Kwak, Hae-Ryun; Lee, Su-Heon; Kim, Jeong-Soo; Kim, Kook-Hyung; Cha, Byeongjin; Choi, Hong-Soo

    2014-01-01

    A viral disease causing severe mosaic, necrotic, and yellow symptoms on Vigna angularis var. nipponensis was prevalent around Suwon area in Korea. The causal virus was characterized as Cucumber mosaic virus (CMV) on the basis of biological and nucleotide sequence properties of RNAs 1, 2 and 3 and named as CMV-wVa. CMV-wVa isolate caused mosaic symptoms on indicator plants, Nicotiana tabacum cv. Xanthi-nc, Petunia hybrida, and Cucumis sativus. Strikingly, CMV-wVa induced severe mosaic and malformation on Cucurbita pepo, and Solanum lycopersicum. Moreover, it caused necrotic or mosaic symptoms on V. angularis and V. radiate of Fabaceae. Symptoms of necrotic local or pin point were observed on inoculated leaves of V. unguiculata, Vicia fava, Pisum sativum and Phaseolus vulgaris. However, CMV-wVa isolate failed to infect in Glycine max cvs. ‘Sorok’, ‘Sodam’ and ‘Somyeong’. To assess genetic variation between CMV-wVa and the other known CMV isolates, phylogenetic analysis using 16 complete nucleotide sequences of CMV RNA1, RNA2, and RNA3 including CMV-wVa was performed. CMV-wVa was more closely related to CMV isolates belonging to CMV subgroup I showing about 85.1–100% nucleotide sequences identity to those of subgroup I isolates. This is the first report of CMV as the causal virus infecting wild Vigna angularis var. nipponensis in Korea. PMID:25289004

  6. First Report of Cucumber mosaic virus Isolated from Wild Vigna angularis var. nipponensis in Korea.

    PubMed

    Kim, Mi-Kyeong; Jeong, Rae-Dong; Kwak, Hae-Ryun; Lee, Su-Heon; Kim, Jeong-Soo; Kim, Kook-Hyung; Cha, Byeongjin; Choi, Hong-Soo

    2014-06-01

    A viral disease causing severe mosaic, necrotic, and yellow symptoms on Vigna angularis var. nipponensis was prevalent around Suwon area in Korea. The causal virus was characterized as Cucumber mosaic virus (CMV) on the basis of biological and nucleotide sequence properties of RNAs 1, 2 and 3 and named as CMV-wVa. CMV-wVa isolate caused mosaic symptoms on indicator plants, Nicotiana tabacum cv. Xanthi-nc, Petunia hybrida, and Cucumis sativus. Strikingly, CMV-wVa induced severe mosaic and malformation on Cucurbita pepo, and Solanum lycopersicum. Moreover, it caused necrotic or mosaic symptoms on V. angularis and V. radiate of Fabaceae. Symptoms of necrotic local or pin point were observed on inoculated leaves of V. unguiculata, Vicia fava, Pisum sativum and Phaseolus vulgaris. However, CMV-wVa isolate failed to infect in Glycine max cvs. 'Sorok', 'Sodam' and 'Somyeong'. To assess genetic variation between CMV-wVa and the other known CMV isolates, phylogenetic analysis using 16 complete nucleotide sequences of CMV RNA1, RNA2, and RNA3 including CMV-wVa was performed. CMV-wVa was more closely related to CMV isolates belonging to CMV subgroup I showing about 85.1-100% nucleotide sequences identity to those of subgroup I isolates. This is the first report of CMV as the causal virus infecting wild Vigna angularis var. nipponensis in Korea. PMID:25289004

  7. THE Bct-1 LOCUS FOR RESISTANCE TO BEET CURLY TOP VIRUS IS ASSOCIATED WITH QUANTITATIVE RESISTANCE TO BEAN DWARF MOSAIC VIRUS IN COMMON BEAN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host resistance provides effective control of some diseases induced by geminiviruses in common bean. A recessive gene bgm-1 conditions resistance to Bean golden yellow mosaic virus (BGYMV) and is located on linkage group B3 near the bc-12 gene for resistance to Bean common mosaic virus. The dominan...

