Science.gov

Sample records for peaking power plants

  1. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  2. The comparative effectiveness of serving peak loads in the variants of providing nuclear power plants with a base load

    NASA Astrophysics Data System (ADS)

    Batenin, V. M.; Aminov, R. Z.; Shkret, A. F.; Garievskii, M. V.

    2012-07-01

    The present paper reports the results of an investigation into the effectiveness of serving peak loads in the variants of providing nuclear power plants with a base load through unloading condensing power plants, combined heat and power (CHP) plants, combined-cycle thermal power plants during night-time off-peak hours, the use of the off-peak electric power for power and heat supply, and water electrolysis with the use of hydrogen and oxygen for production of the peak electric power, as compared with the variant of the development of pumped storage hydropower plants.

  3. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  4. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  5. 78 FR 49305 - Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... COMMISSION Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Unit Nos. 1 and 2; Application... Operating Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission... Nuclear Power Plant, Unit Nos. 1 and 2, respectively, located in Somervell County, Texas. The...

  6. Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants

    NASA Astrophysics Data System (ADS)

    Amsbeck, Lars; Buck, Reiner; Prosin, Tobias

    2016-05-01

    Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.

  7. Computation of full energy peak efficiency for nuclear power plant radioactive plume using remote scintillation gamma-ray spectrometry.

    PubMed

    Grozdov, D S; Kolotov, V P; Lavrukhin, Yu E

    2016-04-01

    A method of full energy peak efficiency estimation in the space around scintillation detector, including the presence of a collimator, has been developed. It is based on a mathematical convolution of the experimental results with the following data extrapolation. The efficiency data showed the average uncertainty less than 10%. Software to calculate integral efficiency for nuclear power plant plume was elaborated. The paper also provides results of nuclear power plant plume height estimation by analysis of the spectral data. PMID:26774388

  8. EIS No. 20100312 EIS Comanche Peak Nuclear Power Plant Units 3 and 4

    SciTech Connect

    Bjornstad, David J

    2010-08-01

    In accordance with Section 309(a) of the Clean Air Act, EPA is required to make its comments on EISs issued by other Federal agencies public. Historically, EPA has met this mandate by publishing weekly notices of availability of EPA comments, which includes a brief summary of EPA's comment letters, in the Federal Register. Since February 2008, EPA has been including its comment letters on EISs on its Web site at: http://www.epa.gov/compliance/nepa/eisdata.html. Including the entire EIS comment letters on the Web site satisfies the Section 309(a) requirement to make EPA's comments on EISs available to the public. Accordingly, on March 31, 2010, EPA discontinued the publication of the notice of availability of EPA comments in the Federal Register. EIS No. 20100312, Draft EIS, NRC, TX, Comanche Peak Nuclear Power Plant Units 3 and 4, Application for Combined Licenses (COLs) for Construction Permits and Operating Licenses, (NUREG-1943), Hood and Somervell Counties, TX, Comment Period Ends: 10/26/2010.

  9. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  10. Peak Power Markets for Satellite Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  11. Low peak-power laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Pierce, S. G.; Cleary, A.; Veres, I. A.; Culshaw, B.; Thursby, G.; McKee, C.; Swift, C.; Armstrong, I.

    2011-09-01

    Techniques for the successful excitation of guided ultrasonic waves using a low peak-power laser ultrasonic source are discussed and compared with more conventional Q-switched laser sources. The paper considers acoustic propagation in thin plates, in which the frequencies used, typically only the fundamental guided wave modes, are considered. Aspects of excitation and detection geometry are considered along with the physical mechanisms of photo-acoustic generation and the practical issues surrounding available source wavelengths and power outputs. Understanding of the effects of these constraints is critical for the successful application of the technique. Continuous wave excitation and fully arbitrary modulation schemes are compared, and a technique to control the bandwidth of Golay code modulation is introduced. It is shown that earlier work by the authors was capable of guided wave detection at peak-power densities of 104 W cm- 2. Later work has focussed on the use of erbium-doped fibre amplifiers combined with Golay code modulation to improve the recovered signal-to-noise ratio. Two key applications of the techniques are considered: material properties measurements (using inversion of dispersion curve data) and acoustic emission system calibration.

  12. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  13. Aerobic power and peak power of elite America's Cup sailors.

    PubMed

    Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P

    2009-05-01

    Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms. PMID:19234715

  14. Satisfying winter peak-power demand with phased gasification

    SciTech Connect

    Hall, E.H.; Moss, T.E.; Ravikumar, R.

    1987-01-01

    The purpose of this study, commissioned by the Bonneville Power Administration, was to investigate application of this concept to the Pacific Northwest. Coal gasification combined-cycle (GCC) plants are receiving serious attention from eastern utilities. Potomac Electric (PEPCO) has engaged Fluor Technology to perform conceptual and preliminary engineering for a nominal 375-MW coal GCC power generation facility to be located in northern Montgomery County, Maryland. Other eastern utilities are engaged in site-specific investigations of satisfying future power requirements employing this alternative, which involves an environmentally superior method of using coal. Coal is combined with oxygen to produce a medium-heating-value fuel gas as an alternative to natural gas. The fuel gas, cleaned to remove sulfur compounds, is burned in gas turbine-generator sets. The hot exhaust gas is used to generate steam for additional power generation. The gasification combined cycle plant is highly efficient and has a high level of flexibility to meet power demands. This study provided background for consideration of one alternative for satisfying winter peak-load demand. The concept is feasible, depending on the timing of the installation of the gasification system, projections of the cost and the availability of natural gas, and restrictions on the use of natural gas. It has the advantage of deferring capacity addition and capital outlay until power is needed and economics are favorable.

  15. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  16. Power Plant Systems Analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Yang, Y. Y.

    1973-01-01

    Three basic thermodynamic cycles of advanced nuclear MHD power plant systems are studied. The effect of reactor exit temperature and space radiator temperature on the overall thermal efficiency of a regenerative turbine compressor power plant system is shown. The effect of MHD pressure ratio on plant efficiency is also described, along with the dependence of MHD power output, compressor power requirement, turbine power output, mass flow rate of H2, and overall plant efficiency on the reactor exit temperature for a specific configuration.

  17. Power Plant Cycling Costs

    SciTech Connect

    Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

    2012-07-01

    This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

  18. The peak electromagnetic power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Guo, C.

    1983-01-01

    Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.

  19. Power plant design

    SciTech Connect

    Khalil, E.E. )

    1990-01-01

    This overviews basic theories and concepts of power plant design using an accessible approach that moves smoothly from simple to real configurations. Utilizing a large number of worked examples the book provides a treatment and understanding of all aspects of power plant design from basic thermodynamics to complex applications.

  20. NUCLEAR POWER PLANT

    DOEpatents

    Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

    1963-05-14

    A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

  1. Nuclear Power Plants. Revised.

    ERIC Educational Resources Information Center

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  2. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  3. New baseload power plants

    SciTech Connect

    Not Available

    1993-04-01

    This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

  4. Nuclear power plant maintainability.

    PubMed

    Seminara, J L; Parsons, S O

    1982-09-01

    In the mid-1970s a general awareness of human factors engineering deficiencies associated with power plant control rooms took shape and the Electric Power Research Institute (EPRI) awarded the Lockheed Corporation a contract to review the human factors aspects of five representative operational control rooms and their associated simulators. This investigation revealed a host of major and minor deficiencies that assumed unforeseen dimensions in the post- Three Mile Island accident period. In the course of examining operational problems (Seminara et al, 1976) and subsequently the methods for overcoming such problems (Seminara et al, 1979, 1980) indications surfaced that power plants were far from ideal in meeting the needs of maintenance personnel. Accordingly, EPRI sponsored an investigation of the human factors aspects of power plant maintainability (Seminara, 1981). This paper provides an overview of the maintainability problems and issues encountered in the course of reviewing five nuclear power plants. PMID:15676441

  5. Flexible Coal: Evolution from Baseload to Peaking Plant (Brochure)

    SciTech Connect

    Cochran, J.; Lew, D.; Kumar, N.

    2013-12-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  6. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema

    Piette, Mary Ann

    2011-04-28

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  7. Enhanced peak power CO2 laser processing of PCB materials

    NASA Astrophysics Data System (ADS)

    Moorhouse, C. J.; Villarreal, F.; Wendland, J. J.; Baker, H. J.; Hall, D. R.; Hand, D. P.

    2005-06-01

    Laser drilling has become a common processing step in the fabrication of printed circuit boards (PCB's). For this work, a recently developed enhanced peak power CO2 laser (~2.5 kW peak power, 200W average) or ultra-super pulse (USP) laser is used to drill alumina and copper coated dielectric laminate materials. The higher peak power and faster response times (than conventional CO2 lasers) produced by the USP laser are used to produce high speed alumina laser scribing and copper coated laminate microvia drilling processes. Alumina is a common PCB material used for applications, where its resistance to mechanical and thermal stresses is required. Here we present a comprehensive study of the melt eject mechanisms and recast formation to optimise the speed and quality of alumina laser scribing. Scribe speeds of up to 320 mms-1 (1.8 times current scribe rate) have been achieved using novel temporal pulse shapes unique to the USP laser. Also presented is the microvia drilling process of copper dielectric laminates, where the multi-level configuration presents different optical and thermal properties complicating their simultaneous laser ablation. In our experiments the USP laser has been used to drill standard thickness copper films (up to 50 μm thick) in a single shot. This investigation concentrates on understanding the mechanisms that determine the dielectric undercut dimensions.

  8. Martin Drake power plant

    SciTech Connect

    Schimmoller, B.K.

    2005-08-01

    The relatively old Martin Drake coal-fired plant at Colorado Springs is facing challenges to meet environmental requirements whilst satisfying power demands and remaining competition. The article describes measures taken and planned to tackle these challenges. 2 photos.

  9. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2010-01-01

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  10. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhou, G. Tong; Qian, Hua

    2007-12-01

    Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM) and code-division multiple access (CDMA), have high peak-to-average power ratios (PARs). A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs), but also leads to low transmission power efficiency. Selected mapping (SLM) and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  11. Monolithic high peak-power coherent Doppler lidar system

    NASA Astrophysics Data System (ADS)

    Kotov, Leonid V.; Töws, Albert; Kurtz, Alfred; Bobkov, Konstantin K.; Aleshkina, Svetlana S.; Bubnov, Mikhail M.; Lipatov, Denis S.; Guryanov, Alexey N.; Likhachev, Mikhail

    2016-03-01

    In this work we present a monolithic lidar system, based on a newly-developed double-clad large mode area (LMA) polarization-maintaining Er-doped fiber and specially designed LMA passive components. Optimization of the fiber designs resulted in as high as 100 W of SBS limited peak power. The amplifier and its passive components (circulator and collimator) were integrated in an existing lidar system. The enhanced lidar system provides three times increase of scanning range compared to one based on standard telecom-grade amplifiers.

  12. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  13. OUT Success Stories: Solar Trough Power Plants

    DOE R&D Accomplishments Database

    Jones, J.

    2000-08-01

    The Solar Electric Generating System (SEGS) plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. The SEGS plants range in capacity from 13.8 to 80 MW, and they were constructed to meet Southern California Edison Company's periods of peak power demand.

  14. Amedee geothermal power plant

    SciTech Connect

    Hodgson, S.F.

    1988-12-01

    In September 1988, the power plant began generating electricity in Northern California, near Honey Lake. The plant generates 2 megawatts, net, of electricity in the winter, and from 20 to 30% less in the summer, depending on the temperature. Geothermal fluids from two wells are used to operate the plant, and surface discharge is used to dispose of the spent fluids. This is possible because the geothermal fluids have a very low salinity and a composition the same as area hot spring waters. The binary power plant has a Standard Offer No. 4 contract for 5 megawatts with pacific Gas and Electric Company. Sometime in the near future, they will expand the project to add another 3 megawatts of electrical generation.

  15. Power Plant Construction

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Stone & Webster Engineering Corporation utilized TAP-A, a COSMIC program originally developed as part of a NASA investigation into the potential of nuclear power for space launch vehicles. It is useful in nuclear power plant design to qualify safety-related equipment at the temperatures it would experience should an accident occur. The program is easy to use, produces accurate results, and is inexpensive to run.

  16. Shoreham Nuclear Power Plant

    SciTech Connect

    1992-12-31

    The United States Supreme Court, with PG&E and Silkwood, and in the eight years since, has expanded the acceptable extent of state regulation of commercial nuclear power plants. In PG&E, the Court established the acceptability of state regulation that purports to be concerned with the non-radiological aspects of nuclear plant operations but that, as a practical matter, is concerned with their radiological hazards. In Silkwood, the Court established the acceptability of state regulation of radiological hazards when its impact on federal regulation of radiological hazards is indirect and incidental. Finally, in Goodyear and English, the Court confirmed and elaborated on such state regulation. Subject to political demands either for additional involvement in commercial nuclear power plant regulation or from political interests opposed altogether to nuclear power, some states, in the 1980s, sought to expand even further the involvement of state and local governments in nuclear plant regulation. Indeed, some states sought and in some instances acquired, through innovative and extraordinary means, a degree of involvement in the regulation of radiological hazards that seriously erodes and undermines the role of the federal government in such regulation. In particular, the State of New York concluded with the Long Island Lighting Company (LILCO), in February 1989, an agreement for the purchase of New York of the Shoreham nuclear power plant on Long Island. A response to failed efforts by New York to prevent the issuance by the NRC of a license to LILCO to operate the plant, the agreement was concluded to allow New York to close the plant either altogether or to convert it to a fossil fuel facility. The opposition to the sale of Shoreham is discussed.

  17. Plant data comparisons for Comanche Peak 50% load rejection transient

    SciTech Connect

    Boatwright, W.J.; Choe, W.G.; Hiltbrand, D.W.; Devore, C.V.

    1994-12-31

    The RETRAN-02 codes is used for the transient and accident analysis. Benchmarks have been performed in order to qualify the Comanche Pear Steam electric station (CPSES) RETRAN-02 model, particularly the protection and control systems , reactivity feedback, noding, and primary-to-secondary heat transfer modeling. The 50% load rejection test was performed as part of the initial start-up test sequence for CPSES-1. The results of this analysis demonstrate that the RETRAN-02 model of CPSES-1 allows for quite good predictions of (1) the primary-to-secondary heat transfer rate; (2) the core power response, including the reactivity feedback effects due to changes in moderator and fuel temperatures and control rod position; and (3) the rod control model, which correctly simulates actual plant response in which the control rods are inserted and withdrawn in response to temperature and power error signals.

  18. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  19. Nuclear Power Plant Technician

    ERIC Educational Resources Information Center

    Randall, George A.

    1975-01-01

    The author recognizes a body of basic knowledge in nuclear power plant technoogy that can be taught in school programs, and lists the various courses, aiming to fill the anticipated need for nuclear-trained manpower--persons holding an associate degree in engineering technology. (Author/BP)

  20. Beloyarsk Nuclear Power Plant

    SciTech Connect

    1997-08-01

    The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.

  1. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  2. Optical Parametric Amplification for High Peak and Average Power

    SciTech Connect

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  3. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  4. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  5. LNG combined cycle power plant for stable power supply for Kiheung semiconductor plant

    SciTech Connect

    Chang, Choong Koo; Park, Hyo Jeong; Kim, In Chool

    1995-12-31

    Reserve margins of Korea Electric Power Corporation (KEPCO) was 12% in 1993, however it was reduced to less than 3% in the summer of 1994 due to increase of electric power consumption caused by life style change based on economic growth. Therefore stable supply of electric power to industrial plant was threatened during last summer`s peak. The process of semiconductor manufacturing is very precious and full processing time reaches several months. Furthermore interruption of power supply to the process causes abortion of every product in the process. Therefore, power failure of less than one (1) second, may result in enormous loss of capital. In order to protect disaster caused by power shortage during summer peaks. Samsung Electronics Co., Ltd (SEC) planned to construct LNG combined cycle power plant for the Klheung semiconductor plant which is the world`s leading maker of dynamic random access memory (DRAM) chips.

  6. Delano Biomass Power Plant

    SciTech Connect

    Middleton, M.; Hendershaw, W.K.; Corbin, H.R.; Taylor, T.A.

    1995-12-31

    The Delano Biomass Power Plant utilizes orchard prunings, urban wood waste, almond shells, and cotton stalks to fuel a boiler for steam generation. The steam is condensed in a steam turbine/generator to produce 31.8 MW of power. The electrical power generated (27 MW net) is then sold to Southern California Edison Co. for distribution. By incorporating a cooling tower, demineralizer, brine concentration tower, and evaporation ponds this system is able to achieve zero discharge. Steam at 97{degrees}F is condensed with cooling water. The cooling water is recirculated through an evaporator tower. Due to the temperature of the water entering the tower (83{degrees}F), evaporation occurs leaving behind concentrated salts. A blowdown is used to remove these salts from the tower. Losses from evaporation or leaks require make up to the tower. Wastewater from various processes in the plant are passed to a brine concentration tower. This concentrate is then taken to the evaporation ponds. Concentrated blowdown of small volumes (approximately 2-4 gpm) from the brine tower is disposed of in evaporation ponds.

  7. ATOMIC POWER PLANT

    DOEpatents

    Daniels, F.

    1957-11-01

    This patent relates to neutronic reactor power plants and discloses a design of a reactor utilizing a mixture of discrete units of a fissionable material, such as uranium carbide, a neutron moderator material, such as graphite, to carry out the chain reaction. A liquid metal, such as bismuth, is used as the coolant and is placed in the reactor chamber with the fissionable and moderator material so that it is boiled by the heat of the reaction, the boiling liquid and vapors passing up through the interstices between the discrete units. The vapor and flue gases coming off the top of the chamber are passed through heat exchangers, to produce steam, for example, and thence through condensers, the condensed coolant being returned to the chamber by gravity and the non- condensible gases being carried off through a stack at the top of the structure.

  8. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  9. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  10. Power Plant Replacement Study

    SciTech Connect

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self‐funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty‐three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  11. High peak power optical pulses generated with a monolithic master-oscillator power amplifier.

    PubMed

    Wenzel, Hans; Schwertfeger, Sven; Klehr, Andreas; Jedrzejczyk, Daniel; Hoffmann, Thomas; Erbert, Götz

    2012-06-01

    We present results on a monolithic semiconductor-based master-oscillator power amplifier (MOPA) combining a distributed-feedback (DFB) laser and a tapered amplifier on a single chip. The MOPA reaches an output power of almost 12 W at an emission wavelength around 1064 nm in continuous-wave operation. Pulses with a length of around 100 ps can be obtained either by injecting nanosecond current pulses into the tapered amplifier alone or into both the DFB laser and the tapered amplifier. In the latter case, pulses with a width of 84 ps, a peak power of 42 W, and a spectral width of 160 pm are generated. PMID:22660042

  12. Wave action power plant

    SciTech Connect

    Lucia, L.V.

    1982-03-16

    A wave action power plant powered by the action of water waves has a drive shaft rotated by a plurality of drive units, each having a lever pivotally mounted on and extending from said shaft and carrying a weight, in the form of a float, which floats on the waves and rocks the lever up and down on the shaft. A ratchet mechanism causes said shaft to be rotated in one direction by the weight of said float after it has been raised by wave and the wave has passed, leaving said float free to move downwardly by gravity and apply its full weight to pull down on the lever and rotate the drive shaft. There being a large number of said drive units so that there are always some of the weights pulling down on their respective levers while other weights are being lifted by waves and thereby causing continuous rotation of the drive shaft in one direction. The said levers are so mounted that they may be easily raised to bring the weights into a position wherein they are readily accessible for cleaning the bottoms thereof to remove any accumulation of barnacles, mollusks and the like. There is also provided means for preventing the weights from colliding with each other as they independently move up and down on the waves.

  13. LOWER EXTREMITY PEAK POWER TRAINING IN ELDERLY SUBJECTS WITH MODERATE MOBILITY LIMITATIONS: A RANDOMIZED CONTROLLED TRIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the effects of a lower extremity high-velocity high-power exercise training intervention in older adults with moderate mobility impairments, and to investigate whether peak power training results in greater increases of peak muscle power output compared to traditional progressive resistan...

  14. ESP IMPROVEMENTS AT POWER PLANTS

    EPA Science Inventory

    An on-going ORD and OIA collaborative project in the Newly Independent States (NIS) is designed to upgrade ESPs used in NIS power plants and has laid the foundation for implementing cost-effective ESP modernization efforts at power plants. Thus far, state-of-the-art ESP performan...

  15. Steam Power Plants in Aircraft

    NASA Technical Reports Server (NTRS)

    Wilson, E E

    1926-01-01

    The employment of steam power plants in aircraft has been frequently proposed. Arguments pro and con have appeared in many journals. It is the purpose of this paper to make a brief analysis of the proposal from the broad general viewpoint of aircraft power plants. Any such analysis may be general or detailed.

  16. Appropriate Loads for Peak-Power During Resisted Sprinting on a Non-Motorized Treadmill

    PubMed Central

    Andre, Matthew J.; Fry, Andrew C.; Lane, Michael T.

    2013-01-01

    The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty college students were tested for vertical jump, vertical jump peak and mean power, 10 m sprint, 20 m sprint, leg press 1 RM, leg press 1 RM relative to body weight, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM. Participants performed eight resisted sprints on a non-motorized treadmill, with increasing relative loads expressed as percent of body weight. Sprint peak power was measured for each load. Pearson correlations were used to determine if relationships between the sprint peak power load and the other variables were significant. The sprint peak power load had a mode of 35% with 73% of all participants having a relative sprint peak power load between 25–35%. Significant correlations occurred between sprint peak power load and body weight, lean body mass, vertical jump peak and mean power, leg press 1 RM, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM (r = 0.44, 0.43, 0.39, 0.37, 0.47, 0.39, 0.46, and 0.47, respectively). Larger, stronger, more powerful athletes produced peak power at a higher relative load during resisted sprinting on a non-motorized treadmill. PMID:24233103

  17. Optimal loading range for the development of peak power output in the hexagonal barbell jump squat.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-06-01

    Recent studies indicate that the utilization of the hexagonal barbell jump squat (HBJS) compared with the traditional barbell jump squat may offer a superior method of developing peak power. The notion that a single optimal load may be prescribed in training programs aiming to develop peak power is subject to debate. The purpose of this study was to identify the optimal load corresponding with peak power output during the HBJS in professional rugby union players. Seventeen professional rugby union players participated in this study. Participants performed 3 unloaded countermovement jumps on a force plate and 3 HBJS at each of the following randomized loads: 10, 20, 30, and 40% of box squat 1 repetition maximum (1RM). Peak power output was the dependent variable of interest. A one-way repeated measures analysis of variance was conducted to compare peak power output across each load. Peak power output was the dependent variable of interest. A significant main effect for load was observed (Wilk's Lambda = 0.11, F(4,13) = 18.07, p < 0.01, partial η2 = 0.88). Results of the Bonferroni-adjusted pairwise comparisons indicated that peak power output in the HBJS is optimized at a load range between 10 and 20% of box squat 1RM. The results of this study indicate that the use of the HBJS with a training load between 10 and 20% of box squat 1RM optimizes peak power output in professional rugby union players. PMID:25486301

  18. High peak power gyroklystron with an inverted magnetron injection gun

    SciTech Connect

    Read, Michael E.; Lawson, Wesley; Miram, George; Marsden, David; Borchard, Philipp

    2005-12-01

    Calabazas Creek Research Inc. (CCR) has investigated the feasibility of a 30 GHz gyroklystron amplifier for driving advanced accelerators. Gyroklystrons have been shown to be efficient sources of high power radiation at frequencies above X-Band and are, therefore, well suited for driving high frequency accelerators. CCR's gyroklystron design includes a novel inverted magnetron injection gun (MIG) that allows support and cooling of the coaxial inner conductor of the circuit. This novel gun provides a very high quality electron beam, making it possible to achieve a cavity design with an efficiency of 54%. During Phase I, it was determined that the original frequency of 17 GHz was no longer well matched to the potential market. A survey of accelerator needs identified the Compact Linear Collider (CLIC) as requiring 30 GHz sources for testing of accelerator structures. Developers at CLIC are seeking approximately 25 MW per tube. This will result in the same power density as in the original 80 MW, 17 GHz device and will thus have essentially the same risk. CLIC will require initially 3-4 tubes and eventually 12-16 tubes. This quantity represents $5M-$10M in sales. In addition, gyroklystrons are of interest for radar systems and electron paramagnetic resonance (EPR) instruments. Following discussions with the Department of Energy, it was determined that changing the program goal to the CLIC requirement was in the best interest of CCR and the funding agency. The Phase I program resulted in a successful gyroklystron design with a calculated efficiency of 54% with an output power of 33 MW. Design calculations for all critical components are complete, and no significant technical issues remain.

  19. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  20. Owners of Nuclear Power Plants

    SciTech Connect

    Reid, R.L.

    2000-01-12

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of November 1999. The report is divided into sections representing different aspects of nuclear plant ownership.

  1. Owners of nuclear power plants

    SciTech Connect

    Hudson, C.R.; White, V.S.

    1996-11-01

    Commercial nuclear power plants in this country can be owned by a number of separate entities, each with varying ownership proportions. Each of these owners may, in turn, have a parent/subsidiary relationship to other companies. In addition, the operator of the plant may be a different entity as well. This report provides a compilation on the owners/operators for all commercial power reactors in the United States. While the utility industry is currently experiencing changes in organizational structure which may affect nuclear plant ownership, the data in this report is current as of July 1996. The report is divided into sections representing different aspects of nuclear plant ownership.

  2. Asbury power plant, Asbury, Missouri

    SciTech Connect

    Wicker, K.

    2005-08-01

    The Asbury power plant in rural southwest Missouri is off the beaten path in more ways than one. Three years ago, Empire District Electric Co., the plant's owner/operator, began mixing pieces of discarded tires into its coal fuel supply. Each ensuing year, without compromising local air quality, the plant has rid the area of millions of tires that otherwise would have ended up in a landfill. For demonstrating that a blight can be made right, Asbury is one of Power's 2005 top plants. 2 figs., 1 tab.

  3. Plant cycle chemistry during startup and shutdown and during cycling and peaking operation

    SciTech Connect

    Seipp, H.G.; Kloeckl, W.; Bursik, A.; Hajdamowicz, S.; Pflug, H.; Pieper, B.

    1995-01-01

    This paper presents some preliminary results of a VGB Subcommittee working on the preparation of VGB Guidelines for startup and shutdown and cycling and peaking operation. The main points are listed below: behavior of protective layers in steam generators; impurities transport; impact of different plant concepts and plant cycle chemistry treatments; recommended startup procedure for a unit operated on OT; and data acquisition and evaluation during startup, shutdown and cycling and peaking operation.

  4. Proceedings of cogeneration power plants

    SciTech Connect

    Schroeter, J.W. )

    1991-01-01

    This book contains proceedings of Cogeneration Power Plants. Topics as diverse as extended operational performance findings, updating of control systems, the complex relationships involved in cogeneration projects, and correction of station noise complaints are covered.

  5. Power Plant Water Intake Assessment.

    ERIC Educational Resources Information Center

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  6. Nuclear Power Plant Simulation Game.

    ERIC Educational Resources Information Center

    Weiss, Fran

    1979-01-01

    Presents a nuclear power plant simulation game which is designed to involve a class of 30 junior or senior high school students. Scientific, ecological, and social issues covered in the game are also presented. (HM)

  7. Variability in Laboratory vs. Field Testing of Peak Power, Torque, and Time of Peak Power Production Among Elite Bicycle Motocross Cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2015-09-01

    The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p ≤ 0.001, 34 ± 9%) and reduced time of power production (p ≤ 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production. PMID:26313579

  8. Operate a Nuclear Power Plant.

    ERIC Educational Resources Information Center

    Frimpter, Bonnie J.; And Others

    1983-01-01

    Describes classroom use of a computer program originally published in Creative Computing magazine. "The Nuclear Power Plant" (runs on Apple II with 48K memory) simulates the operating of a nuclear generating station, requiring students to make decisions as they assume the task of managing the plant. (JN)

  9. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (ESTSC)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  10. Power Quality Aspects in a Wind Power Plant: Preprint

    SciTech Connect

    Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

    2006-01-01

    Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

  11. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection

  12. ALARA at nuclear power plants

    SciTech Connect

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  13. Plant data comparisons for Comanche Peak 1/2 main feedwater pump trip transient

    SciTech Connect

    Boatwright, W.J.; Choe, W.G; Hiltbrand, D.W.

    1995-09-01

    A RETRAN-02 MOD5 model of Comanche Peak Steam Electric Station was developed by TU Electric for the purpose of performing core reload safety analyses. In order to qualify this model, comparisons against plant transient data from a partial loss of main feedwater flow were performed. These comparisons demonstrated that good representations of the plant response could be obtained with RETRAN-02 and the user-developed models of the primary-to-secondary heat transfer and plant control systems.

  14. Peak power scaling of thulium-doped ultrafast fiber laser systems

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2015-03-01

    We investigate challenges for scaling the output peak power of thulium-doped fiber chirped-pulse amplification systems (FCPA) to and beyond the GW-level. A major limitation for reaching high peak powers in the 2 μm regime is the presence of strong water vapor absorption features that cause detrimental propagation effects in the spatial and the temporal domain. Based on the investigation and understanding of these effects mitigation strategies have been developed, that have been one of the keys to demonstrate a new record pulse peak power of more than 200 MW from a thulium-based ultrafast fiber laser. Future experiments can ultimately lead to a further increase of pulse peak power way beyond the GW-level.

  15. Financing Solar Thermal Power Plants

    SciTech Connect

    Price, H. W.; Kistner, R.

    1999-11-01

    The commercialization of concentrating solar power technology took a major step forward in the mid 1980s and early 1990s with the development of the SEGS plants in California. Over the years they have proven that parabolic trough power technologies are the most cost-effective approach for commercial scale solar power generation in the sunbelt countries of the world. However, the question must be asked why no additional solar power plants have been build following the bankruptcy of the developer of the SEGS projects, LUZ International Limited. Although many believe the SEGS projects were a success as a result of parabolic trough technology they employ, in truth, the SEGS projects were developed simply because they represented an attractive opportunity for investors. Simply stated, no additional projects have been developed because no one has been able to put together a similarly attractive financial package to potential investors. More than $1.2 billion in private capital was raised i n debt and equity financing for the nine SEGS plants. Investors and bankers who make these investments are the real clients for solar power technologies. They are not interested in annual solar to electric efficiencies, but in risk, return on investments, and coverage ratios. This paper will take a look at solar power projects from the financier's perspective. The challenge in moving forward is to attract private investors, commercial lenders, and international development agencies and to find innovative solutions to the difficult issues that investment in the global power market poses for solar power technologies.

  16. Development and Production of a 201 MHz, 5.0 MW Peak Power Klystron

    SciTech Connect

    Aymar, Galen; Eisen, Edward; Stockwell, Brad; Begum, rasheda; Lenci, Steve; Eisner, Rick; Cesca, Eugene

    2016-01-01

    Communications & Power Industries LLC has designed and manufactured the VKP-8201A, a high peak power, high gain, VHF band klystron. The klystron operates at 201.25 MHz, with 5.0 MW peak output power, 34 kW average output power, and a gain of 36 dB. The klystron is designed to operate between 1.0 MW and 4.5 MW in the linear range of the transfer curve. The klystron utilizes a unique magnetic field which enables the use of a proven electron gun design with a larger electron beam requirement. Experimental and predicted performance data are compared.

  17. An air-Brayton nuclear-hydrogen combined-cycle peak-and base-load electric plant

    SciTech Connect

    Forsberg, Charles W

    2008-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature nuclear reactor and hydrogen produced by the high-temperature reactor to meet base-load and peak-load electrical demands. For base-load electricity production, air is compressed; flows through a heat exchanger, where it is heated to between 700 and 900 C; and exits through a high-temperature gas turbine to produce electricity. The heat, via an intermediate heat-transport loop, is provided by a high-temperature reactor. The hot exhaust from the Brayton-cycle turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, after nuclear heating of the compressed air, hydrogen is injected into the combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. This process increases the plant efficiency and power output. Hydrogen is produced at night by electrolysis or other methods using energy from the nuclear reactor and is stored until needed. Therefore, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the hydrogen and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the grid.

  18. Toxic releases from power plants

    SciTech Connect

    Rubin, E.S.

    1999-09-15

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results.

  19. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  20. Solar thermionic power plant. II

    NASA Astrophysics Data System (ADS)

    Abou-Elfotouh, F.; Almassary, M.; Fatmi, H.

    It has been shown that the geometric configuration of a central receiver solar electric power plant SEPP can be optimized for the high power density and concentration required for the operation of a thermionic converter. The working period of a TDC constructed on the top of a SEPP in Riyadh area is 5 to 6 hours per day in winter and 6 to 8 hours in summer. At the 25 percent conversion efficiency achieved by a laboratory test model, a reduction in the cost per unit power of 8-12 per cent is expected. The spectral behavior and work functions of the working surface of the thermionic electrodes were investigated

  1. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  2. The Prognostic Value of Peak Cardiac Power Output in Chinese Patients with Chronic Heart Failure

    PubMed Central

    Ma, Wenlin; Gong, Zhu; Ni, Yi; Zhang, Xiaoyu; Xu, Wenjun; Jiang, Jinfa; Che, Lin; Xu, Jiahong; Yan, Wenwen; Zhou, Lin; Li, Guanghe; Zhang, Qiping; Wang, Lemin

    2016-01-01

    Background Cardiopulmonary exercise testing has been widely used to risk stratify patients with chronic heart failure (CHF). Peak oxygen consumption (peakVO2) was regarded as a powerful predictor of survival, as it is a surrogate for peak cardiac output (CO), which by most is considered the “true” measure of heart failure. Therefore, it is reasonable to hypothesize that CO is an even stronger predictor than peak VO2. The present study is aimed to investigate the prognostic value of peak cardiac power output (peak CPO) in comparison with peakVO2 in Chinese patients with CHF. Methods Participants provided written informed consent to participate in this study. Totally 129 patients with CHF underwent symptom-limited cardiopulmonary exercise testing (CPET), with mean age 59.1±11.4 years, 87.6% male, 57.4% ischemic etiology, body mass index (BMI) 24.7±3.7 kg/m2 and LVEF 38±9%. CO was measured using an inert gas rebreathing method. The primary endpoints are cardiac deaths. Results Over median 33.7-month follow-up, 19 cardiac deaths were reported. Among peak VO2,VE/VCO2 slope and Peak CPO, their area under ROC were 0.64, 0.67, 0.68, respectively (Ρ<0.05).The optimal thresholds for predicting cardiac deaths were peak VO2≤13.4 ml.kg-1.min-1, and VE/VCO2 slope≥39.3 and peak CPO≤ 1.1 respectively by ROC analysis. Finally, in patients with a peak VO2≤13.4 ml.kg-1.min-1 those with peak CPO>1.1W had better survival than those with peak CPO ≤ 1.1W. However, by multivariate analysis adjusted for age, sex, BMI, resting heart rate, LVMI, LVEF, Peak CPO was not an independent predictor of cardiac deaths (P> 0.05). Conclusions Peak CPO was not a predictor of cardiac death in Chinese CHF patients. PMID:26808510

  3. High-speed power training in older adults: A shift of the external resistance at which peak power is produced

    PubMed Central

    Sayers, Stephen P.; Gibson, Kyle

    2013-01-01

    Studies have shown that power training increases peak power in older adults. Evaluating the external resistance (% one repetition-maximum [1RM]) at which peak power is developed is critical given that changes in the components of peak power (force and velocity) are dependent on the %1RM at which peak power occurs. The purpose of this study was to compare the changes in peak power (and the external resistance at which peak power occurred) after 12 weeks of high-speed power training versus traditional slow-speed strength training. Seventy-two older men and women were randomized to high-speed power training at 40% of the one-repetition maximum (1RM) (HSPT: n=24 [70.8±6.8 yrs]); traditional RT at 80% 1RM (STR: n=22 [68.6±7.8 yrs]); or control (CON: n=18 [71.5±6.1 yrs]). Measures of muscle performance were obtained at baseline and after the 12-week training intervention. Changes in muscle power and 1RM strength improved similarly with both HSPT and SSST, but HSPT shifted the external resistance at which peak power was produced to a lower external resistance (from 67%1RM to 52%1RM) compared to SSST (from 65%1RM to 62%1RM)(p<0.05), thus increasing the velocity component of peak power (change: HSPT=0.18±0.21m/s; SSST=−0.03±0.15 m/s)(p<0.05). Because sufficient speed of the lower limb is necessary for functional tasks related to safety (crossing a busy intersection, fall prevention), HSPT should be implemented in older adults to improve power at lower external resistances, thus increasing the velocity component of power and making older adults safer in their environment. These data provide clinicians with the necessary information to tailor exercise programs to the individual needs of the older adult, affecting the components of power. PMID:23897022

  4. Combined compressed air storage-low BTU coal gasification power plant

    DOEpatents

    Kartsounes, George T.; Sather, Norman F.

