Science.gov

Sample records for pectic side chains

  1. Identification and characterization of glycosyltransferases involved in the synthesis of the side chains of the cell wall pectic polysaccharide rhamnogalacturonan II

    SciTech Connect

    O'Neill, Malcolm

    2015-08-31

    Our goal was to gain insight into the genes and proteins involved in the biosynthesis of rhamnogalacturonan II (RG-II), a borate cross-linked and structurally conserved pectic polysaccharide present in the primary cell walls of all vascular plants. The research conducted during the funding period established that (i) Avascular plants have the ability to synthesize UDP-apiose but lack the glycosyltransferase machinery required to synthesize RG-II or other apiose-containing cell wall glycans. (ii) RG-II structure is highly conserved in the Lemnaceae (duckweeds and relatives). However, the structures of other wall pectins and hemicellulose have changed substantial during the diversification of the Lemnaceae. This supports the notion that a precise structure of RG-II must be maintained to allow borate cross-linking to occur in a controlled manner. (iii) Enzymes involved in the conversion of UDP-GlcA to UDP-Api, UDP-Xyl, and UDP-Ara may have an important role in controlling the composition of duckweed cell walls. (iv) RG-II exists as the borate ester cross-linked dimer in the cell walls of soybean root hairs and roots. Thus, RG-II is present in the walls of plants cells that grow by tip or by expansive growth. (v) A reduction in RG-II cross-linking in the maize tls1 mutant, which lacks a borate channel protein, suggests that the growth defects observed in the mutant are, at least in part, due to defects in the cell wall.

  2. Conformation and mobility of the arabinan and galactan side-chains of pectin.

    PubMed

    Ha, Marie-Ann; Viëtor, Remco J; Jardine, Gordon D; Apperley, David C; Jarvis, Michael C

    2005-08-01

    The function of the arabinan and galactan side-chains of pectin remains unknown. We describe 13C NMR experiments designed to yield spectra from the most mobile polymer components of hydrated cell walls isolated from a range of plant species. In pectin-rich cell walls, these corresponded to the pectic side-chains. The arabinan side-chains were in general more mobile than the galactans, but the long galactan side-chains of potato pectin showed high mobility. Due to motional line-narrowing effects these arabinan and galactan chains gave 13C NMR spectra of higher resolution than has previously been observed from 'solid' biopolymers. These spectra were similar to those reported for the arabinan and galactan polymers in the solution state, implying time-averaged conformations resembling those found in solution. The mobility of the highly esterified galacturonan in citrus cell walls overlapped with the lower end of the mobility range characteristic of the pectic side-chains. The cellulose-rich cell walls of flax phloem fibres gave spectra of low intensity corresponding to mobile type II arabinogalactans. Cell walls from oat coleoptiles appeared to contain no polymers as mobile as the pectic arabinans and galactans in primary cell walls of the other species examined. These properties of the pectic side-chains suggest a role in interacting with water. PMID:16019042

  3. Synthesis of β-1,4-Linked Galactan Side-Chains of Rhamnogalacturonan I.

    PubMed

    Andersen, Mathias C F; Kračun, Stjepan K; Rydahl, Maja G; Willats, William G T; Clausen, Mads H

    2016-08-01

    The synthesis of linear- and (1→6)-branched β-(1→4)-d-galactans, side-chains of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative couplings of n-pentenyl disaccharides followed by a late stage glycosylation of a common hexasaccharide core. Reaction with a covalent linker and immobilization on N-hydroxysuccinimide (NHS)-modified glass surfaces allows the generation of carbohydrate microarrays. The glycan arrays enable the study of protein-carbohydrate interactions in a high-throughput fashion, demonstrated herein with binding studies of mAbs and a CBM. PMID:27305141

  4. [Structure and pharmacological activity of pectic polysaccharides from the roots of Bupleurum falcatum L].

    PubMed

    Yamada, H

    1995-09-01

    Several pharmacological activities have been observed in pectic polysaccharides which were isolated from Chinese herbs containing Kampo medicines. We found two different bioactive pectic polysaccharides, bupleuran 2IIb and 2IIc, from the roots of Bupleurum falcatum. These bioactive pectic polysaccharides were comprised of an alpha (1-->4) linked galacturonan region, a ramified region that consists of a rhamnogalacturonan core substituted neutral sugar chains as the side chains and a rhamnogalacturonan II (RG II)-like region containing unique sugars such as 3-deoxy-manno-2-octulosonic acid (KDO). In order to understand the pharmacological activity of pectic polysaccharides on the molecular level, we have elucidated the essential carbohydrate structure for the expression of each pharmacological activity and their mode of actions. The ramified region in bupleuran 2IIb induced Fc receptor up-regulation in macrophages by a mechanism dependent on an increase of intracellular Ca2+, followed by the enhancement of immune complex clearance, whereas bupleuran 2IIc, which mainly consists of a partially branched galacturonan region, showed potent anti-ulcer activity. The major mechanism of its mucosal protection was suggested to be due to anti-secretory activity on acid and pepsin, its ability to provide a protective coating and radical scavenging effect. The future problems were also discussed in order to develop pectic polysaccharides as medicines. PMID:8529967

  5. Synthesis of furanonaphthoquinones with hydroxyamino side chains.

    PubMed

    Wu, C; Johnson, R K; Mattern, M R; Wong, J C; Kingston, D G

    1999-07-01

    Several furanonaphthoquinones have shown useful activity in a yeast assay for DNA-damaging agents and cytotoxicity in mammalian cell culture assays. These results, together with the planar aromatic character of the furanonaphthoquinones, suggested that they might be acting as DNA intercalators. In an attempt to improve this activity, various analogues containing a hydroxyamino side chain have been synthesized. The analogues were prepared by standard methods, but some unexpected reactions were observed nonetheless. Thus, 8-formyl-5-methoxy-4,9-dihydronaphtho[2,3-b]furan-4,9-dione (24) showed an unusual reactivity toward reductive amination, with the reaction proceeding further to give one of two different cyclized products, depending on the amination reagent used. Bioassay results indicated that only simple furanonaphthoquines showed activity in a yeast assay for DNA-damaging agents; compounds with a substituted hydroxyamino side chain were uniformly inactive in this assay. Most of the compounds with a substituted hydroxyamino side chain on the furan ring did, however, show cytotoxicity, although none of them was any more active than the simple aldehyde 2-formyl-4, 9-dihydronaphtho[2,3-b]furan-4,9-dione (14). This evidence tends to suggest that the furanonaphthoquinones do not serve primarily as DNA intercalators, because if this were the case, they would have been expected to show an increased activity on conversion to their hydroxyamino side chain derivatives. PMID:10425117

  6. Peptide nanotube aligning side chains onto one side.

    PubMed

    Tabata, Yuki; Mitani, Shota; Kimura, Shunsaku

    2016-06-01

    A novel pseudo cyclic penta-β-peptide composed of a β-naphthylalanine, two β-alanines, and a sequence of ethylenediamine-succinic acid (CP5ES) is synthesized and investigated on peptide nanotube (PNT) formation. When the PNT is formed with the maximum number of intermolecular hydrogen bonds between the cyclic peptides, the sequence enables the alignment of the side chains, naphthyl groups, on one side of the PNT. Microscopic and spectroscopic observations of CP5ES crystals reveal that CP5ES forms rod- or needle-shaped molecular assemblies showing exciton coupling of the Cotton effect and predominant monomer emission, which are different from a reference cyclic tri-β-peptide composed of a β-naphthylalanine and two β-alanines. Insertion of a sequence of ethylenediamine-succinic acid into β-amino acids in the cyclic skeleton is therefore suggested to be effective to make the side chains aligning on one side of the PNT. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27282135

  7. SCit: web tools for protein side chain conformation analysis.

    PubMed

    Gautier, R; Camproux, A-C; Tufféry, P

    2004-07-01

    SCit is a web server providing services for protein side chain conformation analysis and side chain positioning. Specific services use the dependence of the side chain conformations on the local backbone conformation, which is described using a structural alphabet that describes the conformation of fragments of four-residue length in a limited library of structural prototypes. Based on this concept, SCit uses sets of rotameric conformations dependent on the local backbone conformation of each protein for side chain positioning and the identification of side chains with unlikely conformations. The SCit web server is accessible at http://bioserv.rpbs.jussieu.fr/SCit. PMID:15215438

  8. Microwave-assisted solid-phase synthesis of side-chain to side-chain lactam-bridge cyclic peptides.

    PubMed

    Tala, Srinivasa R; Schnell, Sathya M; Haskell-Luevano, Carrie

    2015-12-15

    Side-chain to side-chain lactam-bridged cyclic peptides have been utilized as therapeutic agents and biochemical tools. Previous synthetic methods of these peptides need special reaction conditions, form side products and take longer reaction times. Herein, an efficient microwave-assisted synthesis of side-chain to side-chain lactam-bridge cyclic peptides SHU9119 and MTII is reported. The synthesis time and efforts are significantly reduced in the present method, without side product formation. The analytical and pharmacological data of the synthesized cyclic peptides are in accordance with the commercially obtained compounds. This new method could be used to synthesize other side-chain to side-chain lactam-bridge peptides and amenable to automation and extensive SAR compound derivatization. PMID:26555357

  9. Side-chain entropy and packing in proteins.

    PubMed

    Bromberg, S; Dill, K A

    1994-07-01

    What role does side-chain packing play in protein stability and structure? To address this question, we compare a lattice model with side chains (SCM) to a linear lattice model without side chains (LCM). Self-avoiding configurations are enumerated in 2 and 3 dimensions exhaustively for short chains and by Monte Carlo sampling for chains up to 50 main-chain monomers long. This comparison shows that (1) side-chain degrees of freedom increase the entropy of open conformations, but side-chain steric exclusion decreases the entropy of compact conformations, thus producing a substantial entropy that opposes folding; (2) there is side-chain "freezing" or ordering, i.e., a sharp decrease in entropy, near maximum compactness; and (3) the different types of contacts among side chains (s) and main-chain elements (m) have different frequencies, and the frequencies have different dependencies on compactness. mm contacts contribute significantly only at high densities, suggesting that main-chain hydrogen bonding in proteins may be promoted by compactness. The distributions of mm, ms, and ss contacts in compact SCM configurations are similar to the distributions in protein structures in the Brookhaven Protein Data Bank. We propose that packing in proteins is more like the packing of nuts and bolts in a jar than like the pairwise matching of jigsaw puzzle pieces. PMID:7920265

  10. 22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW LOOKING FORWARD INTO CHAIN LOCKER FROM PORT SIDE ENTRY THROUGH CHAIN LOCKER BULKHEAD. PAWL BITT SHOWN IN FOREGROUND - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  11. Protein side chain conformation predictions with an MMGBSA energy function.

    PubMed

    Gaillard, Thomas; Panel, Nicolas; Simonson, Thomas

    2016-06-01

    The prediction of protein side chain conformations from backbone coordinates is an important task in structural biology, with applications in structure prediction and protein design. It is a difficult problem due to its combinatorial nature. We study the performance of an "MMGBSA" energy function, implemented in our protein design program Proteus, which combines molecular mechanics terms, a Generalized Born and Surface Area (GBSA) solvent model, with approximations that make the model pairwise additive. Proteus is not a competitor to specialized side chain prediction programs due to its cost, but it allows protein design applications, where side chain prediction is an important step and MMGBSA an effective energy model. We predict the side chain conformations for 18 proteins. The side chains are first predicted individually, with the rest of the protein in its crystallographic conformation. Next, all side chains are predicted together. The contributions of individual energy terms are evaluated and various parameterizations are compared. We find that the GB and SA terms, with an appropriate choice of the dielectric constant and surface energy coefficients, are beneficial for single side chain predictions. For the prediction of all side chains, however, errors due to the pairwise additive approximation overcome the improvement brought by these terms. We also show the crucial contribution of side chain minimization to alleviate the rigid rotamer approximation. Even without GB and SA terms, we obtain accuracies comparable to SCWRL4, a specialized side chain prediction program. In particular, we obtain a better RMSD than SCWRL4 for core residues (at a higher cost), despite our simpler rotamer library. Proteins 2016; 84:803-819. © 2016 Wiley Periodicals, Inc. PMID:26948696

  12. Protein-ligand docking with multiple flexible side chains.

    PubMed

    Zhao, Yong; Sanner, Michel F

    2008-09-01

    In this work, we validate and analyze the results of previously published cross docking experiments and classify failed dockings based on the conformational changes observed in the receptors. We show that a majority of failed experiments (i.e. 25 out of 33, involving four different receptors: cAPK, CDK2, Ricin and HIVp) are due to conformational changes in side chains near the active site. For these cases, we identify the side chains to be made flexible during docking calculation by superimposing receptors and analyzing steric overlap between various ligands and receptor side chains. We demonstrate that allowing these side chains to assume rotameric conformations enables the successful cross docking of 19 complexes (ligand all atom RMSD < 2.0 A) using our docking software FLIPDock. The number of side receptor side chains interacting with a ligand can vary according to the ligand's size and shape. Hence, when starting from a complex with a particular ligand one might have to extend the region of potential interacting side chains beyond the ones interacting with the known ligand. We discuss distance-based methods for selecting additional side chains in the neighborhood of the known active site. We show that while using the molecular surface to grow the neighborhood is more efficient than Euclidian-distance selection, the number of side chains selected by these methods often remains too large and additional methods for reducing their count are needed. Despite these difficulties, using geometric constraints obtained from the network of bonded and non-bonded interactions to rank residues and allowing the top ranked side chains to be flexible during docking makes 22 out of 25 complexes successful. PMID:18034309

  13. Ionizable Side Chains at Catalytic Active Sites of Enzymes

    PubMed Central

    Jimenez-Morales, David; Liang, Jie

    2012-01-01

    Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes. PMID:22484856

  14. 21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW LOOKING FORWARD INTO STARBOARD SIDE OF CHAIN LOCKER FROM CHAIN LOCKER BULKHEAD; PAWL BITT SHOWN IN EXTREME LEFT FOREGROUND, WITH APRON IN BACKGROUND. BREASTHOOK, SHELF AND CLAMP SHOWN AT TOP OF IMAGE - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  15. Structural features of pectic polysaccharides from the skin of Opuntia ficus-indica prickly pear fruits.

    PubMed

    Habibi, Y; Heyraud, A; Mahrouz, M; Vignon, M R

    2004-04-28

    After removal of the mucilage with water at room temperature, pectic polysaccharides were solubilized from Opuntia ficus-indica fruit skin, by sequential extraction with water at 60 degrees C (WSP) and EDTA solution at 60 degrees C (CSP). Polysaccharides with neutral sugar content of 0.48 and 0.36 mol/mol galacturonic acid residue were obtained, respectively, in the WSP and CSP extracts. These pectic polysaccharides were de-esterified and fractionated by anion-exchange chromatography, yielding for each extract five fractions, which were thereafter purified by size-exclusion chromatography. Two of these purified fractions were characterized by sugar analysis combined with methylation and reduction-methylation analysis. The study was then supported by (1)H and (13)C NMR spectroscopy. The results showed that the water-soluble fraction WSP3 and the EDTA soluble fraction CSP3, consisted of a disaccharide repeating unit -->2)-alpha-l-Rhap-(1-->4)-alpha-d-GalpA-(1--> backbone, with side chains attached to O-4 of the rhamnosyl residues. The side chains contained highly branched alpha-(1-->5)-linked arabinan and short linear beta-(1-->4)-linked galactan. PMID:15063200

  16. Affinity enhancement by dendritic side chains in synthetic carbohydrate receptors.

    PubMed

    Destecroix, Harry; Renney, Charles M; Mooibroek, Tiddo J; Carter, Tom S; Stewart, Patrick F N; Crump, Matthew P; Davis, Anthony P

    2015-02-01

    Dendritic side chains have been used to modify the binding environment in anthracene-based synthetic carbohydrate receptors. Control of length, charge, and branching enabled the positioning of side-chain carboxylate groups in such a way that they assisted in binding substrates rather than blocking the cavity. Conformational degeneracy in the dendrimers resulted in effective preorganization despite the flexibility of the system. Strong binding was observed to glucosammonium ions in water, with Ka values up to 7000 M(-1) . Affinities for uncharged substrates (glucose and N-acetylglucosamine) were also enhanced, despite competition from solvent and the absence of electrostatic interactions. PMID:25645064

  17. Effect of protein crystal hydration on side chain conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Atakisi, Hakan; Moreau, David; Hopkins, Jesse; Thorne, Robert; Robert Thorne's group Team

    The structure of protein crystals is determined in part by water-mediated interactions involving both protein surface-ordered (hydration) and bulk water, and so is sensitive to the relative humidity of the environment. Monoclinic lysozyme provides a remarkable model for studying structural changes induced by dehydration, as it maintains excellent order for relative humidities (r.h.) down to 5%, corresponding to solvent content of 9% by volume, much smaller than the 88% (22% by volume) at which lysozyme loses its enzymatic activity. Although the main chain conformation does not change significantly, the effect of dehydration on side chain conformations has not been systematically studied. High resolution (1.1 to 1.7 A) structural data sets for monoclinic lysozyme at r.h. between 99% and 11% have been analyzed to identify major and minor side chain conformers at each humidity, and to map out how the side chain conformational ensemble evolves with hydration. Modest dehydration produces comparable overall effects to cooling to T =100 K, but with conformational changes largely confined to solvent-exposed residues. The largest side chain conformation changes occur at humidities that deplete water within the first two hydration shells.

  18. Improved packing of protein side chains with parallel ant colonies

    PubMed Central

    2014-01-01

    Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy

  19. A sterol with an unusual side chain from Anoectochilus koshunensis.

    PubMed

    Ito, A; Yasumoto, K; Kasai, R; Yamasaki, K

    1994-08-01

    A new sterol with a non-conventional side chain has been isolated from the whole plant of Anoectochilus koshunensis, together with four known sterols, a megastigmane glucoside and 2'-deoxyadenosine. The structure of the new sterol was elucidated as 26-methylstigmasta-5,22,25, (27)-trien-3 beta-ol based on chemical and detailed spectroscopic evidence. PMID:7765430

  20. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).

    PubMed

    Wefers, Daniel; Gmeiner, Bianca M; Tyl, Catrin E; Bunzel, Mirko

    2015-08-01

    In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales. PMID:25983037

  1. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days. PMID:27216558

  2. Selective cleavage enhanced by acetylating the side chain of lysine.

    PubMed

    Fu, Leixiaomeng; Chen, Tingting; Xue, Gaiqing; Zu, Lily; Fang, Weihai

    2013-01-01

    Selective cleavage is of great interest in mass spectrometry studies as it can help sequence identification by promoting simple fragmentation pattern of peptides and proteins. In this work, the collision-induced dissociation of peptides containing internal lysine and acetylated lysine residues were studied. The experimental and computational results revealed that multiple fragmentation pathways coexisted when the lysine residue was two amino acid residues away from N-terminal of the peptide. After acetylation of the lysine side-chain, b(n)+ ions were the most abundant primary fragment products and the Lys(Ac)-Gly amide bond became the dominant cleavage site via an oxazolone pathway. Acetylating the side-chain of lysine promoted the selective cleavage of Lys-Xxx amide bond and generated much more information of the peptide backbone sequence. The results re-evaluate the selective cleavage due to the lysine basic side-chain and provide information for studying the post-translational modification of proteins and other bio-molecules containing Lys residues. PMID:23303756

  3. Main chain and side chain dynamics of oxidized flavodoxin from Cyanobacterium anabaena.

    PubMed

    Liu, W; Flynn, P F; Fuentes, E J; Kranz, J K; McCormick, M; Wand, A J

    2001-12-11

    Oxidized flavodoxin from Cyanobacterium anabaena PCC 7119 is used as a model system to investigate the fast internal dynamics of a flavin-bearing protein. Virtually complete backbone and side chain resonance NMR assignments of an oxidized flavodoxin point mutant (C55A) have been determined. Backbone and side chain dynamics in flavodoxin (C55A) were investigated using (15)N amide and deuterium methyl NMR relaxation methods. The squared generalized order parameters (S(NH)(2)) for backbone amide N-H bonds are found to be uniformly high ( approximately 0.923 over 109 residues in regular secondary structure), indicating considerable restriction of motion in the backbone of the protein. In contrast, methyl-bearing side chains are considerably heterogeneous in their amplitude of motion, as indicated by obtained symmetry axis squared generalized order parameters (S(axis)(2)). However, in comparison to nonprosthetic group-bearing proteins studied with these NMR relaxation methods, the side chains of oxidized flavodoxin are unusually rigid. PMID:11732893

  4. Applying Side-chain Flexibility in Motifs for Protein Docking

    PubMed Central

    Liu, Hui; Lin, Feng; Yang, Jian-Li; Wang, Hong-Rui; Liu, Xiu-Ling

    2015-01-01

    Conventional rigid docking algorithms have been unsatisfactory in their computational results, largely due to the fact that protein structures are flexible in live environments. In response, we propose to introduce the side-chain flexibility in protein motif into the docking. First, the Morse theory is applied to curvature labeling and surface region growing, for segmentation of the protein surface into smaller patches. Then, the protein is described by an ensemble of conformations that incorporate the flexibility of interface side chains and are sampled using rotamers. Next, a 3D rotation invariant shape descriptor is proposed to deal with the flexible motifs and surface patches; thus, pairwise complementarity matching is needed only between the convex patches of ligand and the concave patches of receptor. The iterative closest point (ICP) algorithm is implemented for geometric alignment of the two 3D protein surface patches. Compared with the fast Fourier transform-based global geometric matching algorithm and other methods, our FlexDock system generates much less false-positive docking results, which benefits identification of the complementary candidates. Our computational experiments show the advantages of the proposed flexible docking algorithm over its counterparts. PMID:26508871

  5. Applying Side-chain Flexibility in Motifs for Protein Docking.

    PubMed

    Liu, Hui; Lin, Feng; Yang, Jian-Li; Wang, Hong-Rui; Liu, Xiu-Ling

    2015-01-01

    Conventional rigid docking algorithms have been unsatisfactory in their computational results, largely due to the fact that protein structures are flexible in live environments. In response, we propose to introduce the side-chain flexibility in protein motif into the docking. First, the Morse theory is applied to curvature labeling and surface region growing, for segmentation of the protein surface into smaller patches. Then, the protein is described by an ensemble of conformations that incorporate the flexibility of interface side chains and are sampled using rotamers. Next, a 3D rotation invariant shape descriptor is proposed to deal with the flexible motifs and surface patches; thus, pairwise complementarity matching is needed only between the convex patches of ligand and the concave patches of receptor. The iterative closest point (ICP) algorithm is implemented for geometric alignment of the two 3D protein surface patches. Compared with the fast Fourier transform-based global geometric matching algorithm and other methods, our FlexDock system generates much less false-positive docking results, which benefits identification of the complementary candidates. Our computational experiments show the advantages of the proposed flexible docking algorithm over its counterparts. PMID:26508871

  6. Purification and characterization of corticosteroid side chain isomerase

    SciTech Connect

    Marandici, A.; Monder, C. )

    1990-02-06

    Corticosteroid side chain isomerase of rat liver catalyzes the interconversion of the ketol (20-oxo-21-ol) and (20-hydroxy-21-al) forms of the corticosteroid side chain. The enzyme has now been purified to apparent homogeneity from rat liver cytosol by sequential chromatography on anionic, hydroxylapatite, and gel filtration columns. Ketol-aldol isomerization is followed by measuring the exchange of tritium from 21-tritiated steroids with water. The native enzyme is a dimer of MW 44,000. The isoelectric point is 4.8 {plus minus} 0.1 pH units. The purified enzyme is stimulated by Co{sup 3+} or Ni{sup 2+}. The enzyme utilizes 11-deoxycorticosterone, corticosterone, and 17-deoxycortisol as substrate but not cortisol, tetrahydrocortisol, and prednisolone. Tritium-water exchange of (21S)-(21-{sup 3}H)DOC is a pseudo-first-order reaction; 21-{sup 3}H exchange from the 21R isomer proceeds with first-order kinetics only after a lag associated with its epimerization to the 21S form.

  7. Differential DNA and RNA sequence discrimination by PNA having charged side chains.

    PubMed

    De Costa, N Tilani S; Heemstra, Jennifer M

    2014-05-15

    PNA sequences modified with charged side chains were evaluated for base-pairing sequence selectivity under physiological conditions. PNA having negatively charged aspartic acid side chains shows higher selectivity with RNA, while PNA having positively charged lysine side chains shows higher selectivity with DNA. These observations provide insight into the binding selectivity of modified PNA in antisense and antigene applications. PMID:24731279

  8. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines.

    PubMed

    Wratil, Paul R; Horstkorte, Rüdiger; Reutter, Werner

    2016-08-01

    In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE). PMID:27435524

  9. Changes in conformational dynamics of basic side chains upon protein-DNA association.

    PubMed

    Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji

    2016-08-19

    Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446

  10. Polymer side-chains as arms for molecular recognition

    NASA Astrophysics Data System (ADS)

    South, Clinton Ray

    This thesis describes research based on synthetic protocols, methodologies, and applications of polymers containing side-chain molecular recognition elements. The motivation for the thesis lies in the belief among many in the field that a strict covalent paradigm for polymer chemistry is reaching its limit. The use of molecular recognition, in lieu of covalent chemistry, potentially presents a path through the current limits of polymer science. The work described in the following chapters of this thesis is, at least in part, a testament to this proposal. The first two chapters present a basic introduction and survey of the fundamental noncovalent interactions that are ubiquitous in the research of supramolecular polymers and molecular recognition. A hierarchy of noncovalent interactions, molecular recognition, and self-assembly is outlined and discussed. Chapter 2 lays the foundation for the remaining chapters of this thesis by presenting several examples of prior work related specifically to the use of molecular recognition on the side-chains of polymers. The next two chapters present research focused on advancing the functionalization of polymers through molecular recognition. The goal of this research is primarily to develop a general polymer backbone that both site-specifically and strongly associates noncovalently with small molecular substrates. These chapters demonstrate that both architecturally controlled block copolymers and random terpolymers can accept a full load of different substrates without interference among distinct molecular recognition elements along the polymer backbone. Chapters 5 and 6 present a unique application of polymers containing molecular recognition elements, templated synthesis. Chapter 5 first discusses lessons learned from small molecule based templated synthesis in which a template and a substrate are held together by metal coordination and a subsequent bond forming reaction occurs. Ultimately, the results of this chapter

  11. Basic amino-acid side chains regulate transmembrane integrin signalling.

    PubMed

    Kim, Chungho; Schmidt, Thomas; Cho, Eun-Gyung; Ye, Feng; Ulmer, Tobias S; Ginsberg, Mark H

    2012-01-12

    Side chains of Lys/Arg near transmembrane domain (TMD) membrane-water interfaces can 'snorkel', placing their positive charge near negatively charged phospholipid head groups; however, snorkelling's functional effects are obscure. Integrin β TMDs have such conserved basic amino acids. Here we use NMR spectroscopy to show that integrin β(3)(Lys 716) helps determine β(3) TMD topography. The α(ΙΙb)β(3) TMD structure indicates that precise β(3) TMD crossing angles enable the assembly of outer and inner membrane 'clasps' that hold the αβ TMD together to limit transmembrane signalling. Mutation of β(3)(Lys 716) caused dissociation of α(ΙΙb)β(3) TMDs and integrin activation. To confirm that altered topography of β(3)(Lys 716) mutants activated α(ΙΙb)β(3), we used directed evolution of β(3)(K716A) to identify substitutions restoring default state. Introduction of Pro(711) at the midpoint of β(3) TMD (A711P) increased α(ΙΙb)β(3) TMD association and inactivated integrin α(ΙΙb)β(3)(A711P,K716A). β(3)(Pro 711) introduced a TMD kink of 30 ± 1° precisely at the border of the outer and inner membrane clasps, thereby decoupling the tilt between these segments. Thus, widely occurring snorkelling residues in TMDs can help maintain TMD topography and membrane-embedding, thereby regulating transmembrane signalling. PMID:22178926

  12. Effects of Alkylthio and Alkoxy Side Chains in Polymer Donor Materials for Organic Solar Cells.

    PubMed

    Cui, Chaohua; Wong, Wai-Yeung

    2016-02-01

    Side chains play a considerable role not only in improving the solubility of polymers for solution-processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron-donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron-donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron-donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron-donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution-processed conjugated organic polymers for polymer solar cells. PMID:26754772

  13. A method to configure protein side-chains from the main-chain trace in homology modelling.

    PubMed

    Eisenmenger, F; Argos, P; Abagyan, R

    1993-06-01

    Protein homology modelling typically involves the prediction of side-chain conformations in the modelled protein while assuming a main-chain trace taken from a known tertiary structure of a protein with homologous sequence. It is generally believed that the need to examine all possible combinations of side-chain conformations poses the major obstacle to accurate homology modelling. Methods proposed heretofore use only discrete or limited searches of the side-chain torsion angle space to mitigate the combinatorial problem and also rely on simplified energy functions for calculational speed. The configurational constraints are typically based upon use of frequently observed torsion angles, fixed steps in torsion angles, or oligopeptide segments taken from tertiary structural databanks that are similar in sequence and conformation with the target structure. In the present work, a more fundamental approach is explored for several protein structures and it is demonstrated that the combinatorial barrier in side-chain placement hardly exists. Each side-group can be configured individually in the environment of only the backbone atoms using a systematic search procedure combined with extensive local energy minimization. Tests, using the main-chain or both the main-chain and remaining side-chain atoms to calculate low energy geometries for each residue, established the dominance of the main-chain contribution. The final structure is achieved by combining the individually placed side-chains followed by a full energy refinement of the structure. The prediction accuracy of the present homology modelling technique was assessed relative to other automated procedures and was found to yield improved predictions relative to the known side-chain conformations determined by X-ray crystallography. PMID:8515455

  14. Side chain directly participates in the solar absorption of fullerene derivative PC61BM

    NASA Astrophysics Data System (ADS)

    Xing, Xiu-Na; Chen, Guang-Hua; Du, Ying-Ying; Li, Wen-Jie; Li, Hai-Yang; Li, Hong-Nian; Li, Wei-Yin; Chen, Fu-Yi

    2014-11-01

    We have studied the role of the phenyl-butyric-acid-methyl-ester side chain in the solar absorption of fullerene derivatives PC61BM. The UV-Vis-NIR spectra are calculated with the linear response theory within time-dependent density functional theory. The initial and final orbitals of the optical transitions in solar spectrum range are analyzed in detail. The electronic states of the side chain hybridize with the states of C60 cage, increasing the number of the initial orbitals of the solar absorption. So the side chain directly participates in the solar absorption. A distortion or length change of the side chain has obvious effects on the photoabsorption.

  15. Switching effect of the side chain on quantum walks on triple graphs

    NASA Astrophysics Data System (ADS)

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2015-07-01

    We consider a continuous-time quantum walk on a triple graph and investigate the influence of the side chain on propagation in the main chain. Calculating the interchange of the probabilities between the two parts of the main chain, we find that a switching effect appears if there is an odd number of points in the side chain when concrete conditions between the length of the main chain and the position of the side chain are satisfied. However, such an effect does not occur if there is an even number of points in the side chain. We also suggest two proposals for experiments to demonstrate this effect, which may be employed to design a new type of switching device.

  16. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    SciTech Connect

    Hajari, Timir; Vegt, Nico F. A. van der

    2015-04-14

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  17. Macromolecular recognition: Recognition of polymer side chains by cyclodextrin

    NASA Astrophysics Data System (ADS)

    Hashidzume, Akihito; Harada, Akira

    2015-12-01

    The interaction of cyclodextrins (CD) with water soluble polymers possessing guest residues has been investigated as model systems in biological molecular recognition. The selectivity of interaction of CD with polymer-carrying guest residues is controlled by polymer chains, i.e., the steric effect of polymer main chain, the conformational effect of polymer main chain, and multi-site interaction. Macroscopic assemblies have been also realized based on molecular recognition using polyacrylamide-based gels possessing CD and guest residues.