  8. Nucleotide sequence and phylogenetic analysis of a new potexvirus: Malva mosaic virus.

    PubMed

    Côté, Fabien; Paré, Christine; Majeau, Nathalie; Bolduc, Marilène; Leblanc, Eric; Bergeron, Michel G; Bernardy, Michael G; Leclerc, Denis

    2008-01-01

    A filamentous virus isolated from Malva neglecta Wallr. (common mallow) and propagated in Chenopodium quinoa was grown, cloned and the complete nucleotide sequence was determined (GenBank accession # DQ660333). The genomic RNA is 6858 nt in length and contains five major open reading frames (ORFs). The genomic organization is similar to members and the viral encoded proteins shared homology with the group of the Potexvirus genus in the Flexiviridae family. Phylogenetic analysis revealed a close relationship with narcissus mosaic virus (NMV), scallion virus X (ScaVX) and, to a lesser extent, to Alstroemeria virus X (AlsVX) and pepino mosaic virus (PepMV). A novel putative pseudoknot structure is predicted in the 3'-UTR of a subgroup of potexviruses, including this newly described virus. The consensus GAAAA sequence is detected at the 5'-end of the genomic RNA and experimental data strongly suggest that this motif could be a distinctive hallmark of this genus. The name Malva mosaic virus is proposed. PMID:18054524

  9. Soil-borne wheat mosaic virus infectious clone and manipulation for gene-carrying capacity.

    PubMed

    Jarugula, Sridhar; Charlesworth, Steven R; Qu, Feng; Stewart, Lucy R

    2016-08-01

    A full-length infectious cDNA clone of soil-borne wheat mosaic virus (SBWMV; genus Furovirus; family Virgaviridae) was developed for agrobacterium delivery. The cloned virus can be agroinfiltrated to Nicotiana benthamiana for subsequent infection of wheat (Triticum aestivum, L.). The utility of the virus as a vector for gene silencing and expression was assessed through sequence insertions in multiple sites of RNA2. Virus-induced photobleaching was observed in N. benthamiana but not in wheat, despite the stability of the inserts. The SBWMV infectious clone can be used for further studies to investigate the biology of SBWMV through mutagenesis. PMID:27236459

  10. Trans complementation of virus-encoded replicase components of tobacco mosaic virus.

    PubMed

    Ogawa, T; Watanabe, Y; Meshi, T; Okada, Y

    1991-12-01

    We examined whether the 130K and 180K proteins of tobacco mosaic virus (TMV), the putative virus-encoded replicase components, produced by a replication-competent TMV mutant could complement a replication-defective mutant in a single cell. The replication-competent mutant (LDCS29) had a deletion in the coat protein gene and the replication-defective mutant (LDR28) had a large deletion in the gene encoding the 130K and 180K proteins. Neither the replication of LDR28 nor the production of the coat protein from LDR28 or LDCS29 was detected when the mutants were inoculated separately into tobacco protoplasts. However, when the two mutants were co-inoculated, the production of the LDR28 genomic RNA and the subgenomic RNA for the coat protein and accumulation of the coat protein were observed. These results show that the virus-encoded replicase components of TMV complemented the replication-defective mutant in trans. PMID:1962439

  11. Intracellular delivery of antibodies by chimeric Sesbania mosaic virus (SeMV) virus like particles

    PubMed Central

    Abraham, Ambily; Natraj, Usha; Karande, Anjali A.; Gulati, Ashutosh; Murthy, Mathur R. N.; Murugesan, Sathyabalan; Mukunda, Pavithra; Savithri, Handanahal S.

    2016-01-01

    The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the βH-βI loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies–D6F10 (targeting abrin), anti-α-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies. PMID:26905902

  12. SIMILARITIES IN SEED AND APHID TRANSMISSION OF SOYBEAN MOSAIC VIRUS ISOLATES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The strain specificity of transmission of Soybean mosaic virus (SMV) through seed and SMV-induced seed-coat mottling were investigated in field experiments. Six soybean plant introductions (PIs) were inoculated with eight SMV isolates. Transmission of SMV through seed ranged from 0% to 42.6% in see...