    1979-01-01

    An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.

  5. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  6. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    PubMed

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power. PMID:24007048

  7. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power

    NASA Astrophysics Data System (ADS)

    Binh, P. H.; Trong, V. D.; Renucci, P.; Marie, X.

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  8. Single-frequency polarized eye-safe all-fiber laser with peak power over kilowatt

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2014-04-01

    An all-fiber, single-frequency, linearly polarized, high peak-power, pulsed laser at 1,540 nm for Doppler wind lidar is presented. This laser is composed of a single-frequency, narrow-linewidth external cavity diode laser, and multistage fiber amplifiers. A peak power of 1.08 kW and a pulse width of 500 ns at 10 kHz repetition rate are achieved, which is the highest peak power with a linewidth of 800 kHz in erbium-doped silica fiber to our knowledge. The beam quality of M 2 < 1.3 and a polarization extinction ratio over 16 dB are obtained. This laser will be employed in a compact long-range coherent Doppler wind lidar.

  9. Tunable, high peak power terahertz radiation from optical rectification of a short modulated laser pulse.

    PubMed

    Gordon, Daniel F; Ting, Antonio; Alexeev, Ilya; Fischer, Richard; Sprangle, Phillip; Kapetenakos, Christos A; Zigler, Arie

    2006-07-24

    A new way of generating high peak power terahertz radiation using ultra-short pulse lasers is demonstrated. The optical pulse from a titanium:sapphire laser system is stretched and modulated using a spatial filtering technique to produce a several picosecond long pulse modulated at the terahertz frequency. A collinear type II phase matched interaction is realized via angle tuning in a gallium selenide crystal. Peak powers of at least 1.5 kW are produced in a 5 mm thick crystal, and tunability is demonstrated between 0.7 and 2.0 THz. Simulations predict that 150 kW of peak power can be produced in a 5 mm thick crystal. The technique also allows for control of the terahertz bandwidth. PMID:19516863

  10. Electron-Beam Switches For A High Peak Power Sled-II Pulse Compressor

    SciTech Connect

    Hirshfield, Jay, L.

    2015-12-02

    Omega-P demonstrated triggered electron-beam switches on the L=2 m dual-delay-line X-band pulse compressor at Naval Research Laboratory (NRL). In those experiments, with input pulses of up to 9 MW from the Omega-P/NRL X-band magnicon, output pulses having peak powers of 140-165 MW and durations of 16-20 ns were produced, with record peak power gains M of 18-20. Switch designs are described based on the successful results that should be suitable for use with the existing SLAC SLED-II delay line system, to demonstrate C=9, M=7, and n>>78%, yielding 173ns compressed pulses with peak powers up to 350MW with input of a single 50-MW.

  11. Peak Power Output Test on a Rowing Ergometer: A Methodological Study.

    PubMed

    Metikos, Boris; Mikulic, Pavle; Sarabon, Nejc; Markovic, Goran

    2015-10-01

    We aimed to examine the reliability and validity of the peak power output test on a rowing ergometer (Concept II Model D Inc.) and to establish the "optimal resistance" at which this peak power output was observed in 87 participants with varying levels of physical activity and rowing expertise: 15 male and 12 female physically inactive students (age: 21 ± 2 years), 16 male and 20 female physically active students (age: 23 ± 2 years), and 15 male and 9 female trained rowers (age: 19 ± 2 years). The participants performed countermovement jump (CMJ) test on a force plate, followed by 3 maximal-effort rowing trials using the lowest, medium, and the highest adjustable resistance settings (i.e., "1", "5," and "10" on the resistance control dial on the ergometer) in randomized order. The test proved to be reliable (coefficients of variation: 2.6-6.5%; intraclass correlation coefficients: 0.87-0.98). The correlation coefficients between CMJ peak power and rowing peak power (both in watts per kilogram) were fairly consistent across all 3 groups of participants and resistance levels, ranging between r = 0.70 and r = 0.78. Finally, the highest power output was observed at the highest resistance setting in 2 nonathletic groups (p < 0.01), whereas rowers seem to produce the highest power output at the moderate-resistance setting. We conclude that the power output test on a Concept II rowing ergometer may serve as a reliable and valid tool for assessing whole-body peak power output in untrained individuals and rowing athletes. PMID:25785705

  12. Dynamical behavior and peak power reduction in a pair of energy storage oscillators coupled by delayed power price

    NASA Astrophysics Data System (ADS)

    Fukunaga, Tomohiro; Imasaka, Tomoaki; Ito, Akira; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2016-02-01

    This paper investigates dynamics of a management system for controlling a pair of energy storages. The system involves the following two characteristics: each storage behaves in a manner that reduces the number of charge noncharge cycles and begins to be charged when the price of power is lower than a particular price threshold. The price is proportional to the past total power flow from a power grid to all storages. A peak of the total power flow occurs when these storages are charged simultaneously. From the viewpoint of nonlinear dynamics, the energy storages can be considered as relaxation oscillators coupled by a delay connection. Our analytical results suggest that the peak can be reduced by inducing an antiphase synchronization in coupled oscillators. We confirm these analytical results through numerical simulations. In addition, we numerically investigate the dynamical behavior in 10 storages and find that time delay in the connection is important in reducing the peak.

  13. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  14. World electric power plants database

    SciTech Connect

    2006-06-15

    This global database provides records for 104,000 generating units in over 220 countries. These units include installed and projected facilities, central stations and distributed plants operated by utilities, independent power companies and commercial and self-generators. Each record includes information on: geographic location and operating company; technology, fuel and boiler; generator manufacturers; steam conditions; unit capacity and age; turbine/engine; architect/engineer and constructor; and pollution control equipment. The database is issued quarterly.

  15. Wave-operated power plant

    SciTech Connect

    Ghesquiere, H.

    1980-08-12

    This wave-operated power plant comprises a perforated caisson breakwater in which propellers, or turbines, are mounted in the perforations or openings and drives hydraulic pumps connected thereto, which in turn drives a hydraulic motor coupled to an electric generator. One-way flap valves are mounted in the openings. Some of said flap valves allow the rushing waves to enter the caisson, while the other flap valves allow the water to flow out of the caisson.

  16. Push-pull converter with energy saving circuit for protecting switching transistors from peak power stress

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T. (Inventor)

    1981-01-01

    In a push-pull converter, switching transistors are protected from peak power stresses by a separate snubber circuit in parallel with each comprising a capacitor and an inductor in series, and a diode in parallel with the inductor. The diode is connected to conduct current of the same polarity as the base-emitter juction of the transistor so that energy stored in the capacitor while the transistor is switched off, to protect it against peak power stress, discharges through the inductor when the transistor is turned on, and after the capacitor is discharges through the diode. To return this energy to the power supply, or to utilize this energy in some external circuit, the inductor may be replaced by a transformer having its secondary winding connected to the power supply or to the external circuit.

  17. Capacity and peak power degradation of lead-acid battery under simulated electric vehicle operations

    NASA Astrophysics Data System (ADS)

    Lee, J.; Tummillo, A. F.; Miller, J. F.; Hornstra, F.; Christianson, C. C.

    In a program supported by the Electric Power Research Institute, controlled laboratory tests were conducted at Argonne to evaluate the effects of selected EV application factors on the performance and life of the EV-2300 lead-acid battery. These application factors included simulated driving profile discharges with different levels of peak power demands for vehicle acceleration, long rest times after charge or discharge, and different methods of recharging. The performance and life variations among cells and modules in a full-scale battery pack were also examined. Statistical methods were used to analyze the laboratory test data. The key factors affecting the performance and life of the battery were identified, and the rates of capacity and power degradation were quantified using multiple regression techniques. The analyses show that the most significant factors were peak power demand levels and cell location within the six-cell modules. The effects of charge method and rest times were found to be small.

  18. 2. VIEW OF POWER PLANT LOOKING SOUTHEAST. Potomac Power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF POWER PLANT LOOKING SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  19. Robust Short-Pulse, High-Peak-Power Laser Transmitter for Optical Communications

    NASA Technical Reports Server (NTRS)

    Wright, Malcolm W.

    2009-01-01

    We report on a pulsed fiber based master oscillator power amplifier laser at 1550 nm to support moderate data rates with high peak powers in a compact package suitable for interplanetary optical communications. To accommodate pulse position modulation, the polarization maintaining laser transmitter generates pulses from 0.1 to 1 ns with variable duty cycle over a pulse repetition frequency range of 10 to 100 MHz.

  20. Performance of the Carrisa 6-MW photovoltaic power plant

    SciTech Connect

    Shushnar, G.J.; Caldwell, J.H.; Hoff, T.E.

    1986-01-01

    Photovoltaic (PV) power generation for the electric utility industry will soon become a commercial reality in the United States. Arco Solar's Carrisa 6.4-MWp (dc at standard test conditions (STC)) PV Power Plant is the world's largest. As such, the lessons to be learned from its performance are significant. The energy output of the plant for 1 yr has been analyzed and compared to plant performance predictions. This comparison required a prediction of insolation, ambient temperature, and wind speed. The results of the study indicate the performance of a PV power plant is highly predictable. In addition, this power plant has been highly reliable with a high capacity factor. Pacific Gas and Electric (PG and E), the utility that purchases Carrisa's energy, has reported capacity factors exceeding 65% when PG and E's hourly load is 85% or greater than their system peak load.

  1. RF peak power reduction in CAIPIRINHA excitation by interslice phase optimization.

    PubMed

    Sbrizzi, Alessandro; Poser, Benedikt A; Tse, Desmond H Y; Hoogduin, Hans; Luijten, Peter R; van den Berg, Cornelis A T

    2015-11-01

    The purpose of this work was to show that the overall peak power of RF pulses for CAIPIRINHA excitation can be substantially reduced by applying interslice phase relaxation. The optimal phases are scan dependent and can be quickly calculated by the proposed method. The multi-band RF pulse design is implemented as the minimization of a linear objective function with quadratic constraints. The interslice phase is considered to be a variable for optimization. In the case of a phase cycling scheme (CAIPIRINHA), the peak power is considered over all pulses. The computation time (about 1 s) is compatible with online RF pulse design. It is shown that the optimal interslice phases depend on the CAIPIRINHA scheme used and that RF peak power is reduced when the CAIPIRINHA phase cycling is taken into account in the optimization. The proposed method is extremely fast and results in RF pulses with low peak power for CAIPIRINHA excitation. The MATLAB implementation is given in the appendix; it allows for online determination of scan-dependent phase parameters. Furthermore, the method can be easily extended to pTx shimming systems in the context of multi-slice excitations, and this possibility is included in the software. PMID:26387856

  2. Peaks in the CMBR Power Spectrum II: Physical Interpretation for any Cosmological Scenario

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2013-06-01

    In a previous paper (part I), the mathematical properties of the cosmic microwave background radiation (CMBR) power spectrum which presents oscillations were discussed. Here, we discuss the physical interpretation: a power spectrum with oscillations is a rather normal characteristic expected from any fluid with clouds of overdensities that emit/absorb radiation or interact gravitationally with the photons, and with a finite range of sizes and distances for those clouds. The standard cosmological interpretation of "acoustic" peaks is just a particular case; peaks in the power spectrum might be generated in scenarios within some alternative cosmological model that have nothing to do with oscillations due to gravitational compression in a fluid. We also calculate the angular correlation function of the anisotropies from the Wilkinson Microwave Anisotropy Probe (WMAP)-7 yr and ACT data, in an attempt to derive the minimum number of parameters a polynomial function should have to fit it: a set of polynomial functions with a total of ≈ 6 free parameters, apart from the amplitude, is enough to reproduce the first two peaks. However, the standard model with six tunable free parameters also reproduces higher-order peaks, giving the standard model a higher confidence. At present, while no simple function with six free parameters is found to give a fit as good as the one given by the standard cosmological model, we may consider the predictive power of the standard model beyond an instrumentalist approach (such as the Ptolemaic astronomy model of the orbits of the planets).

  3. A constant-load ergometer for measuring peak power output and fatigue.

    PubMed

    Williams, J H; Barnes, W S; Signorile, J F

    1988-11-01

    A constant-load cycle ergometer was constructed that allows maximal power output to be measured for each one-half pedal revolution during brief, high-intensity exercise. To determine frictional force, an electronic load cell was attached to the resistance strap and the ergometer frame. Dead weights were attached to the strap's free end. Flywheel velocity was recorded by means of a magnetic switch and two magnets placed on the pedal sprocket. Pedaling resulted in magnetically activated switch closures, which produced two electronic pulses per pedal revolution. Pulses and load cell output were recorded (512 Hz), digitized, and stored on disk via microcomputer. Power output was later computed for each pair of adjacent pulses, representing average power per one-half pedal revolution. Power curves generated for each subject were analyzed for peak power output (the highest one-half pedal revolution average), time to peak power, power fatigue rate and index, average power, and total work. Thirty-eight males performed two 15-s tests separated by 15 min (n = 16) or 48 h (n = 22). Peak power output ranged from 846.0 to 1,289.1 W. Intraclass correlation analysis revealed high test-retest reliability for all parameters recorded on the same or different days (R = 0.91-0.97). No significant differences (P greater than 0.05) were noted between parameter means of the first and second tests. These results indicate that the ergometer described provides a means for conveniently and reliably assessing short-term power output and fatigue. PMID:3209578

  4. Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS

    DOE PAGESBeta

    Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.

    2015-03-04

    Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator thatmore » interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27)0.63 = 0.85+0.03-0.03.« less

  5. Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS

    SciTech Connect

    Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.

    2015-03-04

    Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters Ωm, σ8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤ 5%, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (Ωm, σ8) plane reduces by a factor of ≈ two, compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8m/0.27)0.63 = 0.85+0.03-0.03.

  6. Single frequency high-peak-power fiber laser by suppression of SBS

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zheng, Wanguo; Deng, Ying; Yan, Shuo; Xu, Jianqiu; Tang, Yulong

    2015-08-01

    We report a single frequency Yb-doped fiber laser with a high peak power at the wavelength of 1064 nm. The laser consists of a single-frequency diode seed and two amplifier stages. In the pre-amplifier, double-pass amplification is adopted by integrating a specially designed fiber Bragg grating to filter out amplified spontaneous emission and achieve high signal-to-noise ratio. The stimulation Brillouin scattering is suppressed by the linewidth broadening due to the cross phase modulation between the signals propagated in the backward and forward directions. In the boost amplifier, a disaster area of the stimulated Brillouin scattering is found and is stepped over by management of both the signal and pump power. The laser generates the peak power of 2.2 kW in single-mode linearly polarized output with a linewidth of around 230 MHz.

  7. Narrow linewidth picosecond pulsed laser with mega-watt peak power at UV wavelength

    SciTech Connect

    Liu, Yun; Huang, Chunning; Deibele, Craig Edmond

    2013-01-01

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system to generate 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser is based on a direct electro-optic modulation of a fiber laser output. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of macropulses with tunable pulse duration. The light output form the amplifier is converted to 355 nm and over 1 MW UV peak power is obtained when the laser is operating in a 5- s/10-Hz macropulse mode. The laser output has a transform limited spectrum bandwidth with a very narrow linewidth of individual laser mode. The immediate application of the laser system is the laser assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS).

  8. High peak power (≥10 mW) quantum cascade superluminescent emitter

    SciTech Connect

    Aung, Nyan L. Yu, Zhouchangwan; Yu, Ye; Liu, Peter Q.; Gmachl, Claire F.; Wang, Xiaojun; Fan, Jen-Yu; Troccoli, Mariano

    2014-12-01

    We report room temperature and milliwatt range mid-infrared superluminescent emission at 5 μm from Quantum Cascade (QC) devices. To achieve high power superluminescence, we utilize an ultrastrong coupling QC laser design, and employ a cavity formed by the combination of a 17° tilted cleaved facet and a wet etched rounded and sloped facet to introduce additional mirror loss. For pulsed mode operation, a 8 mm long and 15 μm wide device achieves ∼1.3 mW peak power at 300 K and a 25 μm wide device with Si{sub 3}N{sub 4} anti-reflection coated rounded facet achieves ∼10.2 mW peak optical output power at 250 K.

  9. Two-phase low-power analogue CMOS peak detector with high dynamic range

    NASA Astrophysics Data System (ADS)

    Malankin, E.

    2016-02-01

    A low-power two-phase peak detector with wide dynamic range was developed. The PD was designed on the basis ofthe CMOS UMC 180 nm process. This block is considered as a part of the read-out electronics of the CBM experiment at upcoming FAIR accelerator (Germany). Peak detector has the following advantages: wide dynamic range of 5 - 1000 mV, low power consumption of 500 µW. The designed PD meets the requirements to the muon chamber read-out electronics of the CBM experiment. Due to the area efficiency (100×90 μm2) and low power consumption it can be used in different applications for high-energy physics read-out electronics.

  10. Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power.

    PubMed

    Gaida, C; Gebhardt, M; Stutzki, F; Jauregui, C; Limpert, J; Tünnermann, A

    2016-09-01

    Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment. PMID:27607990

  11. Power plant intake entrainment analysis

    SciTech Connect

    Edinger, J.E.; Kolluru, V.S.

    2000-04-01

    Power plant condenser cooling water intake entrainment of fish eggs and larvae is becoming an issue in evaluating environmental impacts around the plants. Methods are required to evaluate intake entrainment on different types of water bodies. Presented in this paper is a derivation of the basic relationships for evaluating entrainment from the standing crop of fish eggs and larvae for different regions of a water body, and evaluating the rate of entrainment from the standing crop. These relationships are coupled with a 3D hydrodynamic and transport model that provides the currents and flows required to complete the entrainment evaluation. Case examples are presented for a simple river system, and for the more complex Delaware River Estuary with multiple intakes. Example evaluations are made for individual intakes, and for the cumulative impacts of multiple intakes.

  12. Peak fire temperatures and effects on annual plants in the Mojave Desert

    USGS Publications Warehouse

    Brooks, M.L.

    2002-01-01

    Very little is known about the behavior and effects of fire in the Mojave Desert, because fire was historically uncommon. However, fire has become more frequent since the 1970s with increased dominance of the invasive annual grasses Bromus rubens and Schismus spp., and land managers are concerned about its ecological effect. In this paper, I describe patterns of peak fire temperature and their effect on annual plants in creosote bush scrub vegetation of the Mojave Desert. Temperatures were monitored among microhabitats and distances from the soil surface, and between spring and summer. Microhabitats ranged from high amounts of fuel beneath creosote bush (Larrea tridentata) canopies, to intermediate amounts at the canopy drip line, to low amounts in the interspaces between them. Distances from the soil surface were within the vertical range where most annual plant seeds occur (-2, 0, 5, and 10 cm). I also compare temperature patterns with postfire changes in soil properties and annual plant biomass and species richness to infer potential mechanisms by which fires affect annual plants. Peak fire temperatures were most affected by the microhabitat fuel gradient, and the effects of fire on annual plants varied among microhabitats. Beneath creosote bushes, lethal fire temperatures for annual plant seeds occurred above- and belowground, resulting in four postfire years of reduced annual plant biomass and species richness due most likely to seed mortality, especially of Bromus rubens and native forbs. At the canopy drip line, lethal fire temperatures occurred only aboveground, reducing annual plant biomass for 1 yr and species richness for 2 yr, and increasing biomass of Schismus sp., the alien forb Erodium cicutarium, and native annuals after 3 yr. Negligible changes were caused by fire in interspaces or between spring and summer. Fire effects models for creosote bush scrub vegetation must account for patterns of peak fire temperature along the shrub-intershrub gradient

  13. Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Brophy, John R.

    2013-01-01

    Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.

  14. State power plant productivity programs

    NASA Astrophysics Data System (ADS)

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Michigan are described. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility.

  15. Hybrid solar powered desalination plant

    SciTech Connect

    Hamester, H.L.; Husseiny, A.; Lumdstrom, J.; La Porta, C.; McLagan, G.

    1981-01-01

    A solar powered sea water desalination system design is described. The commercial size plant is specified to provide at least 1.8*10/sup 6/m/sup 3//year of product water (<500 kg/m/sup 3/ total dissolved solids) from sea water containing 44,000 kg/m/sup 3/ total dissolved solids. The basis of the design is a two-stage desalination system employing membrane technologies. Membrane technologies were selected since they require about a factor of five less energy than desalination technologies which use distillation.

  16. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW. PMID:25979740

  17. Combining microwave beams with high peak power and long pulse duration

    SciTech Connect

    Li Guolin; Shu Ting; Yuan Chengwei; Zhang Jun; Jin Zhenxing; Yang Jianhua

    2010-03-15

    The beam combining results with a metal dichroic plate illuminated by the S/X band gigawatt level high power microwaves are presented. According to the previous experiments, the microwave breakdown problem becomes obvious when the peak power and the pulse duration increase, thus, several methods for enhancing the power handling capacity have been considered, and the metal dichroic plates are redesigned to handle the S/X band high power microwaves. Then the design, fabrication, and testing procedure are discussed in detail. The further experimental results reveal that, operated on the self-built accelerator Spark-04, the radiated powers from the S and X band sources have reached 1.8 GW with pulse durations of about 80 ns, and both beams have been successfully operated on the selected dichroic plate without microwave breakdown.

  18. A torque controlled high speed flywheel energy storage system for peak power transfer in electric vehicles

    SciTech Connect

    Schaible, U.; Szabados, B.

    1994-12-31

    This paper provides a design outline and implementation procedure for a flywheel energy storage system using a high speed interior permanent magnet synchronous machine, torque-controlled through the use of a vector control algorithm. The proposed flywheel energy storage system can be used to meet the peak energy requirements of an electric vehicle during both acceleration and regenerative braking. By supplying the peak energy requirements from a secondary source, the life cycle of the electric vehicle`s batteries may be extended considerably. A torque control algorithm is presented and preliminary implementation through a commercially available microcontroller is described. Preliminary testing of the proposed system has been very promising and has proven that bidirectional peak power transfer can be rapidly accomplished. 4 refs.

  19. Sabotage at Nuclear Power Plants

    SciTech Connect

    Purvis, James W.

    1999-07-21

    Recently there has been a noted worldwide increase in violent actions including attempted sabotage at nuclear power plants. Several organizations, such as the International Atomic Energy Agency and the US Nuclear Regulatory Commission, have guidelines, recommendations, and formal threat- and risk-assessment processes for the protection of nuclear assets. Other examples are the former Defense Special Weapons Agency, which used a risk-assessment model to evaluate force-protection security requirements for terrorist incidents at DOD military bases. The US DOE uses a graded approach to protect its assets based on risk and vulnerability assessments. The Federal Aviation Administration and Federal Bureau of Investigation conduct joint threat and vulnerability assessments on high-risk US airports. Several private companies under contract to government agencies use formal risk-assessment models and methods to identify security requirements. The purpose of this paper is to survey these methods and present an overview of all potential types of sabotage at nuclear power plants. The paper discusses emerging threats and current methods of choice for sabotage--especially vehicle bombs and chemical attacks. Potential consequences of sabotage acts, including economic and political; not just those that may result in unacceptable radiological exposure to the public, are also discussed. Applicability of risk-assessment methods and mitigation techniques are also presented.

  20. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect

    Cochran, J.

    2014-08-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  1. Flexible Coal: An Example Evolution from Baseload to Peaking Plant (Presentation)

    SciTech Connect

    Cochran, J.

    2014-05-01

    Twenty-first century power systems, with higher penetration levels of low-carbon energy, smart grids, and other emerging technologies, will favor resources that have low marginal costs and provide system flexibility (e.g., the ability to cycle on and off to follow changes in variable renewable energy plant output). Questions remain about both the fate of coal plants in this scenario and whether they can cost-effectively continue to operate if they cycle routinely. The experience from the CGS plant demonstrates that coal plants can become flexible resources. This flexibility - namely the ability to cycle on and off and run at lower output (below 40% of capacity) - requires limited hardware modifications but extensive modifications to operational practice. Cycling does damage the plant and impact its life expectancy compared to baseload operations. Nevertheless, strategic modifications, proactive inspections and training programs, among other operational changes to accommodate cycling, can minimize the extent of damage and optimize the cost of maintenance. CGS's cycling, but not necessarily the associated price tag, is replicable. Context - namely, power market opportunities and composition of the generation fleet - will help determine for other coal plants the optimal balance between the level of cycling-related forced outages and the level of capital investment required to minimize those outages. Replicating CGS's experience elsewhere will likely require a higher acceptance of forced outages than regulators and plant operators are accustomed to; however, an increase in strategic maintenance can minimize the impact on outage rates.

  2. Power and peak blood lactate at 5050 m with 10 and 30 s 'all out' cycling.

    PubMed

    Grassi, B; Mognoni, P; Marzorati, M; Mattiotti, S; Marconi, C; Cerretelli, P

    2001-07-01

    Anecdotal observations suggest that the reduction in peak lactate accumulation in blood ([La]b peak) after exhausting exercise, in chronic hypoxia vs. normoxia, may be related to the duration of the exercise protocol, being less pronounced after short supramaximal exercise than after incremental exercise (IE) lasting several minutes. To test this hypothesis, six healthy male Caucasians (age 36.8 +/- 7.3, X +/- SD) underwent three exercise protocols on a cycle ergometer, at sea level (SL) and after 21 +/- 10 days at 5050 m altitude (ALT): (1) 10 s, (2) 30 s 'all out' exercise and (3) IE leading to exhaustion in approximately 20-25 min. 'Average' power output (P) was calculated for 10 or 30 s 'all out'; maximal power output (Pmax) was determined for IE. Lactate concentration in arterialized capillary blood ([La]b) was measured at rest and at different times during recovery; the highest [La]b during recovery was taken as [La]b peak. No significant differences in P were observed between SL and ALT, for either 10 or 30 s 'all out' exercise; Pmax during IE was significantly lower at ALT than at SL. [La]b peak after 10 s 'all out' was unaffected by chronic hypoxia (7.0 +/- 0.9 at ALT vs. 6.3 +/- 1.8 mmol x L(-1) at SL). After 30 s 'all out' the [La]b peak decrease, at ALT (10.6 +/- 0.6 mmol x L(-1)) vs. SL (12.9 +/- 1.4 mmol x L(-1)), was only approximately 50% of that observed for IE (6.7 +/- 1.6 mmol x L(-1) vs. 11.3 +/- 2.8 mmol x L(-1)). Muscle power output and blood lactate accumulation during short supramaximal exercise are substantially unaffected by chronic hypoxia. PMID:11472305

  3. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  4. Laser-Damage-Resistant Photoalignment Layers for High-Peak-Power Liquid Crystal Device Applications

    SciTech Connect

    Marshall, K.L.; Gan, J.; Mitchell, G.; Papernov, S.; Rigatti, A.L.; Schmid, A.W.; Jacobs, S.D.

    2008-10-23

    Large-aperture liquid crystal (LC) devices have been in continuous use since 1995 as polarization control devices in the 40-TW, 351-nm, 60-beam OMEGA Nd:glass laser system at the University of Rochester’s Laboratory for Laser Energetics. The feasibility of using a noncontacting alignment method for high-peak-power LC laser optics by irradiation of a linearly photopolymerizable polymer with polarized UV light was recently investigated. These materials were found to have surprisingly large laser-damage thresholds at 1054 nm, approaching that of bare fused silica (30 to 60 J/cm^2). Their remarkable laser-damage resistance and ease in scalability to large apertures of these photoalignment materials, along with the ability to produce multiple alignment states by photolithographic patterning, opens new doorways for their application in LC devices for optics, photonics, and high-peak-power laser applications.

  5. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    SciTech Connect

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype, we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.

  6. Cost-effective retrofit technology for reducing peak power demand in small and medium commercial buildings

    DOE PAGESBeta

    Nutaro, James J.; Fugate, David L.; Kuruganti, Teja; Sanyal, Jibonananda; Starke, Michael R.

    2015-05-27

    We describe a cost-effective retrofit technology that uses collective control of multiple rooftop air conditioning units to reduce the peak power consumption of small and medium commercial buildings. The proposed control uses a model of the building and air conditioning units to select an operating schedule for the air conditioning units that maintains a temperature set point subject to a constraint on the number of units that may operate simultaneously. A prototype of this new control system was built and deployed in a large gymnasium to coordinate four rooftop air conditioning units. Based on data collected while operating this prototype,more » we estimate that the cost savings achieved by reducing peak power consumption is sufficient to repay the cost of the prototype within a year.« less

  7. Stack and dump: Peak-power scaling by coherent pulse addition in passive cavities

    NASA Astrophysics Data System (ADS)

    Breitkopf, S.; Eidam, T.; Klenke, A.; Carstens, H.; Holzberger, S.; Fill, E.; Schreiber, T.; Krausz, F.; Tünnermann, A.; Pupeza, I.; Limpert, J.

    2015-10-01

    During the last decades femtosecond lasers have proven their vast benefit in both scientific and technological tasks. Nevertheless, one laser feature bearing the tremendous potential for high-field applications, delivering extremely high peak and average powers simultaneously, is still not accessible. This is the performance regime several upcoming applications such as laser particle acceleration require, and therefore, challenge laser technology to the fullest. On the one hand, some state-of-the-art canonical bulk amplifier systems provide pulse peak powers in the range of multi-terawatt to petawatt. On the other hand, concepts for advanced solid-state-lasers, specifically thin disk, slab or fiber systems have shown their capability of emitting high average powers in the kilowatt range with a high wall-plug-efficiency while maintaining an excellent spatial and temporal quality of the output beam. In this article, a brief introduction to a concept for a compact laser system capable of simultaneously providing high peak and average powers all along with a high wall-plug efficiency will be given. The concept relies on the stacking of a pulse train emitted from a high-repetitive femtosecond laser system in a passive enhancement cavity, also referred to as temporal coherent combining. In this manner, the repetition rate is decreased in favor of a pulse energy enhancement by the same factor while the average power is almost preserved. The key challenge of this concept is a fast, purely reflective switching element that allows for the dumping of the enhanced pulse out of the cavity. Addressing this challenge could, for the first time, allow for the highly efficient extraction of joule-class pulses at megawatt average power levels and thus lead to a whole new area of applications for ultra-fast laser systems.

  8. Single-mode single-frequency high peak power all-fiber MOPA at 1550 nm

    NASA Astrophysics Data System (ADS)

    Kotov, L. V.; Likhachev, M. E.; Bubnov, M. M.; Paramonov, V. M.; Belovolov, M. I.; Lipatov, D. S.; Guryanov, A. N.

    2014-10-01

    In this Report, we present a record-high-peak-power single-frequency master oscillator power amplifier (MOPA) system based on a newly developed double-clad large-mode-area Yb-free Er-doped fiber (DC-LMA-EDF). A fiber Bragg grating wavelength-stabilized fiber-coupled diode laser at λ=1551 nm with ~2 MHz spectral width was used as the master oscillator. Its radiation was externally modulated with a 5 kHz repetition rate and 92 ns pulse duration and then amplified in a core-pumped Er-doped fiber amplifier up to an average power of 4 mW. The amplified spontaneous emission (ASE) generated at the last preamplifier stage was suppressed by a narrow-band (0.7 nm) DWDM filter. The last MOPA stage was based on the recently developed single-mode DC-LMA-EDF with a mode field diameter of 25 microns and pump clad-absorption of 3 dB/m at λ=980 nm. The pump and the signal were launched into this fiber through a commercial pump combiner in a co-propagating amplifier scheme. At first, we used a 3-m long DC-LMAEDF. In such configuration, a peak power of 800 W was achieved at the output of the amplifier together with a ~ 12 % pump conversion slope efficiency. Further power scaling was limited by SBS. After that we shortened the fiber length to 1 m. As a result, owing to large unabsorbed pump power, the efficiency decreased to ~5 %. However, a peak power of more than 3.5 kW was obtained before the SBS threshold. In this case, the pulse shape changed and its duration decreased to ~60 ns owing to inversion depletion after propagation of the forward front of the pulse. To the best of our knowledge, the peak power of more than 3.5 kW reported here is the highest value ever published for a single-frequency single-mode silica-based fiber laser system operating near λ=1550 nm.

  9. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed. PMID:27131709

  10. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications

    NASA Astrophysics Data System (ADS)

    Reghu, T.; Mandloi, V.; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  11. Design and cold testing of a high peak power x-band gyroklystron

    SciTech Connect

    Lawson, W.; Calame, J.; Granatstein, V.L.; Latham, P.E.; McAdoo, J.; Park, G.S.; Striffler, C.D.; Williams, F.J.; Chu, K.R.; Seftor, J.L.

    1985-01-01

    The main goal of the University of Maryland's gyroklystron project is to develop an efficient, high power, high gain, phase controllable amplifier at 10 GHz. While peak powers of several hundred megawatts are ultimately of interest, our initial experimental design values include 30 MW of output power in 1 ..mu..s pulses with a gain in excess of 50 dB. The 30 MW power level represents an enhancement of almost three orders of magnitude over the current state-of-the-art in gyroklystron amplifiers. This enhancement will be achieved by going to high beam energies (..gamma..approx. =2) and overmoded cavities (TE/sub 01//sup 0/). Outlined in this report are the steps being taken to realize our goal.

  12. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  13. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  14. Aircraft Power-Plant Instruments

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Brombacher, W G

    1934-01-01

    This report supersedes NACA-TR-129 which is now obsolete. Aircraft power-plant instruments include tachometers, engine thermometers, pressure gages, fuel-quantity gages, fuel flow meters and indicators, and manifold pressure gages. The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described. A bibliography of important articles is included.

  15. Discovery of the correlation between peak episodic jet power and X-ray peak luminosity of the soft state in black hole transients

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yu, W.

    2015-08-01

    Episodic jets are usually observed in the intermediate state of black hole transients during their X-ray outbursts. Here we report the discovery of a strong positive correlation between the peak radio power of the episodic jet Pjet and the corresponding peak X-ray luminosity Lx of the soft state (in Eddington units) in a complete sample of the outbursts of black hole transients observed during the RXTE era of which data are available, which follows the relation log Pjet = (2.2 ± 0.3) + (1.6 ± 0.2) × log Lx. The transient ultraluminous X-ray source in M31 and HLX-1 in EXO 243-49 fall on the relation if they contain stellar-mass black hole and either stellar-mass black hole or intermediate-mass black hole, respectively. Besides, a significant correlation between the peak power of the episodic jet and the rate of increase of the X-ray luminosity dLx/dt during the rising phase of those outbursts is also found, following log Pjet = (2.0 ± 0.4) + (0.7 ± 0.2) × log dLx/dt. In GX 339-4 and H 1743-322 in which data for two outbursts are available, measurements of the peak radio power of the episodic jet and the X-ray peak luminosity (and its rate of change) shows similar positive correlations between outbursts, which demonstrate the dominant role of accretion over black hole spin in generating episodic jet power. On the other hand, no significant difference is seen among the systems with different measured black hole spin in current sample. This implies that the power of the episodic jet is strongly affected by non-stationary accretion instead of black hole spin characterized primarily by the rate of change of the mass accretion rate.