  18. Diketopyrrolopyrrole-based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices.

    PubMed

    Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang

    2016-08-22

    Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. PMID:27258171

  19. The Impact of Side-chain Packing on Protein Docking Refinement

    PubMed Central

    Moghadasi, Mohammad; Mirzaei, Hanieh; Mamonov, Artem; Vakili, Pirooz; Vajda, Sandor; Paschalidis, Ioannis Ch.; Kozakov, Dima

    2016-01-01

    We study the impact of optimizing side-chain positions in the interface region between two proteins during the process of binding. Mathematically, the problem is similar to side-chain prediction, extensively explored in the process of protein structure prediction. The protein-protein docking application, however, has a number of characteristics that necessitate different algorithmic and implementation choices. In this work, we implement a distributed approximate algorithm that can be implemented on multi-processor architectures and enables trading off accuracy with running speed. We report computational results on benchmarks of enzyme-inhibitor and other types of complexes, establishing that the side-chain flexibility our algorithm introduces substantially improves the performance of docking protocols. Further, we establish that the inclusion of unbound side-chain conformers in the side-chain positioning problem is critical in these performance improvements. PMID:25714358

  20. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans.

    PubMed

    Lamothe, Lisa M; Srichuwong, Sathaporn; Reuhs, Bradley L; Hamaker, Bruce R

    2015-01-15

    Dietary fibre of quinoa and amaranth was analysed for its insoluble and soluble fibre content, composition, and structure. Total dietary fibre content was 10% for quinoa and 11% for amaranth. For both pseudocereals, 78% of its dietary fibre was insoluble. Insoluble fibre (IDF) from quinoa and amaranth was mainly composed of galacturonic acid, arabinose, galactose, xylose and glucose. Linkage analysis indicated that IDF was composed of homogalacturonans and rhamnogalacturonan-I with arabinan side-chains (∼55-60%), as well as highly branched xyloglucans (∼30%) and cellulose. For both pseudocereals, 22% of total dietary fibre was soluble; a higher proportion than that found in wheat and maize (∼15%). The soluble fibre (SDF) was composed of glucose, galacturonic acid and arabinose; for amaranth, xylose was also a major constituent. Xyloglucans made up ∼40-60% of the SDF and arabinose-rich pectic polysaccharides represented ∼34-55%. PMID:25149016

  1. Novel biaxial nematic phases of side-chain liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Matsuyama, Akihiko

    2012-12-01

    We present a mean field theory to describe biaxial nematic phases of side-chain liquid crystalline polymers, in which rigid side-chains (mesogens) and rigid-backbone chains favor mutually perpendicular orientations. Taking into account both excluded volume and attractive interactions between rigid rods, novel biaxial nematic phases are theoretically predicted. We calculate uniaxial and biaxial orientational order parameters as a function of temperature and the length of backbone chains. We find a first-order biaxial-biaxial phase transition and a first (or second)-order uniaxial-biaxial one, depending on the length of mesogens and backbone chains.

  2. Cholesterol Analogs with Degradation-resistant Alkyl Side Chains Are Effective Mycobacterium tuberculosis Growth Inhibitors.

    PubMed

    Frank, Daniel J; Zhao, Yan; Wong, Siew Hoon; Basudhar, Debashree; De Voss, James J; Ortiz de Montellano, Paul R

    2016-04-01

    Cholest-4-en-3-one, whether added exogenously or generated intracellularly from cholesterol, inhibits the growth ofMycobacterium tuberculosiswhen CYP125A1 and CYP142A1, the cytochrome P450 enzymes that initiate degradation of the sterol side chain, are disabled. Here we demonstrate that a 16-hydroxy derivative of cholesterol, which was previously reported to inhibit growth ofM. tuberculosis, acts by preventing the oxidation of the sterol side chain even in the presence of the relevant cytochrome P450 enzymes. The finding that (25R)-cholest-5-en-3β,16β,26-triol (1) (and its 3-keto metabolite) inhibit growth suggests that cholesterol analogs with non-degradable side chains represent a novel class of anti-mycobacterial agents. In accord with this, two cholesterol analogs with truncated, fluorinated side chains have been synthesized and shown to similarly block the growth in culture ofM. tuberculosis. PMID:26833565

  3. Excluded-volume interaction induced stiffness of comb polymer with densely grafted side-chains

    NASA Astrophysics Data System (ADS)

    Qiu, Feng

    2014-03-01

    Excluded-volume interaction has been widely recognized to cause expansion of polymer chain at large length scale. However, its effect on chain conformations at small length scale has been studied to less extent. Here we consider a comb polymer with its backbone densely grafted by side-chains as a model system. The method analogue to solving the electrostatic persistence length problem for either rigid or flexible polyelectrolytes is employed. For comb polymers with rigid backbone near the rod limit, the excluded-volume interaction induced persistence length scales linearly with the volume of the side-chain. While for flexible backbone, the persistence length depends on the side-chain volume more weakly. Field theoretic method that is relevant to address this problem is also explored and discussed. Work supported by NSFC.

  4. The Relaxation of Twisted Chiral Nematic Liquid Crystals with Side-Chain Polymeric Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Xuan; Zhang, Zhidong

    2013-09-01

    A generalized form of surface dissipation function, for the description of the relative motion of the nematic director with respect to the polymer side chains in twisted chiral nematic samples is proposed, and the relaxation time of such samples are investigated, using the perturbation analysis method proposed by Alexe-Ionescu et al. Our results show that the presence of both the surface dissipation and the polymer side chains increase the relaxation time.

  5. Steroids with a side chain containing a heterocyclic fragment: synthesis and transformations

    NASA Astrophysics Data System (ADS)

    Baranovskii, Aleksander V.; Litvinovskaya, Raisa P.; Khripach, Vladimir A.

    1993-07-01

    The latest data on the methods for the formation of the side chains of steroids containing a heterocyclic fragment are surveyed and described systematically. Attention is concentrated on the methods for the transformation of heterocycles in order to achieve the stereoselective formation of chiral centres in the side chain characteristic of a series of natural polyhydroxysteroids - ecdysones, brassinosteroids, vitamin D metabolites, etc. The bibliography includes 133 references.

  6. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    NASA Astrophysics Data System (ADS)

    Dorenbos, G.

    2015-06-01

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead, respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ˜0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.

  7. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching

    SciTech Connect

    Dorenbos, G.

    2015-06-14

    Percolation thresholds for solvent diffusion within hydrated model polymeric membranes are derived from dissipative particle dynamics in combination with Monte Carlo (MC) tracer diffusion calculations. The polymer backbones are composed of hydrophobic A beads to which at regular intervals Y-shaped side chains are attached. Each side chain is composed of eight A beads and contains two identical branches that are each terminated with a pendant hydrophilic C bead. Four types of side chains are considered for which the two branches (each represented as [C], [AC], [AAC], or [AAAC]) are splitting off from the 8th, 6th, 4th, or 2nd A bead, respectively. Water diffusion through the phase separated water containing pore networks is deduced from MC tracer diffusion calculations. The percolation threshold for the architectures containing the [C] and [AC] branches is at a water volume fraction of ∼0.07 and 0.08, respectively. These are much lower than those derived earlier for linear architectures of various side chain length and side chain distributions. Control of side chain architecture is thus a very interesting design parameter to decrease the percolation threshold for solvent and proton transports within flexible amphiphilic polymer membranes.

  8. A Markov Random Field Framework for Protein Side-Chain Resonance Assignment

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Zhou, Pei; Donald, Bruce Randall

    Nuclear magnetic resonance (NMR) spectroscopy plays a critical role in structural genomics, and serves as a primary tool for determining protein structures, dynamics and interactions in physiologically-relevant solution conditions. The current speed of protein structure determination via NMR is limited by the lengthy time required in resonance assignment, which maps spectral peaks to specific atoms and residues in the primary sequence. Although numerous algorithms have been developed to address the backbone resonance assignment problem [68,2,10,37,14,64,1,31,60], little work has been done to automate side-chain resonance assignment [43, 48, 5]. Most previous attempts in assigning side-chain resonances depend on a set of NMR experiments that record through-bond interactions with side-chain protons for each residue. Unfortunately, these NMR experiments have low sensitivity and limited performance on large proteins, which makes it difficult to obtain enough side-chain resonance assignments. On the other hand, it is essential to obtain almost all of the side-chain resonance assignments as a prerequisite for high-resolution structure determination. To overcome this deficiency, we present a novel side-chain resonance assignment algorithm based on alternative NMR experiments measuring through-space interactions between protons in the protein, which also provide crucial distance restraints and are normally required in high-resolution structure determination. We cast the side-chain resonance assignment problem into a Markov Random Field (MRF) framework, and extend and apply combinatorial protein design algorithms to compute the optimal solution that best interprets the NMR data. Our MRF framework captures the contact map information of the protein derived from NMR spectra, and exploits the structural information available from the backbone conformations determined by orientational restraints and a set of discretized side-chain conformations (i.e., rotamers). A Hausdorff

  9. Linear rheology and structure of molecular bottlebrushes with short side chains

    SciTech Connect

    López-Barrón, Carlos R. Brant, Patrick; Crowther, Donna J.; Eberle, Aaron P. R.

    2015-05-15

    We investigate the microstructure and linear viscoelasticity of model molecular bottlebrushes (BBs) using rheological and small-angle X-ray and neutron scattering measurements. Our polymers have short atactic polypropylene (aPP) side chains of molecular weight ranging from 119 g/mol to 259 g/mol and narrow molecular weight distribution (M{sub w}/M{sub n} 1.02–1.05). The side chain molecular weights are a small fraction of the entanglement molecular weight of the corresponding linear polymer (M{sub e,aPP}= 7.05 kg/mol), and as such, they are unentangled. The morphology of the aPP BBs is characterized as semiflexible thick chains with small side chain interdigitation. Their dynamic master curves, obtained by time-temperature superposition, reveal two sequential relaxation processes corresponding to the segmental relaxation and the relaxation of the BB backbone. Due to the short length of the side chains, their fast relaxation could not be distinguished from the glassy relaxation. The fractional free volume is an increasing function of the side chain length (N{sub SC}). Therefore, the glassy behavior of these polymers as well as their molecular friction and dynamic properties are influenced by their N{sub SC} values. The apparent flow activation energies are a decreasing function of N{sub SC}, and their values explain the differences in zero-shear viscosity measured at different temperatures.

  10. SDRL: a sequence-dependent protein side-chain rotamer library.

    PubMed

    Taghizadeh, Mohammad; Goliaei, Bahram; Madadkar-Sobhani, Armin

    2015-07-01

    Since the introduction of the first protein side-chain rotamer library (RL) almost half a century ago, RLs have been components of many programs and algorithms in structural bioinformatics. Based on the dependence of side-chain dihedral angles on the local backbone, three types of RLs have been identified: backbone-independent, secondary-structure-dependent and backbone-dependent. In all previous studies, the effect of sequence specificity on side-chain conformational preferences was neglected. In the effort to develop a new class of RLs, we considered that the side-chain conformation of the central residue in each triplet on a protein backbone depends on the sequence of the triplet; therefore, we developed a sequence-dependent rotamer library (SDRL). To accomplish this, 400 possible triplet sequences for 18 natural amino acids as the central residue, which corresponds to 7200 triplet sequences in total, were considered. Searching the set of 11 546 selected PDB entries for the 7200 triplet sequences resulted in 2 364 541 instances occurring for 18 amino acids. Our results show that Leu and Val experience minimal impact from the adjacent residues in adopting side-chain conformations. Cys, Ile, Trp, His, Asp, Met, Glu, Gln, Arg and Lys, on the other hand, adopt their side-chain conformations mostly based on the adjacent residues on the backbone. The remaining residue types were moderately dependent on the adjacent residues. Using the new library, side-chain repacking algorithms can find preferred conformations of each residue more easily than with other backbone-independent RLs. PMID:25953624

  11. UV resonance Raman and DFT studies of arginine side chains in peptides: insights into arginine hydration.

    PubMed

    Hong, Zhenmin; Wert, Jonathan; Asher, Sanford A

    2013-06-20

    We examined the UV resonance Raman (UVRR) spectra of four models of the Arg side chain, guanidinium (Gdn), ethylguanidinium (EG), arginine (Arg), and Ac-Arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the Arg side chain. To elucidate the resonance Raman enhancement mechanism of the Arg side chain, we used density functional theory (DFT) to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the Gdn group C-N stretching vibrations, the C-N bond stretching vibration of the Gdn group-methylene linkage is also strongly resonance-enhanced in EG, Arg, and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm(-1) vibration of the Arg side chain depends on its hydration state and can be used to determine the hydration state of the Arg side chain in peptides and proteins. We examined the hydration of the Arg side chain in two polyAla peptides and found that in the α-helical conformation the Arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2). PMID:23676082

  12. UV Resonance Raman and DFT Studies of Arginine Side Chains in Peptides: Insights into Arginine Hydration

    PubMed Central

    Hong, Zhenmin; Wert, Jonathan; Asher, Sanford A.

    2013-01-01

    We examined the UV resonance Raman (UVRR) spectra of four models of the arg side chain, guanidinium (gdn), ethylguanidinium (EG), arginine (arg) and Ac-arg-OMe (AAO) in H2O and D2O, in order to identify spectral markers that report on the environment of the arg side chain. To elucidate the resonance Raman enhancement mechanism of the arg side chain, we used DFT to calculate the equilibrium geometries of the electronic ground state and the first excited state. We determined the vibrational mode frequencies of the ground state and the first derivative of the first electronic excited state potential energy with respect to each vibrational normal mode of the electronic ground state at the electronic ground state equilibrium geometry. The DFT calculations and the potential energy distributions reveal that, in addition to the gdn group C-N stretching vibrations, the C-N bond stretching vibration of the gdn group-methylene linkage is also strongly resonance enhanced in EG, arg and AAO. From the UVRR spectra, we find that the Raman cross section and frequency of the ~1170 cm−1 vibration of the arg side chain depends on its hydration state and can be used to determine the hydration state of the arg side chain in peptides and proteins. We examined the hydration of the arg side chain in two polyala peptides and found that in the α-helical conformation the arg side chain in the AEP peptide (sequence: A9RA3EA4RA2) is less hydrated than that in the AP peptide (sequence: A8RA4RA4RA2). PMID:23676082

  13. Modified pectic polysaccharide from turmeric (Curcuma longa): A potent dietary component against gastric ulcer.

    PubMed

    Harsha, Mysore R; Chandra Prakash, Serkad V; Dharmesh, Shylaja M

    2016-03-15

    Native, intact (TrPP) and modified, low-molecular-weight (MTrPP) forms of pectic polysaccharides isolated from turmeric were evaluated for ulcer-preventive potentials in in vitro and in vivo models. Data indicated that MTrPP possessed significantly better ulcer-preventive property than TrPP; inhibiting ulcer scores up to 85%. Results were substantiated by effective muco-protection, H(+),K(+)-ATPase down-regulation, inhibition of H. pylori growth/adherence, higher antioxidant/cytoprotective mechanisms. Structural data indicated TrPP and MTrPP differ in their molecular weights and structural characteristics with different sugar compositions and side chain ratios. MTrPP was rich in galacturonic acid (687mg/g; TrPP-544mg/g) and galactose (52.9%; TrPP-21.7%). Results were substantiated by NMR/FTIR data indicating the presence of homogalacturonan and rhamnogalacturonam-I containing galactans. By virtue of binding to inflammatory marker (galectin-3), galactans may reduce inflammation induced ulcerations. The low molecular weight of MTrPP (155kDa; TrPP-13kDa) may increase its bioavailability than TrPP, thus MTrPP may possess higher antiulcer potential. PMID:26794747

  14. Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits.

    PubMed

    Babbar, Neha; Dejonghe, Winnie; Gatti, Monica; Sforza, Stefano; Elst, Kathy

    2016-08-01

    Pectin containing agricultural by-products are potential sources of a new class of prebiotics known as pectic oligosaccharides (POS). In general, pectin is made up of homogalacturonan (HG, α-1,4-linked galacturonic acid monomers) and rhamnogalacturonan (RG, alternate galacturonic acid and rhamnose backbone with neutral side chains). Controlled hydrolysis of pectin containing agricultural by-products like sugar beet, apple, olive and citrus by chemical, enzymatic and hydrothermal can be used to produce oligo-galacturonides (GalpOS), galacto-oligosaccharides (GalOS), rhamnogalacturonan-oligosaccharides (RGOS), etc. However, extensive research is needed to establish the role of POS, both as a prebiotic as well as therapeutic agent. This review comprehensively covers different facets of POS, including the nature and chemistry of pectin and POS, potential agricultural residual sources of pectin, pre-treatment methods for facilitating selective extraction of pectin, identification and characterization of POS, health benefits and important applications of POS in food and feed. This review has been compiled to establish a platform for future research in the purification and characterization of POS and for in vivo and in vitro studies of important POS, so that they could be commercially exploited. PMID:25641325

  15. Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments

    PubMed Central

    Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke

    2016-01-01

    Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909

  16. From isotropic to anisotropic side chain representations: comparison of three models for residue contact estimation.

    PubMed

    Sun, Weitao; He, Jing

    2011-01-01

    The criterion to determine residue contact is a fundamental problem in deriving knowledge-based mean-force potential energy calculations for protein structures. A frequently used criterion is to require the side chain center-to-center distance or the -to- atom distance to be within a pre-determined cutoff distance. However, the spatially anisotropic nature of the side chain determines that it is challenging to identify the contact pairs. This study compares three side chain contact models: the Atom Distance criteria (ADC) model, the Isotropic Sphere Side chain (ISS) model and the Anisotropic Ellipsoid Side chain (AES) model using 424 high resolution protein structures in the Protein Data Bank. The results indicate that the ADC model is the most accurate and ISS is the worst. The AES model eliminates about 95% of the incorrectly counted contact-pairs in the ISS model. Algorithm analysis shows that AES model is the most computational intensive while ADC model has moderate computational cost. We derived a dataset of the mis-estimated contact pairs by AES model. The most misjudged pairs are Arg-Glu, Arg-Asp and Arg-Tyr. Such a dataset can be useful for developing the improved AES model by incorporating the pair-specific information for the cutoff distance. PMID:21552527

  17. Structural studies of arabinan-rich pectic polysaccharides from Abies sibirica L. Biological activity of pectins of A. sibirica.

    PubMed

    Shakhmatov, Evgeny G; Toukach, Philip V; Michailowa, Capital Ie Cyrilliclena А; Makarova, Elena N

    2014-11-26

    Highly branched arabinan-rich pectic polysaccharides, containing 84% of arabinose, was extracted from wood greenery of Abies sibirica L. The structure of arabinan was studied by the 1D and 2D NMR spectroscopy. The macromolecule backbone was represented mainly by RG-I (molar ratio GalA:Rha ∼ 1.3:1) patterns with high degree of rhamnose branching. Side chains were comprised of 1,5-linked α-L-Araf residues (the major part of polymer mass), 1,3,5-di-O- and 1,2,3,5-tri-O-linked α-L-Araf residues, confirming the presence of highly branched 1,5-α-L-arabinan. Although most L-Araf were in α-anomeric form, minor terminal β-L-Araf-(1 →... was detected. 1,4-β-D-linked Galp residues found in the side chains account for minor AG-I or 1,4-galactan, as compared to arabinan. A tentative structure was proposed. Polysaccharides obtained from Siberian fir greenery were screened for biological activity. Galacturonan had a strongest stimulating effect on germination and growth rate of seeds, germs and roots of Triticum aestivum, Avena sativa, and Secale cereale. PMID:25256514

  18. A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans

    DOE PAGESBeta

    Stonebloom, Solomon; Ebert, Berit; Xiong, Guangyan; Pattathil, Sivakumar; Birdseye, Devon; Lao, Jeemeng; Pauly, Markus; Hahn, Michael G.; Heazlewood, Joshua L.; Scheller, Henrik Vibe

    2016-04-18

    We report pectins are a group of structurally complex plant cell wall polysaccharides whose biosynthesis and function remain poorly understood. The pectic polysaccharide rhamnogalacturonan-I (RG-I) has two types of arabinogalactan side chains, type-I and type-II arabinogalactans. To date few enzymes involved in the biosynthesis of pectin have been described. Here we report the identification of a highly conserved putative glycosyltransferase encoding gene, Pectic ArabinoGalactan synthesis-Related (PAGR), affecting the biosynthesis of RG-I arabinogalactans and critical for pollen tube growth. T-DNA insertions in PAGR were identified in Arabidopsis thaliana and were found to segregate at a 1:1 ratio of heterozygotes to wildmore » type. We were unable to isolate homozygous pagr mutants as pagr mutant alleles were not transmitted via pollen. In vitro pollen germination assays revealed reduced rates of pollen tube formation in pollen from pagr heterozygotes. To characterize a loss-of-function phenotype for PAGR, the Nicotiana benthamiana orthologs, NbPAGR-A and B, were transiently silenced using Virus Induced Gene Silencing. NbPAGR-silenced plants exhibited reduced internode and petiole expansion. Cell wall materials from NbPAGR-silenced plants had reduced galactose content compared to the control. Immunological and linkage analyses support that RG-I has reduced type-I arabinogalactan content and reduced branching of the RG-I backbone in NbPAGR-silenced plants. Arabidopsis lines overexpressing PAGR exhibit pleiotropic developmental phenotypes and the loss of apical dominance as well as an increase in RG-I type-II arabinogalactan content. Together, results support a function for PAGR in the biosynthesis of RG-I arabinogalactans and illustrate the essential roles of these polysaccharides in vegetative and reproductive plant growth.« less

  19. Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer

    SciTech Connect

    Griffin, Graham B.; Rolczynski, Brian S.; Linkin, Alexander; McGillicuddy, Ryan D.; Engel, Gregory S.; Lundin, Pamela M.; Bao, Zhenan

    2014-01-21

    We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.

  20. Bottlebrush Copolymer Morphology Transition: Influence of Side Chain Length and Block Volume Fraction

    NASA Astrophysics Data System (ADS)

    Gai, Yue; Song, Dong-Po; Watkins, James

    Brush block copolymers synthesized via living ring-opening metathesis polymerization (ROMP) offer unique advantages as templates for functional hybrid materials. Unlike linear block copolymer, the bottlebrush polymer phase transition not only depends on volume fractions of the two blocks but also on side chain length. Here we report the morphology transitions of PS-b-PEO bottlebrush copolymer (BBCP) as a function of PEO side chain length and block volume fraction. For the BBCPs with similar side chain lengths, highly ordered lamellar morphologies were observed with PEO volume fractions in a wide range from 32 vol% to 72 vol%, which is significantly different from that of traditional linear block copolymers. This study will lay the groundwork for nanostructure fabrications using the BBCPs and provides new insights into the phase behavior of the new type of materials. This work was supported by NSF center for Hierarchical Manufacturing at the University of Massachusetts, Amherst.

  1. Influence of side chains on the self-alignment capability of electroluminescent polyfluorenes.

    PubMed

    Lee, Sunyoung; Yang, Yooseong; Kwon, Sunchul; Jung, Youngsuk

    2016-02-21

    We report a significant role of side chains in the propagation of molecular orientation upon annealing the liquid crystal phase of polyfluorenes. Direct rubbing of poly(9,9-di(octyl)fluorene) led to the orientation of polymer segments in the top-most region of the film and enhanced propagation of this orientation along the rubbing direction was observed upon annealing. In contrast, the rubbing-induced molecular orientation of poly(9,9-di(ethylhexyl)fluorene) segments completely disappeared upon annealing in the nematic melt state. The higher order of the side chain structures in poly(9,9-di(octyl)fluorene) were found to allow the propagation of the three-dimensional molecular alignment. From integrated experimental and density functional theory studies, we propose that side chain interdigitation generates a unique alignment behavior of poly(9,9-di(octyl)fluorene). PMID:26743162

  2. Pyrrolidinobenzoic Acid Inhibitors of Influenza Virus Neuraminidase: the Hydrophobic Side Chain Influences Type A Subtype Selectivity

    PubMed Central

    Li, Yanwu; Silamkoti, Arundutt; Kolavi, Gundurao; Mou, Liyuan; Gulati, Shelly; Air, Gillian M.

    2012-01-01

    Neuraminidase (NA) plays a critical role in the life cycle of influenza virus and is a target for new therapeutic agents. A series of influenza neuraminidase inhibitors with the pyrrolidinobenzoic acid scaffold containing lipophilic side chains at the C3 position have been synthesized and evaluated for influenza neuraminidase inhibitory activity. The size and geometry of the C3 side chains have been modified in order to investigate structure-activity relationships. The results indicated that size and geometry of the C3-side chain are important for selectivity of inhibition against N1 vs N2 NA, important type A influenza variants that infect man, including the highly lethal avian influenza. PMID:22677529

  3. Pyrrolidinobenzoic acid inhibitors of influenza virus neuraminidase: the hydrophobic side chain influences type A subtype selectivity.

    PubMed

    Li, Yanwu; Silamkoti, Arundutt; Kolavi, Gundurao; Mou, Liyuan; Gulati, Shelly; Air, Gillian M; Brouillette, Wayne J

    2012-07-15

    Neuraminidase (NA) plays a critical role in the life cycle of influenza virus and is a target for new therapeutic agents. A series of influenza neuraminidase inhibitors with the pyrrolidinobenzoic acid scaffold containing lipophilic side chains at the C3 position have been synthesized and evaluated for influenza neuraminidase inhibitory activity. The size and geometry of the C3 side chains have been modified in order to investigate structure-activity relationships. The results indicated that size and geometry of the C3-side chain are important for selectivity of inhibition against N1 versus N2 NA, important type A influenza variants that infect man, including the highly lethal avian influenza. PMID:22677529

  4. Record high hole mobility in polymer semiconductors via side-chain engineering.

    PubMed

    Kang, Il; Yun, Hui-Jun; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi

    2013-10-01

    Charge carrier mobility is still the most challenging issue that should be overcome to realize everyday organic electronics in the near future. In this Communication, we show that introducing smart side-chain engineering to polymer semiconductors can facilitate intermolecular electronic communication. Two new polymers, P-29-DPPDBTE and P-29-DPPDTSE, which consist of a highly conductive diketopyrrolopyrrole backbone and an extended branching-position-adjusted side chain, showed unprecedented record high hole mobility of 12 cm(2)/(V·s). From photophysical and structural studies, we found that moving the branching position of the side chain away from the backbone of these polymers resulted in increased intermolecular interactions with extremely short π-π stacking distances, without compromising solubility of the polymers. As a result, high hole mobility could be achieved even in devices fabricated using the polymers at room temperature. PMID:24053786

  5. Equilibrium transitions between side-chain conformations in leucine and isoleucine.

    PubMed

    Caballero, Diego; Smith, W Wendell; O'Hern, Corey S; Regan, Lynne

    2015-08-01

    Despite recent improvements in computational methods for protein design, we still lack a quantitative, predictive understanding of the intrinsic probabilities for amino acids to adopt particular side-chain conformations. Surprisingly, this question has remained unsettled for many years, in part because of inconsistent results from different experimental approaches. To explicitly determine the relative populations of different side-chain dihedral angles, we performed all-atom hard-sphere Langevin Dynamics simulations of leucine (Leu) and isoleucine (Ile) dipeptide mimetics with stereo-chemical constraints and repulsive-only steric interactions between non-bonded atoms. We determine the relative populations of the different χ(1) and χ(2) dihedral angle combinations as a function of the backbone dihedral angles ϕ and ψ. We also propose, and test, a mechanism for inter-conversion between the different side-chain conformations. Specifically, we discover that some of the transitions between side-chain dihedral angle combinations are very frequent, whereas others are orders of magnitude less frequent, because they require rare coordinated motions to avoid steric clashes. For example, to transition between different values of χ(2), the Leu side-chain bond angles κ(1) and κ(2) must increase, whereas to transition in χ(1), the Ile bond angles λ(1) and λ(2) must increase. These results emphasize the importance of computational approaches in stimulating further experimental studies of the conformations of side-chains in proteins. Moreover, our studies emphasize the power of simple steric models to inform our understanding of protein structure, dynamics, and design. PMID:26018846

  6. BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization

    PubMed Central

    Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A.; Ryu, Seong Eon; Kim, Deok-Soo

    2016-01-01

    Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. PMID:27151195

  7. Naphthalene Tetracarboxydiimide-Based n-Type Polymers with Removable Solubility via Thermally Cleavable Side Chains.

    PubMed

    Hillebrandt, Sabina; Adermann, Torben; Alt, Milan; Schinke, Janusz; Glaser, Tobias; Mankel, Eric; Hernandez-Sosa, Gerardo; Jaegermann, Wolfram; Lemmer, Uli; Pucci, Annemarie; Kowalsky, Wolfgang; Müllen, Klaus; Lovrincic, Robert; Hamburger, Manuel

    2016-02-01

    Multilayer solution-processed devices in organic electronics show the tendency of intermixing of subsequently deposited layers. Here, we synthesize naphthalene tetracarboxydiimide (NDI)-based n-type semiconducting polymers with thermally cleavable side chains which upon removal render the polymer insoluble. Infrared and photoelectron spectroscopy were performed to investigate the pyrolysis process. Characterization of organic field-effect transistors provides insight into charge transport. After the pyrolysis homogeneous films could be produced which are insoluble in the primary solvent. By varying curing temperature and time we show that these process parameters govern the amount of side chains in the film and influence the device performance. PMID:26829619

  8. BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization.

    PubMed

    Ryu, Joonghyun; Lee, Mokwon; Cha, Jehyun; Laskowski, Roman A; Ryu, Seong Eon; Kim, Deok-Soo

    2016-07-01

    Many applications, such as protein design, homology modeling, flexible docking, etc. require the prediction of a protein's optimal side-chain conformations from just its amino acid sequence and backbone structure. Side-chain prediction (SCP) is an NP-hard energy minimization problem. Here, we present BetaSCPWeb which efficiently computes a conformation close to optimal using a geometry-prioritization method based on the Voronoi diagram of spherical atoms. Its outputs are visual, textual and PDB file format. The web server is free and open to all users at http://voronoi.hanyang.ac.kr/betascpweb with no login requirement. PMID:27151195

  9. Covalent docking using autodock: Two-point attractor and flexible side chain methods.

    PubMed

    Bianco, Giulia; Forli, Stefano; Goodsell, David S; Olson, Arthur J

    2016-01-01

    We describe two methods of automated covalent docking using Autodock4: the two-point attractor method and the flexible side chain method. Both methods were applied to a training set of 20 diverse protein-ligand covalent complexes, evaluating their reliability in predicting the crystallographic pose of the ligands. The flexible side chain method performed best, recovering the pose in 75% of cases, with failures for the largest inhibitors tested. Both methods are freely available at the AutoDock website (http://autodock.scripps.edu). PMID:26103917

  10. Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces.