  13. USVL-370, A zucchini yellow mosaic virus resistant watermelon breeding line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the development of a novel watermelon line ‘USVL-370’ [Citrullus lanatus (Thunb.) Matsum. & Nakai] containing resistance to the zucchini yellow mosaic virus-Florida strain (ZYMV-FL). This breeding line is homozygous for the recessive eukaryotic elongation factor eIF4E allele associated wit...

  14. Sources of Resistance to Zucchini Yellow Mosaic Virus in Lagenaria Siceraria Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One hundred ninety United States Plant Introductions (PIs) of bottlegourd, Lagenaria siceraria (Mol.) Standl., were evaluated for their resistance against the Florida strain of Zucchini yellow mosaic virus (ZYMV-FL). Two-week old seedlings were mechanically inoculated on cotyledons and the first tr...

  15. Gladiolus plants transformed with single-chain variable fragment antibodies to Cucumber mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants of Gladiolus ‘Peter Pears’ or ‘Jenny Lee’ were developed that contain single-chain variable fragments (scFv) to Cucumber mosaic virus (CMV) subgroup I or II. The CMV subgroup I heavy and light chain scFv fragments were placed under control of either the duplicated CaMV 35S or suga...

  16. First complete genome sequence of an emerging cucumber green mottle mosaic virus isolate in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence (6,423 nt) of an emerging Cucumber green mottle mosaic virus (CGMMV) isolate on cucumber in North America was determined through deep sequencing of sRNA and rapid amplification of cDNA ends. It shares 99% nucleotide sequence identity to the Asian genotype, but only 90% t...

  17. Complete genome sequence of a tomato infecting tomato mottle mosaic virus in New York

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complete genome sequence of an emerging isolate of tomato mottle mosaic virus (ToMMV) infecting experimental nicotianan benthamiana plants in up-state New York was obtained using small RNA deep sequencing. ToMMV_NY-13 shared 99% sequence identity to ToMMV isolates from Mexico and Florida. Broader d...

  18. Sources of Resistance to Pepino Mosaic Virus in Solanum habrochaites (Lycopersicon hirsutum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pepino mosaic virus (PepMV) is an emerging disease on greenhouse tomato. A major tomato germplasm core collection was evaluated for its resistance against PepMV. These accessions included 23 Solanum lycopersicum L., 8 S. pimpinellifolium L., 33 S. peruvianum L., 18 S. chilense (Dunal) Reiche, and ...

  19. Mapping Septoria Leaf Blotch and Soil-borne Mosaic Virus Resistance Genes Derived from Aegilops tauschii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septoria leaf blotch (STB) is a fungal disease of wheat caused by Septoria tritici and is routinely a problem in temperate wheat growing regions. Soil-borne Wheat Mosaic Virus (SBWMV) is a destructive pathogen of wheat that can cause entire crop failure in localized fields. A linkage analysis of a...

  20. Multiple loci condition seed transmission of Soybean mosaic virus in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of soybean plants with Soybean mosaic virus (SMV), which is transmitted by aphids and through seed, can cause significant reductions in seed production and quality. Because seed-borne infections are the primary sources of inoculum for SMV infections in North America, host-plant resistance ...

  1. Study and Characterization of Tobacco Mosaic Virus Head-to-tail Assembly Assisted by Aniline Polymerization

    SciTech Connect

    Niu,Z.; Bruckman, M.; Kotakadi, V.; He, J.; Emrick, T.; Russell, T.; Yang, L.; Wang, Q.

    2006-01-01

    One-dimensional composite nanofibres with narrow dispersity, high aspect ratio and high processibility have been fabricated by head-to-tail self-assembly of rod-like tobacco mosaic virus assisted by aniline polymerization, which can promote many potential applications including electronics, optics, sensing and biomedical engineering.