  16. A control system for improved battery utilization in a PV-powered peak-shaving system

    SciTech Connect

    Palomino, E; Stevens, J.; Wiles, J.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  17. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    NASA Technical Reports Server (NTRS)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak

  18. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  19. 15. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. PA-A-36692, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  20. 14. Power copy of drawing, August 21, 1915. POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Power copy of drawing, August 21, 1915. POWER PLANT EXTENSION, GENERAL PLANS. Drawing No. 4415, Facilities Engineering, Army Materials Technology Laboratory, Watertown, Massachusetts. - Watertown Arsenal, Building No. 60, Arsenal Street, Watertown, Middlesex County, MA

  1. Optical generation of single-cycle 10 MW peak power 100 GHz waves.

    PubMed

    Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban; Zhou, Chun; Hemmer, Michael; Reichert, Fabian; Zhang, Dongfang; Cankaya, Huseyin; Zapata, Luis E; Matlis, Nicholas H; Kärtner, Franz X

    2016-09-01

    We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources. PMID:27607709

  2. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  3. Optical emission and peak electromagnetic power radiated by negative return strokes in rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Quick, Mason G.; Krider, E. Philip

    2015-12-01

    Calibrated measurements of the optical radiation produced by negative return strokes in rocket-triggered lightning (RTL) have been made in the visible and near infrared (VNIR) spectral region in correlation with currents measured at the channel base. Using a simple transmission-line model, the currents have been used to estimate the peak electromagnetic (EM) fields and Poynting power that are radiated in the time-domain (i.e. from about 1 kHz to 3 MHz). The results show that the optical power radiated by RTL at the time of the peak current has a mean and standard deviation of 130±120 MW, a value that is only about 5% of the Poynting power that is radiated into the upper half-space at that time. These results are in good agreement with similar measurements made on the subsequent return strokes in natural lightning that remain in a pre-existing channel. Our methods and assumptions are similar to those of (Guo and Krider, 1983; Krider and Guo, 1983; Quick and Krider, 2013).

  4. Narrow linewidth picosecond UV pulsed laser with mega-watt peak power.

    PubMed

    Huang, Chunning; Deibele, Craig; Liu, Yun

    2013-04-01

    We demonstrate a master oscillator power amplifier (MOPA) burst mode laser system that generates 66 ps/402.5 MHz pulses with mega-watt peak power at 355 nm. The seed laser consists of a single frequency fiber laser (linewidth < 5 KHz), a high bandwidth electro-optic modulator (EOM), a picosecond pulse generator, and a fiber based preamplifier. A very high extinction ratio (45 dB) has been achieved by using an adaptive bias control of the EOM. The multi-stage Nd:YAG amplifier system allows a uniformly temporal shaping of the macropulse with a tunable pulse duration. The light output from the amplifier is converted to 355 nm, and over 1 MW peak power is obtained when the laser is operating in a 5-μs/10-Hz macropulse mode. The laser output has a transform-limited spectrum with a very narrow linewidth of individual longitudinal modes. The immediate application of the laser system is the laser-assisted hydrogen ion beam stripping for the Spallation Neutron Source (SNS). PMID:23572001

  5. Peak power tunable mid-infrared oscillator pumped by a high power picosecond pulsed fiber amplifier with bunch output

    NASA Astrophysics Data System (ADS)

    Wei, Kaihua; Guo, Yan; Lai, Xiaomin; Fan, Shanhui

    2016-07-01

    A high power mid-infrared optical parametric oscillator (OPO) with picosecond pulse bunch output is experimentally demonstrated. The pump source was a high power master oscillation power amplifier (MOPA) picosecond pulsed fiber amplifier. The seed of the MOPA was a gain-switched distributed Bragg reflector (DBR) laser diode (LD) with picosecond pulse operation at a high repetition rate. The seed laser was amplified to 50 W by two-stage pre-amplifiers and a large mode area (LMA) Yb fiber based power-amplifier. A fiber-pigtailed acousto-optic modulator with the first order diffraction transmission was inserted into the second pre-amplifier to form a picosecond pulse bunch train and to change the peak power simultaneously. The power-amplified pulse bunches were focused to pump a wavelength-tunable OPO for emitting high power mid-infrared laser. By adjusting the OPO cavity length, the maximum average idler powers obtained at 3.1, 3.3 and 3.5 μm were 7, 6.6 and 6.4 W respectively.

  6. Peak power minimization in indoor CDMA communications using clusters of antennas

    NASA Astrophysics Data System (ADS)

    Abolhassani, Bahman

    "Battery life" and "cost" constraints are presenting new challenges for the design of wireless networks. The major focus of past research on transmit power control, diversity, modulation and coding techniques has been limited to maximizing coverage and/or capacity for cellular telephone systems. However, for battery powered wireless handsets connected through indoor wireless links, the optimization objective is shifting from link efficiency to battery efficiency and cost. In this thesis, the battery life of handsets and the cost of network are both addressed for an indoor code division multiple access (CDMA) communications system using time division duplex (TDD). A wireless handset needs a large dynamic range transmitter amplifier in order to overcome channel path loss and fading. This makes the amplifier inefficient such that its power consumption becomes proportional to the peak transmit power. Therefore, the amplifier needs a large, heavy and expensive battery which lasts for only a few hours. Indoor wireless users, however, need small, light, low cost handsets with batteries that last for days rather than for a few hours. To achieve a long battery life for handsets, a system architecture is proposed in which each cell uses a central base station along with several radioports. The radioports placed at optimal or near-optimal locations in order to minimize the maximum path loss experienced by handsets. Each radioport may use more than one antenna to combat Rayleigh fading. The central base station selects the radioport that provides the strongest maximally ratio combined signal. An infra-structure cost model is developed for the proposed system, which depends on the peak transmit power capability of handsets and of other system parameters and performances. The number of parameters affecting the network infra-structure cost is high, which makes the cost minimization problematic. To avoid large computation time, a new network planning approach is proposed: its

  7. TS Power Plant, Eureka County, Nevada

    SciTech Connect

    Peltier, R.

    2008-10-15

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  8. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands

    PubMed Central

    Soliveres, Santiago; Maestre, Fernando T.; Eldridge, David J.; Delgado-Baquerizo, Manuel; Quero, José Luis; Bowker, Matthew A.; Gallardo, Antonio

    2015-01-01

    Aim The global spread of woody plants into grasslands is predicted to increase over the coming century. While there is general agreement regarding the anthropogenic causes of this phenomenon, its ecological consequences are less certain. We analyzed how woody vegetation of differing cover affects plant diversity (richness and evenness) and multiple ecosystem functions (multifunctionality) in global drylands, and how this changes with aridity. Location 224 dryland sites from all continents except Antarctica widely differing in their environmental conditions (from arid to dry-subhumid sites) and woody covers (from 0 to 100%). Methods Using a standardized field survey, we measured the cover, richness and evenness of perennial vegetation. At each site, we measured 14 ecosystem functions related to soil fertility and the build-up of nutrient pools. These functions are critical for maintaining ecosystem function in drylands. Results Species richness and ecosystem multifunctionality were strongly influenced by woody vegetation, with both variables peaking at relative woody covers (RWC) of 41-60%. This relationship shifted with aridity. We observed linear positive effects of RWC in dry-subhumid sites. These positive trends shifted to hump-shaped RWC-diversity and multifunctionality relationships under semiarid environments. Finally, hump-shaped (richness, evenness) or linear negative (multifunctionality) effects of RWC were found under the most arid conditions. Main conclusions Plant diversity and multifunctionality peaked at intermediate levels of woody cover, although this relationship became increasingly positive under wetter environments. This comprehensive study accounts for multiple ecosystem attributes across a range of woody covers and environmental conditions. Our results help us to reconcile contrasting views of woody encroachment found in current literature and can be used to improve predictions of the likely effects of encroachment on biodiversity and ecosystem

  9. Peak power and blade loads on stall-regulated rotors as influenced by different airfoil families

    SciTech Connect

    Tangler, J.L.; Tu, P.K.C.

    1988-08-01

    At the Solar Energy Research Institute (SERI), new airfoils have been developed to help improve the performance and economics of horizontal-axis wind turbines (HAWTS). The objective of this study was to compare the performance characteristics of one of these airfoil families to other commonly used airfoil series for a typical three-bladed, stall-regulated HAWT. The traditional airfoil series chosen for comparison with SERI's new thin airfoil family were the NACA 23XXX, NACA 44XX, and NASA LS(1). The Micon 110 wind turbine was chosen because it is a typical three-bladed, stall-regulated rigid rotor system. The performance characteristics of the different airfoil series were derived analytically using the Eppler airfoil design code in the analysis mode. On a relative basis, this approach to comparing airfoils was considered more accurate than using airfoil performance characteristics based on wind-tunnel test data. After generating the performance characteristics for each airfoil series, the subsequent rotor performance and blade loads were calculated using SERI's PROPSH computer code. Resulting annual energy output, which is dependent on the wind-speed distribution, was calculated using SERI's Systems Engineering and Analysis Computer Code (SEACC). The results of the study show that fixed-wing airfoils generally result in excessive peak power for stall regulated, rigid rotors. By operating the wind turbine at a less desirable blade pitch angle, peak power can be reduced at the expense of higher mean blade loads and lower annual energy output. In contrast, the thin airfoil family was designed to reduce peak power at optimum blade pitch to minimize blade loads and maximize annual energy output. 7 refs., 12 figs.

  10. Development of a criterion method to determine peak mechanical power output in a countermovement jump.

    PubMed

    Owen, Nick J; Watkins, James; Kilduff, Liam P; Bevan, Huw R; Bennett, Mark A

    2014-06-01

    There is a general agreement that the most valid method of measuring peak lower-body mechanical power output (LBPP) in a countermovement jump (CMJ) is by analysis of the corresponding vertical component of the ground reaction force (VGRF)-time history of the jump. However, there is no published standard protocol. The purpose of this study was to establish a standard protocol. The variables necessary to define a valid and reliable CMJ method were: (a) vertical force range, (b) force sampling and integration frequency, (c) method of integration, (d) determination of body weight (BW), and (e) determination of the initiation of the CMJ. Countermovement jumps off a force platform (FP) were performed by 15 male professional rugby players. The 5 variables were then optimized to maximize the reliability and validity of the measure of LBPP. Errors of <1% (p ≤ 0.05) in the measurement of LBPP were obtained using the following specification: (a) 6 times BW (using a 16-bit analog to digital converter), (b) 1,000 Hz, (c) Simpson's rule or the trapezoidal rule, (d) mean VGRF for 1 second of quiet standing immediately before jump signal, and (e) 30 ms before the instant BW ± 5 SD is exceeded after the jump signal. Peak lower-body power output was most sensitive to variables 4 and 5. It was concluded that this study has established a standard protocol for the criterion method of measuring peak power in a CMJ using an FP. As all other estimates and less reliable methods of determining LBPP in a CMJ rely on the FP method for calibration, it is proposed that this protocol be used as the basis of future criterion measures using a FP. PMID:24276298

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  12. Analytical design of a superconducting magnetic energy storage for pulsed power peak

    SciTech Connect

    Netter, D.; Leveque, J.; Rezzoug, A.; Caron, J.P.; Sargos, F.M.

    1996-09-01

    A Superconducting Magnetic Energy Storage can be used to produce very high pulsed power peak. A superconducting coil is magnetically coupled with another coil linked to the load. During the storage phase, the current is constant. In order to transfer the energy to the load, the authors cause the quench of the superconducting coil. It is very important to know the efficiency of the transfer and how much energy is discharged in the Helium vessel. In this paper, they propose an analytical method which enables to calculate very quickly the electrical parameters of such a device.

  13. ATF CO{sub 2} laser system upgrade to terawatt peak power

    SciTech Connect

    Pogorelsky, I.V.

    1995-05-01

    This document describes the proposed upgrade of the 10-GW peak power 50-ps CO{sub 2} laser presently operational at the ATF to the 1 TW level at a shorter, 3--10 ps, pulse duration. The approach adopted is based on state of the art CO{sub 2} laser technology and an experience gained in the course of the ATF laser design and application for the laser accelerator experiment. The proposed upgrade is an economical way for the ATF to become in a short time among leading users facilities available for next generation ({ge} 100 MeV) laser accelerator studies.

  14. Optimum and Suboptimum Code Allocation for Peak Power Reduction in Down-Link MC CDMA

    NASA Astrophysics Data System (ADS)

    Choi, Kwonhue; Jin, Jiyu

    We develop an optimum code allocation scheme by investigating the peak to average power ratio (PAPR) characteristic of a down-link multi-carrier (MC)-CDMA system using Walsh-Hadamard code. It is shown that PAPR of a MC-CDMA system is highly dependent upon the selection of code combination. Based on this fact, we develop the allocation method which minimizes PAPR according to the number of active users. In addition, an efficient suboptimum code combination search scheme is also proposed for near minimum PAPR.

  15. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    ERIC Educational Resources Information Center

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  16. Development of a single-longitudinal-mode, high-peak-power, tunable pulsed dye laser

    SciTech Connect

    Black, J.F.; Valentini, J.J. )

    1994-09-01

    A compact, high-peak-power, user-friendly, single-longitudinal-mode (SLM) tunable dye laser has been developed. The device yields [gt]12 mJ pulses of 6 ns duration and [similar to]2.7[times]transform-limited linewidths of [lt]200 MHz. Seamless single-mode tunability of [gt]20 cm[sup [minus]1] is possible without resetting. The dye laser makes efficient use of the pump laser, with [similar to]10% conversion of the 532 nm pump energy to tunable dye power and occupies [lt]4 m[sup 2] (including pump laser and all diagnostics). The linewidth of the device can be switched from [lt]200 MHz SLM operation to [lt]0.5 cm[sup [minus]1] broadband modeless operation by moving one mirror. This allows rapid interchange between high-resolution scanning and a fast survey scan'' mode of operation to isolate the spectral region of interest at low resolution.

  17. Method and device for remotely monitoring an area using a low peak power optical pump

    DOEpatents

    Woodruff, Steven D.; Mcintyre, Dustin L.; Jain, Jinesh C.

    2014-07-22

    A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.

  18. Impact of Wet-Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  19. Impact of Wet Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  20. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    Sizing procedures are presented for latent heat thermal energy storage systems that can be used for electric utility off-peak energy storage, solar power plants and other preliminary design applications.

  1. Lessons learned from existing biomass power plants

    SciTech Connect

    Wiltsee, G.

    2000-02-24

    This report includes summary information on 20 biomass power plants, which represent some of the leaders in the industry. In each category an effort is made to identify plants that illustrate particular points. The project experiences described capture some important lessons learned that lead in the direction of an improved biomass power industry.

  2. Considerations for human exposure standards for fast-rise-time high-peak-power electromagnetic pulses.

    PubMed

    Merritt, J H; Kiel, J L; Hurt, W D

    1995-06-01

    Development of new emitter systems capable of producing high-peak-power electromagnetic pulses with very fast rise times and narrow pulse widths is continuing. Such directed energy weapons systems will be used in the future to defeat electronically vulnerable targets. Human exposures to these pulses can be expected during testing and operations. Development of these technologies for radar and communications purposes has the potential for wider environmental exposure, as well. Current IEEE C95.1-1991 human exposure guidelines do not specifically address these types of pulses, though limits are stated for pulsed emissions. The process for developing standards includes an evaluation of the relevant bioeffects data base. A recommendation has been made that human exposure to ultrashort electromagnetic pulses that engender electromagnetic transients, called precursor waves, should be avoided. Studies that purport to show the potential for tissue damage induced by such pulses were described. The studies cited in support of the recommendation were not relevant to the issues of tissue damage by propagated pulses. A number of investigations are cited in this review that directly address the biological effects of electromagnetic pulses. These studies have not shown evidence of tissue damage as a result of exposure to high-peak-power pulsed microwaves. It is our opinion that the current guidelines are sufficiently protective for human exposure to these pulses. PMID:7646411

  3. Axicons for mode conversion in high peak power, higher-order mode, fiber amplifiers.

    PubMed

    Nicholson, J W; DeSantolo, A; Westbrook, P S; Windeler, R S; Kremp, T; Headley, C; DiGiovanni, D J

    2015-12-28

    Higher-order mode fiber amplifiers have demonstrated effective areas as large as 6000 μm2, allowing for high pulse energy and peak power amplification. Long-period gratings are used to convert the fundamental mode to the higher-order mode at the entrance to the amplifier, and reconvert back to the fundamental at the exit, to achieve a diffraction limited beam. However, long period gratings are susceptible to nonlinearity at high peak power. In this work, we propose and demonstrate axicons for linear bulk-optic mode conversion at the output of higher order mode amplifiers. We achieve an M2 of less than 1.25 for 80% mode conversion efficiency. Experiments with pulsed amplifiers confirm that the mode conversion is free from nonlinearity. Furthermore, chirp pulse amplifier experiments confirm that HOM amplifiers plus axicon mode convertors provide energy scalability in femtosecond pulses, compared to smaller effective area, fundamental mode fiber amplifiers. We also propose and demonstrate a route towards fiber integration of the axicon mode convertor by fabricating axicons directly on the tip of the fiber amplifier end-cap. PMID:26832045

  4. Introduction and overall description of nuclear power plant. Volume I

    SciTech Connect

    Not Available

    1986-01-01

    Topics covered in this volume include content and purpose of booklets; how to study; producing electricity; the fossil fuel power plant; the nuclear power plant; the nuclear reactor; generating steam in a nuclear power plant; using the steam in a nuclear power plant; nuclear power station facilities; and special features of nuclear power plants.

  5. Harmonics in a Wind Power Plant: Preprint

    SciTech Connect

    Preciado, V.; Madrigal, M.; Muljadi, E.; Gevorgian, V.

    2015-04-02

    Wind power generation has been growing at a very fast pace for the past decade, and its influence and impact on the electric power grid is significant. As in a conventional power plant, a wind power plant (WPP) must ensure that the quality of the power being delivered to the grid is excellent. At the same time, the wind turbine should be able to operate immune to small disturbances coming from the grid. Harmonics are one of the more common power quality issues presented by large WPPs because of the high switching frequency of the power converters and the possible nonlinear behavior from electric machines (generator, transformer, reactors) within a power plant. This paper presents a summary of the most important issues related to harmonics in WPPs and discusses practical experiences with actual Type 1 and Type 3 wind turbines in two WPPs.

  6. Demonstration of 5MW PAFC power plant

    SciTech Connect

    Usami, Yutaka; Takae, Toshio

    1996-12-31

    Phosphoric Acid Fuel Cell Technology Research Association, established in May 1991 by Japanese 10 electric power and 4 gas companies, started a new project in 1991 FY, with the object of PAFC realization and aiming the development of 5MW- class PAFC. power plant for urban energy center and 1 MW- class power plant for onsite use. This project is carried out as 6 years plan jointly with New Energy and Industrial Technology Development Organization. The targets of the project are to evaluate and resolve the development task, such as a high reliability, compactness and cost reduction throughout the engineering, manufacturing and field testing of PAFC power plants. PAC tests and power generating test operations of 5MW plant were completed in 1994. Conducting the 2 years continuous operations and studies since 1995, the plant operational performance, system control characteristics, waste heat recovery and environmental advantage will be demonstrated.

  7. Wind Power Plant SCADA and Controls

    SciTech Connect

    Badrzadeh, Babak; Castillo, Nestor; Bradt, M.; Janakiraman, R.; Kennedy, R.; Klein, S.; Smith, Travis M; Vargas, L.

    2011-01-01

    Modern Wind Power Plants (WPPs) contain a variety of intelligent electronic devices (IEDs), Supervisory Control and Data Acquisition (SCADA) and communication systems. This paper discusses the issues related to a typical WPP's SCADA and Control. Presentation topics are: (1) Wind Turbine Controls; (2) Wind Plant SCADA, OEM SCADA Solutions, Third-Party SCADA Solutions; (3) Wind Plant Control; and (4) Security and Reliability Compliance.

  8. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  9. Thermal spray applications for power plant components

    SciTech Connect

    Sampson, E.R.

    2000-03-01

    Power plants usually are located near water and many are in salt water environments. Corrosion occurring in these environments is a problem often solved with thermal spray coatings. The use of thermal spray aluminum and zinc in three power plants for various components is reviewed. Special emphasis is on the cooling tower at the Seabrook, New Hampshire plant. A guide to selection of the coating and process also is given.

  10. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  11. Peak Vertical Jump Power as a Marker of Bone Health in Children.

    PubMed

    Baptista, F; Mil-Homens, P; Carita, A I; Janz, K; Sardinha, L B

    2016-07-01

    The objective of this investigation was to evaluate the accuracy of peak vertical jump power (VJP) to identify children with bone mineral density (BMD) below average, defined as BMD measured by DXA and adjusted for body height at the whole body less head≤- 1.0 standard deviation (SD). The sample included 114 boys and girls aged 8.5±0.4 years old. VJP was estimated from a countermovement jump performed on a contact mat using the measured flight time to calculate the height of rise of the center of gravity. Logistic regression analysis revealed that the odds ratio of having BMD≤1.0 SD decreased 1.2% per watt of power and the probability of BMD below average was 75.6% higher in boys than in girls with the same peak power jump. Receiver operating characteristic analysis showed that the best trade-off between sensitivity and specificity to identify children with BMD<- 1.0 SD was 635 watts in boys (sensitivity=63.3%; specificity=69.2%; AUC=0.816, 95% CI: 0.681-0.95; p<0.001) and 515 watts in girls (sensitivity=75.0%; specificity=77.0%; AUC=0.849, 95% CI: 0.698-0.999; p=0.002). These cut-off values correspond to a vertical jump of 19.9 cm and 20.5 cm in 8-year-old boys and girls, respectively. The VJP showed a reasonable sensitivity and specificity as well good discriminant ability to identify children with BMD below average. PMID:27176885

  12. 76 FR 77963 - Oglethorpe Power Corporation; Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... Draft EIS was published in the Federal Register at 76 FR 20624, on April 13, 2011, and in local...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Oglethorpe Power Corporation; Proposed Biomass Power Plant... (NEPA) and 7 CFR part 1794 related to possible financial assistance to Oglethorpe Power...

  13. Optimum Reflector Configurations for Minimizing Fission Power Peaking in a Lithium-Cooled, Liquid-Metal Reactor with Sliding Reflectors

    SciTech Connect

    Fensin, Michael L.; Poston, David I.

    2005-02-06

    Many design constraints limit the development of a space fission power system optimized for fuel performance, system reliability, and mission cost. These design constraints include fuel mass provisions to meet cycle-length requirements, fuel centerline and clad temperatures, and clad creep from fission gas generation. Decreasing the fission power peaking of the reactor system enhances all of the mentioned parameters. This design study identifies the cause, determines the reflector configurations for reactor criticality, and generates worth curves for minimized fission-power-peaking configuration in a lithium-cooled liquid-metal reactor that uses sliding reflectors. Because of the characteristics of the core axial power distribution and axial power distortions inherent to the sliding reflector design, minimizing the power peaking of the reactor involves placing the reflectors in a position that least distorts the axial power distribution. The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  14. Reliability of emergency ac power systems at nuclear power plants

    SciTech Connect

    Battle, R E; Campbell, D J

    1983-07-01

    Reliability of emergency onsite ac power systems at nuclear power plants has been questioned within the Nuclear Regulatory Commission (NRC) because of the number of diesel generator failures reported by nuclear plant licensees and the reactor core damage that could result from diesel failure during an emergency. This report contains the results of a reliability analysis of the onsite ac power system, and it uses the results of a separate analysis of offsite power systems to calculate the expected frequency of station blackout. Included is a design and operating experience review. Eighteen plants representative of typical onsite ac power systems and ten generic designs were selected to be modeled by fault trees. Operating experience data were collected from the NRC files and from nuclear plant licensee responses to a questionnaire sent out for this project.

  15. 1400, +/- 900V PEAK PULSE SWITCH MODE POWER SUPPLIES FOR SNS INJECTION KICKERS.

    SciTech Connect

    LAMBIASE,R.ENG,W.SANDBERG,J.DEWAN,S.HOLMES,R.RUST,K.ZENG,J.

    2004-03-10

    This paper describes simulation and experimental results for a 1400A, {+-} 900V peak rated, switch mode power supply for SNS Injection Kicker Magnets. For each magnet (13 m{Omega}, 160{micro}H), the power supply must supply controlled pulses at 60 Hz repetition rate. The pulse current must rise from zero to maximum in less than 1 millisec in a controlled manner, flat top for up to 2 millisec, and should fall in a controlled manner to less than 4A within 500{micro}s. The low current performance during fall time is the biggest challenge in this power supply. The simulation results show that to meet the controlled fall of the current and the current ripple requirements, voltage loop bandwidth of at least 10 kHz and switching frequency of at least 100 kHz are required. To achieve high power high frequency switching with IGBT switches, a series connected topology with three phase shifted (O{sup o}, 60{sup o} & 120{sup o}) converters each with 40 kHz switching frequency (IGBT at 20kHz), has been achieved. In this paper, the circuit topology, relevant system specifications and experimental results that meet the requirements of the power supply are described in detail. A unique six pulse SCR rectifier circuit with capacitor storage has been implemented to achieve minimum pulse width to meet required performance during current fall time below 50A due to the very narrow pulse width and non-linearity from IGBT turn-on/off times.

  16. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  17. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  18. A High Fraction of Double-peaked Narrow Emission Lines in Powerful Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Lyu, Yang; Liu, Xin

    2016-08-01

    One percent of redshift z ˜ 0.1 Active Galactic Nuclei (AGNs) show velocity splitting of a few hundred km s-1 in the narrow emission lines in spatially integrated spectra. Such line profiles have been found to arise from the bulk motion of ionized gas clouds associated with galactic-scale outflows, merging pairs of galaxies each harboring a supermassive black hole (SMBH), and/or galactic-scale disk rotation. It remains unclear, however, how the frequency of narrow-line velocity splitting may depend on AGN luminosity. Here we study the correlation between the fraction of Type 2 AGNs with double-peaked narrow emission lines and AGN luminosity as indicated by [O III]λ5007 emission-line luminosity L[O III]. We combine the sample of Liu et al. (2010a) at z ˜ 0.1 with a new sample of 178 Type 2 AGNs with double-peaked [O III] emission lines at z ˜ 0.5. We select the new sample from a parent sample of 2089 Type 2 AGNs from the SDSS-III/Baryon Oscillation Spectroscopic Survey. We find a statistically significant (˜4.2σ) correlation between L[O III] and the fraction of objects that exhibit double-peaked narrow emission lines among all Type 2 AGNs, corrected for selection bias and incompleteness due to [O III] line width, equivalent width, splitting velocity, and/or equivalent width ratio between the two velocity components. Our result suggests that galactic-scale outflows and/or merging pairs of SMBHs are more prevalent in more powerful AGNs, although spatially resolved follow up observations are needed to resolve the origin(s) for the narrow-line velocity splitting for individual AGNs.

  19. The fuzzy regression approach to peak load estimation in power distribution systems

    SciTech Connect

    Nazarko, J.; Zalewski, W.

    1999-08-01

    This paper presents a new scheme based on the fuzzy regression analysis for the estimation of peak load in distribution systems. In distribution system, bus load estimation is complicated because system load is usually monitored at only a few points. As a rule receiving nodes are not equipped with stationary measuring instruments so measurements of loads are performed sporadically. In general, the only information commonly available regarding loads, other than major distribution substations and equipment installations, is billing cycle customer kWh consumption. In order to model system uncertainty, inexactness, and random nature of customers` demand, a fuzzy system approach is proposed. This paper presents possibilities of application of the fuzzy set theory to power distribution system calculations. Unreliable and inaccurate input data have been modeled by means of fuzzy numbers. Trapezoidal and triangular forms of fuzzy numbers were used for description of input data. A regression model, expressing the correlation between a substation peak load and a set of customer features (explanatory variables), existing in the substation population, is determined. Simulation studies have been performed to demonstrate the efficiency of the proposed scheme on the basis of actual data obtained at two distribution system substations. The same data have been used for building standard linear regression models. Comparison of the performance of both methods has been done.

  20. High peak power solid-state laser for micromachining of hard materials

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike

    2003-06-01

    Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.

  1. Reproducibility of peak power output during a 10-s cycling maximal effort using different sampling rates.

    PubMed

    Duarte, J P; Coelho-E-Silva, Manuel J; Severino, V; Martinho, D; Luz, L; Pereira, J R; Baptista, R; Valente-Dos-Santos, J; Machado-Rodrigues, A M; Vaz, V; Cupido-Dos-Santos, A; Martín-Hernández, J; Cumming, S P; Malina, R M

    2014-12-01

    The study was aimed to investigate the reproducibility of performance parameters obtained from 10-s maximal cycling effort against different braking forces in young adult athletes. The sample (n = 48) included male athletes aged 18.9-29.9 years (175.5 ± 6.9 cm, 76.2 ± 10.1 kg). The exercise protocol was performed in a cycle-ergometer against a random braking force (4% to 11% of body mass). Intra-individual variation was examined from repeated tests within one week. Descriptive statistics were computed and differences between sessions were tested using paired t-test. The coefficient of correlation between repeated measures, technical error of measurement (TEM), coefficient of variation and ICC were calculated. Agreement between trials was examined using the Bland-Altman procedure. Mean values of peak power were relatively stable when obtained from sampling rates of 50 Hz and ranged between 1068 watt and 1082 watt (t(47) = 1.149, p = 0.256, ES-r = 0.165) or while corresponding to a sampling rate of 1 Hz (t(47) = 0.742, p = 0.462, ES-r = 0.107). Correlations between repeated measures were high (+0.907, 95% CI: +0.839 to +0.947) and TEM about 59.3 watt (%CV = 5.52%; ICC = 0.951, 95% CI: 0.912 to 0.972). The present study suggests that reproducibility of peak power in male adult athletes tended to be acceptable and within individual error appeared unrelated to braking force. PMID:25201712

  2. Electromagnetic compatibility of nuclear power plants

    SciTech Connect

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  3. 35. SOUTH PLANT NORTHCENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, SHOWING POWER PLANT (BUILDINGS 325 AND 321) AT LEFT, FUEL TOWER AT CENTER AND CHLORINE EVAPORATOR (BUILDING 251) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  4. 34. SOUTH PLANT NORTHCENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SOUTH PLANT NORTH-CENTER RAILROAD SPUR, WITH ELECTRICAL POWER PLANT (BUILDING 325) AT LEFT AND CELL BUILDING (BUILDING 242) AT RIGHT. VIEW TO WEST - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  5. Optimized Scheduling Technique of Null Subcarriers for Peak Power Control in 3GPP LTE Downlink

    PubMed Central

    Park, Sang Kyu

    2014-01-01

    Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system. PMID:24883376

  6. Approach to nitinol power plant cost analysis

    SciTech Connect

    McNichols, J.L. Jr.; Cory, J.S.; Curtis, E.H.

    1982-11-01

    The objective of this paper is tof provide a method for cost evaluation of low grade thermal energy conversion by Nitinol power plants. To accomplish this objective Nitinol power plant costs are subdivided int those which can be obtained through conventional cost analysis, and those which are associated with the Nitino heat engine and are not subject to conventional analysis. Analytic expressions are provided for the Nitinol heat engine capital costs and Nitinol replacement costs in terms of Nitinol performance, heat engine configuration, plant operating factors, material costs, and the cost of capital. Nitinol working material factors are identified that require further definition before firm and reliable costs can be determined. Where data are lacking, plausible assumptions and estimates are utilized tof perform a first-cut analysis. It is found that the Nitinol heat engine capital costs per unit power generating capacity are approximately $0.15/W, and that the cost of produced energy for the Nitinol heat engine portion of the power plant is approximately 0.74 /kWh, includin operation, maintenance, Nitinol replacements and the cost of capital for the heat engine. It is concluded tha Nitinol power plants for the conversion of low grade thermal energy may have a significant economical advantage over conventionally fueled power plants.

  7. INDEPENDENT POWER PLANT USING WOOD WASTE

    EPA Science Inventory

    A 1 MWe power plant using waste wood is to be installed at a U.S. Marine Corps base, which will supply all the wood for the plant from a landfill site. The core energy conversion technology is a down-draft gasifier supplying approximately 150 Btu/scf gas to both spark ignition an...

  8. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  9. 78 FR 26747 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Availability (NOA) of the Draft EIS was published in the Federal Register at 76 FR 20624, on April 13, 2011... NOA of the Final EIS for the proposed Project in the Federal Register on December 15, 2011 at 76 FR... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY:...

  10. 76 FR 20624 - Oglethorpe Power Corporation: Proposed Biomass Power Plant

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Prepare an EIS and Hold a Scoping Meeting was published in the Federal Register at 74 FR 30520, on June 26... Rural Utilities Service Oglethorpe Power Corporation: Proposed Biomass Power Plant AGENCY: Rural... Environmental Policy Act (NEPA) and 7 CFR part 1794 related to possible financial assistance to Oglethorpe...

  11. Fossil power plant operating procedures

    SciTech Connect

    Not Available

    1984-01-01

    This three-volume text presents the theory and interaction of all components within a system. Startup, normal, emergency, and shutdown operating techniques are discussed for each component and subsystem within the sixteen systems addressed. In addition to the plant systems, pump operation, fluid piping, instrumentation and control, and piping and instrument drawings (P and IDs) are covered.

  12. MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT

    SciTech Connect

    William W. Glauz

    2004-09-01

    The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

  13. Questions and Answers About Nuclear Power Plants.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This pamphlet is designed to answer many of the questions that have arisen about nuclear power plants and the environment. It is organized into a question and answer format, with the questions taken from those most often asked by the public. Topics include regulation of nuclear power sources, potential dangers to people's health, whether nuclear…

  14. Attenuated increase in maximal force of rat medial gastrocnemius muscle after concurrent peak power and endurance training.

    PubMed

    Furrer, Regula; Jaspers, Richard T; Baggerman, Hein L; Bravenboer, Nathalie; Lips, Paul; de Haan, Arnold

    2013-01-01

    Improvement of muscle peak power and oxidative capacity are generally presumed to be mutually exclusive. However, this may not be valid by using fibre type-specific recruitment. Since rat medial gastrocnemius muscle (GM) is composed of high and low oxidative compartments which are recruited task specifically, we hypothesised that the adaptive responses to peak power training were unaffected by additional endurance training. Thirty rats were subjected to either no training (control), peak power training (PT), or both peak power and endurance training (PET), which was performed on a treadmill 5 days per week for 6 weeks. Maximal running velocity increased 13.5% throughout the training and was similar in both training groups. Only after PT, GM maximal force was 10% higher than that of the control group. In the low oxidative compartment, mRNA levels of myostatin and MuRF-1 were higher after PT as compared to those of control and PET groups, respectively. Phospho-S6 ribosomal protein levels remained unchanged, suggesting that the elevated myostatin levels after PT did not inhibit mTOR signalling. In conclusion, even by using task-specific recruitment of the compartmentalized rat GM, additional endurance training interfered with the adaptive response of peak power training and attenuated the increase in maximal force after power training. PMID:23509812

  15. Peak radiated power measurement of the DOE Mark II container tag with integrated ST-676 sensor radio frequency identification device.