    PubMed

    Herzog, Florian A; Braun, Lukas; Schoen, Ingmar; Vogel, Viola

    2016-05-10

    Specific interactions of protein side chains and lipid membranes regulate the localization, orientation, and activity of many peripheral proteins. Here, we introduce a modification of the coarse-grained MARTINI protein model, called 'side chain fix' (scFix), that was necessary and sufficient to correctly sample the side chain dynamics of β-strands in several globular proteins. When compared to μs long atomistic simulations or previous experimental findings, scFix MARTINI simulations reproduced all key interactions between the well-studied PLC-δ1 pleckstrin homology domain and a phosphatidylinositol-4,5-bisphosphate (PIP2) containing lipid membrane. Moreover, the extended runtime and higher sampling speed enabled the systematic mapping of the protein's rolling motion at the membrane, the identification of short-lived and stable binding orientations, as well as the verification and prediction of already known and of novel transient PIP2 binding sites. scFix also showed promise to maintain proper side chain orientation in other secondary structural motifs of the α-spectrin SH3 domain, the B1 domain of protein G, and the villin headpiece. This suggests that scFix improves on the predictive power of MARTINI simulations regarding protein-lipid and protein-ligand interactions. PMID:27042944

  11. SPRITE and ASSAM: web servers for side chain 3D-motif searching in protein structures

    PubMed Central

    Nadzirin, Nurul; Gardiner, Eleanor J.; Willett, Peter; Artymiuk, Peter J.; Firdaus-Raih, Mohd

    2012-01-01

    Similarities in the 3D patterns of amino acid side chains can provide insights into their function despite the absence of any detectable sequence or fold similarities. Search for protein sites (SPRITE) and amino acid pattern search for substructures and motifs (ASSAM) are graph theoretical programs that can search for 3D amino side chain matches in protein structures, by representing the amino acid side chains as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. Both programs require the input file to be in the PDB format. The objective of using SPRITE is to identify matches of side chains in a query structure to patterns with characterized function. In contrast, a 3D pattern of interest can be searched for existing occurrences in available PDB structures using ASSAM. Both programs are freely accessible without any login requirement. SPRITE is available at http://mfrlab.org/grafss/sprite/ while ASSAM can be accessed at http://mfrlab.org/grafss/assam/. PMID:22573174

  12. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis.

    PubMed

    Marous, Daniel R; Lloyd, Evan P; Buller, Andrew R; Moshos, Kristos A; Grove, Tyler L; Blaszczyk, Anthony J; Booker, Squire J; Townsend, Craig A

    2015-08-18

    Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2-S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5'-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis. PMID:26240322

  13. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis

    PubMed Central

    Marous, Daniel R.; Lloyd, Evan P.; Buller, Andrew R.; Moshos, Kristos A.; Grove, Tyler L.; Blaszczyk, Anthony J.; Booker, Squire J.; Townsend, Craig A.

    2015-01-01

    Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2–S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5′-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis. PMID:26240322

  14. Structure and dynamics of an imidazoline nitroxide side chain with strongly hindered internal motion in proteins

    NASA Astrophysics Data System (ADS)

    Toledo Warshaviak, Dora; Khramtsov, Valery V.; Cascio, Duilio; Altenbach, Christian; Hubbell, Wayne L.

    2013-07-01

    A disulfide-linked imidazoline nitroxide side chain (V1) has a similar and highly constrained internal motion at diverse topological sites in a protein, unlike that for the disulfide-linked pyrroline nitroxide side chain (R1) widely used in site directed spin labeling EPR. Crystal structures of V1 at two positions in a helix of T4 Lysozyme and quantum mechanical calculations suggest the source of the constraints as intra-side chain interactions of the disulfide sulfur atoms with both the protein backbone and the 3-nitrogen in the imidazoline ring. These interactions apparently limit the conformation of the side chain to one of only three possible rotamers, two of which are observed in the crystal structure. An inter-spin distance measurement in frozen solution using double electron-electron resonance (DEER) gives a value essentially identical to that determined from the crystal structure of the protein containing two copies of V1, indicating that lattice forces do not dictate the rotamers observed. Collectively, the results suggest the possibility of predetermining a unique rotamer of V1 in helical structures. In general, the reduced rotameric space of V1 compared to R1 should simplify interpretation of inter-spin distance information in terms of protein structure, while the highly constrained internal motion is expected to extend the dynamic range for characterizing large amplitude nanosecond backbone fluctuations.

  15. Arabidopsis GUX Proteins Are Glucuronyltransferases Responsible for the Addition of Glucuronic Acid Side Chains onto Xylan

    EPA Science Inventory

    Xylan, the second most abundant cell wall polysaccharide, is composed of a linear backbone of β-(1,4)-linked xylosyl residues that are often substituted with sugar side chains, such as glucuronic acid (GlcA) and methylglucuronic acid (MeGlcA). It has recently been shown that muta...

  16. Supramolecular control of self-assembling terthiophene-peptide conjugates through the amino acid side chain

    SciTech Connect

    Lehrman, Jessica A.; Cui, Honggang; Tsai, Wei-Wen; Moyer, Tyson J.; Stupp, Samuel I.

    2013-07-30

    The self-assembly of oligothiophene–peptide conjugates can be directed through the systematic variation of the peptide sequence into different nanostructures, including flat spicules, nanotubes, spiral sheets, and giant, flat sheets. Furthermore, the assembly of these molecules is not controlled by steric interactions between the amino acid side chains.

  17. Synthesis and antiproliferativeactivity of new vinca alkaloids containing an α,β-unsaturated aromatic side chain.

    PubMed

    Ngo, Quoc Anh; Nguyen, Le Anh; Vo, Ngoc Binh; Nguyen, Thuy Hang; Roussi, Fanny; Nguyen, The Hung; Nguyen, Van Tuyen

    2015-12-01

    A new series of vinca-alkaloids derivatives containing various α,β-unsaturated aromatic side chains was synthesized. Four new vinca-alkaloids derivatives showed selective cytotoxicities against KB tumor cell lines with IC50 value below 0.1 μM, thus comparable with vinblastine. PMID:26522953

  18. Energetic, Structural, and Antimicrobial Analyses of [beta]-Lactam Side Chain Recognition by [beta]-Lactamases

    SciTech Connect

    Caselli, E.; Powers, R.A.; Blaszczak, L.C.; Wu, C.Y.E.; Prati, F.; Shoichet, B.K.

    2010-03-05

    Penicillins and cephalosporins are among the most widely used and successful antibiotics. The emergence of resistance to these {beta}-lactams, most often through bacterial expression of {beta}-lactamases, threatens public health. To understand how {beta}-lactamases recognize their substrates, it would be helpful to know their binding energies. Unfortunately, these have been difficult to measure because {beta}-lactams form covalent adducts with {beta}-lactamases. This has complicated functional analyses and inhibitor design. To investigate the contribution to interaction energy of the key amide (R1) side chain of {beta}-lactam antibiotics, eight acylglycineboronic acids that bear the side chains of characteristic penicillins and cephalosporins, as well as four other analogs, were synthesized. These transition-state analogs form reversible adducts with serine {beta}-lactamases. Therefore, binding energies can be calculated directly from K{sub i} values. The K{sub i} values measured span four orders of magnitude against the Group I {beta}-lactamase AmpC and three orders of magnitude against the Group II {beta}-lactamase TEM-1. The acylglycineboronic acids have K{sub i} values as low as 20 nM against AmpC and as low as 390 nM against TEM-1. The inhibitors showed little activity against serine proteases, such as chymotrypsin. R1 side chains characteristic of {beta}-lactam inhibitors did not have better affinity for AmpC than did side chains characteristic of {beta}-lactam substrates. Two of the inhibitors reversed the resistance of pathogenic bacteria to {beta}-lactams in cell culture. Structures of two inhibitors in their complexes with AmpC were determined by X-ray crystallography to 1.90 {angstrom} and 1.75 {angstrom} resolution; these structures suggest interactions that are important to the affinity of the inhibitors. Acylglycineboronic acids allow us to begin to dissect interaction energies between {beta}-lactam side chains and {beta}-lactamases. Surprisingly

  19. Compliant random fields in gels formed from side-chain liquid crystalline polymers

    NASA Astrophysics Data System (ADS)

    Goldbart, Paul; Ye, Fangfu; Lu, Bing; Xing, Xiangjun

    2013-03-01

    Localized polymer-chain backbones in gels formed from side-chain liquid crystalline polymers serve to create random fields that induce local orientational order of the nematogenic pendants of the side chains. These random fields differ, however, from conventional ones, in that they are compliant, and thus themselves undergo thermal fluctuations. We develop a free energy that describes local nematic ordering in presence of such compliant random fields. In particular, we show that, as a result of this compliance, the free energy has a qualitatively new structure, unattainable via truly static random fields. We discuss the physical implications this free energy, focusing on the consequences of the compliant nature of the random fields.

  20. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    PubMed Central

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-01-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD. PMID:26899474

  1. Backbone dependency further improves side chain prediction efficiency in the Energy-based Conformer Library (bEBL).

    PubMed

    Subramaniam, Sabareesh; Senes, Alessandro

    2014-11-01

    Side chain optimization is an integral component of many protein modeling applications. In these applications, the conformational freedom of the side chains is often explored using libraries of discrete, frequently occurring conformations. Because side chain optimization can pose a computationally intensive combinatorial problem, the nature of these conformer libraries is important for ensuring efficiency and accuracy in side chain prediction. We have previously developed an innovative method to create a conformer library with enhanced performance. The Energy-based Library (EBL) was obtained by analyzing the energetic interactions between conformers and a large number of natural protein environments from crystal structures. This process guided the selection of conformers with the highest propensity to fit into spaces that should accommodate a side chain. Because the method requires a large crystallographic data-set, the EBL was created in a backbone-independent fashion. However, it is well established that side chain conformation is strongly dependent on the local backbone geometry, and that backbone-dependent libraries are more efficient in side chain optimization. Here we present the backbone-dependent EBL (bEBL), whose conformers are independently sorted for each populated region of Ramachandran space. The resulting library closely mirrors the local backbone-dependent distribution of side chain conformation. Compared to the EBL, we demonstrate that the bEBL uses fewer conformers to produce similar side chain prediction outcomes, thus further improving performance with respect to the already efficient backbone-independent version of the library. PMID:25212195

  2. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    NASA Astrophysics Data System (ADS)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  3. Understanding the physical basis for the side-chain conformational preferences of methionine.

    PubMed

    Virrueta, Alejandro; O'Hern, Corey S; Regan, Lynne

    2016-07-01

    Methionine (Met) is a structurally versatile amino acid most commonly found in protein cores and at protein-protein interfaces. Thus, a complete description of the structure of Met is important for a fundamental understanding of protein structure and design. In previous work, we showed that the hard-sphere dipeptide model is able to recapitulate the side-chain dihedral angle distributions observed in high-resolution protein crystal structures for the nine amino acids we have studied to date: Val, Thr, Ser, Leu, Ile, Cys, Tyr, Trp, and Phe. Using the same approach, we are also able to predict the observed χ1 and χ2 side-chain dihedral angle distributions for Met. However, the form of the side-chain dihedral angle distribution P(χ3 ) predicted by the hard-sphere model does not match the observed distribution. We investigate the possible origins of the discrepancy and find that specific bond lengths and angles in Met side chains strongly influence P(χ3 ). We then identify minimal additions to the hard-sphere dipeptide model necessary to quantitatively predict P(χ3 ) of Met, and its near isosteres norleucine (Nle) and selenomethionine (Mse). We find that adding weak attractive interactions between hydrogen atoms to the model is sufficient to achieve predictions for P(χ3 ) that closely match the observed P(χ3 ) distributions for Met, Nle, and Mse. We explicitly show that weak attractive interactions between hydrogens do not negatively affect the agreement between the predicted and observed side-chain dihedral angle distribution for Val, Leu, Ile, and Phe, as we expect for other amino acids. Proteins 2016; 84:900-911. © 2016 Wiley Periodicals, Inc. PMID:26917446

  4. Self-assembly and adsorption properties of Fmoc-substituted short peptide bearing charged side chains

    NASA Astrophysics Data System (ADS)

    Nakayama, Toru; Sakuraba, Taro; Yamamoto, Yohei

    2015-12-01

    Charge-separated peptide β-sheet with a positive charge on one side and a negative charge on the other side adsorbed on a mica surface with well-ordered geometry along the crystallographic direction of the mica surface. In MeOH and MeOH/H2O mixed solvent, the peptides do not form β-sheet structure. During the evaporation process of the solvent on a mica substrate, the peptides self-assembled to form β-sheet and adsorb on the surface via electrostatic interaction between negative charge of the mica surface and positive charge of the lysine side chain on one side of the β-sheet.

  5. Sub-cellular internalization and organ specific oral elivery of PABA nanoparticles by side chain variation

    PubMed Central

    2011-01-01

    Background Organic nanomaterials having specific biological properties play important roles in in vivo delivery and clearance from the live cells. To develop orally deliverable nanomaterials for different biological applications, we have synthesized several fluorescently labelled, self-assembled PABA nanoparticles using possible acid side chain combinations and tested against insect and human cell lines and in vivo animal model. Flurophores attached to nanostructures help in rapid in vivo screening and tracking through complex tissues. The sub-cellular internalization mechanism of the conjugates was determined. A set of physio-chemical parameters of engineered nanoskeletons were also defined that is critical for preferred uptake in multiple organs of live Drosophila. Results The variability of side chains alter size, shape and surface texture of each nanomaterial that lead to differential uptake in human and insect cells and to different internal organs in live Drosophila via energy dependent endocytosis. Our results showed that physical and chemical properties of C-11 and C-16 acid chain are best fitted for delivery to complex organs in Drosophila. However a distinct difference in uptake of same nanoparticle in human and insect cells postulated that different host cell physiology plays a critical role in the uptake mechanism. Conclusions The physical and chemical properties of the nanoparticle produced by variation in the acid side chains that modify size and shape of engineered nanostructure and their interplay with host cell physiology might be the major criteria for their differential uptake to different internal organs. PMID:21443763

  6. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates.

    PubMed

    Jiang, Jingxian; Zhang, Guangfa; Wang, Qiongyan; Zhang, Qinghua; Zhan, Xiaoli; Chen, Fengqiu

    2016-04-27

    Because the emission of perfluorooctanoic acid (PFOA) was completely prohibited in 2015, the widely used poly- and perfluoroalkyl substances with long perfluoroalkyl groups must be substituted by environmentally friendly alternatives. In this study, one kind of potential alternative (i.e., fluorinated polymers with short perfluorobutyl side chains) has been synthesized from the prepared monomers {i.e., (perfluorobutyl)ethyl acrylate (C4A), (perfluorobutyl)ethyl methacrylate (C4MA), 2-[[[[2-(perfluorobutyl)]sulfonyl]methyl]amino]ethyl acrylate (C4SA), and methacrylate (C4SMA)}, and the microstructure, super wetting performance, and applications of the synthesized fluorinated polymers were systematically investigated. The thermal and crystallization behaviors of the fluoropolymer films were characterized by differential scanning calorimetry and wide-angle X-ray diffraction analysis, respectively. Dynamic water-repellent models were constructed. The stable low surface energy and dynamic water- and oil-repellent properties of these synthesized fluorinated polymers with short perfluorobutyl side chains were attributed to the synergetic effect of amorphous fluorinated side chains in perfluoroalkyl acrylate and crystalline hydrocarbon pendant groups in stearyl acrylate. Outstanding water- and oil-repellent properties of fabrics and any other substrates could be achieved by a facile dip-coating treatment using a fluorinated copolymer dispersion. As a result, we believe that our prepared fluorinated copolymers are potential candidates to replace the fluoroalkylated polymers with long perfluorinated chains in nonstick and self-cleaning applications in our daily life. PMID:27052113

  7. Producing high-accuracy lattice models from protein atomic coordinates including side chains.

    PubMed

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models. PMID:22934109

  8. Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains

    PubMed Central

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M.

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models. PMID:22934109

  9. The binding of analogs of porphyrins and chlorins with elongated side chains to albumin.

    PubMed

    Ben Dror, Shimshon; Bronshtein, Irena; Weitman, Hana; Smith, Kevin M; O'Neal, William G; Jacobi, Peter A; Ehrenberg, Benjamin

    2009-09-01

    In previous studies, we demonstrated that elongation of side chains of several sensitizers endowed them with higher affinity for artificial and natural membranes and caused their deeper localization in membranes. In the present study, we employed eight hematoporphyrin and protoporphyrin analogs and four groups containing three chlorin analogs each, all synthesized with variable numbers of methylenes in their alkyl carboxylic chains. We show that these tetrapyrroles' affinity for bovine serum albumin (BSA) and their localization in the binding site are also modulated by chain lengths. The binding constants of the hematoporphyrins and protoporphyrins to BSA increased as the number of methylenes was increased. The binding of the chlorins depended on the substitution at the meso position opposite to the chains. The quenching of the sensitizers' florescence by external iodide ions decreased as the side chains became longer, indicating to deeper insertion of the molecules into the BSA binding pocket. To corroborate this conclusion, we studied the efficiency of photodamage caused to tryptophan in BSA upon illumination of the bound sensitizers. The efficiency was found to depend on the side-chain lengths of the photosensitizer. We conclude that the protein site that hosts these sensitizers accommodates different analogs at positions that differ slightly from each other. These differences are manifested in the ease of access of iodide from the external aqueous phase, and in the proximity of the photosensitizers to the tryptophan. In the course of this study, we developed the kinetic equations that have to be employed when the sensitizer itself is being destroyed. PMID:19330323

  10. Equilibrium and shear-induced conformations of a side-chain liquid crystal polymer

    NASA Astrophysics Data System (ADS)

    Castelletto, V.; Noirez, L.; Vigoureux, P.

    2000-11-01

    These studies delineate the conformations adopted by a side-chain liquid-crystalline polymer subjected to a steady-state shear flow as well as the corresponding me so pha se director orientations. Two distinct director orientations are identified in the nematic phase, giving evidence of a shear-induced transition from a flow-aligning to a non flow-aligning behavior. This transition coincides, at rest, with a subtle change from prolate to oblate polymer main-chain conformation. In the smectic phase, the layers form multilayer cylinders oriented along the velocity axis.

  11. Synthesis of enones, pyrazolines and pyrrolines with gem-difluoroalkyl side chains

    PubMed Central

    El Dine, Assaad Nasr; Khalaf, Ali; Grée, Danielle; Tasseau, Olivier; Fares, Fares; Jaber, Nada; Lesot, Philippe

    2013-01-01

    Summary Starting from easily accessible gem-difluoropropargylic derivatives, a DBU-mediated isomerisation affords enones in fair yields with a gem-difluoroalkyl chain. These derivatives were used to prepare pyrazolines and pyrrolines with the desired gem-difluoroalkyl side chain by cyclocondensations in good yields and with excellent stereoselectivity. A one-pot process was also successfully developed for these sequential reactions. By carrying out various types of Pd-catalyzed coupling reactions for compounds with a p-bromophenyl substituent a route to focused chemical libraries was demonstrated. PMID:24204405

  12. Synthesis of enones, pyrazolines and pyrrolines with gem-difluoroalkyl side chains.

    PubMed

    El Dine, Assaad Nasr; Khalaf, Ali; Grée, Danielle; Tasseau, Olivier; Fares, Fares; Jaber, Nada; Lesot, Philippe; Hachem, Ali; Grée, René

    2013-01-01

    Starting from easily accessible gem-difluoropropargylic derivatives, a DBU-mediated isomerisation affords enones in fair yields with a gem-difluoroalkyl chain. These derivatives were used to prepare pyrazolines and pyrrolines with the desired gem-difluoroalkyl side chain by cyclocondensations in good yields and with excellent stereoselectivity. A one-pot process was also successfully developed for these sequential reactions. By carrying out various types of Pd-catalyzed coupling reactions for compounds with a p-bromophenyl substituent a route to focused chemical libraries was demonstrated. PMID:24204405

  13. Correlation between protein secondary structure, backbone bond angles, and side-chain orientations

    NASA Astrophysics Data System (ADS)

    Lundgren, Martin; Niemi, Antti J.

    2012-08-01

    We investigate the fine structure of the sp3 hybridized covalent bond geometry that governs the tetrahedral architecture around the central Cα carbon of a protein backbone, and for this we develop new visualization techniques to analyze high-resolution x-ray structures in the Protein Data Bank. We observe that there is a correlation between the deformations of the ideal tetrahedral symmetry and the local secondary structure of the protein. We propose a universal coarse-grained energy function to describe the ensuing side-chain geometry in terms of the Cβ carbon orientations. The energy function can model the side-chain geometry with a subatomic precision. As an example we construct the Cα-Cβ structure of HP35 chicken villin headpiece. We obtain a configuration that deviates less than 0.4 Å in root-mean-square distance from the experimental x-ray structure.

  14. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1993-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  15. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    DOEpatents

    Marrone, Babetta L.; Simpson, Daniel J.; Unkefer, Clifford J.; Whaley, Thomas W.

    1992-01-01

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450.sub.scc enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450.sub.scc catalyzes the conversion of cholesterol to pregnenolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  16. Radical Additions to Aromatic Residues in Peptides Facilitate Unexpected Side Chain and Backbone Losses

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Julian, Ryan R.

    2014-04-01

    Accurate identification of fragments in tandem mass spectrometry experiments is aided by knowledge of relevant fragmentation mechanisms. Herein, novel radical addition reactions that direct unexpected side-chain dissociations at tryptophan and tyrosine residues are reported. Various mechanisms that can account for the observed dissociation channels are investigated by experiment and theory. The propensity for radical addition at a particular site is found to be primarily under kinetic control, which is largely dictated by molecular structure. In certain peptides, intramolecular radical addition reactions are favored, which leads to the observation of numerous unexpected fragments. In one pathway, radical addition leads to migration of an aromatic side chain to another residue. Alternatively, radical addition followed by hydrogen atom loss leads to cyclization of the peptide and increased observation of internal sequence fragments. Radical addition reactions should be considered when assigning fragmentation spectra obtained from activation of hydrogen deficient peptides.

  17. Optical probe for the cytochrome P-450 cholesterol side chain cleavage enzyme

    SciTech Connect

    Marrone, B.L.; Simpson, D.J.; Unkefer, C.J.; Whaley, T.W.

    1993-05-04

    An optical probe enables the study of enzyme activity by absorbance spectroscopy or by sensitive fluorescence methods. In particular, the probe provides the ability to monitor the activity of cytochrome P-450[sub scc] enzyme, the rate limiting enzyme for steroid biosynthesis. Located on the inner mitochondrial membrane, P-450[sub scc] catalyzes the conversion of cholesterol to prednesolone and isocapraldehyde by sequential oxidations of the cholesterol side chain. The fluorogenic probe includes a cholesterol-like steroid linked to a chromophore through a linking group. The chromophore is selected to have little optical response when linked to the steroid substrate and an enhanced optical response when cleaved from the substrate and linking group. Thus, a fluorescent anion that can be optically detected is generated by the side-chain cleavage reaction during steroidogenesis.

  18. The lipopolysaccharide O side chain of Vibrio vulnificus serogroup E is a virulence determinant for eels.

    PubMed Central

    Amaro, C; Fouz, B; Biosca, E G; Marco-Noales, E; Collado, R

    1997-01-01

    Vibrio vulnificus is a gram-negative bacterium capable of producing septicemic infections in eels and immunocompromised humans. Two biotypes are classically recognized, with the virulence for eels being specific to strains belonging to biotype 2, which constitutes a homogeneous lipopolysaccharide (LPS)-based O serogroup (which we have designated serogroup E). In the present study we demonstrated that the O side chain of this LPS determines the selective virulence of biotype 2 for eels: (i) biotype 1 strains (which do not belong to serogroup E) are destroyed by the bactericidal action of nonimmune eel serum (NIS) through activation of the alternative pathway of complement, (ii) biotype 2 strains (of serogroup E) are resistant to NIS, and (iii) rough mutants of biotype 2 lacking the O polysaccharide side chain are sensitive to NIS and avirulent for eels. PMID:9169795

  19. Structure–Activity Relationships for Side Chain Oxysterol Agonists of the Hedgehog Signaling Pathway

    PubMed Central

    2012-01-01

    Oxysterols (OHCs) are byproducts of cholesterol oxidation that are known to activate the Hedeghog (Hh) signaling pathway. While OHCs that incorporate hydroxyl groups throughout the scaffold are known, those that act as agonists of Hh signaling primarily contain a single hydroxyl on the alkyl side chain. We sought to further explore how side chain hydroxylation patterns affect oxysterol-mediated Hh activation, by performing a structure–activity relationship study on a series of synthetic OHCs. The most active analogue, 23(R)-OHC (35), demonstrated potent activation of Hh signaling in two Hh-dependent cell lines (EC50 values 0.54–0.65 μM). In addition, OHC 35 was approximately 3-fold selective for the Hh pathway as compared to the liver X receptor, a nuclear receptor that is also activated by endogenous OHCs. Finally, 35 induced osteogenic differentiation and osteoblast formation in cultured cells, indicating functional agonism of the Hh pathway. PMID:24900386

  20. IMAAAGINE: a webserver for searching hypothetical 3D amino acid side chain arrangements in the Protein Data Bank.

    PubMed

    Nadzirin, Nurul; Willett, Peter; Artymiuk, Peter J; Firdaus-Raih, Mohd

    2013-07-01

    We describe a server that allows the interrogation of the Protein Data Bank for hypothetical 3D side chain patterns that are not limited to known patterns from existing 3D structures. A minimal side chain description allows a variety of side chain orientations to exist within the pattern, and generic side chain types such as acid, base and hydroxyl-containing can be additionally deployed in the search query. Moreover, only a subset of distances between the side chains need be specified. We illustrate these capabilities in case studies involving arginine stacks, serine-acid group arrangements and multiple catalytic triad-like configurations. The IMAAAGINE server can be accessed at http://mfrlab.org/grafss/imaaagine/. PMID:23716645

  1. Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls

    PubMed Central

    Schendel, Rachel R.; Meyer, Marleen R.; Bunzel, Mirko

    2016-01-01

    Graminaceous arabinoxylans are distinguished by decoration with feruloylated monosaccharidic and oligosaccharidic side-chains. Although it is hypothesized that structural complexity and abundance of these feruloylated arabinoxylan side-chains may contribute, among other factors, to resistance of plant cell walls to enzymatic degradation, quantitative profiling approaches for these structural units in plant cell wall materials have not been described yet. Here we report the development and application of a rapid and robust method enabling the quantitative comparison of feruloylated side-chain profiles in cell wall materials following mildly acidic hydrolysis, C18-solid phase extraction (SPE), reduction under aprotic conditions, and liquid chromatography with diode-array detection/mass spectrometry (LC-DAD/MS) separation and detection. The method was applied to the insoluble fiber/cell wall materials isolated from 12 whole grains: wild rice (Zizania aquatica L.), long-grain brown rice (Oryza sativa L.), rye (Secale cereale L.), kamut (Triticum turanicum Jakubz.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), intermediate wheatgrass (Thinopyrum intermedium), maize (Zea mays L.), popcorn (Zea mays L. var. everta), oat (Avena sativa L.) (dehulled), barley (Hordeum vulgare L.) (dehulled), and proso millet (Panicum miliaceum L.). Between 51 and 96% of the total esterified monomeric ferulates were represented in the quantified compounds captured in the feruloylated side-chain profiles, which confirms the significance of these structures to the global arabinoxylan structure in terms of quantity. The method provided new structural insights into cereal grain arabinoxylans, in particular, that the structural moiety α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG), which had previously only been described in maize, is ubiquitous to cereal grains. PMID:26834763

  2. Quantitative Profiling of Feruloylated Arabinoxylan Side-Chains from Graminaceous Cell Walls.

    PubMed

    Schendel, Rachel R; Meyer, Marleen R; Bunzel, Mirko

    2015-01-01

    Graminaceous arabinoxylans are distinguished by decoration with feruloylated monosaccharidic and oligosaccharidic side-chains. Although it is hypothesized that structural complexity and abundance of these feruloylated arabinoxylan side-chains may contribute, among other factors, to resistance of plant cell walls to enzymatic degradation, quantitative profiling approaches for these structural units in plant cell wall materials have not been described yet. Here we report the development and application of a rapid and robust method enabling the quantitative comparison of feruloylated side-chain profiles in cell wall materials following mildly acidic hydrolysis, C18-solid phase extraction (SPE), reduction under aprotic conditions, and liquid chromatography with diode-array detection/mass spectrometry (LC-DAD/MS) separation and detection. The method was applied to the insoluble fiber/cell wall materials isolated from 12 whole grains: wild rice (Zizania aquatica L.), long-grain brown rice (Oryza sativa L.), rye (Secale cereale L.), kamut (Triticum turanicum Jakubz.), wheat (Triticum aestivum L.), spelt (Triticum spelta L.), intermediate wheatgrass (Thinopyrum intermedium), maize (Zea mays L.), popcorn (Zea mays L. var. everta), oat (Avena sativa L.) (dehulled), barley (Hordeum vulgare L.) (dehulled), and proso millet (Panicum miliaceum L.). Between 51 and 96% of the total esterified monomeric ferulates were represented in the quantified compounds captured in the feruloylated side-chain profiles, which confirms the significance of these structures to the global arabinoxylan structure in terms of quantity. The method provided new structural insights into cereal grain arabinoxylans, in particular, that the structural moiety α-l-galactopyranosyl-(1→2)-β-d-xylopyranosyl-(1→2)-5-O-trans-feruloyl-l-arabinofuranose (FAXG), which had previously only been described in maize, is ubiquitous to cereal grains. PMID:26834763

  3. Statistical mechanics of protein allostery: Roles of backbone and side-chain structural fluctuations

    NASA Astrophysics Data System (ADS)

    Itoh, Kazuhito; Sasai, Masaki

    2011-03-01

    A statistical mechanical model of allosteric transition of proteins is developed by extending the structure-based model of protein folding to cases that a protein has two different native conformations. Partition function is calculated exactly within the model and free-energy surfaces associated with allostery are derived. In this paper, the model of allosteric transition proposed in a previous paper [Proc. Natl. Acad. Sci. U.S.A 134, 7775 (2010)] is reformulated to describe both fluctuation in side-chain configurations and that in backbone structures in a balanced way. The model is applied to example proteins, Ras, calmodulin, and CheY: Ras undergoes the allosteric transition between guanosine diphosphate (GDP)-bound and guanosine triphosphate (GTP)-bound forms, and the model results show that the GDP-bound form is stabilized enough to prevent unnecessary signal transmission, but the conformation in the GTP-bound state bears large fluctuation in side-chain configurations, which may help to bind multiple target proteins for multiple pathways of signaling. The calculated results of calmodulin show the scenario of sequential ordering in Ca2 + binding and the associated allosteric conformational change, which are realized though the sequential appearing of pre-existing structural fluctuations, i.e., fluctuations to show structures suitable to bind Ca2 + before its binding. Here, the pre-existing fluctuations to accept the second and third Ca2 + ions are dominated by the side-chain fluctuation. In CheY, the calculated side-chain fluctuation of Tyr106 is coordinated with the backbone structural change in the β4-α4 loop, which explains the pre-existing Y-T coupling process in this protein. Ability of the model to explain allosteric transitions of example proteins supports the view that the large entropic effects lower the free-energy barrier of allosteric transition.

  4. Communication: Accurate determination of side-chain torsion angle χ1 in proteins: Phenylalanine residues

    NASA Astrophysics Data System (ADS)

    Suardíaz, R.; Crespo-Otero, R.; Pérez, C.; Fabián, J. San; de la Vega, J. M. García

    2011-02-01

    Quantitative side-chain torsion angle χ1 determinations of phenylalanine residues in Desulfovibrio vulgaris flavodoxin are carried out using exclusively the correlation between the experimental vicinal coupling constants and theoretically determined Karplus equations. Karplus coefficients for nine vicinal coupling related with the torsion angle χ1 were calculated using the B3LYP functional and basis sets of different size. Optimized χ1 angles are in outstanding agreement with those previously reported by employing x ray and NMR measurements.

  5. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations.

    PubMed

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-02-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-`one-click' experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  6. Improved prediction of protein side-chain conformations with SCWRL4

    PubMed Central

    Krivov, Georgii G.; Shapovalov, Maxim V.; Dunbrack, Roland L.