  2. Complete Genome Sequence of Rehmannia Mosaic Virus Infecting Rehmannia glutinosa in South Korea

    PubMed Central

    Lim, Seungmo; Zhao, Fumei; Yoo, Ran Hee; Igori, Davaajargal; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2016-01-01

    The complete genome sequence of a South Korean isolate of Rehmannia mosaic virus (ReMV) infecting Rehmannia glutinosa was determined through next-generation sequencing and Sanger sequencing. To our knowledge, this is the first report of a natural infection of R. glutinosa by ReMV in South Korea. PMID:26823577

  3. First report of cucumber green mottle mosaic virus infecting greenhouse cucumber in Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber green mottle mosaic virus (CGMMV), in the genus Tobamovirus and family Virgaviridae, is a seed-borne pathogen on cucurbits. In early 2013, serious viral disease outbreaks on greenhouse cucumber crops were experienced by greenhouse vegetable growers in Alberta, Canada. CGMMV was detected i...

  4. Genetic diversity, host range and disease resistance to the emerging Tomato mottle mosaic virus on tomato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since its first discovery in 2013 in Mexico, Tomato mottle mosaic virus (ToMMV), a new tomato-infecting tobamovirus is now present in a number of countries (i.e., Brazil, China, and Israel) and several states in the U.S. There is little information available on the molecular and biological properti...

  5. Surprising results from a search for effective disinfectants for Tobacco mosaic virus-contaminated tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tobacco mosaic virus (TMV) and four other tobamoviruses infected multiple petunia cultivars without producing obvious viral symptoms. A single cutting event on a TMV-infected plant was sufficient for transmission to many plants subsequently cut with the same clippers. A number of 'old standbys' an...

  6. Role of Soybean mosaic virus-encoded proteins in seed and aphid transmission in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean mosaic virus (SMV) is seed and aphid transmitted and can cause significant reductions in yield and seed quality in soybean, Glycine max. The roles in seed and aphid transmission of selected SMV-encoded proteins were investigated by constructing chimeric recombinants between SMV 413 (efficien...

  7. First Report of Bean Yellow Mosaic Virus in Alaska from Clover (Trifolium spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During mid-June 2008, distinct mosaic leaves were observed on a cluster of white clover, Trifolium repens L., growing at the edge of a lawn in Palmer, Alaska. Virus minipurification from leaves of affected clover and polyacrylamide electrophoresis implicated a ~35 kDa putative coat protein (CP). Sub...

  8. Triticum Mosaic Virus: Genetic evidence for recent population expansion and balancing selection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triticum Mosaic Virus (TriMV), a mite-transmitted pathogen of wheat, was first discovered in Kansas in 2006, and is a novel species in the family Potyviridae. The P1 and coat protein (CP) coding regions of 14 isolates from Colorado and 18 isolates from Nebraska were amplified by RT-PCR and sequenced...

  9. Complete Genome Sequence of Alternanthera mosaic virus, Isolated from Achyranthes bidentata in Asia

    PubMed Central

    Iwabuchi, Nozomu; Yoshida, Tetsuya; Yusa, Akira; Nishida, Shuko; Tanno, Kazuyuki; Keima, Takuya; Nijo, Takamichi; Yamaji, Yasuyuki

    2016-01-01

    Alternanthera mosaic virus (AltMV) infecting Achyranthes bidentata was first detected in Asia, and the complete genome sequence (6,604 nucleotides) was determined. Sequence identity analysis and phylogenetic analysis confirmed that this isolate is the most phylogenetically distant AltMV isolate worldwide. PMID:26988034

  10. Complete genome sequence of a novel genotype of squash mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complete genome sequence of a novel genotype of Squash mosaic virus (SqMV) infecting squash plants in Spain was obtained using deep sequencing of small ribonucleic acids and assembly. The low nucleotide sequence identities, with 87-88% on RNA1 and 84-86% on RNA2 to known SqMV isolates, suggest a new...

  11. Complete Genome Sequence of Ornithogalum Mosaic Virus Infecting Gladiolus spp. in South Korea

    PubMed Central

    Cho, Sang-Yun; Lim, Seungmo; Kim, Hongsup; Yi, Seung-In

    2016-01-01

    We report here the first complete genome sequence of Ornithogalum mosaic virus (OrMV) isolated from Taean, South Korea, in 2011, which was obtained by next-generation sequencing and Sanger sequencing. The sequence information provided here may serve as a potential reference for other OrMV isolates. PMID:27516509