    SciTech Connect

    Jursich, Mark

    2010-04-01

    The total peak radiated power of the Department of Energy Mark II container tag was measured in the electromagnetic reverberation chamber facility at Sandia National Laboratories. The tag's radio frequency content was also evaluated for possible emissions outside the intentional transmit frequency band. No spurious emissions of any significance were found, and the radiated power conformed to the manufacturer's specifications.

  16. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  17. Sowing seed, planting trees, producing power

    SciTech Connect

    Moon, S.

    1997-07-01

    With three crops-to-power projects, the US DOE and US DOA have their biomass power for rural development initiative in high gear. Farmers can produce abundant supplies of fast-growing energy crops on marginal or underutilized acreage to feed power plants. This article summarizes the three projects in Minnesota, Iowa, and New York, and discusses the importance of the necessity for cooperation.

  18. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  19. The placebo and nocebo effects on peak minute power during incremental arm crank ergometry.

    PubMed

    Bottoms, Lindsay; Buscombe, Richard; Nicholettos, Andrew

    2014-01-01

    This investigation aimed to explore the effects of inert sugar-free drinks described as either 'performance enhancing' (placebo) or 'fatigue inducing' (nocebo) on peak minute power (PMP;W) during incremental arm crank ergometry (ACE). Twelve healthy, non-specifically trained individuals volunteered to take part. A single-blind randomised controlled trial with repeated measures was used to assess for differences in PMP;W, oxygen uptake, heart rate (HR), minute ventilation, respiratory exchange ratio (RER) and subjective reports of local ratings of perceived exertion (LRPE) and central ratings of perceived exertion (CRPE), between three separate, but identical ACE tests. Participants were required to drink either 500 ml of a 'sports performance' drink (placebo), a 'fatigue-inducing' drink (nocebo) or water prior to exercise. The placebo caused a significant increase in PMP;W, and a significant decrease in LRPE compared to the nocebo (p=0.01; p=0.001) and water trials (p=0.01). No significant differences in PMP;W between the nocebo and water were found. However, the nocebo drink did cause a significant increase in LRPE (p=0.01). These results suggest that the time has come to broaden our understanding of the placebo and nocebo effects and their potential to impact sports performance. PMID:23889363

  20. Single-shot measurement of >1010 pulse contrast for ultra-high peak-power lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yongzhi; Ma, Jingui; Wang, Jing; Yuan, Peng; Xie, Guoqiang; Ge, Xulei; Liu, Feng; Yuan, Xiaohui; Zhu, Heyuan; Qian, Liejia

    2014-01-01

    Real-time pulse-contrast observation with a high dynamic range is a prerequisite to tackle the contrast challenge in ultra-high peak-power lasers. However, the commonly used delay-scanning cross-correlator (DSCC) can only provide the time-consumed measurements for repetitive lasers. Single-shot cross-correlator (SSCC) becomes essential in optimizing laser systems and exploring contrast mechanisms. Here we report our progress in developing SSCC towards its practical use. By integrating both the techniques of scattering-noise reduction and sensitive parallel detection into SSCC, we demonstrate a high dynamic range of >1010, which, to our best knowledge, is the first demonstration of an SSCC with a dynamic range comparable to that of commercial DSCCs. The comparison of high-dynamic measurement performances between SSCC and a standard DSCC (Sequoia, Amplitude Technologies) is also carried out on a 200 TW Ti:sapphire laser, and the consistency of results verifies the veracity of our SSCC.

  1. Video camera use at nuclear power plants

    SciTech Connect

    Estabrook, M.L.; Langan, M.O.; Owen, D.E. )

    1990-08-01

    A survey of US nuclear power plants was conducted to evaluate video camera use in plant operations, and determine equipment used and the benefits realized. Basic closed circuit television camera (CCTV) systems are described and video camera operation principles are reviewed. Plant approaches for implementing video camera use are discussed, as are equipment selection issues such as setting task objectives, radiation effects on cameras, and the use of disposal cameras. Specific plant applications are presented and the video equipment used is described. The benefits of video camera use --- mainly reduced radiation exposure and increased productivity --- are discussed and quantified. 15 refs., 6 figs.

  2. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  3. Industrial applications of high-average power high-peak power nanosecond pulse duration Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Harrison, Paul M.; Ellwi, Samir

    2009-02-01

    Within the vast range of laser materials processing applications, every type of successful commercial laser has been driven by a major industrial process. For high average power, high peak power, nanosecond pulse duration Nd:YAG DPSS lasers, the enabling process is high speed surface engineering. This includes applications such as thin film patterning and selective coating removal in markets such as the flat panel displays (FPD), solar and automotive industries. Applications such as these tend to require working spots that have uniform intensity distribution using specific shapes and dimensions, so a range of innovative beam delivery systems have been developed that convert the gaussian beam shape produced by the laser into a range of rectangular and/or shaped spots, as required by demands of each project. In this paper the authors will discuss the key parameters of this type of laser and examine why they are important for high speed surface engineering projects, and how they affect the underlying laser-material interaction and the removal mechanism. Several case studies will be considered in the FPD and solar markets, exploring the close link between the application, the key laser characteristics and the beam delivery system that link these together.

  4. Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Petri, Andrea; Haiman, Zoltán; Hui, Lam; Kratochvil, Jan M.; May, Morgan

    2015-03-01

    Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models covering broad ranges of the three parameters Ωm, σ8, and w , and replicating the Galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ≤5 %, and compute the likelihood in the three-dimensional parameter space (Ωm, σ8, w ) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error "banana" in the (Ωm, σ8) plane reduces by a factor of ≈2 , compared to using the power spectrum alone. For a flat Λ cold dark matter model, combining both statistics, we obtain the constraint σ8(Ωm/0.27 )0.63=0.85-0.03+0.03 .

  5. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  6. Nuclear power plant security assessment technical manual.

    SciTech Connect

    O'Connor, Sharon L.; Whitehead, Donnie Wayne; Potter, Claude S., III

    2007-09-01

    This report (Nuclear Power Plant Security Assessment Technical Manual) is a revision to NUREG/CR-1345 (Nuclear Power Plant Design Concepts for Sabotage Protection) that was published in January 1981. It provides conceptual and specific technical guidance for U.S. Nuclear Regulatory Commission nuclear power plant design certification and combined operating license applicants as they: (1) develop the layout of a facility (i.e., how buildings are arranged on the site property and how they are arranged internally) to enhance protection against sabotage and facilitate the use of physical security features; (2) design the physical protection system to be used at the facility; and (3) analyze the effectiveness of the PPS against the design basis threat. It should be used as a technical manual in conjunction with the 'Nuclear Power Plant Security Assessment Format and Content Guide'. The opportunity to optimize physical protection in the design of a nuclear power plant is obtained when an applicant utilizes both documents when performing a security assessment. This document provides a set of best practices that incorporates knowledge gained from more than 30 years of physical protection system design and evaluation activities at Sandia National Laboratories and insights derived from U.S. Nuclear Regulatory Commission technical staff into a manual that describes a development and analysis process of physical protection systems suitable for future nuclear power plants. In addition, selected security system technologies that may be used in a physical protection system are discussed. The scope of this document is limited to the identification of a set of best practices associated with the design and evaluation of physical security at future nuclear power plants in general. As such, it does not provide specific recommendations for the design and evaluation of physical security for any specific reactor design. These best practices should be applicable to the design and

  7. Progress in developing tidal electric power plants reported

    NASA Astrophysics Data System (ADS)

    Blokhnin, A.

    1984-12-01

    The natural energy potential of tides on the shores of the U.S.S.R. is equal to about a third of the world's total. The Achilles heel of tidal power plants is their pulsating operation. One solution to this problem was to build a hydroelectric power plant for use in tandem with the tidal power plant. During lulls in the tidal plant, the hydraulic power plant switches on at full power. Possible sites for dual plants were discussed.

  8. Nuclear Security for Floating Nuclear Power Plants

    SciTech Connect

    Skiba, James M.; Scherer, Carolynn P.

    2015-10-13

    Recently there has been a lot of interest in small modular reactors. A specific type of these small modular reactors (SMR,) are marine based power plants called floating nuclear power plants (FNPP). These FNPPs are typically built by countries with extensive knowledge of nuclear energy, such as Russia, France, China and the US. These FNPPs are built in one country and then sent to countries in need of power and/or seawater desalination. Fifteen countries have expressed interest in acquiring such power stations. Some designs for such power stations are briefly summarized. Several different avenues for cooperation in FNPP technology are proposed, including IAEA nuclear security (i.e. safeguards), multilateral or bilateral agreements, and working with Russian design that incorporates nuclear safeguards for IAEA inspections in non-nuclear weapons states

  9. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  10. Contribution of nitrogen oxide and sulfur dioxide exposure from power plant emissions on respiratory symptom and disease prevalence.

    PubMed

    Amster, Eric D; Haim, Maayan; Dubnov, Jonathan; Broday, David M

    2014-03-01

    This study investigates the association between exposure to ambient NOx and SO2 originating from power plant emissions and prevalence of obstructive pulmonary disease and related symptoms. The Orot Rabin coal-fired power plant is the largest power generating facility in the Eastern Mediterranean. Two novel methods assessing exposure to power plant-specific emissions were estimated for 2244 participants who completed the European Community Respiratory Health Survey. The "source approach" modeled emissions traced back to the power plant while the "event approach" identified peak exposures from power plant plume events. Respiratory symptoms, but not prevalence of asthma and COPD, were associated with estimates of power plant NOx emissions. The "source approach" yielded a better estimate of exposure to power plant emissions and showed a stronger dose-response relationship with outcomes. Calculating the portion of ambient pollution attributed to power plants emissions can be useful for air quality management purposes and targeted abatement programs. PMID:24361356

  11. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  12. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-05-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  13. Correlation between peak energy and Fourier power density spectrum slope in gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Dichiara, S.; Guidorzi, C.; Amati, L.; Frontera, F.; Margutti, R.

    2016-04-01

    Context. The origin of the gamma-ray burst (GRB) prompt emission still defies explanation, in spite of recent progress made, for example, on the occasional presence of a thermal component in the spectrum along with the ubiquitous non-thermal component that is modelled with a Band function. The combination of finite duration and aperiodic modulations make GRBs hard to characterise temporally. Although correlations between GRB luminosity and spectral hardness on one side and time variability on the other side have long been known, the loose and often arbitrary definition of the latter makes the interpretation uncertain. Aims: We characterise the temporal variability in an objective way and search for a connection with rest-frame spectral properties for a number of well-observed GRBs. Methods: We studied the individual power density spectra (PDS) of 123 long GRBs with measured redshift, rest-frame peak energy Ep,i of the time-averaged ν Fν spectrum, and well-constrained PDS slope α detected with Swift, Fermi and past spacecraft. The PDS were modelled with a power law either with or without a break adopting a Bayesian Markov chain Monte Carlo technique. Results: We find a highly significant Ep,i-α anti-correlation. The null hypothesis probability is ~10-9. Conclusions: In the framework of the internal shock synchrotron model, the Ep,i-α anti-correlation can hardly be reconciled with the predicted Ep,i ∝ Γ-2, unless either variable microphysical parameters of the shocks or continual electron acceleration are assumed. Alternatively, in the context of models based on magnetic reconnection, the PDS slope and Ep,i are linked to the ejecta magnetisation at the dissipation site, so that more magnetised outflows would produce more variable GRB light curves at short timescales (≲1 s), shallower PDS, and higher values of Ep,i. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  14. Active Faults and Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Chapman, Neil; Berryman, Kelvin; Villamor, Pilar; Epstein, Woody; Cluff, Lloyd; Kawamura, Hideki

    2014-01-01

    The destruction of the Fukushima Daiichi Nuclear Power Plant (NPP) following the March 2011 Tohoku earthquake and tsunami brought into sharp focus the susceptibility of NPPs to natural hazards. This is not a new issue—seismic hazard has affected the development of plants in the United States, and volcanic hazard was among the reasons for not commissioning the Bataan NPP in the Philippines [Connor et al., 2009].

  15. 1  MW peak-power subpicosecond optical pulse source based on a gain-switched laser diode.

    PubMed

    Fang, Yi-Cheng; Chaki, Tomohiro; Hung, Jui-Hung; Yamada, Hirohito; Yokoyama, Hiroyuki

    2016-09-01

    We have generated optical pulses of 1.2 MW peak power and 0.6 ps duration using a 1060 nm band gain-switched laser diode pulse oscillator. Optical pulses are amplified by three-stage ytterbium-doped fiber amplifiers, and remarkable reductions of amplified spontaneous emission noise and temporal duration have been accomplished based on self-phase modulation in the middle-stage amplifier. After the main amplifier, optical pulses were temporally compressed by a grating pair, and this enabled generation of subpicosecond optical pulses with over 1 MW peak power. PMID:27607964

  16. Report on Hawaii geothermal power plant project

    SciTech Connect

    Not Available

    1983-06-01

    The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

  17. A numerical method for power plant simulations

    SciTech Connect

    Carcasci, C.; Facchini, B.

    1996-03-01

    This paper describes a highly flexible computerized method of calculating operating data in a power cycle. The computerized method presented here permits the study of steam, gas and combined plants. Its flexibility is not restricted by any defined cycle scheme. A power plant consists of simple elements (turbine, compressor, combustor chamber, pump, etc.). Each power plant component is represented by its typical equations relating to fundamental mechanical and thermodynamic laws, so a power plant system is represented by algebraic equations, which are the typical equations of components, continuity equations, and data concerning plant conditions. This equation system is not linear, but can be reduced to a linear equation system with variable coefficients. The solution is simultaneous for each component and it is determined by an iterative process. An example of a simple gas turbine cycle demonstrates the applied technique. This paper also presents the user interface based on MS-Windows. The input data, the results, and any characteristic parameters of a complex cycle scheme are also shown.

  18. Planting for power in central New York

    SciTech Connect

    Moon, S.

    1997-12-31

    The Salix consortium has joined forces with the US DOE and USDA to grow dedicated plantations of willows strategically located within a 50 mile radius (or easy hauling distance) of coal-burning power plants. At harvest time, the energy farmers could have as much as 7.5 tonnes of oven dry wood per acre per year. This article describes this project, covering the following areas: biomass power for rural development; energy farming; the Salix plan; New York State`s utilities; commercializing a new crop; the SUNY ESF team; biomass test field station; planting and harvesting; what lies ahead. 2 figs.

  19. Slim Holes for Small Power Plants

    SciTech Connect

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  20. Syngas treating options for IGCC power plants

    SciTech Connect

    Wen, H.; Mohammad-zadeh, Y.

    1996-12-31

    Increased environmental awareness, lower cost of gas turbine based combined cycle power plants, and advances in gasification processes have made the integrated gasification combined cycle (IGCC) a viable technology to convert solid fuel to useful energy. The raw solid fuel derived synthesis gas (syngas) contains contaminants that should be removed before combustion in a gas turbine. Therefore, an important process in a gasification based plant is the cleaning of syngas. This paper provides information about various syngas treating technologies and describes their optimal selections for power generation or cogeneration of steam for industrial applications.

  1. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  2. Decentralised optimisation of cogeneration in virtual power plants

    SciTech Connect

    Wille-Haussmann, Bernhard; Erge, Thomas; Wittwer, Christof

    2010-04-15

    Within several projects we investigated grid structures and management strategies for active grids with high penetration of renewable energy resources and distributed generation (RES and DG). Those ''smart grids'' should be designed and managed by model based methods, which are elaborated within these projects. Cogeneration plants (CHP) can reduce the greenhouse gas emissions by locally producing heat and electricity. The integration of thermal storage devices is suitable to get more flexibility for the cogeneration operation. If several power plants are bound to centrally managed clusters, it is called ''virtual power plant''. To operate smart grids optimally, new optimisation and model reduction techniques are necessary to get rid with the complexity. There is a great potential for the optimised management of CHPs, which is not yet used. Due to the fact that electrical and thermal demands do not occur simultaneously, a thermally driven CHP cannot supply electrical peak loads when needed. With the usage of thermal storage systems it is possible to decouple electric and thermal production. We developed an optimisation method based on mixed integer linear programming (MILP) for the management of local heat supply systems with CHPs, heating boilers and thermal storages. The algorithm allows the production of thermal and electric energy with a maximal benefit. In addition to fuel and maintenance costs it is assumed that the produced electricity of the CHP is sold at dynamic prices. This developed optimisation algorithm was used for an existing local heat system with 5 CHP units of the same type. An analysis of the potential showed that about 10% increase in benefit is possible compared to a typical thermally driven CHP system under current German boundary conditions. The quality of the optimisation result depends on an accurate prognosis of the thermal load which is realised with an empiric formula fitted with measured data by a multiple regression method. The key

  3. Peak power reduction and energy efficiency improvement with the superconducting flywheel energy storage in electric railway system

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo

    2013-11-01

    This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.

  4. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  5. Establishing Competence: Qualification of Power Plant Personnel.

    ERIC Educational Resources Information Center

    Chapman, Colin R.

    1992-01-01

    Discusses the International Atomic Energy Agency's definition of competence for nuclear power plant operations personnel, how competence can be identified with intellectual, physical, and psychological attributes, how levels of competence are determined, how education, training, and experience establish competence, objectives and costs of training…

  6. Geothermal Cogeneration: Iceland's Nesjavellir Power Plant

    ERIC Educational Resources Information Center

    Rosen, Edward M.

    2008-01-01

    Energy use in Iceland (population 283,000) is higher per capita than in any other country in the world. Some 53.2% of the energy is geothermal, which supplies electricity as well as heated water to swimming pools, fish farms, snow melting, greenhouses, and space heating. The Nesjavellir Power Plant is a major geothermal facility, supplying both…

  7. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  8. Report on Hawaii Geothermal Power Plant Project

    SciTech Connect

    Not Available

    1983-06-01

    The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

  9. Modesty garment use at nuclear power plants

    SciTech Connect

    Owen, D.E. ); Johnstone, G. )

    1990-02-01

    This article presents the results of a telephone survey of modesty garment use at U.S. nuclear power plants. Modesty garments are launderable or disposable lightweight garments worn in radiological areas under cloth protective clothing (PCs). The types of modesty garments used, the benefits they provide, and other issues related to their used are discussed.

  10. Closed cycle osmotic power plants for electric power production

    NASA Astrophysics Data System (ADS)

    Reali, M.

    1980-04-01

    The paper deals with closed-cycle osmotic power plants (CCOPPs), which are not meant for the exploitation of natural salinity gradients but, rather, for the exploitation of those abundant heat sources having temperatures slightly higher than ambient temperature, e.g., geothermal fields, ocean temperature gradients, waste heat from power plants, and solar energy. The paper gives a general description of the CCOPP, along with some indications of its potential for energy generation. The concept of the CCOPP lies in producing electric power by means of the osmotic flows of suitable solvents and subsequently in separating them again from their solutes by means of thermal energy obtained from any available heat source. The discussion covers osmotic phenomena and the CCOPP, as well as important features of the CCOPP.

  11. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  12. Sensitivity and System Response of Pin Power Peaking in VVER-1000 Fuel Assembly Using TSUNAMI-2D

    NASA Astrophysics Data System (ADS)

    Frybort, J.

    2014-04-01

    Pin power peaking in a VVER-1000 fuel assembly and its sensitivity and uncertainty was analyzed by TSUNAMI-2D code. Several types of fuel assemblies were considered. They differ in number and position of gadolinium fuel pins. The calculations were repeated for several fuel compositions obtained by fuel depletion calculation. The results are quantified sensitivity data, which can be used for enrichment profiling.

  13. A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Netterfield, C. B.; Ade, P. A. R.; Bock, J. J.; Bond, J. R.; Borrill, J.; Boscaleri, A.; Coble, K.; Contaldi, C. R.; Crill, B. P.; Bernardis, P. de; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V. V.; Iacoangeli, A.; Jaffe, A. H.; Jones, W. C.; Lange, A. E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.; Melchiorri, A.; Montroy, T.

    2001-01-01

    This paper presents a measurement of the angular power spectrum of the Cosmic Microwave Background from l = 75 to l = 1025 (10' to 5 degrees) from a combined analysis of four 150 GHz channels in the BOOMERANG experiment. The spectrum contains multiple peaks and minima, as predicted by standard adiabatic-inflationary models in which the primordial plasma undergoes acoustic oscillations.

  14. Wind Power Plant Voltage Stability Evaluation: Preprint

    SciTech Connect

    Muljadi, E.; Zhang, Y. C.

    2014-09-01

    Voltage stability refers to the ability of a power system to maintain steady voltages at all buses in the system after being subjected to a disturbance from a given initial operating condition. Voltage stability depends on a power system's ability to maintain and/or restore equilibrium between load demand and supply. Instability that may result occurs in the form of a progressive fall or rise of voltages of some buses. Possible outcomes of voltage instability are the loss of load in an area or tripped transmission lines and other elements by their protective systems, which may lead to cascading outages. The loss of synchronism of some generators may result from these outages or from operating conditions that violate a synchronous generator's field current limit, or in the case of variable speed wind turbine generator, the current limits of power switches. This paper investigates the impact of wind power plants on power system voltage stability by using synchrophasor measurements.

  15. MCFC and microturbine power plant simulation

    NASA Astrophysics Data System (ADS)

    Orecchini, F.; Bocci, E.; Di Carlo, A.

    The consistent problem of the CO 2 emissions and the necessity to find new energy sources, are motivating the scientific research to use high efficiency electric energy production's technologies that could exploit renewable energy sources too. The molten carbonate fuel cell (MCFC) due to its high efficiencies and low emissions seems a valid alternative to the traditional plant. Moreover, the high operating temperature and pressure give the possibility to use a turbine at the bottom of the cells to produce further energy, increasing therefore the plant's efficiencies. The basic idea using this two kind of technologies (MCFC and microturbine), is to recover, via the microturbine, the necessary power for the compressor, that otherwise would remove a consistent part of the MCFC power generated. The purpose of this work is to develop the necessary models to analyze different plant configurations. In particular, it was studied a plant composed of a MCFC 500 kW Ansaldo at the top of a microturbine 100 kW Turbec. To study this plant it was necessary to develop: (i) MCFC mathematical model, that starting from the geometrical and thermofluidodynamic parameter of the cell, analyze the electrochemical reaction and shift reaction that take part in it; (ii) plate reformer model, a particular compact reformer that exploit the heat obtained by a catalytic combustion of the anode and part of cathode exhausts to reform methane and steam; and (iii) microturbine-compressor model that describe the efficiency and pressure ratio of the two machines as a function of the mass flow and rotational regime. The models developed was developed in Fortran language and interfaced in Chemcad © to analyze the power plant thermodynamic behavior. The results show a possible plant configuration with high electrical and global efficiency (over 50 and 74%).

  16. Managing the Night Off-Peak Power Demand in the Central Region UPS with Newly Commissioned NPP Capacities

    SciTech Connect

    Aminov, R. Z.; Pron’, D. M.

    2014-01-15

    The use of hydrogen technologies as a controlled-load consumer based on the newly commissioned base-load nuclear power plants to level out the daily load profile is justified for the Unified Power System (UPS) of the Central Region of Russia, as an example, for the period till 2020.

  17. DIRECT FUELCELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Shezel-Ayagh

    2005-05-01

    This report summarizes the progress made in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. Detailed design of the packaged sub-MW alpha DFC/T unit has been completed for mechanical and piping layouts and for structural drawings. Procurement activities continued with delivery of major equipment items. Fabrication of the packaged sub-MW alpha DFC/T unit has been initiated. Details of the process control philosophy were defined and control software programming was initiated.

  18. High-peak-power second-harmonic generation of single-stage Yb-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Horiuchi, Ryusuke; Saiki, Koichi; Adachi, Koji; Tei, Kazuyoku; Yamaguchi, Shigeru

    2008-05-01

    A high-peak-power and high-repetition-rate fiber laser architecture is successfully demonstrated using a single-stage fiber amplifier. Nonlinear optical effects in a fiber amplifier degrade the monochromaticity of amplified laser pulses. In general, it is difficult for a non-monochromatic laser pulse to realize high-order harmonic generation with bulk nonlinear optical crystals. To overcome this problem, a single-stage amplifier architecture and a gain fiber with a high cladding absorption coefficient are employed. Furthermore, single-stage amplification enables the use of a multi-longitudinal mode electro-optically (EO) Q-switched micro seed laser. This architecture can generate a peak power of 100 kW at 50 kHz and an average power of 10 W. A second-harmonic conversion efficiency of 51% is obtained using this architecture and a LiB3O5 (LBO) crystal.

  19. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  20. FIREDATA. Nuclear Power Plant Fire Database

    SciTech Connect

    Wheelis, W.T.

    1986-08-01

    FIREDATA contains raw fire event data from 1965 through June 1985. These data were obtained from a number of reference sources including the American Nuclear Insurers, Licensee Event Reports, Nuclear Power Experience, Electric Power Research Institute Fire Loss Data and then collated into one database developed in the personal computer database management system, dBASE III. FIREDATA is menu-driven and asks interactive questions of the user that allow searching of the database for various aspects of a fire such as: location, mode of plant operation at the time of the fire, means of detection and suppression, dollar loss, etc. Other features include the capability of searching for single or multiple criteria (using Boolean `and` or `or` logical operations), user-defined keyword searches of fire event descriptions, summary displays of fire event data by plant name or calendar date, and options for calculating the years of operating experience for all commercial nuclear power plants from any user-specified date and the ability to display general plant information.

  1. America's top fifty power plant mercury pollutants

    SciTech Connect

    2008-11-15

    The fifty most-polluting coal-burning power plants in the United States emitted twenty tons of mercury into the air in 2007. Of the ten highest-emitting plants, all but one reported an increase as compared to 2006. Coal-fired power plants are the single largest source of mercury air pollution in the U.S., accounting for roughly 40 per cent of all mercury emissions. This report rates the power plants both in terms of sheer mercury pollution and mercury pollution adjusted per kilowatt hour. It also outlines the ways in which mercury removal is achievable with existing technology. Activated carbon injection, which is commercially available and has been tested, can achieve mercury reductions of 90 per cent (and better when coupled with a fabric filter for particulate control) on both bituminous and sub-bituminous coals. In addition, mercury can be significantly reduced as a 'co-benefit' of controls for other pollutants, such as fabric filters, flue gas desulphurization, and selective catalytic reduction. 3 tabs.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-08-04

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  4. Fault-tolerant solar array control using digital signal processing for peak power tracking

    SciTech Connect

    Griesbach, C.R.

    1996-12-31

    The described power system significantly improves energy conversion efficiency under Low Intensity, Low Temperature (LILT) conditions. Elements of the described DSP-based system apply directly to terrestrial solar power processing needs. Use of this system will enable increased efficiency of solar power processing in many applications that demand low power under adverse insolation conditions. Examples are portable solar-recharged communications systems, solar-powered remote telemetry stations, autonomous geological and seismological monitoring stations, portable remote field equipment, remote sight irrigation and area lighting. The feasibility of this system was evaluated by extensive computer simulation and an engineering demonstration model was designed and fabricated to verify the concept.

  5. Safety in nuclear power plants in India

    PubMed Central

    Deolalikar, R.

    2008-01-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  6. Safety in nuclear power plants in India.

    PubMed

    Deolalikar, R

    2008-12-01

    Safety in nuclear power plants (NPPs) in India is a very important topic and it is necessary to dissipate correct information to all the readers and the public at large. In this article, I have briefly described how the safety in our NPPs is maintained. Safety is accorded overriding priority in all the activities. NPPs in India are not only safe but are also well regulated, have proper radiological protection of workers and the public, regular surveillance, dosimetry, approved standard operating and maintenance procedures, a well-defined waste management methodology, proper well documented and periodically rehearsed emergency preparedness and disaster management plans. The NPPs have occupational health policies covering periodic medical examinations, dosimetry and bioassay and are backed-up by fully equipped Personnel Decontamination Centers manned by doctors qualified in Occupational and Industrial Health. All the operating plants are ISO 14001 and IS 18001 certified plants. The Nuclear Power Corporation of India Limited today has 17 operating plants and five plants under construction, and our scientists and engineers are fully geared to take up many more in order to meet the national requirements. PMID:20040970

  7. Numerical flow modeling of power plant windboxes

    SciTech Connect

    LaRose, J.A.; Hopkins, M.W.

    1995-12-31

    Numerical flow modeling has become an increasingly important design and analysis tool for improving the air distribution to power plant burners. Uniform air distribution allows the burners to perform as designed to achieve the lowest possible emissions and best fuel burn-out. Modifications can be made internal to the existing windbox to improve the burner-to-burner and burner peripheral air distributions. These modifications can include turning vanes, flow splitters, perforated plate, and burner shrouding. Numerical modeling allows the analysis of design trade-offs between adding flow resistance, fan power, and windbox modification construction cost. Numerical modeling has advantages over physical modeling in that actual geometric scales and air temperatures are used. Advantages over a field data based study include the ability to quickly and cheaply analyze a variety of design options without actually modifying the windbox, and the availability of significantly more data with which to interpret the results. Costs to perform a numerical study are generally one-half to one-third of the cost to perform a physical flow model and can be one-forth of the cost to perform a field study. The continued development of affordable, high speed, large memory workstations and reliable, commercially available computation fluid dynamics (CFD) software allows practical analyses of power plant windboxes. This paper discusses (1) the impact of air distribution on burner performance, (2) the methodology used to perform numerical flow modeling of power plant windboxes, and (3) the results from several windbox analyses including available post-modification observations.

  8. Genre, Power, and Culture in the Televisual World of "Twin Peaks": A Feminist Critique.

    ERIC Educational Resources Information Center

    Lafky, Sue

    2000-01-01

    Examines the economic and cultural contexts of the popular television show "Twin Peaks," reading it as reactionary postmodernism. Argues that the show's clever innovations in production, avant-garde techniques, and postmodern sensibilities obscure in-depth or ongoing discussions about its reactionary politics, regressive and misogynistic…

  9. GDA steamboat power plant: a case history

    SciTech Connect

    Booth, G.M. III

    1987-08-01

    Located 10 mi south of Reno, Nevada, Steamboat Springs has long been recognized as a prime geothermal resource for electric power generation potential by the US Geological Survey and numerous energy companies. Extensive leasing and exploration by Phillips and Gulf led to the discovery of a high-temperature (over 400/sup 0/F) reservoir in 1979. Geothermal Development Associates obtained a geothermal resources lease on a 30-acre parcel and a 10-year power sales agreement for 5 MW from the local utility, Sierra Pacific Power Company, in late 1983. Drilling commenced in March 1985, modular power plant construction began in October, and initial plant startup with power to the grid was accomplished in December 1985. Owing to cooling-water access and treatment costs, air-cooled condensers replaced the planned cooling towers, and full-time scale continuous production at rated capacity did not begin until late 1986. Three production wells and two injection wells, completed in highly fractured Cretaceous granodiorite and Tertiary andesite at depths of less than 1000 ft, produce 340/sup 0/F water having a salinity of 2300 ppm. Production well line-shaft pumps deliver in excess of 3000 gpm water to seven 1.2 MW-Rankine cycle binary power plant modules. The heat extracted from the geothermal water vaporizes the low boiling point N-pentane working fluid that expands to drive the turbines. The geothermal water is injected back into the reservoir. Both the pentane and the geothermal water are in separate closed-loop systems, which provides for an environmentally clean operation in this sensitive, highly visible site on the periphery of a metropolitan area.

  10. Space power plants and power-consuming industrial systems

    SciTech Connect

    Latyshev, L.; Semashko, N.

    1996-12-31

    An opportunity to create the space power production on the basis of solar, nuclear and fusion energies is analyzed. The priority of solar power production as the most accessible and feasible in comparison with others is emphasized. However, later on, it probably will play an auxiliary role. The possibilities of fusion power production, as a basic one in future, are also considered. It is necessary to create reactors using the fueling cycle with helium-3 (instead of tritium and deuterium, later on). The reaction products--charged particles, mainly--allow one to organize the system of direct fusion energy conversion into electricity. The produced energy is expected not to be transmitted to Earth, but an industry in space is expected to be produced on its basis. The industrial (power and science-consuming) objects located on a whole number of space apparatus will form a single complex with its own basic power plant. The power transmission within the complex will be realized with high power density fluxes of microwave radiation to short distances with their receivers at the objects. The necessary correction of the apparatus positions in the complex will be done with ion and plasma thrusters. The materials present on the Moon, asteroids and on other planets can serve as raw materials for industrial objects. Such an approach will help to improve the ecological state on Earth, to eliminate the necessity in the fast energy consumption growth and to reduce the hazard of global thermal crisis.

  11. Open cycle gas fired MHD power plants

    SciTech Connect

    Medin, S.A. ); Negrini, F. )

    1991-01-01

    In this paper, the main objectives for the present development of gas fired MHD power generation are considered. The state of the world-wide natural gas consumption and its utilization for electricity production is analyzed. The experimental efforts in gas-fired MHD studies are briefly described. The essential features of the two major world gas-fired MHD project - the Ryazan MHDES-580 (U-500) power plant and the Italian 230 MWt retrofit are presented. New suggestions for improving the efficiency of MHD systems and the theoretical and experimental aspects of MHD development are discussed.

  12. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2005-05-03

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  13. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  14. The design of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    The conversion of solar energy into electricity in solar thermal tower power plants is examined. Mirrors attached to mobile, sun-following heliostats concentrate solar rays into the opening of a receiver mounted on a tower. In the receiver, the radiant energy is absorbed by a system of pipes filled with a flowing material which is heated and drives a turbogenerator directly or via a heat exchanger. It is shown that the optics involved in this concept preclude the optimization of the pipe material, since the local distribution of rays in the heater of tower power plants varies diurnally and annually. This requires each pipe section to be designed for maximum stress, even though that stress occurs only at brief intervals during the day.

  15. Fuel cell power plants for transportation applications

    SciTech Connect

    Huff, J.R.

    1991-12-31

    Over the past 35 years, the transportation sector has accounted fr approximately 25% of the total gross energy consumption in the United States. As the largest energy user in the United States, transportation accounts for approximately 66% of the country`s current petroleum consumption. Fuel cell power plants using nonpetroleum fuels such as methanol could significantly reduce US dependency on petroleum resources. They offer the additional advantage of minimal air pollution thereby addressing another issue of major concern in the US fuel cell power plant use in city buses and other vehicles is being explored in a number of US Department of Energy and industrial programs that will be described in this paper. 5 refs.

  16. New, environmentally friendly power plants being sought

    SciTech Connect

    Hansen, T.

    2007-01-15

    The common theme at the Power-Gen International Conference in November 2006 was: the world's appetite for electricity must be fed with new power plant construction. These new plants must be designed and built in an environmentally responsible way. The article reports on keynote highlights, on presentations on carbon capture and on panel discussions. TXU plans to add 9.1 GW of new coal-fired generation in Texas by 2011. Bradley Jones said the company plans to spend $2 billion on carbon sequestration research. David Ekins described a carbon capture effort that EPRI and We Energies are pursuing. Joubert, of Alstom, thought that IGCC might one day become competitive but not before 2020. 2 photos.

  17. Advanced Power Plant Development and Analysis Methodologies

    SciTech Connect

    A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

    2006-06-30

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  18. Advanced Power Plant Development and Analyses Methodologies

    SciTech Connect

    G.S. Samuelsen; A.D. Rao

    2006-02-06

    Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

  19. Coal gasification power plant and process

    DOEpatents

    Woodmansee, Donald E.

    1979-01-01

    In an integrated coal gasification power plant, a humidifier is provided for transferring as vapor, from the aqueous blowdown liquid into relatively dry air, both (I) at least a portion of the water contained in the aqueous liquid and (II) at least a portion of the volatile hydrocarbons therein. The resulting humidified air is advantageously employed as at least a portion of the hot air and water vapor included in the blast gas supplied via a boost compressor to the gasifier.