    2010-01-01

    Determination of side-chain conformations is an important step in protein structure prediction and protein design. Many such methods have been presented, although only a small number are in widespread use. SCWRL is one such method, and the SCWRL3 program (2003) has remained popular due to its speed, accuracy, and ease-of-use for the purpose of homology modeling. However, higher accuracy at comparable speed is desirable. This has been achieved through: 1) a new backbone-dependent rotamer library based on kernel density estimates; 2) averaging over samples of conformations about the positions in the rotamer library; 3) a fast anisotropic hydrogen bonding function; 4) a short-range, soft van der Waals atom-atom interaction potential; 5) fast collision detection using k-discrete oriented polytopes; 6) a tree decomposition algorithm to solve the combinatorial problem; and 7) optimization of all parameters by determining the interaction graph within the crystal environment using symmetry operators of the crystallographic space group. Accuracies as a function of electron density of the side chains demonstrate that side chains with higher electron density are easier to predict than those with low electron density and presumed conformational disorder. For a testing set of 379 proteins, 86% of χ1 angles and 75% of χ1+2 are predicted correctly within 40° of the X-ray positions. Among side chains with higher electron density (25th–100th percentile), these numbers rise to 89% and 80%. The new program maintains its simple command-line interface, designed for homology modeling, and is now available as a dynamic-linked library for incorporation into other software programs. PMID:19603484

  7. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.

    PubMed

    Wurm, Jan Philip; Lioutikov, Anatoli; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2014-10-01

    The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost complete (>90%) (1)H,(13)C,(15)N backbone and side chain NMR assignment of a 15 kDa Nop6 construct comprising the RNA binding and coiled-coil domains. PMID:23921755

  8. Preliminary assessment of the C13-side chain 2'-hydroxylase involved in taxol biosynthesis.

    PubMed

    Long, Robert M; Croteau, Rodney

    2005-12-01

    The biosynthesis of the anticancer drug Taxol in yew (Taxus) species is thought to involve the preliminary formation of the advanced taxane diterpenoid intermediate baccatin III upon which the functionally important N-benzoyl phenylisoserinoyl side chain is subsequently assembled at the C13-O-position. In vivo feeding studies with Taxus tissues and characterization of the two transferases responsible for C13-side chain construction have suggested a sequential process in which an aminomutase converts alpha-phenylalanine to beta-phenylalanine which is then activated to the corresponding CoA ester and transferred to baccatin III to yield beta-phenylalanoyl baccatin III (i.e., N-debenzoyl-2'-deoxytaxol) that undergoes subsequent 2'-hydroxylation and N-benzoylation to afford Taxol. However, because the side chain transferase can utilize both beta-phenylalanoyl CoA and phenylisoserinoyl CoA in the C13-O-esterification of baccatin III, ambiguity remained as to whether the 2'-hydroxylation step occurs before or after transfer of the amino phenylpropanoyl moiety. Using cell-free enzyme systems from Taxus suspension cells, no evidence was found for the direct hydroxylation of beta-phenylalanine to phenylisoserine; however, microsomal preparations from this tissue appeared capable of the cytochrome P450-mediated hydroxylation of beta-phenylalanoyl baccatin III to phenylisoserinoyl baccatin III (i.e., N-debenzoyltaxol) as the penultimate step in the formation of Taxol and related N-substituted taxoids. These preliminary results, which are consistent with the proposed side chain assembly process, have clarified an important step of Taxol biosynthesis and set the foundation for cloning the responsible cytochrome P450 hydroxylase gene. PMID:16137660

  9. Preliminary assessment of the C13-side chain 2'-hydroxylase involved in Taxol biosynthesis

    SciTech Connect

    Long, Robert M.; Croteau, Rodney . E-mail: croteau@wsu.edu

    2005-12-09

    The biosynthesis of the anticancer drug Taxol in yew (Taxus) species is thought to involve the preliminary formation of the advanced taxane diterpenoid intermediate baccatin III upon which the functionally important N-benzoyl phenylisoserinoyl side chain is subsequently assembled at the C13-O-position. In vivo feeding studies with Taxus tissues and characterization of the two transferases responsible for C13-side chain construction have suggested a sequential process in which an aminomutase converts {alpha}-phenylalanine to {beta}-phenylalanine which is then activated to the corresponding CoA ester and transferred to baccatin III to yield {beta}-phenylalanoyl baccatin III (i.e., N-debenzoyl-2'-deoxytaxol) that undergoes subsequent 2'-hydroxylation and N-benzoylation to afford Taxol. However, because the side chain transferase can utilize both {beta}-phenylalanoyl CoA and phenylisoserinoyl CoA in the C13-O-esterification of baccatin III, ambiguity remained as to whether the 2'-hydroxylation step occurs before or after transfer of the amino phenylpropanoyl moiety. Using cell-free enzyme systems from Taxus suspension cells, no evidence was found for the direct hydroxylation of {beta}-phenylalanine to phenylisoserine; however, microsomal preparations from this tissue appeared capable of the cytochrome P450-mediated hydroxylation of {beta}-phenylalanoyl baccatin III to phenylisoserinoyl baccatin III (i.e., N-debenzoyltaxol) as the penultimate step in the formation of Taxol and related N-substituted taxoids. These preliminary results, which are consistent with the proposed side chain assembly process, have clarified an important step of Taxol biosynthesis and set the foundation for cloning the responsible cytochrome P450 hydroxylase gene.

  10. Fitmunk: improving protein structures by accurate, automatic modeling of side-chain conformations

    PubMed Central

    Porebski, Przemyslaw Jerzy; Cymborowski, Marcin; Pasenkiewicz-Gierula, Marta; Minor, Wladek

    2016-01-01

    Improvements in crystallographic hardware and software have allowed automated structure-solution pipelines to approach a near-‘one-click’ experience for the initial determination of macromolecular structures. However, in many cases the resulting initial model requires a laborious, iterative process of refinement and validation. A new method has been developed for the automatic modeling of side-chain conformations that takes advantage of rotamer-prediction methods in a crystallographic context. The algorithm, which is based on deterministic dead-end elimination (DEE) theory, uses new dense conformer libraries and a hybrid energy function derived from experimental data and prior information about rotamer frequencies to find the optimal conformation of each side chain. In contrast to existing methods, which incorporate the electron-density term into protein-modeling frameworks, the proposed algorithm is designed to take advantage of the highly discriminatory nature of electron-density maps. This method has been implemented in the program Fitmunk, which uses extensive conformational sampling. This improves the accuracy of the modeling and makes it a versatile tool for crystallographic model building, refinement and validation. Fitmunk was extensively tested on over 115 new structures, as well as a subset of 1100 structures from the PDB. It is demonstrated that the ability of Fitmunk to model more than 95% of side chains accurately is beneficial for improving the quality of crystallographic protein models, especially at medium and low resolutions. Fitmunk can be used for model validation of existing structures and as a tool to assess whether side chains are modeled optimally or could be better fitted into electron density. Fitmunk is available as a web service at http://kniahini.med.virginia.edu/fitmunk/server/ or at http://fitmunk.bitbucket.org/. PMID:26894674

  11. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.

    PubMed

    Cui, Liying; Aleksandrov, Luba; Hou, Yue-Xian; Gentzsch, Martina; Chen, Jey-Hsin; Riordan, John R; Aleksandrov, Andrei A

    2006-04-15

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif. Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function. PMID:16484308

  12. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating

    PubMed Central

    Cui, Liying; Aleksandrov, Luba; Hou, Yue-Xian; Gentzsch, Martina; Chen, Jey-Hsin; Riordan, John R; Aleksandrov, Andrei A

    2006-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel employing the ABC transporter structural motif. Deletion of a single residue (Phe508) in the first nucleotide-binding domain (NBD1), which occurs in most patients with cystic fibrosis, impairs both maturation and function of the protein. However, substitution of the Phe508 with small uncharged amino acids, including cysteine, is permissive for maturation. To explore the possible role of the phenylalanine aromatic side chain in channel gating we introduced a cysteine at this position in cysless CFTR, enabling its selective chemical modification by sulfhydryl reagents. Both cysless and wild-type CFTR ion channels have identical mean open times when activated by different nucleotide ligands. Moreover, both channels could be locked in an open state by introducing an ATPase inhibiting mutation (E1371S). However, the introduction of a single cysteine (F508C) prevented the cysless E1371S channel from maintaining the permanently open state, allowing closing to occur. Chemical modification of cysless E1371S/F508C by sulfhydryl reagents was used to probe the role of the side chain in ion channel function. Specifically, benzyl-methanethiosulphonate modification of this variant restored the gating behaviour to that of cysless E1371S containing the wild-type phenylalanine at position 508. This provides the first direct evidence that a specific interaction of the Phe508 aromatic side chain plays a role in determining the residency time in the closed state. Thus, despite the fact that this aromatic side chain is not essential for CFTR folding, it is important in the ion channel function. PMID:16484308

  13. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state.

    PubMed

    Nicolas, A; Egmond, M; Verrips, C T; de Vlieg, J; Longhi, S; Cambillau, C; Martinez, C

    1996-01-16

    Cutinase from the fungus Fusarium solani pisi is a lipolytic enzyme able to hydrolyze both aggregated and soluble substrates. It therefore provides a powerful tool for probing the mechanisms underlying lipid hydrolysis. Lipolytic enzymes have a catalytic machinery similar to those present in serine proteinases. It is characterized by the triad Ser, His, and Asp (Glu) residues, by an oxyanion binding site that stabilizes the transition state via hydrogen bonds with two main chain amide groups, and possibly by other determinants. It has been suggested on the basis of a covalently bond inhibitor that the cutinase oxyanion hole may consist not only of two main chain amide groups but also of the Ser42 O gamma side chain. Among the esterases and the serine and the cysteine proteases, only Streptomyces scabies esterase, subtilisin, and papain, respectively, have a side chain residue which is involved in the oxyanion hole formation. The position of the cutinase Ser42 side chain is structurally conserved in Rhizomucor miehei lipase with Ser82 O gamma, in Rhizopus delemar lipase with Thr83 O gamma 1, and in Candida antartica B lipase with Thr40 O gamma 1. To evaluate the increase in the tetrahedral intermediate stability provided by Ser42 O gamma, we mutated Ser42 into Ala. Furthermore, since the proper orientation of Ser42 O gamma is directed by Asn84, we mutated Asn84 into Ala, Leu, Asp, and Trp, respectively, to investigate the contribution of this indirect interaction to the stabilization of the oxyanion hole. The S42A mutation resulted in a drastic decrease in the activity (450-fold) without significantly perturbing the three-dimensional structure. The N84A and N84L mutations had milder kinetic effects and did not disrupt the structure of the active site, whereas the N84W and N84D mutations abolished the enzymatic activity due to drastic steric and electrostatic effects, respectively. PMID:8555209

  14. Enhanced docking with the mining minima optimizer: acceleration and side-chain flexibility.

    PubMed

    Kairys, Visvaldas; Gilson, Michael K

    2002-12-01

    The ligand-protein docking algorithm based on the Mining Minima method has been substantially enhanced. First, the basic algorithm is accelerated by: (1) adaptively determining the extent of each energy well to help avoid previously discovered energy minima; (2) biasing the search away from ligand positions at the surface of the receptor to prevent the ligand from staying at the surface when large sampling regions are used; (3) quickly testing multiple different ligand positions and orientations for each ligand conformation; and (4) tuning the source code to increase computational efficiency. These changes markedly shorten the time needed to discover an accurate result, especially when large sampling regions are used. The algorithm now also allows user-selected receptor sidechains to be treated as mobile during the docking procedure. The energies associated with the mobile side chains are computed as if they belonged to the ligand, except that atoms at the boundary between side chains and the rigid backbone are treated specially. This new capability is tested for several well-known ligand/protein systems, and preliminary application to an enzyme whose substrate is unknown--the recently solved hypothetical protein YecO (HI0319) from Haemophilus influenzae--indicates that side-chains relaxations allow candidate substrates of various sizes to be accommodated. PMID:12395431

  15. A new model for ligand release. Role of side chain in gating the enediyne antibiotic.

    PubMed

    Hariharan, Parameswaran; Liang, Wenchuan; Chou, Shan-Ho; Chin, Der-Hang

    2006-06-01

    Antitumor antibiotic chromoproteins such as neocarzinostatin involve a labile toxin that is tightly bound by a protective protein with very high affinity but must also be freed to exert its function. Contrary to the prevalent concept of ligand release, we established that toxin release from neocarzinostatin requires no major backbone conformational changes. We report, herein, that subtle changes in the side chains of specific amino acid residues are adequate to gate the release of chromophore. A recombinant wild type aponeocarzinostatin and its variants mutated around the opening of the chromophore binding cleft are employed to identify specific side chains likely to affect chromophore release. Preliminary, biophysical characterization of mutant apoproteins by circular dichroism and thermal denaturation indicate that the fundamental structural characteristics of wild type protein are conserved in these mutants. The chromophore reconstitution studies further show that all mutants are able to bind chromophore efficiently with similar complex structures. NMR studies on 15N-labeled mutants also suggest the intactness of binding pocket structure. Kinetic studies of chromophore release monitored by time course fluorescence and quantitative high pressure liquid chromatography analyses show that the ligand release rate is significantly enhanced only in Phe78 mutants. The extent of DNA cleavage in vitro corresponds well to the rate of chromophore release. The results provide the first clear-cut indication of how toxin release can be controlled by a specific side chain of a carrier protein. PMID:16567802

  16. Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly

    PubMed Central

    Horne, W. Seth; Price, Joshua L.; Gellman, Samuel H.

    2008-01-01

    The extent to which polypeptide conformation depends on side-chain composition and sequence has been widely studied, but less is known about the importance of maintaining an α-amino acid backbone. Here, we examine a series of peptides with backbones that feature different repeating patterns of α- and β-amino acid residues but an invariant side-chain sequence. In the pure α-backbone, this sequence corresponds to the previously studied peptide GCN4-pLI, which forms a very stable four-helix bundle quaternary structure. Physical characterization in solution and crystallographic structure determination show that a variety of α/β-peptide backbones can adopt sequence-encoded quaternary structures similar to that of the α prototype. There is a loss in helix bundle stability upon β-residue incorporation; however, stability of the quaternary structure is not a simple function of β-residue content. We find that cyclically constrained β-amino acid residues can stabilize the folds of α/β-peptide GCN4-pLI analogues and restore quaternary structure formation to backbones that are predominantly unfolded in the absence of cyclic residues. Our results show a surprising degree of plasticity in terms of the backbone compositions that can manifest the structural information encoded in a sequence of amino acid side chains. These findings offer a framework for the design of nonnatural oligomers that mimic the structural and functional properties of proteins. PMID:18587049

  17. High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics.

    PubMed

    Lin, Yuze; Zhao, Fuwen; He, Qiao; Huo, Lijun; Wu, Yang; Parker, Timothy C; Ma, Wei; Sun, Yanming; Wang, Chunru; Zhu, Daoben; Heeger, Alan J; Marder, Seth R; Zhan, Xiaowei

    2016-04-13

    We develop an efficient fused-ring electron acceptor (ITIC-Th) based on indacenodithieno[3,2-b]thiophene core and thienyl side-chains for organic solar cells (OSCs). Relative to its counterpart with phenyl side-chains (ITIC), ITIC-Th shows lower energy levels (ITIC-Th: HOMO = -5.66 eV, LUMO = -3.93 eV; ITIC: HOMO = -5.48 eV, LUMO = -3.83 eV) due to the σ-inductive effect of thienyl side-chains, which can match with high-performance narrow-band-gap polymer donors and wide-band-gap polymer donors. ITIC-Th has higher electron mobility (6.1 × 10(-4) cm(2) V(-1) s(-1)) than ITIC (2.6 × 10(-4) cm(2) V(-1) s(-1)) due to enhanced intermolecular interaction induced by sulfur-sulfur interaction. We fabricate OSCs by blending ITIC-Th acceptor with two different low-band-gap and wide-band-gap polymer donors. In one case, a power conversion efficiency of 9.6% was observed, which rivals some of the highest efficiencies for single junction OSCs based on fullerene acceptors. PMID:27015115

  18. Protein side-chain packing problem: a maximum edge-weight clique algorithmic approach.

    PubMed

    Dukka Bahadur, K C; Tomita, Etsuji; Suzuki, Jun'ichi; Akutsu, Tatsuya

    2005-02-01

    "Protein Side-chain Packing" has an ever-increasing application in the field of bio-informatics, dating from the early methods of homology modeling to protein design and to the protein docking. However, this problem is computationally known to be NP-hard. In this regard, we have developed a novel approach to solve this problem using the notion of a maximum edge-weight clique. Our approach is based on efficient reduction of protein side-chain packing problem to a graph and then solving the reduced graph to find the maximum clique by applying an efficient clique finding algorithm developed by our co-authors. Since our approach is based on deterministic algorithms in contrast to the various existing algorithms based on heuristic approaches, our algorithm guarantees of finding an optimal solution. We have tested this approach to predict the side-chain conformations of a set of proteins and have compared the results with other existing methods. We have found that our results are favorably comparable or better than the results produced by the existing methods. As our test set contains a protein of 494 residues, we have obtained considerable improvement in terms of size of the proteins and in terms of the efficiency and the accuracy of prediction. PMID:15751115

  19. Mutations that replace aromatic side chains promote aggregation of the Alzheimer’s Aβ peptide

    PubMed Central

    Armstrong, Anne H.; Chen, Jermont; McKoy, Angela Fortner; Hecht, Michael H.

    2011-01-01

    The aggregation of polypeptides into amyloid fibrils is associated with a number of human diseases. Because these fibrils – or intermediates on the aggregation pathway – play important roles in the etiology of disease, considerable effort has been expended to understand which features of the amino acid sequence promote aggregation. One feature suspected to direct aggregation is the π-stacking of aromatic residues. Such π-stacking interactions have also been proposed as the targets for various aromatic compounds that are known to inhibit aggregation. In the case of Alzheimer’s disease, the aromatic side chains Phe19 and Phe20 in the wild-type amyloid beta (Aβ) peptide have been implicated. To explicitly test whether the aromaticity of these side chains plays a role in aggregation, we replaced these two phenylalanine side chains with leucines or isoleucines. These residues have similar sizes and hydrophobicities as Phe, but are not capable of π-stacking. Thioflavin-T fluorescence and electron microscopy demonstrate that replacement of residues 19 and 20 by Leu or Ile did not prevent aggregation, but rather enhanced amyloid formation. Further experiments showed that aromatic inhibitors of aggregation are as effective against Ile- and Leu-substituted versions of Aβ42 as they are against wild type Aβ. These results suggest that aromatic π-stacking interactions are not critical for Aβ aggregation or for the inhibition of Aβ aggregation. PMID:21513285

  20. Rhamnoarabinosyl and rhamnoarabinoarabinosyl side chains as structural features of coffee arabinogalactans.

    PubMed

    Nunes, Fernando M; Reis, Ana; Silva, Artur M S; Domingues, M Rosário M; Coimbra, Manuel A

    2008-05-01

    The hot water soluble green coffee arabinogalactans, representing nearly 7% of total coffee bean arabinogalactans, were characterized by (1)H and (13)C NMR and, after partial acid hydrolysis, by ESI-MS/MS. Data obtained showed that these are highly branched type II arabinogalactans covalently linked to proteins (AGP), with a protein moiety containing 10% of 4-hydroxyproline residues. They possess a beta-(1-->3)-Galp/beta-(1-->3,6)-Galp ratio of 0.80, with a sugars composition of Rha:Ara:Gal of 0.25:1.0:1.5, and containing 2mol% of glucuronic acid residues. Beyond the occurrence of single alpha-L-Araf residues and [alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->] disaccharide residues as side chains, these AGPs contain unusual side chains at O-3 position of the beta-(1-->6)-linked galactopyranosyl residues composed by [alpha-L-Rhap-(1-->5)-alpha-L-Araf-(1-->] and [alpha-L-Rhap-(1-->5)-alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->] oligosaccharides. Rhamnoarabinosyl and rhamnoarabinoarabinosyl side chains are reported for the first time as structural features of plant arabinogalactan-proteins. PMID:18343467

  1. Predicting side-chain conformations of methionine using a hard-sphere model with stereochemical constraints

    NASA Astrophysics Data System (ADS)

    Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.

    2015-03-01

    Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.

  2. Side Chain Hydrophobicity Modulates Therapeutic Activity and Membrane Selectivity of Antimicrobial Peptide Mastoparan-X

    PubMed Central

    Gjetting, Torben; Andresen, Thomas L.

    2014-01-01

    The discovery of new anti-infective compounds is stagnating and multi-resistant bacteria continue to emerge, threatening to end the “antibiotic era”. Antimicrobial peptides (AMPs) and lipo-peptides such as daptomycin offer themselves as a new potential class of antibiotics; however, further optimization is needed if AMPs are to find broad use as antibiotics. In the present work, eight analogues of mastoparan-X (MPX) were investigated, having side chain modifications in position 1, 8 and 14 to modulate peptide hydrophobicity. The self-association properties of the peptides were characterized, and the peptide-membrane interactions in model membranes were compared with the bactericidal and haemolytic properties. Alanine substitution at position 1 and 14 resulted in higher target selectivity (red blood cells versus bacteria), but also decreased bactericidal potency. For these analogues, the gain in target selectivity correlated to biophysical parameters showing an increased effective charge and reduction in the partitioning coefficient for membrane insertion. Introduction of an unnatural amino acid, with an octyl side chain by amino acid substitution, at positions 1, 8 and 14 resulted in increased bactericidal potency at the expense of radically reduced membrane target selectivity. Overall, optimized membrane selectivity or bactericidal potency was achieved by changes in side chain hydrophobicity of MPX. However, enhanced potency was achieved at the expense of selectivity and vice versa in all cases. PMID:24621994

  3. Terahertz time domain and far-infrared spectroscopies of side-chain electro-optic polymers

    NASA Astrophysics Data System (ADS)

    Yamada, Toshiki; Kaji, Takahiro; Aoki, Isao; Yamada, Chiyumi; Mizuno, Maya; Saito, Shingo; Tominari, Yukihiro; Tanaka, Shukichi; Otomo, Akira

    2016-03-01

    We investigated the dielectric properties of side-chain electro-optic polymers in a broad THz frequency region (90 GHz to 7 THz). For this investigation, we used terahertz time domain spectroscopy and the absorption coefficient in a broader frequency region of up to 20 THz that was obtained by far-infrared spectroscopy. The polymers studied were a new methacrylate polymer with a high-hyperpolarizability chromophore as the sidechain, a side-chain copolymer Disperse Red 1 polymethylmethacrylate, and pure polymethylmethacrylate. The dielectric properties in the low THz frequency region (∼0.1 THz) provide us with important information about the intrinsic refractive index for ultrahigh-speed electro-optic modulation (∼100 GHz), as well as versatile information such as the absorption coefficient and dielectric loss. The THz and far-infrared spectroscopic data in the wide frequency region provide us with the fundamental data for applications of side-chain electro-optic polymers within THz generation and detection.

  4. Entropy and enthalpy of interaction between amino acid side chains in nanopores

    SciTech Connect

    Vaitheeswaran, S.; Thirumalai, D.

    2014-12-14

    Understanding the stabilities of proteins in nanopores requires a quantitative description of confinement induced interactions between amino acid side chains. We use molecular dynamics simulations to study the nature of interactions between the side chain pairs ALA-PHE, SER-ASN, and LYS-GLU in bulk water and in water-filled nanopores. The temperature dependence of the bulk solvent potentials of mean force and the interaction free energies in cylindrical and spherical nanopores is used to identify the corresponding entropic and enthalpic components. The entropically stabilized hydrophobic interaction between ALA and PHE in bulk water is enthalpically dominated upon confinement depending on the relative orientations between the side chains. In the case of SER-ASN, hydrogen bonded configurations that are similar in bulk water are thermodynamically distinct in a cylindrical pore, thus making rotamer distributions different from those in the bulk. Remarkably, salt bridge formation between LYS-GLU is stabilized by entropy in contrast to the bulk. Implications of our findings for confinement-induced alterations in protein stability are briefly outlined.

  5. Synthesis of cyclic polyesters: effects of alkoxy side chains in salicylaldiminato tin(II) complexes.

    PubMed

    Wongmahasirikun, Phonpimon; Prom-on, Paweenuch; Sangtrirutnugul, Preeyanuch; Kongsaeree, Palangpon; Phomphrai, Khamphee

    2015-07-21

    A new class of salicylaldiminato tin(II) catalysts having different alkoxy side chains has been developed. The ligands were modified to have different lengths and flexibilities such as –(CH2)2– (2a), –(CH2)3– (2b), –(ortho-C6H4)CH2– (2c) and –(CH2)2–O–(CH2)2– (2d). Complexes 2a, b were characterized crystallographically revealing a more constrained environment around the metal in complex 2a. These catalysts are active for the solvent-free polymerization of L-lactide and ε-caprolactone. Complex 2a having a shorter side chain was shown to better promote intramolecular transesterification affording cyclic polylactides and cyclic poly(ε-caprolactone). Complexes 2b and 2d having longer side chains produced cyclic poly(ε-caprolactone) as a major product but failed to give cyclic polylactides. PMID:25757191

  6. Effects of polymer side chains on the self-assembling of conjugated polymer in thin film

    NASA Astrophysics Data System (ADS)

    Jiang, Yunfei; Wang, Yiqing; Bunz, Uvw H. F.; Perahia, Dvora

    2006-03-01

    Conjugated polymers are inherently semi-conducting and optically active materials, with immense potential applications in organic electro-optical devices. The chemical structure of the polymer including the rigidity of the backbone and the nature of substituents affect their association as well as their electro-optical response. The following work reports the effects of different side chains on the structure and fluorescence of highly conjugated polymer, poly(para phenyleneethynylene) (PPE). When substituted by long polylactide side chains they self-assemble into wires with fingerprint-like arrangement, casting from chloroform solutions on oxidized silicon wafer. With increasing content of poor solvent, the dimension of the structures increased and then crystallized area appeared, as showed in AFM studies. The introducing of the long flexible polymer side chains has significantly reduced the stacking between rigid backbones. This in tern results in a frequency shift in their fluoresces response, indication changes in the electronic levels. Direct measurements of the electronic levels using ATM are currently in progress.

  7. Self-assembly of a series of random copolymers bearing amphiphilic side chains.

    PubMed

    Wu, Xu; Qiao, Yingjie; Yang, Hui; Wang, Jinben

    2010-09-15

    A novel series of comb-like random copolymers were prepared by polymerization of amphiphilic macromonomers, 2-(acrylamido)-octane sulfonic acid (AMC(8)S), 2-(acrylamido)-dodecane sulfonic acid (AMC(12)S), and 2-(acrylamido)-hexadecane sulfonic acid (AMC(16)S), with 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) respectively. The synthesis of the polymers with the same contents of amphiphilic units as side chains, but different chain length, enabled us to study the chain length dependence of their association in salt solution. Steady-state fluorescence measurements with pyrene as a polarity probe, quasielastic light scattering techniques (QELS) and transmission electron micrograph (TEM) were employed to investigate the associative properties of the system. The above investigations showed that all kinds of side chains begin to assemble at certain polymer concentrations and the critical aggregation concentration (CAC) decrease dramatically with the increase in the length and content of alkyl. An interesting phenomenon is that the assembly tends more favorably to occur among different molecules rather than within single molecule when the number of carbon atoms in the alkyl groups or the polymer concentration increases, leading to the formation of larger multimolecular micelle-like aggregate. The aim of the present work is to establish the fundamental preconditions of intramolecular and intermolecular association fashions for the polymers, which is useful for the exploitation of functional groups and contributes to the development of amphiphilic random polymers. PMID:20576273

  8. Molecular structure and rheological properties of short-side-chain heavily glycosylated porcine stomach mucin.

    PubMed

    Yakubov, Gleb E; Papagiannopoulos, Aristeidis; Rat, Elodie; Easton, Richard L; Waigh, Thomas A

    2007-11-01

    The current accepted model for high-molecular-weight gastric mucins of the MUC family is that they adopt a polydisperse coil conformation in bulk solutions. We develop this model using well-characterized highly purified porcine gastric mucin Orthana that is genetically close to the human MUC6 type. It has short side chains and low levels of sialic acid residues and includes minute amounts of cysteine residues that, if abundant, can be responsible for the self-polymerization of mucin. We have established that the mucin structure in bulk solutions corresponds to a daisy-chain random coil. Dynamic light scattering experiments probe the internal dynamics of globular subunits (individual daisies) at the approximately 9 nm length scale, whereas viscosity and light scattering measurements indicate that the size of the whole mucin chains is much larger, approximately 50 nm. The bulk viscosity (eta) scales with mucin concentration (c) in a manner similar to that found for short-side-chain synthetic comb polyelectrolytes and is characterized by a transition between semidilute (eta approximately c1/2) and entangled (eta approximately c3/2) regimes. PMID:17910495

  9. Actinobacterial Acyl Coenzyme A Synthetases Involved in Steroid Side-Chain Catabolism

    PubMed Central

    Casabon, Israël; Swain, Kendra; Crowe, Adam M.

    2014-01-01

    Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and

  10. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution.

    PubMed

    Okobira, Tadashi; Miyoshi, Kentaro; Uezu, Kazuya; Sakurai, Kazuo; Shinkai, Seiji

    2008-03-01

    beta-1,3-D-glucans have been isolated from fungi as right-handed 6(1) triple helices. They are categorized by the side chains bound to the main triple helix through beta-(1-->6)-D-glycosyl linkage. Indeed, since a glucose-based side chain is water soluble, the presence and frequency of glucose-based side chains give rise to significant variation in the physical properties of the glucan family. Curdlan has no side chains and self-assembles to form an water-insoluble triple helical structure, while schizophyllan, which has a 1,6-D-glucose side chain on every third glucose unit along the main chain, is completely water soluble. A thermal fluctuation in the optical rotatory dispersion is observed for the side chain, indicating probable co-operative interaction between the side chains and water molecules. This paper documents molecular dynamics simulations in aqueous solution for three models of the beta-1,3-D-glucan series: curdlan (no side chain), schizophyllan (a beta-(1-->6)-D-glycosyl side-chain at every third position), and a hypothetical triple helix with a side chain at every sixth main-chain glucose unit. A decrease was observed in the helical pitch as the population of the side chain increased. Two types of hydrogen bonding via water molecules, the side chain/main chain and the side chain/side chain hydrogen bonding, play an important role in determination of the triple helix conformation. The formation of a one-dimensional cavity of diameter about 3.5 A was observed in the schizophyllan triple helix, while curdlan showed no such cavity. The side chain/side chain hydrogen bonding in schizophyllan and the hypothetical beta-1,3-D-glucan triple helix could cause the tilt of the main-chain glucose residues to the helix. PMID:18257529

  11. Side-chain recognition and gating in the ribosome exit tunnel

    PubMed Central

    Petrone, Paula M.; Snow, Christopher D.; Lucent, Del; Pande, Vijay S.

    2008-01-01

    The ribosome is a large complex catalyst responsible for the synthesis of new proteins, an essential function for life. New proteins emerge from the ribosome through an exit tunnel as nascent polypeptide chains. Recent findings indicate that tunnel interactions with the nascent polypeptide chain might be relevant for the regulation of translation. However, the specific ribosomal structural features that mediate this process are unknown. Performing molecular dynamics simulations, we are studying the interactions between components of the ribosome exit tunnel and different chemical probes (specifically different amino acid side chains or monovalent inorganic ions). Our free-energy maps describe the physicochemical environment of the tunnel, revealing binding crevices and free-energy barriers for single amino acids and ions. Our simulations indicate that transport out of the tunnel could be different for diverse amino acid species. In addition, our results predict a notable protein–RNA interaction between a flexible 23S rRNA tetraloop (gate) and ribosomal protein L39 (latch) that could potentially obstruct the tunnel's exit. By relating our simulation data to earlier biochemical studies, we propose that ribosomal features at the exit of the tunnel can play a role in the regulation of nascent chain exit and ion flux. Moreover, our free-energy maps may provide a context for interpreting sequence-dependent nascent chain phenomenology. PMID:18946046

  12. Effect of side-chain asymmetry on the intermolecular structure and order-disorder transition in alkyl-substituted polyfluorenes

    NASA Astrophysics Data System (ADS)

    Knaapila, M.; Stepanyan, R.; Torkkeli, M.; Haase, D.; Fröhlich, N.; Helfer, A.; Forster, M.; Scherf, U.