  12. Inter- and intramolecular recombinations in the cucumber mosaic virus genome related to adaptation to alstroemeria.

    PubMed

    Chen, Yuh-Kun; Goldbach, Rob; Prins, Marcel

    2002-04-01

    In four distinct alstroemeria-infecting cucumber mosaic virus (CMV) isolates, additional sequences of various lengths were present in the 3' nontranslated regions of their RNAs 2 and 3, apparently the result of intra- and intermolecular recombination events. Competition experiments revealed that these recombined RNA 2 and 3 segments increased the biological fitness of CMV in alstroemeria. PMID:11907253

  13. Inter- and Intramolecular Recombinations in the Cucumber Mosaic Virus Genome Related to Adaptation to Alstroemeria

    PubMed Central

    Chen, Yuh-Kun; Goldbach, Rob; Prins, Marcel

    2002-01-01

    In four distinct alstroemeria-infecting cucumber mosaic virus (CMV) isolates, additional sequences of various lengths were present in the 3′ nontranslated regions of their RNAs 2 and 3, apparently the result of intra- and intermolecular recombination events. Competition experiments revealed that these recombined RNA 2 and 3 segments increased the biological fitness of CMV in alstroemeria. PMID:11907253

  14. Complete genome sequence of a divergent strain of Japanese yam mosaic virus from China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel strain of Japanese yam mosaic virus (JYMV-CN) was identified in a yam plant with foliar mottle symptoms in China. The complete genomic sequence of JYMV-CN was determined. Its genomic sequence of 9701 nucleotides encodes a polyprotein of 3247 amino acids. Its organization was virtually identi...

  15. Population Structure of Blueberry Mosaic Associated Virus: Evidence of Genetic Exchange in Geographically Distinct Isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The population structure of blueberry mosaic associated virus (BlMaV), a putative member of the family Ophioviridae, was examined using 59 isolates collected from North America and Slovenia. The studied isolates displayed low genetic diversity in the movement and nucleoprotein regions and low ratios...

  16. Triticum Mosaic Virus: A Distinct Member of the Family Potyviridae with an Unusually Long Leader Sequence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genome sequence of Triticum mosaic virus (TriMV), a member in the family Potyviridae, has been determined to be 10,266 nucleotides (nt) excluding the polyadenylated tail at the 3’ end. The genome encodes a large polyprotein of 3,112 amino acids with the ‘hall-mark proteins’ of potyvirus...

  17. Complete Genome Sequence of Ornithogalum Mosaic Virus Infecting Gladiolus spp. in South Korea.

    PubMed

    Cho, Sang-Yun; Lim, Seungmo; Kim, Hongsup; Yi, Seung-In; Moon, Jae Sun

    2016-01-01

    We report here the first complete genome sequence of Ornithogalum mosaic virus (OrMV) isolated from Taean, South Korea, in 2011, which was obtained by next-generation sequencing and Sanger sequencing. The sequence information provided here may serve as a potential reference for other OrMV isolates. PMID:27516509

  18. Complete Genome Sequence of a South Korean Isolate of Habenaria mosaic virus.

    PubMed

    Igori, Davaajargal; Lim, Seungmo; Zhao, Fumei; Baek, Dasom; Moon, Jae Sun

    2016-01-01

    Habenaria mosaic virus (HaMV), a member of the genus Potyvirus in the family Potyviridae, was first discovered from Habenaria radiata in Japan. The complete genomic sequence of a South Korean isolate (PA1) of HaMV infecting Plantago asiatica L. was determined with high-throughput RNA sequencing. PMID:27609926

  19. Chromatin Structure of Wheat Breeding Lines Resistant to Wheat Streak Mosaic Virus.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat Streak Mosaic Virus (WSMV) is an important disease limiting wheat production, however no WSMV resistance effective above 18°C is present within the primary genetic pool of wheat (Triticum aestivum L.). In contrast, the wild relative Thinopyrum intermedium (2n=6x=42) shows good resistance to WS...

  20. Physiological responses of hard red winter wheat to infection by wheat streak mosaic virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) causes significant yield loss in hard red winter wheat in the U.S. Southern High Plains. Despite the prevalence of this pathogen, little is known about the physiological response of wheat to WSMV infection. A 2-year study was initiated to (i) investigate the effect o...

  1. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing.