  20. Fatigue monitoring in Nuclear Power Plants

    SciTech Connect

    Ware, A.G.; Shah, V.N.

    1995-04-01

    This paper summarizes fatigue monitoring methods and surveys their application in the nuclear power industry. The paper is based on a review of the technical literature. Two main reasons for fatigue monitoring are more frequent occurrence of some transients than that assumed in the fatigue design analysis and the discovery of stressors that were not included in the fatigue design analysis but may cause significant fatigue damage at some locations. One fatigue monitoring method involves use of plant operating data and procedures to update the fatigue usage. Another method involves monitoring of plant operating parameters using existing, or if needed, supplementary plant instrumentation for online computation of fatigue usage. Use of fatigue monitoring has better defined the operational transients. Most operational transients have been found less severe and fewer in numbers than anticipated in the design fatigue analysis. Use of fatigue monitoring has assisted in quantifying newly discovered stressors and has helped in detecting the presence of thermal stratification of unsuspected locations.

  1. MARS, 600 MWth NUCLEAR POWER PLANT

    SciTech Connect

    Cumo, M.; Naviglio, A.; Sorabella, L.

    2004-10-06

    MARS (Multipurpose Advanced Reactor, inherently Safe) is a 600 MWth, single loop, pressurized light water reactor (PWR), developed at the Dept. of Nuclear Engineering and Energy Conversion of the University of Rome ''La Sapienza''. The design was focused to a multipurpose reactor to be used in high population density areas also for industrial heat production and, in particular, for water desalting. Using the well-proven technology and the operation experience of PWRs, the project introduces a lot of innovative features hugely improving the safety performance while keeping the cost of KWh competitive with traditional large power plants. Extensive use of passive safety, in depth plant simplification and decommissioning oriented design were the guidelines along the design development. The latest development in the plant design, in the decommissioning aspects and in the experimental activities supporting the project are shown in this paper.

  2. Power plant practices to ensure cable operability

    SciTech Connect

    Toman, G.J. ); Gradin, L.P. )

    1992-07-01

    This report describes the design, installation, qualification, maintenance, and testing of nuclear power plant cables with regard to continued operability. The report was initiated after questions arose concerning inadvertent abuse of cables during installation at two nuclear power plants. The extent of the damage was not clear and there was a concern as to whether cables, if damaged, would be able to function under accident conditions. This report reviews and discusses installation practices in the industry. The report also discusses currently available troubleshooting and in-situ testing techniques and provides cautions for some cases which may lead to further cable damage. Improved troubleshooting techniques currently under development are also discussed. These techniques may reduce the difficulty of testing while being able to identify cable flaws more definitively. The report finds, in general, that nuclear power plant cables have been relatively trouble-free; however, there is a need for further research and development of troubleshooting techniques which will make cable condition testing easier and more reliable. Also, recommendations for good'' installation practices are needed.

  3. Running dry at the power plant

    SciTech Connect

    Barker, B.

    2007-07-01

    In the future, competition for water will require electricity generators in the United States to address conservation of fresh water. There are a number of avenues to consider. One is to use dry-cooling and dry-scrubbing technologies. Another is to find innovative ways to recycle water within the power plant itself. A third is to find and use alternative sources of water, including wastewater supplies from municipalities, agricultural runoff, blackish groundwater, or seawater. Dry technologies are usually more capital intensive and typically exact a penalty in terms of plant performance, which in turn raises the cost of power generation. On the other hand, if the cost of water increases in response to greater demand, the cost differences between dry and wet technologies will be reduced. EPRI has a substantial R & D programme evaluating new water-conserving power plant technologies, improving dry and hybrid cooling technologies, reducing water losses in cooling towers, using degraded water sources and developing resource assessment and management decision support tools. 5 refs., 10 figs.

  4. Power plant productivity improvement in New York

    SciTech Connect

    1981-03-01

    The New York Public Service Commission (PSC), under contract with the US Department of Energy (DOE), began a joint program in September 1978 to improve the productivity of coal and nuclear electric generating units in New York State. The project had dual objectives: to ensure that the utilities in New York State have or develop a systematic permanent, cost-effective productivity improvement program based on sound engineering and economic considerations, and to develop a model program for Power Plant Productivity Improvement, which, through DOE, can also be utilized by other regulatory commissions in the country. To accomplish these objectives, the program was organized into the following sequence of activities: compilation and analysis of power plant performance data; evaluation and comparison of utility responses to outage/derating events; power plant productivity improvement project cost-benefit analysis; and evaluation of regulatory procedures and policies for improving productivity. The program that developed for improving the productivity of coal units is substantially different than for nuclear units. Each program is presented, and recommendations are made for activities of both the utilities and regulatory agencies which will promote improved productivity.

  5. Large-scale wind power farms as power plants

    NASA Astrophysics Data System (ADS)

    Gjengedal, Terje

    2005-07-01

    The integration of large-scale wind power into weak power systems raises several issues that must be clarified. Typically these include the practical connection to the network, integration with the network system, system stability, system operation, necessary installations and extensions of the network, etc. At the same time, careful attention must be paid to the functional requirements such wind farms should meet in order to enhance system responses. Different wind power technologies have different characteristics and control possibilities. In this article, three technologies have been studied with respect to their dynamic performance, and a transient stability study has been performed in order to illustrate the differences in the three technologies. The results clearly show that there are differences in behaviour and in control possibilities. Hence there are also differences in how well they can meet functional requirements. When discussing to what degree strict requirements should be imposed on wind power, it should be kept in mind that some requirements can be met with small or moderate costs, while others may be expensive or difficult to meet. Some requirements may also mean a reduction in generation and hence in revenues. Rather than imposing strict requirements on wind turbines as such, ancillary services should be met in the most suitable way. It is not obvious that the same requirements should apply to wind power in hydro power-dominated systems compared with, for instance, systems with a large share of nuclear or thermal power. It may well be cheaper to incorporate primary power control and system-stabilizing equipment in other power plants or grid points than in many small wind turbine generators. General conclusions cannot be made on this, but the issue should be the focal point of system operators everywhere. Copyright

  6. Power plant efficiency and combustion optimization

    SciTech Connect

    Chatterjee, A.K.; Nema, N.; Jain, A.

    1998-07-01

    Grasim, a leader producer of Rayon grade staple fiber has, with time come up with its own Captive Electric Power Generation Industry with a capacity of generating 113 MW Thermal Power for its in-house use involving state of the art technology and system. In the present paper, it is desired to share the technical development in the global environment and receive expert feedback for its own upgrade. The on site power plants have a variety of steam turbines and boilers of different capacities. At times the plants had to face power crisis due to number of reasons and has always come up with number of solutions for performance enhancement and efficiency improvement. It is desired to present the following cases: (1) Development of spiral coal caps--for atmospheric fluidized bed boilers, it is often experienced that unburned carbon is high in ash. The reason being that coal particles do not get sufficient retention time after being injected into the bed. Attempt has been made to increase the retention time and better mixing by creating a cyclone around the coal cap with help of spiral coal caps. (2) Combustion optimization--in view of the inherent design deficiency, combustion was optimized by controlling the three parameters i.e., time, temperature and turbulence. In pulverized fuel combustion boilers this was done by providing air damper regulation and in atmospheric fluidized bed combustion boilers this was done by creating a vortex and regulating fluidizing air. The details shall be given in paper. (3) Power plant efficiency improvement--by introducing online monitoring system and identifying various areas of losses for various operating reasons and the cost associated with each operating parameter and the impact of each variation.

  7. Effects of isokinetic training of the knee extensors on isometric strength and peak power output during cycling.

    PubMed

    Mannion, A F; Jakeman, P M; Willan, P L

    1992-01-01

    Isokinetic training of right and left quadriceps femoris was undertaken three times per week for 16 weeks. One group of subjects (n = 13) trained at an angular velocity of 4.19 rad.s-1 and a second group (n = 10) at 1.05 rad.s-1. A control group (n = 10) performed no training. Maximal voluntary contraction (MVC) of the quadriceps, and peak pedal velocity nu p,peak) and peak power output (Wpeak) during all-out cycling (against loads equivalent to 9, 10, 11, 12, 13 and 14% MVC) were assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of the performance variables (P > 0.05). No significant difference in MVC was observed for any group after the 16-week period (P = 0.167). The post-training increases in average Wpeak (7%) and nu p,peak (6%) during the cycle tests were each significantly different from the control group response (P = 0.018 and P = 0.008, respectively). It is concluded that 16 weeks of isokinetic strength training of the knee extensors is able to significantly improve nu p, peak and Wpeak during spring cycling, an activity which demands considerable involvement of the trained muscle group but with its own distinct pattern of coordination. PMID:1425638

  8. Correlation of total sound power and peak sideline OASPL from jet exhausts

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1972-01-01

    An empirical analysis of jet noise is made for convergent exhaust nozzles. An engineering approach to the correlation of total sound power and miximum sideline overall sound pressure level (OASPL), at 200 ft, is presented for both subsonic and supersonic jets based on available data. Data correlation for subsonic jets shows no dependency of total sound power and maximum sideline OASPL on jet density. The analysis for supersonic jets results in a correlation parameter for jet total sound power consisting of the conventional Lighthill parameter modified by considerations of jet Mach number and jet acoustic velocity. Similar parameters also correlate the maximum sideline OASPL for supersonic jets.

  9. Use of Cooling Thermal Storage as a Heat Sink for Steam Power Plant

    NASA Astrophysics Data System (ADS)

    Hegazy, Ahmed Sabry

    In the present paper, a system is proposed for improving the performance of steam power plant with air-cooled condenser during peak loads. In this system, the power plant comprises two steam turbines, and the air-cooled condenser is replaced by two condensers. The first one is air-cooled (dry) and used for condensing the exhaust steam of the first turbine, while the second is water-cooled and serves to condense the steam outlet of the second turbine. The warm cooling water exiting the wet condenser is pumped to a cooling storage container, where it is cooled and re-circulated to the wet condenser. Cooling is produced by a refrigeration machine driven by the extra electric power generated by the two turbines during the time of the off-peak-loads (low electricity rates). Simple energy analyses have been developed to predict the energy characteristics of this system. The results of this paper showed that the proposed system leads to improving the plant power output at peak-loads. About 6, 16, 24 and 33% increase in generated plant power can be achieved at peak-loads (high electricity rates) when the ambient temperature is 20, 30, 40 and 50°C respectively, and the whole steam exiting both turbines is cooled in a wet condenser to a design temperature of 20°C. The results showed also that choice of the capacity of each turbine is essentially affected by the quality of the refrigeration machine and ambient temperature.

  10. Worldwide supercritical power plants: Status and future

    SciTech Connect

    Gorokhov, V.A.; Ramezan, M.; Ruth, L.A.; Kim, S.S.

    1999-07-01

    During the last decade leading industrial countries initiated a new wave of research and development on supercritical (SC) steam power plants. This new interest is accompanied by the jump from SC steam parameters to ultra-supercritical (USC) parameters and was initiated mostly due to the increase in cost of fuel on the world market, and by increased environmental regulations including reduction of greenhouse gases. As a result, a significant number of new pulverized coal (PC) power units with increased efficiency and reduced emissions were installed in the last two decades, and a few more are planned to be installed in the near future. Different driving forces are responsible for development and implementation of highly efficient advanced PC-fired systems: need for new capacity, quality and cost of fuel, level of technology development, environmental requirements, and internal situation with regard to power supply (deregulation). For example, in Europe, Germany in particular, controlling CO{sub 2} is a major issue in any new installation, while in Japan economics is the major issue as the costs of imported fuels are high, and there are greater economic incentives for efficiency improvement. This paper discusses the status of existing and planned SC and USC power plants worldwide and their technical and environmental performance.

  11. Central-station solar hydrogen power plant.

    SciTech Connect

    Diver, Richard B., Jr.; Siegel, Nathan Phillip; Kolb, Gregory J.

    2005-04-01

    Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature ({approx}1000 C) power tower with a sulfuric acid/hybrid thermochemical cycle was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is 'hybrid' because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.

  12. Proceedings: EPRI power plant valves symposium 3

    SciTech Connect

    Evans, S.O. )

    1991-06-01

    The third in a series of on-going activities entitled EPRI Power Plant Valves Symposiums'' was conducted in Charlotte, North Carolina on August 21--23, 1990. The activity was co-sponsored by the Nuclear Power Division and the Generation and Storage Division of EPRI and was hosted by the Duke Power Company, which is headquartered in Charlotte. Approximately 320 attendees, consisting of representatives from the utility industry, valve manufacturers and service organizations, and government and other organizations participated in the symposium. The list of attendees represents an increase of approximately 80% over the attendance of the previous symposium. A total of 40 technical papers were presented in the following major categories of valve technology: control valves; motor operated valves; applications and testing; materials performance; maintenance; check valves. The National Association of Valve Rebuilders (NAVR) provided new and significant support and industry perspective to this symposium.

  13. Digital AVR application to power plants

    SciTech Connect

    Hirayama, K.; Tone, Y.; Takagi, K.; Murakami, H.; Shibata, M.; Nagamura, H.; Takagi, Y.

    1993-12-01

    The digital AVR must have the level of redundancy and control functions that conform to the configuration of the excitation control system and to the importance of a particular generator for the user. The digital AVR is not simply a digital version of the analog AVR, but can realize sophisticated control functions that were difficult to achieve with analog circuits, thus making it possible to enhance the stability of power system by PSS (power system stabilizer). This paper describes the test results of the digital AVRs applied to power plants, their system configuration and functions, as well as the outline of an auto-tuning PSS or AT-PSS planned to be incorporated in the digital AVR in the future.

  14. 1. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE DIRECT CURRENT GENERATORS WITH CONTROL PANEL AT LEFT. - Pratt Institute, Power Generating Plant, Willoughby Avenue between Classen & Hall Streets, Brooklyn, Kings County, NY

  15. 11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. EAST WALL OF POWER PLANT BUILDING LOOKING WEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  16. 4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. NORTH ELEVATION OF POWER PLANT LOOKING SOUTH SOUTHWEST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  17. 1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF POWER PLANT LOOKING SOUTHEAST. SEVEN TURBINE FLUMES VISIBLE IN FRONT OF BUILDING. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  18. 9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EXTERIOR PERSPECTIVE OF POWER PLANT BUILDING LOOKING NORTHEAST. DRY CANAL BED IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  19. 8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF WESTERN END OF THE POWER PLANT BUILDING LOOKING NORTH. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. 10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. WEST WALL OF POWER PLANT BUILDING LOOKING EAST SOUTHEAST. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  1. 3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF POWER PLANT LOOKING SOUTH INTO THE REMAINS OF THE TURBINE FLUMES. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  2. 7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. EXTERIOR OF POWER PLANT BUILDING LOOKING NORTHWEST. DETAIL OF TRASH RACK IN FOREGROUND. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  3. 6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF POWER PLANT BUILDING LOOKING NORTHWEST. DRY CANAL BED TO THE LEFT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  4. 12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CANAL SLUICE GATE LOCATED 150' WEST OF POWER PLANT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  5. 1. View of east elevation of power plant, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of east elevation of power plant, radar tower in background, looking west - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. 8. View of power plant and radar tower, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of power plant and radar tower, looking southwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  7. 20. Power plant engine piping details and schedules, sheet 82 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Power plant engine piping details and schedules, sheet 82 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  8. 4. View of south elevation of power plant, looking north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of south elevation of power plant, looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  9. 18. Power plant engine piping floor plan, sheet 71 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Power plant engine piping floor plan, sheet 71 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  10. 22. Power plant engine pipingcompressed air piping diagram and sections, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Power plant engine piping-compressed air piping diagram and sections, sheet 81 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  11. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  12. 2. View of north elevation of power plant, looking south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of north elevation of power plant, looking south - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  13. 11. Interior view, east side of power plant, close of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Interior view, east side of power plant, close of up fuel tanks, looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  14. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  15. 16. Power plant roof plan and wall sections, sheet 65 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Power plant roof plan and wall sections, sheet 65 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  16. 19. Power plant engine pipinglower level plan, sheet 80 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Power plant engine piping-lower level plan, sheet 80 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. 2. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL INTERIOR VIEW OF POWER PLANT SHOWING THREE GE DIRECT CURRENT GENERATORS WITH STEAM PIPES TO RIGHT. - Pratt Institute, Power Generating Plant, Willoughby Avenue between Classen & Hall Streets, Brooklyn, Kings County, NY

  18. 2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST ELEVATION OF POWER PLANT TEST STAND (HORIZONTAL TEST STAND REMNANTS OF BUILDING-BLANK WHITE WALL ONLY ORIGINAL REMAINS. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  19. 14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR OF POWER PLANT LOOKING SOUTHEAST AT ELECTRICAL PANEL. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. 9. Interior view, west side of power plant, electrical panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Interior view, west side of power plant, electrical panels in place in center of photograph, looking northwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. Megawatt peak power, 1 kHz, 266 nm sub nanosecond laser source based on single-crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Deyra, Loïc; Martial, Igor; Balembois, François; Diderjean, Julien; Georges, Patrick

    2013-06-01

    We report the realization of a UV source based on the fourth harmonic generation with LBO/BBO of a Nd:YAG passively Q-switched oscillator amplified in a single-crystal fiber. With careful optimization of the nonlinear components and parameters, we obtain 530 mW average power at 266 nm with pulses of 540 ps at the repetition rate of 1 kHz, which represents a 22.7 % total conversion efficiency from IR to UV and nearly 1 MW peak power. The beam quality M 2 is measured to be below 2.

  2. High peak power miniature Yb:CNGG disordered crystal laser end-pumped by a 935-nm diode

    NASA Astrophysics Data System (ADS)

    Dai, Qibiao; Yi, Hongying; Chen, Xiaowen; Han, Wenjuan; Zhang, Huaijin; Wang, Shiwu; Liu, Junhai

    2014-04-01

    We report on an efficient miniature Yb:CNGG disordered crystal laser, which is passively Q-switched with a Cr4+:YAG crystal plate acting as saturable absorber. An average output power of 1.35 W is generated at a pulse repetition rate of 5.55 kHz with a slope efficiency of 42%; the resulting laser pulse energy and duration are respectively 243 μJ and 3.0 ns, while the peak power is as high as 81 kW.

  3. Tm-based fiber-laser system with more than 200  MW peak power.

    PubMed

    Stutzki, Fabian; Gaida, Christian; Gebhardt, Martin; Jansen, Florian; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2015-01-01

    Tm-based fiber-laser systems are an attractive concept for the development of high-performance laser sources in the spectral region around 2 μm wavelength. Here we present a system delivering a pulse-peak power higher than 200 MW in combination with 24 W average power and 120 μJ pulse energy. Key components enabling this performance level are a Tm-doped large-pitch fiber with a mode-field diameter of 65 μm, highly efficient dielectric gratings, and a Tm-based fiber oscillator operating in the stretched-pulse regime. PMID:25531595

  4. Enhanced keV peak power and yield using twisted pair 'cables' in a z-pinch

    SciTech Connect

    Hoyt, C. L.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Cahill, A. D.; Gourdain, P.-A.; Greenly, J. B.; Kusse, B. R.; Hammer, D. A.

    2012-06-11

    Individual wires in a z-pinch were replaced with twisted pair 'cables' of similar linear mass on the COBRA pulsed power generator, resulting in peak power and yield increases in radiation above 1 keV. A cable is defined here as two or more fine wires twisted together to form a continuous strand with a wavelength ({lambda}{sub t}) dependent on the twists per unit length. The magnitude of {lambda}{sub t} appears to play a strong role in these increases, with the largest gains found for a {lambda}{sub t} of Almost-Equal-To 0.75 mm.

  5. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  6. Peak power fluctuation due to timing jitter in synchronized time-lens source for coherent Raman scattering microscopy.

    PubMed

    Wang, Ke; Wang, Jiaqi; Qiu, Ping

    2016-05-01

    Synchronized time-lens source is a promising source solution for coherent Raman scattering (CRS) microscopy. Contrary to conventional (single) time-lens source which is driven by electrical signals from a fixed-frequency radio-frequency (RF) source, the synchronized time-lens source is driven by electrical signals from optoelectronic detection of the optical output of the mode-locked laser to which it is synchronized. Consequently, the driving frequency suffers from fluctuation if there is intrinsic timing jitter of the mode-locked laser output. In this paper through numerical simulation, we demonstrate that this timing jitter will be translated into pulse-to-pluse fluctuation of the peak power of the synchronized time-lens source. The larger the intrinsic timing jitter of the mode-locked laser is, the larger this peak power fluctuation of the synchronized time-lens source is. Besides, our results indicate that an effective means of suppressing this peak power fluctuation is to reduce the bandwidth of the RF filter for the phase modulators. PMID:27137577

  7. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  8. Load controller and method to enhance effective capacity of a photovotaic power supply using a dynamically determined expected peak loading

    DOEpatents

    Perez, Richard

    2003-04-01

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply. The expected peak loading of the variable load can be dynamically determined within a defined time interval with reference to variations in the variable load.

  9. Continuous measurement of peak hydrogen fluoride exposures in aluminum smelter potrooms: instrument development and in-plant evaluation.

    PubMed

    Dando, Neal; Xu, Weizong; Peace, Jon Nathaniel

    2008-02-01

    The aluminum smelting process continuously evolves both sulfur dioxide (SO2) and hydrogen fluoride (HF) gases. The vast majority of these evolved gases are captured by local exhaust ventilation systems and transported to fume treatment centers. Any gas escaping the ventilation systems could create the potential for workplace exposures. Currently, there are no commercially available sensors that are capable of selectively measuring peak concentrations (< 10 sec) of HF in the presence of SO2. This measurement capability is critical for facilitating a better understanding of the etiology of respiratory health effects. This article presents the development and in-plant testing of a portable, tunable diode-based HF sensor that shows equivalent or improved performance relative to NIOSH Method 7902 and is capable of measuring short-term personal peak HF exposure potentials in operating aluminum smelters. PMID:18074293

  10. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  11. Water treatment plants assessment at Talkha power plant.

    PubMed

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  12. BN-800 advanced nuclear power plant with fast reactor

    SciTech Connect

    Shishkin, A.N.; Kuzavkov, N.G.; Sobolev, V.A.; Shestakov, G.V.; Bagdasarov, Yu.E.; Kochetkov, L.A.; Matveyev, V.I.; Poplavsky, V.M.

    1993-12-31

    Bn-800 reactor plant with fast reactor and sodium coolant in the primary and secondary circuits is designed for operation as part of the power units in the Yuzhno-Uralskaya nuclear power plant scheduled to be constructed in Chelyabinsk region and as part unit 4 in the Beloyarskaya nuclear power plant. Reactor operations are described.

  13. Dual-wavelength tunable fibre laser with a 15-dBm peak power

    SciTech Connect

    Latif, A A; Awang, N A; Zulkifli, M Z; Harun, S W; Ghani, Z A; Ahmad, H

    2011-08-31

    A high-power dual-wavelength tunable fibre laser (HP-DWTFL) operating in the C-band at wavelengths from 1536.7 nm to 1548.6 nm is proposed and demonstrated. The HP-DWTFL utilises an arrayed waveguide grating (AWG) (1 x 16 channels) and is capable of generating eight different dual-wavelength pairs with eight possible wavelength spacings ranging from 0.8 nm (the narrowest spacing) to 12.0 nm (the widest spacing). The average output power and side mode suppression ratio (SMSR) of the HP-DWTFL are measured to be 15 dBm and 52.55 dB, respectively. The proposed HP-DWTFL is highly stable with no variations in the chosen output wavelengths and has minimal changes in the output power. Such a laser has good potential for use in measurements, communications, spectroscopy and terahertz applications. (control of radiation parameters)

  14. Analysis of nuclear power plant construction costs

    SciTech Connect

    Not Available

    1986-01-01

    The objective of this report is to present the results of a statistical analysis of nuclear power plant construction costs and lead-times (where lead-time is defined as the duration of the construction period), using a sample of units that entered construction during the 1966-1977 period. For more than a decade, analysts have been attempting to understand the reasons for the divergence between predicted and actual construction costs and lead-times. More importantly, it is rapidly being recognized that the future of the nuclear power industry rests precariously on an improvement in the cost and lead-time situation. Thus, it is important to study the historical information on completed plants, not only to understand what has occurred to also to improve the ability to evaluate the economics of future plants. This requires an examination of the factors that have affected both the realized costs and lead-times and the expectations about these factors that have been formed during the construction process. 5 figs., 22 tabs.

  15. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    SciTech Connect

    Wu, Y.; Xie, H. Q.; Li, Z. H.; Zhang, Y. J.; Ma, Q. S.

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  16. Pollution on the rise: local trends in power plant pollution

    SciTech Connect

    Corrigan, Z.; Emily Figdor, E.

    2005-01-15

    More than 1,200 power plants report emissions to US EPA, which compiles the information in its acid rain database. To examine trends in power plant pollution, this report analyzes the data for carbon dioxide, sulphur dioxide and nitrogen oxide emissions since 1995, the first year the Acid Rain Program capped SO{sub 2} emissions from the electricity-generating sector. Power plants contribute 39% of the USA's CO{sub 2} emissions. In 2003, power plants released 2.5 billion tons of CO{sub 2}, a 9% increase over 1995 levels. Power plants in Texas, Ohio, Florida, Indiana, Pennsylvania, Illinois, Kentucky, West Virginia, Alabama, and Georgia released the most CO{sub 2} in 2003. Power plants contribute 67%t of sootforming SO{sub 2} emissions. Although federal law caps SO{sub 2} emissions from power plants, more than half (216 of 400, or 54 percent) of the nation's dirtiest power plants increased their annual emissions from 1995 to 2003, even while annual SO{sub 2} emissions from power plants decreased by 10% nationwide. Power plants in Ohio had highest emissions, releasing 1.2 million tons in 2003, with Pennsylvania a close second. Power plants contribute 22% of smog-forming NOx emissions. NOx also contributes to fine particle pollution. Though regional initiatives limit NOx emissions from power plants, 38% (188 of 500) of the nation's dirtiest power plants increased their annual NOx emissions from 1995 to 2003, even while annual NOx emissions from power plants declined by 29 percent nationwide. Power plants in Ohio also led the nation for the most NOx emissions in 2003. The report recommends that tighter national caps should be accompanied by rigorous enforcement of New Source Review and other Clean Air Act programs that ensure that every plant installs modern pollution controls. 57 refs., 5 apps.

  17. 975nm high-peak power ns-diode laser based MOPA system suitable for water vapor DIAL applications

    NASA Astrophysics Data System (ADS)

    Sumpf, Bernd; Klehr, Andreas; Vu, Thi Nghiem; Erbert, Götz; Tränkle, Günther

    2015-03-01

    Micro-DIAL (differential absorption LIDAR) systems require light sources with peak powers in the range of several 10 W together with a spectral line width smaller than the width of absorption lines under study. For water vapor at atmospheric pressure this width should be smaller than 10 pm at 975 nm. In this paper, an all semiconductor master oscillator power amplifier system at an emission wavelength of 975 nm will be presented. This spectral range was selected with respect to a targeted absorption path length of 5000 m and H2O line strengths. A distributed feedback (DFB) ridge waveguide diode laser operated in continuous wave is used as master oscillator whereas a tapered amplifier consisting of a RW section and a flared section is implemented as power amplifier. The RW section acts as optical gate. The current pulses injected into the RW part have a length of 8 ns and the tapered part is driven with 15 ns long pulses. The delay between the pulses is adjusted for optimal pulse shape. The repetition rate is in both cases 25 kHz. A maximal pulse output power of about 16 W limited by the available current supply is achieved. The spectral line width of the system determined by the properties of the DFB laser is smaller than 10 pm. The tuning range amounts 0.9 nm and a SMSR of 40 dB is observed. From the dependence of the peak power on the power injected into the tapered amplifier, the saturation power is determined to 5.3 mW.

  18. A simple algorithm to compute the peak power output of GaAs/Ge solar cells on the Martian surface

    SciTech Connect

    Glueck, P.R.; Bahrami, K.A.

    1995-12-31

    The Jet Propulsion Laboratory`s (JPL`s) Mars Pathfinder Project will deploy a robotic ``microrover`` on the surface of Mars in the summer of 1997. This vehicle will derive primary power from a GaAs/Ge solar array during the day and will ``sleep`` at night. This strategy requires that the rover be able to (1) determine when it is necessary to save the contents of volatile memory late in the afternoon and (2) determine when sufficient power is available to resume operations in the morning. An algorithm was developed that estimates the peak power point of the solar array from the solar array short-circuit current and temperature telemetry, and provides functional redundancy for both measurements using the open-circuit voltage telemetry. The algorithm minimizes vehicle processing and memory utilization by using linear equations instead of look-up tables to estimate peak power with very little loss in accuracy. This paper describes the method used to obtain the algorithm and presents the detailed algorithm design.

  19. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  20. Raft River 5MW power plant: A small binary power plant

    NASA Astrophysics Data System (ADS)

    Whitbeck, J. F.; Dibello, E. G.; Walrath, L. F.

    1982-06-01

    The Raft River 5MW power plant is a binary cycle pilot plant. The system uses isobutane in a dual boiling cycle. This cycle was selected because the well field and temperatures were not well known at the time of cycle selection, and therefore, a boiling cycle was desirable. The dual boiling features provides about 15 to 20% more power and makes the output less sensitive to changes in geothermal temperature changes than a single boiler system. The plant design was based upon a 290F geothermal fluid temperature at the inlet to the plant and has a gross nominal generator rating of 5MW; however, actual output will vary according to ambient wet bulb temperatures over a range from 4.4MW to 6.2MW with the actual plant inlet temperature of 278F being obtained. The plant is supplied by three production wells. Geothermal fluid boost pumps within the plant inlet provide the pressure necessary to overcome plant pressure drop and return the fluid to the two injection sites.

  1. Thermionic topping of electric power plants

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. O.; Rasor, N. S.

    1975-01-01

    The most likely use of thermionic conversion is in the form of a topping cycle combined with a steam-turbogenerator plant. A specific reference system is chosen in which the thermionic topping cycle occurs in thermionic heat exchangers referred to as large, modular thermionic units to which heat is transferred from a separate heat source and which reject their heat to a conventional steam turboelectric system. Results of analysis show that the performance and cost criteria for practical thermionic topping of large electric power plants are well within the reach of demonstrated and foreseeable converter capabilities. Thermionic topping has many significant advantages over unconventional cycles proposed for topping applications, including level of demonstrated and projected performance and lifetime, development time, and design simplicity.

  2. Modularization Technology in Power Plant Construction

    SciTech Connect

    Kenji Akagi; Kouichi Murayama; Miki Yoshida; Junichi Kawahata

    2002-07-01

    Since the early 1980's, Hitachi has been developing and applying modularization technology to domestic nuclear power plant construction, and has achieved great rationalization. Modularization is one of the plant construction techniques which enables us to reduce site labor by pre-assembling components like equipment, pipes, valves and platforms in congested areas and installing them using large capacity cranes for cost reduction, better quality, safety improvement and shortening of construction time. In this paper, Hitachi's modularization technologies are described especially from with respect to their sophisticated design capabilities. The application of 3D-CAD at the detailed layout design stage, concurrent design environment achieved by the computer network, module design quantity control and the management system are described. (authors)

  3. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69...

  4. 76 FR 39908 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2.... DPR-53 and DPR-69, for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 (CCNPP),...

  5. Biocorrosion in a geothermal power plant

    SciTech Connect

    Navarrette-Bedolla, M.; Ballesteros-Almanza, M.L.; Sanchez-Yanez, J.M.; Valdez-Salas, B.; Hernandez-Duque, G.

    1999-04-01

    Hyperthermophilic archaebacteria (Thermoproteus neutrophilus) promoting the corrosion of type 316 stainless steel (SS) (UNS S31600) in vapor ducts of the Tejamaniles geothermal electric power plant in Los Azufres, Michoacan, Mexico, were isolated from condensed steam. Metallographic analysis and scanning electron microscopy were performed to determine the morphology of microbiological attack on the SS. Electrochemical corrosion tests showed that the bacteria induced corrosion on type 316 SS preferentially at grain boundaries. Large amounts of elemental sulfur and carbon were detected where the bacterial culture was located.

  6. Nuclear power plants for mobile applications

    NASA Technical Reports Server (NTRS)

    Anderson, J. L.

    1972-01-01

    Mobile nuclear powerplants for applications other than large ships and submarines will require compact, lightweight reactors with especially stringent impact-safety design. The technical and economic feasibility that the broadening role of civilian nuclear power, in general, (land-based nuclear electric generating plants and nuclear ships) can extend to lightweight, safe mobile nuclear powerplants are examined. The paper discusses technical experience, identifies potential sources of technology for advanced concepts, cites the results of economic studies of mobile nuclear powerplants, and surveys future technical capabilities needed by examining the current use and projected needs for vehicles, machines, and habitats that could effectively use mobile nuclear reactor powerplants.

  7. Diode-pumped gigahertz femtosecond Yb:KGW laser with a peak power of 3.9 kW.

    PubMed

    Pekarek, Selina; Fiebig, Christian; Stumpf, Max Christoph; Oehler, Andreas Ernst Heinz; Paschke, Katrin; Erbert, Götz; Südmeyer, Thomas; Keller, Ursula

    2010-08-01

    We present a diode-pumped Yb:KGW laser with a repetition rate of 1 GHz and a pulse duration of 281 fs at a wavelength of 1041 nm. A high brightness distributed Bragg reflector tapered diode laser is used as a pump source. Stable soliton modelocking is achieved with a semiconductor saturable absorber mirror (SESAM). The obtained average output power is 1.1 W and corresponds to a peak power of 3.9 kW and a pulse energy of 1.1 nJ. With harmonic modelocking we could increase the pulse repetition rate up to 4 GHz with an average power of 900 mW and a pulse duration of 290 fs. This Yb:KGW laser has a high potential for stable frequency comb generation. PMID:20721018

  8. Modular stellarator reactor: a fusion power plant

    SciTech Connect

    Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

    1983-07-01

    A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

  9. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  10. Influence of peak power in ablation rate of dental hard tissues: mathematical model

    NASA Astrophysics Data System (ADS)

    Colojoara, Carmen; Gabay, Shimon; van der Meulen, Freerk W.; van Gemert, Martin J. C.

    1996-12-01

    Pulsed Er:YAG and CO2 lasers should be suitable instruments for dentin and enamel ablation because both tissues have absorption peaks for radiation at 2.9 and 9.6 micrometers wavelengths. This is the context of our research that emphasizes the way in which the diameter and the depth of the crater made in enamel and dentin with the laser Er:YAG and CO2 is influenced in quantity and quality. Freshly extracted human third molar were used for this experiment. The laser source is Er:YAG Kavo Key dental model 1240 and CO2 Laser Sonics LS 860. The dimensions of the obtained craters were measured using the optical microscopy method. The obtained results were modelled experimentally with programs: GRAPHER and STATGRAPHICS. After the mathematical processing to the results what we obtain is relevant regarding the influence of the key parameters in the efficiency of the ablation according to the type of laser. On the whole, from our research results that both lasers ablate efficiently the dentin when the laser energy is between 200 and 300 mJ.

  11. Examination of food waste co-digestion to manage the peak in energy demand at wastewater treatment plants.

    PubMed

    Lensch, D; Schaum, C; Cornel, P

    2016-01-01

    Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load. PMID:26877042

  12. Interaction-powered Supernovae: Rise-time versus Peak-luminosity Correlation and the Shock-breakout Velocity

    NASA Astrophysics Data System (ADS)

    Ofek, Eran O.; Arcavi, Iair; Tal, David; Sullivan, Mark; Gal-Yam, Avishay; Kulkarni, Shrinivas R.; Nugent, Peter E.; Ben-Ami, Sagi; Bersier, David; Cao, Yi; Cenko, S. Bradley; De Cia, Annalisa; Filippenko, Alexei V.; Fransson, Claes; Kasliwal, Mansi M.; Laher, Russ; Surace, Jason; Quimby, Robert; Yaron, Ofer

    2014-06-01

    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ~104 km s-1). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.