    2016-04-01

    We study relations among the side-chain asymmetry, structure, and order-disorder transition (ODT) in hairy-rod-type poly(9,9-dihexylfluorene) (PF6) with two identical side chains and atactic poly(9-octyl-9-methyl-fluorene) (PF1-8) with two different side chains per repeat. PF6 and PF1-8 organize into alternating side-chain and backbone layers that transform into an isotropic phase at TODT(PF 6 ) and TbiODT(PF 1 -8 ) . We interpret polymers in terms of monodisperse and bidisperse brushes and predict scenarios TODTside-chain length above or below the average grafting distance). Calorimetry and x-ray scattering indicate the condition TODT(PF 6 ) ˜TbiODT(PF 1 -8 ) following the low grafting prediction. PF6 side chains coming from the alternating backbone layers appear as two separate layers with thickness H (PF 6 ) , whereas PF1-8 side chains appear as an indistinguishable bilayer with a half thickness Hbilayer(PF 1 -8 ) /2 ≈H (PF 6 ) . The low grafting density region is structurally possible but not certain for PF6 and confirmed for PF1-8.

  13. Theory of microphase separation on side-chain liquid-crystalline polymers with flexible spacers.

    PubMed

    Hernández-Jiménez, M; Westfahl, H

    2007-05-01

    We model a melt of monodisperse side-chain liquid-crystalline polymers as a melt of comb copolymers in which the side groups are rod-coil diblock copolymers. We consider both excluded-volume and Maier-Saupe interactions. The first acts among any pair of segments while the latter acts only between rods. Using a free-energy functional calculated from this microscopic model, we study the spinodal stability of the isotropic phase against density and orientational fluctuations. The phase diagram obtained in this way predicts nematic and smectic instabilities as well as the existence of microphases or phases with modulated wave vector but without nematic ordering. Such microphases are the result of the competition between the incompatibility among the blocks and the connectivity constraints imposed by the spacer and the backbone. Also the effects of the polymerization degree and structural conformation of the monomeric units on the phase behavior of the side-chain liquid-crystalline polymers are studied. PMID:17541501

  14. Drugs derived from cannabinoids. 5. delta6a,10a-Tetrahydrocannabinol and heterocyclic analogs containing aromatic side chains.

    PubMed

    Winn, M; Arendsen, D; Dodge, P; Dren, A; Dunnigan, D; Hallas, R; Hwang, K; Kyncl, J; Lee, Y H; Plotnikoff, N; Young, P; Zaugg, H

    1976-04-01

    Ten new delta6a,10a-THC analogs with arylalkyl side chains, one with a dimethylaminoalkyl side chain, and six heterocyclic delta6a,10a-THC analogs [8-substituted 5,5-dimethyl-10-hydroxy-2-(2-propynyl)-1,2,3,4-tetrahydro-5H-[1]benzo-pyrano[4,3-c]pyridines] were prepared. They showed pharmacological activity as analgesics, tranquilizers, antihypertensives, and hypnotics and as antisecretory, antiulcer, and antidiarrheal agents. The most potent compounds had either a 1-methyl-4-(4-fluorophenyl)butyl or a 1,2-dimethyl-4-(4-fluorophenyl)butyl side chain. PMID:817021

  15. Proline-glutamate chimera's side chain conformation directs the type of β-hairpin structure.

    PubMed

    Maity, Jyotirmoy; Gerling, Ulla I M; Vukelić, Stella; Schäfer, Andreas; Koksch, Beate

    2014-01-01

    Our aim was to study the impact of two proline chimeras, containing a glutamic acid side chain in cis- or trans-configuration, on secondary structure formation. We further investigated to what extent the configuration of the side chain contributes to the overall peptide conformation. We used a 10 residue peptide (IYSNPDGTWT) that forms a β-hairpin in water. The turn-forming proline was substituted with either a cis- or trans-proline-glutamic acid chimera, resulting in the peptides IYSNPcis -E DGTWT (P1_Pcis-E) and IYSNP(trans-E)DGTWT (P1_Ptrans-E). We studied the conformation of the modified peptides by circular dichroism (CD) and NMR-spectroscopy, and SEC/static light scattering (SLS) analysis. NMR analysis reveals that the modified peptides maintain the β-hairpin conformation in aqueous solution. At 5 °C and pH 4.3, the peptide (P1_Pcis-E) was found to adopt two coexisting β-hairpin conformations (2:2 β-hairpin, and 3:5 β-hairpin). In contrast to that, the peptide (P1_Ptrans-E) adopts a 2:2 β-hairpin that exists in equilibrium with a 4:4 β-hairpin conformation. The adoption of ordered β-hairpin structures for both modified peptides could be confirmed by CD spectroscopy, while SEC/SLS analysis showed a monomeric oligomerization state for all three investigated peptides. With the combination of several NMR methods, we were able to elucidate that even small alterations in the side chain conformation of the proline-glutamate chimera (cis or trans) can significantly influence the conformation of the adopted β-hairpin. PMID:24221353

  16. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    PubMed Central

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei

    2011-01-01

    Abstract A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which records the through-space dipolar interactions between protons nearby in three-dimensional (3D) space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function derived from the Bayesian framework. We tested our approach on real NMR data of three proteins: the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our algorithm can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can

  17. A Bayesian Approach for Determining Protein Side-Chain Rotamer Conformations Using Unassigned NOE Data

    NASA Astrophysics Data System (ADS)

    Zeng, Jianyang; Roberts, Kyle E.; Zhou, Pei; Donald, Bruce R.

    A major bottleneck in protein structure determination via nuclear magnetic resonance (NMR) is the lengthy and laborious process of assigning resonances and nuclear Overhauser effect (NOE) cross peaks. Recent studies have shown that accurate backbone folds can be determined using sparse NMR data, such as residual dipolar couplings (RDCs) or backbone chemical shifts. This opens a question of whether we can also determine the accurate protein side-chain conformations using sparse or unassigned NMR data. We attack this question by using unassigned nuclear Overhauser effect spectroscopy (NOESY) data, which record the through-space dipolar interactions between protons nearby in 3D space. We propose a Bayesian approach with a Markov random field (MRF) model to integrate the likelihood function derived from observed experimental data, with prior information (i.e., empirical molecular mechanics energies) about the protein structures. We unify the side-chain structure prediction problem with the side-chain structure determination problem using unassigned NMR data, and apply the deterministic dead-end elimination (DEE) and A* search algorithms to provably find the global optimum solution that maximizes the posterior probability. We employ a Hausdorff-based measure to derive the likelihood of a rotamer or a pairwise rotamer interaction from unassigned NOESY data. In addition, we apply a systematic and rigorous approach to estimate the experimental noise in NMR data, which also determines the weighting factor of the data term in the scoring function that is derived from the Bayesian framework. We tested our approach on real NMR data of three proteins, including the FF Domain 2 of human transcription elongation factor CA150 (FF2), the B1 domain of Protein G (GB1), and human ubiquitin. The promising results indicate that our approach can be applied in high-resolution protein structure determination. Since our approach does not require any NOE assignment, it can accelerate the NMR

  18. MCCE2: Improving Protein pKa Calculations with Extensive Side Chain Rotamer Sampling

    PubMed Central

    SONG, YIFAN; MAO, JUNJUN; GUNNER, M. R.

    2009-01-01

    Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pKas. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pKas calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pKas in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pKas in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pKas by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pKas. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. PMID:19274707

  19. Solubility control of regioregular 3-substituted polythiophenes bearing 2-phenylnaphthalene side chain by copolymerisation

    NASA Astrophysics Data System (ADS)

    Watanabe, Mari; Kijima, Masashi

    2014-03-01

    Two types of 2,5-dibromothiophene monomers having a dodecyl chain and a 2-phenylnaphthalene one were randomly copolymerised in different feed molar ratio by Ni-catalysed chain-growth polymerisation method. Regioregularity of all polymers were sufficiently high (88-97%). Absorption λmax due to π-π* transition of polythiophene backbones in solutions were observed at 444-451 nm for all polymers, which were almost similar to each other and typical of the optical characteristics of regioregular poly(3-alkylthiophene)s. The homopolymer of the latter monomer that had the phenylnaphthalene side group showed poor solubility to common organic solvents, i.e., it was insoluble in chloroform at room temperature and could dissolve only in hot solvents above 100 °C. The copolymers, which had higher number average molecular weights (Mn), had better solubility than that of the homopolymer.

  20. Revealing the supramolecular nature of side-chain terpyridine-functionalized polymer networks.

    PubMed

    Brassinne, Jérémy; Jochum, Florian D; Fustin, Charles-André; Gohy, Jean-François

    2015-01-01

    Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks. PMID:25569082

  1. Revealing the Supramolecular Nature of Side-Chain Terpyridine-Functionalized Polymer Networks

    PubMed Central

    Brassinne, Jérémy; Jochum, Florian D.; Fustin, Charles-André; Gohy, Jean-François

    2015-01-01

    Nowadays, finely controlling the mechanical properties of polymeric materials is possible by incorporating supramolecular motifs into their architecture. In this context, the synthesis of a side-chain terpyridine-functionalized poly(2-(dimethylamino)ethyl methacrylate) is reported via reversible addition-fragmentation chain transfer polymerization. By addition of transition metal ions, concentrated aqueous solutions of this polymer turn into metallo-supramolecular hydrogels whose dynamic mechanical properties are investigated by rotational rheometry. Hence, the possibility for the material to relax mechanical constrains via dissociation of transient cross-links is brought into light. In addition, the complex phenomena occurring under large oscillatory shear are interpreted in the context of transient networks. PMID:25569082

  2. Alpha-helical stabilization by side chain shielding of backbone hydrogen bonds.

    PubMed

    García, Angel E; Sanbonmatsu, Kevin Y

    2002-03-01

    We study atomic models of the thermodynamics of the structural transition of peptides that form alpha-helices. The effect of sequence variation on alpha-helix formation for alanine-rich peptides, Ac-Ala21-methyl amide (A21) and Ac-A5 (AAARA)3A-methyl amide (Fs peptide), is investigated by atomic simulation studies of the thermodynamics of the helix-coil transition in explicit water. The simulations show that the guanidinium group in the Arg side chains in the Fs peptide interacts with the carbonyl group four amino acids upstream in the chain and desolvates backbone hydrogen bonds. This desolvation can be directly correlated with a higher probability of hydrogen bond formation. We find that Fs has higher helical content than A21 at all temperatures. A small modification in the amber force field reproduces the experimental helical content and helix-coil transition temperatures for the Fs peptide. PMID:11867710

  3. The Frozen State in the Liquid Phase of Side-Chain Liquid-Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Mendil, H.; Noirez, L.; Baroni, P.; Grillo, I.

    2006-02-01

    Quenched isotropic melts of side-chain liquid-crystal polymers reveal surprisingly an anisotropic polymer conformation. This small-angle neutron-scattering (SANS) result is consistent with the identification of a macroscopic, solidlike response in the isotropic phase. Both experiments (rheology and SANS) indicate that the polymer system appears frozen on millimeter length scales and at the time scales of the observation. This result implies that the flow behavior is not the terminal behavior and that cross-links or entanglements are not a necessary condition to provide elasticity in melts.

  4. Flexible synthesis of pyrimidines with chiral monofluorinated and difluoromethyl side chains.

    PubMed

    Bannwarth, Pierre; Valleix, Alain; Grée, Danielle; Grée, René

    2009-06-19

    Chiral pyrimidines with a fluorine atom in the benzylic position are easily accessible in high enantiomeric excesses from optically active propargylic intermediates by two complementary routes. Both the use of optically active propargylic fluorides and the fluorination of the chiral pyrimidine in the final stage give excellent results in terms of enantiocontrol. On the other hand, original pyrimidines with a difluoromethyl side chain are also obtained in a few steps from new propargylic ketones bearing a CHF(2) substituent on the triple bond. PMID:19518154

  5. Improving the reactivity of phenylacetylene macrocycles toward topochemical polymerization by side chains modification

    PubMed Central

    Daigle, Maxime; Cantin, Katy

    2014-01-01

    Summary The synthesis and self-assembly of two new phenylacetylene macrocycle (PAM) organogelators were performed. Polar 2-hydroxyethoxy side chains were incorporated in the inner part of the macrocycles to modify the assembly mode in the gel state. With this modification, it was possible to increase the reactivity of the macrocycles in the xerogel state to form polydiacetylenes (PDAs), leading to a significant enhancement of the polymerization yields. The organogels and the PDAs were characterized using Raman spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:25161718

  6. Dendrocyin: an isocucurbitacin with novel cyclic side chain from Dendrosicyos socotrana.

    PubMed

    Hussein, Hosny A; Abdel-Halim, Osama B; Marwan, El-Sayed M; El-Gamal, Ali A; Mosana, Ramazy

    2004-09-01

    Dendrosicyos socotrana Balf.f. is a unique species (Cucurbitaceae) native to Socotra island in the horn of Africa. From the chloroform extract of the stems, A new isocucurbitacin (Dendrocyin) with unusual cyclization in the side chain; 24beta-ethoxy-20-25-epoxy-3alpha,16alpha-dihydroxy-9-methyl-19-norlanost-5(6) ene-2,11,22-trione has been isolated alongside isocucurbitacin R. Their structural configuration were established by usual spectroscopic (1H NMR, 13C NMR and DEPT) and two-dimensional NMR techniques (1H-1H Cosy, HMBC and HMQC). PMID:15451315

  7. Cyclic side-chain phenylazo naphthalene polymers: enhanced fluorescence emission and surface relief grating formation.

    PubMed

    Zhang, Hao; Zhou, Nianchen; Zhu, Xing; Chen, Xinrong; Zhang, Zhengbiao; Zhang, Wei; Zhu, Jian; Hu, Zhijun; Zhu, Xiulin

    2012-11-14

    Well-defined cyclic-polymers (cyclic-PAzoMMAs), bearing side-chain phenylazo naphthalene chromophore, were successfully synthesized by the combination of atom transfer radical polymerization (ATRP) and copper(I)-catalyzed azide/alkyne cycloaddition "click" reaction, as verified by GPC, (1) H NMR, FTIR, and MALDI-TOF mass spectrometry. The cyclic-PAzoMMA showed higher glass transition temperatures than the linear-PAzoMMA with the same molecular weight. Interestingly, the cyclic-PAzoMMA exhibited deeper modulation depth (M.D.) induced by SRG, larger value of the photoinduced birefringence, increased fluorescence emission, and longer fluorescence lifetime in comparison with its linear counterpart. PMID:22965741

  8. Recent advances in metathesis-derived polymers containing transition metals in the side chain.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Simionescu, Bogdan C; Demonceau, Albert; Fischer, Helmut

    2015-01-01

    This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  9. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    PubMed Central

    Demonceau, Albert; Fischer, Helmut

    2015-01-01

    Summary This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  10. Triazatriangulenium adlayers on Au(111): Superstructure as a function of alkyl side chain length

    NASA Astrophysics Data System (ADS)

    Lemke, Sonja; Ulrich, Sandra; Claußen, Frauke; Bloedorn, Andreas; Jung, Ulrich; Herges, Rainer; Magnussen, Olaf M.

    2015-02-01

    The structure of organic adlayers, formed by self-assembly of molecular platforms of triazatriangulenium ions on Au(111), was systematically studied by scanning tunneling microscopy as a function of the length of the lateral ligands for alkyl side chains from propyl to dodecyl. A series of hexagonally-ordered adlayers with spacings from 10.7 Å (propyl) to 13.6 Å (dodecyl) was found which are commensurate to the Au(111) substrate lattice, indicating localized bonding of the molecules to the metal.

  11. Synthesis of a new β-amino acid with a 3-deoxy-L-ara furnaoside side chain: the influence of the side chain on the conformation of α/β-peptides.

    PubMed

    Sharma, Gangavaram V M; Anjaiah, Gonuguntla; Kanakaraju, Marumudi; Sudhakar, Bommeda; Chatterjee, Deepak; Kunwar, Ajit C

    2016-01-14

    The important role of side chains in the stabilization of helical folds in peptidic foldamers containing C-linked carbo-β-amino acids (β-Caa), an interesting class of β-amino acids, with carbohydrate side chains has been extensively elaborated. As a pragmatic approach to alleviate the interference of substituents in the side chains on the folding propensities of the peptides, they are often modified or removed. The present study reports the synthesis of a new β-Caa with a 3-deoxy-L-ara furanoside side chain, [(R)-β-Caa(da)], from D-glucose, and its use in the synthesis of α/β-peptides in 1 : 1 alternation with D-Ala. The synthesis of peptides using (R)-β-Caa(da), was facile unlike those from (R)-β-Caa(a) having the L-ara furanoside side chain. The detailed NMR, molecular dynamics (MD) and CD studies on the new α/β-peptides showed the presence of robust left-handed 11/9-mixed helices. The study demonstrates that the new (R)-β-Caa(da), behaves differently compared to the other two related monomers, (R)-β-Caa(x) with the D-xylo furanoside side chain and (R)-β-Caa(a). PMID:26489370

  12. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    SciTech Connect

    Zellmeier, M.; Rappich, J.; Nickel, N. H.; Klaus, M.; Genzel, Ch.; Janietz, S.; Frisch, J.; Koch, N.

    2015-11-16

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell. We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.

  13. Efficient rotamer elimination applied to protein side-chains and related spin glasses.

    PubMed Central

    Goldstein, R F

    1994-01-01

    Folded proteins and spin glasses share various properties, such as seemingly random interactions between residues (spins), and one might presume that some generic behaviors of spin glasses would also be exhibited in a general way by proteins. But a comparison here shows that the side-chain conformation systems of apo-myoglobin and lysozyme are qualitatively different from specific closely related spin glass systems. This difference is manifest in the number of rotamers that can be identified as definitely not contributing to the global energy minimum. This identification is effected by using a significantly enhanced version of the Dead End Elimination theorem (Desmet, J., M. De Maeyer, B. Hazes, and I. Lasters. 1992. The dead-end elimination theorem and its use in protein side-chain positioning. Nature. 356:539-542), which is much more effective and efficient in eliminating rotamers. In several cases (for proteins, although not for spin glasses) this improved Dead End Elimination theorem succeeded in identifying the absolute global minimum of rotamer conformations, with no statistical uncertainty. The difference between protein and spin glass is due to correlations between the interactions of one residue pair with another pair, and probably will play an important role in the thermodynamic behavior of the protein system. PMID:8061189

  14. Cholesterol side chain analogs but not its ether analogs possess cholesterol-lowering activity.

    PubMed

    Lei, Lin; Wang, Xiaobo; Huang, Weihuan; Liu, Yuwei; Zheng, Fangrui; Ma, Ka Ying; Li, Yuk Man; Wang, Lijun; Man, Sun Wa; Zhang, Chengnan; Chen, Zhen-Yu

    2015-02-01

    Cholesterol analogs can be used to treat hypercholesterolemia. The present study was to test the effects of cholesteryl 3β-ethoxy (CE) and cholesteryl 3β-methoxy (CM) on plasma total cholesterol (TC) compared with that of β-sitosterol (SI) in hamsters fed a high cholesterol diet. CM and CE are the methoxy and ethoxy analogs of cholesterol while SI is an analog of cholesterol having an additional ethyl group on the side chain. Results showed that SI at a dose of 0.1% could effectively reduce plasma TC by 18%. The analysis of sterols in the plasma and liver did not detect the presence of SI, proving that it was poorly absorbed in the intestine. In contrast, both CE and CM had no effect on plasma TC. However, CE and CM were found to accumulate in both plasma and liver, indicating that they could be well absorbed in the intestine. It was therefore concluded that analogs having different side chains possessed plasma TC-lowering activity, while analogs or derivatives on the hydroxyl group had no hypocholesterolemic activity. PMID:25536519

  15. Proton spin-lattice relaxation in silkworm cocoons: physisorbed water and serine side-chain motions.

    PubMed

    Geppi, Marco; Mollica, Giulia; Borsacchi, Silvia; Cappellozza, Silvia

    2010-03-01

    The molecular dynamic behavior of silkworm cocoons produced by a single Bombyx mori strain was investigated by means of high- and low-resolution solid-state NMR experiments. Cocoons with different moisture content were prepared to study the effects of physisorbed water on their molecular dynamics in the MHz regime, which was probed through the measurement of (1)H T(1) relaxation times at 25 MHz in the 25-95 degrees C temperature range. The water content of the different samples was determined from the analysis of (1)H free-induction decays. In addition to the rotation of methyl groups, mostly from alanine, and to the reorientation of physisorbed water molecules, already identified in previous works as relaxation sinks, the reorientation of serine side-chains was here found to contribute to (1)H T(1) above room temperature. The analysis of the trends of (1)H T(1) versus temperature was carried out in terms of semiempirical models describing the three main motional processes, and indicated that methyl rotation, water reorientation and serine side-chain motions are the most efficient relaxation mechanisms below 0 degrees C, between 0 and 60 degrees C, and above 60 degrees C, respectively. The activation energies were found to decrease passing from serine to water to methyl motions. PMID:20136080

  16. Predictions of the physicochemical properties of amino acid side chain analogs using molecular simulation.

    PubMed

    Ahmed, Alauddin; Sandler, Stanley I

    2016-03-01

    A candidate drug compound is released for clinical trails (in vivo activity) only if its physicochemical properties meet desirable bioavailability and partitioning criteria. Amino acid side chain analogs play vital role in the functionalities of protein and peptides and as such are important in drug discovery. We demonstrate here that the predictions of solvation free energies in water, in 1-octanol, and self-solvation free energies computed using force field-based expanded ensemble molecular dynamics simulation provide good accuracy compared to existing empirical and semi-empirical methods. These solvation free energies are then, as shown here, used for the prediction of a wide range of physicochemical properties important in the assessment of bioavailability and partitioning of compounds. In particular, we consider here the vapor pressure, the solubility in both water and 1-octanol, and the air-water, air-octanol, and octanol-water partition coefficients of amino acid side chain analogs computed from the solvation free energies. The calculated solvation free energies using different force fields are compared against each other and with available experimental data. The protocol here can also be used for a newly designed drug and other molecules where force field parameters and charges are obtained from density functional theory. PMID:26864716

  17. Phase Structures and Transition of Side-Chain Liquid Crystalline Polyacetylene

    NASA Astrophysics Data System (ADS)

    Chen, Er-Qiang; Ye, Chun; Cheng, S. Z. D.; Lam, Jacky W. Y.; Tang, Ben-Zhong

    2002-03-01

    A side-chain liquid crystalline polyacetylene, poly(5-[(4’-heptoxy-4-biphenylyl) carbonyl]oxy-1-pentyne) (-CH=C[(CH_2)3-OCO-Biph-OC_7H_15]n-), was synthesized. The polymerization catalyzed by WCl_6-Ph_4Sn under optimal condition produced the polymer of high molecular weight (up to 1.2 x 10^5), with predominantly a trans structure of good stereo-regularity. Both the smectic A (SA) and C (SC) phases were found, giving the d spacings of 2.3 and 3.3 nm, respectively. The coexistence of SA and SC is possible at low temperature range due to the specific molecular shape of the sample. Three broad transitions were observed upon heating: the flexible alkyl tails of the side-chain melts at 90 °C approximately, and the transformations from SA and SC to an isotropic melt occur at the peak temperatures of 160 and 170 °C, respectively. The separated SA and SC structures were obtained by the STM scanning at room temperature.

  18. SCWRL and MolIDE: Computer programs for side-chain conformation prediction and homology modeling

    PubMed Central

    Wang, Qiang; Canutescu, Adrian A.; Dunbrack, Roland L.

    2009-01-01

    SCWRL and MolIDE are software applications for prediction of protein structures. SCWRL is designed specifically for the task of prediction of side-chain conformations given a fixed backbone usually obtained from an experimental structure determined by X-ray crystallography or NMR. SCWRL is a command-line program that typically runs in a few seconds. MolIDE provides a graphical interface for basic comparative (homology) modeling using SCWRL and other programs. MolIDE takes an input target sequence, and uses PSI-BLAST to identify and align templates for comparative modeling of the target. The sequence alignment to any template can be manually modified within a graphical window of the target-template alignment and visualization of the alignment on the template structure. MolIDE builds the model of the target structure based on the template backbone, predicted side-chain conformations with SCWRL, and a loop-modeling program for insertion-deletion regions with user-selected sequence segments. SCWRL and MolIDE can be obtained at http://dunbrack.fccc.edu/Software.php. PMID:18989261

  19. Characterization and Diagnostic Value of Amino Acid Side Chain Neutral Losses Following Electron-Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Xia, Qiangwei; Lee, M. Violet; Rose, Christopher M.; Marsh, Alyce J.; Hubler, Shane L.; Wenger, Craig D.; Coon, Joshua J.

    2011-02-01

    Using a large set of high mass accuracy and resolution ETD tandem mass spectra, we characterized ETD-induced neutral losses. From these data we deduced the chemical formula for 20 of these losses. Many of them have been previously observed in electron-capture dissociation (ECD) spectra, such as losses of the side chains of arginine, aspartic acid, glutamic acid, glutamine, asparagine, leucine, histidine, and carbamidomethylated cysteine residues. With this information, we examined the diagnostic value of these amino acid-specific losses. Among 1285 peptide-spectrum matches, 92.5% have agreement between neutral loss-derived peptide amino acid composition and the peptide sequences. Moreover, we show that peptides can be uniquely identified by using only the accurate precursor mass and amino acid composition based on neutral losses; the median number of sequence candidates from an accurate mass query is reduced from 21 to 8 by adding side chain loss information. Besides increasing confidence in peptide identification, our findings suggest the potential use of these diagnostic losses in ETD spectra to improve false discovery rate estimation and to enhance the performance of scoring functions in database search algorithms.

  20. Electronic absorption spectroscopy probed side-chain movement in chromic transitions of polydiacetylene vesicles.

    PubMed

    Potisatityuenyong, Anupat; Rojanathanes, Rojrit; Tumcharern, Gamolwan; Sukwattanasinitt, Mongkol

    2008-05-01

    Thermochromism, solvatochromism, and alkalinochromism of a poly-10,12-pentacosadiynoic acid (poly(PCDA)) vesicle solution are studied by electronic absorption spectroscopy. The spectroscopic profiles reveal different sequences of side-chain movement during the chromic transitions. The gradual hypsochromic shift and reversibility of the purple solution at low temperature in the thermochromic transition indicates that the transition starts with reversible conformational alteration of methylene side chains leading to metastable purple vesicles. Further heating to 80 degrees C or higher eventually causes the hydrogen bonds at the carboxylic head groups to break and turns the vesicle solution to red. The irreversibility of the red vesicles indicates that it is the most thermodynamically stable form. In the ethanolochromism and alkalinochromism, the processes are however induced at the vesicle-media interface, directly bringing about the hydrogen bond breaking. The purple solutions observed in the ethanolochromism and alkalinochromism cannot reverse back to the blue one. The absorption spectra clearly demonstrate that they are mixtures of the blue and red vesicles. PMID:18366237

  1. An experimental and theoretical study of the amino acid side chain Raman bands in proteins

    NASA Astrophysics Data System (ADS)

    Sjöberg, Béatrice; Foley, Sarah; Cardey, Bruno; Enescu, Mironel

    2014-07-01

    The Raman spectra of a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was tryptophan, tyrosine, phenylalanine, glycine, methionine, histidine, lysine and leucine were measured in H2O. The theoretical Raman spectra obtained using density functional theory (DFT) calculations at the B3LYP/6-311+G(2df,2pd) level of theory allows a precise attribution of the vibrational bands. The experimental results show that there is a blue shift in the frequencies of several bands of the amino acid side chains in tripeptides compared to free amino acids, especially in the case of AAs containing aromatic rings. On the other hand, a very good agreement was found between the Raman bands of AA residues in tripeptides and those measured on three model proteins: bovine serum albumin, β-lactoglobulin and lysozyme. The present analysis contributes to an unambiguous interpretation of the protein Raman spectra that is useful in monitoring the biological reactions involving AA side chains alteration.

  2. Role of side-chain interactions on the formation of α -helices in model peptides

    NASA Astrophysics Data System (ADS)

    Mahmoudinobar, Farbod; Dias, Cristiano L.; Zangi, Ronen

    2015-03-01

    The role played by side-chain interactions on the formation of α -helices is studied using extensive all-atom molecular dynamics simulations of polyalanine-like peptides in explicit TIP4P water. The peptide is described by the OPLS-AA force field except for the Lennard-Jones interaction between Cβ-Cβ atoms, which is modified systematically. We identify values of the Lennard-Jones parameter that promote α -helix formation. To rationalize these results, potentials of mean force (PMF) between methane-like molecules that mimic side chains in our polyalanine-like peptides are computed. These PMF exhibit a complex distance dependence where global and local minima are separated by an energy barrier. We show that α -helix propensity correlates with values of these PMF at distances corresponding to Cβ-Cβ of i -i +3 and other nearest neighbors in the α -helix. In particular, the set of Lennard-Jones parameters that promote α -helices is characterized by PMF that exhibit a global minimum at distances corresponding to i -i +3 neighbors in α -helices. Implications of these results are discussed.

  3. Proton exchange membranes based on the short-side-chain perfluorinated ionomer

    NASA Astrophysics Data System (ADS)

    Ghielmi, A.; Vaccarono, P.; Troglia, C.; Arcella, V.

    Due to the renovated availability of the base monomer for the synthesis of the short-side-chain (SSC) perfluorinated ionomer, fuel cell membrane development is being pursued using this well known ionomer structure, which was originally developed by Dow in the 1980s. The new membranes under development have the trade name Hyflon Ion. After briefly reviewing the literature on the Dow ionomer, new characterization data are reported on extruded Hyflon Ion membranes. The data are compared to those available in the literature on the Dow SSC ionomer and membranes. Comparison is made also with data obtained in this work or available in the literature on the long-side-chain (LSC) perfluorinated ionomer (Nafion). Thermal, visco-elastic, water absorption and mechanical properties of Hyflon Ion are studied. While the general behavior is similar to that shown in the past by the Dow membranes, slight differences are evident in the hydration behavior at equivalent weight (EW) < 900, probably due to different EW distributions. Measurements on dry membranes confirm that Hyflon Ion has a higher glass transition temperature compared to Nafion, which makes it a more promising material for high temperature proton exchange membrane (PEM) fuel cell operation ( T > 100 °C). Beginning of life fuel cell performance has also been confirmed to be higher than that given by a Nafion membrane of equal thickness.

  4. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.