    PubMed

    Kubota, Kenji; Tsuda, Shinya; Tamai, Atsushi; Meshi, Tetsuo

    2003-10-01

    Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L(11) and L(11)A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L(11)A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed. PMID:14512550

  2. Mosaic protein and nucleic acid vaccines against hepatitis C virus

    DOEpatents

    Yusim, Karina; Korber, Bette T. M.; Kuiken, Carla L.; Fischer, William M.

    2013-06-11

    The invention relates to immunogenic compositions useful as HCV vaccines. Provided are HCV mosaic polypeptide and nucleic acid compositions which provide higher levels of T-cell epitope coverage while minimizing the occurrence of unnatural and rare epitopes compared to natural HCV polypeptides and consensus HCV sequences.

  3. First report of Potato virus V and Peru tomato mosaic virus on tamarillo (Solanum betaceum) orchards of Ecuador

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Ecuador, tamarillo (Solanum betaceum) represents an important cash crop for hundreds of small farmers. In 2013, leaves from tamarillo plants showing severe virus-like symptoms (mosaic, mottling and leaf deformation) were collected from old orchards in Pichincha and Tungurahua. Double-stranded RN...

  4. Identification of distinct functions of Wheat streak mosaic virus coat protein in virion assembly and virus movement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) is the type member of Tritimovirus genus of the family Potyviridae. The WSMV coat protein (CP) was subjected to point and deletion mutation analyses. WSMV mutants changing aspartic acid residues at amino acid (aa) positions 289, 290, 326, 333, and 334 to alanine elic...

  5. Studies on the mechanism of assembly of tobacco mosaic virus.

    PubMed Central

    Schuster, T M; Scheele, R B; Adams, M L; Shire, S J; Steckert, J J; Potschka, M

    1980-01-01

    Sedimentation and proton binding studies on the endothermic self-association of tobacco mosaic virus (TMV) protein indicate that the so-called "20S" sedimenting protein is an interaction system involving at least the 34-subunit two-turn yield cylindrical disk aggregate and the 49-subunit three-turn helical rod. The pH dependence of this overall equilibrium suggests that disk formation is proton-linked through the binding of protons to the two-turn helix which is not present as significant concentrations near pH 7. There is a temperature-induced intramolecular conformation change in the protein leading to a difference spectrum which is complete in 5 x 10(-6) s at pH 7 and 20 degrees C and is dominated at 300 nm by tryptophan residues. Kinetics measurements of protein polymerization, from 10(-6) to 10(3) s, reveal three relaxation processes at pH 7.0, 20 degrees C, 0.10 M ionic strength K (H) PO4. The fastest relaxation time is a few milliseconds and represents reactions within the 4S protein distribution. The second fastest relaxation is 50-100 x 10(-3) s and represents elementary polymerization steps involved in the formation of the approximately 20 S protein. Analysis of the slowest relaxation, approximately 5 x 10(4) s, suggests that this very slow formation of approximately 20 S protein may be dominated by some first order process in the overall dissociation of approximately 20S protein. Sedimentation measurements of the rate of TMV reconstitution, under the same conditions, show by direct measurements of 4S and approximately 20S incorporation at various 4S to approximately 20S weight ratios that the relative rate of approximately 20S incorporation decreases almost linearly, from 0 to 50% 4S. There appears to be one or more regions of TMV-RNA, approximately 1-1.5 kilobases long, which incorporates approximately 20S protein exclusively. Solutions of approximately 95-100% approximately 20S protein have been prepared for the first time and used for reconstitution

  6. Characterization of a Sorghum mosaic virus (SrMV) isolate in China.

    PubMed

    Zhang, Yu Liang; Pennerman, Kayla K; Wang, Hongxing; Yin, Guohua

    2016-03-01

    Sorghum mosaic virus (SrMV), a causal agent of the destructive sugarcane mosaic disease, has a global presence. An isolate of SrMV infecting a commercially-grown sugarcane plant was recovered from the Hainan province of China. The virions were visualized by an electron microscope, and the coat proteins (CPs) were sequenced by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and tandem mass spectrometry. Discrepancies between the CP predicted and actual amino acid sequences were noted, which confounded the phylogenetic assignment of the isolate. The apparent variations may have physiological effects on the pathogenicity and virulence of SrMV. PMID:26981005