  13. Interaction-powered supernovae: rise-time versus peak-luminosity correlation and the shock-breakout velocity

    SciTech Connect

    Ofek, Eran O.; Arcavi, Iair; Tal, David; Gal-Yam, Avishay; Ben-Ami, Sagi; De Cia, Annalisa; Yaron, Ofer; Sullivan, Mark; Kulkarni, Shrinivas R.; Cao, Yi; Nugent, Peter E.; Bersier, David; Cenko, S. Bradley; Filippenko, Alexei V.; Fransson, Claes; Kasliwal, Mansi M.; Laher, Russ; Surace, Jason; Quimby, Robert

    2014-06-20

    Interaction of supernova (SN) ejecta with the optically thick circumstellar medium (CSM) of a progenitor star can result in a bright, long-lived shock-breakout event. Candidates for such SNe include Type IIn and superluminous SNe. If some of these SNe are powered by interaction, then there should be a specific relation between their peak luminosity, bolometric light-curve rise time, and shock-breakout velocity. Given that the shock velocity during shock breakout is not measured, we expect a correlation, with a significant spread, between the rise time and the peak luminosity of these SNe. Here, we present a sample of 15 SNe IIn for which we have good constraints on their rise time and peak luminosity from observations obtained using the Palomar Transient Factory. We report on a possible correlation between the R-band rise time and peak luminosity of these SNe, with a false-alarm probability of 3%. Assuming that these SNe are powered by interaction, combining these observables and theory allows us to deduce lower limits on the shock-breakout velocity. The lower limits on the shock velocity we find are consistent with what is expected for SNe (i.e., ∼10{sup 4} km s{sup –1}). This supports the suggestion that the early-time light curves of SNe IIn are caused by shock breakout in a dense CSM. We note that such a correlation can arise from other physical mechanisms. Performing such a test on other classes of SNe (e.g., superluminous SNe) can be used to rule out the interaction model for a class of events.

  14. Megawatt-level peak-power from a passively Q-switched hybrid fiber-bulk amplifier and its applications

    NASA Astrophysics Data System (ADS)

    Reiser, Axel; Bdzoch, Juraj; Höfer, Sven; Scholz-Riecke, Sina; Seitz, Daniel; Kugler, Nicolas; Genter, Peter

    2016-03-01

    A novel laser system with optical parameters that fill the gap between Q-switched and modelocked lasers has been developed. It consists of a high gain hybrid fiber-bulk amplifier seeded by a low power SESAM Q-switched oscillator. The mW level output power of the seed oscillator is preamplified by a single mode fiber which is limited by SRS effects. The final amplification stage is realized by a longitudinal pumped Nd:YVO4 crystal in a double pass setup. This MOPA configuration delivers sub-300ps pulses at repetition rates up to 1 MHz with an output power exceeding 60W. Nonlinear frequency conversion to 532nm and 355nm is achieved with efficiencies of >75% and >45%, respectively. Due to the high peak power, high repetition rate and high beam quality of this system, applications formerly only addressable at lower pulse repetition frequencies or with complex modelocked laser systems are now possible with high speed and lower cost of ownership. Application results that take benefit from these new laser parameters will be shown. Furthermore, the reduction of the pulse duration to sub-100ps and power scaling to output powers <100W by the use of the Innoslab concept are being presented.

  15. Preliminary assessment of alternative PFBC power plant systems

    NASA Astrophysics Data System (ADS)

    Wysocki, J.; Rogali, R.

    1980-07-01

    Design and economic comparisons of the following nominal 1000 MWe pressurized fluidized bed combustion (PFBC) power plants are presented for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) the steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBC designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.

  16. Preliminary assessment of alternative PFBC power plant systems. Final report

    SciTech Connect

    Wysocki, J.; Rogali, R.

    1980-07-01

    This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBC designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.

  17. Spatial filter with volume gratings for high-peak-power multistage laser amplifiers

    NASA Astrophysics Data System (ADS)

    Tan, Yi-zhou; Yang, Yi-sheng; Zheng, Guang-wei; Shen, Ben-jian; Pan, Heng-yue; Liu, Li

    2010-08-01

    The regular spatial filters comprised of lens and pinhole are essential component in high power laser systems, such as lasers for inertial confinement fusion, nonlinear optical technology and directed-energy weapon. On the other hand the pinhole is treated as a bottleneck of high power laser due to harmful plasma created by the focusing beam. In this paper we present a spatial filter based on angular selectivity of Bragg diffraction grating to avoid the harmful focusing effect in the traditional pinhole filter. A spatial filter consisted of volume phase gratings in two-pass amplifier cavity were reported. Two-dimensional filter was proposed by using single Pi-phase-shifted Bragg grating, numerical simulation results shown that its angular spectrum bandwidth can be less than 160urad. The angular selectivity of photo-thermorefractive glass and RUGATE film filters, construction stability, thermal stability and the effects of misalignments of gratings on the diffraction efficiencies under high-pulse-energy laser operating condition are discussed.

  18. Can we estimate the cellular phone RF peak output power with a simple experiment?

    NASA Astrophysics Data System (ADS)

    Fioreze, Maycon; dos Santos Junior, Sauli; Goncalves Hönnicke, Marcelo

    2016-07-01

    Cellular phones are becoming increasingly useful tools for students. Since cell phones operate in the microwave bandwidth, they can be used to motivate students to demonstrate and better understand the properties of electromagnetic waves. However, since these waves operate at higher frequencies (L-band, from 800 MHz to 2 GHz) it is not simple to detect them. Usually, expensive real-time high frequency oscilloscopes are required. Indirect measurements are also possible through heat-based and diode-detector-based radio-frequency (RF) power sensors. Another didactic and intuitive way is to explore a simple and inexpensive detection system, based on the interference effect caused in the electronic circuit of TV and PC soundspeakers, and to try to investigate different properties of the cell phones’ RF electromagnetic waves, such as its power and modulated frequency. This manuscript proposes a trial to quantify these measurements, based on a simple Friis equation model and the time constant of the circuit used in the detection system, in order to show it didactically to the students and even allow them also to explore such a simple detection system at home.

  19. Tunable pulse width and multi-megawatt peak-power pulses from a nonlinearly compressed monolithic fiber MOPA system

    NASA Astrophysics Data System (ADS)

    Yamashita, Ryutarou; Maeda, Kazuo; Watanabe, Goro; Tei, Kazuyoku; Yamaguchi, Shigeru; Enokidani, Jun; Sumida, Shin

    2016-03-01

    We report on tunable pulse width and high peak power pulse generation from a nonlinearly compressed monolithic fiber MOPA system. The master seed source employs a Mach-Zehnder intensity modulator (MZIM). This seed source has operational flexibility with respect to pulse width, 90 ps to 2 ns and repetition rate, 200 kHz to 2 MHz. The seed pulses are amplified by a monolithic three-stage amplifier system based on polarization maintain Yb-doped fibers. The maximum output power was 32 W at the shortest pulse condition, the pulse width of 90 ps and the repetition rate of 750 kHz. A spectral width after amplification was broadened to 0.73 nm at RMS width. Both of ASE and SRS are not observed in the spectrum. After amplification, we also demonstrated pulse compression with a small piece of chirped volume Bragg-grating (CVBG) which has the dispersion rate of 81 ps/nm. As a result of pulse compression, the shortest pulse width was reduced from 90 ps to 3.5 ps, which brought an increase of the peak power up to 3.2 MW. The compressed pulses are clean with little structure in their wings. We can expand the operation range of the monolithic fiber MOPA system in pulse width, 3.5 ps to 2 ns.

  20. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-07-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  1. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2002-10-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  3. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    SciTech Connect

    R. Viswanathan

    2002-04-15

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), and up to 5500 psi with emphasis upon 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced

  4. On the electromagnetic fields, Poynting vector, and peak power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.

    1992-01-01

    The initial radiation fields, Poynting vector, and total electromagnetic power that a vertical return stroke radiates into the upper half space have been computed when the speed of the stroke, nu, is a significant fraction of the speed of light, c, assuming that at large distances and early times the source is an infinitesimal dipole. The initial current is also assumed to satisfy the transmission-line model with a constant nu and to be perpendicular to an infinite, perfectly conducting ground. The effect of a large nu is to increase the radiation fields by a factor of (1-beta-sq cos-sq theta) exp -1, where beta = nu/c and theta is measured from the vertical, and the Poynting vector by a factor of (1-beta-sq cos-sq theta) exp -2.

  5. Gain-guided broad area quantum cascade lasers emitting 23.5 W peak power at room temperature.

    PubMed

    Sergachev, Ilia; Maulini, Richard; Bismuto, Alfredo; Blaser, Stephane; Gresch, Tobias; Muller, Antoine

    2016-08-22

    We report gain-guided broad area quantum cascade lasers at 4.55 μm. The devices were processed in a buried heterostructure configuration with a current injector section much narrower than the active region. They demonstrate 23.5 W peak power at a temperature of 20°C and duty cycle of 1%, while their far field consists of a single symmetric lobe centered on the optical axis. These experimental results are supported well by 2D numerical simulations of electric currents and optical fields in a device cross-section. PMID:27557186

  6. 240 kW peak power at 266 nm in nonlinear YAl3(BO3)4 single crystal.

    PubMed

    Ilas, Simon; Loiseau, Pascal; Aka, Gérard; Taira, Takunori

    2014-12-01

    We report the fourth harmonic generation at 266 nm using a type I YAl3(BO3)4 (YAB) single crystal from a Q-switch microchip laser Nd:YAG/Cr⁴⁺:YAG frequency doubled with a LiB3O5 (LBO) crystal. 240 kW peak power at 266 nm corresponding to a mean conversion efficiency of 12.2% from 532 to 266 nm has been obtained with a 2.94 mm thick YAB crystal. The influences of optical homogeneity and absorption on the conversion efficiency are discussed. PMID:25606961

  7. Nuclear power plants in China's coastal zone: risk and safety

    NASA Astrophysics Data System (ADS)

    Lu, Qingshui; Gao, Zhiqiang; Ning, Jicai; Bi, Xiaoli; Gao, Wei

    2014-10-01

    Nuclear power plants are used as an option to meet the demands for electricity due to the low emission of CO2 and other contaminants. The accident at the Fukushima nuclear power plant in 2011 has forced the Chinese government to adjust its original plans for nuclear power. The construction of inland nuclear power plants was stopped, and construction is currently only permitted in coastal zones. However, one obstacle of those plants is that the elevation of those plants is notably low, ranging from 2 to 9 meters and a number of the nuclear power plants are located in or near geological fault zones. In addition, the population density is very high in the coastal zones of China. To reduce those risks of nuclear power plants, central government should close the nuclear power plants within the fault zones, evaluate the combined effects of storm surges, inland floods and tidal waves on nuclear power plants and build closed dams around nuclear power plants to prevent damage from storm surges and tidal waves. The areas without fault zones and with low elevation should be considered to be possible sites for future nuclear power plants if the elevation can be increased using soil or civil materials.

  8. CITIZEN CONCERN WITH POWER PLANT SITING: WISCONSIN POWER PLANT IMPACT STUDY

    EPA Science Inventory

    Two hundred and fifteen invited participants attended four public workshops in four Wisconsin cities in the spring of 1977. They were divided into small groups and asked to identify and rank power plant siting concerns in three categories: biological and physical, economic and so...

  9. Electromagnetic Compatibility in Nuclear Power Plants

    SciTech Connect

    Ewing, P.D.; Kercel, S.W.; Korsah, K.; Wood, R.T.

    1999-08-29

    Electromagnetic compatibility (EMC) has long been a key element of qualification for mission critical instrumentation and control (I&C) systems used by the U.S. military. The potential for disruption of safety-related I&C systems by electromagnetic interference (EMI), radio-frequency interference (RFI), or power surges is also an issue of concern for the nuclear industry. Experimental investigations of the potential vulnerability of advanced safety systems to EMI/RFI, coupled with studies of reported events at nuclear power plants (NPPs) that are attributed to EMI/RFI, confirm the safety significance of EMC for both analog and digital technology. As a result, Oak Ridge National Laboratory has been engaged in the development of the technical basis for guidance that addresses EMC for safety-related I&C systems in NPPs. This research has involved the identification of engineering practices to minimize the potential impact of EMI/RFI and power surges and an evaluation of the ambient electromagnetic environment at NPPs to tailor those practices for use by the nuclear industry. Recommendations for EMC guidance have been derived from these research findings and are summarized in this paper.

  10. Power plant rehabilitation in Eastern Europe

    SciTech Connect

    Gaglia, B.N.; Lecesne, E.

    1995-12-31

    Beginning in 1989, political revolution in the former Eastern block countries precipitated a period of economic transformation from a centrally planned to a market-oriented economy. Because energy is a vital factor of any economic development, rehabilitation of the region`s aging and polluting energy sector is essential to achieving economic stability and growth. Today Eastern Europe is among the most polluted regions in the world. This is due to the absence of effective environmental responsibility over the last 40 years. The European Community and other Western countries have focused on Eastern Europe as a significant world environmental problem, particularly the Black Triangle area. To meet this challenge the governments of Poland, the Czech Republic, Germany and others have embarked on various programs to rehabilitate the key power stations in the region. This paper will present the various aspects of power plant rehabilitation including the installation of new efficient turbine generators, new digital control systems, renovated power cycle equipment and modern efficient clean coal circulating fluidized bed technology. The paper focuses on this issue by using the Turow 2 x 235 MW rehabilitation project in Bogatynia, Poland as a case study. Included in the paper will be a discussion of a broad range of issues affecting rehabilitation including technical considerations, financial and commercial limitations and political aspects.

  11. Multiple Peaks in the Angular Power Spectrum of the CosmicMicrowave Background: Significance and Consequences for Cosmology

    SciTech Connect

    de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Contaldi, C.R.; Crill, B.P.; De Troia, G.; Farese, P.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Jones, W.C.; Lange, A.E.; Martinis, L.; Masi, S.; Mason, P.; Mauskopf, P.D.; Melchiorri, A.; Montroy, T.; Netterfield, C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Polenta,G.; Pongetti, F.; Prunet, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.

    2001-05-17

    Three peaks and two dips have been detected in the power spectrum of the cosmic microwave background from the BOOMERANG experiment, at {ell} {approx} 210, 540, 840 and {ell} {approx} 420, 750, respectively. Using model-independent analyses, we find that all five features are statistically significant and we measure their location and amplitude. These are consistent with the adiabatic inflationary model. We also calculate the mean and variance of the peak and dip locations and amplitudes in a large 7-dimensional parameter space of such models, which gives good agreement with the model-independent estimates, and forecast where the next few peaks and dips should be found if the basic paradigm is correct. We test the robustness of our results by comparing Bayesian marginalization techniques on this space with likelihood maximization techniques applied to a second 7-dimensional cosmological parameter space, using an independent computational pipeline, and find excellent agreement: {Omega}{sub tot} = 1.02{sub -0.05}{sup +0.06} vs. 1.04 {+-} 0.05, {Omega}{sub b}h{sup 2} = 0.022{sub -0.003}{sup +0.004} vs. 0.019{sub -0.004}{sup +0.005}, and n{sub s} = 0.96{sub -0.09}{sup +0.10} vs. 0.90 {+-} 0.08. The deviation in primordial spectral index n{sub s} is a consequence of the strong correlation with the optical depth.

  12. Fukushima nuclear power plant accident was preventable

    NASA Astrophysics Data System (ADS)

    Kanoglu, Utku; Synolakis, Costas

    2015-04-01

    On 11 March 2011, the fourth largest earthquake in recorded history triggered a large tsunami, which will probably be remembered from the dramatic live pictures in a country, which is possibly the most tsunami-prepared in the world. The earthquake and tsunami caused a major nuclear power plant (NPP) accident at the Fukushima Dai-ichi, owned by Tokyo Electric Power Company (TEPCO). The accident was likely more severe than the 1979 Three Mile Island and less severe than the Chernobyl 1986 accidents. Yet, after the 26 December 2004 Indian Ocean tsunami had hit the Madras Atomic Power Station there had been renewed interest in the resilience of NPPs to tsunamis. The 11 March 2011 tsunami hit the Onagawa, Fukushima Dai-ichi, Fukushima Dai-ni, and Tokai Dai-ni NPPs, all located approximately in a 230km stretch along the east coast of Honshu. The Onagawa NPP was the closest to the source and was hit by an approximately height of 13m tsunami, of the same height as the one that hit the Fukushima Dai-ichi. Even though the Onagawa site also subsided by 1m, the tsunami did not reach to the main critical facilities. As the International Atomic Energy Agency put it, the Onagawa NPP survived the event "remarkably undamaged." At Fukushima Dai-ichi, the three reactors in operation were shut down due to strong ground shaking. The earthquake damaged all offsite electric transmission facilities. Emergency diesel generators (EDGs) provided back up power and started cooling down the reactors. However, the tsunami flooded the facilities damaging 12 of its 13 EDGs and caused a blackout. Among the consequences were hydrogen explosions that released radioactive material in the environment. It is unfortunately clear that TEPCO and Japan's principal regulator Nuclear and Industrial Safety Agency (NISA) had failed in providing a professional hazard analysis for the plant, even though their last assessment had taken place only months before the accident. The main reasons are the following. One

  13. Peak-to-Average-Power-Ratio (PAPR) reduction in WiMAX and OFDM/A systems

    NASA Astrophysics Data System (ADS)

    Khademi, Seyran; Svantesson, Thomas; Viberg, Mats; Eriksson, Thomas

    2011-12-01

    A peak to average power ratio (PAPR) reduction method is proposed that exploits the precoding or beamforming mode in WiMAX. The method is applicable to any OFDM/A systems that implements beamforming using dedicated pilots which use the same beamforming antenna weights for both pilots and data. Beamforming performance depends on the relative phase shift between antennas, but is unaffected by a phase shift common to all antennas. PAPR, on the other hand, changes with a common phase shift and this paper exploits that property. An effective optimization technique based on sequential quadratic programming is proposed to compute the common phase shift. The proposed technique has several advantages compared with traditional PAPR reduction techniques in that it does not require any side-information and has no effect on power and bit-error-rate while providing better PAPR reduction performance than most other methods.

  14. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses.

    PubMed

    Seidel, Marcus; Arisholm, Gunnar; Brons, Jonathan; Pervak, Vladimir; Pronin, Oleg

    2016-05-01

    Spectral broadening in bulk material is a simple, robust and low-cost method to extend the bandwidth of a laser source. Consequently, it enables ultrashort pulse compression. Experiments with a 38 MHz repetition rate, 50 W average power Kerr-lens mode-locked thin-disk oscillator were performed. The initially 1.2 μJ, 250 fs pulses are compressed to 43 fs by means of self-phase modulation in a single 15 mm thick quartz crystal and subsequent chirped-mirror compression. The losses due to spatial nonlinear effects are only about 40 %. A second broadening stage reduced the Fourier transform limit to 15 fs. It is shown that the intensity noise of the oscillator is preserved independent of the broadening factor. Simulations manifest the peak power scalability of the concept and show that it is applicable to a wide range of input pulse durations and energies. PMID:27137557

  15. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  16. Ryazan power plant feasibility study. Volume 2. Export trade information

    SciTech Connect

    Not Available

    1994-07-01

    This study was funded by the U.S. Trade and Development Agency on behalf of the Ryazan Power Plant Joint Stock Company to assess the feasibility of rehabilitating the Ryazan Power Plant in Novomichurinsk, Russia. The scope of this study includes reviewing plant equipment and operations as well as making recommendations for upgrade to present day plant standards. The main emphasis of the report is on boiler analysis, but also includes all equipment from coal entering the plant to electrical power leaving the plant. This is the second of two volumes and is divided into the following sections: (C) Technical - Sections 6-18; (D) Commercial; (E) Socioeconomic Considerations; (F) Conclusions.

  17. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  18. Motor unit loss is accompanied by decreased peak muscle power in the lower limb of older adults.

    PubMed

    McKinnon, Neal B; Montero-Odasso, Manuel; Doherty, Timothy J

    2015-10-01

    This study investigated the relationship between motor unit (MU) properties and the isometric strength and power of two lower limb muscles in healthy young and older adults. Twelve older adults (6 men, mean age, 77 ± 5 years) and twelve young adults (6 men, mean age, 24 ± 3 years) were studied. MU properties of the tibialis anterior (TA) and vastus medialis (VM) muscles were determined electrophysiologically using decomposition-enhanced spike-triggered averaging (DE-STA). Motor unit number estimates (MUNEs) of the TA were significantly reduced (p<0.05) in older adults (102 ± 76) compared to young adults (234 ± 109), primarily as a result of significantly larger surface-detected motor unit potentials (S-MUPs) in older adults (63 ± 29 μV) compared to young adults (27 ± 14 μV). Although VM S-MUP values were larger in older adults (60 ± 31 μV) compared to young (48 ± 42 μV), the difference was not significant. Maximal isometric strength was significantly larger in both the TA and knee extensors of young adults (TA: 0.56 Nm/kg, KE: 2.2 Nm/kg) compared to old (TA: 0.4 Nm/kg, KE: 1.3 Nm/kg). Similar reductions in peak muscle power were observed between young (TA: 33 W, KE: 35 7 W) and old adults (TA: 26 W, KE: 224 W). The greatest deficit between young and old subjects in peak power output occurred at 20% MVC for the TA and 40% MVC for the knee extensors. Results from this study indicate that there are changes in MU properties with age, and that this effect may be greater in the more distal TA muscle. Further, this study demonstrates that muscle power may be a sensitive marker of changes in neuromuscular function with aging. PMID:26190479

  19. Relationship Between Selected Strength and Power Assessments to Peak and Average Velocity of the Drive Block in Offensive Line Play.

    PubMed

    Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G

    2016-08-01

    Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended. PMID:24910958

  20. Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Villamayor, M.; Lundin, D.; Helmersson, U.

    2016-02-01

    A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar-N2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf-N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail.

  1. Affective imagery and acceptance of replacing nuclear power plants.

    PubMed

    Keller, Carmen; Visschers, Vivianne; Siegrist, Michael

    2012-03-01

    This study examined the relationship between the content of spontaneous associations with nuclear power plants and the acceptance of using new-generation nuclear power plants to replace old ones. The study also considered gender as a variable. A representative sample of the German- and French-speaking population of Switzerland (N= 1,221) was used. Log-linear models revealed significant two-way interactions between the association content and acceptance, association content and gender, and gender and acceptance. Correspondence analysis revealed that participants who were opposed to nuclear power plants mainly associated nuclear power plants with risk, negative feelings, accidents, radioactivity, waste disposal, military use, and negative consequences for health and environment; whereas participants favoring nuclear power plants mainly associated them with energy, appearance descriptions of nuclear power plants, and necessity. Thus, individuals opposing nuclear power plants had both more concrete and more diverse associations with them than people who were in favor of nuclear power plants. In addition, participants who were undecided often mentioned similar associations to those participants who were in favor. Males more often expressed associations with energy, waste disposal, and negative health effects. Females more often made associations with appearance descriptions, negative feelings, and negative environmental effects. The results further suggest that acceptance of replacing nuclear power plants was higher in the German-speaking part of the country, where all of the Swiss nuclear power plants are physically located. Practical implications for risk communication are discussed. PMID:21977961

  2. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  3. PAPST, a User Friendly and Powerful Java Platform for ChIP-Seq Peak Co-Localization Analysis and Beyond.

    PubMed

    Bible, Paul W; Kanno, Yuka; Wei, Lai; Brooks, Stephen R; O'Shea, John J; Morasso, Maria I; Loganantharaj, Rasiah; Sun, Hong-Wei

    2015-01-01

    Comparative co-localization analysis of transcription factors (TFs) and epigenetic marks (EMs) in specific biological contexts is one of the most critical areas of ChIP-Seq data analysis beyond peak calling. Yet there is a significant lack of user-friendly and powerful tools geared towards co-localization analysis based exploratory research. Most tools currently used for co-localization analysis are command line only and require extensive installation procedures and Linux expertise. Online tools partially address the usability issues of command line tools, but slow response times and few customization features make them unsuitable for rapid data-driven interactive exploratory research. We have developed PAPST: Peak Assignment and Profile Search Tool, a user-friendly yet powerful platform with a unique design, which integrates both gene-centric and peak-centric co-localization analysis into a single package. Most of PAPST's functions can be completed in less than five seconds, allowing quick cycles of data-driven hypothesis generation and testing. With PAPST, a researcher with or without computational expertise can perform sophisticated co-localization pattern analysis of multiple TFs and EMs, either against all known genes or a set of genomic regions obtained from public repositories or prior analysis. PAPST is a versatile, efficient, and customizable tool for genome-wide data-driven exploratory research. Creatively used, PAPST can be quickly applied to any genomic data analysis that involves a comparison of two or more sets of genomic coordinate intervals, making it a powerful tool for a wide range of exploratory genomic research. We first present PAPST's general purpose features then apply it to several public ChIP-Seq data sets to demonstrate its rapid execution and potential for cutting-edge research with a case study in enhancer analysis. To our knowledge, PAPST is the first software of its kind to provide efficient and sophisticated post peak-calling Ch

  4. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-06-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  5. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-04-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  6. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H.; Bos, W.

    1992-12-01

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  7. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  8. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  9. Seismic analysis of nuclear power plant structures

    NASA Technical Reports Server (NTRS)

    Go, J. C.

    1973-01-01

    Primary structures for nuclear power plants are designed to resist expected earthquakes of the site. Two intensities are referred to as Operating Basis Earthquake and Design Basis Earthquake. These structures are required to accommodate these seismic loadings without loss of their functional integrity. Thus, no plastic yield is allowed. The application of NASTRAN in analyzing some of these seismic induced structural dynamic problems is described. NASTRAN, with some modifications, can be used to analyze most structures that are subjected to seismic loads. A brief review of the formulation of seismic-induced structural dynamics is also presented. Two typical structural problems were selected to illustrate the application of the various methods of seismic structural analysis by the NASTRAN system.

  10. Small power plant reverse trade mission

    SciTech Connect

    Not Available

    1989-09-06

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  11. Emotional consequences of nuclear power plant disasters.

    PubMed

    Bromet, Evelyn J

    2014-02-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and overuse of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that non-mental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics.Introduction of Emotional Consequences of Nuclear Power Plant Disasters (Video 2:15, http://links.lww.com/HP/A34). PMID:24378494

  12. Autonomous Control of Nuclear Power Plants

    SciTech Connect

    Basher, H.

    2003-10-20

    A nuclear reactor is a complex system that requires highly sophisticated controllers to ensure that desired performance and safety can be achieved and maintained during its operations. Higher-demanding operational requirements such as reliability, lower environmental impacts, and improved performance under adverse conditions in nuclear power plants, coupled with the complexity and uncertainty of the models, necessitate the use of an increased level of autonomy in the control methods. In the opinion of many researchers, the tasks involved during nuclear reactor design and operation (e.g., design optimization, transient diagnosis, and core reload optimization) involve important human cognition and decisions that may be more easily achieved with intelligent methods such as expert systems, fuzzy logic, neural networks, and genetic algorithms. Many experts in the field of control systems share the idea that a higher degree of autonomy in control of complex systems such as nuclear plants is more easily achievable through the integration of conventional control systems and the intelligent components. Researchers have investigated the feasibility of the integration of fuzzy logic, neural networks, genetic algorithms, and expert systems with the conventional control methods to achieve higher degrees of autonomy in different aspects of reactor operations such as reactor startup, shutdown in emergency situations, fault detection and diagnosis, nuclear reactor alarm processing and diagnosis, and reactor load-following operations, to name a few. With the advancement of new technologies and computing power, it is feasible to automate most of the nuclear reactor control and operation, which will result in increased safety and economical benefits. This study surveys current status, practices, and recent advances made towards developing autonomous control systems for nuclear reactors.

  13. Condenser performance recovery in nuclear power plants

    SciTech Connect

    Saxon, G. Jr.; Putman, R.E.

    1996-12-31

    Fouling of the tubes in the main condenser can have a significant impact on nuclear plant performance. Recent experiences suggest that the effects of fouling have been underestimated and that the results of an effective tube cleaning can be measured in improved unit capacity. In particular two nuclear power plants have reported recovery of 20 and 25 MW respectively. While the types of deposition often vary as they did in these two cases, the deposit elements were accurately identified, the deposits` impact on heat transfer was evaluated and an effective cleaning methodology was developed for successful deposit removal. These experiences have prompted the development of a number of diagnostic monitoring and inspection methods which can be utilized in the field or in the laboratory; to detect, identify and quantify the presence of fouling and its impact on heat transfer, to determine the relative effectiveness of a cleaning method and to evaluate condenser performance as related to MW capacity for both single and multiple compartment condensers.

  14. An example of a tailored industrial combined heat and power plant -- The Tarrogona power plant

    SciTech Connect

    Izarny-Gargas, L.

    1998-07-01

    Encouraged by the economic and regulatory context in some European countries like Spain. Middle-sized cogeneration plants known as combined heat and power plants continue to raise the interest of industrial companies. This type of power plant represents a reliable resource for aiding the competitiveness of their owners, using residual thermal energy or producing additional steam for a process, while generating electrical energy. The generated kilowatt-hours feed their own industrial utility, enabling substantial cuts in their energy bill, and sometimes generating profits from sales of electricity to the grid. One salient aspect of this type of project is the request for deep integration in the industrial utility, from the process point of view (exchanges of steam and water, control system interfaces...) as well as from the cultural point of view (compliance with the technical standards and requirements of a given industrial sector...). As a matter of fact, the newly commissioned TARRAGONA combined cycle power plant is representative of what can be achieved in terms of deep integration of a power plant in a petrochemical site. The aim of the present paper is not to provide an exhaustive description of the CHPP of TARRAGONA, rather to expose the most interesting aspects of the project and present the major components at the source of its efficiency and reliability : the FRAME 6B heavy duty gas turbine and the TM-2 steam turbine both manufactured by GEC ALSTHOM and especially adapted to this type of application. The GEC ALSTHOM combined cycle family VEGA X06 is based on these machines.

  15. 77 FR 47121 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Consideration (73 FR 17148; March 31, 2008), states that ``Plant emergencies are extraordinary circumstances... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Units 1 and...

  16. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  17. Development of an Equivalent Wind Plant Power-Curve: Preprint

    SciTech Connect

    Wan, Y. H.; Ela, E.; Orwig, K.

    2010-06-01

    Development of an equivalent wind plant power-curve becomes highly desirable and useful in predicting plant output for a given wind forecast. Such a development is described and summarized in this paper.

  18. Comprehensive evaluation of cost effectiveness of solar electric power plants

    NASA Astrophysics Data System (ADS)

    Ibragimov, D. Y.; Filatov, A. I.

    1984-02-01

    The cost effectiveness of constructing a solar heating and electric power plant is evaluated on the basis of a compatibility analysis of its combination with a thermal electric power plant and a boiler-type heating plant, taking into account comprehensively economic factors as well as power requirements. Two variants of such a combination are considered and compared, assuming equal heating power and equal electric power respectively. Equations are set up for each variant covering fixed and variable costs of generating electric power and generating heat, as basis for comparing the two variants and optimizing them with respect to normalized annual total cost. Nomograms plotted for convenient numerical calculation of maximum economically worthwhile capital investment in a solar heating and electric power plant, depending on changes in various operating parameters, reveal that, as the time for constructing such a plant becomes longer, this maximum worthwhile investment in it increases for variant 1 and decreases for variant 2.

  19. A study of a commercial MHD power plant scheme

    NASA Astrophysics Data System (ADS)

    Pashkov, S. A.; Shishkov, E. V.

    1980-07-01

    Power engineering specialists are currently interested in electrical power stations with magnetohydrodynamic generators. This paper is devoted to an investigation of one of the possible process flow diagrams of MHD electrical power plants. The structure of MHD electrical power plants, the interrelation between the aggregates, issues concerning the starting of the plant and the working of the power unit under various partial load conditions are discussed. With the availability of new theoretical and experimental data, the process flow diagrams of industrial MHD electrical power plants will naturally undergo changes. However, the methodical approach and the investigation described in this paper should retain their validity for all process flow diagrams of electrical power plants with MHD generators.

  20. High-peak-power optically pumped AlGaInAs eye-safe laser at 500-kHz repetition rate with an intracavity diamond heat spreader

    NASA Astrophysics Data System (ADS)

    Chen, Y.-F.; Su, K. W.; Chen, W. L.; Huang, K. F.; Chen, Y. F.

    2012-08-01

    We report on a compact efficient high-repetition-rate (>100 kHz) optically pumped AlGaInAs nanosecond eye-safe laser at 1525 nm. A diamond heat spreader bonded to the gain chip is employed to improve the heat removal. At a pump power of 13.3 W, the average output power at a repetition rate 200 kHz is up to 3.12 W, corresponding to a peak output power of 560 W. At a repetition rate 500 kHz, the maximum average power and peak power are found to be 2.32 W and 170 W, respectively.

  1. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  2. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  3. Self-similar bumps and wiggles: Isolating the evolution of the BAO peak with power-law initial conditions

    NASA Astrophysics Data System (ADS)

    Orban, Chris; Weinberg, David H.

    2011-09-01

    Motivated by cosmological surveys that demand accurate theoretical modeling of the baryon acoustic oscillation (BAO) feature in galaxy clustering, we analyze N-body simulations in which a BAO-like Gaussian bump modulates the linear theory correlation function ξL(r)=(r0/r)n+3 of an underlying self-similar model with initial power spectrum P(k)=Akn. These simulations test physical and analytic descriptions of BAO evolution far beyond the range of most studies, since we consider a range of underlying power spectra (n=-0.5, -1, -1.5) and evolve simulations to large effective correlation amplitudes (equivalent to σ8=4-12 for rbao=100h-1Mpc). In all cases, nonlinear evolution flattens and broadens the BAO bump in ξ(r) while approximately preserving its area. This evolution resembles a diffusion process in which the bump width σbao is the quadrature sum of the linear theory width and a length proportional to the rms relative displacement Σpair(rbao) of particle pairs separated by rbao. For n=-0.5 and n=-1, we find no detectable shift of the location of the BAO peak, but the peak in the n=-1.5 model shifts steadily to smaller scales, following rpeak/rbao=1-1.08(r0/rbao)1.5. The perturbation theory scheme of McDonald (2007) [P. McDonald, Phys. Rev. DPRVDAQ1550-7998 75, 043514 (2007).10.1103/PhysRevD.75.043514] and, to a lesser extent, standard 1-loop perturbation theory are fairly successful at explaining the nonlinear evolution of the Fourier power spectrum of our models. Analytic models also explain why the ξ(r) peak shifts much more for n=-1.5 than for n≥-1, though no ab initio model we have examined reproduces all of our numerical results. Simulations with Lbox=10rbao and Lbox=20rbao yield consistent results for ξ(r) at the BAO scale, provided one corrects for the integral constraint imposed by the uniform density box.

  4. DC power transmission from the Leningradskaya Nuclear Power Plant to Vyborg

    SciTech Connect

    Koshcheev, L. A.; Shul'ginov, N. G.

    2011-05-15

    DC power transmission from the Leningradskaya Nuclear Power Plant (LAES) to city of Vyborg is proposed. This will provide a comprehensive solution to several important problems in the development and control of the unified power system (EES) of Russia.