    PubMed

    Hass, Mathias A S; Yilmaz, Ali; Christensen, Hans E M; Led, Jens J

    2009-08-01

    The use of 13C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically 13C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for 13C(epsilon1) nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from 15N backbone relaxation measurements. Compared to measurements of backbone nuclei, 13C(epsilon1) dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the 13C(epsilon1) dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed. PMID:19533375

  5. A new classification of the amino acid side chains based on doublet acceptor energy levels.

    PubMed Central

    Sneddon, S F; Morgan, R S; Brooks, C L

    1988-01-01

    We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). PMID:3342271

  6. Cyclic side-chain-linked opioid analogs utilizing cis- and trans-4-aminocyclohexyl-D-alanine.

    PubMed

    Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Perlikowska, Renata; Adamska, Anna; Olczak, Jacek; Mazur, Marzena; Artali, Roberto; Modranka, Jakub; Janecki, Tomasz; Tömböly, Csaba; Janecka, Anna

    2014-12-01

    Cyclization of linear sequences is a well recognized tool in opioid peptide chemistry for generating analogs with improved bioactivities. Cyclization can be achieved through various bridging bonds between peptide ends or side-chains. In our earlier paper we have reported the synthesis and biological activity of a cyclic peptide, Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (1), which can be viewed as an analog of endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2). Cyclization was achieved through an amide bond between side-chains of D-Lys and Asp residues. Here, to increase rigidity of the cyclic structure, we replaced d-Lys with cis- or trans-4-aminocyclohexyl-D-alanine (D-ACAla). Two sets of analogs incorporating either Tyr or Dmt (2',6'-dimethyltyrosine) residues in position 1 were synthesized. In the binding studies the analog incorporating Dmt and trans-D-ACAla showed high affinity for both, μ- and δ-opioid receptors (MOR and DOR, respectively) and moderate affinity for the κ-opioid receptor (KOR), while analog with Dmt and cis-D-ACAla was exceptionally MOR-selective. Conformational analyses by NMR and molecular docking studies have been performed to investigate the molecular structural features responsible for the noteworthy MOR selectivity. PMID:25456075

  7. Dual mesomorphic assemblage of chitin normal acylates and rapid enthalpy relaxation of their side chains.

    PubMed

    Teramoto, Yoshikuni; Miyata, Tomoya; Nishio, Yoshiyuki

    2006-01-01

    Chitin derivatives having normalacyl groups (C(n)H(2n-1)O-; n = 4-20) were synthesized with pyridine, p-toluenesulfonyl chloride, and normal alkanoic acid in an N,N-dimethylacetamide-lithium chloride homogeneous system. The products (C(n)-ACs; degree of acyl substitution, DS = 1.7-1.9) showed an n-dependent thermal transition behavior: no evident transition (n = 4-10), a glass transition (n = 12 and 14), and a pseudo-first-order phase transition (n = 16-20), the latter two occurring usually below room temperature when examined by differential scanning calorimetry. Wide-angle X-ray diffractometry (WAXD) at 20 degrees C displayed a sharp diffraction peak (2theta = 2 degrees -7 degrees ) and a diffuse halo (2theta approximately 20 degrees ) for the respective C(n)-ACs. The former d-spacing (1.5-3.6 nm) increased with an increase in n to yield two stages of mutually different increasing rates, which reflects a systematic n-dependence of the period of a layered structure of the main chains. The molecular assembly of C(n)-ACs exhibited "dual mesomorphy"; nematic ordering for the semirigid carbohydrate trunk and smectic one for the flexible side chains. On the other hand, WAXD profiles of C(n)-ACs (n = 14-18) indicated almost no temperature dependence from -150 to +220 degrees C. Therefore, it was reasonably assumed that the pseudo-first-order transition observed in thermograms of C(n)-ACs (n = 16-20) was due to the enthalpy relaxation of the side-chain assemblage. An insight was provided into the kinetics of the characteristic aging behavior as a liquid-crystalline glass, in comparison with the corresponding data for other noncrystalline macromolecules. PMID:16398515

  8. Physics-based side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials for coarse-grained UNRES force field. 2. Comparison with statistical potentials and implementation

    PubMed Central

    Kozłowska, Urszula; Maisuradze, Gia G.; Liwo, Adam; Scheraga, Harold A.

    2009-01-01

    Using the harmonic-approximation approach of the accompanying paper and AM1 energy surfaces of terminally-blocked amino-acid residues, we determined physics-based side-chain-rotamer potentials and the side-chain virtual-bond-deformation potentials of 19 natural amino-acid residues with side chains. The potentials were approximated by analytical formulas and implemented in the UNRES mesoscopic dynamics program. For comparison, the corresponding statistical potentials were determined from 19,682 high-resolution protein structures. The low-free-energy region of both the AM1-derived and the statistical potentials is determined by the valence geometry and the L-chirality, and its size increases with side-chain flexibility and decreases with increasing virtual-bond-angle θ. The differences between the free energies of rotamers are greater for the AM1-derived potentials compared to the statistical potentials and, for alanine and other residues with small side chains, a region corresponding to the Cax7 conformation has remarkably low free energy for the AM1-derived potentials, as opposed to the statistical potentials. These differences probably result from the interactions between neighboring residues and indicate the need for introduction of cooperative terms accounting for the coupling between side-chain-rotamer and backbone interactions. Both AM1-derived and statistical virtual-bond-deformation potentials are multimodal for flexible side chains and are topologically similar; however, the regions of minima of the statistical potentials are much narrower, which probably results from imposing restraints in structure determination. The force field with the new potentials was preliminarily optimized using the FBP WW domain (1E0L) and the engrailed homeodomain (1ENH) as training proteins and assessed to be reasonably transferable. PMID:20017135

  9. The effect of junction modes between backbones and side chains of polyimides on the stability of liquid crystal vertical alignment.

    PubMed

    Che, Xinyuan; Gong, Shiming; Zhang, Heng; Liu, Bin; Wang, Yinghan

    2016-02-01

    Polyimides (PI-N9 and PI-N12) were synthesized from two kinds of functional diamines, whose junction modes between backbones and side chains were different. Side chains of PI-N9 were linked to the backbones with an ether bond spacer; and side chains of PI-N12 were directly linked to the backbones without any spacer. The PI alignment layer surfaces were investigated by atomic force microscopy, surface free energy measurements, X-ray photo-electron spectroscopy and polarized attenuated total reflection Fourier transformed infrared spectroscopy. It was found that PI-N9 lost the vertical alignment capability after high-strength rubbing, while PI-N12 could still induce liquid crystals (LCs) to align vertically under the same condition. The mechanism of the macroscopic molecular orientation of the PI surface is proposed. During the high-strength rubbing process, the side chain could rotate around the flexible ether bond which existed between the side chain and the main chain of PI-N9 and then fell over. Therefore, PI-N9 could not induce the vertical alignment of LCs anymore. But PI-N12 could keep LCs aligning vertically all the time, which proved that the stability of LC alignment induced by PI-N12 was better. PMID:26766667

  10. Lattice and off-lattice side chain models of protein folding: Linear time structure prediction better than 86% of optimal

    SciTech Connect

    Hart, W.E.; Istrail, S.

    1996-08-09

    This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.

  11. Electrostatic Control of Peptide Side-Chain Reactivity using Amphiphilic Homopolymer-based Supramolecular Assemblies

    PubMed Central

    Wang, Feng; Gomez-Escudero, Andrea; Ramireddy, Rajasekhar R.; Murage, Gladys

    2013-01-01

    Supramolecular assemblies formed by amphiphilic homopolymers with negatively charged groups in the hydrophilic segment have been designed to enable high labeling selectivity towards reactive side chain functional groups in peptides. The negatively-charged interiors of the supramolecular assemblies are found to block the reactivity of protonated amines that would otherwise be reactive in aqueous solution, while maintaining the reactivity of non-protonated amines. Simple changes to the pH of the assemblies’ interiors allow control over the reactivity of different functional groups in a manner that is dependent on the pKa of a given peptide functional group. The labeling studies carried out in positively charged supramolecular assemblies and free buffer solution show that, even when the amine is protonated, labeling selectivity exists only when complementary electrostatic interactions are present, thereby demonstrating the electrostatically controlled nature of these reactions. PMID:23971726

  12. Calcium ions induce collapse of charged O-side chains of lipopolysaccharides from Pseudomonas aeruginosa

    PubMed Central

    Schneck, Emanuel; Papp-Szabo, Erzsebet; Quinn, Bonnie E.; Konovalov, Oleg V.; Beveridge, Terry J.; Pink, David A.; Tanaka, Motomu

    2009-01-01

    Lipopolysaccharide (LPS) monolayers deposited on planar, hydrophobic substrates were used as a defined model of outer membranes of Pseudomonas aeruginosa strain dps 89. To investigate the influence of ions on the (out-of-plane) monolayer structure, we measured specular X-ray reflectivity at high energy (22 keV) to ensure transmission through water. Electron density profiles were reconstructed from the reflectivity curves, and they indicate that the presence of Ca2+ ions induces a significant change in the conformation of the charged polysaccharide head groups (O-side chains). Monte Carlo simulations based on a minimal computer model of LPS molecules allow for the modelling of 100 or more molecules over 10−3 s and theoretically explained the tendency found by experiments. PMID:19605401

  13. Shape-Selectivity with Liquid Crystal and Side-Chain Liquid Crystalline Polymer SAW Sensor Interfaces

    SciTech Connect

    FRYE-MASON,GREGORY CHARLES; OBORNY,MICHAEL C.; PUGH,COLEEN; RICCO,ANTONIO; THOMAS,ROSS C.; ZELLERS,EDWARD T.; ZHANG,GUO-ZHENG

    1999-09-23

    A liquid crystal (LC) and a side-chain liquid crystalline polymer (SCLCP) were tested as surface acoustic wave (SAW) vapor sensor coatings for discriminating between pairs of isomeric organic vapors. Both exhibit room temperature smectic mesophases. Temperature, electric-field, and pretreatment with self-assembled monolayers comprising either a methyl-terminated or carboxylic acid-terminated alkane thiol anchored to a gold layer in the delay path of the sensor were explored as means of affecting the alignment and selectivity of the LC and SCLCP films. Results for the LC were mixed, while those for the SCLCP showed a consistent preference for the more rod-like isomer of each isomer pair examined.

  14. Inducing Planar Orientation in Side-Chain Liquid-Crystalline Polymer Systems via Interfacial Control.

    PubMed

    Nagano, Shusaku

    2016-02-01

    For efficient photoresponses of liquid-crystal (LC) azobenzene (Az) polymer systems, planar LC orientation of the Az mesogenic group is required because the light irradiation process usually occurs with normal incidence to the film surface. However, LC molecules with a rodlike shape tend to orient perpendicularly to the film surface according to the excluded volume effect theory. This review introduces new approaches for inducing planar orientation in side-chain LC Az polymer films via interface and surface molecular designs. The planar orientation offers efficient in-plane photoalignment and photoswitching to hierarchical LC architectures from molecular LC mesogens and LC phases to mesoscopic microphase-separated structures. These approaches are expected to provide new concepts and possibilities in new LC polymer devices. PMID:26775770

  15. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  16. Poly-dimethylsiloxane derivates side chains effect on syntan functionalized Polyamide fabric

    NASA Astrophysics Data System (ADS)

    Migani, V.; Weiss, H.; Massafra, M. R.; Merlo, A.; Colleoni, C.; Rosace, G.

    2011-02-01

    Poly-dimethylsiloxane (PDMS) polymers finishing of Polyamide-6,6 (PA66) fabrics involves ionic interactions between reactive groups on the PDMS polymers and the ones of the textile fabric. Such interactions could be strengthened by a pretreatment with a fixing agent to promote either ion-ion and H-bonding and ion-dipole forces. These forces could contribute towards the building of substantial PDMS-PA66 systems and the achieving of better adhesion properties to fabrics. Four different silicone polymers based on PDMS were applied on a synthetic tanning agent (syntan) finished Polyamide-6,6 fabric under acid conditions. Soxhlet extraction method and ATR FT-IR technique were used to investigate the application conditions. The finishing parameters such as pH and temperature together with fastness, mechanical and performance properties of the treated samples were studied and related to PDMS side chains effect on syntan functionalized Polyamide fabric.

  17. Synthesis of brassinosteroids with a keto group in the side chain.

    PubMed

    Baradzenka, Aliona G; Barysau, Barys M; Hurski, Alaksiej L; Zhabinskii, Vladimir N; Khripach, Vladimir A

    2015-09-01

    The aim of this work was to prepare 24-epicryptolide and 22-dehydro-24-epibrassinolide as possible metabolites of 24-epibrassinolide. The main synthetic problem to be solved was the differentiation of functional groups in brassinosteroids. Distinguishing 2α,3α-diol function from another diol group in 24-epibrassinolide was achieved via selective hydrolysis of 2α,3α-cyclic carbonate or via regioselective reaction of boric acid with the functional groups in the side chain. The hydroxyl at C-23 was more reactive than the 22-OH in the oxidation with bromine in the presence of bis(tributyltin) oxide and in the benzylation reaction that resulted in the predominant formation of the corresponding α-hydroxy ketone derivatives with the ratio ranging from 4:1 to 1.5:1. PMID:26079654

  18. Ozonolysis of surface adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation

    NASA Astrophysics Data System (ADS)

    O'Neill, E. M.; Kawam, A. Z.; Van Ry, D. A.; Hinrichs, R. Z.

    2013-07-01

    Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (±0.8) × 10-7 and 2 (±1) × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ>300 nm) enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(±1) but had no effect on ozonolysis of the alkene side-chain.

  19. Glutamine and Asparagine Side Chain Hyperconjugation-Induced Structurally Sensitive Vibrations.

    PubMed

    Punihaole, David; Hong, Zhenmin; Jakubek, Ryan S; Dahlburg, Elizabeth M; Geib, Steven; Asher, Sanford A

    2015-10-15

    We identified vibrational spectral marker bands that sensitively report on the side chain structures of glutamine (Gln) and asparagine (Asn). Density functional theory (DFT) calculations indicate that the Amide III(P) (AmIII(P)) vibrations of Gln and Asn depend cosinusoidally on their side chain OCCC dihedral angles (the χ3 and χ2 angles of Gln and Asn, respectively). We use UV resonance Raman (UVRR) and visible Raman spectroscopy to experimentally correlate the AmIII(P) Raman band frequency to the primary amide OCCC dihedral angle. The AmIII(P) structural sensitivity derives from the Gln (Asn) Cβ-Cγ (Cα-Cβ) stretching component of the vibration. The Cβ-Cγ (Cα-Cβ) bond length inversely correlates with the AmIII(P) band frequency. As the Cβ-Cγ (Cα-Cβ) bond length decreases, its stretching force constant increases, which results in an upshift in the AmIII(P) frequency. The Cβ-Cγ (Cα-Cβ) bond length dependence on the χ3 (χ2) dihedral angle results from hyperconjugation between the Cδ═Oϵ (Cγ═Oδ) π* and Cβ-Cγ (Cα-Cβ) σ orbitals. Using a Protein Data Bank library, we show that the χ3 and χ2 dihedral angles of Gln and Asn depend on the peptide backbone Ramachandran angles. We demonstrate that the inhomogeneously broadened AmIII(P) band line shapes can be used to calculate the χ3 and χ2 angle distributions of peptides. The spectral correlations determined in this study enable important new insights into protein structure in solution, and in Gln- and Asn-rich amyloid-like fibrils and prions. PMID:26392216

  20. Multi-functionalized side-chain supramolecular polymers: A methodology towards tunable functional materials

    NASA Astrophysics Data System (ADS)

    Nair, Kamlesh Prabhakaran

    Even as we see a significant growth in the field of supramolecular polymers in the last ten years, multi-functionalized systems have been scarcely studied. Noncovalent multi-functionalization provides unique advantages such as rapid materials optimization via reversible functionalization as well as for the tuning of materials properties by exploiting the differences in the nature of these reversible interactions. This thesis involves the design principles, synthesis & methodology of supramolecular side-chain multi-functionalized polymers. The combination of a functionally tolerant & controlled polymerization technique such as ROMP with multiple noncovalent interactions such as hydrogen bonding, metal coordination and ionic interactions has been successfully used to synthesize these polymers. Furthermore, the orthogonality between the above interactions in block/random copolymers has been studied in detail. It has been found that the studied interactions were orthogonal to each other. To validate the viability of this methodology using multiple orthogonal interactions towards materials design noncovalent crosslinking of polymers has been used as a potential application. Three classes of networks have been studied: complementary multiple hydrogen bonded networks, metal crosslinked networks, & multi-functionalized hydrogen bonded and metal coordinated networks. The first room temperature decrosslinking by exclusive complementary hydrogen bonded interactions has been successfully achieved. Furthermore network properties have been successfully tuned by varying the network micro-structure which in turn was tuned by the hydrogen bonding motifs used for inter-chain crosslinking. By combining two different noncovalent interactions used for inter-chain crosslinking, it was possible to make multi-functionalized materials whose properties could be controlled by varying the crosslinking strategy. Hence by employing multi-functionalization methodology, important materials

  1. Macrocyclization of Peptide Side Chains by the Ugi Reaction: Achieving Peptide Folding and Exocyclic N-Functionalization in One Shot.

    PubMed

    Vasco, Aldrin V; Pérez, Carlos S; Morales, Fidel E; Garay, Hilda E; Vasilev, Dimitar; Gavín, José A; Wessjohann, Ludger A; Rivera, Daniel G

    2015-07-01

    The cyclization of peptide side chains has been traditionally used to either induce or stabilize secondary structures (β-strands, helices, reverse turns) in short peptide sequences. So far, classic peptide coupling, nucleophilic substitution, olefin metathesis, and click reactions have been the methods of choice to fold synthetic peptides by means of macrocyclization. This article describes the utilization of the Ugi reaction for the side chain-to-side chain and side chain-to-termini macrocyclization of peptides, thus enabling not only access to stable folded structures but also the incorporation of exocyclic functionalities as N-substituents. Analysis of the NMR-derived structures revealed the formation of helical turns, β-bulges, and α-turns in cyclic peptides cross-linked at i, i + 3 and i, i + 4 positions, proving the folding effect of the multicomponent Ugi macrocyclization. Molecular dynamics simulation provided further insights on the stability and molecular motion of the side chain cross-linked peptides. PMID:26030840

  2. Structure-activity relationships of C1 and C6 side chains of zaragozic acid A derivatives.

    PubMed

    Ponpipom, M M; Girotra, N N; Bugianesi, R L; Roberts, C D; Berger, G D; Burk, R M; Marquis, R W; Parsons, W H; Bartizal, K F; Bergstom, J D

    1994-11-11

    Systematic modification of the C6 acyl side chain of zaragozic acid A, a potent squalene synthase inhibitor, was undertaken to improve its biological activity. Simplification of the C6 side chain to the octanoyl ester has deleterious effects; increasing the linear chain length improves the in vitro activity up to the tetradecanoyl ester. An omega-phenoxy group is a better activity enhancer than an omega-phenyl group. A number of C6 carbamates, ethers, and carbonates were prepared and found to have similar activity profiles as the C6 esters. In the preparation of C6 ethers, C4 and C4,6 bisethers were also isolated; their relative activity is: C6 > C4 > C4,6. These C6 long-chain derivatives are subnanomolar squalene synthase inhibitors; they are, however, only weakly active in inhibiting hepatic cholesterol synthesis in mice. The C6 short-chain derivatives are much less active in vitro, but they all have improved oral activity in mice. Modification of the C1 alkyl side chain of the n-butanoyl analogue (ED50 4.5 mg/kg) did not improve the po activity further. A number of these C6 long-chain derivatives are also potent antifungal agents in vitro. PMID:7966163

  3. Frequent Side Chain Methyl Carbon-Oxygen Hydrogen Bonding in Proteins Revealed by Computational and Stereochemical Analysis of Neutron Structures

    PubMed Central

    Brooks, Charles L.; Trievel, Raymond C.

    2016-01-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH···O) hydrogen bonding is well-appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. PMID:25401519

  4. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-01

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties. PMID:27102972

  5. Effect of alkyl side-chain length on the photophysical, morphology and photoresponse properties of poly(3-alkylthiophene)

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Long; Yang, Xiao-Yu; Zheng, Fei; Jin, Han-Dong; Hao, Xiao-Tao

    2015-12-01

    The effect of alkyl side-chain length on the photophysical, morphology and photoresponse properties of poly (3-alkylthiophene) (P3AT) has been investigated. Butyl, hexyl, octyl, decyl, and dodecyl side chains have been studied. In solution state, the average lifetime of poly (3-octylthiophene) (P3OT) is the shortest among P3AT solution owing to the strong intrachain interaction. The fluorescence lifetime of P3AT solution increases with the side-chain length increasing. A similar trend occurs in the P3AT films. This phenomenon illustrates conformation ‘memory’ property evolving from solution state to solid film. The four lifetimes represent different photophysical processes and have been systematically analyzed. The photodetector based on P3DDT is a suitable candidate for practical application owing to the fast, reversible photoresponse and photostability. The high performance of P3DDT-based photodetector is correlated to the optimized morphology and strong interchain interaction which promotes the exciton delocalization.

  6. Tuning the electronic coupling in a low-bandgap donor-acceptor copolymer via the placement of side-chains

    SciTech Connect

    Oberhumer, Philipp M.; Huang, Ya-Shih; Massip, Sylvain; Albert-Seifried, Sebastian; Greenham, Neil C.; Hodgkiss, Justin M.; Friend, Richard H.; James, David T.; Kim, Ji-Seon; Tu Guoli; Huck, Wilhelm T. S.; Beljonne, David; Cornil, Jerome

    2011-03-21

    We present a spectroscopic and theoretical investigation of the effect of the presence and position of hexyl side-chains in the novel low-bandgap alternating donor-acceptor copolymer poly[bis-N,N-(4-octylphenyl)-bis-N,N-phenyl-1, 4-phenylenediamine-alt-5,5'-4',7',-di-2-thienyl-2',1',3'-benzothiadiazole] (T8TBT). We use electronic absorption and Raman spectroscopic measurements supported by calculations of chain conformation, electronic transitions, and Raman modes. Using these tools, we find that sterically demanding side-chain configurations induce twisting in the electronic acceptor unit and reduce the electronic interaction with the donor. This leads to a blue-shifted and weakened (partial) charge-transfer absorption band together with a higher photoluminescence efficiency. On the other hand, sterically relaxed side-chain configurations promote coupling between donor and acceptor units and exhibit enhanced absorption at the expense of luminescence efficiency. The possibility of tuning the donor-acceptor character of conjugated polymers by varying the placement of side-chains has very important ramifications for light emitting diode, Laser, display, and photovoltaic device optimization.

  7. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis.

    PubMed

    Wrońska, Natalia; Brzostek, Anna; Szewczyk, Rafał; Soboń, Adrian; Dziadek, Jarosław; Lisowska, Katarzyna

    2016-01-01

    Mycobacteria are able to degrade natural sterols and use them as a source of carbon and energy. Several genes which play an important role in cholesterol ring degradation have been described in Mycobacterium smegmatis. However, there are limited data describing the molecular mechanism of the aliphatic side chain degradation by Mycobacterium spp. In this paper, we analyzed the role of the echA19 and fadD19 genes in the degradation process of the side chain of cholesterol and β-sitosterol. We demonstrated that the M. smegmatis fadD19 and echA19 genes are not essential for viability. FadD19 is required in the initial step of the biodegradation of C-24 branched sterol side chains in Mycobacterium smegmatis mc²155, but not those carrying a straight chain like cholesterol. Additionally, we have shown that echA19 is not essential in the degradation of either substrate. This is the first report, to our knowledge, on the molecular characterization of the genes playing an essential role in C-24 branched side chain sterol degradation in M. smegmatis mc²155. PMID:27164074

  8. XANES measurements of the rate of radiation damage to selenomethionine side chains

    PubMed Central

    Holton, James M.

    2009-01-01

    The radiation-induced disordering of selenomethionine (SeMet) side chains represents a significant impediment to protein structure solution. Not only does the increased B-factor of these sites result in a serious drop in phasing power, but some sites decay much faster than others in the same unit cell. These radiolabile SeMet side chains decay faster than high-order diffraction spots with dose, making it difficult to detect this kind of damage by inspection of the diffraction pattern. The selenium X-ray absorbance near-edge spectrum (XANES) from samples containing SeMet was found to change significantly after application of X-ray doses of 10–100 MGy. Most notably, the sharp ‘white line’ feature near the canonical Se edge disappears. The change was attributed to breakage of the Cγ—Se bond in SeMet. This spectral change was used as a probe to measure the decay rate of SeMet with X-ray dose in cryo-cooled samples. Two protein crystal types and 15 solutions containing free SeMet amino acid were examined. The damage rate was influenced by the chemical and physical condition of the sample, and the half-decaying dose for the selenium XANES signal ranged from 5 to 43 MGy. These decay rates were 34- to 3.8-fold higher than the rate at which the Se atoms interacted directly with X-ray photons, so the damage mechanism must be a secondary effect. Samples that cooled to a more crystalline state generally decayed faster than samples that cooled to an amorphous solid. The single exception was a protein crystal where a nanocrystalline cryoprotectant had a protective effect. Lowering the pH, especially with ascorbic or nitric acids, had a protective effect, and SeMet lifetime increased monotonically with decreasing sample temperature (down to 93 K). The SeMet lifetime in one protein crystal was the same as that of the free amino acid, and the longest SeMet lifetime measured was found in the other protein crystal type. This protection was found to arise from the folded

  9. Structural Origins of Nitroxide Side Chain Dynamics on Membrane Protein [alpha]-Helical Sites

    SciTech Connect

    Kroncke, Brett M.; Horanyi, Peter S.; Columbus, Linda

    2010-12-07

    Understanding the structure and dynamics of membrane proteins in their native, hydrophobic environment is important to understanding how these proteins function. EPR spectroscopy in combination with site-directed spin labeling (SDSL) can measure dynamics and structure of membrane proteins in their native lipid environment; however, until now the dynamics measured have been qualitative due to limited knowledge of the nitroxide spin label's intramolecular motion in the hydrophobic environment. Although several studies have elucidated the structural origins of EPR line shapes of water-soluble proteins, EPR spectra of nitroxide spin-labeled proteins in detergents or lipids have characteristic differences from their water-soluble counterparts, suggesting significant differences in the underlying molecular motion of the spin label between the two environments. To elucidate these differences, membrane-exposed {alpha}-helical sites of the leucine transporter, LeuT, from Aquifex aeolicus, were investigated using X-ray crystallography, mutational analysis, nitroxide side chain derivatives, and spectral simulations in order to obtain a motional model of the nitroxide. For each crystal structure, the nitroxide ring of a disulfide-linked spin label side chain (R1) is resolved and makes contacts with hydrophobic residues on the protein surface. The spin label at site I204 on LeuT makes a nontraditional hydrogen bond with the ortho-hydrogen on its nearest neighbor F208, whereas the spin label at site F177 makes multiple van der Waals contacts with a hydrophobic pocket formed with an adjacent helix. These results coupled with the spectral effect of mutating the i {+-} 3, 4 residues suggest that the spin label has a greater affinity for its local protein environment in the low dielectric than on a water-soluble protein surface. The simulations of the EPR spectra presented here suggest the spin label oscillates about the terminal bond nearest the ring while maintaining weak contact

  10. Influence of LC Content on the Phase Structures of Side-Chain Liquid

    SciTech Connect

    Tenneti, K.; Chen, X; Li, C; Shen, Z; Wan, X; Fan, X; Zhou, Q; Rong, L; Hsiao, B

    2009-01-01

    We report the phase structures of a series of poly(styrene-block-{l_brace}3'-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-methacryloyloxydodecyloxy)benzoyloxybiphenyl{r_brace}) (PS-b-PMAC) side-chain liquid crystalline block copolymers (SC LCBCP). The SC liquid crystalline polymer was formed by side attaching a bent-core mesogen to the polymer backbone using a 12-carbon spacer. The phase structure of the high and low fPMAC samples were investigated using differential scanning calorimetry, small-angle and wide-angle X-ray scattering, and transmission electron microscopy techniques. The PS coil block and PMAC LC block phase separate into a lamellar morphology in all of the samples investigated (volume fraction of PMAC fPMAC 0.31-0.65). However, both the LC phase and the orientation of the hierarchical structure under mechanical shear showed strong dependence on the LC content. Samples having a high fPMAC (0.5-0.65) showed a SmC2 LC phase (Smectic C denotes the LC molecules are tilted with respect to the layer normal, and 2 represents a bilayered structure), similar to that observed in PMAC homopolymers. Upon mechanical shear, these smectic layers oriented parallel to the shear plane and the BCP lamellae oriented perpendicular to the shear plane with the layer normal parallel to the vorticity direction. In samples having a lower fPMAC, the BCP lamellae laid parallel to the shear plane and the LC phase structure in these samples was columnar rectangular. A detailed structural and morphological study will be reported.

  11. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. VI. Oppositely-charged side chains

    PubMed Central

    Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A.

    2011-01-01

    The two-site coarse-grained model for the interactions of charged side chains, to be used with our coarse-grained UNRES force field for protein simulations proposed in the accompanying paper, has been extended to pairs of oppositely-charged side chains. The potentials of mean force of four pairs of molecules modeling charged amino-acid side chains, i.e., propionate – n-pentylamine cation (for aspartic acid – lysine), butyrate…n-pentylamine cation (for glutamic acid – lysine), propionate –1-butylguanidine (for aspartic acid – arginine), and butyrate – 1-butylguanidine (for glutamic acid – arginine) pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expression was fitted to the potentials of mean force. Compared to pairs of like-charged side chains discussed in the accompanying paper, an average quadrupole-quadrupole interaction term had to be introduced to reproduce the Coulombic interactions, and a multi-state model of charge distribution had to be introduced to fit the potentials of mean force of all oppositely-charged pairs well. The model reproduces all salt-bridge minima and, consequently, is likely to improve the performance of the UNRES force field. PMID:21500791

  12. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer

  13. Shear Flow Induced Transition from Liquid-Crystalline to Polymer Behavior in Side-Chain Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Lapp, A.

    1997-01-01

    We determine the structure and conformation of side-chain liquid-crystalline polymers subjected to shear flow in the vicinity of the smectic phase by neutron scattering on the velocity gradient plane. Below the nematic-smectic transition we observe a typical liquid-crystal behavior; the smectic layers slide, leading to a main-chain elongation parallel to the velocity direction. In contrast, a shear applied above the transition induces a tilted main-chain conformation which is typical for polymer behavior.

  14. Tunable transport through a quantum dot chain with side-coupled Majorana bound states

    SciTech Connect

    Jiang, Cui; Lu, Gang; Gong, Wei-Jiang

    2014-09-14

    We investigate the transport properties of a quantum dot (QD) chain side-coupled to a pair of Majorana bound states (MBSs). It is found that the zero-bias conductance is tightly dependent on the parity of QD number. First, if a Majorana zero mode is introduced to couple to one QD of the odd-numbered QD structure, the zero-bias conductance is equal to (e{sup 2})/(2h) , but the zero-bias conductance will experience a valley-to-peak transition if the Majorana zero mode couples to the different QDs of the even-numbered QD structure. On the other hand, when the inter-MBS coupling is nonzero, the zero-bias conductance spectrum shows a peak in the odd-numbered QD structure, and in the even-numbered QD structure one conductance valley appears at the zero-bias limit. These results show the feasibility to manipulate the current in a multi-QD structure based on the QD-MBS coupling. Also, such a system can be a candidate for detecting the MBSs.