  7. Complete genome sequence of keunjorong mosaic virus, a potyvirus from Cynanchum wilfordii.

    PubMed

    Nam, Moon; Lee, Joo-Hee; Choi, Hong Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon

    2013-08-01

    We have determined the complete genome sequence of keunjorong mosaic virus (KjMV). The KjMV genome is composed of 9,611 nucleotides, excluding the 3'-terminal poly(A) tail. It contains two open reading frames (ORFs), with the large one encoding a polyprotein of 3,070 amino acids and the small overlapping ORF encoding a PIPO protein of 81 amino acids. The KjMV genome shared the highest nucleotide sequence identity (57.5  %) with pepper mottle virus and freesia mosaic virus, two members of the genus Potyvirus. Based on the phylogenetic relatedness to known potyviruses, KjMV appears to be a member of a new species in the genus Potyvirus. PMID:23504105

  8. Classification of cucumber green mottle mosaic virus (CGMMV) infected watermelon seeds using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hoonsoo; Lim, Hyoun-Sub; Cho, Byoung-Kwan

    2016-05-01

    The Cucumber Green Mottle Mosaic Virus (CGMMV) is a globally distributed plant virus. CGMMV-infected plants exhibit severe mosaic symptoms, discoloration, and deformation. Therefore, rapid and early detection of CGMMV infected seeds is very important for preventing disease damage and yield losses. Raman spectroscopy was investigated in this study as a potential tool for rapid, accurate, and nondestructive detection of infected seeds. Raman spectra of healthy and infected seeds were acquired in the 400 cm-1 to 1800 cm-1 wavenumber range and an algorithm based on partial least-squares discriminant analysis was developed to classify infected and healthy seeds. The classification model's accuracies for calibration and prediction data sets were 100% and 86%, respectively. Results showed that the Raman spectroscopic technique has good potential for nondestructive detection of virus-infected seeds.

  9. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  10. Deep sequencing of dsRNAs recovered from mosaic-diseased pigeonpea reveals the presence of a novel emaravirus: pigeonpea sterility mosaic virus 2.

    PubMed

    Elbeaino, Toufic; Digiaro, Michele; Uppala, Mangala; Sudini, Harikishan

    2015-08-01

    Deep-sequencing analysis of double-stranded RNA extracted from a mosaic-diseased pigeonpea plant (Cajanus cajan L., family Fabaceae) revealed the complete sequence of six emaravirus-like negative-sense RNA segments of 7009, 2229, 1335, 1491, 1833 and 1194 nucleotides in size. In the order from RNA1 to RNA6, these genomic RNAs contained ORFs coding for the RNA-dependent RNA polymerase (RdRp, p1 of 266 kDa), the glycoprotein precursor (GP, p2 of 74.5 kDa), the nucleocapsid (NC, p3 of 34.9 kDa), and the putative movement protein (MP, p4 of 40.7 kDa), while p5 (55 kDa) and p6 (27 kDa) had unknown functions. All RNA segments showed distant relationships to viruses of the genus Emaravirus, and in particular to pigeonpea sterility mosaic virus (PPSMV), with which they shared nucleotide sequence identity ranging from 48.5 % (RNA3) to 62.5 % (RNA1). In phylogenetic trees constructed from the sequences of the proteins encoded by RNA1, RNA2 and RNA3 (p1, p2 and p3), this new viral entity showed a consistent grouping with fig mosaic virus (FMV) and rose rosette virus (RRV), which formed a cluster of their own, clearly distinct from PPSMV-1. In experimental greenhouse trials, this novel virus was successfully transmitted to pigeonpea and French bean seedlings by the eriophyid mite Aceria cajani. Preliminary surveys conducted in the Hyderabad region (India) showed that the virus in question is widespread in pigeonpea plants affected by sterility mosaic disease (86.4 %) but is absent in symptomless plants. Based on molecular, biological and epidemiological features, this novel virus is the second emaravirus infecting pigeonpea, for which the provisional name pigeonpea sterility mosaic virus 2 (PPSMV-2) is proposed. PMID:26060057