  5. Designing geothermal power plants to avoid reinventing the corrosion wheel

    SciTech Connect

    Conover, Marshall F.

    1982-10-08

    This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

  6. Operation and Control of the PBMR Demonstration Power Plant

    SciTech Connect

    Kemp, Petrus D.; Nieuwoudt, Chris

    2006-07-01

    A large interest in High Temperature Gas-cooled Reactors (HTGR) has been shown in recent years. HTGR power plants show a number of advantages over existing technology including improved safety, modular design and high temperatures for process heat applications. HTGR plants with closed loop direct cycle power conversion units have unique transient responses which is different from existing nuclear plants as well as conventional non-nuclear power plants. The operation and control for a HTGR power plant therefore poses new and different challenges. This paper describes the modes of operation for the Pebble Bed Modular Reactor (PBMR) demonstration plant. The PBMR demonstration plant is an advanced helium-cooled, graphite-moderated HTGR consisting of a closed loop direct cycle power conversion unit. The use of transient analysis simulation makes it possible to develop effective control strategies and design controllers for use in the power conversion unit as well as the reactor. In addition to plant controllers the operator tasks and operational technical specifications can be developed and evaluated making use of transient analysis simulation of the plant together with the control system. The main challenges in the operation and control of the reactor and power conversion unit are highlighted with simulation results. Control strategies in different operating regions are shown and results for the power conversion unit start-up transition and the loss of the grid connection during power operation are presented. (authors)

  7. Transient Stability of the Grid with a Wind Power Plant

    SciTech Connect

    Muljadi, E.; Nguyen, Tony B.; Pai, M. A.

    2009-03-15

    This paper reports on an investigation of the impact of wind power plant penetration on the transient stability of the grid. Transient stability for different faults is investigated via simulation. A wind power plant with 22 turbines operated in variable speed mode will be used as the subject of the study. As a comparison, we replace the wind power plant with a conventional wind power plant (synchronous generator) and compare the results for the same faults. We also consider the effect of different locations.

  8. Treating waste water from heat and electrical power plants and state regional power plants

    SciTech Connect

    Beigel`drud, G.M.

    1995-03-01

    Water is often contaminated with oil and other petroleum products when used by local and regional power plants. This article outlines the various methods of treating oil contaminated water and removing emulsions. Coagulation and flocculation are commonly used methods of treatment, but there are other means including flotation and electrochemical methods. Ammonium nitrite was used to accelerates the oil removal with an electrochemical method, which was chosen as the most efficient path towards removal.

  9. 50 MHz-10 GHz low-power resistive feedback current-reuse mixer with inductive peaking for cognitive radio receiver.

    PubMed

    Vitee, Nandini; Ramiah, Harikrishnan; Chong, Wei-Keat; Tan, Gim-Heng; Kanesan, Jeevan; Reza, Ahmed Wasif

    2014-01-01

    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are -13.6 dBm and -4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW. PMID:25133252

  10. 50 MHz–10 GHz Low-Power Resistive Feedback Current-Reuse Mixer with Inductive Peaking for Cognitive Radio Receiver

    PubMed Central

    Reza, Ahmed Wasif

    2014-01-01

    A low-power wideband mixer is designed and implemented in 0.13 µm standard CMOS technology based on resistive feedback current-reuse (RFCR) configuration for the application of cognitive radio receiver. The proposed RFCR architecture incorporates an inductive peaking technique to compensate for gain roll-off at high frequency while enhancing the bandwidth. A complementary current-reuse technique is used between transconductance and IF stages to boost the conversion gain without additional power consumption by reusing the DC bias current of the LO stage. This downconversion double-balanced mixer exhibits a high and flat conversion gain (CG) of 14.9 ± 1.4 dB and a noise figure (NF) better than 12.8 dB. The maximum input 1-dB compression point (P1dB) and maximum input third-order intercept point (IIP3) are −13.6 dBm and −4.5 dBm, respectively, over the desired frequency ranging from 50 MHz to 10 GHz. The proposed circuit operates down to a supply headroom of 1 V with a low-power consumption of 3.5 mW. PMID:25133252

  11. The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study

    SciTech Connect

    Kessel, C. E.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Tillack, M. S.; Najmabadi, F.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; El-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Radar, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2014-03-05

    Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a {beta}N{sup total} of 5.75, H{sub 98} of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m{sup 2}. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a {beta}N{sup total} of 2.5, H{sub 98} of 1.25, n/n{sub Gr} of 1.3, and peak divertor heat flux of 10 MW/m{sup 2}. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m{sup 2}. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.

  12. The ARIES Advanced and Conservative Tokamak Power Plant Study

    SciTech Connect

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; EL-Guebaly, L.; Blanchard, J. P.; Martin, C. J.; Mynsburge, L.; Humrickhouse, P.; Rensink, M. E.; Rognlien, T. D.; Yoda, M.; Abdel-Khalik, S. I.; Hageman, M. D.; Mills, B. H.; Rader, J. D.; Sadowski, D. L.; Snyder, P. B.; St. John, H.; Turnbull, A. D.; Waganer, L. M.; Malang, S.; Rowcliffe, A. F.

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, an n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.

  13. The ARIES Advanced and Conservative Tokamak Power Plant Study

    DOE PAGESBeta

    Kessel, C. E; Tillak, M. S; Najmabadi, F.; Poli, F. M.; Ghantous, K.; Gorelenkov, N.; Wang, X. R.; Navaei, D.; Toudeshki, H. H.; Koehly, C.; et al

    2015-12-22

    Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦtotal N of 5.75, an H98 of 1.65, anmore » n/nGr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦtotalN of 2.5, an H₉₈ of 1.25, an n/nGr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less

  14. Peak Cardiac Power Measured Non-Invasively with a Bioreactance Technique is a Predictor of Adverse Outcomes in Patients with Advanced Heart Failure

    PubMed Central

    Rosenblum, Hannah; Helmke, Stephen; Williams, Paula; Teruya, Sergio; Jones, Margaret; Burkhoff, Daniel; Mancini, Donna; Maurer, Mathew S.

    2010-01-01

    Summary Background Peak oxygen consumption (VO2) during cardiopulmonary exercise testing (CPET) is a powerful predictor of survival, providing an indirect assessment of cardiac output (CO). Hypothesis Non-invasive indices of CO derived from bioreactance methodology would add significantly to peak VO2 as a means of risk stratifying patients with heart failure. Methods 127 patients (53±14 years of age, 66% male) with heart failure and an average EF = 31±15 underwent a symptom-limited CPET using a bicycle ergometer while measuring CO noninvasively by a bioreactance technique. Peak cardiac power was derived from the product of the peak mean arterial blood pressure and CO divided by 451. Results Follow-up averaged 404±179 days (median, 366 days) to assess end points including death (n=3), heart transplant (n=10), or left ventricular assisted device (LVAD) implantation (n=2). Peak VO2 and peak power had similar area under the curves (0.77 and 0.76), which increased to 0.83 when combined. Kaplan-Meier cumulative survival curves demonstrated different outcomes in the subgroup with a VO2 <14 ml*kg-1*min-1 when stratified by a cardiac power above or below 1.5 Watts (92.2% vs. 82.1% at 1 year and 81.6% vs. 58.3% at last follow-up, p=0.02 by log-rank test). Conclusions Among patients with heart failure, peak cardiac power measured with bioreactance methodology and peak VO2 had similar associations with adverse outcomes and peak power added independent prognostic information to peak VO2 in subjects with advanced disease (e.g. VO2 < 14 ml*kg-1*min-1). PMID:21091609

  15. Highly efficient passively Q-switched Tm,Ho:GdVO4 laser with kilowatt peak power

    NASA Astrophysics Data System (ADS)

    Du, Yanqiu; Yao, Baoquan; Liu, Wei; Cui, Zheng; Duan, Xiaoming; Ju, Youlun; Yu, Hong

    2016-04-01

    We present the experimental results on the laser characteristics of diode-pumped passively Q-switched Tm,Ho:GdVO4 and Tm,Ho:YVO4 lasers with a Cr2+:ZnS saturable absorber emitting in the 2-μm range. The Tm,Ho:GdVO4 laser exhibits better performance than the Tm,Ho:YVO4 laser. The minimum pulse duration of 32.7 ns is obtained with the pulse energy of 0.30 mJ, corresponding to the peak power of 9.1 kW. The slope efficiencies of continuous wave and passively Q-switched Tm,Ho:GdVO4 lasers are 49.9% and 36.5%, corresponding to the Q-switching efficiency of 70.2%.

  16. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    SciTech Connect

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar; Chakravarthy, D.P.; Dixit, Kavita

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  17. Variable energy, high peak power, passive Q-switching diode end-pumped Yb:LuAG laser

    NASA Astrophysics Data System (ADS)

    Kaskow, M.; Sulc, J.; Jabczynski, J. K.; Jelinkova, H.

    2014-12-01

    A new method to control the pulse energy in a passively Q-switched laser was proposed and experimentally verified for a diode-end-pumped Yb:LuAG laser. By changing the pumping area parameters it was possible to demonstrate generation of a wide range of output energies with a single laser configuration consisting of a gain medium, passive Q-switch and out-coupling mirror. The range of available energies 0.15-0.51 mJ with maximum peak power of 113 kW in simple Q-switching regime by means of a Cr:YAG saturable absorber and a Yb:LuAG gain medium pumped by a 20 W laser diode emitting at 968 nm was demonstrated.

  18. Generic seismic ruggedness of power plant equipment

    SciTech Connect

    Merz, K.L. )

    1991-08-01

    This report updates the results of a program with the overall objective of demonstrating the generic seismic adequacy of as much nuclear power plant equipment as possible by means of collecting and evaluating existing seismic qualification test data. These data are then used to construct ruggedness'' spectra below which equipment in operating plants designed to earlier earthquake criteria would be generically adequate. This document is an EPRI Tier 1 Report. The report gives the methodology for the collection and evaluation of data which are used to construct a Generic Equipment Ruggedness Spectrum (GERs) for each equipment class considered. The GERS for each equipment class are included in an EPRI Tier 2 Report with the same title. Associated with each GERS are inclusion rules, cautions, and checklists for field screening of in-place equipment for GERS applicability. A GERS provides a measure of equipment seismic resistance based on available test data. As such, a GERS may also be used to judge the seismic adequacy of similar new or replacement equipment or to estimate the seismic margin of equipment re-evaluated with respect to earthquake levels greater than considered to date, resulting in fifteen finalized GERS. GERS for relays (included in the original version of this report) are now covered in a separate report (NP-7147). In addition to the presentation of GERS, the Tier 2 report addresses the applicability of GERS to equipment of older vintage, methods for estimating amplification factors for evaluating devices installed in cabinets and enclosures, and how seismic test data from related studies relate to the GERS approach. 28 refs., 5 figs., 4 tabs.

  19. Inspection of Nuclear Power Plant Containment Structures

    SciTech Connect

    Graves, H.L.; Naus, D.J.; Norris, W.E.

    1998-12-01

    Safety-related nuclear power plant (NPP) structures are designed to withstand loadings from a number of low-probability external and interval events, such as earthquakes, tornadoes, and loss-of-coolant accidents. Loadings incurred during normal plant operation therefore generally are not significant enough to cause appreciable degradation. However, these structures are susceptible to aging by various processes depending on the operating environment and service conditions. The effects of these processes may accumulate within these structures over time to cause failure under design conditions, or lead to costly repair. In the late 1980s and early 1990s several occurrences of degradation of NPP structures were discovered at various facilities (e.g., corrosion of pressure boundary components, freeze- thaw damage of concrete, and larger than anticipated loss of prestressing force). Despite these degradation occurrences and a trend for an increasing rate of occurrence, in-service inspection of the safety-related structures continued to be performed in a somewhat cursory manner. Starting in 1991, the U.S. Nuclear Regulatory Commission (USNRC) published the first of several new requirements to help ensure that adequate in-service inspection of these structures is performed. Current regulatory in-service inspection requirements are reviewed and a summary of degradation experience presented. Nondestructive examination techniques commonly used to inspect the NPP steel and concrete structures to identify and quantify the amount of damage present are reviewed. Finally, areas where nondestructive evaluation techniques require development (i.e., inaccessible portions of the containment pressure boundary, and thick heavily reinforced concrete sections are discussed.

  20. Evaluation of the ECAS open cycle MHD power plant design

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Staiger, P. J.; Pian, C. C. P.

    1978-01-01

    The Energy Conversion Alternatives Study (ECAS) MHD/steam power plant is described. The NASA critical evaluation of the design is summarized. Performance of the MHD plant is compared to that of the other type ECAS plant designs on the basis of efficiency and the 30-year levelized cost of electricity. Techniques to improve the plant design and the potential performance of lower technology plants requiring shorter development time and lower development cost are then discussed.

  1. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    SciTech Connect

    Wendt, Daniel; Mines, Greg; Turchi, Craig; Zhu, Guangdong

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  2. Honey Lake Hybrid Power Plant Project. Volume 1. Executive summary

    SciTech Connect

    Not Available

    1982-03-01

    A technical and economic feasibility study of the engineering aspects of a hybrid wood-fired geothermal electrical generating plant is presented. The proposed plant location is in Lassen County, California, near the Wendel Amedee Known Geothermal Resource Area. This power plant uses moderate temperature geothermal fluid to augment the heat supplied from a wood waste fired boiler. This report defines major plant systems for implementation into the plant conceptual design and provides sufficient design information for development of budgetary cost estimates. Emphasis is placed on incorporation of geothermal heat into the power generation process. Plant systems are designed and selected based on economic justification and on proven performance. The culminating economic analysis provides the financial information to establish the incentives for construction of the plant. The study concludes that geothermal energy and energy from wood can be combined in a power generating plant to yield attractive project economics.

  3. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  4. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  5. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  6. Macrofouling control in nuclear power plants

    SciTech Connect

    Ekis, E.W. Jr.; Keoplin-Gall, S.M.; McCarthy, R.E.

    1991-11-01

    Macrofouling of cooling-water systems is one of the more significant and costly problems encountered in the nuclear power industry. Both marine and freshwater macroinvertebrates can be responsible for losses in plant availability because of plugged intakes and heat transfer equipment. There is a greater diversity of macrofouling organisms in marine waters than in fresh waters. Marine macrofouling organisms include barnacles, mollusks, bryozoans, and hydroids. Barnacles are crustaceans with feathery appendages, which allow them to attach to a variety of surfaces. They are a major cause of severe macrofouling because they can remain attached even after death. The major freshwater macrofouling organisms include the Asiatic Clam (Corbicula fluminea) and the newest freshwater macrofouler, the Zebra Mussel (Dreissena polymorpha). The introduction of the Zebra Mussel into the Great Lakes has created economic and ecological problems that will not easily be solved. The threat of intercontinental dispersal of the Zebra Mussel in America is serious. Research programs have been initiated around the country to develop control methods for this macrofouling problem. The various control methodologies can be classified in the following categories: biological, chemical, physical, and mechanical. Laboratory experiments were performed to evaluate the efficacy of Actibrom against mature Zebra Mussels.

  7. Assessment of the efficiency of hydrogen cycles on the basis of off-peak electric energy produced at a nuclear power station

    NASA Astrophysics Data System (ADS)

    Aminov, R. Z.; Bairamov, A. N.; Shatskova, O. V.

    2009-11-01

    The main factors influencing the efficiency of using off-peak electric energy to run hydrogen cycles at a nuclear power station are considered. Indicators characterizing the efficiency of using a hydrogen cycle at a nuclear power station during its operation with superheating live steam in a steam-hydrogen mode are presented. A comparison between the steam-turbine hydrogen cycle and a pumped-storage hydraulic power station in the efficiency of generating peak electric energy (power) and capital investments is given.

  8. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    PubMed

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-01

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects. PMID:18545609

  9. Simulated coal gas MCFC power plant system verification

    SciTech Connect

    1998-01-01

    This technical progress report summarizes the objectives and progress on the following tasks associated with the project: Commercialization; Power plant development; Manufacturing facilities development; Testing facility development; Stack research; and Advanced research and technology development. The project will demonstrate a 250 kW molten carbonate fuel cell power plant based on the IMHEX stack design concept.

  10. DEVELOPMENTS IN PARTICULATE CONTROL FOR COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper discusses recent developments in particulate control for coal-fired power plants. The developments are responding to a double challenge to conventional coal-fired power plant emissions control technology: (1) lower particulate emissions require more efficient control de...

  11. 5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SOUTH ELEVATION OF POWER PLANT BUILDING. GRATE COVERED 'TRASH RACK' VISIBLE IN CENTER. THE STEEL FRAME STRUCTURE SUPPORTS MACHINES TO CLEAR DEBRIS CAUGHT ON THE TRASH RACK. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  12. 75 FR 13323 - James A. Fitzpatrick Nuclear Power Plant; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION James A. Fitzpatrick Nuclear Power Plant; Exemption 1.0 Background Entergy Nuclear Operations, Inc. (the licensee) is the holder of Facility Operating License No. DPR-59, which authorizes operation of the James A. FitzPatrick Nuclear Power Plant...

  13. 16. INTERIOR OF POWER PLANT BUILDING LOOKING SOUTH AT 1925 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. INTERIOR OF POWER PLANT BUILDING LOOKING SOUTH AT 1925 GE GENERATOR. GOVERNOR MECHANISM IN FOREGROUND MANUFACTURED BY THE WOODWARD GOVERNOR COMPANY, ROCKFORD, ILLINOIS (NAMEPLATE ON LEFT). - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  14. Geoproducts hybrid geothermal/wood fired power plant

    SciTech Connect

    Lawford, T.

    1983-12-01

    This presentation describes the 15 MW(e) hybrid combined cycle power plant being constructed at Honey Lake, near Susanville, California. The power plant will use a wood fired system topping cycle, an organic Ranking (binary) bottoming cycle, and geothermal heating of combustion air and organic working fluid. In addition to a technical description, project economics, project merits, and project status are presented.

  15. Session 7: Geoproducts Hybrid Geothermal / Wood Fired Power Plant

    SciTech Connect

    Lawford, Tom

    1983-12-01

    This presentation describes the 15 MW(e) hybrid combined cycle power plant being constructed at Honey Lake, near Susanville, California. The power plant will use a wood fired system topping cycle, an organic Ranking (binary) bottoming cycle, and geothermal heating of combustion air and organic working fluid. In addition to a technical description, project economics, project merits, and project status are presented.

  16. 10. Interior view, east side of power plant, generator bases ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Interior view, east side of power plant, generator bases in foreground, electrical panels and fuel tanks in background looking northeast - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. 15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. INTERIOR OF POWER PLANT LOOKING SOUTHWEST. BACK SIDE OF ELECTRICAL PANEL ON LEFT, AND C. 1910 GENERATOR COVER ON RIGHT. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  18. 8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW LOOKING WEST AT THE POWER PLANT TEST STAND DURING AN ENGINE FIRING. DATE UNKNOWN, FRED ORDWAY COLLECTION, U.S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, East Test Area, Power Plant Test Stand, Huntsville, Madison County, AL

  19. 13. INTERIOR OF POWER PLANT LOOKING EASTNORTHEAST. 1925 GE GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR OF POWER PLANT LOOKING EAST-NORTHEAST. 1925 GE GENERATOR IN FOREGROUND, WITH C. 1910 GENERATOR COVER IN BACKGROUND. STEEL FRAME SUPPORTS HOISTING MECHANISM USED TO MOVE, REPAIR, OR REPLACE GENERATORS. - Potomac Power Plant, On West Virginia Shore of Potomac River, about 1 mile upriver from confluence with Shenandoah River, Harpers Ferry, Jefferson County, WV

  20. Simulated coal gas MCFC power plant system verification

    SciTech Connect

    1998-02-01

    The following tasks are included in this project: Commercialization; Power plant development; Manufacturing facilities development; Test facility development; Stack research; and Advanced research and technology development. This report briefly describes the subtasks still to be completed: Power plant system test with reformed natural gas; Upgrading of existing, US government-owned, test facilities; and Advanced MCFC component research.

  1. Systems Modeling for Z-IFE Power Plants

    SciTech Connect

    Meier, W R

    2006-11-08

    A preliminary systems model has been developed for Z-IFE power plants. The model includes cost and performance scaling for the target physics, z-pinch driver, chamber, power conversion system and target/RTL manufacturing plant. As the base case we consider the dynamic hohlraum target and a thick liquid wall chamber with flibe as the working fluid. Driver cost and efficiency are evaluated parametrically since various options are still being considered. The model allows for power plants made up of multiple chambers and power conversion units supplied by a central target/RTL manufacturing plant. Initial results indicate that plants with few chambers operating at high yield are economically more attractive than the 10-unit plant previously proposed. Various parametric and sensitivity studies have been completed and are discussed.

  2. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  3. MCFC power plant with CO{sub 2} separation

    SciTech Connect

    Kinoshita, Noboru

    1996-12-31

    Fuel cell power plant has been developed for many years with expectation of high system efficiency. In the meantime the gas turbine combined cycle has shown its considerable progress in improving system efficiency. Fuel cell power plant will no longer be attractive unless it exceeds the gas turbine combined cycle at least in the system efficiency. It is said CO{sub 2} separation could improve the efficiency of fuel cell power plant. IHI has developed the CO{sub 2} separator for fuel cell power plant. This study describes that the CO{sub 2} separator can increase the efficiency of the molten carbonate fuel cell (MCFC) power plant by 5% and the expected efficiency reaches 63 % in HHV basis.

  4. POWER PLANT COOLING WATER CHLORINATION IN NORTHERN CALIFORNIA

    EPA Science Inventory

    A survey was conducted of chlorination practices at five power plants owned and operated by the Pacific Gas and Electric Company. Frequency and duration of chlorination varied significantly from plant to plant and was controlled analytically by the orthotolidine and/or amperometr...

  5. Computing and cognition in future power-plant operations

    SciTech Connect

    Kisner, R.A.; Sheridan, T.B.

    1983-01-01

    The intent of this paper is to speculate on the nature of future interactions between people and computers in the operation of power plants. In particular, the authors offer a taxonomy for examining the differing functions of operators in interacting with the plant and its computers, and the differing functions of the computers in interacting with the plant and its operators.

  6. Solar pond power plant feasibility study for Davis, California

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Singer, M. J.; Marsh, H. E.; Harris, J.; Walton, A. L.

    1982-01-01

    The feasibility of constructing a solar pond power plant at Davis, California was studied. Site visits, weather data compilation, soil and water analyses, conceptual system design and analyses, a material and equipment market survey, conceptual site layout, and a preliminary cost estimate were studied. It was concluded that a solar pond power plant is technically feasible, but economically unattractive. The relatively small scale of the proposed plant and the high cost of importing salt resulted in a disproportionately high capital investment with respect to the annual energy production capacity of the plant. Cycle optimization and increased plant size would increase the economical attractiveness of the proposed concept.

  7. Optimal load for the peak power and maximal strength of the upper body in Brazilian Jiu-Jitsu athletes.

    PubMed

    da Silva, Bruno Victor C; Simim, Mário A de Moura; Marocolo, Moacir; Franchini, Emerson; da Mota, Gustavo R

    2015-06-01

    We determined the optimal load for the peak power output (PPO) during the bench press throw (BPT) in Brazilian Jiu-Jitsu (BJJ) athletes and compared the PPO and maximal strength between advanced (AD) and nonadvanced (NA) athletes. Twenty-eight BJJ athletes (24.8 ± 5.7 years) performed the BPT at loads of 30, 40, 50, and 60% of their 1 repetition maximum (RM) in a randomized order (5-minute rest between BPTs). The PPO was determined by measuring the barbell displacement by an accelerometer (Myotest). The absolute (F = 7.25; p < 0.001; effect size [ES] = 0.21) and relative intensities were different (F = 7.11; p < 0.001; ES = 0.21) between the AD and NA. There was also a group and intensity interaction effect (F = 2.79; p = 0.046; ES = 0.10), but the differences were centered around the AD group, which achieved higher values using 40% (p = 0.001) and 50% of the 1RM (p < 0.001) than the PPO with 60% of 1RM. The AD athletes presented with higher 1RM than NA (p ≤ 0.05; ES = 1.0), but there was no difference (p > 0.05) in the PPO (30-60% 1RM). A polynomial adjustment indicated that the optimal load was ∼42% of 1RM for all groups and subgroups (R from 0.82 to 0.99). Our results suggest that there can be (1RM) differences between AD and NA BJJ athletes; however, there is no difference in the muscle power between the AD and NA groups. Additionally, ∼42% of 1RM seems to be the optimal load for developing maximal power using the BPT for the BJJ athletes. PMID:25486298

  8. Bibliography of the Maryland Power Plant Siting Program, fourth edition

    SciTech Connect

    Magette, T.

    1983-01-01

    The Maryland Power Plant Siting Act of 1971 established the Power Plant Siting Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed transmission line routes assessing the impact of existing generating facilities, acquiring sites for utilities unable to find a suitable site for generation, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations.

  9. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  10. Characterization of Suncore's utility-scale CPV power plants

    NASA Astrophysics Data System (ADS)

    Foresi, James; Babej, Alaric; Han, Rick; Liao, Tingdi; Wang, Charlie

    2015-09-01

    Comparison of performance prediction, expected energy production and actual energy production for Suncore's 50 MW and 60 MW Concentrator Photovoltaic (CPV) power plants in Golmud, China are reviewed. The efficiency of the power plants is accurately predicted through the use of an individual module performance model with field derived derating factors. Both of the plants are operating at the predicted average AC efficiency of 19.5% with fluctuations based on the quality of the solar resource at the sites.

  11. Connecting the power-law scaling structure of peak-discharges to spatially variable rainfall and catchment physical properties

    NASA Astrophysics Data System (ADS)

    Ayalew, Tibebu B.; Krajewski, Witold F.; Mantilla, Ricardo

    2014-09-01

    We have conducted extensive hydrologic simulation experiments in order to investigate how the flood scaling parameters in the power-law relationship Q(A)=αAθ, between peak-discharges resulting from a single rainfall-runoff event Q(A) and upstream area A, change as a function of rainfall, runoff coefficient (Cr) that we use as a proxy for catchment antecedent moisture state, hillslope overland flow velocity (vh), and channel flow velocity (vc), all of which are variable in space. We use a physically-based distributed numerical framework that is based on an accurate representation of the drainage network and apply it to the Cedar River basin (A=16,861 km), which is located in Eastern Iowa, USA. Our work is motivated by seminal empirical studies that show that the flood scaling parameters α and θ change from event to event. Uncovering the underlying physical mechanism behind the event-to-event variability of α and θ in terms of catchment physical processes and rainfall properties would significantly improve our ability to predict peak-discharge in ungauged basins (PUB). The simulation results demonstrate how both α and θ are systematically controlled by the interplay among rainfall duration T, spatially averaged rainfall intensity E[I], as well as E[Cr], E[vh], and vc. Specifically, we found that the value of θ generally decreases with increasing values of E[I], E[Cr], and E[vh], whereas its value generally increases with increasing T. Moreover, while α is primarily controlled by E[I], it increases with increasing E[Cr] and E[vh]. These results highlight the fact that the flood scaling parameters are able to be estimated from the aforementioned catchment rainfall and physical variables, which can be measured either directly or indirectly.

  12. Are there three peaks in the power spectra of GX 339-4 and Cyg X-1?

    NASA Astrophysics Data System (ADS)

    Nowak, M. A.

    2000-10-01

    Among the variability behaviours exhibited by neutron star systems are the so-called `horizontal branch oscillations' (HBO, with frequencies ~50Hz), the `lower-frequency kHz quasi-periodic oscillation' (QPO) and the `upper-frequency kHz QPO', with the latter two features being separated in frequency by an amount comparable to, but varying slightly from, the suspected spin-frequency of the neutron star. Recently, Psaltis, Belloni & van der Klis have suggested that there exists a correlation between these three frequencies that, when certain identifications of variability features are made, even encompasses black hole sources. We consider this hypothesis by reanalysing a set of GX 339-4 observations. The power spectral density (PSD) constructed from a composite of seven separate, but very similar, observations shows evidence for three broad peaks in the PSD. If the peak frequencies of these features are identified with QPO, then their frequencies approximately fit the correlations suggested by Psaltis, Belloni, & van der Klis. We also reanalyse a Cyg X-1 observation and show that the suggested QPO correlation may also hold, but that complications arise when the QPOs (which, in reality, are fairly broad features) are considered as a function of energy band. These fits suggest the existence of at least three separate, independent physical processes in the accretion flow, a hypothesis that is also supported by consideration of the Fourier frequency-dependent time lags and coherence function between variability in different energy bands. If these variability features have a common origin in neutron star and black hole systems, then `beat frequency models' of kHz QPO in neutron star systems are called into question.

  13. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  14. EMOTIONAL CONSEQUENCES OF NUCLEAR POWER PLANT DISASTERS

    PubMed Central

    Bromet, Evelyn J.

    2014-01-01

    The emotional consequences of nuclear power plant disasters include depression, anxiety, post-traumatic stress disorder, and medically unexplained somatic symptoms. These effects are often long term and associated with fears about developing cancer. Research on disasters involving radiation, particularly evidence from Chernobyl, indicates that mothers of young children and cleanup workers are the highest risk groups. The emotional consequences occur independently of the actual exposure received. In contrast, studies of children raised in the shadows of the Three Mile Island (TMI) and Chernobyl accidents suggest that although their self-rated health is less satisfactory than that of their peers, their emotional, academic, and psychosocial development is comparable. The importance of the psychological impact is underscored by its chronicity and by several studies showing that poor mental health is associated with physical health conditions, early mortality, disability, and over-utilization of medical services. Given the established increase in mental health problems following TMI and Chernobyl, it is likely that the same pattern will occur in residents and evacuees affected by the Fukushima meltdowns. Preliminary data from Fukushima indeed suggest that workers and mothers of young children are at risk of depression, anxiety, psychosomatic, and post-traumatic symptoms both as a direct result of their fears about radiation exposure and an indirect result of societal stigma. Thus, it is important that nonmental health providers learn to recognize and manage psychological symptoms and that medical programs be designed to reduce stigma and alleviate psychological suffering by integrating psychiatric and medical treatment within the walls of their clinics. PMID:24378494

  15. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect

    Milligan, M R; Artig, R

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  16. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  17. Power plant performance monitoring and improvement. Volume 3. Power plant performance instrumentation systems

    SciTech Connect

    Crim, H.G.; Westcott, J.C.; de Mello, R.W.; Brandon, R.E.; Parkinson, D.W.; Czuba, J.S.

    1986-02-01

    PEPCO's Morgantown Unit 2 and the PJM system control center are serving as the test facilities for this project. This first phase of the project utilizes currently (or soon to be) available instrumentation for monitoring and analyzing plant and system performance on a continuous basis. The overall approach is to demonstrate in one facility all sensors, monitoring devices, and necessary computer hardware and software for on-line performance monitoring and dispatch purposes. Significant developments include turbine packing leakage measurement, condenser back-pressure measurement, power cycle testing, and studies of the application of advanced instrumentation to system dispatch.

  18. High-peak-power, short-pulse-width, LD end-pumped, passively Q-switched Nd:YAG 946 nm laser

    NASA Astrophysics Data System (ADS)

    Yan, Renpeng; Yu, Xin; Ma, Yufei; Li, Xudong; Chen, Deying; Yu, Junhua

    2012-10-01

    High-peak-power, short-pulse-width diode pumped 946 nm Nd:YAG laser in passively Q-switching operation with Cr4+:YAG is reported. The highest average output power reaches 3.4 W using the Cr4+:YAG with initial transmissivity T0=95%. When the T0=90% Cr4+:YAG is employed, the maximum peak power of 31.4 kW with a pulse width of 8.3 ns at 946 nm is generated.

  19. Modelling of some parameters from thermoelectric power plants

    NASA Astrophysics Data System (ADS)

    Popa, G. N.; Diniş, C. M.; Deaconu, S. I.; Maksay, Şt; Popa, I.

    2016-02-01

    Paper proposing new mathematical models for the main electrical parameters (active power P, reactive power Q of power supplies) and technological (mass flow rate of steam M from boiler and dust emission E from the output of precipitator) from a thermoelectric power plants using industrial plate-type electrostatic precipitators with three sections used in electrical power plants. The mathematical models were used experimental results taken from industrial facility, from boiler and plate-type electrostatic precipitators with three sections, and has used the least squares method for their determination. The modelling has been used equations of degree 1, 2 and 3. The equations were determined between dust emission depending on active power of power supplies and mass flow rate of steam from boiler, and, also, depending on reactive power of power supplies and mass flow rate of steam from boiler. These equations can be used to control the process from electrostatic precipitators.

  20. 5kW High peak power, 0.2 mJ high pulse energy, linearly-polarized pulsed laser from a single all-fiber oscillator

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Huang, Long; Wang, Xiaolin; Zhou, Pu

    2015-12-01

    We report a high peak power ytterbium-doped fiber laser that emitted linearly-polarized laser at 1064 nm. An intracavity polarization-maintaining (PM) acousto-optic modulator (AOM) was used as a Q-switch to generate pulsed laser output. The whole system was constructed with all-fiber structure. The power of the polarized laser reached 4.21 W and a polarization purity of greater than 97.6% under the repetition rate of 20 kHz. The pulse width was 37 ns, which implied a 5 kW peak power and 0.2 mJ pulse energy. It is the highest peak power output from a linearly-polarized, Q-switched fiber laser oscillator to the best of our knowledge.

  1. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  2. Method for assigning sites to projected generic nuclear power plants

    SciTech Connect

    Holter, G.M.; Purcell, W.L.; Shutz, M.E.; Young, J.R.

    1986-07-01

    Pacific Northwest Laboratory developed a method for forecasting potential locations and startup sequences of nuclear power plants that will be required in the future but have not yet been specifically identified by electric utilities. Use of the method results in numerical ratings for potential nuclear power plant sites located in each of the 10 federal energy regions. The rating for each potential site is obtained from numerical factors assigned to each of 5 primary siting characteristics: (1) cooling water availability, (2) site land area, (3) power transmission land area, (4) proximity to metropolitan areas, and (5) utility plans for the site. The sequence of plant startups in each federal energy region is obtained by use of the numerical ratings and the forecasts of generic nuclear power plant startups obtained from the EIA Middle Case electricity forecast. Sites are assigned to generic plants in chronological order according to startup date.

  3. Radiological impact of power plants: coal vs nuclear

    SciTech Connect

    Styron, C.E.

    1981-12-23

    A definitive comparison of the radiological impact of coal power plants with that of (normally operating) nuclear power plants is quite difficult because of (1) insufficient data on both types of plants; (2) the diversity in design and performance of coal-fired plants and emission control systems; and (3) the relatively low concentrations of radionuclides to be measured. Radiation doses to the public estimated for coal and normally operating nuclear power plants are quite small when compared to natural background, and the level of uncertainty associated with estimates of radiological impact is so large that it is not possible at this time to demonstrate a significant difference between radiological risks of coal and nuclear power.

  4. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  5. Ryazan power plant feasibility study. Volume 1. Export trade information

    SciTech Connect

    Not Available

    1994-07-01

    This study was funded by the U.S. Trade and Development Agency on behalf of the Ryazan Power Plant Joint Stock Company to assess the feasibility of rehabilitating the Ryazan Power Plant in Novomichurinsk, Russia. The scope of this study includes reviewing plant equipment and operations as well as making recommendations for upgrade to present day plant standards. The main emphasis of the report is on boiler analysis, but also includes all equipment from coal entering the plant to electrical power leaving the plant. This is the first of two volumes and is divided into the following sections: (A) Abstract; (B) Evaluation of Alternative Technologies; (C) Technical: Section 1- Coal Handling, Section 2- Feeders and Pulverizers, Section 3- Boiler, Section 4- Ash Handling, Section 5- Electrostatic Precipitator.