  15. In Vitro Cytotoxicity of Benzopyranone Derivatives with Basic Side Chain Against Human Lung Cell Lines

    PubMed Central

    Musa, Musiliyu A.; Badisa, Veera L.D.; Latinwo, Lekan M.; Waryoba, Caroline; Ugochukwu, Ngozi

    2013-01-01

    Background Coumarins belong to an important group of useful drugs with diverse pharmacological properties. In the present study, the in vitro cytotoxicity of new coumarin-based benzopyranone derivatives containing diethylaminoethoxy (5), dimethylaminoethoxy (6), morpholinoethoxy (7), piperidinylethoxy (8) and pyrrolidinylethoxyl (9) amino side chain against human carcinoma (A549) and normal (LL47) lung cell lines was evaluated. Materials and Methods The cytotoxicity was evaluated by crystal violet dye binding assay. The effect of compound 9 on different phases of the cell cycle was determined using flow cytometry. Results In A549 cells, the 50% lethal dose (LD50) for compounds 5–9 were found to be 7.08, 5.0, 34.2, 8.33 and 5.83 µM, respectively, while in LL47 cells, the LD50 values were found to be 16.7, 20.4, 34.6, 15.4 and 8.75 µM, respectively after 48 h treatment. Cell cycle data indicated that A549 cells were arrested at different phases depending on the concentration. Conclusion Compounds 5–9 showed anticancer activity against lung cancer cell lines, while compound 6 showed highly selective anticancer activity. PMID:21115914

  16. Accessibility, reactivity, and selectivity of side chains within a channel of de novo peptide assembly.

    PubMed

    Burton, Antony J; Thomas, Franziska; Agnew, Christopher; Hudson, Kieran L; Halford, Stephen E; Brady, R Leo; Woolfson, Derek N

    2013-08-28

    Ab initio design of enzymes requires precise and predictable positioning of reactive functional groups within accessible and controlled environments of de novo protein scaffolds. Here we show that multiple thiol moieties can be placed within a central channel, with approximate dimensions 6 × 42 Å, of a de novo, six-helix peptide assembly (CC-Hex). Layers of six cysteine residues are introduced at two different sites ~6 (the "L24C" mutant) and ~17 Å (L17C) from the C-terminal opening of the channel. X-ray crystal structures confirm the mutant structures as hexamers with internal free thiol, rather than disulfide-linked cysteine residues. Both mutants are hexa-alkylated upon addition of iodoacetamide, demonstrating accessibility and full reactivity of the thiol groups. Comparison of the alkylation and unfolding rates of the hexamers indicates that access is directly through the channel and not via dissociation and unfolding of the assembly. Moreover, neither mutant reacts with iodoacetic acid, demonstrating selectivity of the largely hydrophobic channel. These studies show that it is possible to engineer reactive side chains with both precision and control into a de novo scaffold to produce protein-like structures with chemoselective reactivity. PMID:23924058

  17. Synthesis and Antiplasmodial Activity of Novel Chloroquine Analogues with Bulky Basic Side Chains.

    PubMed

    Tasso, Bruno; Novelli, Federica; Tonelli, Michele; Barteselli, Anna; Basilico, Nicoletta; Parapini, Silvia; Taramelli, Donatella; Sparatore, Anna; Sparatore, Fabio

    2015-09-01

    Chloroquine is commonly used in the treatment and prevention of malaria, but Plasmodium falciparum, the main species responsible for malaria-related deaths, has developed resistance against this drug. Twenty-seven novel chloroquine (CQ) analogues characterized by a side chain terminated with a bulky basic head group, i.e., octahydro-2H-quinolizine and 1,2,3,4,5,6-hexahydro-1,5-methano-8H-pyrido[1,2-a][1,5]diazocin-8-one, were synthesized and tested for activity against D-10 (CQ-susceptible) and W-2 (CQ-resistant) strains of P. falciparum. Most compounds were found to be active against both strains with nanomolar or sub-micromolar IC50 values. Eleven compounds were found to be 2.7- to 13.4-fold more potent than CQ against the W-2 strain; among them, four cytisine derivatives appear to be of particular interest, as they combine high potency with low cytotoxicity against two human cell lines (HMEC-1 and HepG2) along with easier synthetic accessibility. Replacement of the 4-NH group with a sulfur bridge maintained antiplasmodial activity at a lower level, but produced an improvement in the resistance factor. These compounds warrant further investigation as potential drugs for use in the fight against malaria. PMID:26213237

  18. The effect of side-chain liquid crystalline concentration in liquid crystal on dielectric properties

    NASA Astrophysics Data System (ADS)

    Gökçen, M.; Köysal, O.; Yıldırım, M.; Altındal, Ş.

    2012-08-01

    As liquid crystal (LC), E63 and as doping material, side-chain liquid crystalline polymer (SLCP) were used in this study. In order to observe the effect of SLCP concentration in LC on the dielectric properties in a wide range of frequency and bias voltage, SLCP was doped into E63 with 0 (pure E63), 1 and 10 wt%. The bias voltage and frequency dependence of the dielectric properties of pure E63 and doped mixtures (E63/SCLP) have been investigated using the admittance spectroscopy method (C-V and G/ω-V) in the frequency range of 10 kHz-10 MHz at room temperature. The values of dielectric constant (ɛ‧) and real (M‧) and imaginary (M″) parts of electric modulus of the pure E63 and E63/SLCP (1 and 10%) were calculated using the measured admittance values. Moreover, dielectric anisotropy (Δɛ) was also obtained for each sample as a function of frequency. Results show that the values of dielectric parameters are strong functions of frequency and applied bias voltage depending on the concentration amount. Furthermore, dielectric anisotropy has negative values according to p/n type changing for each sample after a critical frequency value.

  19. Side-Chain Liquid Crystalline Poly(meth)acrylates with Bent-Core Mesogens

    SciTech Connect

    Chen,X.; Tenneti, K.; Li, C.; Bai, Y.; Wan, X.; Fan, X.; Zhou, Q.; Rong, L.; Hsiao, B.

    2007-01-01

    We report the design, synthesis, and characterization of side-chain liquid crystalline (LC) poly(meth)acrylates with end-on bent-core liquid crystalline (BCLC) mesogens. Both conventional free radical polymerization and atom transfer radical polymerization have been used to synthesize these liquid crystalline polymers (LCP). The resulting polymers exhibit thermotropic LC behavior. Differential scanning calorimetry, thermopolarized light microscopy, wide-angle X-ray diffraction, and small-angle X-ray scattering were used to characterize the LC structure of both monomers and polymers. The electro-optic (EO) measurement was carried out by applying a triangular wave and measuring the LC EO response. SmCP (Smectic C indicates the LC molecules are tilted with respect to the layer normal; P denotes polar ordering) phases were observed for both monomers and polymers. In LC monomers, typical antiferroelectric switching was observed. In the ground state, SmCP{sub A} (A denotes antiferroelectric) was observed which switched to SmCP{sub F} (F denotes ferroelectric) upon applying an electric field. In the corresponding LCP, a unique bilayer structure was observed, which is different from the reported BCLC bilayer SmCG (G denotes generated) phase. Most of the LCPs did not switch upon applying electric field while weak AF switching was observed in a low molecular weight poly{l_brace}3'-[4-(4-n-dodecyloxybenzoyloxy)benzoyloxy]-4-(12-acryloyloxydodecyloxy)benzoyloxybiphenyl{r_brace} sample.

  20. Poly(Amido Amine)s Containing Agmatine and Butanol Side Chains as Efficient Gene Carriers.

    PubMed

    Won, Young-Wook; Ankoné, Marc; Engbersen, Johan F J; Feijen, Jan; Kim, Sung Wan

    2016-04-01

    A new type of bioreducible poly(amido amine) copolymer is synthesized by the Michael addition polymerization of cystamine bisacrylamide (CBA) with 4-aminobutylguanidine (agmatine, AGM) and 4-aminobutanol (ABOL). Since the positively charged guanidinium groups of AGM and the hydroxybutyl groups of ABOL in the side chains have shown to improve the overall transfection efficiency of poly(amido amine)s, it is hypothesized that poly(CBA-ABOL/AGM) synthesized at the optimal ratio of both components would result in high transfection efficiency and minimal toxicity. In this study, a series of the poly(CBA-ABOL/AGM) copolymers is synthesized as gene carriers. The polymers are characterized and luciferase transfection efficiencies of the polymers in various cell lines are investigated to select the ideal ratio between AGM and ABOL. The poly(CBA-ABOL/AGM) containing 80% AGM and 20% ABOL has shown the best transfection efficiency with the lowest cytotoxicity, indicating that this polymer is very promising as a potent and nontoxic gene carrier. PMID:26663734

  1. Protein Structure and Function: Looking through the Network of Side-Chain Interactions.

    PubMed

    Bhattacharyya, Moitrayee; Ghosh, Soma; Vishveshwara, Saraswathi

    2016-01-01

    Network theory has become an excellent method of choice through which biological data are smoothly integrated to gain insights into complex biological problems. Understanding protein structure, folding, and function has been an important problem, which is being extensively investigated by the network approach. Since the sequence uniquely determines the structure, this review focuses on the networks of non-covalently connected amino acid side chains in proteins. Questions in structural biology are addressed within the framework of such a formalism. While general applications are mentioned in this review, challenging problems which have demanded the attention of scientific community for a long time, such as allostery and protein folding, are considered in greater detail. Our aim has been to explore these important problems through the eyes of networks. Various methods of constructing protein structure networks (PSN) are consolidated. They include the methods based on geometry, edges weighted by different schemes, and also bipartite network of protein-nucleic acid complexes. A number of network metrics that elegantly capture the general features as well as specific features related to phenomena, such as allostery and protein model validation, are described. Additionally, an integration of network theory with ensembles of equilibrium structures of a single protein or that of a large number of structures from the data bank has been presented to perceive complex phenomena from network perspective. Finally, we discuss briefly the capabilities, limitations, and the scope for further explorations of protein structure networks. PMID:26412788

  2. Characterization of novel perylene diimides containing aromatic amino acid side chains.

    PubMed

    Farooqi, Mohammed J; Penick, Mark A; Burch, Jessica; Negrete, George R; Brancaleon, Lorenzo

    2016-01-15

    Perylene diimide derivatives have attracted initial interest as industrial dyes. Recently, much attention has been focused on their strong π-π stacks resulting from the large PDI aromatic core. These PDI stacks have distinct optical properties, and provide informative models that could mimic light-harvesting systems and initial charge transfer typical of photosynthetic systems. The absorption property of PDI derivatives may be tuned from visible to near-infrared region by peripheral substitution. We have studied a new class of PDI derivatives with aryl substituents derived from the side chains of aromatic aminoacids (Tyrosine, Tryptophan and Phenylalanine). We have investigated their absorption and the fluorescence properties in a set of organic solvents and established their different tendencies to aggregate in solution despite their solubility. Most aggregation appears to be unordered. One PDI analogue (the one formed from Tyr) in Methanol, however, appears to form J-type aggregates. Based on our results the compounds appear to be promising for future investigations regarding the interaction of these dyes with biomolecules. PMID:26298679

  3. Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury.

    PubMed

    Chia, Wan-Jie; Jenner, Andrew M; Farooqui, Akhlaq A; Ong, Wei-Yi

    2008-03-01

    Our previous study showed an increase in total cholesterol level of the hippocampus after kainate-induced injury, but whether this is further metabolized to neurosteroids is not known. The first step in neurosteroid biosynthesis is the conversion of cholesterol to pregnenolone by the enzyme cytochrome P450 side chain cleavage (P450scc). This study was carried out to elucidate the expression of this enzyme in the kainate-lesioned rat hippocampus. A net decrease in P450scc protein was detected in hippocampal homogenates by Western blots at 2 weeks post-kainate injection (time of peak cholesterol concentration after kainate injury). Immunohistochemistry showed decreased labeling of the enzyme in neurons, but increased expression in a small number of astrocytes. The level of pregnenolone was also analyzed using a newly developed gas chromatography-mass spectrometry (GC-MS) method, optimized for the rat hippocampus. A non-significant tendency to a decrease in pregnenolone level was detected 2 weeks post-lesion. This is in contrast to a large increase in oxysterols in the lesioned hippocampus at this time (He et al. 2006). Together, they indicate that increased cholesterol in the kainate lesioned hippocampus is mostly metabolized to oxysterols, and not neurosteroids. PMID:18040670

  4. High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains.

    PubMed

    Png, Rui-Qi; Chia, Perq-Jon; Tang, Jie-Cong; Liu, Bo; Sivaramakrishnan, Sankaran; Zhou, Mi; Khong, Siong-Hee; Chan, Hardy S O; Burroughes, Jeremy H; Chua, Lay-Lay; Friend, Richard H; Ho, Peter K H

    2010-02-01

    Heterostructures are central to the efficient manipulation of charge carriers, excitons and photons for high-performance semiconductor devices. Although these can be formed by stepwise evaporation of molecular semiconductors, they are a considerable challenge for polymers owing to re-dissolution of the underlying layers. Here we demonstrate a simple and versatile photocrosslinking methodology based on sterically hindered bis(fluorophenyl azide)s. The photocrosslinking efficiency is high and dominated by alkyl side-chain insertion reactions, which do not degrade semiconductor properties. We demonstrate two new back-infiltrated and contiguous interpenetrating donor-acceptor heterostructures for photovoltaic applications that inherently overcome internal recombination losses by ensuring path continuity to give high carrier-collection efficiency. This provides the appropriate morphology for high-efficiency polymer-based photovoltaics. We also demonstrate photopatternable polymer-based field-effect transistors and light-emitting diodes, and highly efficient separate-confinement-heterostructure light-emitting diodes. These results open the way to the general development of high-performance polymer semiconductor heterostructures that have not previously been thought possible. PMID:19966791

  5. Backbone and side chain chemical shift assignments of apolipophorin III from Galleria mellonella.

    PubMed

    Crowhurst, Karin A; Horn, James V C; Weers, Paul M M

    2016-04-01

    Apolipophorin III, a 163 residue monomeric protein from the greater wax moth Galleria mellonella (abbreviated as apoLp-IIIGM), has roles in upregulating expression of antimicrobial proteins as well as binding and deforming bacterial membranes. Due to its similarity to vertebrate apolipoproteins there is interest in performing atomic resolution analysis of apoLp-IIIGM as part of an effort to better understand its mechanism of action in innate immunity. In the first step towards structural characterization of apoLp-IIIGM, 99 % of backbone and 88 % of side chain (1)H, (13)C and (15)N chemical shifts were assigned. TALOS+ analysis of the backbone resonances has predicted that the protein is composed of five long helices, which is consistent with the reported structures of apolipophorins from other insect species. The next stage in the characterization of apoLp-III from G. mellonella will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:26493308

  6. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains.

    PubMed

    Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A

    2011-05-19

    A new model of side-chain-side-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parametrized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. PMID:21500792

  7. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains

    PubMed Central

    Makowski, Mariusz; Liwo, Adam; Sobolewski, Emil; Scheraga, Harold A.

    2011-01-01

    A new model of side-chainside-chain interactions for charged side-chains of amino acids, to be used in the UNRES force-field, has been developed, in which a side chain consists of a nonpolar and a charged site. The interaction energy between the nonpolar sites is composed of a Gay-Berne and a cavity term; the interaction energy between the charged sites consists of a Lennard-Jones term, a Coulombic term, a Generalized-Born term, and a cavity term, while the interaction energy between the nonpolar and charged sites is composed of a Gay-Berne and a polarization term. We parameterized the energy function for the models of all six pairs of natural like-charged amino-acid side chains, namely propionate-propionate (for the aspartic acid-aspartic acid pair), butyrate-butyrate (for the glutamic acid-glutamic acid pair), propionate-butyrate (for the aspartic acid-glutamic acid pair), pentylamine cation-pentylamine cation (for the lysine-lysine pair), 1-butylguanidine cation-1-butylguanidine cation (for the arginine-arginine pair), and pentylamine cation-1-butylguanidine cation (for the lysine-arginine pair). By using umbrella-sampling molecular dynamics simulations in explicit TIP3P water, we determined the potentials of mean force of the above-mentioned pairs as functions of distance and orientation and fitted analytical expressions to them. The positions and depths of the contact minima and the positions and heights of the desolvation maxima, including their dependence on the orientation of the molecules were well represented by analytical expressions for all systems. The values of the parameters of all the energy components are physically reasonable, which justifies use of such potentials in coarse-grain protein-folding simulations. PMID:21500792

  8. The Relationship of Pretilt Angle and Chemical Structure of Rubbed Organo-Soluble Side-Chain Polyimides

    NASA Astrophysics Data System (ADS)

    Mann, Ian K.; Bai, F.; Bai, Z.; Ge, J.; Sun, L.; Wang, H.; Zhang, Z.; Harris, Frank W.; Cheng, Stephen Z. D.

    2000-03-01

    This work is concerned with the relationship between the properties of the pretilt angles and chemical structure of the alignment layer for a series of novel organo-soluble side-chain polyimides developed at The University of Akron. The polyimides were spin cast on ITO glass substrates and mechanically rubbed with a velvet cloth. Liquid crystal display cells were constructed with an anti-parallel geometry using 10μm glass spacers and filled with the nematic liquid crystal mixture E7. The pretilt angle, which is defined as the angle between the liquid crystal director and the substrate, was measured using the magnetic null method. Various side-chain polyimide films were prepared and pretilt angles were determined employing identical processing conditions. In general, polyimides containing long flexible aliphatic side-chains (no. carbons >12) resulted in high pretilt angles (>20^o) however over time the pretilt shifted to a homeotropic alignment (i.e. 90^o to the substrate). The stability of the pretilt angles was improved when polyimide copolymers were used. Further enhancement of the stability was achieved by crosslinking the system prior to rubbing. Liquid crystal like side-chains (cyanobiphenol and biphenol based) resulted in stable pretilt angles ranging from 20 to 40^o for a spacer length of six carbons. Several surface techniques were used to study the effect of rubbing, including; atomic force microscopy, surfaced enhanced Raman scattering, and contact angle.

  9. Homeotropically-aligned main-chain and side-on liquid crystalline elastomer films with high anisotropic thermal conductivities.

    PubMed

    Wang, Meng; Wang, Jun; Yang, Hong; Lin, Bao-Ping; Chen, Er-Qiang; Keller, Patrick; Zhang, Xue-Qin; Sun, Ying

    2016-03-10

    Homeotropically-aligned main-chain and side-on liquid crystalline elastomer films are prepared by using LC thiol-ene and acrylate systems respectively. Evaluated by laser flash analysis, the room temperature thermal conductivities of these two LCP films in the film normal direction are both dramatically higher than those along the horizontal direction. PMID:26960421

  10. Copper(I)-catalyzed azide-alkyne cycloaddition for the synthesis of nonlinear electro-optic side-chain copolymers

    NASA Astrophysics Data System (ADS)

    Galindo, Christophe; Soyer, Françoise; Le Barny, Pierre

    2010-10-01

    The Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC) has been investigated as a versatile synthetic pathway to graft highly chemically sensitive "push-pull" chromophores onto a polymer backbone. We demonstrate that the CuAAC is highly efficient in mild conditions, chemioselective and is a powerful tool to design new powerful organic NLO side-chain copolymers.

  11. Synthesis and antiviral activity evaluation of acyclic 2'-azanucleosides bearing a phosphonomethoxy function in the side chain.

    PubMed

    Koszytkowska-Stawińska, Mariola; De Clercq, Erik; Balzarini, Jan

    2009-06-01

    Acyclic 2'-azanucleosides with a phosphonomethoxy function in the side chain were obtained by coupling of diethyl {2-[N-(pivaloyloxymethyl)-N-(p-toluenesulfonyl)amino]ethoxymethyl}phosphonate with the pyrimidine nucleobases via the Vorbrüggen-type protocol. The compounds were evaluated in vitro for activity against a broad variety of RNA and DNA viruses. PMID:19442526

  12. Tuning cation-binding selectivity and capacity via side chain-dependent molecular packing in the solid state.

    PubMed

    Shen, Jie; Ren, Changliang; Zeng, Huaqiang

    2016-08-16

    Cavity-containing cation-binding pentameric macrocycles readily assemble, via side chain-dependent molecular packing, into either 1D nanotube bundles with the smallest being 10 nm in diameter or nanoplates of different sizes. The resultant nanostructures are able to selectively remove metal salts from aqueous solutions with varying selectivities and capacities. PMID:27476578

  13. Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.

    PubMed

    Flynn, P F; Bieber Urbauer, R J; Zhang, H; Lee, A L; Wand, A J

    2001-06-01

    A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is presented. (15)N relaxation measurements confirm earlier results indicating that R. capsulatus ferrocytochrome c(2) exhibits minor rotational anisotropy in solution. The current study is focused on the use of deuterium relaxation in side chain methyl groups, which has been shown to provide a detailed and accurate measure of internal dynamics. Results obtained indicate that the side chains of ferrocytochrome c(2) exhibit a wide range of motional amplitudes, but are more rigid than generally found in the interior of nonprosthetic group bearing globular proteins. This unusual rigidity is ascribed to the interactions of the protein with the large heme prosthetic group. This observation has significant implications for the potential of the heme-protein interface to modulate the redox properties of the protein and also points to the need for great precision in the design and engineering of heme proteins. PMID:11380250

  14. Calcitriol derivatives with two different side-chains at C-20. Part 4: Further chain modifications that alter VDR-dependent monocytic differentiation potency in human leukemia cells☆

    PubMed Central

    Garay, Edward; Jankowski, Pawel; Lizano, Paulo; Marczak, Stanislaw; Maehr, Hubert; Adorini, Luciano; Uskokovic, Milan R.; Studzinski, George P.

    2007-01-01

    Signaling of cell differentiation is one of the important physiological functions of the activated vitamin D receptor (VDR). Activation of the VDR can be achieved not only by 1α,25-dihydroxyvitamin D3 (1,25D), the natural ligand, but also by a large number of its analogs. These include a category containing two side chains emanating at C-20, generally referred to as Gemini. The introduction of a cyclopropyl moiety as part of the pro-R side chain provides modified Gemini compounds with increased steric requirement and decreased chain flexibility; the biological consequences of this novel structural variant are subject of this investigation. In general, the resulting 1α,25-dihydroxy-(4-hydroxy-4-methyl-pentyl)-21,22-cis-cyclo-cholecalciferols reduced had differentiation and transcriptional potency and induced cell cycle arrest less effciently, as shown by a decrease in G1/S ratio, when compared to 1,25D. Modifying their calcitriol side chain in the form of a 4-hydroxy-4-trifluoromethyl-5,5,5-trifluoropent-2-ynyl moiety, however, resulted in pronounced induction of differentiation in 1,25D-sensitive and moderate level of differentiation in 1,25D-resistant leukemia cells. PMID:17485214

  15. Extension of microwave-accelerated residue-specific acid cleavage to proteins with carbohydrate side chains and disulfide linkages

    NASA Astrophysics Data System (ADS)

    Li, Jinxi; Shefcheck, Kevin; Callahan, John; Fenselau, Catherine

    2008-12-01

    This laboratory has introduced a chemical method for residue-specific protein cleavage and has provided a preliminary assessment of the suitability of microwave-accelerated acid cleavage as a proteomic tool. This report is a continuing assessment of the fate of common protein modifications in microwave-accelerated acid cleavage. We have examined the cleavage of ribonuclease A and the related N-linked glycoprotein ribonuclease B, and the O-linked glycoprotein alpha crystallin A chain, using MALDI-TOF and LC-ESI-MS to identify the peptide products. RNase A and B each contains four disulfide bonds, and the addition of a reducing reagent, such as dithiothreitol, was found to be required to achieve efficient acidic proteolysis. The linkage of the glycosidic group to the asparagine side chain in ribonuclease B was found not to be cleaved by brief microwave treatment in 12.5% acetic acid. The distribution of the heterogeneous carbohydrate side chain in the glycopeptide products of acid cleavage was compared to that of the glycopeptide products of tryptic digestion. Hydrolysis within the carbohydrate chain itself is minimal under the conditions used. The O-linked side chain on alpha crystalline A was found to be cleaved during acid cleavage of the protein.

  16. Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

    SciTech Connect

    Park, D.; Weinman, C; Finlay, J; Fletcher, B; Paik, M; Sundaram, H; Dimitriou, M; Sohn, K; Callow, M; et al.

    2010-01-01

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M{sub n} {approx} 550 g/mol (PEG550)] and a semifluorinated alcohol (CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 10}OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  17. Isotridecanyl side chain of plusbacin-A3 is essential for the transglycosylase inhibition of peptidoglycan biosynthesis§

    PubMed Central

    Kim, Sung Joon; Singh, Manmilan; Wohlrab, Aaron; Yu, Tsyr-Yan; Patti, Gary J.; O’Connor, Robert D.; VanNieuwenhze, Michael; Schaefer, Jacob

    2013-01-01

    Plusbacin-A3 (pb-A3) is a cyclic lipodepsipeptide which exhibits antibacterial activity against multidrug-resistant Gram-positive pathogens. Plusbacin-A3 is thought not to enter the cell cytoplasm and its lipophilic isotridecanyl side chain is presumed to insert into the membrane bilayer thereby facilitating either lipid II binding or some form of membrane disruption. Analogues of pb-A3, [2H]pb-A3 and deslipo-pb-A3, were synthesized to test membrane insertion as key to the mode of action. [2H]pb-A3 has a 2H-isotopically labeled isopropyl subunit of the lipid side chain, and deslipo-pb-A3 is missing the isotridecanyl side chain. Both analogues have the pb-A3 core structure. The loss of antimicrobial activity in deslipo-pb-A3 showed that the isotridecanyl side chain is crucial for the drug mode of action. However, rotational-echo double resonance NMR characterization of [2H]pb-A3 bound to [1-13C]glycine labeled whole-cells of Staphylococcus aureus showed that the isotridecanyl side chain does not insert into the lipid membrane, but instead is found in the staphylococcal cell wall, positioned near the pentaglycyl cross-bridge of the cell-wall peptidoglycan. Addition of [2H]pb-A3 during S. aureus growth resulted in an accumulation of Park’s nucleotide, consistent with the inhibition of the transglycosylation step of peptidoglycan biosynthesis. PMID:23421534

  18. Adapting Poisson-Boltzmann to the self-consistent mean field theory: Application to protein side-chain modeling

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice; Orland, Henri; Delarue, Marc

    2011-08-01

    We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.

  19. Hydrogen-bonding studies of amino acid side-chains with DNA base pairs

    NASA Astrophysics Data System (ADS)

    Deepa, P.; Kolandaivel, P.; Senthilkumar, K.

    2011-08-01

    The interactions of the amino acid side-chains arginine (ARG), aspartic acid (ASP), asparagine (ASN), lysine (LYS) and serine (SER) with nucleic acid base pairs have been investigated using theoretical methods. The interaction energy of the short intermolecular N-H ... N, N-H ... O, O-H ... O, O-H ... N, C-H ... O and C-H ... N hydrogen bonds present in both isolated base pairs and complexes and its role in providing stability to the complexes have been explored. The homonuclear interactions are found to be stronger than the heteronuclear interactions. An improper hydrogen bond has been observed for some of the N-H ... O and N-H ... N hydrogen-bond interactions with the contraction of the N-H bond varying from 0.001 to 0.0260 Å and the corresponding blue shift of the stretching frequency by 4-291 cm-1. Localized molecular orbital energy decomposition analysis (LMOEDA) reveals that the major contributions to the energetics are from the long-range polarization (PL) interaction, and the short-range attractive (ES, EX) and repulsive (REP) interactions. The Bader's atoms in molecules (AIM) theory shows good correlation for the electron density and its Laplacian at the bond critical points (BCP) with the N-H ... N and N-H ... O hydrogen-bond lengths in the complexes, and gives a proper explanation for the stability of the structure. The charge-transfer from the proton acceptor to the antibonding orbital of the X-H bond in the complexes was studied using natural bond orbital (NBO) analysis.

  20. Hydrogen bonding motifs of protein side chains: descriptions of binding of arginine and amide groups.

    PubMed Central

    Shimoni, L.; Glusker, J. P.

    1995-01-01

    The modes of hydrogen bonding of arginine, asparagine, and glutamine side chains and of urea have been examined in small-molecule crystal structures in the Cambridge Structural Database and in crystal structures of protein-nucleic acid and protein-protein complexes. Analysis of the hydrogen bonding patterns of each by graph-set theory shows three patterns of rings (R) with one or two hydrogen bond acceptors and two donors and with eight, nine, or six atoms in the ring, designated R2(2)(8), R2(2)(9), and R1(2)(6). These three patterns are found for arginine-like groups and for urea, whereas only the first two patterns R2(2)(8) and R2(2)(9) are found for asparagine- and glutamine-like groups. In each case, the entire system is planar within 0.7 A or less. On the other hand, in macromolecular crystal structures, the hydrogen bonding patterns in protein-nucleic acid complexes between the nucleic acid base and the protein are all R2(2)(9), whereas hydrogen bonding between Watson-Crick-like pairs of nucleic acid bases is R2(2)(8). These two hydrogen bonding arrangements [R2(2)(9)] and R2(2)(8)] are predetermined by the nature of the groups available for hydrogen bonding. The third motif identified, R1(2)(6), involves hydrogen bonds that are less linear than in the other two motifs and is found in proteins. PMID:7773178

  1. Polymer gels with associating side chains and their interaction with surfactants

    NASA Astrophysics Data System (ADS)

    Gordievskaya, Yulia D.; Rumyantsev, Artem M.; Kramarenko, Elena Yu.

    2016-05-01

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well.

  2. Shear mechanical anisotropy of side chain liquid-crystal elastomers: Influence of sample preparation

    NASA Astrophysics Data System (ADS)

    Rogez, D.; Francius, G.; Finkelmann, H.; Martinoty, P.

    2006-08-01

    We study the mechanical anisotropy of a series of uniaxial side chain nematic elastomers prepared with the same chemical composition but with different preparation protocols. For all the compounds, the experiments performed as a function of temperature show no discontinuity in both G'// and G'⊥ (the labels // and ⊥ stand for the director parallel, respectively perpendicular to the shear displacement) around the nematic-isotropic (N-I) phase transition temperature determined by DSC. They also all show a small decrease in G'// starting at temperatures well above this temperature (from ˜ 4°C to ˜ 20°C depending on the compound studied) and leading to a small hydrodynamic value of the G'⊥/G'// ratio. The measurements taken as a function of frequency show that the second plateau in G'// and the associated dip in G//” expected from dynamic semi-soft elasticity are not observed. These results can be described by the de Gennes model, which predicts small elastic anisotropy in the hydrodynamic and linear regimes. They correspond to the behavior expected for compounds beyond the mechanical critical point, which is consistent with the NMR and specific heat measurements taken on similar compounds. We also show that a reduction in the cross-linking density does not change the non-soft character of the mechanical response. From the measurements taken as a function of frequency at several temperatures we deduce that the time-temperature superposition method does not apply. From these measurements, we also determine the temperature dependence of the longest relaxation time τE of the network for the situations where the director is either parallel or perpendicular to the shear velocity. Finally, we discuss the influence on the measurements of the mechanical constraint associated with the fact that the samples cannot change their shape around the pseudo phase transition, because of their strong adherence on the sample-bearing glass slides.

  3. Polymer gels with associating side chains and their interaction with surfactants.

    PubMed

    Gordievskaya, Yulia D; Rumyantsev, Artem M; Kramarenko, Elena Yu

    2016-05-14

    Conformational behaviour of hydrophobically modified (HM) polymer gels in solutions of nonionic surfactants is studied theoretically. A HM gel contains hydrophobic side chains (stickers) grafted to its subchains. Hydrophobic stickers are capable to aggregate into joint micelles with surfactant molecules. Micelles containing more than one sticker serve as additional physical cross-links of the network, and their formation causes gel shrinking. In the proposed theoretical model, the interior of the gel/surfactant complex is treated as an array of densely packed spherical polymer brushes consisting of gel subchains tethered to the surface of the spherical sticker/surfactant micelles. Effect of stickers length and grafting density, surfactant concentration and hydrophobicity on gel swelling as well as on hydrophobic association inside it is analyzed. It is shown that increasing surfactant concentration can result in a gel collapse, which is caused by surfactant-induced hydrophobic aggregation of stickers, and a successive gel reswelling. The latter should be attributed to a growing fraction of surfactants in joint aggregates and, hence, increasing number of micelles containing only one sticker and not participating in gel physical cross-linking. In polyelectrolyte (PE) gels hydrophobic aggregation is opposed by osmotic pressure of mobile counterions, so that at some critical ionization degree hydrophobic association is completely suppressed. Hydrophobic modification of polymers is shown to open new ways for controlling gel responsiveness. In particular, it is discussed that incorporation of photosensitive groups into gel subchains and/or surfactant tail could give a possibility to vary the gel volume by light. Since hydrophobic aggregation regularities in gels and solutions are common, we hope our findings will be useful for design of polymer based self-healing materials as well. PMID:27179504

  4. Shear mechanical anisotropy of side chain liquid-crystal elastomers: influence of sample preparation.

    PubMed

    Rogez, D; Francius, G; Finkelmann, H; Martinoty, P

    2006-08-01

    We study the mechanical anisotropy of a series of uniaxial side chain nematic elastomers prepared with the same chemical composition but with different preparation protocols. For all the compounds, the experiments performed as a function of temperature show no discontinuity in both G' (//) and G' ( perpendicular) (the labels // and perpendicular stand for the director parallel, respectively perpendicular to the shear displacement) around the nematic-isotropic (N-I) phase transition temperature determined by DSC. They also all show a small decrease in G' (//) starting at temperatures well above this temperature (from approximately 4( degrees ) C to approximately 20( degrees ) C depending on the compound studied) and leading to a small hydrodynamic value of the G' ( perpendicular)/G' (//) ratio. The measurements taken as a function of frequency show that the second plateau in G' (//) and the associated dip in G (//)" expected from dynamic semi-soft elasticity are not observed. These results can be described by the de Gennes model, which predicts small elastic anisotropy in the hydrodynamic and linear regimes. They correspond to the behavior expected for compounds beyond the mechanical critical point, which is consistent with the NMR and specific heat measurements taken on similar compounds. We also show that a reduction in the cross-linking density does not change the non-soft character of the mechanical response. From the measurements taken as a function of frequency at several temperatures we deduce that the time-temperature superposition method does not apply. From these measurements, we also determine the temperature dependence of the longest relaxation time tau(E) of the network for the situations where the director is either parallel or perpendicular to the shear velocity. Finally, we discuss the influence on the measurements of the mechanical constraint associated with the fact that the samples cannot change their shape around the pseudo phase transition

  5. The glass transition of polymers with different side-chain stiffness confined in free-standing thin films

    NASA Astrophysics Data System (ADS)

    Xie, Shi-Jie; Qian, Hu-Jun; Lu, Zhong-Yuan

    2015-02-01

    The effect of confinement on the glass transition temperature Tg of polymeric glass formers with different side chain stiffness is investigated by coarse-grained molecular dynamics simulations. We find that polymer with stiffer side groups exhibits much more pronounced Tg variation in confinement compared to that with relatively flexible side groups, in good agreement with experiments. Our string analysis demonstrates that the polymer species dependence of dynamics can be described by an Adam-Gibbs like relation between the size of cooperatively rearranging regions and relaxation time. However, the primary effect of changing side-group stiffness is to alter the activation barrier for rearrangement, rather than string size. We clarify that free-surface perturbation is the primary factor in determining the magnitude of Tg variation for polymers in confinement: It is more significant for polymers having higher Tg and results in much more pronounced reduction of surface Tg and then the overall Tg of the polymers.

  6. The Inherent Conformational Preferences of Glutamine-Containing Peptides: the Role for Side-Chain Backbone Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Walsh, Patrick S.; McBurney, Carl; Gellman, Samuel H.; Zwier, Timothy S.

    2015-06-01

    Glutamine is widely known to be found in critical regions of peptides which readily fold into amyloid fibrils, the structures commonly associated with Alzheimer's disease and glutamine repeat diseases such as Huntington's disease. Building on previous single-conformation data on Gln-containing peptides containing an aromatic cap on the N-terminus (Z-Gln-OH and Z-Gln-NHMe), we present here single-conformation UV and IR spectra of Ac-Gln-NHBn and Ac-Ala-Gln-NHBn, with its C-terminal benzyl cap. These results point towards side-chain to backbone hydrogen bonds dominating the structures observed in the cold, isolated environment of a molecular beam. We have identified and assigned three main conformers for Ac-Gln-NHBn all involving primary side-chain to backbone interactions. Ac-Ala-Gln-NHBn extends the peptide chain by one amino acid, but affords an improvement in the conformational flexibility. Despite this increase in the flexibility, only a single conformation is observed in the gas-phase: a structure which makes use of both side-chain-to-backbone and backbone-to-backbone hydrogen bonds.

  7. Impact of a pectic polysaccharide on oenin copigmentation mechanism.

    PubMed

    Fernandes, Ana; Brás, Natércia F; Oliveira, Joana; Mateus, Nuno; de Freitas, Victor

    2016-10-15

    Copigmentation plays an important role in the colors provided by anthocyanins. However, little attention has been paid to the interaction between anthocyanins and cell wall compounds (e.g. polysaccharides) and the impact of this interaction on anthocyanins color, a fundamental issue to be considered in industrial applications of these pigments as food colorants. The copigmentation binding constants (KCP) for the interaction between malvidin-3-O-glucoside and (+)-catechin in the presence of low methoxylated pectic polysaccharide were determined. The values obtained showed that in the presence of pectic polysaccharide the copigmentation binding constants decreased. These results probably suggest the occurrence of competition equilibrium in which the presence of pectin limited the association between catechin and oenin. (1)H NMR studies revealed that the dissociation constant determined for these complexes was very similar in absence and presence of 1.5g/L pectin with this polysaccharide apparently not affecting the strength of anthocyanin-catechin binding. PMID:27173529

  8. New substituted amides and hydrazides of pectic acid

    SciTech Connect

    Lapenko, V.L.; Potapova, L.B.; Slivkin, A.I.; Razumnaya, Z.A.

    1988-05-10

    Structural variants of pectin amides and hydrazides are of practical value as flocculants in water treatment. The purpose of this work was to further investigate the synthesis of substituted amides and hydrazides of pectic acid and to study their activity as flocculants. They used pectin, methylation products of pectin, pectic acid, and methyl pectates. The synthesized analogs of pectinic materials containing nitrogen are essentially copolymers of hydrazido (amido) and carboxyl (methoxyl) derivatives of D-galacturonic acid. The flocculant activity of the new polymers was monitored with simulated drainage water containing kaolin or abrasive powder (for glass manufacture) in the presence of polyvalent metal ions. The use of the new ampholytic flocculants in the purification of water from suspended impurities permits a high degree of clarification with a sharp decrease in reagent consumption.

  9. Structure-Function Studies of Hydrophobic Residues That Clamp a Basic Glutamate Side Chain during Catalysis by Triosephosphate Isomerase.

    PubMed

    Richard, John P; Amyes, Tina L; Malabanan, M Merced; Zhai, Xiang; Kim, Kalvin J; Reinhardt, Christopher J; Wierenga, Rik K; Drake, Eric J; Gulick, Andrew M

    2016-05-31

    Kinetic parameters are reported for the reactions of whole substrates (kcat/Km, M(-1) s(-1)) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M(-2) s(-1)] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison with the corresponding parameters for wild-type, I172A, and L232A TbbTIM-catalyzed reactions shows that the effect of I172A and L232A mutations on ΔG(⧧) for the wild-type TbbTIM-catalyzed reactions of the substrate pieces is nearly the same as the effect of the same mutations on TbbTIM previously mutated at the second side chain. This provides strong evidence that mutation of the first hydrophobic side chain does not affect the functioning of the second side chain in catalysis of the reactions of the substrate pieces. By contrast, the effects of I172A and L232A mutations on ΔG(⧧) for wild-type TbbTIM-catalyzed reactions of the whole substrate are different from the effect of the same mutations on TbbTIM previously mutated at the second side chain. This is due to the change in the rate-determining step that determines the barrier to the isomerization reaction. X-ray crystal structures are reported for I172A, L232A, and I172A/L232A TIMs and for the complexes of these mutants to the intermediate analogue phosphoglycolate (PGA). The structures of the PGA complexes with wild-type and mutant enzymes are nearly superimposable, except that the space opened by replacement of the hydrophobic side chain is occupied by a water molecule that lies ∼3.5 Å from the basic side chain of Glu167. The new water at I172A mutant TbbTIM provides a simple rationalization for the increase in the activation barrier ΔG(⧧) observed for mutant enzyme-catalyzed reactions of the whole substrate and substrate pieces. By contrast, the new water at the L232A mutant does not predict the decrease in

  10. Solvation free energies of amino acid side chain analogs for common molecular mechanics water models

    NASA Astrophysics Data System (ADS)

    Shirts, Michael R.; Pande, Vijay S.

    2005-04-01

    Quantitative free energy computation involves both using a model that is sufficiently faithful to the experimental system under study (accuracy) and establishing statistically meaningful measures of the uncertainties resulting from finite sampling (precision). In order to examine the accuracy of a range of common water models used for protein simulation for their solute/solvent properties, we calculate the free energy of hydration of 15 amino acid side chain analogs derived from the OPLS-AA parameter set with the TIP3P, TIP4P, SPC, SPC/E, TIP3P-MOD, and TIP4P-Ew water models. We achieve a high degree of statistical precision in our simulations, obtaining uncertainties for the free energy of hydration of 0.02-0.06kcal/mol, equivalent to that obtained in experimental hydration free energy measurements of the same molecules. We find that TIP3P-MOD, a model designed to give improved free energy of hydration for methane, gives uniformly the closest match to experiment; we also find that the ability to accurately model pure water properties does not necessarily predict ability to predict solute/solvent behavior. We also evaluate the free energies of a number of novel modifications of TIP3P designed as a proof of concept that it is possible to obtain much better solute/solvent free energetic behavior without substantially negatively affecting pure water properties. We decrease the average error to zero while reducing the root mean square error below that of any of the published water models, with measured liquid water properties remaining almost constant with respect to our perturbations. This demonstrates there is still both room for improvement within current fixed-charge biomolecular force fields and significant parameter flexibility to make these improvements. Recent research in computational efficiency of free energy methods allows us to perform simulations on a local cluster that previously required large scale distributed computing, performing four times as much

  11. Control of the anchoring behavior of polymer-dispersed liquid crystals: effect of branching in the side chains of polyacrylates.

    PubMed

    Zhou, Jian; Collard, David M; Park, Jung O; Srinivasarao, Mohan

    2002-08-28

    A temperature-driven anchoring transition in a polymer/nematic fluid composite that is far from the bulk nematic-isotropic transition temperature is reported. A series of poly(methylheptyl acrylates) were studied to probe the subtle effects of the side chain structure of the polymer on control of the anchoring. A polymer-dispersed liquid crystal film made from TL205 and 1-methylheptyl acrylate shows only planar anchoring over the temperature range studied, while the films made from TL205 and each of the other methylheptyl acrylates or n-heptyl acrylate show the homeotropic-to-planar anchoring transition at temperatures between 70 and 78 degrees C. An interfacial model is proposed in which the different conformation of the side chains is suggested as the cause for the dramatic difference in the observed anchoring behavior. PMID:12188649

  12. Tuning Structural and Mechanical Properties of Two-Dimensional Molecular Crystals: The Roles of Carbon Side Chains

    SciTech Connect

    Cun, Huanyao; Wang, Yeliang; Du, S X; Zhang, Lei; Zhang, Lizhi; Yang, Bing; He, Xiaobo; Wang, Yue; Zhu, Xueyan; Yuan, Quanzi; Zhao, Ya-Pu; Ouyang, Min; Hofer, Werner A.; Pennycook, Stephen J; Gao, Hong-jun

    2012-01-01

    A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue. Eight molecular configurations with different molecular coverage are identified by scanning tunneling microscopy. Theoretical calculations reveal quantitatively the roles of different molecule-molecule and molecule-substrate interactions and predict the observed sequence of configurations. Remarkably, we find that a single Young's modulus applies for all configurations, the magnitude of which is controlled by side chain length, suggesting a versatile avenue for tuning not only the physical and chemical properties of molecular films but also their elastic properties.

  13. Synthesis, characterization and antitumor activities of some steroidal derivatives with side chain of 17-hydrazone aromatic heterocycle.

    PubMed

    Cui, Jianguo; Liu, Liang; Zhao, Dandan; Gan, Chunfang; Huang, Xin; Xiao, Qi; Qi, Binbin; Yang, Lei; Huang, Yanmin

    2015-03-01

    Here a series of dehydroepiandrosterone-17-hydrazone and estrone-17-hydrazone derivatives possessing various aromatic heterocycle structures in 17-side chain of their steroidal nucleus were synthesized and their structures were evaluated. The antiproliferative activity of synthesized compounds against some cancer cells was investigated. The results have demonstrated that some dehydroepiandrosterone-17-hydrazone derivatives show distinct antiproliferative activity against some cancer cells through inducing cancer cell apoptosis, and compound 8 with a quinoline structure in 17-side chain displays excellent antiproliferative activity in vitro against SGC 7901 cancer cell (human gastric carcinoma) with an IC50 value of 1 μM. In addition, estrone-17-hydrazone derivatives having a key feature of indole group in the structure showed a special obvious cytotoxicity against HeLa cells, but almost inactive against other cells. The information obtained from the studies is valuable for the design of novel steroidal chemotherapeutic drugs. PMID:25578734

  14. Photoinduced changes of surface order in coumarin side-chain polymer films used for liquid crystal photoalignment

    SciTech Connect

    Bergmann, G.; Jackson, P.O.; Hogg, J.H.C.; Stirner, T.; O'Neill, M.; Duffy, W.L.; Kelly, S.M.; Clark, G.F.

    2005-08-08

    Specular x-ray reflectivity probes morphological changes in a crosslinkable coumarin photoalignment polymer film resulting from ultraviolet irradiation. An ordered surface layer with density oscillations compatible with planar side-chain alignment is obtained before irradiation. The ordering is enhanced in the early stages of crosslinking. This is attributed to the photoinduced increase of mobility of the side-chains resulting from the creation of free volume by the crosslinking process. The expansion of the thin film confirms that free volume is created. The surface ordering decreases with prolonged ultraviolet irradiation because of increased material viscosity resulting from a high crosslinked density. The implications of surface ordering on liquid crystal photoalignment are discussed.

  15. Phenylalanyl-Glycyl-Phenylalanine Tripeptide: A Model System for Aromatic-Aromatic Side Chain Interactions in Proteins

    SciTech Connect

    Valdes, Haydee; Pluhackova, Kristyna; Hobza, Pavel

    2009-09-08

    The performance of a wide range of quantum chemical calculations for the ab initio study of realistic model systems of aromatic-aromatic side chain interactions in proteins (in particular those π-π interactions occurring between adjacent residues along the protein sequence) is here assessed on the phenylalanyl-glycyl-phenylalanine (FGF) tripeptide. Energies and geometries obtained at different levels of theory are compared with CCSD(T)/CBS benchmark energies and RI-MP2/cc-pVTZ benchmark geometries, respectively. Consequently, a protocol of calculation alternative to the very expensive CCSD(T)/CBS is proposed. In addition to this, the preferred orientation of the Phe aromatic side chains is discussed and compared with previous results on the topic.

  16. Calculation of electron paramagnetic resonance spectra from Brownian dynamics trajectories: application to nitroxide side chains in proteins.

    PubMed Central

    Steinhoff, H J; Hubbell, W L

    1996-01-01

    We present a method to simulate electron paramagnetic resonance spectra of spin-labeled proteins that explicitly includes the protein structure in the vicinity of the attached spin label. The method is applied to a spin-labeled polyleucine alpha-helix trimer. From short (6 ns) stochastic dynamics simulations of this trimer, an effective potential energy function is calculated. Interaction with secondary and tertiary structures determine the reorientational motion of the spin label side chains. After reduction to a single particle problem, long stochastic dynamic trajectories (700 ns) of the spin label side-chain reorientation are calculated from which the Lamor frequency trajectory and subsequently the electron paramagnetic resonance spectrum is determined. The simulated spectra agree well with experimental electron paramagnetic resonance spectra of bacteriorhodopsin mutants with spin labels in similar secondary and tertiary environments as in the polyleucine. Images FIGURE 1 PMID:8889196

  17. Insight from molecular modelling: does the polymer side chain length matter for transport properties of perfluorosulfonic acid membranes?

    SciTech Connect

    Devanathan, Ramaswami; Dupuis, Michel

    2012-08-28

    We present a detailed analysis of the nanostructure of short side chain (SSC) perfluorosulfonic acid membrane and its effect on H{sub 2}O network percolation, H{sub 3}O{sup +} and H{sub 2}O diffusion, and mean residence times of H{sub 3}O{sup +} and H{sub 2}O near SO{sub 3}{sup -} groups based on molecular dynamics simulations. We studied a range of hydration levels ({lambda}) at temperatures of 300 and 360 K, and compare the results to our previous findings in the benchmark Nafion membrane at 300 K. The water channel diameter is about 20% larger in Nafion, while the extent of SO3- clustering is more in SSC membrane. The calculated channel diameter is in excellent agreement with the recently proposed cylindrical water channel model of these membranes. The H{sub 2}O network percolation occurs at comparable hydration levels, and the diffusion coefficients of H{sub 2}O and H{sub 3}O{sup +} are similar in SSC and Nafion membranes. Raising the temperature of the SSC membrane from 300 to 360 K provides a much bigger increase in proton vehicular diffusion coefficient (by a factor of about 4) than changing the side chain length. H3O+ ions are found to exchange more frequently with SO{sub 3}{sup -} partners at the higher temperature. Our key findings are that (a) the hydrophobic-hydrophilic separation in the two membranes is surprisingly similar; (b) at all hydration levels studied, the longer side chain of Nafion is bent and is effectively equivalent to a short side chain in terms of extension into the water domain; and (c) proton transport along the centre of the channel is improbable and vehicular proton transport occurs between SO{sub 3}{sup -} groups. The simulations are validated by good agreement with corresponding experimental values for the simulated membrane density and diffusion coefficients of H{sub 2}O.

  18. A simple strategy to the side chain functionalization on the quinoxaline unit for efficient polymer solar cells.

    PubMed

    Yuan, Jun; Qiu, Lixia; Zhang, Zhiguo; Li, Yongfang; He, Yuehui; Jiang, Lihui; Zou, Yingping

    2016-05-25

    A new tetrafluoridequinoxaline electron accepting block from a quinoxaline core, which is substituted with a fluorine atom onto its backbone and side chains, was designed. A new copolymer (PBDTT-ffQx) was synthesized from tetrafluoridequinoxaline and benzodithiophene. The copolymer was characterized in detail. The photovoltaic properties were well investigated. A high PCE of 8.6% based on the single junction device was obtained. PMID:27025274

  19. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.

    PubMed

    Maier, James A; Martinez, Carmenza; Kasavajhala, Koushik; Wickstrom, Lauren; Hauser, Kevin E; Simmerling, Carlos

    2015-08-11

    Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structure balance and dynamics from earlier force fields like ff99, but weaknesses in side chain rotamer and backbone secondary structure preferences have been identified. Here, we performed a complete refit of all amino acid side chain dihedral parameters, which had been carried over from ff94. The training set of conformations included multidimensional dihedral scans designed to improve transferability of the parameters. Improvement in all amino acids was obtained as compared to ff99SB. Parameters were also generated for alternate protonation states of ionizable side chains. Average errors in relative energies of pairs of conformations were under 1.0 kcal/mol as compared to QM, reduced 35% from ff99SB. We also took the opportunity to make empirical adjustments to the protein backbone dihedral parameters as compared to ff99SB. Multiple small adjustments of φ and ψ parameters were tested against NMR scalar coupling data and secondary structure content for short peptides. The best results were obtained from a physically motivated adjustment to the φ rotational profile that compensates for lack of ff99SB QM training data in the β-ppII transition region. Together, these backbone and side chain modifications (hereafter called ff14SB) not only better reproduced their benchmarks, but also improved secondary structure content in small peptides and reproduction of NMR χ1 scalar coupling measurements for proteins in solution. We also discuss the Amber ff12SB parameter set, a preliminary version of ff14SB that includes most of its improvements. PMID:26574453

  20. Palladium-Assisted Removal of a Solubilizing Tag from a Cys Side Chain To Facilitate Peptide and Protein Synthesis.

    PubMed

    Maity, Suman Kumar; Mann, Guy; Jbara, Muhammad; Laps, Shay; Kamnesky, Guy; Brik, Ashraf

    2016-06-17

    Reversible attachment of solubilizing tags to hydrophobic peptides to facilitate their purification and ligation is an essential yet challenging task in chemical protein synthesis. The efficient palladium-assisted removal of the solubilizing tag linked to the Cys side chain is reported. The strategy was applied for the efficient preparation of histone protein H4 from two fragments via one-pot operation of ligation, removal of the solubilizing tag, and desulfurization. PMID:27268382

  1. Study of Class I and Class III Polyhydroxyalkanoate (PHA) Synthases with Substrates Containing a Modified Side Chain.

    PubMed

    Jia, Kaimin; Cao, Ruikai; Hua, Duy H; Li, Ping

    2016-04-11

    Polyhydroxyalkanoates (PHAs) are carbon and energy storage polymers produced by a variety of microbial organisms under nutrient-limited conditions. They have been considered as an environmentally friendly alternative to oil-based plastics due to their renewability, versatility, and biodegradability. PHA synthase (PhaC) plays a central role in PHA biosynthesis, in which its activity and substrate specificity are major factors in determining the productivity and properties of the produced polymers. However, the effects of modifying the substrate side chain are not well understood because of the difficulty to accessing the desired analogues. In this report, a series of 3-(R)-hydroxyacyl coenzyme A (HACoA) analogues were synthesized and tested with class I synthases from Chromobacterium sp. USM2 (PhaCCs and A479S-PhaCCs) and Caulobacter crescentus (PhaCCc) as well as class III synthase from Allochromatium vinosum (PhaECAv). It was found that, while different PHA synthases displayed distinct preference with regard to the length of the alkyl side chains, they could withstand moderate side chain modifications such as terminal unsaturated bonds and the azide group. Specifically, the specific activity of PhaCCs toward propynyl analogue (HHxyCoA) was only 5-fold less than that toward the classical substrate HBCoA. The catalytic efficiency (kcat/Km) of PhaECAv toward azide analogue (HABCoA) was determined to be 2.86 × 10(5) M(-1) s(-1), which was 6.2% of the value of HBCoA (4.62 × 10(6) M(-1) s(-1)) measured in the presence of bovine serum albumin (BSA). These side chain modifications may be employed to introduce new material functions to PHAs as well as to study PHA biogenesis via click-chemistry, in which the latter remains unknown and is important for metabolic engineering to produce PHAs economically. PMID:26974339

  2. Independent Metrics for Protein Backbone and Side-Chain Flexibility: Time Scales and Effects of Ligand Binding.

    PubMed

    Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R

    2015-03-10

    Conformational dynamics are central for understanding biomolecular structure and function, since biological macromolecules are inherently flexible at room temperature and in solution. Computational methods are nowadays capable of providing valuable information on the conformational ensembles of biomolecules. However, analysis tools and intuitive metrics that capture dynamic information from in silico generated structural ensembles are limited. In standard work-flows, flexibility in a conformational ensemble is represented through residue-wise root-mean-square fluctuations or B-factors following a global alignment. Consequently, these approaches relying on global alignments discard valuable information on local dynamics. Results inherently depend on global flexibility, residue size, and connectivity. In this study we present a novel approach for capturing positional fluctuations based on multiple local alignments instead of one single global alignment. The method captures local dynamics within a structural ensemble independent of residue type by splitting individual local and global degrees of freedom of protein backbone and side-chains. Dependence on residue type and size in the side-chains is removed via normalization with the B-factors of the isolated residue. As a test case, we demonstrate its application to a molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) on the millisecond time scale. This allows for illustrating different time scales of backbone and side-chain flexibility. Additionally, we demonstrate the effects of ligand binding on side-chain flexibility of three serine proteases. We expect our new methodology for quantifying local flexibility to be helpful in unraveling local changes in biomolecular dynamics. PMID:26579739

  3. Two Novel Norwithasteroids with Unusual Six- and Seven-Membered Ether Rings in Side Chain from Flos Daturae

    PubMed Central

    Yang, Bing-You; Xia, Yong-Gang; Wang, Yan-Yan; Wang, Qiu-Hong; Kuang, Hai-Xue

    2013-01-01

    Chemical investigation of 50% ethanol eluate fraction of macroporous resin for the flower of Datura metel L. collected in Jiangsu province of China resulted in the isolation of two novel naturally occurring norwithasteroids, baimantuoluoline I (1) and baimantuoluoside J (2). Their structures were elucidated as 5α, 6β, 12β-trihydroxy-1-oxo-2-en-ergosta-21,24;22,29-diepoxy-26-carboxylic acid (1) and 5α, 6β, 12β, 25-tetrahydroxy-1-oxo-2-en-ergosta-21,24;22,29-diepoxy-26-carboxylic acid (2) on the basis of extensive spectroscopic analysis, including 1D, 2D-NMR, and HR-ESI-MS. According to the literatures, this study represents the first report of the norwithasteroids in the side chain with unusual six- and seven-membered ether rings instead of those with an unmodified skeleton (δ-lactone or δ-lactol side chain) and a modified skeleton (γ-lactone or γ-lactol side chain) in the family of withanolides. Meanwhile, compounds 1 and 2 were evaluated for their immunosuppressive activity against mice splenocyte proliferation in vitro. PMID:23606878

  4. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction

    PubMed Central

    Smith, Colin A.; Kortemme, Tanja

    2008-01-01

    Summary Incorporation of effective backbone sampling into protein simulation and design is an important step in increasing the accuracy of computational protein modeling. Recent analysis of high-resolution crystal structures has suggested a new model, termed backrub, to describe localized, hinge-like alternative backbone and side chain conformations observed in the crystal lattice. The model involves internal backbone rotations about axes between Cα atoms. Based on this observation, we have implemented a backrub-inspired sampling method in the Rosetta structure prediction and design program. We evaluate this model of backbone flexibility using three different tests. First, we show that Rosetta backrub simulations recapitulate the correlation between backbone and side-chain conformations in the high-resolution crystal structures upon which the model was based. As a second test of backrub sampling, we show that backbone flexibility improves the accuracy of predicting point-mutant side chain conformations over fixed backbone rotameric sampling alone. Finally, we show that backrub sampling of triosephosphate isomerase loop 6 can capture the ms/µs oscillation between the open and closed states observed in solution. Our results suggest that backrub sampling captures a sizable fraction of localized conformational changes that occur in natural proteins. Application of this simple model of backbone motions may significantly improve both protein design and atomistic simulations of localized protein flexibility. PMID:18547585

  5. [Inhibition of neutrophil adhesion by pectic galacturonans].

    PubMed

    Popov, S V; Ovodova, R G; Popova, G Iu; Nikitina, I R; Ovodov, Iu S

    2007-01-01

    The inhibition of the adhesion of neutrophils to fibronectin by the fragments of the main galacturonan chain of the following pectins was demonstrated: comaruman from the marsh cinquefoil Comarum polustre, bergenan from the Siberian tea Bergenia crassifolia, lemnan from the duckweed Lemna minor, zosteran from the seagrass Zostera marina, and citrus pectin. The parent pectins, except for comaruman, did not affect the cell adhesion. Galacturonans prepared from the starting pectins by acidic hydrolysis were shown to reduce the neutrophil adhesion stimulated by phorbol 12-myristate 13-acetate (1.625 microM) and dithiothreitol (0.5 mM) at a concentration of 50-200 microg/ml. The presence of carbohydrate chains with molecular masses higher than 300, from 100 to 300, and from 50 to 100 kDa in the galacturonan fractions was proved by membrane ultrafiltration. PMID:17375675

  6. δ-Methyl Branching in the Side Chain Makes the Difference: Access to Room-Temperature Discotics.

    PubMed

    Kirres, Jochen; Knecht, Friederike; Seubert, Philipp; Baro, Angelika; Laschat, Sabine

    2016-04-18

    Although discotic liquid crystals are attractive functional materials, their use in electronic devices is often restricted by high melting and clearing points. Among the promising candidates for applications are [15]crown-5 ether-based liquid crystals with peripheral n-alkoxy side chains, which, however, still have melting points above room temperature. To overcome this problem, a series of o-terphenyl and triphenylene [15]crown-5 ether derivatives was prepared in which δ-methyl-branched alkoxy side chains of varying lengths substitute the peripheral linear alkoxy chains. The mesomorphic properties of the novel crown ethers were studied by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. δ-Methyl branching indeed lowers melting points resulting in room-temperature hexagonal columnar mesophases. The mesophase widths, which ranged from 87 to 30 K for o-terphenyls, significantly increased to 106-147 K for the triphenylenes depending on the chain lengths, revealing the beneficial effect of a flat mesogen, due to improved π-π interactions. PMID:26853226

  7. Exploring the correlation between molecular conformation and optoelectronic properties of conjugated polymers : side-chain versus main-chain electron acceptors

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Chen; Huang, Ching-I.

    2013-03-01

    Polythiophene derivatives have been shown among the most promising materials for solar cell application because of their high charge mobility and light absorption. In the mostly studied, a recombination process often occurs, which is mainly due to the fact that the mobility of hole is much lower than that of electron. Hence, research about conjugated polymers containing donor-accepter pairs (such as PT-TPD) becomes quite popular because these materials have narrow band-gaps. Interestingly, these experimental studies have indicated a much more complex correlation between the optoelectronic properties and molecular conformation for polymers with acceptor units on either main or side chain. However, the effects associated with the molecular packing on the resultant chain conformation behavior and thereafter the optoelectronic properties have not been systematically discussed. In order to clarify the effects of the molecular conformation as well as the optoelectronic properties, we employ molecular dynamics and quantum mechanical methods to examine PBTTPD molecules with acceptor unit (TPD) on either main or side chain Computation resources from the National Center for High-Performance Computing of Taiwan and Computer and Information Networking Center of National Taiwan University.

  8. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    PubMed

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  9. Gel-like elasticity in glass-forming side-chain liquid-crystal polymers

    NASA Astrophysics Data System (ADS)

    Pozo, O.; Collin, D.; Finkelmann, H.; Rogez, D.; Martinoty, P.

    2009-09-01

    We study the complex shear modulus G of two side-chain liquid-crystal polymers (SCLCPs), a methoxy-phenylbenzoate substituted polyacrylate (thereafter called PAOCH3 ), and a cyanobiphenyl substituted polyacrylate supplied by Merck (thereafter called LCP105) using a piezoelectric rheometer. Two methods of filling the cell are used: (a) a capillary method, which can be used only at high temperature because of the low value of the viscosity, and (b) the classical one, thereafter called compression method, which consists in placing the sample between the two slides of the cell and to bring them closer. By filling the cell at high temperature either with the compression or the capillary method, we show that the response of both compounds is liquidlike ( G'˜f2 and G″˜f , where f is the frequency) for temperatures higher than a certain temperature T0 and gel-like (G'˜const,G″˜f) below T0 . This change in behavior from the conventional flow response to a gel-like response, when approaching the glass transition, is observed for nonsliding conditions and for very weak-imposed shear strains. It can be explained by a percolation-type mechanism of preglassy elastic clusters, which correspond to long-range and long-lived density fluctuations that are frozen at the time scale of the experiment. The sample response is therefore the sum of two contributions: one is due to the flow response of the polymer melt and the other to the elastic response of the network formed by the preglassy elastic clusters. By filling the cell below T0 with the compression method, both compounds exhibit a gel-type behavior by gently bringing closer the slides of the cell and an anomalous low-frequency behavior characterized by G'=const and G″=const by increasing the pressure used to bring closer the slides of the cell. A compression-assisted aggregation of the preglassy elastic clusters can explain both the increase in the low-frequency elastic plateau when the sample thickness is decreased

  10. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    DOE PAGESBeta

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less