  6. In-line process instrumentation for geothermal power plants

    SciTech Connect

    Shannon, D.W.; Robertus, R.J.; Sullivan, R.G.; Kindle, C.H.; Pierce, D.D.

    1985-05-01

    The economics of geothermal power depend on satisfactory plant reliability of continuous operation. Plant problems and extended downtime due to corrosion failures, scale buildup, or injection well plugging have affected many past geothermal projects. If in-line instrumentation can be developed to alert plant operators to correctable problems, then the cost and reliability of geothermal power will be improved. PNL has completed a problem of development of in-line corrosion and chemical instrumentation for binary cycle plants, and this technology has been used to set up a monitoring program at the Heber Binary Demonstration Power Plant. The current emphasis has shifted to development of particle meters for use on injection lines and CO/sub 2/ and pH probes for use in control of calcite scaling. Plans have been outlined to develop and demonstrate flash plant instrumentation for corrosion monitoring, scaling, steam purity, and injection line particle counting. 2 refs., 17 figs., 1 tab.

  7. Solar Thermal Power Plants with Parabolic-Trough Collectors

    NASA Astrophysics Data System (ADS)

    Zarza, E.; Valenzuela, L.; León, J.

    2004-12-01

    Parabolic-trough collectors (PTC) are solar concentrating devices suitable to work in the 150°C- 400°C temperature range. Power plants based on this type of solar collectors are a very efficient way to produce electricity with solar energy. At present, there are eight commercial solar plants (called SEGS-II, III,.. IX) producing electricity with parabolic-trough collectors and their total output power is 340 MW. Though all SEGS plants currently in operation use thermal oil as a heat transfer fluid between the solar field and the power block, direct steam generation (DSG) in the receiver tubes is a promising option to reduce the cost of electricity produced with parabolic- trough power plants. Most of technical uncertainties associated to the DSG technology were studied and solved in the DISS project and it is expected that this new technology will be commercially available in a short term. In Spain, the Royal Decree No. 436/204 (March 12th , 2004) has defined a premium of 0,18€/kWh for the electricity produced by solar thermal power plants, thus promoting the installation of solar thermal power plants up to a limit of 200 MW. Due to the current legal and financial framework defined in Spain, several projects to install commercial solar power plants with parabolic-trough collectors are currently underway.

  8. A Peak Power Reduction Method with Adaptive Inversion of Clustered Parity-Carriers in BCH-Coded OFDM Systems

    NASA Astrophysics Data System (ADS)

    Muta, Osamu; Akaiwa, Yoshihiko

    In this paper, we propose a simple peak power reduction (PPR) method based on adaptive inversion of parity-check block of codeword in BCH-coded OFDM system. In the proposed method, the entire parity-check block of the codeword is adaptively inversed by multiplying weighting factors (WFs) so as to minimize PAPR of the OFDM signal, symbol-by-symbol. At the receiver, these WFs are estimated based on the property of BCH decoding. When the primitive BCH code with single error correction such as (31,26) code is used, to estimate the WFs, the proposed method employs a significant bit protection method which assigns a significant bit to the best subcarrier selected among all possible subcarriers. With computer simulation, when (31,26), (31,21) and (32,21) BCH codes are employed, PAPR of the OFDM signal at the CCDF (Complementary Cumulative Distribution Function) of 10-4 is reduced by about 1.9, 2.5 and 2.5dB by applying the PPR method, while achieving the BER performance comparable to the case with the perfect WF estimation in exponentially decaying 12-path Rayleigh fading condition.

  9. Recent developments in widely tunable and high peak power ultrafast laser sources and their adoption in biological imaging

    NASA Astrophysics Data System (ADS)

    Klein, J.

    2016-03-01

    Widely tunable ultrafast lasers have enabled a large number of biological imaging techniques including point scanning multiphoton excited fluorescence (MPEF), SHG/THG and stimulated Raman imaging. Tunable ultrafast lasers offer spectral agility, covering the entire relative transparency window in live tissue (700-1300nnm) and flexibility with multi-color, synchronized outputs to support sophisticated label free techniques (e.g. stimulated Raman modalities). More recently newly available high peak power lasers based on Ytterbium technology drive advances in two-photon light-sheet, 3 photon excited fluorescence and holographic patterning for optogenetics photo-stimulation. These laser platforms offer a unique blend of compactness, ease of use and cost efficiency, and ideally complement tunable platforms typically based on Ti:Sapphire and IR optical parametric oscillators (OPO). We present various types of ultrafast laser architectures, link their optical characteristics to key bio-imaging requirements, and present relevant examples and images illustrating their impact in biological science. In particular we review the use of ultrafast lasers in optogenetics for photo-stimulation of networks of neurons.

  10. Peak-to-average power ratio reduction in all-optical orthogonal frequency division multiplexing system using rotated constellation approach

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Noordin, Kamarul A.; Arof, Hamzah; Harun, Sulaiman W.

    2015-10-01

    In this paper, a new approach for reducing peak-to-average power ratio (PAPR) based on modulated half subcarriers in all-optical OFDM systems with rotated QAM constellation is presented. To reduce the PAPR, the odd subcarriers are modulated with rotated QAM constellation, while the even subcarriers are modulated with standard QAM constellation. The impact of the rotation angle on the PAPR is mathematically modeled. The effect of PAPR reduction on the system performance is investigated by simulating the all-optical OFDM system, which uses optical coupler-based inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT). The all-optical system is numerically demonstrated with 29 subcarriers. Each subcarrier is modulated by a QAM modulator at a symbol rate of 25 Gsymbol/s. The results reveal that PAPR is reduced with increasing the angle of rotation. The PAPR reduction can reach about 0.8 dB when the complementary cumulative distribution function (CCDF) is 1 × 10-3. Furthermore, both the nonlinear phase noise and the optical signal-to-noise ratio (OSNR) of the system are improved in comparison with the original all-optical OFDM without PAPR reduction.

  11. Single-shot measurement of >10¹⁰ pulse contrast for ultra-high peak-power lasers.

    PubMed

    Wang, Yongzhi; Ma, Jingui; Wang, Jing; Yuan, Peng; Xie, Guoqiang; Ge, Xulei; Liu, Feng; Yuan, Xiaohui; Zhu, Heyuan; Qian, Liejia

    2014-01-01

    Real-time pulse-contrast observation with a high dynamic range is a prerequisite to tackle the contrast challenge in ultra-high peak-power lasers. However, the commonly used delay-scanning cross-correlator (DSCC) can only provide the time-consumed measurements for repetitive lasers. Single-shot cross-correlator (SSCC) becomes essential in optimizing laser systems and exploring contrast mechanisms. Here we report our progress in developing SSCC towards its practical use. By integrating both the techniques of scattering-noise reduction and sensitive parallel detection into SSCC, we demonstrate a high dynamic range of >10(10), which, to our best knowledge, is the first demonstration of an SSCC with a dynamic range comparable to that of commercial DSCCs. The comparison of high-dynamic measurement performances between SSCC and a standard DSCC (Sequoia, Amplitude Technologies) is also carried out on a 200 TW Ti:sapphire laser, and the consistency of results verifies the veracity of our SSCC. PMID:24448655

  12. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ozgur; Miyagi, Mitsunobu; Matsuura, Yuji

    2006-09-01

    A hollow-fiber bundle was designed and used to deliver high-peak-power pulses from a Q-switched Nd:YAG laser. An 80 cm long bundle with a total diameter of 5.5 mm was composed of 37 glass capillaries with bore diameters of 0.7 mm. Beam-resizing optics with two lenses were used to couple the laser beam into the bundle. The measured coupling loss due to the limited aperture ratio of the bundle was 2.3 dB, and the transmission loss at wavelengths of 1064 and 532 nm was 0.3 dB. When an inert gas flowed through the bores of the capillaries, the maximum output pulse energy was 200 mJ, which was the limit of the laser used in the experiment. Hollow-fiber bundles withstand irradiation better than single hollow fibers and silica-glass optical fibers do. They are suitable for many dermatological applications because they can be used to irradiate a large area.

  13. Bibliography of the Maryland Power Plant Siting Program. Sixth edition

    SciTech Connect

    Magette, T.

    1985-02-01

    The Maryland Power Plant Siting Act of 1971 established the Power Plant Siting Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed transmission line routes, assessing the impact of existing generating facilities, acquiring sites for utilities unable to find a suitable site for generation, and investigating generic issues related to power plant site evaluation and associated environmental and land-use considerations. This bibliography is a compilation of all studies performed for and/or by the Power Plant Siting Program since its inception.

  14. Bibliography of the Maryland Power Plant Research Program, fourteenth edition

    SciTech Connect

    McLean, R.I.

    1993-02-01

    The Power Plant Siting Act of 1971 (Sec. 3-303) established the Power Plant Research Program to ensure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed transmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and/or by the Power Plant and Environmental Review Division since its inception.

  15. Bibliography of the Maryland power plant siting program, Seventh Edition

    SciTech Connect

    Magette, T.

    1986-02-01

    The Maryland Power Plant Siting Act of 1971 established the Power Plant Siting Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed transmission-line routes, assessing the impact of existing generating facilities, acquiring sites for utilities unable to find a suitable site for generation, and investigating generic issues related to power-plant site evaluation and associated environmental and land-use considerations. The bibliography is a compilation of all the studies performed for and/or by the Power Plant Siting Program since its inception.

  16. Bibliography of the Maryland Power Plant Siting Program, Fifth Edition

    SciTech Connect

    Magette, T.

    1984-01-01

    The Maryland Power Plant Siting Act of 1971 established the Power Plant Siting Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed transmission line routes, assessing the impact of existing generating facilities, acquiring sites for utilities unable to find a suitable site for generation, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. This bibliography is a compilation of all the studies performed for and/or by the Power Plant Siting Program since its inception.

  17. Bibliography of the Maryland Power Plant Research Program, Thirteenth Edition

    SciTech Connect

    McLean, R.I.

    1992-02-01

    The Power Plant Siting Act of 1971 (Sec. 3-303) established the Power Plant Research Program to insure that demands for electric power would be met in a timely manner at a reasonable cost while assuring that the associated environmental impact would be acceptable. The scope of the Program extends to estimating the impact of proposed new generating facilities, evaluating the acceptability of proposed transmission line routes, assessing the impact of existing generation facilities, and investigating generic issues related to power plant site evaluation and associated environmental and land use considerations. The bibliography is a compilation of all the studies performed for and or by the Power Plant and Environmental Review Division since its inception. Reports published by the Division considered to be of general interest are routinely made available through the National Technical Information Service. Those reports so registered may be identified by the NTIS accession number immediately following the citation in the bibliography.

  18. Preconstruction of the Honey Lake Hybrid Power Plant

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PG E) under existing long-term power sales contracts. Transfer of electricity to the PG E grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 7 tabs.

  19. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    SciTech Connect

    Not Available

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  20. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  1. Impacts of the Fukushima nuclear power plants on marine radioactivity.

    PubMed

    Buesseler, Ken; Aoyama, Michio; Fukasawa, Masao

    2011-12-01

    The impacts on the ocean of releases of radionuclides from the Fukushima Dai-ichi nuclear power plants remain unclear. However, information has been made public regarding the concentrations of radioactive isotopes of iodine and cesium in ocean water near the discharge point. These data allow us to draw some basic conclusions about the relative levels of radionuclides released which can be compared to prior ocean studies and be used to address dose consequences as discussed by Garnier-Laplace et al. in this journal. The data show peak ocean discharges in early April, one month after the earthquake and a factor of 1000 decrease in the month following. Interestingly, the concentrations through the end of July remain higher than expected implying continued releases from the reactors or other contaminated sources, such as groundwater or coastal sediments. By July, levels of (137)Cs are still more than 10,000 times higher than levels measured in 2010 in the coastal waters off Japan. Although some radionuclides are significantly elevated, dose calculations suggest minimal impact on marine biota or humans due to direct exposure in surrounding ocean waters, though considerations for biological uptake and consumption of seafood are discussed and further study is warranted. PMID:22013920

  2. MW peak-power, mJ pulse energy, multi-kHz repetition rate pulses from Yb-doped fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Di Teodoro, Fabio; Brooks, Christopher D.

    2006-02-01

    We report on pulsed fiber-based sources generating high peak and average powers in beams of excellent spectral/spatial quality. In the first setup, a ~10-kHz pulse repetition rate (PRR), 1ns-pulse, Q-switched microlaser seeded a dual-stage amplifier featuring a 40-μm-core Yb-doped photonic-crystal fiber (PCF) as the power amplifier. From this amplifier, we obtained diffraction-limited (M2 = 1.05), ~1ns pulses of 1.1mJ energy, ~1.1MW peak power, ~10.2W average-power, spectral linewidth ~9GHz, negligible nonlinearities, and slope efficiency >73%. In the second setup, we replaced the seed source with a shorter-pulse (<500ps) microchip laser of PRR ~13.4 kHz and obtained diffraction-limited (M2=1.05), ~450ps pulses of energy >0.7mJ, peak power in excess of 1.5 MW, average power ~9.5W, spectral linewidth <35 GHz. To show further power scaling, these pulses were amplified in a 140-μmcore Yb-doped fiber, which yielded multimode (M2 ~ 9), 2.2mJ-energy, 30-W average-power pulses of peak power in excess of 4.5MW, the highest ever obtained in a fiber source, to our knowledge. In the third setup, an Yb-doped, 70μmcore, intrinsically single-mode photonic-crystal rod was used to generate diffraction-limited (M2 ~ 1.1), ~10kHz PRR, ~1ns pulses of 2.05mJ energy, >2 MW peak-power (the highest ever reported in a diffraction-limited fiber source), ~20W average-power, ~13 GHz spectral linewidth, and spectral signal-to-noise ratio >50 dB. Finally, a single polarization large-core Yb-doped PCF was used to demonstrate high-peak-power harmonic generation. We obtained ~1ns pulses of peak powers >410 kW in the green (531nm) and >190kW in the UV (265.5 nm).

  3. Stillwater Hybrid Geo-Solar Power Plant Optimization Analyses

    SciTech Connect

    Wendt, Daniel S.; Mines, Gregory L.; Turchi, Craig S.; Zhu, Guangdong; Cohan, Sander; Angelini, Lorenzo; Bizzarri, Fabrizio; Consoli, Daniele; De Marzo, Alessio

    2015-09-02

    The Stillwater Power Plant is the first hybrid plant in the world able to bring together a medium-enthalpy geothermal unit with solar thermal and solar photovoltaic systems. Solar field and power plant models have been developed to predict the performance of the Stillwater geothermal / solar-thermal hybrid power plant. The models have been validated using operational data from the Stillwater plant. A preliminary effort to optimize performance of the Stillwater hybrid plant using optical characterization of the solar field has been completed. The Stillwater solar field optical characterization involved measurement of mirror reflectance, mirror slope error, and receiver position error. The measurements indicate that the solar field may generate 9% less energy than the design value if an appropriate tracking offset is not employed. A perfect tracking offset algorithm may be able to boost the solar field performance by about 15%. The validated Stillwater hybrid plant models were used to evaluate hybrid plant operating strategies including turbine IGV position optimization, ACC fan speed and turbine IGV position optimization, turbine inlet entropy control using optimization of multiple process variables, and mixed working fluid substitution. The hybrid plant models predict that each of these operating strategies could increase net power generation relative to the baseline Stillwater hybrid plant operations.

  4. Prospects for advanced coal-fuelled fuel cell power plants

    NASA Astrophysics Data System (ADS)

    Jansen, D.; Vanderlaag, P. C.; Oudhuis, A. B. J.; Ribberink, J. S.

    1994-04-01

    As part of ECN's in-house R&D programs on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO2 emissions, and to find possible ways for CO2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fueled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fueled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency.

  5. Verification of maximum radial power peaking factor due to insertion of FPM-LEU target in the core of RSG-GAS reactor

    SciTech Connect

    Setyawan, Daddy; Rohman, Budi

    2014-09-30

    Verification of Maximum Radial Power Peaking Factor due to insertion of FPM-LEU target in the core of RSG-GAS Reactor. Radial Power Peaking Factor in RSG-GAS Reactor is a very important parameter for the safety of RSG-GAS reactor during operation. Data of radial power peaking factor due to the insertion of Fission Product Molybdenum with Low Enriched Uranium (FPM-LEU) was reported by PRSG to BAPETEN through the Safety Analysis Report RSG-GAS for FPM-LEU target irradiation. In order to support the evaluation of the Safety Analysis Report incorporated in the submission, the assessment unit of BAPETEN is carrying out independent assessment in order to verify safety related parameters in the SAR including neutronic aspect. The work includes verification to the maximum radial power peaking factor change due to the insertion of FPM-LEU target in RSG-GAS Reactor by computational method using MCNP5and ORIGEN2. From the results of calculations, the new maximum value of the radial power peaking factor due to the insertion of FPM-LEU target is 1.27. The results of calculations in this study showed a smaller value than 1.4 the limit allowed in the SAR.

  6. Preliminary Identification of Accident Initiating Events for IFE Power Plants

    SciTech Connect

    Cadwallader, Lee Charles; Latkowsk, J. F.

    2001-10-01

    This paper presents initial results of a task to identify accident initiating events for inertial fusion energy (IFE) power plant designs. Initiating events (IEs) are a fundamental building block of a probabilistic risk assessment; they are the ‘accident starters’ that are analyzed to determine the risks posed to members of the public in the vicinity of the power plant. The IE results for the SOMBRERO design are presented in tabular form. The SOMBRERO design was analyzed since it is representative of dry chamber wall, laser driven designs. This work is used to characterize IFE plant risk and to identify potential design changes that would mitigate the plant risk.

  7. 76 FR 40403 - R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... participating under 10 CFR 2.315(c), must be filed in accordance with the NRC E-Filing rule (72 FR 49139, August... COMMISSION R.E. Ginna Nuclear Power Plant, LLC, R.E. Ginna Nuclear Power Plant, R.E. Ginna Independent Spent.... Ginna Nuclear Power Plant (Ginna), currently held by R.E. Ginna Nuclear Power Plant, LLC as owner...

  8. Compact sources for the generation of high-peak power wavelength-stabilized laser pulses in the picoseconds and nanoseconds ranges

    NASA Astrophysics Data System (ADS)

    Wenzel, H.; Klehr, A.; Schwertfeger, S.; Liero, A.; Hoffmann, Th.; Brox, O.; Thomas, M.; Erbert, G.; Tränkle, G.

    2012-03-01

    Diode lasers are ideally suited for the generation of optical pulses in the nanoseconds and picoseconds ranges by gainswitching, Q-switching or mode-locking. We have developed diode-laser based light sources where the pulses are spectrally stabilized and nearly-diffraction limited as required by many applications. Diffraction limited emission is achieved by a several microns wide ridge waveguide (RW), so that only the fundamental lateral mode should lase. Spectral stabilization is realized with a Bragg grating integrated into the semiconductor chip, resulting in distributed feedback (DFB) or distributed Bragg reflector (DBR) lasers. We obtained a peak power of 3.8W for 4ns long pulses using a gain-switched DFB laser and a peak power of more than 4W for 65ps long pulses using a three-section DBR laser. Higher peak powers of several tens of Watts can be reached by an amplification of the pulses with semiconductor optical amplifiers, which can be either monolithically or hybrid integrated with the master oscillators. We developed compact modules with a footprint of 4×5cm2 combining master oscillator, tapered power amplifier, beam-shaping optical elements and high-frequency electronics. In order to diminish the generation of amplified spontaneous emission between the pulses, the amplifier is modulated with short-pulses of high amplitude, too. Beyond the amplifier, we obtained a peak power of more than 10W for 4ns long pulses, a peak power of about 35W for 80ps long pulses and a peak power of 70W for 10ps long pulses at emission wavelengths around 1064nm.

  9. The Role of Demand Response in Reducing Water-Related Power Plant Vulnerabilities

    NASA Astrophysics Data System (ADS)

    Macknick, J.; Brinkman, G.; Zhou, E.; O'Connell, M.; Newmark, R. L.; Miara, A.; Cohen, S. M.

    2015-12-01

    The electric sector depends on readily available water supplies for reliable and efficient operation. Elevated water temperatures or low water levels can trigger regulatory or plant-level decisions to curtail power generation, which can affect system cost and reliability. In the past decade, dozens of power plants in the U.S. have curtailed generation due to water temperatures and water shortages. Curtailments occur during the summer, when temperatures are highest and there is greatest demand for electricity. Climate change could alter the availability and temperature of water resources, exacerbating these issues. Constructing alternative cooling systems to address vulnerabilities can be capital intensive and can also affect power plant efficiencies. Demand response programs are being implemented by electric system planners and operators to reduce and shift electricity demands from peak usage periods to other times of the day. Demand response programs can also play a role in reducing water-related power sector vulnerabilities during summer months. Traditionally, production cost modeling and demand response analyses do not include water resources. In this effort, we integrate an electricity production cost modeling framework with water-related impacts on power plants in a test system to evaluate the impacts of demand response measures on power system costs and reliability. Specifically, we i) quantify the cost and reliability implications of incorporating water resources into production cost modeling, ii) evaluate the impacts of demand response measures on reducing system costs and vulnerabilities, and iii) consider sensitivity analyses with cooling systems to highlight a range of potential benefits of demand response measures. Impacts from climate change on power plant performance and water resources are discussed. Results provide key insights to policymakers and practitioners for reducing water-related power plant vulnerabilities via lower cost methods.

  10. Automated setup for magnetic hysteresis characterization based on a voltage controlled current source with 500 kHz full power bandwidth and 10 A peak-to-peak current

    SciTech Connect

    Calabrese, G.; Capineri, L.; Granato, M.; Frattini, G.

    2015-04-15

    This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passive components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.

  11. Water recovery using waste heat from coal fired power plants.

    SciTech Connect

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  12. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  13. Commercial ballard PEM fuel cell natural gas power plant development

    SciTech Connect

    Watkins, D.S.; Dunnison, D.; Cohen, R.

    1996-12-31

    The electric utility industry is in a period of rapid change. Deregulation, wholesale and retail wheeling, and corporate restructuring are forcing utilities to adopt new techniques for conducting their business. The advent of a more customer oriented service business with tailored solutions addressing such needs as power quality is a certain product of the deregulation of the electric utility industry. Distributed and dispersed power are fundamental requirements for such tailored solutions. Because of their modularity, efficiency and environmental benefits, fuel cells are a favored solution to implement distributed and dispersed power concepts. Ballard Power Systems has been working to develop and commercialize Proton Exchange Membrane (PEM) fuel cell power plants for stationary power markets. PEM`s capabilities of flexible operation and multiple market platforms bodes well for success in the stationary power market. Ballard`s stationary commercialization program is now in its second phase. The construction and successful operation of a 10 kW natural gas fueled, proof-of-concept power plant marked the completion of phase one. In the second phase, we are developing a 250 kW market entry power plant. This paper discusses Ballard`s power plant development plan philosophy, the benefits from this approach, and our current status.

  14. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  15. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  16. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    PubMed

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser. PMID:24977828

  17. Reaching white-light radiation source of ultrafast laser pulses with tunable peak power using nonlinear self-phase modulation in neon gas

    NASA Astrophysics Data System (ADS)

    Tawfik, Walid

    2016-08-01

    A source of white-light radiation that generates few-cycle pulses with controlled peak power values has been developed. These ultrafast pulses have been observed by spectral broadening of 32 fs pulses through nonlinear self-phase modulation in a neon-filled hollow-fiber then compressed with a pair of chirped mirrors for dispersion compensation. The observed pulses reached transform-limited duration of 5.77 fs and their peak power values varied from 57 GW up to 104 GW at repetition rate of 1 kHz. Moreover, the applied method is used for a direct tuning of the peak power of the output pulses through varying the chirping of the input pulses at different neon pressures. The observed results may give an opportunity to control the ultrafast interaction dynamics on the femtosecond time scale and facilitate the regeneration of attosecond pulses.

  18. Ionization-induced effects in the soliton dynamics of high-peak-power femtosecond pulses in hollow photonic-crystal fibers

    SciTech Connect

    Serebryannikov, E. E.; Zheltikov, A. M.

    2007-07-15

    Ionization phenomena are shown to modify the soliton propagation dynamics of high-peak-power laser pulses in hollow-core photonic-crystal fibers (PCFs). Based on the numerical solution of the pulse-evolution equation for a high-peak-power laser field in an ionizing gas medium in a hollow PCF, we demonstrate that hollow PCFs filled with gases having high ionization potentials I{sub p} can support soliton transmission regimes for gigawatt femtosecond laser pulses. In hollow PCFs filled with low-I{sub p} gases, on the other hand, the ionization-induced change in the refractive index of the gas leads to a blueshifting of soliton transients, pushing their spectrum beyond the point of zero group-velocity dispersion, thus preventing the formation of stable high-peak-power solitons.

  19. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    SciTech Connect

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein.

  20. Wavelength stabilized ns-MOPA diode laser system with 16 W peak power and a spectral line width below 10 pm

    NASA Astrophysics Data System (ADS)

    Nghiem Vu, Thi; Klehr, Andreas; Sumpf, Bernd; Wenzel, Hans; Erbert, Götz; Tränkle, Günther

    2014-03-01

    A master oscillator power amplifier system for the generation of ns-pulses with high peak power, stabilized wavelength and narrow spectral line width will be presented. The master oscillator is a distributed feedback (DFB) ridge waveguide (RW) laser. The tapered amplifier consists of three RW sections and one flared gain-guided section. The DFB laser is operated in continuous wave mode and emits at 1064 nm with a spectral line width below 10 pm. One RW section of the amplifier acts as an optical gate for pulse selection. The tapered section amplifies the generated optical pulse. By adjusting the delay time between the current pulses injected into the picker and into the tapered section, respectively, the power of the amplified spontaneous emission was reduced below 1% of the average laser power. For an optical pulse length of 2 ns, a peak power of 16 W was obtained. A side mode suppression ratio better than 46 dB was observed.

  1. Generation of 130 W narrow-linewidth high-peak-power picosecond pulses directly from a compact Yb-doped single-stage fiber amplifier

    NASA Astrophysics Data System (ADS)

    Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Wang, Lei; Zhang, Ling; Lin, Xuechun

    2015-09-01

    We report a compact, 130-W single-stage master oscillator power amplifier with a high peak power of 51.3 kW and a narrow spectral linewidth of 0.1 nm. The seed source is a single-mode, passively mode-locked solid-state laser at 1064 nm with an average power of 2 W. At a repetition rate of 73.5 MHz, the pulse duration is 30 ps. After amplification, it stretches to 34.5 ps. The experiment enables the optical-to-optical conversion efficiency to reach 75%. To the best of our knowledge, this is the first report of such a high-power, narrow spectral linewidth, high peak power picosecond-pulse fiber amplifier based on a continuous-wave, mode-locked solid-state seeding laser. No amplified spontaneous emission and stimulated Raman scattering were observed when the pump was increased.

  2. Self-compression to 24 MW peak power in a fused silica solid-core fiber using a high-repetition rate thulium-based fiber laser system

    NASA Astrophysics Data System (ADS)

    Gebhardt, Martin; Gaida, Christian; Stutzki, Fabian; Hädrich, Steffen; Jauregui, Cesar; Limpert, Jens; Tünnermann, Andreas

    2016-03-01

    Complementing ultrafast thulium-doped fiber-laser systems with a subsequent nonlinear pulse compression stage can enable unique laser parameters at around 2 μm operation wavelength. Significant pulse shortening and peak power enhancement have been accomplished using a fused silica solid-core fiber. In this fiber a pulse peak power of 24 MW was achieved without catastrophic damage due to self-focusing. As compared to operation in the well-explored 1 μm wavelength region, increasing the emission wavelength to 2 μm has a twofold advantage for nonlinear compression in fused-silica solid-core fibers. This is because, on the one hand the self-focusing limit scales quadratically with the wavelength. On the other hand the dispersion properties of fused silica allow for self-compression of ultrashort pulses beyond 1.3 μm wavelength, which leads to strong spectral broadening from very compact setups without the need for external compression. Using this technique we have generated 1.1 μJpulses with 24 fs FWHM pulse duration (<4 optical cycles), 24 MW peak power and 24.6 W of average power. To the best of our knowledge, this is the highest average power obtained from any nonlinear compression experiment around 2 μm wavelength and the first demonstration of peak powers beyond 20 MW within a fused-silica solid-core fiber. This result emphasizes that thulium-doped fiber-based chirped-pulse amplification systems may outperform their ytterbiumdoped counterparts in terms of peak power due to the fourfold increase of the critical power of self-focusing.

  3. Use of neurals networks in nuclear power plant diagnostics

    SciTech Connect

    Uhrig, R.E. . Dept. of Nuclear Engineering Oak Ridge National Lab., TN )

    1989-01-01

    A technique using neural networks as a means of diagnosing transients or abnormal conditions in nuclear power plants is investigated and found to be feasible. The technique is based on the fact that each physical state of the plant can be represented by a unique pattern of sensor outputs or instrument readings that can be related to the condition of the plant. Neural networks are used to relate this pattern to the fault, problem, or transient condition of the plant. A demonstration of the ability of this technique to identify causes of perturbations in the steam generator of a nuclear plant is presented. 3 refs., 4 figs.

  4. Analysis of UF6 breeder reactor power plants

    NASA Technical Reports Server (NTRS)

    Clement, J. D.; Rust, J. H.

    1976-01-01

    Gaseous UF6 fueled breeder reactor design and technical applications of such concepts are summarized. Special attention was given to application in nuclear power plants and to reactor efficiency and safety factors.

  5. 52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW SHOWING SITE OF ARIZONA FALL POWER PLANT, LOOKING EAST. CURRENT LOCATION OF THE REAL-TIME WATER QUALITY MONITORING STATION Photographer: James Eastwood, July 1990 - Arizona Canal, North of Salt River, Phoenix, Maricopa County, AZ

  6. 3. Building new Chandler Falls Power Plant, view showing installation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Building new Chandler Falls Power Plant, view showing installation of penstock. Photographer: Unknown, c. 1919. Source: SRPA - Tempe Canal, South Side Salt River in Tempe, Mesa & Phoenix, Tempe, Maricopa County, AZ

  7. 58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. HAIWEE POWER PLANT LOOKING NORTH ALONG PATH OF AQUEDUCT - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  8. 78 FR 55118 - Seismic Instrumentation for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Seismic Instrumentation for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Standard review plan-draft section revision; request for comment. SUMMARY: The U.S. Nuclear...

  9. Combined oil gun and coal guide for power plant boilers

    SciTech Connect

    Wiest, M.R.

    1990-08-28

    This paper discusses apparatus for introducing fuel into the combustion chamber of a power plant boiler. It comprises a coal guide; a coal disperser; tubular disperser support means; an oil gun; first actuator means; and second actuator means.

  10. CONTROLLING MULTIPLE EMISSIONS FROM COAL-FIRED POWER PLANTS

    EPA Science Inventory

    The paper presents and analyzes nine existing and novel control technologies designed to achieve multipollutant emissions reductions. It provides an evaluation of multipollutant emission control technologies that are potentially available for coal-fired power plants of 25 MW capa...

  11. 14. DETAIL VIEW OF STEAM VALVES INSIDE CENTRAL POWER PLANT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. DETAIL VIEW OF STEAM VALVES INSIDE CENTRAL POWER PLANT. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD

  12. CONTEXT VIEW FROM POWER PLANT TOP FLOOR AT REST OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW FROM POWER PLANT TOP FLOOR AT REST OF CLEVELAND TERMINAL. LOOKING NORTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  13. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  14. ENERGY PRODUCTION AND POLLUTION PREVENTION AT SEWAGE TREATMENT PLANTS USING FUEL CELL POWER PLANTS

    EPA Science Inventory

    The paper discusses energy production and pollution prevention at sewage treatment plants using fuel cell power plants. Anaerobic digester gas (ADG) is produced at waste water treatment plants during the anaerobic treatment of sewage to reduce solids. The major constituents are...

  15. Relationships between match activities and peak power output and Creatine Kinase responses to professional reserve team soccer match-play.

    PubMed

    Russell, M; Sparkes, W; Northeast, J; Cook, C J; Bracken, R M; Kilduff, L P

    2016-02-01

    The specific movement demands of soccer that are linked to post-match recovery and readiness to train are unclear. Therefore, we examined the relationship between Global Positioning System (GPS) variables and the change (Δ; from baseline) in Creatine Kinase (CK) concentrations and peak power output (PPO; during the countermovement jump) at 24h and 48h post-match. Fifteen English Premier League reserve team players were examined over 1-4 matches. Measurements of CK and PPO were taken before (24h prior to match-play) and after (+24h and +48h) each game during which movement demands were quantified using 10Hz GPS data. High intensity distance covered (r=0.386, p=0.029; r=-0.349; p=0.050), high intensity distance covered⋅min(-1) (r=0.365, p=0.040; r=-0.364, p=0.040), high speed running distance (r=0.363, p=0.041; r=-0.360, p=0.043) and the number of sprints⋅min(-1) (r=0.410, p=0.020; r=-0.368, p=0.038) were significantly related to ΔCK and ΔPPO at +24h post-match, respectively. No relationships were observed between any match variables and ΔCK and ΔPPO after +48h of recovery. These findings highlight that high intensity match activities are related to ΔCK and ΔPPO in the 24h, but not 48h, following soccer match-play. Such information is likely of interest to those responsible for the design of soccer player's training schedules in the days following a match. PMID:26615476

  16. Nuclear Plant Analyzer: an interactive TRAC/RELAP Power-Plant Simulation Program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.; Mahaffy, J.; Turner, M.; Wiley, R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  17. Los Alamos Nuclear Plant Analyzer: an interactive power-plant simulation program

    SciTech Connect

    Steinke, R.; Booker, C.; Giguere, P.; Liles, D.R.; Mahaffy, J.H.; Turner, M.R.

    1984-01-01

    The Nuclear Plant Analyzer (NPA) is a computer-software interface for executing the TRAC or RELAP5 power-plant systems codes. The NPA is designed to use advanced supercomputers, long-distance data communications, and a remote workstation terminal with interactive computer graphics to analyze power-plant thermal-hydraulic behavior. The NPA interface simplifies the running of these codes through automated procedures and dialog interaction. User understanding of simulated-plant behavior is enhanced through graphics displays of calculational results. These results are displayed concurrently with the calculation. The user has the capability to override the plant's modeled control system with hardware-adjustment commands. This gives the NPA the utility of a simulator, and at the same time, the accuracy of an advanced, best-estimate, power-plant systems code for plant operation and safety analysis.

  18. Prediction of Technological Failures in Nuclear Power Plant Operation

    SciTech Connect

    Salnykov, A. A.

    2015-01-15

    A method for predicting operating technological failures in nuclear power plants which makes it possible to reduce the unloading of the generator unit during the onset and development of an anomalous engineering state of the equipment by detecting a change in state earlier and taking suitable measures. With the circulating water supply loop of a nuclear power plant as an example, scenarios and algorithms for predicting technological failures in the operation of equipment long before their actual occurrence are discussed.

  19. Ground-based testing of space nuclear power plants

    SciTech Connect

    McDonald, T.G.

    1990-10-22

    Small nuclear power plants for space applications are evaluated according to their testability in this two part report. The first part introduces the issues involved in testing these power plants. Some of the concerns include oxygen embrittlement of critical components, the test environment, the effects of a vacuum environment on materials, the practically of racing an activated test chamber, and possible testing alternative the SEHPTR, king develop at the Idaho National Engineering Laboratory. 10 refs., 6 figs., 1 tab.

  20. Hierarchical structure for risk criteria applicable to nuclear power plants

    SciTech Connect

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs.