Science.gov

Sample records for pediatric acute leukemias

  1. The biology of pediatric acute megakaryoblastic leukemia

    PubMed Central

    Downing, James R.

    2015-01-01

    Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non–DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis. PMID:26186939

  2. Renal Presentation in Pediatric Acute Leukemia

    PubMed Central

    Sherief, Laila M.; Azab, Seham F.; Zakaria, Marwa M.; Kamal, M.; Elbasset Aly, Maha Abd; Ali, Adel; Alhady, Mohamed Abd

    2015-01-01

    Abstract Renal enlargement at time of diagnosis of acute leukemia is very unusual. We here in report 2 pediatric cases of acute leukemia who had their renal affection as the first presenting symptom with no evidences of blast cells in blood smear and none of classical presentation of acute leukemia. The first case is a 4-year-old girl who presented with pallor and abdominal enlargement. Magnetic resonance imaging showed bilateral symmetrical homogenous enlarged kidneys suggestive of infiltration. Complete blood picture (CBC) revealed white blood count 11 × 109/L, hemoglobin 8.7 g/dL and platelet count 197 × 109/L. Bone marrow aspiration was performed, and diagnosed precursor B-cell ALL was made. The child had an excellent response to modified CCG 1991 standard risk protocol of chemotherapy with sustained remission, but unfortunately relapsed 11 month after the end of therapy. The second child was 13-month old, presented with pallor, vomiting, abdominal enlargement, and oliguria 2 days before admission. Initial CBC showed bicytopenia, elevated blood urea, creatinine, and serum uric acid, while abdominal ultrasonography revealed bilateral renal enlargement. Bone marrow examination was done and showed 92% blast of biphenotypic nature. So, biphynotypic leukemia with bilateral renal enlargement and acute renal failure was subsequently diagnosed. The patients admitted to ICU and received supportive care and prednisolone. Renal function normalized and chemotherapy was started. The child achieved complete remission with marked reduction of kidney size but, unfortunately she died from sepsis in consolidation phase of therapy. This case demonstrates an unusual early renal enlargement in childhood acute leukemia. Renal involvement of acute leukemia should be considered in child presenting with unexplained bilateral renal enlargement with or without renal function abnormalities and bone marrow examination should be included in the workup. PMID:26376384

  3. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  4. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia

    PubMed Central

    de Rooij, Jasmijn D.E.; Beuling, Eva; van den Heuvel-Eibrink, Marry M.; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E.S.; Pieters, Rob; Zimmermann, Martin; Zwaan, C. Michel; Fornerod, Maarten

    2015-01-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1–0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1–4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7 PMID:26069293

  5. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  6. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. PMID:25361367

  7. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.

    PubMed

    Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L

    2015-09-20

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  8. Predictors of Antiemetic Alteration in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Freedman, Jason L.; Faerber, Jennifer; Kang, Tammy I.; Dai, Dingwei; Fisher, Brian T.; Huang, Yuan-Shung; Li, Yimei; Aplenc, Richard; Feudtner, Chris

    2014-01-01

    Background Better knowledge of patient and cancer treatment factors associated with nausea/vomiting (NV) in pediatric oncology patients could enhance prophylaxis. We aimed to describe such factors in children receiving treatment for acute myeloid leukemia (AML). Methods Retrospective longitudinal cohort study of 1668 hospitalized children undergoing treatment for AML from the Pediatric Health Information System database (39 hospitals, 1999–2010). Antiemetic alteration, which included switch (a change in prescribed 5-HT3 receptor antagonists) and rescue (receipt of an adjunct antiemetic), were first validated and then used as surrogates of problematic NV. Logistic and negative binomial regression modeling were used to test whether patient characteristics were associated with problematic NV. Results Increasing age is associated with greater odds of experiencing antiemetic switch and higher relative rate of antiemetic rescue. Within a treatment cycle, each consecutive inpatient chemotherapy-day decreased the likelihood of requiring antiemetic alteration. Each consecutive inpatient day post-chemotherapy was associated with decreased need for switch, but increased need for rescue. Subsequent cycles of AML therapy were associated with lower odds of antiemetic switch on both chemotherapy and non-chemotherapy days, a lower rate of antiemetic rescue on chemotherapy days, and an increased rate of rescue on non-chemotherapy days. Conclusion In pediatric patients with AML, increasing age is strongly associated with greater antiemetic alteration. Antiemetic alteration occurs early in treatment overall, and early within each admission. While additional cycles of therapy are associated with less alteration overall, there is persistent rescue in the days after chemotherapy, suggesting additional etiologies of NV in pediatric cancer patients. PMID:24939039

  9. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  10. Murine models of acute leukemia: important tools in current pediatric leukemia research.

    PubMed

    Jacoby, Elad; Chien, Christopher D; Fry, Terry J

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  11. Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research

    PubMed Central

    Jacoby, Elad; Chien, Christopher D.; Fry, Terry J.

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  12. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides

    PubMed Central

    Soldin, Offie P.; Nsouly-Maktabi, Hala; Genkinger, Jeanine M.; Loffredo, Christopher A.; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B.; Luban, Naomi L.; Shad, Aziza T.; Nelson, David

    2013-01-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case–control study of children newly diagnosed with ALL, and their mothers (n = 41 child–mother pairs) were recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography–high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association. PMID:19571777

  13. Immunotherapy for Pediatric Leukemia

    PubMed Central

    Shah, Nirali N.; Dave, Hema; Wayne, Alan S.

    2013-01-01

    Substantial progress has been made in the treatment of leukemia in childhood. Despite this, leukemia remains a leading cause of pediatric cancer-related mortality and the prognosis is guarded for individuals with relapsed or refractory disease. Standard therapies are associated with a wide array of acute and long-term toxicities and further treatment intensification may not be tolerable or beneficial. The curative potential of allogeneic stem cell transplantation is due in part to the graft-versus-leukemia effect, which provides evidence for the therapeutic capacity of immune-based therapies. In recent years there have been significant advances in the development and application of immunotherapy in the treatment of leukemias, including the demonstration of activity in chemotherapy-resistant cases. This review summarizes immunotherapeutic approaches in the treatment of pediatric leukemia including current results and future directions. PMID:23847759

  14. Beyond CD19: Opportunities for Future Development of Targeted Immunotherapy in Pediatric Relapsed-Refractory Acute Leukemia

    PubMed Central

    Shalabi, Haneen; Angiolillo, Anne; Fry, Terry J.

    2015-01-01

    Chimeric antigen receptor (CAR) T cell therapy has been used as a targeted approach in cancer therapy. Relapsed and refractory acute leukemia in pediatrics has been difficult to treat with conventional therapy due to dose-limiting toxicities. With the recent success of CD 19 CAR in pediatric patients with B cell acute lymphoblastic leukemia (ALL), this mode of therapy has become a very attractive option for these patients with high-risk disease. In this review, we will discuss current treatment paradigms of pediatric acute leukemia and potential therapeutic targets for additional high-risk populations, including T cell ALL, AML, and infant ALL. PMID:26484338

  15. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    PubMed Central

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3–16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P<0.05): HDL, LDL, total cholesterol, triglycerides, glucose, and insulin. In addition, dexamethasone increased insulin resistance (HOMA-IR>3.4) from 8% to 85% (P<0.01). Dexamethasone treatment also significantly increased the diastolic and systolic blood pressure. Lastly, dexamethasone trough levels (N = 24) were directly correlated with high glucose levels at T2, but not with other parameters. These results indicate that dexamethasone treatment acutely induces three components of the MetS. Together with the weight gain typically associated with dexamethasone treatment, these factors may contribute to the higher prevalence of MetS and cardiovascular risk among survivors of childhood leukemia who received dexamethasone treatment. PMID:27362350

  16. Cerebral aspergillus infection in pediatric acute lymphoblastic leukemia induction therapy

    PubMed Central

    Prakash, Gaurav; Thulkar, Sanjay; Arava, Sudheer Kumar; Bakhshi, Sameer

    2012-01-01

    Angioinvasive pulmonary infection from filamentous fungi is not an uncommon occurrence in immunocompromised patients like acute lymphoblastic leukemia (ALL). Rarely, these lesions can spread via the hematogenous route and involve multiple visceral organs. We report a case of a 14-year-old boy with ALL who developed angioinvasive pulmonary aspergillosis early in the course of induction therapy, which was followed by hematogenous dissemination and formation of multiple brain abscesses. The patient was treated with intravenous amphotericin B. There was no response to the therapy and the patient succumbed to disseminated infection. Postmortem lung biopsy confirmed angioinvasive pulmonary aspergillosis. Poor penetration of amphotericin B across the blood-brain barrier could be one of the contributory factors for poor response to antifungal therapy. We discuss the various antifungal agents with respect to their penetration in brain. PMID:23580827

  17. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia.

    PubMed

    Dolnikov, Alla; Shen, Sylvie; Klamer, Guy; Joshi, Swapna; Xu, Ning; Yang, Lu; Micklethwaite, Kenneth; O'Brien, Tracey A

    2015-12-01

    Adoptive therapy with chimeric antigen receptor (CAR) T cells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy. PMID:26384559

  18. Absence of Genomic Ikaros/IKZF1 Deletions in Pediatric B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Qazi, Sanjive; Ma, Hong; Uckun, Fatih M

    2013-01-01

    Here we report the results of gene expression analyses using multiple probesets aimed at determining the incidence of Ikaros/IKZF1 deletions in pediatric B-precursor acute lymphoblastic leukemia (BPL). Primary leukemia cells from 122 Philadelphia chromosome (Ph)+ BPL patients and 237 Ph− BPL patients as well as normal hematopoietic cells from 74 normal non-leukemic bone marrow specimens were organized according to expression levels of IKZF1 transcripts utilizing two-way hierarchical clustering technique to identify specimens with low IKZF1 expression for the 10 probesets interrogating Exons 1 through 4 and Exon 8. Our analysis demonstrated no changes in expression that would be expected from homozygous or heterozygous deletions of IKZF1 in primary leukemic cells. Similar results were obtained in gene expression analysis of primary leukemic cells from 20 Ph+ positive and 155 Ph− BPL patients in a validation dataset. Taken together, our gene expression analyses in 534 pediatric BPL cases, including 142 cases with Ph+ BPL, contradict previous reports that were based on SNP array data and suggested that Ph+ pediatric BPL is characterized by a high frequency of homozygous or heterozygous IKZF1 deletions. Further, exon-specific genomic PCR analysis of primary leukemia cells from 21 high-risk pediatric BPL patients and 11 standard-risk pediatric BPL patients, and 8 patients with infant BPL did not show any evidence for homozygous IKZF1 locus deletions. Nor was there any evidence for homozygous or heterozygous intragenic IKZF1 deletions. PMID:24478816

  19. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells

    PubMed Central

    Torelli, Giovanni F.; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S.; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-01-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL+ blasts, regardless of patient age. Accordingly, BCR-ABL+ blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL+, are worth pursuing further. PMID:24658822

  20. Biology, Risk Stratification, and Therapy of Pediatric Acute Leukemias: An Update

    PubMed Central

    Pui, Ching-Hon; Carroll, William L.; Meshinchi, Soheil; Arceci, Robert J.

    2011-01-01

    Purpose We review recent advances in the biologic understanding and treatment of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), identify therapeutically challenging subgroups, and suggest future directions of research. Methods A review of English literature on childhood acute leukemias from the past 5 years was performed. Results Contemporary treatments have resulted in 5-year event-free survival rates of approximately 80% for childhood ALL and almost 60% for pediatric AML. The advent of high-resolution genome-wide analyses has provided new insights into leukemogenesis and identified many novel subtypes of leukemia. Virtually all ALL and the vast majority of AML cases can be classified according to specific genetic abnormalities. Cooperative mutations involved in cell differentiation, cell cycle regulation, tumor suppression, drug responsiveness, and apoptosis have also been identified in many cases. The development of new formulations of existing drugs, molecularly targeted therapy, and immunotherapies promises to further advance the cure rates and improve quality of life of patients. Conclusion The application of new high-throughput sequencing techniques to define the complete DNA sequence of leukemia and host normal cells and the development of new agents targeted to leukemogenic pathways promise to further improve outcome in the coming decade. PMID:21220611

  1. Gene set enrichment and topological analyses based on interaction networks in pediatric acute lymphoblastic leukemia

    PubMed Central

    SUI, SHUXIANG; WANG, XIN; ZHENG, HUA; GUO, HUA; CHEN, TONG; JI, DONG-MEI

    2015-01-01

    Pediatric acute lymphoblastic leukemia (ALL) accounts for over one-quarter of all pediatric cancers. Interacting genes and proteins within the larger human gene interaction network of the human genome are rarely investigated by studies investigating pediatric ALL. In the present study, interaction networks were constructed using the empirical Bayesian approach and the Search Tool for the Retrieval of Interacting Genes/proteins database, based on the differentially-expressed (DE) genes in pediatric ALL, which were identified using the RankProd package. Enrichment analysis of the interaction network was performed using the network-based methods EnrichNet and PathExpand, which were compared with the traditional expression analysis systematic explored (EASE) method. In total, 398 DE genes were identified in pediatric ALL, and LIF was the most significantly DE gene. The co-expression network consisted of 272 nodes, which indicated genes and proteins, and 602 edges, which indicated the number of interactions adjacent to the node. Comparison between EASE and PathExpand revealed that PathExpand detected more pathways or processes that were closely associated with pediatric ALL compared with the EASE method. There were 294 nodes and 1,588 edges in the protein-protein interaction network, with the processes of hematopoietic cell lineage and porphyrin metabolism demonstrating a close association with pediatric ALL. Network enrichment analysis based on the PathExpand algorithm was revealed to be more powerful for the analysis of interaction networks in pediatric ALL compared with the EASE method. LIF and MLLT11 were identified as the most significantly DE genes in pediatric ALL. The process of hematopoietic cell lineage was the pathway most significantly associated with pediatric ALL. PMID:26788135

  2. Valproic Acid Synergistically Enhances The Cytotoxicity of Clofarabine in Pediatric Acute Myeloid Leukemia Cells

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; LoGrasso, Salvatore B.; Buck, Steven A.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2012-01-01

    SUMMARY Background Acute myeloid leukemia (AML) remains a major therapeutic challenge in pediatric oncology even with intensified cytarabine (ara-C)-based chemotherapy. Therefore, new therapies are urgently needed to improve treatment outcome of this deadly disease. In this study, we evaluated antileukemic interactions between clofarabine (a second-generation purine nucleoside analog) and valproic acid (VPA, a FDA-approved agent for treating epilepsy in both children and adult and a histone deacetylase inhibitor), in pediatric AML. Methodology In vitro clofarabine and VPA cytotoxicities of the pediatric AML cell lines and diagnostic blasts were measured by using MTT assays. The effects of clofarabine and VPA on apoptosis and DNA double strand breaks (DSBs) were determined by flow cytometry analysis and Western blotting, respectively. Active form of Bax was measured by Western blotting post immunoprecipitation. Results We demonstrated synergistic antileukemic activities between clofarabine and VPA in both pediatric AML cell lines and diagnostic blasts sensitive to VPA. In contrast, antagonism between the two agents could be detected in AML cells resistant to VPA. Clofarabine and VPA cooperate in inducing DNA DSBs, accompanied by Bax activation and apoptosis in pediatric AML cells. Conclusion Our results document synergistic antileukemic activities of combined VPA and clofarabine in pediatric AML and suggest that this combination could be an alternative treatment option for the disease. PMID:22488775

  3. Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure.

    PubMed

    Ju, Hee Young; Hong, Che Ry; Shin, Hee Young

    2014-10-01

    Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered. PMID:25379043

  4. Zinc finger protein 382 is downregulated by promoter hypermethylation in pediatric acute myeloid leukemia patients

    PubMed Central

    TAO, YAN-FANG; HU, SHAO-YAN; LU, JUN; CAO, LAN; ZHAO, WEN-LI; XIAO, PEI-FANG; XU, LI-XIAO; LI, ZHI-HENG; WANG, NA-NA; DU, XIAO-JUAN; SUN, LI-CHAO; ZHAO, HE; FANG, FANG; SU, GUANG-HAO; LI, YAN-HONG; LI, YI-PING; XU, YUN-YUN; NI, JIAN; WANG, JIAN; FENG, XING; PAN, JIAN

    2014-01-01

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are characteristic of AML. Zinc finger protein 382 (ZNF382) has been suggested to be a tumor suppressor gene possibly regulated by promoter hypermethylation in various types of human cancer. However, ZNF382 expression and methylation status in pediatric AML is unknown. In the present study, ZNF382 transcription levels were evaluated by quantitative reverse-transcription PCR. Methylation status was investigated by methylation-specific (MSP) PCR and bisulfate genomic sequencing (BGS). The prognostic significance of ZNF382 expression and promoter methylation was assessed in 105 cases of pediatric AML. The array data suggested that the ZNF382 promoter was hypermethylated in the AML cases examined. MSP PCR and BGS analysis revealed that ZNF382 was hypermethylated in leukemia cell lines. Furthermore, treatment with 5-aza-2′-deoxycytidine (5-Aza) upregulated ZNF382 expression in the selected leukemia cell lines. The aberrant methylation of ZNF382 was observed in 10% (2/20) of the control samples compared with 26.7% (28/105) of the AML samples. ZNF382 expression was significantly decreased in the 105 AML patients compared with the controls. Patients with ZNF382 methylation showed lower ZNF382 transcript levels compared with patients exhibiting no methylation. There were no significant differences in clinical characteristics or cytogenetic analysis between the patients with or without ZNF382 methylation. ZNF382 methylation correlated with minimal residual disease (MRD). Kaplan-Meier survival analysis revealed similar survival times in the samples with ZNF382 methylation, and multivariate analysis revealed that ZNF382 methylation was not an independent prognostic factor in pediatric AML. The epigenetic inactivation of ZNF382 by promoter hypermethylation can be observed in AML cell lines and pediatric AML samples. Therefore, our study suggests that ZNF382

  5. Acute myelogenous leukemia (AML) - children

    MedlinePlus

    Acute myelogenous leukemia - children; AML; Acute myeloid leukemia - children; Acute granulocytic leukemia - children; Acute myeloblastic leukemia - children; Acute non-lymphocytic leukemia (ANLL) - children

  6. Posterior reversible encephalopathy syndrome in pediatric acute leukemia: Case series and literature review

    PubMed Central

    Appachu, M. Sandhya; Purohit, Samit; Lakshmaiah, K. C.; Kumari, B.S. Aruna; Appaji, L.

    2014-01-01

    Posterior reversible encephalopathy syndrome (PRES) is a neurotoxic state coupled with a unique radio imaging appearance. We describe this rare, mostly reversible condition in five cases undergoing similar treatment under preset protocol (MCP-841) for acute lymphoblastic leukemia (ALL) at our centre. Hypertension is a well-known adverse effect of high-dose corticosteroid therapy primarily mediated by its effects on the mineralocorticoid receptor especially in pediatric population and we hypothesize that this may be the etiology of PRES in two of these patients. PMID:25006290

  7. Executive Function Late Effects in Survivors of Pediatric Brain Tumors and Acute Lymphoblastic Leukemia

    PubMed Central

    Winter, Amanda L.; Conklin, Heather M.; Tyc, Vida L.; Stancel, Heather; Hinds, Pamela S.; Hudson, Melissa M.; Kahalley, Lisa S.

    2014-01-01

    BACKGROUND Survivors of pediatric brain tumors (BT) and acute lymphoblastic leukemia (ALL) are at risk for neurocognitive late effects related to executive function. PROCEDURE Survivors of BT (48) and ALL (50) completed neurocognitive assessment. Executive function was compared to estimated IQ and population norms by diagnostic group. RESULTS Both BT and ALL demonstrated relative executive function weaknesses. As a group, BT survivors demonstrated weaker executive functioning than expected for age. Those BT survivors with deficits exhibited a profile suggestive of global executive dysfunction, while affected ALL survivors tended to demonstrate specific rapid naming deficits. CONCLUSION Findings suggest that pediatric BT and ALL survivors may exhibit different profiles of executive function late effects, which may necessitate distinct intervention plans. PMID:25126830

  8. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations

    PubMed Central

    Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  9. Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations.

    PubMed

    Wang, Yan; Xue, Jing; Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jinzhi; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  10. Antibody Therapy for Pediatric Leukemia

    PubMed Central

    Vedi, Aditi; Ziegler, David S.

    2014-01-01

    Despite increasing cure rates for pediatric leukemia, relapsed disease still carries a poor prognosis with significant morbidity and mortality. Novel targeted therapies are currently being investigated in an attempt to reduce adverse events and improve survival outcomes. Antibody therapies represent a form of targeted therapy that offers a new treatment paradigm. Monoclonal antibodies are active in pediatric acute lymphoblastic leukemia (ALL) and are currently in Phase III trials. Antibody-drug conjugates (ADCs) are the next generation of antibodies where a highly potent cytotoxic agent is bound to an antibody by a linker, resulting in selective targeting of leukemia cells. ADCs are currently being tested in clinical trials for pediatric acute myeloid leukemia and ALL. Bispecific T cell engager (BiTE) antibodies are a construct whereby each antibody contains two binding sites, with one designed to engage the patient’s own immune system and the other to target malignant cells. BiTE antibodies show great promise as a novel and effective therapy for childhood leukemia. This review will outline recent developments in targeted agents for pediatric leukemia including monoclonal antibodies, ADCs, and BiTE antibodies. PMID:24795859

  11. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays

    PubMed Central

    2012-01-01

    Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. Results We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. Conclusions The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We found some genes dyes

  12. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Pharmacogenetics of microRNAs and microRNAs biogenesis machinery in pediatric acute lymphoblastic leukemia.

    PubMed

    López-López, Elixabet; Gutiérrez-Camino, Ángela; Piñán, Maria Ángeles; Sánchez-Toledo, José; Uriz, Jose Javier; Ballesteros, Javier; García-Miguel, Purificación; Navajas, Aurora; García-Orad, África

    2014-01-01

    Despite the clinical success of acute lymphoblastic leukemia (ALL) therapy, toxicity is frequent. Therefore, it would be useful to identify predictors of adverse effects. In the last years, several studies have investigated the relationship between genetic variation and treatment-related toxicity. However, most of these studies are focused in coding regions. Nowadays, it is known that regions that do not codify proteins, such as microRNAs (miRNAs), may have an important regulatory function. MiRNAs can regulate the expression of genes affecting drug response. In fact, the expression of some of those miRNAs has been associated with drug response. Genetic variations affecting miRNAs can modify their function, which may lead to drug sensitivity. The aim of this study was to detect new toxicity markers in pediatric B-ALL, studying miRNA-related polymorphisms, which can affect miRNA levels and function. We analyzed 118 SNPs in pre-miRNAs and miRNA processing genes in association with toxicity in 152 pediatric B-ALL patients all treated with the same protocol (LAL/SHOP). Among the results found, we detected for the first time an association between rs639174 in DROSHA and vomits that remained statistically significant after FDR correction. DROSHA had been associated with alterations in miRNAs expression, which could affect genes involved in drug transport. This suggests that miRNA-related SNPs could be a useful tool for toxicity prediction in pediatric B-ALL. PMID:24614921

  14. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  15. MECHANISMS OF SYNERGISTIC ANTILEUKEMIC INTERACTIONS BETWEEN VALPROIC ACID AND CYTARABINE IN PEDIATRIC ACUTE MYELOID LEUKEMIA

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; Xu, Xuelian; Zhou, Hui; Buck, Steven A.; Stout, Mark L.; Yu, Qun; Rubnitz, Jeffrey E.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2010-01-01

    Purpose To determine the possibility of synergistic anti-leukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA) [a histone deacetylase inhibitor (HDACI) and an FDA-licensed drug for treating both children and adults with epilepsy] in pediatric acute myeloid leukemia (AML). Experimental Design The type and extent of anti-leukemic interactions between cytarabine and VPA in clinically relevant pediatric AML cell lines and diagnostic blasts from children with AML were determined by MTT assays and standard isobologram analyses. The effects of cytarabine and VPA on apoptosis and cell cycle distributions were determined by flow cytometry analysis and caspase enzymatic assays. The effects of the two agents on DNA damage and Bcl-2 family proteins were determined by Western blotting. Results We demonstrated synergistic antileukemic activities between cytarabine and VPA in 4 pediatric AML cell lines and 9 diagnostic AML blast samples. t(8;21) AML blasts were significantly more sensitive to VPA and showed far greater sensitivities to combined cytarabine and VPA than non-t(8;21) AML cases. Cytarabine and VPA cooperatively induced DNA double strand breaks, reflected in induction of γH2AX and apoptosis, accompanied by activation of caspases 9 and 3. Further, VPA induced Bim expression and shRNA knockdown of Bim resulted in significantly decreased apoptosis induced by cytarabine, and by cytarabine plus VPA. Conclusions Our results establish global synergistic antileukemic activity of combined VPA and cytarabine in pediatric AML and provide compelling evidence to support the use of VPA in the treatment of children with this deadly disease. PMID:20889917

  16. Oral manifestations in pediatric patients receiving chemotherapy for acute lymphoblastic leukemia.

    PubMed

    Ponce-Torres, Elena; Ruíz-Rodríguez, Ma del Socorro; Alejo-González, Francisco; Hernández-Sierra, Juan Francisco; Pozos-Guillén, Amaury de J

    2010-01-01

    The purpose of this study was to determine the prevalence of oral manifestations in pediatric patients with acute lymphoblastic leukemia (ALL) receiving chemotherapy, and to evaluate the significance of independent risk factors (oral health, gender, age, time and type of treatment, and phase of chemotherapy). A cross-sectional study was made in 49 children with ALL between 2 and 14 years of age. To describe oral manifestations, a clinical diagnosis was made and the following criteria were applied: the OHI-S index to describe oral health and the IMPA index to describe periodontal conditions and to differentiate gingivitis from periodontitis. The prevalence of oral manifestations was: gingivitis, 91.84%; caries, 81.63%; mucositis, 38.77%; periodontitis, 16.32%; cheilitis, 18.36%; recurrent herpes, 12.24%; and primary herpetic gingivostomatitis, 2.04%. Other oral manifestations were: dry lips, mucosal pallor, mucosal petechiae, ecchymoses, and induced ulcers. The prevalence of oral candidiasis was 6.12%. It was observed that high risk ALL and poor oral hygiene were important risk factors for the development of candidiasis and gingivitis. The type of leukemia, gender and phase of chemotherapy were apparently associated with the presence of candidiasis, gingivitis, and periodontitis, and they could be considered risk factors for the development of oral manifestations. PMID:20578668

  17. Haploidentical hematopoietic stem cell transplantation without total body irradiation for pediatric acute leukemia: a single-center experience

    PubMed Central

    Mu, Yanshun; Qin, Maoquan; Wang, Bin; Li, Sidan; Zhu, Guanghua; Zhou, Xuan; Yang, Jun; Wang, Kai; Lin, Wei; Zheng, Huyong

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a promising method for therapy of pediatric patients with acute leukemia. However, less availability of matched donors limited its wide application. Recently, haploidentical HSCT has become a great resource. Here, we have retrospectively reported our experience of 20 pediatric patients with acute leukemia who underwent haploidentical HSCT without total body irradiation (TBI) myeloablative regimen in our center from November 2007 to June 2014. All the patients attained successful HSCT engraftment in terms of myeloid and platelet recovery. Thirteen patients developed grade I–IV acute graft-versus-host disease (a-GVHD). The incidence of grade I–II a-GVHD, grade III–IV a-GVHD, and chronic GVHD (c-GVHD) was 45%, 20%, and 25%, respectively. The mean myeloid and platelet recovery time was 13.20±2.41 and 19.10±8.37 days. The median follow-up time was 43.95±29.26 months. During the follow-up, three patients died. The overall survival (OS) rate was 85%. The present study indicated that haploidentical HSCT without TBI myeloablative regimen significantly improved the OS rate of pediatric patients with acute leukemia. PMID:27217774

  18. Trisomy 8 in pediatric acute myeloid leukemia: A NOPHO-AML study.

    PubMed

    Laursen, Anne Cathrine Lund; Sandahl, Julie Damgaard; Kjeldsen, Eigil; Abrahamsson, Jonas; Asdahl, Peter; Ha, Shau-Yin; Heldrup, Jesper; Jahnukainen, Kirsi; Jónsson, Ólafur G; Lausen, Birgitte; Palle, Josefine; Zeller, Bernward; Forestier, Erik; Hasle, Henrik

    2016-09-01

    Trisomy 8 (+8) is a common cytogenetic aberration in acute myeloid leukemia (AML); however, the impact of +8 in pediatric AML is largely unknown. We retrospectively investigated 609 patients from the NOPHO-AML database to determine the clinical and cytogenetic characteristics of +8 in pediatric AML and to investigate its prognostic impact. Complete cytogenetic data were available in 596 patients (98%) aged 0-18 years, diagnosed from 1993 to 2012, and treated according to the NOPHO-AML 1993 and 2004 protocols in the Nordic countries and Hong Kong. We identified 86 patients (14%) with +8. Trisomy 8 was combined with other cytogenetic aberrations in 68 patients (11%) (+8 other) and in 18 patients (3%), it was the sole abnormality (+8 alone). Trisomy 8 was associated with FAB M5 (36%) but otherwise clinically comparable with non-trisomy 8 patients. Trisomy 8 was favorable in patients of young age and with t(9;11). Trisomy 8 alone was associated with older age (median age 10.1 years), FAB M2 (33%), and FLT3-ITD mutations (58%). The 5-year event-free survival for patients with +8 alone was 50% and 5-year overall survival was 75%. In conclusion, +8 is one of the most common cytogenetic aberrations in pediatric AML. Trisomy 8 positive AML is a heterogeneous group and the majority of cases have additional cytogenetic aberrations. Patients with +8 alone differed from patients with +8 other and were associated with older age, FAB M2, and FLT3-ITD aberrations. There were no differences in survival despite the more frequent occurrence of FLT3-ITD in +8 alone. © 2016 Wiley Periodicals, Inc. PMID:27153159

  19. Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia.

    PubMed

    Warris, Lidewij T; van den Akker, Erica L T; Aarsen, Femke K; Bierings, Marc B; van den Bos, Cor; Tissing, Wim J E; Sassen, Sebastiaan D T; Veening, Margreet A; Zwaan, Christian M; Pieters, Rob; van den Heuvel-Eibrink, Marry M

    2016-10-01

    Although dexamethasone is an effective treatment for acute lymphoblastic leukemia (ALL), it can induce a variety of serious neurobehavioral side effects. We hypothesized that these side effects are influenced by glucocorticoid sensitivity at the tissue level. We therefore prospectively studied whether we could predict the occurrence of these side effects using the very low-dose dexamethasone suppression test (DST) or by measuring trough levels of dexamethasone. Fifty pediatric patients (3-16 years of age) with acute lymphoblastic leukemia (ALL) were initially included during the maintenance phase (with dexamethasone) of the Dutch ALL treatment protocol. As a marker of glucocorticoid sensitivity, the salivary very low-dose DST was used. A post-dexamethasone cortisol level <2.0nmol/L was considered a hypersensitive response. The neurobehavioral endpoints consisted of questionnaires regarding psychosocial and sleeping problems administered before and during the course of dexamethasone (6mg/m(2)), and dexamethasone trough levels were measured during dexamethasone treatment. Patients with a hypersensitive response to dexamethasone had more behavioral problems (N=11), sleeping problems, and/or somnolence (N=12) (P<0.05 for all three endpoints). The positive predictive values of the DST for psychosocial problems and sleeping problems were 50% and 30%, respectively. Dexamethasone levels were not associated with neurobehavioral side effects. We conclude that neither the very low-dose DST nor measuring dexamethasone trough levels can accurately predict dexamethasone-induced neurobehavioral side effects. However, patients with glucocorticoid hypersensitivity experienced significantly more symptoms associated with dexamethasone-induced depression. Future studies should elucidate further the mechanisms by which neurobehavioral side effects are influenced by glucocorticoid sensitivity. PMID:27448086

  20. Vitamin D receptor gene polymorphism in Egyptian pediatric acute lymphoblastic leukemia correlation with BMD

    PubMed Central

    Tantawy, Maha; Amer, Mahmoud; Raafat, Tarek; Hamdy, Nayera

    2016-01-01

    Introduction We studied the frequencies of the 3′ and 5′-end vitamin D receptor (VDR) gene polymorphisms and their correlation with bone mineral density (BMD) in Egyptian pediatric acute lymphoblastic leukemia (ALL) patients receiving calcium and vitamin D supplements. The purpose of this study is to find out the relation between VDR polymorphism and the response to vitamin D intake in pediatric ALL cases who receive corticosteroid therapy which predispose to osteoporosis. This study might shed the light on some genetic variants that are effect the response of individuals to vitamin D therapy. Methods Forty newly diagnosed pediatrics ALL cases were studied. Three SNPs at the 3′-end of the VDR gene (BsmI rs1544410, ApaI rs739837and TaqI rs731236) and two SNPs at the 5′-end (Cdx-2 rs11568820 and GATA rs4516035) were analyzed by Allelic discrimination assay. Of those twenty-six cases with initial BMD data available were further analyzed with regards to the effect of various VDR genotypes/haplotypes on BMD. Results The genotype frequencies at 3′-end of VDR gene were, TaqI TT 23%, Tt 54% and tt 23%, BsmI bb 19.2%, Bb 65.4% and BB 15.4% and ApaI AA 12%, Aa 27% and aa 61%. The frequencies at the 5′-end were Cdx-2 GG 34.5%, GA 54% and AA 11.5% and GATA AA 8%, AG 50% and GG 42%. Eight and four possible haplotypes were observed at the 3′ and 5′-ends of the VDR gene respectively. The Tt genotype was significantly correlated with high BMD as compared to other TaqI genotypes (P = 0.0420). There was a trend towards higher BMD with the genotype Bb as compared to other BsmI genotypes. No statistical significance was found between the other VDR genotypes or haplotypes studied and BMD. Conclusions This is the first report on VDR gene polymorphisms in Egyptian pediatric ALL patients. The Tt genotype was associated with increased BMD. Our study showed marked genetic heterogeneity in VDR gene in Egyptian pediatric ALL patients. PMID:27114922

  1. Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial.

    PubMed

    Schweitzer, Jana; Zimmermann, Martin; Rasche, Mareike; von Neuhoff, Christine; Creutzig, Ursula; Dworzak, Michael; Reinhardt, Dirk; Klusmann, Jan-Henning

    2015-08-01

    Despite recent advances in the treatment of children with acute megakaryoblastic leukemia (AMKL) using intensified treatment protocols, clear prognostic indicators, and treatment recommendations for this acute myeloid leukemia (AML) subgroup are yet to be defined. Here, we report the outcome of 97 pediatric patients with de novo AMKL (excluding Down syndrome [DS]) enrolled in the prospective multicenter studies AML-BFM 98 and AML-BFM 04 (1998-2014). AMKL occurred in 7.4 % of pediatric AML cases, at younger age (median 1.44 years) and with lower white blood cell count (mean 16.5 × 10(9)/L) as compared to other AML subgroups. With 60 ± 5 %, children with AMKL had a lower 5-year overall survival (5-year OS; vs. 68 ± 1 %, P log rank = 0.038). Yet, we achieved an improved 5-year OS in AML-BFM 04 compared to AML-BFM 98 (70 ± 6 % vs. 45 ± 8 %, P log rank = 0.041). Allogeneic hematopoietic stem cell transplantation in first remission did not provide a significant survival benefit (5-year OS 70 ± 11 % vs. 63 ± 6 %; P Mantel-Byar = 0.85). Cytogenetic data were available for n = 78 patients. AMKL patients with gain of chromosome 21 had a superior 5-year OS (80 ± 9 %, P log rank = 0.034), whereas translocation t(1;22)(p13;q13) was associated with an inferior 5-year event-free survival (38 ± 17 %, P log rank = 0.04). However, multivariate analysis showed that treatment response (bone marrow morphology on day 15 and 28) was the only independent prognostic marker (RR = 4.39; 95 % CI, 1.97-9.78). Interestingly, GATA1-mutations were detected in six patients (11 %) without previously known trisomy 21. Thus, AMKL (excluding DS) remains an AML subgroup with inferior outcome. Nevertheless, with intensive therapy regimens, a steep increase in the survival rates was achieved. PMID:25913479

  2. Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.

    2014-01-01

    The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR–ABL1 fusion gene encoding for a chimeric BCR–ABL1 protein. It is present in 3–4% of pediatric acute lymphoblastic leukemia (Ph+ ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph+ ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph+ ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph+ ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph+ ALL expanded exponentially through careful mapping of pathways downstream of BCR–ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph+ ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph+ ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph+ ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias. PMID:24724051

  3. Progress and Prospects in Pediatric Leukemia.

    PubMed

    Madhusoodhan, P Pallavi; Carroll, William L; Bhatla, Teena

    2016-07-01

    Pediatric leukemia is the single most common malignancy affecting children, representing up to 30% of all pediatric cancers. Dramatic improvements in survival for acute lymphoblastic leukemia (ALL) have taken place over the past 4 decades with outcomes approaching 90% in the latest studies. However, progress has been slower for myeloid leukemia and certain subgroups like infant ALL, adolescent/young adult ALL, and relapsed ALL. Recent advances include recognition of molecularly defined subgroups, which has ushered in precision medicine approaches. We discuss the current understanding of the biology of the various childhood leukemias, recent advances in research, and future challenges in this field. PMID:27283082

  4. ABL kinase mutation and relapse in 4 pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia cases.

    PubMed

    Aoe, Michinori; Shimada, Akira; Muraoka, Michiko; Washio, Kana; Nakamura, Yoshimi; Takahashi, Takahide; Imada, Masahide; Watanabe, Toshiyuki; Okada, Ken; Nishiuchi, Ritsuo; Miyamura, Takako; Chayama, Kosuke; Shibakura, Misako; Oda, Megumi; Morishima, Tsuneo

    2014-01-01

    The tyrosine kinase inhibitor (TKI) imatinib mesylate (IM) revolutionized the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL), which had showed poor prognosis before the dawn of IM treatment. However, if Ph-ALL patients showed IM resistance due to ABL kinase mutation, second-generation TKI, dasatinib or nilotinib, was recommended. We treated 4 pediatric Ph-ALL patients with both IM and bone marrow transplantation (BMT); however, 3 relapsed. We retrospectively examined the existence of ABL kinase mutation using PCR and direct sequencing methods, but there was no such mutation in all 4 diagnostic samples. Interestingly, two relapsed samples from patients who were not treated with IM before relapse did not show ABL kinase mutation and IM was still effective even after relapse. On the other hand, one patient who showed resistance to 3 TKI acquired dual ABL kinase mutations, F359C at the IM-resistant phase and F317I at the dasatinib-resistant phase, simultaneously. In summary, Ph-ALL patients relapsed with or without ABL kinase mutation. Furthermore, ABL kinase mutation was only found after IM treatment, so an IM-resistant clone might have been selected during the IM treatment and intensive chemotherapy. The appropriate combination of TKI and BMT must be discussed to cure Ph-ALL patients. PMID:24652384

  5. Banding cytogenetic analysis in pediatric patients with acute lymphoblastic leukemia (ALL) in a Brazilian population

    PubMed Central

    2013-01-01

    Background Cytogenetic studies in Brazilian population about childhood acute lymphoblastic leukemia (ALL), the most common childhood malignancy, are scarce. Moreover, Brazilian race is very heterogeneous and is made by the confluence of people of several different origins, from the original Native Brazilians, with the influx of Portuguese colonizers, Black African slaves, and recent European, Arab and Japanese immigration. The purpose of this prospective, multicentric study was to assess the sociodemographic, clinic and cytogenetic characteristics of the children treated for ALL in the Northeast region of Brazil. Results This study includes thirty patients between 4 months and 17 years old treated for ALL from January 1st, 2009 to November 30th, 2010. Cytogenetic analysis showed that in nineteen out of thirty patients (64%) presented some chromosome abnormalities, in which 53% corresponds to numerical abnormalities, 21% structural and numerical abnormalities, and 26% only structural changes. Moreover, seven patients presented complexes karyotype not yet described in the literature. Taken together these results show the importance of the cytogenetic analysis in ALL pediatric patients and illustrates that the studied population presented unexpected complexes karyotypes which were correlated to poor outcome. Conclusion The results demonstrate the importance of banding cytogenetics for ALL diagnosis despite the use of most modern techniques such as FISH and aCGH, and provide reliable insight into the ALL in Brazil. PMID:24025689

  6. Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia.

    PubMed

    Yadav, Babasaheb D; Samuels, Amy L; Wells, Julia E; Sutton, Rosemary; Venn, Nicola C; Bendak, Katerina; Anderson, Denise; Marshall, Glenn M; Cole, Catherine H; Beesley, Alex H; Kees, Ursula R; Lock, Richard B

    2016-08-11

    Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy. PMID:27623214

  7. Impact of registration on clinical trials on infection risk in pediatric acute myeloid leukemia.

    PubMed

    Dix, David; Aplenc, Richard; Bowes, Lynette; Cellot, Sonia; Ethier, Marie-Chantal; Feusner, Jim; Gillmeister, Biljana; Johnston, Donna L; Lewis, Victor; Michon, Bruno; Mitchell, David; Portwine, Carol; Price, Victoria; Silva, Mariana; Stobart, Kent; Yanofsky, Rochelle; Zelcer, Shayna; Beyene, Joseph; Sung, Lillian

    2016-04-01

    Little is known about the impact of enrollment on therapeutic clinical trials on adverse event rates. Primary objective was to describe the impact of clinical trial registration on sterile site microbiologically documented infection for children with newly diagnosed acute myeloid leukemia (AML). We conducted a multicenter cohort study that included children aged ≤18 years with de novo AML. Primary outcome was microbiologically documented sterile site infection. Infection rates were compared between those registered and not registered on clinical trials. Five hundred seventy-four children with AML were included of which 198 (34.5%) were registered on a therapeutic clinical trial. Overall, 400 (69.7%) had at least one sterile site microbiologically documented infection. In multiple regression, registration on clinical trials was independently associated with a higher risk of microbiologically documented sterile site infection [adjusted odds ratio (OR) 1.24, 95% confidence interval (CI) 1.01-1.53; p = 0.040] and viridans group streptococcal infection (OR 1.46, 95% CI 1.08-1.98; p = 0.015). Registration on trials was not associated with Gram-negative or invasive fungal infections. Children with newly diagnosed AML enrolled on clinical trials have a higher risk of microbiologically documented sterile site infection. This information may impact on supportive care practices in pediatric AML. PMID:26515793

  8. The Need for Evidence Based Nutritional Guidelines for Pediatric Acute Lymphoblastic Leukemia Patients: Acute and Long-Term Following Treatment

    PubMed Central

    Owens, Joyce L.; Hanson, Sheila J.; McArthur, Jennifer A.; Mikhailov, Theresa A.

    2013-01-01

    High survival rates for pediatric leukemia are very promising. With regard to treatment, children tend to be able to withstand a more aggressive treatment protocol than adults. The differences in both treatment modalities and outcomes between children and adults make extrapolation of adult studies to children inappropriate. The higher success is associated with a significant number of children experiencing nutrition-related adverse effects both in the short and long term after treatment. Specific treatment protocols have been shown to deplete nutrient levels, in particular antioxidants. The optimal nutrition prescription during, after and long-term following cancer treatment is unknown. This review article will provide an overview of the known physiologic processes of pediatric leukemia and how they contribute to the complexity of performing nutritional assessment in this population. It will also discuss known nutrition-related consequences, both short and long term in pediatric leukemia patients. Since specific antioxidants have been shown to be depleted as a consequence of therapy, the role of oxidative stress in the pediatric leukemia population will also be explored. More pediatric studies are needed to develop evidence based therapeutic interventions for nutritional complications of leukemia and its treatment. PMID:24177709

  9. [Expression of ICAM-1 (CD54) in pediatric tumor and acute leukemia and its clinic significance in immunotherapy with CIK cell].

    PubMed

    Xiong, Xi-Lin; Li, Yang; Wang, Lin; Wei, Jing; Ma, Lei; Shen, Xi-Ming

    2012-04-01

    This study was aimed to investigate the expression of ICAM-1 (CD54) in pediatric tumor and acute leukemia (AL), so as to understand the distribution of ICAM-1 and its clinical significance. The expression of ICAM-1 in tissues of 46 pediatric tumor patients were detected by immunohistochemistry, and in bone marrow cells of 60 pediatric acute leukemia (AL) patients were detected by flow cytometry. 46 pediatric tumor patients included 10 lymphoma, 3 hepatoblastoma, 6 neuroblastoma, 2 rhabdomyosarcoma, 6 Ewing's bone sarcoma, 2 fibrosarcoma, 5 primitive neuroectodermal tumor, 11 nephroblastoma and 1 osteosarcoma. 60 AL pediatric patients included 20 acute lymphocytic leukemia (ALL) patients and 40 acute nonlymphocytic leukemia (ANLL) patients containing 20 M1, M2, M3 patients and 20 M4, M5. The results indicated that expression of ICAM-1 was more positive in all 3 hepatoblastoma cases, which represent a higher positive rate than that in lymphoma, neuroblastoma, rhabdomyosarcoma, Ewing's sarcoma of bone and osteosarcoma. However, no expression of ICAM-1 was observed in fibrosarcoma, nephroblastoma and primitive neuroectodermal tumor patients. On the other hand, the expression rate of ICAM-1 was 55 in ALL, 65 in ANLL M1, M2, M3, and 50 in ANLL M4, M5. It is concluded that the expression of ICAM-1 in pediatric tumor and AL has variability. The ICAM-1 positive expression is observed in hepatoblastoma and ANLL M1, M2, M3 patients, whereas it is undetectable in fibrosarcoma, nephroblastoma and primitive neuroectodermal tumor patients. PMID:22541082

  10. Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells

    PubMed Central

    Wang, Na-Na; Li, Zhi-Heng; Zhao, He; Tao, Yan-Fang; Xu, Li-Xiao; Lu, Jun; Cao, Lan; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Wen-Li; Xiao, Pei-Fang; Fang, Fang; Su, Guang-Hao; Li, Yan-Hong; Li, Gang; Li, Yi-Ping; Xu, Yun-Yun; Zhou, Hui-Ting; Wu, Yi; Jin, Mei-Fang; Liu, Lin; Ni, Jian; Wang, Jian; Hu, Shao-Yan; Zhu, Xue-Ming; Feng, Xing; Pan, Jian

    2015-01-01

    Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined. PMID:25574601

  11. A novel spliced fusion of MLL with CT45A2 in a pediatric biphenotypic acute leukemia

    PubMed Central

    2010-01-01

    Background Abnormalities of 11q23 involving the MLL gene are found in approximately 10% of human leukemias. To date, nearly 100 different chromosome bands have been described in rearrangements involving 11q23 and 64 fusion genes have been cloned and characterized at the molecular level. In this work we present the identification of a novel MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia. Methods Cytogenetics, fluorescence in situ hybridization (FISH), molecular studies (RT-PCR and LDI-PCR), and bioinformatic sequence analysis were used to characterize the CT45A2 gene as novel MLL fusion partner in pediatric acute leukemia. Results Fluorescence in situ hybridization of bone marrow G-banded metaphases demonstrated a cryptic insertion of 11q23 in Xq26.3 involving the MLL gene. Breakpoint fusion analysis revealed that a DNA fragment of 653 kb from 11q23, containing MLL exons 1-9 in addition to 16 other 11q23 genes, was inserted into the upstream region of the CT45A2 gene located at Xq26.3. In addition, a deletion at Xq26.3 encompassing the 3' region of the DDX26B gene (exons 9-16) and the entire CT45A1 gene was identified. RNA analysis revealed the presence of a novel MLL-CT45A2 fusion transcript in which the first 9 exons of the MLL gene were fused in-frame to exon 2 of the CT45A2 gene, resulting in a spliced MLL fusion transcript with an intact open reading frame. The resulting chimeric transcript predicts a fusion protein where the N-terminus of MLL is fused to the entire open reading frame of CT45A2. Finally, we demonstrate that all breakpoint regions are rich in long repetitive motifs, namely LINE/L1 and SINE/Alu sequences, but all breakpoints were exclusively identified outside these repetitive DNA sequences. Conclusion We have identified CT45A2 as a novel spliced MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia, as a result of a cryptic insertion of 11q23 in Xq26.3. Since CT45A2 is the first

  12. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Clinical and genetic features of pediatric acute lymphoblastic leukemia in Down syndrome in the Nordic countries

    PubMed Central

    2014-01-01

    Background Children with Down syndrome (DS) have an increased risk for acute lymphoblastic leukemia (ALL). Although previous studies have shown that DS-ALL differs clinically and genetically from non-DS-ALL, much remains to be elucidated as regards genetic and prognostic factors in DS-ALL. Methods To address clinical and genetic differences between DS-ALL and non-DS-ALL and to identify prognostic factors in DS-ALL, we ascertained and reviewed all 128 pediatric DS-ALL diagnosed in the Nordic countries between 1981 and 2010. Their clinical and genetic features were compared with those of the 4,647 B-cell precursor (BCP) ALL cases diagnosed during the same time period. Results All 128 DS-ALL were BCP ALL, comprising 2.7% of all such cases. The 5-year event-free survival (EFS) and overall survival (OS) were significantly (P = 0.026 and P = 0.003, respectively) worse for DS-ALL patients with white blood cell counts ≥50 × 109/l. The age distributions varied between the DS and non-DS cases, with age peaks at 2 and 3 years, respectively; none of the DS patients had infant ALL (P = 0.029). The platelet counts were lower in the DS-ALL group (P = 0.005). Abnormal karyotypes were more common in non-DS-ALL (P < 0.0001), and there was a significant difference in the modal number distribution, with only 2% high hyperdiploid DS-ALL cases (P < 0.0001). The 5-year EFS and 5-year OS were significantly worse for DS-ALL (0.574 and 0.691, respectively) compared with non-DS-ALL (0.783 and 0.894, respectively) in the NOPHO ALL-1992/2000 protocols (P < 0.001). Conclusions The present study adds further support for genetic and clinical differences between DS-ALL and non-DS-ALL. PMID:24726034

  14. Prognostic significance of FLT3-ITD in pediatric acute myeloid leukemia: a meta-analysis of cohort studies.

    PubMed

    Wu, Xiaoli; Feng, Xuefeng; Zhao, Xiaoqing; Ma, Futian; Liu, Na; Guo, Hongming; Li, Chaonan; Du, Huan; Zhang, Baoxi

    2016-09-01

    The purpose of the study was to assess the effect of the internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) on the outcome in pediatric acute myeloid leukemia (AML) patients. We identified eligible studies from several databases including PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) (from January 1995 to July 2015). Ten studies of 1661 pediatric patients with AML were included in exploring the relationship between the FLT3-ITD and overall survival (OS)/event free survival (EFS). Pediatric patients with AML with FLT3-ITD had worse OS [HR = 2.19 (1.60-3.01)]/EFS [HR = 1.70 (1.37-2.11)] than those patients without FLT3-ITD. Furthermore, FLT3-ITD had unfavorable effect on OS/EFS in the subgroups of NOS, uni/multivariate model, number of patients, the length of following-up, and patient source. The findings of this meta-analysis indicated that FLT3-ITD had negative impact on pediatric patients with AML. PMID:27435859

  15. Acute Lymphocytic Leukemia

    MedlinePlus

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  16. Patterns and frequencies of acquired and constitutional uniparental isodisomies in pediatric and adult B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Lundin, Kristina B; Olsson, Linda; Safavi, Setareh; Biloglav, Andrea; Paulsson, Kajsa; Johansson, Bertil

    2016-05-01

    Single nucleotide polymorphism (SNP) arrays are increasingly being used in clinical routine for genetic analysis of pediatric B-cell precursor acute lymphoblastic leukemias (BCP ALL). Because constitutional DNA is not readily available as a control at the time of diagnosis, it is important to be able to distinguish between acquired and constitutional aberrations in a diagnostic setting. In the present study we focused on uniparental isodisomies (UPIDs). SNP array analyses of 143 pediatric and 38 adult B-cell precursor acute lymphoblastic leukemias and matched remission samples revealed acquired whole chromosome or segmental UPIDs (wUPIDs, sUPIDs) in 32 cases (18%), without any age- or gender-related frequency differences. Acquired sUPIDs were larger than the constitutional ones (mean 35.3 Mb vs. 10.7 Mb; P < 0.0001) and were more often terminally located in the chromosomes (69% vs. 4.5%; P < 0.0001). Chromosomes 3, 5, and 9 were most often involved in acquired wUPIDs, whilst recurrent acquired sUPIDs targeted 6p, 9p, 9q, and 14q. The majority (56%) of sUPID9p was associated with homozygous CDKN2A deletions. In pediatric ALL, all wUPIDs were found in high hyperdiploid (51-67 chromosomes) cases and an extended analysis, also including unmatched diagnostic samples, revealed a higher frequency of wUPID-positivity in higher modal number (56-67 chromosomes) than in lower modal number (51-55 chromosomes) high hyperdiploid cases (34% vs. 11%; P = 0.04), suggesting different underlying mechanisms of formation of these subtypes of high hyperdiploidy. © 2016 Wiley Periodicals, Inc. PMID:26773847

  17. Applying molecular epidemiology in pediatric leukemia.

    PubMed

    Schiffman, Joshua D

    2016-02-01

    Molecular epidemiology is the study of genetic and environmental risk for disease, with much effort centered on cancer. Childhood leukemia occurs in nearly a third of all patients newly diagnosed with pediatric cancer. only a small percentage of these new cases of childhood leukemia are associated with high penetrant hereditary cancer syndromes. Childhood leukemia, especially acute lymphoblastic leukemia, has been associated with a dysregulated immune system due to delayed infectious exposure at a young age. Identical twins with childhood leukemia suggest that acute lymphoblastic leukemia begins in utero and that the concordant presentation is due to a shared preleukemia subclone via placental transfer. Investigation of single nucleotide polymorphisms within candidate genes find that leukemia risk may be attributed to population-based polymorphisms affecting folate metabolism, xenobiotic metabolism, DNA repair, immunity, and B-cell development. More recently, genome-wide association studies for leukemia risk has led investigators to genes associated with B-cell development. When describing leukemia predisposition due to hereditary cancer syndromes, the following 6 categories become apparent on the basis of biology and clinical presentation: (1) genetic instability/DNA repair syndromes, (2) cell cycle/differentiation syndromes, (3) bone marrow failure syndromes, (4) telomere maintenance syndromes, (5) immunodeficiency syndromes, and (6) transcription factor syndromes and pure familial leukemia. understanding the molecular epidemiology of childhood leukemia can affect the treatment and tumor surveillance strategies for these high risk patients and their family members. PMID:25973690

  18. Profiling gene mutations, translocations, and multidrug resistance in pediatric acute lymphoblastic leukemia: a step forward to personalizing medicine.

    PubMed

    Rose-James, Alphy; Shiji, R; Kusumakumary, P; Nair, Manjusha; George, Suraj K; Sreelekha, T T

    2016-09-01

    Precise risk stratification and tailored therapy in acute lymphoblastic leukemia (ALL) can lead to enhanced survival rates among children. Translocations and mutations along with multidrug resistance markers are important factors that determine therapeutic efficacy. Gene mutation profiling of patients at the time of diagnosis can offer accurate clinical decision-making. Multiplex PCR was used to screen for various translocations, mutations, and P-glycoprotein (P-gp) status in pediatric ALL samples. The roles of P-gp were analyzed at the transcriptional and translational levels by using real-time PCR and immunoblotting, respectively. ALL specific cell line Jurkat was used to validate the functional role of P-gp in imparting drug resistance by siRNA knockdown studies. Co-occurrence of translocations and mutations contributes to cellular drug resistance. Presence of any translocation in addition to FLT3/ITD hints for overactive P-gp. Co-occurrence of E2A/PBX and TEL/AML has also been positively correlated with P-gp status. Multiplex PCR provides a rapid and cost effective technique for profiling translocations, mutations, and multidrug resistance status that determines what therapy patients could be administered. Mutation profiling in patients for analyzing genetic lesions along with drug resistance profiling will help improve risk stratification and personalized medicine, thereby increasing the treatment success rates among pediatric patients with leukemia. PMID:27449773

  19. Elevated common acute lymphoblastic leukemia antigen expression in pediatric immune thrombocytopenic purpura.

    PubMed

    Cornelius, A S; Campbell, D; Schwartz, E; Poncz, M

    1991-01-01

    Bone marrow examination is often performed in thrombocytopenic children to distinguish immune thrombocytopenic purpura (ITP) from acute leukemia. We describe a patient with thrombocytopenia and 50% common acute lymphoblastic leukemia antigen (CALLA) positivity in his marrow who was subsequently shown to have ITP. CALLA (CD10) is a surface antigen found in early B-lymphocytes and is elevated in most cases of childhood acute lymphoblastic leukemia (ALL). This case prompted us to prospectively study the frequency of immature lymphocyte populations in children with ITP. Fourteen patients with acute ITP and five with other conditions were studied. The two groups were comparable with respect to age: ITP mean, 4.3 (range 0.3-15.5) years; control mean, 5.8 (0.6-13.8) years. The ITP group had a significantly higher percentage of CD10 positive bone marrow lymphocytes (p = 0.007). Five of the 10 patients younger than 4 years of age in the ITP group had CD10 levels of greater than 30%, which is in the leukemic range, whereas none of the control patients had a CD10 levels of greater than 17% (p = 0.003). There was good correlation between CD10 positivity and B4 positivity indicating that both of these markers arise from the same population of immature B-lymphocytes. None of the ITP patients who were older than 4 years had a CD10 level of greater than 30%. We conclude that it is common to have an increase in the proportion of immature lymphocytes in the marrow of young children with ITP. The cause of this increase in CD10 positive cells is unknown.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1827572

  20. Allogeneic Transplantation for Patients With Acute Leukemia or Chronic Myelogenous Leukemia (CML)

    ClinicalTrials.gov

    2016-06-14

    Leukemia, Lymphocytic, Acute; Leukemia; Leukemia Acute Promyelocytic Leukemia (APL); Leukemia Acute Lymphoid Leukemia (ALL); Leukemia Chronic Myelogenous Leukemia (CML); Leukemia Acute Myeloid Leukemia (AML); Leukemia Chronic Lymphocytic Leukemia (CLL)

  1. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  2. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia.

    PubMed

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). 'Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  3. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia

    PubMed Central

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). ‘Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  4. Detailed gene dose analysis reveals recurrent focal gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ivanov Öfverholm, Ingegerd; Tran, Anh Nhi; Olsson, Linda; Zachariadis, Vasilios; Heyman, Mats; Rudd, Eva; Syk Lundberg, Elisabeth; Nordenskjöld, Magnus; Johansson, Bertil; Nordgren, Ann; Barbany, Gisela

    2016-09-01

    To identify copy number alterations (CNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL), array comparative genomic hybridization was performed on 50 cases; detected CNAs were validated in a cohort of 191 cases analyzed by single nucleotide polymorphism arrays. Apart from CNAs involving leukemia-associated genes, recurrent deletions targeting genes not previously implicated in BCP ALL, e.g. INIP, IRF1 and PDE4B, were identified. Deletions of the DNA repair gene INIP were exclusively found in cases with t(12;21), and deletions of SH2B3 were associated with intrachromosomal amplification of chromosome 21 (p < 0.001). A majority of BTLA deletions (7/11; 64%) affected samples with gain of 21q chromosome material, suggesting that BTLA deletions are associated with both germline and somatic gain of chromosome 21. In cases without known risk-associated cytogenetic markers, CNAs associated with adverse prognosis were identified in 50% (10/20), indicating that a majority of these cases could be assigned to distinct genetic subtypes. PMID:27090575

  5. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia.

    PubMed

    Sánchez-Cuaxospa, María; Contreras-Ramos, Alejandra; Pérez-Figueroa, Erandi; Medina-Sansón, Aurora; Jiménez-Hernández, Elva; Torres-Nava, José R; Rojas-Castillo, Emilio; Maldonado-Bernal, Carmen

    2016-08-01

    Cancer is the second most common cause of death among children aged 1-14 years. Leukemia accounts for one-third of all childhood cancers, 78% of which is acute lymphoblastic leukemia (ALL). The development of cancer has been associated with malignant cells that express low levels of immunogenic molecules, which facilitates their escape from the antineoplastic immune response. It is thought that it may be possible to rescue the antineoplastic immune response through the activation of recognition receptors, such as Toll-like receptors (TLRs), which activate the innate immune system. TLRs are type I membrane glycoproteins expressed mainly in immune system cells such as monocytes, neutrophils, macrophages, dendritic cells, T, B and natural killer cells. The aim of the present study was to evaluate the expression of TLR1, TLR3, TLR4, TLR7 and TLR9 in peripheral blood mononuclear cells (PBMCs) in patients with ALL and prior to any treatment. PBMCs were obtained from 50 pediatric patients diagnosed with ALL and from 20 children attending the ophthalmology and orthopedics services. The mean fluorescence intensity was obtained by analysis of immunofluorescence. We found lower expression levels of TLR1, TLR3, TLR4, TLR7 and TLR9 in PBMCs from patients with ALL compared with those from control patients. We also observed that the PBMCs from patients with Pre-B and B ALL had lower TLR4 expression than controls and patients with Pro-B, Pre-B, B and T ALL had lower TLR7 expression than controls. The present study is the first to demonstrate reduced expression of TLRs in PBMCs from pediatric patients with ALL. This finding is of great relevance and may partly explain the reduction in the antineoplastic immune response in patients with ALL. PMID:27277333

  6. NPM1, FLT3, and c-KIT mutations in pediatric acute myeloid leukemia in Russian population.

    PubMed

    Yatsenko, Yuliya; Kalennik, Olga; Maschan, Mikhail; Kalinina, Irina; Maschan, Alexey; Nasedkina, Tatyana

    2013-04-01

    We evaluated frequencies of NPM1, FLT3, c-KIT mutations in childhood acute myeloid leukemia (AML) in Russia and assessed prognostic relevance of the mutations. RNA and DNA were extracted from bone marrow samples of 186 (106 male and 80 female) pediatric patients younger than 17 year with de novo AML. Mutations and chromosomal rearrangements were detected by sequencing of a corresponding gene. NPM1 mutations were found in 5.2%, FLT3 mutations in 12.1%, c-KIT mutations in 3.7% of the patients. NPM1 mutations were associated with the absence of chromosomal aberrations (P=0.007) and FLT3/ITD (P=0.018). New data on incidence of c-KIT mutations in various AML subtypes as well as new variations of c-KIT mutations in the exon 8 are presented. The results are compared to previously published studies on NPM1, FLT3, c-KIT mutations in various populations. No statistically significant differences in survival rates between groups with or without of FLT3, NPM1, c-KIT mutations were found (P>0.05). Meanwhile, 4-year overall survival rates were higher in patients having NPM1 mutations comparing with NPM1/WT patients (100% vs. 50%) and in patients having FLT3 mutations comparing with FLT3/WT patients (70% vs. 50%). The data presented contribute to knowledge on incidence and prognostic significance of the mutations in pediatric AML. PMID:23511494

  7. Clinical Utility of Array Comparative Genomic Hybridization for Detection of Chromosomal Abnormalities in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Rabin, Karen R.; Man, Tsz-Kwong; Yu, Alexander; Folsom, Matthew R.; Zhao, Yi-Jue; Rao, Pulivarthi H.; Plon, Sharon E.; Naeem, Rizwan C.

    2014-01-01

    Background Accurate detection of recurrent chromosomal abnormalities is critical to assign patients to risk-based therapeutic regimens for pediatric acute lymphoblastic leukemia (ALL). Procedure We investigated the utility of array comparative genomic hybridization (aCGH) for detection of chromosomal abnormalities compared to standard clinical evaluation with karyotype and fluorescent in-situ hybridization (FISH). Fifty pediatric ALL diagnostic bone marrows were analyzed by bacterial artificial chromosome (BAC) array, and findings compared to standard clinical evaluation. Results Sensitivity of aCGH was 79% to detect karyotypic findings other than balanced translocations, which cannot be detected by aCGH because they involve no copy number change. aCGH also missed abnormalities occurring in subclones constituting less than 25% of cells. aCGH detected 44 additional abnormalities undetected or misidentified by karyotype, 21 subsequently validated by FISH, including abnormalities in 4 of 10 cases with uninformative cytogenetics. aCGH detected concurrent terminal deletions of both 9p and 20q in three cases, in two of which the 20q deletion was undetected by karyotype. A narrow region of loss at 7p21 was detected in two cases. Conclusions An array with increased BAC density over regions important in ALL, combined with PCR for fusion products of balanced translocations, could minimize labor- and time-intensive cytogenetic assays and provide key prognostic information in the approximately 35% of cases with uninformative cytogenetics. PMID:18253961

  8. Effective VCR/DEX pulse maintenance therapy in the KYCCSG ALL-02 protocol for pediatric acute lymphoblastic leukemia.

    PubMed

    Okamoto, Yasuhiro; Koga, Yuki; Inagaki, Jiro; Ozono, Shuichi; Ueda, Koichiro; Shimoura, Maiko; Itonaga, Nobuyoshi; Shinkoda, Yuichi; Moritake, Hiroshi; Nomura, Yuko; Nakayama, Hideki; Hotta, Noriko; Hidaka, Yasufumi; Shimonodan, Hidemi; Suga, Naohiro; Tanabe, Takayuki; Nakashima, Kentaro; Fukano, Reiji; Kawano, Yoshifumi

    2016-02-01

    In a previous study of childhood acute lymphoblastic leukemia (ALL) by the Kyushu-Yamaguchi Children's Cancer Study Group, ALL-96, we achieved a 72.1 % 5-year event-free survival (EFS) and an 84.8 % 5-year overall survival (OS). In a subsequent study, ALL-02, we adopted a vincristine dexamethasone (VCR/DEX) pulse regimen as maintenance therapy in the context of the ALL-96 study using the same risk classification and treatment schedule. A total of 156 pediatric cases of ALL were treated with ALL-02. All of the patients were classified as standard-risk or high-risk. Risk stratification was based on white cell counts, immunophenotype, the presence of central nervous system (CNS) disease at diagnosis, organomegaly, and early treatment response (day 14 bone marrow status). The 7-year EFS and OS rates were 77.7 % (95 % CI 70.6-84.8 %) and 89.5 % (95 % CI 84.6-94.4 %), respectively. CNS 3 status [hazard ratio (HR) = 5.0, p = 0.009] and high white blood cell count at diagnosis (HR = 2.6, p = 0.047) were risk factors for poor EFS in multivariate analysis. Our strategies to categorize patients into two risk groups, and to treat with a VCR/DEX pulse were feasible and reasonably effective treatments for pediatric ALL. PMID:26586463

  9. Phase 1 study of clofarabine in pediatric patients with relapsed/refractory acute lymphoblastic leukemia in Japan.

    PubMed

    Koh, Katsuyoshi; Ogawa, Chitose; Okamoto, Yasuhiro; Kudo, Kazuko; Inagaki, Jiro; Morimoto, Tsuyoshi; Mizukami, Hideya; Ecstein-Fraisse, Evelyne; Kikuta, Atsushi

    2016-08-01

    A phase 1 study was conducted to evaluate the safety, pharmacokinetics (PK), efficacy and pharmacogenetic characteristics of clofarabine in seven Japanese pediatric patients with relapsed/refractory acute lymphoblastic leukemia (ALL). Patients in Cohort 1 received clofarabine 30 mg/m(2)/day for 5 days, followed by 52 mg/m(2)/day for 5 days in subsequent cycles. Cohort 2 patients were consistently treated with 52 mg/m(2)/day for 5 days. No more than six cycles were performed. Every patient had at least one ≥Grade 3 adverse event (AE). AEs (≥Grade 3) related to clofarabine were anaemia, neutropenia, febrile neutropenia, thrombocytopenia, alanine aminotransferase increased, aspartate aminotransferase increased, haemoglobin decreased, and platelet (PLT) count decreased. C max and AUC of clofarabine increased in a dose-dependent fashion, but its elimination half-life (T 1/2) did not appear to be dependent on dose or duration of treatment. Clofarabine at 52 mg/m(2)/day shows similarly tolerable safety and PK profiles compared to those in previous studies. No complete remission (CR), CR without PLT recovery, or partial remission was observed. Since clofarabine is already used as a key drug for relapsed/refractory ALL patients in many countries, the efficacy of clofarabine in Japanese pediatric patients should be evaluated in larger study including more patients, such as by post-marketing surveillance. PMID:27086352

  10. A Possible Role for WNT5A Hypermethylation in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Hatırnaz Ng, Özden; Fırtına, Sinem; Can, İsmail; Karakaş, Zeynep; Ağaoğlu, Leyla; Doğru, Ömer; Celkan, Tiraje; Akçay, Arzu; Yıldırmak, Yıldız; Timur, Çetin; Özbek, Uğur; Sayitoğlu, Müge

    2015-01-01

    Objective: WNT5A is one of the most studied noncanonical WNT ligands and is shown to be deregulated in different tumor types. Our aim was to clarify whether hypermethylation might be the cause of low WNT5A mRNA levels and whether we could restore this downregulation by reversing the event. Materials and Methods: The expression of WNT5A mRNA was studied in a large acute lymphoblastic leukemia (ALL) patient group (n=86) by quantitative real-time PCR. The methylation status was detected by methylation-specific PCR (MSPCR) and bisulphate sequencing. In order to determine whether methylation has a direct effect on WNT5A expression, disease-representative cell lines were treated by 5’-aza-20-deoxycytidine. Results: Here we designed a validation experiment of the WNT5A gene, which was previously examined and found to be differentially expressed by microarray study in 31 T-cell ALL patients. The expression levels were confirmed by quantitative real-time PCR and the expression levels were significantly lower in T-cell ALL patients than in control thymic subsets (p=0.007). MSPCR revealed that 86% of the patients were hypermethylated in the WNT5A promoter region. Jurkat and RPMI cell lines were treated with 5’-aza-20-deoxycytidine and WNT5A mRNA expression was restored after treatment. Conclusion: According to our results, WNT5A hypermethylation does occur in ALL patients and it has a direct effect on mRNA expression. Our findings show that epigenetic changes of WNT signaling can play a role in ALL pathogenesis and reversing methylation might be useful as a possible treatment of leukemia. PMID:26316480

  11. Data on affected cancer-related genes in pediatric t(12;21)-positive acute lymphoblastic leukemia patients harboring unbalanced der(6)t(X;6) translocations.

    PubMed

    Kjeldsen, Eigil

    2016-09-01

    The t(12;21)(p13;q22), leading to ETV6/RUNX1 fusion, is of importance for leukemogenesis in acute lymphoblastic leukemia but is not sufficient for the leukemic transformation. Acquired secondary chromosomal aberrations are necessary for overt leukemia but their complete nature and genes involved are still elusive. In our recent publication, "Oligo-based aCGH analysis reveals cryptic unbalanced der(6)t(X;6) in pediatric t(12;21)-positive acute lymphoblastic leukemia", we identified acquired common concurrent regions with 6q deletion and Xq duplication E. Kjeldsen (2016) [1]. The present article provides data on genes that are associated with hematological malignancy and other cancers located in these common regions of chromosomal aberrations. PMID:27508240

  12. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia

    PubMed Central

    Almamun, Md; Levinson, Benjamin T; van Swaay, Annette C; Johnson, Nathan T; McKay, Stephanie D; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery assay followed by next-generation sequencing. More than 25,000 differentially methylated regions (DMR) were observed in ALL patients with ∼90% present within intronic or intergenic regions. To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed and integrated with methylation data. Aberrant promoter methylation was associated with the altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant methylation in these regions was associated with the altered expression of neighboring genes involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL. PMID:26308964

  13. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia.

    PubMed

    Almamun, Md; Levinson, Benjamin T; van Swaay, Annette C; Johnson, Nathan T; McKay, Stephanie D; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery assay followed by next-generation sequencing. More than 25,000 differentially methylated regions (DMR) were observed in ALL patients with ∼ 90% present within intronic or intergenic regions. To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed and integrated with methylation data. Aberrant promoter methylation was associated with the altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant methylation in these regions was associated with the altered expression of neighboring genes involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL. PMID:26308964

  14. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia.

    PubMed

    Moorman, Anthony V; Enshaei, Amir; Schwab, Claire; Wade, Rachel; Chilton, Lucy; Elliott, Alannah; Richardson, Stacey; Hancock, Jeremy; Kinsey, Sally E; Mitchell, Christopher D; Goulden, Nicholas; Vora, Ajay; Harrison, Christine J

    2014-08-28

    Recent genomic studies have provided a refined genetic map of acute lymphoblastic leukemia (ALL) and increased the number of potential prognostic markers. Therefore, we integrated copy-number alteration data from the 8 most commonly deleted genes, subordinately, with established chromosomal abnormalities to derive a 2-tier genetic classification. The classification was developed using 809 ALL97/99 patients and validated using 742 United Kingdom (UK)ALL2003 patients. Good-risk (GR) genetic features included ETV6-RUNX1, high hyperdiploidy, normal copy-number status for all 8 genes, isolated deletions affecting ETV6/PAX5/BTG1, and ETV6 deletions with a single additional deletion of BTG1/PAX5/CDKN2A/B. All other genetic features were classified as poor risk (PR). Three-quarters of UKALL2003 patients had a GR genetic profile and a significantly improved event-free survival (EFS) (94%) compared with patients with a PR genetic profile (79%). This difference was driven by a lower relapse rate (4% vs 17%), was seen across all patient subgroups, and was independent of other risk factors. Even genetic GR patients with minimal residual disease (>0.01%) at day 29 had an EFS in excess of 90%. In conclusion, the integration of genomic and cytogenetic data defines 2 subgroups with distinct responses to treatment and identifies a large subset of children suitable for treatment deintensification. PMID:24957142

  15. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts

    PubMed Central

    Kang, Min H.; Liem, Natalia L. M.; Carol, Hernan; Boehm, Ingrid; Groepper, Daniel; Reynolds, C. Patrick; Stewart, Clinton F.; Lock, Richard B.

    2012-01-01

    Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL. PMID:22479469

  17. Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Kang, Min-Gu; Kim, Yu-Na; Lee, Jun Hyung; Szardenings, Michael; Baek, Hee-Jo; Kook, Hoon

    2016-01-01

    Background To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. Methods Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. Results mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. Conclusions The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML. PMID:26709256

  18. Targeting the Wee1 Kinase for Treatment of Pediatric Down Syndrome Acute Myeloid Leukemia

    PubMed Central

    Caldwell, J. Timothy; Edwards, Holly; Buck, Steven A.; Ge, Yubin; Taub, Jeffrey W.

    2014-01-01

    Background Most Down syndrome children with acute myeloid leukemia (DS-AML) have an overall excellent prognosis, however, patients who suffer an induction failure or relapse, have an extremely poor prognosis. Hence, new therapies need to be developed for this subgroup of DS-AML patients. One new therapeutic approach is preventing cell cycle checkpoint activation by inhibiting the upstream kinase wee1 with the first-in-class inhibitor MK-1775 in combination with the standard genotoxic agent cytarabine (AraC). Procedure Using the clinically relevant DS-AML cell lines CMK and CMY, as well as ex vivo primary DS-AML patient samples, the ability of MK-1775 to enhance the cytotoxicity of AraC was investigated with MTT assays. The mechanism by which MK-1775 enhanced AraC cytotoxicity was investigated in the cell lines using Western blots to probe CDK1 and H2AX phosphorylation and flow cytometry to determine apoptosis, cell cycle arrest, DNA damage, and aberrant mitotic entry. Results MK-1775 alone had modest single-agent activity, however, MK-1775 was able to synergize with AraC in causing proliferation arrest in both cell lines and primary patient samples, and enhance AraC-induced apoptosis. MK-1775 was able to decrease inhibitory CDK1(Y15) phosphorylation at the relatively low concentration of 100 nM after only 4 hours. Furthermore, it was able to enhance DNA damage induced by AraC and partially abrogate cell cycle arrest. Importantly, the DNA damage enhancement appeared in early S-phase. Conclusions MK-1775 is able to enhance the cytotoxicity of AraC in DS-AML cells and presents a promising new treatment approach for DS-AML. PMID:24962331

  19. miR expression profiling at diagnosis predicts relapse in pediatric precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Avigad, Smadar; Verly, Iedan R N; Lebel, Asaf; Kordi, Oshrit; Shichrur, Keren; Ohali, Anat; Hameiri-Grossman, Michal; Kaspers, Gertjan J L; Cloos, Jacqueline; Fronkova, Eva; Trka, Jan; Luria, Drorit; Kodman, Yona; Mirsky, Hadar; Gaash, Dafna; Jeison, Marta; Avrahami, Galia; Elitzur, Sarah; Gilad, Gil; Stark, Batia; Yaniv, Isaac

    2016-04-01

    Our aim was to identify miRNAs that can predict risk of relapse in pediatric patients with acute lymphoblastic leukemia (ALL). Following high-throughput miRNA expression analysis (48 samples), five miRs were selected for further confirmation performed by real time quantitative PCR on a cohort of precursor B-cell ALL patients (n = 138). The results were correlated with clinical parameters and outcome. Low expression of miR-151-5p, and miR-451, and high expression of miR-1290 or a combination of all three predicted inferior relapse free survival (P = 0.007, 0.042, 0.025, and <0.0001, respectively). Cox regression analysis identified aberrant expression of the three miRs as an independent prognostic marker with a 10.5-fold increased risk of relapse (P = 0.041) in PCR-MRD non-high risk patients. Furthermore, following exclusion of patients harboring IKZF1 deletion, the aberrant expression of all three miRs could identify patients with a 24.5-fold increased risk to relapse (P < 0.0001). The prognostic relevance of the three miRNAs was evaluated in a non-BFM treated precursor B-cell ALL cohort (n = 33). A significant correlation between an aberrant expression of at least one of the three miRs and poor outcome was maintained (P < 0.0001). Our results identify an expression profile of miR-151-5p, miR-451, and miR-1290 as a novel biomarker for outcome in pediatric precursor B-cell ALL patients, regardless of treatment protocol. The use of these markers may lead to improved risk stratification at diagnosis and allow early therapeutic interventions in an attempt to improve survival of high risk patients. PMID:26684414

  20. Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse.

    PubMed

    Farrar, Jason E; Schuback, Heather L; Ries, Rhonda E; Wai, Daniel; Hampton, Oliver A; Trevino, Lisa R; Alonzo, Todd A; Guidry Auvil, Jaime M; Davidsen, Tanja M; Gesuwan, Patee; Hermida, Leandro; Muzny, Donna M; Dewal, Ninad; Rustagi, Navin; Lewis, Lora R; Gamis, Alan S; Wheeler, David A; Smith, Malcolm A; Gerhard, Daniela S; Meshinchi, Soheil

    2016-04-15

    The genomic and clinical information used to develop and implement therapeutic approaches for acute myelogenous leukemia (AML) originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative used whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML. One hundred forty-five somatic variants at diagnosis (median 6 mutations/patient) and 149 variants at relapse (median 6.5 mutations) were identified and verified by orthogonal methodologies. Recurrent somatic variants [in (greater than or equal to) 2 patients] were identified for 10 genes (FLT3, NRAS, PTPN11, WT1, TET2, DHX15, DHX30, KIT, ETV6, KRAS), with variable persistence at relapse. The variant allele fraction (VAF), used to measure the prevalence of somatic mutations, varied widely at diagnosis. Mutations that persisted from diagnosis to relapse had a significantly higher diagnostic VAF compared with those that resolved at relapse (median VAF 0.43 vs. 0.24, P < 0.001). Further analysis revealed that 90% of the diagnostic variants with VAF >0.4 persisted to relapse compared with 28% with VAF <0.2 (P < 0.001). This study demonstrates significant variability in the mutational profile and clonal evolution of pediatric AML from diagnosis to relapse. Furthermore, mutations with high VAF at diagnosis, representing variants shared across a leukemic clonal structure, may constrain the genomic landscape at relapse and help to define key pathways for therapeutic targeting. Cancer Res; 76(8); 2197-205. ©2016 AACR. PMID:26941285

  1. Pharmacogenetic Analysis of Pediatric Patients with Acute Lymphoblastic Leukemia: A Possible Association between Survival Rate and ITPA Polymorphism

    PubMed Central

    Kim, Hyery; Kang, Hyoung Jin; Kim, Hyo Jeong; Jang, Mi Kyung; Kim, Nam Hee; Oh, Yongtaek; Han, Byoung-Don; Choi, Ji-Yeob; Kim, Chul Woo; Lee, Ji Won; Park, Kyung Duk; Shin, Hee Young; Ahn, Hyo Seop

    2012-01-01

    Genetic polymorphisms are important factors in the effects and toxicity of chemotherapeutics. To analyze the pharmacogenetic and ethnic differences in chemotherapeutics, major genes implicated in the treatment of acute lymphoblastic leukemia (ALL) were analyzed. Eighteen loci of 16 genes in 100 patients with ALL were analyzed. The distribution of variant alleles were CYP3A4*1B (0%), CYP3A5*3 (0%), GSTM1 (21%), GSTP1 (21%), GSTT1 (16%), MDR1 exon 21 (77%), MDR1 exon 26 (61%), MTHFR 677 (63%), MTHFR 1298 (29%), NR3C1 1088 (0%), RFC1 80 (68%), TPMT combined genotype (7%), VDR intron 8 (11%), VDR FokI (83%), TYMS enhancer repeat (22%) and ITPA 94 (30%). The frequencies of single nucleotide polymorphisms (SNPs) of 10 loci were statistically different from those in Western Caucasians. Dose percents (actual/planned dose) or toxicity of mercaptopurine and methotrexate were not related to any SNPs. Event free survival (EFS) rate was lower in ITPA variants, and ITPA 94 AC/AA variant genotypes were the only independent risk factor for lower EFS in multivariate analysis, which was a different pharmacogenetic implication from Western studies. This study is the first pharmacogenetic study in Korean pediatric ALL. Our result suggests that there are other possible pharmacogenetic factors besides TPMT or ITPA polymorphisms which influence the metabolism of mercaptopurine in Asian populations. PMID:23029095

  2. Outcome of refractory and relapsed acute myeloid leukemia in children treated during 2005–2011 – experience of the Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG)

    PubMed Central

    Wachowiak, Jacek; Skalska-Sadowska, Jolanta; Wachowiak, Jacek; Zając-Spychała, Olga; Niewiadomska-Wojnałowicz, Izabela; Januszkiewicz-Lewandowska, Danuta; Balwierz, Walentyna; Pawińska-Wąsikowska, Katarzyna; Goździk, Jolanta; Chybicka, Alicja; Potocka, Kinga; Krawczuk-Rybak, Maryna; Muszyńska-Rosłan, Katarzyna; Adamkiewicz-Drożyńska, Elżbieta; Maciejka-Kapuścińska, Lucyna; Karolczyk, Grażyna; Kowalczyk, Jerzy; Wójcik, Beata; Badowska, Wanda; Urasiński, Tomasz; Ociepa, Tomasz; Matysiak, Michał; Sikorska-Fic, Barbara; Szczepański, Tomasz; Tomaszewska, Renata; Sobol, Grażyna; Wieczorek, Maria; Karpińska-Derda, Irena

    2014-01-01

    Aim of the study Recent studies showed relatively better outcome for children with refractory (refAML) and relapsed acute myeloid leukemia (relAML). Treatment of these patients has not been unified within Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG) so far. The goal of this study is to analyze the results of this therapy performed between 2005–2011. Material and methods The outcome data of 16 patients with refAML and 62 with relAML were analyzed retrospectively. Reinduction was usually based on idarubicine, fludarabine and cytarabine with allogenic hematopoietic stem cell transplant (alloHSCT) in 5 refAML and 30 relAML children. Results Seventy seven percent relAML patients entered second complete remission (CR2). Five-year OS and disease-free survival (DFS) were estimated at 16% and 30%. The outcome for patients after alloHSCT in CR2 (63%) was better than that of those not transplanted (36%) with 5-year OS of 34% vs. 2-year of 7% and 5-year DFS of 40% vs. 12.5%. Second complete remission achievement and alloHSCT were the most significant predictors of better prognosis (p = 0.000 and p = 0.024). The outcome of refAML children was significantly worse than relAML with first remission (CR1) rate of 33%, OS and DFS of 25% at 3 years and 53% at 2 years, respectively. All survivors of refAML were treated with alloHSCT after CR1. Conclusions The uniform reinduction regimen of the documented efficacy and subsequent alloHSCT in remission is needed to improve the outcome for ref/relAML children treated within PPLLSG. The focus should be on the future risk-directed both front and second line AML therapy. PMID:24876821

  3. Reasons for Non-Completion of Health Related Quality of Life Evaluations in Pediatric Acute Myeloid Leukemia: A Report from the Children’s Oncology Group

    PubMed Central

    Johnston, Donna L.; Nagarajan, Rajaram; Caparas, Mae; Schulte, Fiona; Cullen, Patricia; Aplenc, Richard; Sung, Lillian

    2013-01-01

    Background Health related quality of life (HRQL) assessments during therapy for pediatric cancer are important. The objective of this study was to describe reasons for failure to provide HRQL assessments during a pediatric acute myeloid leukemia (AML) clinical trial. Methods We focused on HRQL assessments embedded in a multicenter pediatric AML clinical trial. The PedsQL 4.0 Generic Core Scales, PedsQL 3.0 Acute Cancer Module, PedsQL Multidimensional Fatigue Scale, and Pediatric Inventory for Parents were obtained from parent/guardian respondents at a maximum of six time points. Children provided self-report optionally. A central study coordinator contacted sites with delinquent HRQL data. Reasons for failure to submit the HRQL assessments were evaluated by three pediatric oncologists and themes were generated using thematic analysis. Results There were 906 completed and 1091 potential assessments included in this analysis (83%). The median age of included children was 12.9 years (range 2.0 to 18.9). The five themes for non-completion were: patient too ill; passive or active refusal by respondent; developmental delay; logistical challenges; and poor knowledge of study processes from both the respondent and institutional perspective. Conclusions We identified reasons for non-completion of HRQL assessments during active therapy. This information will facilitate recommendations to improve study processes and future HRQL study designs to maximize response rates. PMID:24040278

  4. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner

    PubMed Central

    2013-01-01

    The current study evaluated the differential expression detected in the proteomic profiles of low risk- and high risk- ALL pediatric patients to characterize candidate biomarkers related to diagnosis, prognosis and patient targeted therapy. Bone marrow and peripheral blood plasma and cell lysates samples were obtained from pediatric patients with low- (LR) and high-risk (HR) ALL at diagnosis. As controls, non-leukemic pediatric patients were studied. Cytogenetic analysis was carried out by G- banding and interphase fluorescent in situ hybridization. Differential proteomic analysis was performed using two-dimensional gel electrophoresis and protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The differential expression of certain proteins was confirmed by Western blot analysis. The obtained data revealed that CLUS, CERU, APOE, APOA4, APOA1, GELS, S10A9, AMBP, ACTB, CATA and AFAM proteins play a significant role in leukemia prognosis, potentially serving as distinctive biomarkers for leukemia aggressiveness, or as suppressor proteins in HR-ALL cases. In addition, vitronectin and plasminogen probably contributed to leukemogenesis, whilst bicaudal D-related protein 1 could afford a significant biomarker for pediatric ALL therapeutics. PMID:23849470

  5. A retrospective analysis of treatment-related hospitalization costs of pediatric, adolescent, and young adult acute lymphoblastic leukemia.

    PubMed

    Kaul, Sapna; Korgenski, Ernest Kent; Ying, Jian; Ng, Christi F; Smits-Seemann, Rochelle R; Nelson, Richard E; Andrews, Seth; Raetz, Elizabeth; Fluchel, Mark; Lemons, Richard; Kirchhoff, Anne C

    2016-02-01

    This retrospective study examined the longitudinal hospital outcomes (costs adjusted for inflation, hospital days, and admissions) associated with the treatment of pediatric, adolescent, and young adult acute lymphoblastic leukemia (ALL). Patients between one and 26 years of age with newly diagnosed ALL, who were treated at Primary Children's Hospital (PCH) in Salt Lake City, Utah were included. Treatment and hospitalization data were retrieved from system-wide cancer registry and enterprise data warehouse. PCH is a member of the Children's Oncology Group (COG) and patients were treated on, or according to, active COG protocols. Treatment-related hospital costs of ALL were examined by computing the average annual growth rates (AAGR). Longitudinal regressions identified patient characteristics associated with costs. A total of 505 patients (46.9% female) were included. The majority of patients had B-cell lineage ALL, 6.7% had T-ALL, and the median age at diagnosis was 4 years. Per-patient, first-year ALL hospitalization costs at PCH rose from $24,197 in 1998 to $37,924 in 2012. The AAGRs were 6.1, 13.0, and 7.6% for total, pharmacy, and room and care costs, respectively. Average days (AAGR = 5.2%) and admissions (AAGR = 3.8%) also demonstrated an increasing trend. High-risk patients had 47% higher costs per 6-month period in the first 5 years from diagnosis than standard-risk patients (P < 0.001). Similarly, relapsed ALL and stem cell transplantations were associated with significantly higher costs than nonrelapsed and no transplantations, respectively (P < 0.001). Increasing treatment-related costs of ALL demonstrate an area for further investigation. Value-based interventions such as identifying low-risk fever and neutropenia patients and managing them in outpatient settings should be evaluated for reducing the hospital burden of ALL. PMID:26714675

  6. 5-Azacitidine Monotherapy Followed by Related Haploidentical Hematopoietic Stem Cell Transplantation Achieves Durable Remission in a Pediatric Patient With Acute Undifferentiated Leukemia Refractory to High-Dose Chemotherapy.

    PubMed

    Polishchuk, Veronika; Khazal, Sajad; Berulava, Giorgi; Roth, Michael; Mahadeo, Kris M

    2016-06-01

    Patients with acute leukemias of undifferentiated lineage (AUL) generally have guarded prognosis. Here, we describe the first reported pediatric patient with AUL refractory to high-dose chemotherapy who achieved clinical remission with ALL maintenance therapy and 5-azacitidine. His induction remission was followed by consolidation with reduced toxicity haploidentical hematopoietic stem cell transplant (HSCT). At 9 months post-HSCT, the patient is alive and in remission. This combination therapy of remission induction with ALL maintenance therapy and 5-azacitidine and consolidation with reduced toxicity haploidentical HSCT is novel and promising for patients who lack conventional donors and are not candidates for myeloablative therapy. PMID:26914221

  7. Azacitidine and Sorafenib Therapy in a Pediatric Patient With Refractory Acute Myeloid Leukemia With Monosomy 7 and Somatic PTPN11 Mutation.

    PubMed

    Dahl, Nathan A; Michaels, Samantha T; McMasters, Richard L; Chandra, Sharat; O'Brien, Maureen M

    2016-03-01

    Monosomy 7 is a well-documented cytogenetic aberration in pediatric acute myeloid leukemia (AML) and may occur in combinations with molecular abnormalities including PTPN11 mutation. PTPN11 mutations contribute to leukemogenesis through upregulation of Ras pathway signaling. We present the case of a 3-year-old female with AML with monosomy 7 and somatic PTPN11 mutation who was refractory to conventional AML chemotherapy but responded to a novel regimen of azacitidine and sorafenib followed by stem cell transplantation. Combination therapy with azacitidine and sorafenib may be an effective therapeutic strategy for patients with AML with Ras pathway abnormalities. PMID:26485542

  8. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  9. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse post induction therapy in preclinical models of pediatric acute lymphoblastic leukemia

    PubMed Central

    Carol, Hernan; Szymanska, Barbara; Evans, Kathryn; Boehm, Ingrid; Houghton, Peter J; Smith, Malcolm A; Lock, Richard B

    2013-01-01

    Purpose Relapsed or refractory pediatric acute lymphoblastic leukemia (ALL) remains a major cause of death from cancer in children. In this study we evaluated the efficacy of SAR3419, an antibody-drug conjugate of the maytansinoid DM4 and a humanized anti-CD19 antibody, against B cell precursor (BCP)-ALL and infant mixed lineage leukemia (MLL) xenografts. Experimental Design ALL xenografts were established as systemic disease in immune-deficient (NOD/SCID) mice from direct patient explants. SAR3419 was administered as a single agent and in combination with an induction-type regimen of vincristine/dexamethasone/L-asparaginase (VXL). Leukemia progression and response to treatment were assessed in real-time, and responses were evaluated using strict criteria modeled after the clinical setting. Results SAR3419 significantly delayed the progression of four out of four CD19+ BCP-ALL and three out of three MLL-ALL xenografts, induced objective responses in all but one xenograft, but was ineffective against T-lineage ALL xenografts. Relative surface CD19 expression across the xenograft panel significantly correlated with leukemia progression delay and objective response measure scores. SAR3419 also exerted significant efficacy against chemoresistant BCP-ALL xenografts over a large (10-fold) dose range, and significantly enhanced VXL-induced leukemia progression delay in two highly chemoresistant xenografts by up to 82 days. When administered as protracted therapy following remission induction with VXL, SAR3419 prevented disease recurrence into hematolymphoid and other major organs with the notable exception of central nervous system involvement. Conclusion These results suggest that incorporation of SAR3419 into remission induction protocols may improve the outcome for high-risk pediatric and adult CD19+ ALL. PMID:23426279

  10. Associations between genetic variants in folate and drug metabolizing pathways and relapse risk in pediatric acute lymphoid leukemia on CCG-1952

    PubMed Central

    Vujkovic, Marijana; Kershenbaum, Aaron; Wray, Lisa; McWilliams, Thomas; Cannon, Shannon; Devidas, Meenakshi; Stork, Linda; Aplenc, Richard

    2015-01-01

    Genetic variation in drug detoxification pathways may influence outcomes in pediatric acute lymphoblastic leukemia (ALL). We evaluated relapse risk and 24 variants in 17 genes in 714 patients in CCG-1961. Three TPMT and 1 MTR variant were associated with increased risks of relapse (rs4712327, OR 3.3, 95%CI 1.2–8.6; rs2842947, OR 2.7, 95%CI 1.1–6.8; rs2842935, OR 2.5, 95%CI 1.1–5.0; rs10925235, OR 4.9, 95%CI 1.1–25.1). One variant in SLC19A1 showed a protective effect (rs4819128, OR 0.5, 95%CI 0.3–0.9). Our study provides data that relapse risk in pediatric ALL is associated with germline variations in TPMT, MTR and SLC19A1. PMID:26605150

  11. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePlus

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  12. Impaired long-term expansion and self-renewal potential of pediatric acute myeloid leukemia-initiating cells by PTK787/ZK 222584.

    PubMed

    Weidenaar, Alida C; Ter Elst, Arja; Kampen, Kim R; Meeuwsen-de Boer, Tiny; Kamps, Willem A; Schuringa, Jan Jacob; de Bont, Eveline S J M

    2013-04-01

    Although most children with acute myeloid leukemia (AML) achieve complete remission, the relapse rate is 30% to 40%. Because it is thought that leukemia-initiating cells (LIC) are responsible for AML relapses, targeting these cells might improve outcome. Treatment of pediatric AML blasts with the receptor tyrosine kinase (RTK) inhibitor PTK787/ZK 222584 (PTK/ZK) induces cell death in vitro. However, the role of PTK/ZK inhibition on outgrowth of (pediatric) LICs is unknown. In this study, we cultured CD34+ cells from pediatric patients with AML on MS5 stromal cells in long-term cocultures. In analogy to adult AML, long-term expansion of leukemic cells up to 10 weeks could be generated in 9 of 13 pediatric AMLs. Addition of PTK/ZK to long-term cocultures significantly inhibited leukemic expansion in all samples, ranging from 4% to 80% growth inhibition at week 5 compared with untreated samples. In 75% of the samples, the inhibitory effect was more pronounced at week 10. Proteome profiler array analysis of downstream kinases revealed that PTK/ZK reduced activation of PI3K/Akt kinase signaling. Although main targets of PTK/ZK are VEGF receptors (VEGFR), no effect was seen on outgrowth of LICs when cultured with bevacizumab (monoclonal VEGFA-antibody), specific antibodies against VEGFR2 or VEGFR3, or exposed to stroma-derived VEGFA. These data suggest that the effect of PTK/ZK on LICs is not only dependent on inhibition of VEGFA/VEGFR signaling. Taken together, our data elucidated antileukemic properties of PTK/ZK in long-term expansion cultures, and suggest that targeting multiple RTKs by PTK/ZK might be a potential effective approach in eradicating (pediatric) LICs. PMID:23393162

  13. The prognostic significance of early treatment response in pediatric relapsed acute myeloid leukemia: results of the international study Relapsed AML 2001/01

    PubMed Central

    Creutzig, Ursula; Zimmermann, Martin; Dworzak, Michael N.; Gibson, Brenda; Tamminga, Rienk; Abrahamsson, Jonas; Ha, Shau-Yin; Hasle, Henrik; Maschan, Alexey; Bertrand, Yves; Leverger, Guy; von Neuhoff, Christine; Razzouk, Bassem; Rizzari, Carmelo; Smisek, Petr; Smith, Owen P.; Stark, Batia; Reinhardt, Dirk; Kaspers, Gertjan L.

    2014-01-01

    The prognostic significance of early response to treatment has not been reported in relapsed pediatric acute myeloid leukemia. In order to identify an early and easily applicable prognostic factor allowing subsequent treatment modifications, we assessed leukemic blast counts in the bone marrow by morphology on days 15 and 28 after first reinduction in 338 patients of the international Relapsed-AML2001/01 trial. Both day 15 and day 28 status was classified as good (≤20% leukemic blasts) in 77% of patients. The correlation between day 15 and 28 blast percentages was significant, but not strong (Spearman correlation coefficient = 0.49, P<0.001). Survival probability decreased in a stepwise fashion along with rising blast counts at day 28. Patients with bone marrow blast counts at this time-point of ≤5%, 6–10%, 11–20% and >20% had 4-year probabilities of survival of 52%±3% versus 36%±10% versus 21%±9% versus 14%±4%, respectively, P<0.0001; this trend was not seen for day 15 results. Multivariate analysis showed that early treatment response at day 28 had the strongest prognostic significance, superseding even time to relapse (< or ≥12 months). In conclusion, an early response to treatment, measured on day 28, is a strong and independent prognostic factor potentially useful for treatment stratification in pediatric relapsed acute myeloid leukemia. This study was registered with ISRCTN code: 94206677. PMID:24763401

  14. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation

    PubMed Central

    2014-01-01

    Background Acute myeloid leukemia (AML) is the second most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature in various tumors, including AML. Metallothionein III (MT3) is a tumor suppresser reported to show promoter hypermethylated in various cancers. However, the expression and molecular function of MT3 in pediatric AML is unclear. Methods Eleven human leukemia cell lines and 41 pediatric AML samples and 20 NBM/ITP (Norma bone marrow/Idiopathic thrombocytopenic purpura) control samples were analyzed. Transcription levels of MT3 were evaluated by semi-quantitative and real-time PCR. MT3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BSG). The molecular mechanism of MT3 was investigated by apoptosis assays and PCR array analysis. Results The MT3 promoter was hypermethylated in leukemia cell lines. More CpG’s methylated of MT3 was observed 39.0% pediatric AML samples compared to 10.0% NBM controls. Transcription of MT3 was also significantly decreased in AML samples compared to NBM/ITP controls (P < 0.001); patients with methylated MT3 exhibited lower levels of MT3 expression compared to those with unmethylated MT3 (P = 0.049). After transfection with MT3 lentivirus, proliferation was significantly inhibited in AML cells in a dose-dependent manner (P < 0.05). Annexin V assay showed that apoptosis was significantly upregulated MT3-overexpressing AML cells compared to controls. Real-time PCR array analysis revealed 34 dysregulated genes that may be implicated in MT3 overexpression and apoptosis in AML, including FOXO1. Conclusion MT3 may be a putative tumor suppressor gene in pediatric AML. Epigenetic inactivation of MT3 via promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Overexpression of MT3 may inhibit proliferation and induce apoptosis in AML cells. FOXO1 was dysregulated in MT3-overexpressing cells

  15. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance

    PubMed Central

    2012-01-01

    Background We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population. Methods The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls. Altogether 66 single nucleotide polymorphisms (SNPs) in 19 candidate genes were genotyped. Results With logistic regression, we identified 6 SNPs in the ARID5B and IKZF1 genes associated with increased risk to B-cell ALL, and two SNPs in the STAT3 gene, which decreased the risk to hyperdiploid ALL. Because the associated SNPs were in linkage in each gene, these associations corresponded to one signal per gene. The odds ratio (OR) associated with the tag SNPs were: OR = 1.69, P = 2.22x10-7 for rs4132601 (IKZF1), OR = 1.53, P = 1.95x10-5 for rs10821936 (ARID5B) and OR = 0.64, P = 2.32x10-4 for rs12949918 (STAT3). With the BN-BMLA we confirmed the findings of the frequentist-based method and received additional information about the nature of the relations between the SNPs and the disease. E.g. the rs10821936 in ARID5B and rs17405722 in STAT3 showed a weak interaction, and in case of T-cell lineage sample group, the gender showed a weak interaction with three SNPs in three genes. In the hyperdiploid patient group the BN-BMLA detected a strong interaction among SNPs in the NOTCH1, STAT1, STAT3 and BCL2 genes. Evaluating the survival rate of the patients with ALL, the BN-BMLA showed that besides risk groups and subtypes, genetic variations in the BAX and CEBPA genes might also influence the probability of survival of the patients. Conclusions In the present study we confirmed the roles of genetic variations in ARID5B and IKZF1 in the susceptibility to B-cell ALL

  16. Protracted Administration of L-Asparaginase in Maintenance Phase Is the Risk Factor for Hyperglycemia in Older Patients with Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Yoshida, Hideki; Imamura, Toshihiko; Saito, Akiko M; Takahashi, Yoshihiro; Suenobu, So-ichi; Hasegawa, Daiichiro; Deguchi, Takao; Hashii, Yoshiko; Kawasaki, Hirohide; Endo, Mikiya; Hori, Hiroki; Suzuki, Nobuhiro; Kosaka, Yoshiyuki; Kato, Koji; Yumura-Yagi, Keiko; Hara, Junichi; Oda, Megumi; Sato, Atsushi; Horibe, Keizo

    2015-01-01

    Although L-asparaginase related hyperglycemia is well known adverse event, it is not studied whether the profile of this adverse event is affected by intensification of L-asparaginase administration. Here, we analyzed the profile of L-asparaginase related hyperglycemia in a 1,176 patients with pediatric acute lymphoblastic leukemia treated according to the Japan Association of Childhood Leukemia Study ALL-02 protocol using protracted L-asparaginase administration in maintenance phase. We determined that a total of 75 L-asparaginase related hyperglycemia events occurred in 69 patients. Although 17 events (17/1176, 1.4%) developed in induction phase, which was lower incidence than those (10-15%) in previous reports, 45 events developed during the maintenance phase with protracted L-asparaginase administration. Multivariate analysis showed that older age at onset (≥ 10 years) was a sole independent risk factor for L-asparaginase-related hyperglycemia (P<0.01), especially in maintenance phase. Contrary to the previous reports, obesity was not associated with L-asparaginase-related hyperglycemia. These findings suggest that protracted administration of L-asparaginase is the risk factor for hyperglycemia when treating adolescent and young adult acute lymphoblastic leukemia patients. PMID:26317422

  17. Pharmacogenomics in pediatric leukemia

    PubMed Central

    Paugh, Steven W.; Stocco, Gabriele; Evans, William E.

    2013-01-01

    Purpose of review The therapeutic index of many medications, especially in children, is very narrow with substantial risk for toxicity at doses required for therapeutic effects. This is particularly relevant to cancer chemotherapy, where the risk of toxicity must be balanced against potential suboptimal (low) systemic exposure that can be less effective in patients with the higher rates of drug clearance. The purpose of this review is to discuss genetic factors that lead to interpatient differences in the pharmacokinetics and pharmacodynamics of these medications. Recent findings Genome wide agonistic studies of pediatric patient populations are revealing genome variations that may affect susceptibility to specific diseases and that influence the pharmacokinetic and pharmacodynamic characteristics of medications. Several genetic factors with relatively small effect may be combined in the determination of a pharmacogenomic phenotype and considering these polygenic models may be mandatory in order to predict the related drug response phenotypes. These findings have potential to yield new insights into disease pathogenesis, and lead to molecular diagnostics that can be used to optimize the treatment of childhood cancers Summary Advances in genome technology and their comprehensive and systematic deployment to elucidate the genomic basis of inter-patient differences in drug response and disease risk, hold great promise to ultimately enhance the efficacy and reduce the toxicity of drug therapy in children. PMID:20861736

  18. Radioimmunotherapy for Treatment of Acute Leukemia.

    PubMed

    Bodet-Milin, Caroline; Kraeber-Bodéré, Françoise; Eugène, Thomas; Guérard, François; Gaschet, Joëlle; Bailly, Clément; Mougin, Marie; Bourgeois, Mickaël; Faivre-Chauvet, Alain; Chérel, Michel; Chevallier, Patrice

    2016-03-01

    Acute leukemias are characterized by accumulation of immature cells (blasts) and reduced production of healthy hematopoietic elements. According to the lineage origin, two major leukemias can be distinguished: acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Although the survival rate for pediatric ALL is close to 90%, half of the young adults with AML or ALL and approximately 90% of older patients with AML or ALL still die of their disease, raising the need for innovative therapeutic approaches. As almost all leukemic blasts express specific surface antigens, targeted immunotherapy appears to be particularly promising. However, published results of immunotherapy alone are generally modest. Radioimmunotherapy (RIT) brings additional therapeutic mechanisms using radiolabeled monoclonal antibodies (mAbs) directed to tumor antigens, thus adding radiobiological cytotoxicity to immunologic cytotoxicity. Because of the high radiosensitivity of tumor cells and the diffuse widespread nature of the disease, making it rapidly accessible to circulating radiolabeled mAbs, acute leukemias represent relevant indications for RIT. With the development of recombinant and humanized mAbs, innovative radionuclides, and more efficient radiolabeling and pretargeting techniques, RIT has significantly improved over the last 10 years. Different approaches of α and β RIT targeting CD22, CD33, CD45, or CD66 antigens have already been evaluated or are currently being developed in the treatment of acute leukemia. This review summarizes the preclinical and clinical studies demonstrating the potential of RIT in treatment of AML and ALL. PMID:26897718

  19. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  20. Socioeconomic status and event free survival in pediatric acute lymphoblastic leukemia: a population-based cohort study.

    PubMed

    Gupta, Sumit; Sutradhar, Rinku; Guttmann, Astrid; Sung, Lillian; Pole, Jason D

    2014-12-01

    The impact of socioeconomic status (SES) upon childhood cancer outcomes has not been extensively examined. Our objective was to determine the association between SES and event-free survival (EFS) among children with acute lymphoblastic leukemia (ALL) diagnosed in Ontario, Canada from 1995-2011 (N=1541) using Cox proportional hazards. Neither neighborhood-level median income quintile, distance from tertiary center, or rural residence significantly predicted EFS in the context of a universal healthcare system. Immigrant children experienced significantly superior EFS; confounding by ethnicity could not be ruled out. Confirmatory studies using additional individual-level SES variables are warranted. PMID:25224660

  1. IMMUNOTHERAPY IN ACUTE LEUKEMIA

    PubMed Central

    Leung, Wing

    2010-01-01

    Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has lead to new strategies of immunotherapy, and even past failure in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia. PMID:19100371

  2. Efficacy and safety of intrathecal liposomal cytarabine for the treatment of meningeal relapse in acute lymphoblastic leukemia: experience of two pediatric institutions.

    PubMed

    Parasole, Rosanna; Menna, Giuseppe; Marra, Nicoletta; Petruzziello, Fara; Locatelli, Franco; Mangione, Argia; Misuraca, Aldo; Buffardi, Salvatore; Di Cesare-Merlone, Alessandra; Poggi, Vincenzo

    2008-08-01

    The treatment of meningeal relapse in acute lymphoblastic leukemia (ALL) remains a challenging clinical problem. Liposomal cytarabine (DepoCyte) permits to decrease frequency of lumbar punctures, without loss of efficacy, because intrathecal levels of the drug remain cytotoxic for up to 14 days. We investigated the efficacy and safety of intrathecal DepoCyte in six children with meningeal relapse, treated in two pediatric institutions. DepoCyte was well tolerated in all patients, who achieved complete clearance of blasts from the cerebrospinal fluid after the first three intrathecal drug administrations. Five of the six patients were concurrently treated with high-dose administration of systemic cytarabine, without additional neurological side effects. Our results suggest that DepoCyte is a valid option for children with ALL experiencing meningeal relapse; it deserves further investigation in intensive treatment regimens, taking into due consideration potential neurotoxicity. PMID:18766969

  3. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2015-07-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  4. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  5. Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia

    PubMed Central

    Salina, Thais Ditolvo da Costa; Ferreira, Yvelise Antunes; Alves, Eliana Brasil; Ferreira, Cristina Motta; De Paula, Erich Vinícius; Mira, Marcelo Távora; Passos, Leny da Mota

    2016-01-01

    Risk stratification and treatment intensification, based on minimal residual disease (MRD) mensurement, changed the prognosis of pediatric patients with acute lymphocytic leukemia (ALL). The main aim of this study was to investigate whether peripheral blood (PB) MRD measurement at day 8 (D8) could predict the risk stratification category determined by bone marrow (BM) MRD at day 15 (D15). The study was performed prospectively, in a cohort of 40 children with B-lineage ALL, adopting the protocol of the Brazilian Cooperative Group of the Treatment Childhood Leukemia (GBTLI-2009). MRD was detected by flow cytometry (FC) using a simplifed panel that can reliably identify MRD at early phases of induction therapy. Upon diagnosis, the proportion of low and high-risk patients, was 24:16 (60%:40%). The main result of our study demonstrated the potential of D8 MRD in anticipating of week the risk stratification of high-risk patients as determined by D15 BM MRD. In these patients D8 MRD level of 1% was able to segregate high risk fast responders from high risk slow responders (p = 0.0097). This result could represent an opportunity for early treatment intensification, as already performed in some protocols. PMID:27526794

  6. Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia.

    PubMed

    Salina, Thais Ditolvo da Costa; Ferreira, Yvelise Antunes; Alves, Eliana Brasil; Ferreira, Cristina Motta; De Paula, Erich Vinícius; Mira, Marcelo Távora; Passos, Leny da Mota

    2016-01-01

    Risk stratification and treatment intensification, based on minimal residual disease (MRD) mensurement, changed the prognosis of pediatric patients with acute lymphocytic leukemia (ALL). The main aim of this study was to investigate whether peripheral blood (PB) MRD measurement at day 8 (D8) could predict the risk stratification category determined by bone marrow (BM) MRD at day 15 (D15). The study was performed prospectively, in a cohort of 40 children with B-lineage ALL, adopting the protocol of the Brazilian Cooperative Group of the Treatment Childhood Leukemia (GBTLI-2009). MRD was detected by flow cytometry (FC) using a simplifed panel that can reliably identify MRD at early phases of induction therapy. Upon diagnosis, the proportion of low and high-risk patients, was 24:16 (60%:40%). The main result of our study demonstrated the potential of D8 MRD in anticipating of week the risk stratification of high-risk patients as determined by D15 BM MRD. In these patients D8 MRD level of 1% was able to segregate high risk fast responders from high risk slow responders (p = 0.0097). This result could represent an opportunity for early treatment intensification, as already performed in some protocols. PMID:27526794

  7. Rationale for a Pediatric-Inspired Approach in the Adolescent and Young Adult Population with Acute Lymphoblastic Leukemia, with a Focus on Asparaginase Treatment

    PubMed Central

    Putti, Maria Caterina; Colombini, Antonella; Casagranda, Sara; Ferrari, Giulia Maria; Papayannidis, Cristina; Iacobucci, Ilaria; Abbenante, Maria Chiara; Sartor, Chiara; Martinelli, Giovanni

    2014-01-01

    In the last two decades great improvements have been made in the treatment of childhood acute lymphoblastic leukemia, with 5-year overall survival rates currently approaching almost 90%. In comparison, results reported in adolescents and young adults (AYAs) are relatively poor. In adults, results have improved, but are still lagging behind those obtained in children. Possible reasons for this different pattern of results include an increased incidence of unfavorable and a decreased incidence of favorable cytogenetic abnormalities in AYAs compared with children. Furthermore, in AYAs less intensive treatments (especially lower cumulative doses of drugs such as asparaginase, corticosteroids and methotrexate) and longer gaps between courses of chemotherapy are planned compared to those in children. However, although favorable results obtained in AYAs receiving pediatric protocols have been consistently reported in several international collaborative trials, physicians must also be aware of the specific toxicity pattern associated with increased success in AYAs, since an excess of toxicity may compromise overall treatment schedule intensity. Cooperative efforts between pediatric and adult hematologists in designing specific protocols for AYAs are warranted. PMID:25317319

  8. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Expression of CD25 is a specific and relatively sensitive marker for the Philadelphia chromosome (BCR-ABL1) translocation in pediatric B acute lymphoblastic leukemia

    PubMed Central

    Gaikwad, Amos S; Donohue, Rachel E; Elghetany, M Tarek; Sheehan, Andrea M; Lu, Xinyan Y; Gramatges, Maria M; McClain, Kenneth L; Mistretta, Toni-Ann; Punia, Jyotinder N; Moore, Timothy J; Goltsova, Tatiana; Cubbage, Michael; Curry, Choladda V

    2014-01-01

    Background: Precursor B acute lymphoblastic leukemia (B-ALL) is the most common cancer in children and overall, has an excellent prognosis. However, the Philadelphia chromosome translocation (Ph+), t(9;22)(q34;q11), is present in a small subset of patients and confers poor outcomes. CD25 (IL-2 receptor alpha chain) expression has been associated with Ph+ B-ALL in adults, but no similar study has been performed in pediatric B-ALL. Methods: A retrospective analysis of 221 consecutive pediatric patients with a diagnosis of B-ALL (blood and/or bone marrow) from 2009 to 2012 was performed to determine an association between Ph+ B-ALL and CD25 expression. A threshold of 25% was used to define positive cases for CD25 expression by flow cytometry. Results: There were 221 patients with a diagnosis of B-ALL ranging from 2 to 22 years (median, 6 years). Eight (3.6%) B-ALL patients were positive for the Philadelphia chromosome translocation (Ph+ B-ALL) and 213 were negative (Ph-negative B-ALL). CD25 expression was observed in 6 of 8 (75%) Ph+ B-ALL patients and 6 of 213 (2.8%) Ph-negative B-ALL patients. CD25 expression was significantly higher in Ph+ B-ALL compared to Ph-negative B-ALL, with median CD25 expression of 64% (range 0-93%) and 0.1% (range 0-91%), respectively (P ≤ 0.0002). Therefore, CD25 expression as a predictor of Ph+ B-ALL had 75% sensitivity, 97% specificity, 50% positive predictive value and 99% negative predictive value. Conclusions: CD25 expression is a specific and relatively sensitive marker for the identification of Ph+ B-ALL in the pediatric population. PMID:25337274

  10. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

    PubMed

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  12. Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia

    PubMed Central

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  13. Prompt recognition and percutaneous coronary intervention leads to favorable myocardial recovery after ST-segment elevation myocardial infarction secondary to acute promyelocytic leukemia: pediatric case report.

    PubMed

    Thomas, Tamara O; Ramachandran, Preeti; Jefferies, John L; Beekman, Robert H; Hor, Kan; Lorts, Angela

    2013-01-01

    Acute myocardial infarction (AMI) is extremely rare in children, and unlike the adult disease, the etiology of the infarction is rarely due to atherosclerotic coronary disease. This unique reported case involved a 15-year-old boy with severe chest pain who presented with an ST-segment-elevation myocardial infarction secondary to in situ thrombus formation in the left anterior descending (LAD) coronary artery. The initial electrocardiogram (ECG) had a Q-wave pattern in V6 and ST depression in the inferior leads with ST-segment elevation in reciprocal leads. The cardiac enzymes and routine labs showed evidence of myocardial damage. The boy was urgently taken to the cardiac catheterization laboratory for percutaneous coronary intervention, where complete occlusion of the LAD was found and successfully stented. Eventually, a peripheral blood smear showed pancytopenia with 38 % hypergranular blast-like cells consistent with acute myeloid leukemia (AML), and chemotherapy with all-transretinoic acid was implemented. This first pediatric case report of an AML-associated AMI emphasizes the benefit resulting from expedient reperfusion of the ischemic myocardium by quick reestablishment of coronary perfusion. It also emphasizes the limitations of existing noninvasive technologies in detecting myocardial viability. PMID:23263162

  14. Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

    ClinicalTrials.gov

    2015-04-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Blastic Phase; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Acute myelogenous leukemia (AML) -- children

    MedlinePlus

    ... Leung WH, Pounds S, Cao X, e t al. Definition of cure in childhood acute myeloid leukemia. Cancer . 2014 Aug ... MD, Medical Oncologist, Fresno, CA. Review provided by VeriMed Healthcare Network. Also reviewed by ...

  18. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan.

    PubMed

    Imamura, T; Kiyokawa, N; Kato, M; Imai, C; Okamoto, Y; Yano, M; Ohki, K; Yamashita, Y; Kodama, Y; Saito, A; Mori, M; Ishimaru, S; Deguchi, T; Hashii, Y; Shimomura, Y; Hori, T; Kato, K; Goto, H; Ogawa, C; Koh, K; Taki, T; Manabe, A; Sato, A; Kikuta, A; Adachi, S; Horibe, K; Ohara, A; Watanabe, A; Kawano, Y; Ishii, E; Shimada, H

    2016-01-01

    Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase-PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined. PMID:27176795

  19. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan

    PubMed Central

    Imamura, T; Kiyokawa, N; Kato, M; Imai, C; Okamoto, Y; Yano, M; Ohki, K; Yamashita, Y; Kodama, Y; Saito, A; Mori, M; Ishimaru, S; Deguchi, T; Hashii, Y; Shimomura, Y; Hori, T; Kato, K; Goto, H; Ogawa, C; Koh, K; Taki, T; Manabe, A; Sato, A; Kikuta, A; Adachi, S; Horibe, K; Ohara, A; Watanabe, A; Kawano, Y; Ishii, E; Shimada, H

    2016-01-01

    Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase–PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined. PMID:27176795

  20. Acute Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  1. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  2. Novel Therapies for Relapsed Acute Lymphoblastic Leukemia

    PubMed Central

    Fullmer, Amber; O’Brien, Susan; Kantarjian, Hagop; Jabbour, Elias

    2015-01-01

    The outcome of salvage therapy for relapsed acute lymphoblastic leukemia (ALL) remains poor. Salvage therapy mimics regimens with activity in newly diagnosed ALL. Novel strategies under investigation as monotherapy or in combination with chemotherapy improve the treatment of relapsed disease. For some ALL subsets, specific therapies are indicated. The addition of targeted therapy in Philadelphia chromosome–positive ALL has improved responses in relapsed patients without resistance to available tyrosine kinase inhibitors. Nelarabine demonstrates activity as monotherapy in T-cell ALL and is approved by the US Food and Drug Administration. Clofarabine, a second-generation purine analogue approved in pediatric leukemia, has shown activity in adult acute leukemias including ALL and acute myeloid leukemia. The role of pegaspargase in adult ALL requires further investigation. The benefit of matched related-donor allogeneic stem cell transplantation is significant for standard-risk ALL but not for high-risk ALL. Development of new drugs and agents tailored to subset-specific cytogenetic-molecular characteristics remains vital to success in treating adult ALL. PMID:20425428

  3. A comparison of discharge strategies after chemotherapy completion in pediatric patients with acute myeloid leukemia: a report from the Children's Oncology Group.

    PubMed

    Miller, Tamara P; Getz, Kelly D; Kavcic, Marko; Li, Yimei; Huang, Yuan-Shun V; Sung, Lillian; Alonzo, Todd A; Gerbing, Robert; Daves, Marla; Horton, Terzah M; Pulsipher, Michael A; Pollard, Jessica; Bagatell, Rochelle; Seif, Alix E; Fisher, Brian T; Gamis, Alan S; Aplenc, Richard

    2016-07-01

    While most children receive acute myeloid leukemia (AML) chemotherapy as inpatients, there is variability in timing of discharge after chemotherapy completion. This study compared treatment-related morbidity, mortality and cumulative hospitalization in children with AML who were discharged after chemotherapy completion (early discharge) and those who remained hospitalized. Chart abstraction data for 153 early discharge-eligible patients enrolled on a Children's Oncology Group trial were compared by discharge strategy. Targeted toxicities included viridans group streptococcal (VGS) bacteremia, hypoxia and hypotension. Early discharge occurred in 11% of courses post-Induction I. Re-admission occurred in 80-100%, but median hospital stay was 7 days shorter. Patients discharged early had higher rates of VGS (adjusted risk ratio (aRR) = 1.67, 95% CI = 1.11-2.51), hypoxia (aRR = 1.92, 95% CI = 1.06-3.48) and hypotension (aRR = 4.36, 95% CI = 2.01-9.46), but there was no difference in mortality. As pressure increases to shorten hospitalizations, these results have important implications for determining discharge practices in pediatric AML. PMID:26727639

  4. Newly Diagnosed Acute Promyelocytic Leukemia

    PubMed Central

    Avvisati, Giuseppe

    2011-01-01

    Acute promyelocytic leukemia (APL) represents a medical emergency with a high rate of early mortality. As a consequence, as soon as the diagnosis is suspected based upon cytologic criteria, it is necessary to start all- trans retinoic acid (ATRA) treatment without delay. For patients with newly diagnosed APL, induction therapy with ATRA plus anthracycline based chemotherapy is recommended. At present the combination of arsenic trioxide plus ATRA should be considered for patients who are not candidates for anthracycline-based therapy. For pediatric and adult patients with APL aged < 60 years who achieve a CR with induction, I recommend 3 intensive courses of consolidation chemotherapy associated to ATRA, targeted on the basis of the risk group at diagnosis. In patients treated with a very intensive consolidation chemotherapy maintenance treatment can be omitted. However If a maintenance treatment has to be adopted I suggest the use of intermittent ATRA for 15 days every 3 months for a period of 2 years, rather than ATRA associated to chemotherapy. Moreover, taking into account the medical literature, a reduced dosage of ATRA ( 25 mg/m2) in pediatric patients and a consolidation chemotherapy of reduced intensity in elderly patients is recommended. Furthermore, in order to maximize survival, careful attention should be reserved to the coagulopathy and to the appearance of the differentiation syndrome. Finally, PCR for the PML/RARA fusion gene on a bone marrow specimen every three months for two years, and then every six months for additional three years are needed during the follow-up. PMID:22220261

  5. The contributions of the European Medicines Agency and its pediatric committee to the fight against childhood leukemia

    PubMed Central

    Rose, Klaus; Walson, Philip D

    2015-01-01

    Background Although the diagnosis of childhood leukemia is no longer a death sentence, too many patients still die, more with acute myeloid leukemia than with acute lymphoblastic leukemia. The European Union pediatric legislation was introduced to improve pharmaceutical treatment of children, but some question whether the European Medicines Agency (EMA) approach is helping children with leukemia. Some have even suggested that the decisions of EMA pediatric committee (PDCO) are counterproductive. This study was designed to investigate the impact of PDCO-issued pediatric investigation plans (PIPs) for leukemia drugs. Methods All PIPs listed under “oncology” were downloaded from the EMA website. Non-leukemia decisions including misclassifications, waivers (no PIP), and solid tumors were discarded. The leukemia decisions were analyzed, compared to pediatric leukemia trials in the database http://www.clinicaltrials.gov, and discussed in the light of current literature. Results The PDCO leukemia decisions demand clinical trials in pediatric leukemia for all new adult drugs without prioritization. However, because leukemia in children is different and much rarer than in adults, these decisions have resulted in proposed studies that are scientifically and ethically questionable. They are also unnecessary, since once promising new compounds are approved for adults, more appropriate, prioritized pediatric leukemia trials are initiated worldwide without PDCO involvement. Conclusion EMA/PDCO leukemia PIPs do little to advance the treatment of childhood leukemia. The unintended negative effects of the flawed EMA/PDCO’s standardized requesting of non-prioritized testing of every new adult leukemia drug in children with relapsed or refractory disease expose these children to questionable trials, and could undermine public trust in pediatric clinical research. Institutions, investigators, and ethics committees/institutional review boards need to be skeptical of trials

  6. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  7. Same sibling marrow following cord allogeneic transplantation as therapy for second relapse acute promyelocytic leukemia in a pediatric patient.

    PubMed

    De Oliveira, Satiro N; Kao, Roy L; Pham, Andrew; Smith, LaMarr Taylor; Kempert, Pamela; Moore, Theodore B

    2016-03-01

    Optimal therapy for relapsed APL in pediatric patients is controversial. Allogeneic HSCT is an alternative, with event-free survival of 70-75%. We report a pediatric patient with APL who relapsed 28 months after CBT from her sibling and then was treated with BMT from the same donor. Bone marrow was selected for higher cell dose, donor availability, and partial donor chimerism. Persistent molecular remission was achieved, currently at 65 months after BMT. This case suggests the potential role of GVL activity in APL and illustrates the use of different cell sources from the same donor in allogeneic transplantation for pediatric patients. PMID:26849401

  8. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  9. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Flavopiridol and Vorinostat in Treating Patients With Relapsed or Refractory Acute Leukemia or Chronic Myelogenous Leukemia or Refractory Anemia

    ClinicalTrials.gov

    2013-04-01

    Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Treatment Options for Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  13. Stages of Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  14. Treatment Option Overview (Adult Acute Myeloid Leukemia)

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  15. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  16. How Is Acute Lymphocytic Leukemia Classified?

    MedlinePlus

    ... How is acute lymphocytic leukemia treated? How is acute lymphocytic leukemia classified? Most types of cancers are assigned numbered ... ALL are now named as follows: B-cell ALL Early pre-B ALL (also called pro-B ...

  17. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  18. General Information about Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  19. Acute myeloid leukemia.

    PubMed

    Appelbaum, F R; Rowe, J M; Radich, J; Dick, J E

    2001-01-01

    Through the hard work of a large number of investigators, the biology of acute myeloid leukemia (AML) is becoming increasingly well understood, and as a consequence, new therapeutic targets have been identified and new model systems have been developed for testing novel therapies. How these new therapies can be most effectively studied in the clinic and whether they will ultimately improve cure rates are questions of enormous importance. In this article, Dr. Jacob Rowe presents a summary of the current state-of-the-art therapy for adult AML. His contribution emphasizes the fact that AML is not a single disease, but a number of related diseases each distinguished by unique cytogenetic markers which in turn help determine the most appropriate treatment. Dr. Jerald Radich continues on this theme, emphasizing how these cytogenetic abnormalities, as well as other mutations, give rise to abnormal signal transduction and how these abnormal pathways may represent ideal targets for the development of new therapeutics. A third contribution by Dr. Frederick Appelbaum describes how AML might be made the target of immunologic attack. Specifically, strategies using antibody-based or cell-based immunotherapies are described including the use of unmodified antibodies, drug conjugates, radioimmunoconjugates, non-ablative allogeneic transplantation, T cell adoptive immunotherapy and AML vaccines. Finally, Dr. John Dick provides a review of the development of the NOD/SCID mouse model of human AML emphasizing both what it has taught us about the biology of the disease as well as how it can be used to test new therapies. Taken together, these reviews are meant to help us understand more about where we are in the treatment of AML, where we can go and how we might get there. PMID:11722979

  20. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-07

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Simultaneous targeting of PI3Kδ and a PI3Kδ-dependent MEK1/2-Erk1/2 pathway for therapy in pediatric B-cell acute lymphoblastic leukemia

    PubMed Central

    Wang, Xiang; Zhang, Xi; Li, Ben-shang; Zhai, Xiaowen; Yang, Zhuo; Ding, Li-xia; Wang, Hongsheng; Liang, Chris; Zhu, Weiliang; Ding, Jian; Meng, Ling-hua

    2014-01-01

    B cell acute lymphoblastic leukemia (B-ALL) is the most common hematological malignancy diagnosed in children, and blockade of the abnormally activated PI3Kδ displayed promising outcomes in B cell acute or chronic leukemias, but the mechanisms are not well understood. Here we report a novel PI3Kδ selective inhibitor X-370, which displays distinct binding mode with p110δ and blocks constitutively active or stimulus-induced PI3Kδ signaling. X-370 significantly inhibited survival of human B cell leukemia cells in vitro, with associated induction of G1 phase arrest and apoptosis. X-370 abrogated both Akt and Erk1/2 signaling via blockade of PDK1 binding to and/or phosphorylation of MEK1/2. Forced expression of a constitutively active MEK1 attenuated the antiproliferative activity of X-370. X-370 preferentially inhibited the survival of primary pediatric B-ALL cells displaying PI3Kδ-dependent Erk1/2 phosphorylation, while combined inhibition of PI3Kδ and MEK1/2 displayed enhanced activity. We conclude that PI3Kδ inhibition led to abrogation of both Akt and Erk1/2 signaling via a novel PI3K-PDK1/MEK1/2-Erk1/2 signaling cascade, which contributed to its efficacy against B-ALL. These findings support the rationale for clinical testing of PI3Kδ inhibitors in pediatric B-ALL and provide insights needed to optimize the therapeutic strategy. PMID:25313141

  2. Pharmacokinetics of Chemotherapeutic Drugs in Pediatric Patients With Down Syndrome and Leukemia.

    PubMed

    Hefti, Erik; Blanco, Javier G

    2016-05-01

    Children with Down syndrome (DS) have a 10- to 30-fold increased risk of developing acute myeloid leukemia or acute lymphoblastic leukemia. Patients with DS and leukemia are treated with the same chemotherapeutic agents as patients without DS. Treatment regimens for pediatric leukemia comprise multiple cytotoxic drugs including methotrexate, doxorubicin, vincristine, cytarabine, and etoposide. There have been reports of increased toxicity, as well as altered therapeutic outcomes in pediatric patients with DS and leukemia. This review is focused on the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS. The available literature suggests that methotrexate and thioguanine display altered pharmacokinetic parameters in pediatric patients with DS. It has been hypothesized that the variable pharmacokinetics of these drugs may contribute to the increased incidence of treatment-related toxicities seen in DS. Data from a small number of studies suggest that the pharmacokinetics of vincristine, etoposide, doxorubicin, and busulfan are similar between patients with and without DS. Definitive conclusions regarding the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS are difficult to reach due to limitations in the available studies. PMID:26907658

  3. Impact of pretransplant minimal residual disease on the post-transplant outcome of pediatric acute lymphoblastic leukemia.

    PubMed

    Umeda, Katsutsugu; Hiramatsu, Hidefumi; Kawaguchi, Koji; Iwai, Atsushi; Mikami, Masamitsu; Nodomi, Seishiro; Saida, Satoshi; Heike, Toshio; Ohomori, Katsuyuki; Adachi, Souichi

    2016-08-01

    There are few reports on the clinical significance of MRD before HSCT in pediatric ALL. We retrospectively analyzed the clinical significance of FCM-based detection of MRD (FCM-MRD) before allogeneic HSCT in pediatric ALL. Of 38 pediatric patients who underwent allogeneic HSCT for the first time between 1998 and 2014, 33 patients were in CR and five patients were in non-CR. The CR group was further divided into two groups based on the pretransplant FCM-MRD level: the MRD(neg) (<0.01%; 30 patients) group and the MRD(pos) (≥0.01%; three patients) group. There were significant differences in the three-yr event-free survival rates between the CR and non-CR group, and between the MRD(neg) and MRD(pos) group. The three-yr cumulative RI in the MRD(neg) group were 27.3% ± 8.8%, whereas two of the three patients in the MRD(pos) group relapsed within one yr after HSCT. The clinical outcome of the MRD(pos) group was as poor as that of the non-CR group in pediatric ALL. Therefore, an improvement in pretransplant treatment that aims to achieve a more profound remission would contribute to reducing the risk of relapse. PMID:27256540

  4. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. herg1b expression as a potential specific marker in pediatric acute myeloid leukemia patients with HERG 897K/K genotype.

    PubMed

    Erdem, Merve; Tekiner, Tugce Ayca; Fejzullahu, Arta; Akan, Gokce; Anak, Sema; Saribeyoglu, Ebru Tugrul; Ozbek, Ugur; Atalar, Fatmahan

    2015-04-01

    Human ether-a-go-go related gene (herg) encoding HERG K(+) channel has been demonstrated in many previous studies with its association to cell cycle progression and growth in tumor cells. The upregulated expression of HERG K+ channels was determined in different tumor types. Furthermore, not only full-length transcript herg1 but also a truncated isoform herg1b was shown to be expressed in cancer cells. In this study, the expression levels of herg1 and herg1b and the impact of K897T mutation on their expressions were investigated in pediatric acute myeloid leukemia (pAML). Expression levels of herg1 and herg1b isoforms were analyzed by quantitative real time polymerase chain reaction (PCR) in pAML patients together with healthy donors, and their expressions were confirmed by western blotting. The 2690 A>C nucleotide variation in KCNH2 gene corresponding to K897T amino acid change was analyzed by PCR followed by restriction enzyme digestion. herg1b overexpression was observed in tumor cells compared to healthy controls (P = .0024). However, herg1 expression was higher in healthy control cells than tumor cells (P = .001). The prevalence of polymorphic allele 897T was 26% in our patient group and 897T carriers showed increased herg1b expression compared to wild-type allele carriers. Our results demonstrate the presence of the increased levels of herg1b expression in pAML. In addition, we report for the first time that, pAML subgroup with HERG 897K/K genotype compared to 897K/T and T/T genotypes express increased levels of herg1b. In conclusion, HERG 897K/K genotype with increased level of herg1b expression might well be a prognostic marker for pAML. PMID:25247487

  6. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  7. Acute lymphoblastic leukemia (ALL)

    MedlinePlus

    ... WBC) count Platelet count Bone marrow biopsy Lumbar puncture (spinal tap) to check for leukemia cells in ... home Managing your pets during chemotherapy Bleeding problems Dry mouth Eating enough calories Safe eating during cancer ...

  8. Acute myeloid leukemia

    MedlinePlus

    ... a low number of platelets. A white blood cell count ( WBC ) can be high, low, or normal. Bone ... and overall health How high your white blood cell count was Certain genetic changes in the leukemia cells ...

  9. 8-Chloro-Adenosine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-11

    Recurrent Adult Acute Myeloid Leukemia; Relapsed Adult Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia Arising From Previous Myeloproliferative Disorder

  10. General Information about Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

    MedlinePlus

    ... Other Myeloid Malignancies Treatment (PDQ®)–Patient Version General Information About Childhood Acute Myeloid Leukemia and Other Myeloid ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  11. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  12. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  13. Idarubicin and Cytarabine With or Without Bevacizumab in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-23

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Münster AML-study group

    PubMed Central

    Coenen, Eva A.; Zwaan, C. Michel; Reinhardt, Dirk; Harrison, Christine J.; Haas, Oskar A.; de Haas, Valerie; Mihál, Vladimir; De Moerloose, Barbara; Jeison, Marta; Rubnitz, Jeffrey E.; Tomizawa, Daisuke; Johnston, Donna; Alonzo, Todd A.; Hasle, Henrik; Auvrignon, Anne; Dworzak, Michael; Pession, Andrea; van der Velden, Vincent H. J.; Swansbury, John; Wong, Kit-fai; Terui, Kiminori; Savasan, Sureyya; Winstanley, Mark; Vaitkeviciene, Goda; Zimmermann, Martin; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2013-01-01

    In pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical characteristics, morphology, and immunophenotypes of 62 pediatric AML patients with t(8;16)(p11;p13) from 18 countries participating in the International Berlin-Frankfurt-Münster (I-BFM) AML study group. We used the AML-BFM cohort diagnosed from 1995-2005 (n = 543) as a reference cohort. Median age of the pediatric t(8;16)(p11;p13) AML patients was significantly lower (1.2 years). The majority (97%) had M4-M5 French-American-British type, significantly different from the reference cohort. Erythrophagocytosis (70%), leukemia cutis (58%), and disseminated intravascular coagulation (39%) occurred frequently. Strikingly, spontaneous remissions occurred in 7 neonates with t(8;16)(p11;p13), of whom 3 remain in continuous remission. The 5-year overall survival of patients diagnosed after 1993 was 59%, similar to the reference cohort (P = .14). Gene expression profiles of t(8;16)(p11;p13) pediatric AML cases clustered close to, but distinct from, MLL-rearranged AML. Highly expressed genes included HOXA11, HOXA10, RET, PERP, and GGA2. In conclusion, pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features in whom spontaneous remissions occur in a subset of neonatal cases. PMID:23974201

  15. Medullary allotransplant in acute myeloblastic leukemia in a child

    PubMed Central

    Buga Corbu, V; Glűck, R; Arion, C

    2014-01-01

    Abstract Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor. PMID:25408774

  16. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  17. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  18. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  19. Safety, Pharmacokinetics, and Efficacy of Palifermin in Children and Adolescents with Acute Leukemias Undergoing Myeloablative Therapy and Allogeneic Hematopoietic Stem Cell Transplantation: A Pediatric Blood and Marrow Transplant Consortium Trial.

    PubMed

    Morris, Joan; Rudebeck, Mattias; Neudorf, Steven; Moore, Theodore; Duerst, Reggie; Shah, Ami J; Graham, Michael; Aquino, Victor; Morris, Christopher; Olsson, Birgitta

    2016-07-01

    Currently, effective pharmacologic treatment to reduce severe oral mucositis (OM) resulting from high-dose myeloablative cytotoxic therapy in the pediatric population is not available. Palifermin has been proven to decrease the incidence and duration of severe OM in adults with hematologic malignancies undergoing hematopoietic stem cell transplantation (HSCT). In the pediatric population, however, data on palifermin treatment are limited. A phase I dose-escalation study of palifermin in pediatric patients with acute leukemias undergoing myeloablative HSCT with total body irradiation, etoposide, and cyclophosphamide was performed to determine a safe and tolerable dose and to characterize the pharmacokinetic (PK) profile and efficacy of palifermin. Twenty-seven patients in 3 age groups (1 to 2, 3 to 11, and 12 to 16 years) and 3 dose levels (40, 60, and 80 μg/kg/day) were studied. There were no deaths, dose-limiting toxicities, or treatment-related serious adverse events. Long-term safety outcomes did not differ from what would be expected in this population. PK data showed no differences between the 3 age groups. Exposure did not increase with increase in dose. The maximum severity of OM (WHO grade 4) occurred in 6 patients (22%), none of whom was in the 80-μg/kg/day dosing group. This study showed that all doses were well tolerated and a good safety profile in all 3 pediatric age groups was seen. PMID:26968792

  20. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment.

    PubMed

    Mesrian Tanha, Hamzeh; Mojtabavi Naeini, Marjan; Rahgozar, Soheila; Moafi, Alireza; Honardoost, Mohammad Amin

    2016-06-01

    Acute lymphoblastic leukemia (ALL) is the major neoplasia type among children. Despite the tremendous success of current treatment strategies, drug resistance still remains a major cause of chemotherapy failure and relapse in pediatric patients. Overwhelming evidence illustrates that microRNAs (miRNAs) act as post-transcriptional regulators of drug-resistance-related genes. The current study was aimed at how dysregulated miRNA-mRNA-signaling pathway interaction networks mediate resistance to four commonly used chemotherapy agents in pediatric ALL, including asparaginase, daunorubicin, prednisolone, and vincristine. Using public expression microarray datasets, a holistic in silico approach was utilized to investigate candidate drug resistance miRNA-mRNA-signaling pathway interaction networks in pediatric ALL. Our systems biology approach nominated significant drug resistance and cross-resistance miRNAs, mRNAs, and cell signaling pathways based on anti-correlative relationship between miRNA and mRNA expression pattern. To sum up, our systemic analysis disclosed either a new potential role of miRNAs, or a possible mechanism of cellular drug resistance, in chemotherapy resistance of pediatric ALL. The current study may shed light on predicting drug response and overcoming drug resistance in childhood ALL for subsequent generations of chemotherapies. PMID:26700663

  1. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  4. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  5. The MLL recombinome of acute leukemias in 2013

    PubMed Central

    Meyer, C; Hofmann, J; Burmeister, T; Gröger, D; Park, T S; Emerenciano, M; Pombo de Oliveira, M; Renneville, A; Villarese, P; Macintyre, E; Cavé, H; Clappier, E; Mass-Malo, K; Zuna, J; Trka, J; De Braekeleer, E; De Braekeleer, M; Oh, S H; Tsaur, G; Fechina, L; van der Velden, V H J; van Dongen, J J M; Delabesse, E; Binato, R; Silva, M L M; Kustanovich, A; Aleinikova, O; Harris, M H; Lund-Aho, T; Juvonen, V; Heidenreich, O; Vormoor, J; Choi, W W L; Jarosova, M; Kolenova, A; Bueno, C; Menendez, P; Wehner, S; Eckert, C; Talmant, P; Tondeur, S; Lippert, E; Launay, E; Henry, C; Ballerini, P; Lapillone, H; Callanan, M B; Cayuela, J M; Herbaux, C; Cazzaniga, G; Kakadiya, P M; Bohlander, S; Ahlmann, M; Choi, J R; Gameiro, P; Lee, D S; Krauter, J; Cornillet-Lefebvre, P; Te Kronnie, G; Schäfer, B W; Kubetzko, S; Alonso, C N; zur Stadt, U; Sutton, R; Venn, N C; Izraeli, S; Trakhtenbrot, L; Madsen, H O; Archer, P; Hancock, J; Cerveira, N; Teixeira, M R; Lo Nigro, L; Möricke, A; Stanulla, M; Schrappe, M; Sedék, L; Szczepański, T; Zwaan, C M; Coenen, E A; van den Heuvel-Eibrink, M M; Strehl, S; Dworzak, M; Panzer-Grümayer, R; Dingermann, T; Klingebiel, T; Marschalek, R

    2013-01-01

    Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements. PMID:23628958

  6. CD200/BTLA deletions in pediatric precursor B-cell acute lymphoblastic leukemia treated according to the EORTC-CLG 58951 protocol

    PubMed Central

    Ghazavi, Farzaneh; Clappier, Emmanuelle; Lammens, Tim; Suciu, Stefan; Caye, Aurélie; Zegrari, Samira; Bakkus, Marleen; Grardel, Nathalie; Benoit, Yves; Bertrand, Yves; Minckes, Odile; Costa, Vitor; Ferster, Alina; Mazingue, Françoise; Plat, Geneviève; Plouvier, Emmanuel; Poirée, Marilyne; Uyttebroeck, Anne; van der Werff-ten Bosch, Jutte; Yakouben, Karima; Helsmoortel, Hetty; Meul, Magali; Van Roy, Nadine; Philippé, Jan; Speleman, Frank; Cavé, Hélène; Van Vlierberghe, Pieter; De Moerloose, Barbara

    2015-01-01

    DNA copy number analysis has been instrumental for the identification of genetic alterations in B-cell precursor acute lymphoblastic leukemia. Notably, some of these genetic defects have been associated with poor treatment outcome and might be relevant for future risk stratification. In this study, we characterized recurrent deletions of CD200 and BTLA genes, mediated by recombination-activating genes, and used breakpoint-specific polymerase chain reaction assay to screen a cohort of 1154 cases of B-cell precursor acute lymphoblastic leukemia uniformly treated according to the EORTC-CLG 58951 protocol. CD200/BTLA deletions were identified in 56 of the patients (4.8%) and were associated with an inferior 8-year event free survival in this treatment protocol [70.2% ± 1.2% for patients with deletions versus 83.5% ± 6.4% for non-deleted cases (hazard ratio 2.02; 95% confidence interval 1.23–3.32; P=0.005)]. Genetically, CD200/BTLA deletions were strongly associated with ETV6-RUNX1-positive leukemias (P<0.0001), but were also identified in patients who did not have any genetic abnormality that is currently used for risk stratification. Within the latter population of patients, the presence of CD200/BTLA deletions was associated with inferior event-free survival and overall survival. Moreover, the multivariate Cox model indicated that these deletions had independent prognostic impact on event-free survival when adjusting for conventional risk criteria. All together, these findings further underscore the rationale for copy number profiling as an important tool for risk stratification in human B-cell precursor acute lymphoblastic leukemia. This trial was registered at www.ClinicalTrials.gov as #NCT00003728. PMID:26137961

  7. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  8. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  9. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  10. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-06-28

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  11. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  12. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  13. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-10

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  14. Epidemiology of acute lymphoblastic leukemia

    SciTech Connect

    Pendergrass, T.W.

    1985-06-01

    Although the etiology of acute leukemia is largely unknown, some facets of the puzzle are becoming clarified. Recognition of important patterns in age-specific mortality rates has suggested that events early in life, perhaps even prenatally, may have an influence on developing leukemia in childhood. The racial differences evident in mortality, incidence, and immunologic subtype of ALL suggest either differences in exposures to certain factors or differences in responses to those factors by white children. Hereditary factors appear to play a role. Familial and hereditary conditions exist that have high incidences of acute leukemia. Chromosomal anomalies are common in these conditions. Viral infections may play a role by contributing to alteration in genetic material through incorporation of the viral genome. How that virus is dealt with after primary infection seems important. The presence of immunodeficiency may allow wider dissemination or enhanced replication of such viruses, thereby increasing the likelihood of cellular transformation to an abnormal cell. Proliferation of that malignant cell to a clone may depend on other cofactors. Perhaps prolonged exposure to substances like benzene or alkylating agents may enhance these interactions between virus and genetic material. Does this change DNA repair mechanisms. Are viral infections handled differently. Is viral genomic information more easily integrated into host cells. Ionizing radiation has multiple effects. Alteration in genetic material occurs both at the molecular and chromosomal levels. DNA may be altered, lost, or added in the cell's attempt to recover from the injury.

  15. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Acute myeloid leukemia in children: Current status and future directions.

    PubMed

    Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi

    2016-02-01

    Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. PMID:26645706

  17. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  18. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  19. Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia

    PubMed Central

    Sherborne, Amy L.; Hemminki, Kari; Kumar, Rajiv; Bartram, Claus R.; Stanulla, Martin; Schrappe, Martin; Petridou, Eleni; Semsei, Ágnes F.; Szalai, Csaba; Sinnett, Daniel; Krajinovic, Maja; Healy, Jasmine; Lanciotti, Marina; Dufour, Carlo; Indaco, Stefania; El-Ghouroury, Eman A; Sawangpanich, Ruchchadol; Hongeng, Suradej; Pakakasama, Samart; Gonzalez-Neira, Anna; Ugarte, Evelia L.; Leal, Valeria P.; Espinoza, Juan P.M.; Kamel, Azza M.; Ebid, Gamal T.A.; Radwan, Eman R.; Yalin, Serap; Yalin, Erdinc; Berkoz, Mehmet; Simpson, Jill; Roman, Eve; Lightfoot, Tracy; Hosking, Fay J.; Vijayakrishnan, Jayaram; Greaves, Mel; Houlston, Richard S.

    2011-01-01

    Acute lymphoblastic leukemia is the major pediatric cancer in developed countries. To date most association studies of acute lymphoblastic leukemia have been based on the candidate gene approach and have evaluated a restricted number of polymorphisms. Such studies have served to highlight difficulties in conducting statistically and methodologically rigorous investigations into acute lymphoblastic leukemia risk. Recent genome-wide association studies of childhood acute lymphoblastic leukemia have provided robust evidence that common variation at four genetic loci confers a modest increase in risk. The accumulated experience to date and relative lack of success of initial efforts to identify novel acute lymphoblastic leukemia predisposition loci emphasize the need for alternative study designs and methods. The International Childhood Acute Lymphoblastic Leukaemia Genetics Consortium includes 12 research groups in Europe, Asia, the Middle East and the Americas engaged in studying the genetics of acute lymphoblastic leukemia. The initial goal of this consortium is to identify and characterize low-penetrance susceptibility variants for acute lymphoblastic leukemia through association-based analyses. Efforts to develop genome-wide association studies of acute lymphoblastic leukemia, in terms of both sample size and single nucleotide polymorphism coverage, and to increase the number of single nucleotide polymorphisms taken forward to large-scale replication should lead to the identification of additional novel risk variants for acute lymphoblastic leukemia. Ethnic differences in the risk of acute lymphoblastic leukemia are well recognized and thus in assessing the interplay between inherited and non-genetic risk factors, analyses using different population cohorts with different incidence rates are likely to be highly informative. Given that the frequency of many acute lymphoblastic leukemia subgroups is small, identifying differential effects will realistically only be

  20. Donor and Recipient CMV Serostatus and Outcome of Pediatric Allogeneic HSCT for Acute Leukemia in the Era of CMV-Preemptive Therapy

    PubMed Central

    Behrendt, Carolyn E.; Rosenthal, Joseph; Bolotin, Ellen; Nakamura, Ryotaro; Zaia, John; Forman, Stephen J.

    2009-01-01

    In the era of cytomegalovirus(CMV)-preemptive therapy, it is unclear whether CMV serostatus of donor or recipient affects outcome of allogeneic hematopoietic stem cell transplantation (HSCT) among children with leukemia. To investigate, consecutive patients age 0–8 who underwent primary HSCT for acute leukemia in 1997–007 (HLA-matched sibling or unrelated donor, myeloablative conditioning, unmanipulated bone marrow or peripheral blood, preemptive therapy, no CMV prophylaxis) were followed retrospectively through January 2008. Treatment failure (relapse or death) was analyzed using survival-based proportional hazards regression. Competing risks (relapse and non-relapse mortality, NRM) were analyzed using generalized linear models of cumulative incidence-based proportional hazards. Excluding 4 (2.8%) patients lacking serostatus of donor or recipient, there were 140 subjects, of whom 50 relapsed and 24 died in remission. Pretransplant CMV seroprevalence was 55.7% in recipients, 57.1% in donors. Thirty-five (25.0%) grafts were from seronegative donor to seronegative recipient (D−/R−). On univariate analysis, D−/R− grafts were associated with shorter relapse-free survival (RFS) than other grafts (median 1.06 versus 3.15 years, p<0.05). Adjusted for donor type, diagnosis, disease stage, recipient and donor age, female-to-male graft, graft source, and year, D−/R− graft was associated with relapse (hazards ratio 3.15, 95% confidence interval 1.46–6.76) and treatment failure (2.45, 1.46–4.12) but not significantly with NRM (2.00, 0.44–9.09). In the current era, children who undergo allogeneic HSCT for acute leukemia have reduced risk of relapse and superior RFS when recipient and/or donor is CMV-seropositive before transplantation. However, no net improvement in RFS would be gained from substituting seropositive unrelated for seronegative sibling donors. PMID:19135943

  1. What Are the Key Statistics about Acute Myeloid Leukemia?

    MedlinePlus

    ... for acute myeloid leukemia? What are the key statistics about acute myeloid leukemia? The American Cancer Society’s ... myeloid leukemia .” Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Last Medical Review: ...

  2. What Should You Ask Your Doctor about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... leukemia? What should you ask your doctor about acute lymphocytic leukemia? It is important to have frank, honest discussions ... answer many of your questions. What kind of acute lymphocytic leukemia (ALL) do I have? Do I have any ...

  3. What Are the Key Statistics about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the key statistics about acute lymphocytic leukemia? The American Cancer Society’s estimates for acute lymphocytic leukemia (ALL) in the United States for 2016 (including ...

  4. Immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G

    2005-09-01

    Immunotherapeutic strategies have become part of standard cancer treatment. Chimeric and humanized antibodies have demonstrated activity against a variety of tumors. Although the humanized anti-CD33 antibody HuM195 has only modest activity against overt acute myeloid leukemia (AML), it can eliminate minimal residual disease in acute promyelocytic leukemia. High-dose radioimmunotherapy with b-particle-emitting isotopes targeting CD33, CD45, and CD66 can potentially allow intensification of antileukemic therapy before hematopoietic stem cell transplantation. Conversely, a-particle immunotherapy with isotopes such as bismuth-213 or actinium-225 offers the possibility of selective tumor cell kill while sparing surrounding normal tissues. Targeted chemotherapy with the anti-CD33- calicheamicin construct gemtuzumab ozogamicin has produced remissions in relapsed AML and appears promising when used in combination with standard chemotherapy for newly diagnosed AML. T-cell recognition of peptide antigens presented on the cell surface in combination with major histocompatibility complex antigen provides another potentially promising approach for the treatment of AML. PMID:16091194

  5. Acute leukemias in children with Down syndrome.

    PubMed

    Seewald, Laura; Taub, Jeffrey W; Maloney, Kelly W; McCabe, Edward R B

    2012-09-01

    Children with Down syndrome (DS) often present with hematopoietic abnormalities, and are at increased risk of developing leukemia. Specifically, 3-10% of newborns with DS are diagnosed with transient myeloproliferative disease, and children with DS are 500 times more likely to develop acute megakaryoblastic leukemia (AMKL) and 20 times more likely to develop acute lymphoblastic leukemia (ALL) than typical children. This review examines the characteristics of these leukemias and their development in the unique genetic background of trisomy 21. A discussion is also provided for areas of future research and potential therapeutic development. PMID:22867885

  6. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  7. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  8. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-02-17

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  10. High Expression of Suppressor of Cytokine Signaling-2 Predicts Poor Outcome in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group

    PubMed Central

    Laszlo, George S.; Ries, Rhonda E.; Gudgeon, Chelsea J.; Harrington, Kimberly H.; Alonzo, Todd A.; Gerbing, Robert B.; Raimondi, Susana C.; Hirsch, Betsy A.; Gamis, Alan S.; Meshinchi, Soheil; Walter, Roland B.

    2015-01-01

    Deregulated cytokine signaling is a characteristic feature of acute myeloid leukemia (AML), and expression signatures of cytokines and chemokines have been identified as significant prognostic factor in this disease. Given this aberrant signaling, we hypothesized that expression of Suppressor of Cytokine Signaling-2 (SOCS2), a negative regulator of cytokine signaling, might be altered in AML and could provide predictive information. Among 188 participants of the Children's Oncology Group AAML03P1 trial, SOCS2 mRNA levels varied >6,000-fold. Higher (>median) SOCS2 expression was associated with inferior overall (60±10% vs. 75±9%, p=0.026) and event-free (44±10% vs. 59±10%, p=0.031) survival. However, these differences were accounted for by higher prevalence of high-risk and lower prevalence of low-risk disease among patients with higher SOCS2 expression, limiting the clinical utility of SOCS2 as predictive marker. It remains untested whether high SOCS2 expression identifies a subset of leukemias with deregulated cytokine signaling that could be amenable to therapeutic intervention. PMID:24559289

  11. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Münster, in adolescents and young adults with acute lymphoblastic leukemia, and comparison to the hyper-CVAD regimen.

    PubMed

    Rytting, Michael E; Jabbour, Elias J; Jorgensen, Jeffrey L; Ravandi, Farhad; Franklin, Anna R; Kadia, Tapan M; Pemmaraju, Naveen; Daver, Naval G; Ferrajoli, Alessandra; Garcia-Manero, Guillermo; Konopleva, Marina Y; Borthakur, Gautam; Garris, Rebecca; Wang, Sa; Pierce, Sherry; Schroeder, Kurt; Kornblau, Steven M; Thomas, Deborah A; Cortes, Jorge E; O'Brien, Susan M; Kantarjian, Hagop M

    2016-08-01

    Several studies reported improved outcomes of adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL) treated with pediatric-based ALL regimens. This prompted the prospective investigation of a pediatric Augmented Berlin-Frankfurt-Münster (ABFM) regimen, and its comparison with hyper-fractionated cyclophosphamide, vincristine, Adriamycin, and dexamethasone (hyper-CVAD) in AYA patients. One hundred and six AYA patients (median age 22 years) with Philadelphia chromosome- (Ph) negative ALL received ABFM from October 2006 through March 2014. Their outcome was compared to 102 AYA patients (median age 27 years), treated with hyper-CVAD at our institution. The complete remission (CR) rate was 93% with ABFM and 98% with hyper-CVAD. The 5-year complete remission duration (CRD) were 53 and 55%, respectively (P = 0.98). The 5-year overall survival (OS) rates were 60 and 60%, respectively. The MRD status on Day 29 and Day 84 of therapy was predictive of long-term outcomes on both ABFM and hyper-CVAD. Severe regimen toxicities with ABFM included hepatotoxicity in 41%, pancreatitis in 11%, osteonecrosis in 9%, and thrombosis in 19%. Myelosuppression-associated complications were most significant with hyper-CVAD. In summary, ABFM and hyper-CVAD resulted in similar efficacy outcomes, but were associated with different toxicity profiles, asparaginase-related with ABFM and myelosuppression-related with hyper-CVAD. Am. J. Hematol. 91:819-823, 2016. © 2016 Wiley Periodicals, Inc. PMID:27178680

  12. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-08-10

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  13. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-23

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  14. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  15. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  16. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  17. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  18. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  19. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  20. Acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Acute kidney injury is a common complication after pediatric cardiac surgery. The definition, staging, risk factors, biomarkers and management of acute kidney injury in children is detailed in the following review article. PMID:27052074

  1. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-16

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  2. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  3. New developments in acute lymphoblastic leukemia.

    PubMed

    Douer, Dan; Thomas, Deborah A

    2014-06-01

    Acute lymphoblastic leukemia (ALL) occurs in both children and adults. Significant improvements in survival outcomes have been realized over the last decade for all age groups with de novo ALL. Frontline treatment incorporates a tailored approach, based on factors such as the patient’s age and the disease subtype. Children, adolescents, and young adults are likely to receive intensifying or deintensifying chemotherapy regimens using standard chemotherapeutics (eg, anthracyclines, vincristine, asparaginase) based on risk stratification. Older adults appear to benefit from reduced-intensity chemotherapy regimens, which incorporate targeted therapy (eg, monoclonal antibodies). New data suggest that a more intensive pediatric protocol might be feasible in adult patients. More than half of ALL patients relapse, and their limited survival has led to the development of novel approaches. Recently approved chemotherapeutic agents include clofarabine, nelarabine, asparaginase Erwinia chrysanthemi, and vincristine sulfate liposome injection, a novel formulation that permits administration of a higher dosage of vincristine than that used in standard regimens. Approaches under investigation include cell therapy using autologous T-cell technologies, antibody-drug conjugates, and agents targeting common gene mutations. Many novel agents are undergoing evaluation in both the frontline and relapsed settings. PMID:25768275

  4. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-29

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  5. S1312, Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-04-14

    Acute Leukemias of Ambiguous Lineage; B-cell Adult Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma

  6. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  7. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  8. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-15

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  10. Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-06

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  13. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  17. Levofloxacin in Preventing Infection in Young Patients With Acute Leukemia Receiving Chemotherapy or Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2016-04-08

    Acute Leukemias of Ambiguous Lineage; Bacterial Infection; Diarrhea; Fungal Infection; Musculoskeletal Complications; Neutropenia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Advanced Vertebral Fracture among Newly Diagnosed Children with Acute Lymphoblastic Leukemia: Results of the Canadian STeroid-associated Osteoporosis in the Pediatric Population (STOPP) Research Program

    PubMed Central

    Halton, J.; Gaboury, I.; Grant, R.; Alos, N.; Cummings, E. A.; Matzinger, M.; Shenouda, N.; Lentle, B.; Abish, S.; Atkinson, S.; Cairney, E.; Dix, D.; Israels, S.; Stephure, D.; Wilson, B.; Hay, J.; Moher, D.; Rauch, F.; Siminoski, K.; Ward, L.M.

    2013-01-01

    Vertebral compression is a serious complication of childhood acute lymphoblastic leukemia (ALL). The prevalence and pattern of vertebral fractures, as well as their relationship to bone mineral density (BMD) and other clinical indices, have not been systematically studied. We evaluated spine health in 186 newly diagnosed children (median age 5.3 years, 108 boys) with ALL (precursor B cell: N=167; T-cell: N=19), who were enrolled in a national bone health research program. Patients were assessed within 30 days of diagnosis by lateral thoraco-lumbar spine radiograph, bone age (also used for metacarpal morphometry) and BMD. Vertebral morphometry was carried out by the Genant semi-quantitative method. Twenty-nine patients (16%) had a total of 75 grade 1 or higher prevalent vertebral compression fractures (53 thoracic, 71%; 22 lumbar). Grade 1 fractures as the worst grade were present in 14 children (48%), 9 patients (31%) had grade 2 fractures, and 6 children (21%) had grade 3 fractures. The distribution of spine fracture was bi-modal, with most occurring in the mid-thoracic and thoraco-lumbar regions. Children with grade 1 or higher vertebral compression had reduced lumbar spine (LS) areal BMD Z-scores compared to those without (mean±SD, −2.1±1.5 vs. −1.1±1.2; P < 0.001). LS BMD Z-score, second metacarpal percent cortical area Z-score, and back pain were associated with increased odds for fracture. For every 1 SD reduction in LS BMD Z-score, the odds for fracture increased by 80% (95% CI 10% to 193%); the presence of back pain had an odds ratio of 4.7 (95% CI, 1.5 to 14.5). These results show that vertebral compression is an under-recognized complication of newly diagnosed ALL. Whether the fractures will resolve through bone growth during or after leukemia chemotherapy remains to be determined. PMID:19210218

  19. GTI-2040 in Treating Patients With Relapsed, Refractory, or High-Risk Acute Leukemia, High-Grade Myelodysplastic Syndromes, or Refractory or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-12-03

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Management of acute myeloid leukemia during pregnancy.

    PubMed

    Avivi, Irit; Brenner, Benjamin

    2014-06-01

    Diagnosis of acute leukemia during pregnancy presents significant medical challenges. Pancytopenia, caused by bone marrow substitution with leukemic cells, impairs maternal and fetal health. Chemotherapeutic agents required to be immediately used to save the mother's life are likely to adversely affect fetal development and outcome, especially if administered at an early gestational stage. Patients diagnosed with acute leukemia during the first trimester are, therefore, recommended to undergo pregnancy termination. At later gestational stages, antileukemic therapy can be administered, although in this case, fetal outcome is still associated with increased incidence of growth restriction and loss. Special attention to the issue of future reproduction, adopting a personalized fertility preservation approach, is required. This article addresses these subjects, presenting women diagnosed with acute myeloid and acute promyelocytic leukemia in pregnancy. The rarity of this event, resulting in insufficient data, emphasizes the need for collaborative efforts to optimize management of this complicated clinical condition. PMID:25052751

  1. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  2. Oblimersen, Cytarabine, and Daunorubicin in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Bioelectrical Impedance Measurement for Predicting Treatment Outcome in Patients With Newly Diagnosed Acute Leukemia

    ClinicalTrials.gov

    2015-09-22

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Transplantations in adult acute lymphoblastic leukemia--grounds for optimism?

    PubMed

    Goldstone, Anthony H

    2009-01-01

    The large MRC/ECOG Adult Acute Lymphoblastic Leukemia Study establishes the value of sibling donor allogeneic transplantation in patients with standard risk, demonstrating superior outcome to conventional chemotherapy. The small but significant number of patients having matched unrelated donor transplantations on this study protocol appear to do well and might establish the value of such an approach for those without a sibling. Reduced-intensity conditioning might begin to address the transplantation-related mortality problems of the older patients. The youngest adults might not need to undergo transplantation at all. If they are now treated on pediatric chemotherapy protocols, their outcome appears to improve significantly. PMID:19778843

  5. Computer-aided detection of therapy-induced leukoencephalopathy in pediatric acute lymphoblastic leukemia patients treated with intravenous high-dose methotrexate.

    PubMed

    Glass, John O; Reddick, Wilburn E; Li, Chin-Shang; Laningham, Fred H; Helton, Kathleen J; Pui, Ching-Hon

    2006-07-01

    The purpose of this study was to use objective quantitative magnetic resonance imaging (MRI) methods to develop a computer-aided detection (CAD) tool to differentiate white matter (WM) hyperintensities into either leukoencephalopathy (LE) induced by chemotherapy or normal maturational processes in children treated for acute lymphoblastic leukemia without irradiation. A combined MRI set consisting of T1-weighted, T2-weighted, proton-density-weighted and fluid-attenuated inversion recovery images and WM, gray matter and cerebrospinal fluid proportional volume maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen self-organizing map (SOM). Segmented maps were manually classified to identify the most hyperintense WM region and the normal-appearing genu region. Signal intensity differences normalized to the genu within each examination were generated for four time points in 228 children. A second Kohonen SOM was trained on the first examination data and divided the WM into normal-appearing or LE groups. Reviewing labels from the CAD tool revealed a consistency measure of 89.8% (167 of 186) within patients. The overall agreement between the CAD tool and the consensus reading of two trained observers was 84.1% (535 of 636), with 84.2% (170 of 202) agreement in the training set and 84.1% (365 of 434) agreement in the testing set. These results suggest that subtle therapy-induced LE can be objectively and reproducibly detected in children treated for cancer using this CAD approach based on relative differences in quantitative signal intensity measures normalized within each examination. PMID:16824973

  6. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T- cell acute lymphoblastic leukemia: A report from the Children's Oncology Group

    PubMed Central

    Gedman, Amanda Larson; Chen, Qing; Desmoulin, Sita Kugel; Ge, Yubin; LaFiura, Katherine; Haska, Christina L.; Cherian, Christina; Devidas, Meenakshi; Linda, Stephen B.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    We explored the impact of mutations in the NOTCH1, FBW7 and PTEN genes on prognosis and downstream signaling in a well-defined cohort of 47 pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients. In T-ALL lymphoblasts, we identified high frequency mutations in NOTCH1 (n=16), FBW7 (n=5) and PTEN (n=26). NOTCH1 mutations resulted in 1.3-3.3-fold increased transactivation of a HES1 reporter construct over wild-type NOTCH1; mutant FBW7 resulted in further augmentation of reporter gene activity. NOTCH1 and FBW7 mutations were accompanied by increased median transcripts for NOTCH1 target genes (HES1, DELTEX1, cMYC). However, none of these mutations were associated with treatment outcome. Elevated HES1, DELTEX1 and cMYC transcripts were associated with significant increases in transcript levels of several chemotherapy relevant genes, including MDR1, ABCC5, reduced folate carrier, asparagine synthetase, thiopurine methyltranserase, Bcl-2 and dihydrofolate reductase. PTEN transcripts positively correlated with HES1 and cMYC transcript levels. Our results suggest that (1) multiple factors should be considered with attempting to identify molecular-based prognostic factors for pediatric T-ALL, and (2) depending on the NOTCH1 signaling status, modifications in the types or dosing of standard chemotherapy drugs for T-ALL, or combinations of agents capable of targeting NOTCH1, AKT and/or mTOR with standard chemotherapy agents may be warranted. PMID:19340001

  7. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for acute myeloid leukemia What’s new in acute myeloid leukemia research and treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  8. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  9. Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-04-27

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  10. PHF6 mutations in T-cell acute lymphoblastic leukemia

    PubMed Central

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-01-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer1,2. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males3. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is significantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease. PMID:20228800

  11. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Actual biological diagnosis of acute myeloblastic leukemia in children

    PubMed Central

    Buga Corbu, V; Glűck, A; Arion, C

    2014-01-01

    Abstract Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy. PMID:25408742

  13. An Initial Reintegration Treatment of Children with Acute Lymphoblastic Leukemia (ALL).

    ERIC Educational Resources Information Center

    Lurie, Michelle; Kaufman, Nadeen

    2001-01-01

    Evaluated the cognitive, psychological, and social adjustment of pediatric acute lymphoblastic leukemia (ALL) patients and assessed how their needs could best be met through reintegration programs focusing on learning/ educational needs. Findings from three case studies highlight the need for ALL patients to be provided with comprehensive programs…

  14. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  15. Cardiac Manifestation of Acute Lymphoblastic Leukemia.

    PubMed

    Werner, Rudolf A; Rudelius, Martina; Thurner, Annette; Higuchi, Takahiro; Lapa, Constantin

    2016-07-01

    Here, we report on a 38-year-old man with unclear right heart failure. Imaging with cardiac MRI and combined PET/CT with F-FDG revealed a hypermetabolic mass extending from the right ventricle to the atrium. In addition, intense glucose utilization throughout the bone marrow was noted. Biopsies of both bone marrow and cardiac mass were performed and revealed precursor B-cell acute lymphoblastic leukemia with gross leukemic infiltration of the myopericardium, a rare manifestation of acute lymphoblastic leukemia at initial diagnosis. PMID:27088389

  16. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  17. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  18. Multimerin-1 (MMRN1) as Novel Adverse Marker in Pediatric Acute Myeloid Leukemia: A Report from the Children’s Oncology Group

    PubMed Central

    Laszlo, George S.; Alonzo, Todd A.; Gudgeon, Chelsea J.; Harrington, Kimberly H.; Gerbing, Robert B.; Wang, Yi-Cheng; Ries, Rhonda E.; Raimondi, Susana C.; Hirsch, Betsy A.; Gamis, Alan S.; Meshinchi, Soheil; Walter, Roland B.

    2015-01-01

    PURPOSE Exploratory gene expression array analyses suggested multimerin-1 (MMRN1) to be a predictive biomarker in acute myeloid leukemia (AML). Following-up on these studies, we evaluated the role of MMRN1 expression as outcome predictor in 2 recent Children’s Oncology Group trials. EXPERIMENTAL DESIGN We retrospectively quantified MMRN1 expression in 183 participants of AAML03P1 and 750 participants of AAML0531 by reverse-transcriptase polymerase chain reaction and correlated expression levels with disease characteristics and clinical outcome. RESULTS In AAML03P1, the highest quartile of MMRN1 expression (expression ≥0.5 relative to β-glucuronidase; n=45) was associated with inferior event-free survival (EFS; P<0.002) and higher relapse risk (P<0.004). In AAML0531, in which we quantified MMRN1 mRNA for validation, patients with relative MMRN1 expression ≥0.5 (n=160) less likely achieved remission (67% vs. 77%, P=0.006), and more frequently had minimal residual disease (43% vs. 24%, P=0.001) after one induction course. They had inferior overall survival (44±9% vs. 69±4% at 5 years; P<0.001) and EFS (32±8% vs. 54±4% at 5 years; P<0.001) and higher relapse risk (57±10% vs. 35±5% at 5 years; P<0.001). These differences were partly attributable to the fact that patients with high MMRN1 expression less likely had cytogenetic/molecular low-risk disease (P<0.001) than those with low MMRN1 expression. Nevertheless, after multivariable adjustment, high MMRN1 expression remained statistically significantly associated with shorter OS (hazard ratio [HR]=1.57 [95% confidence interval: 1.17–2.12] p=0.003) and EFS (HR=1.34 [1.04–1.73] p=0.025), and higher relapse risk (HR=1.40 [1.01–1.94] p=0.044). CONCLUSIONS Together, our studies identify MMRN1 expression as a novel biomarker that may refine AML risk-stratification. PMID:25825478

  19. Clofarabine for the treatment of adult acute lymphoid leukemia: the Group for Research on Adult Acute Lymphoblastic Leukemia intergroup.

    PubMed

    Huguet, Françoise; Leguay, Thibaut; Raffoux, Emmanuel; Rousselot, Philippe; Vey, Norbert; Pigneux, Arnaud; Ifrah, Norbert; Dombret, Hervé

    2015-04-01

    Clofarabine, a second-generation purine analog displaying potent inhibition of DNA synthesis and favorable pharmacologic profile, is approved for the treatment of acute lymphoblastic leukemia (ALL) after failure of at least two previous regimens in patients up to 21 years of age at diagnosis. Good neurologic tolerance, synergy with alkylating agents, management guidelines defined through pediatric ALL and adult acute myeloid leukemia, have also prompted its administration in more than 100 adults with Philadelphia chromosome-positive and negative B lineage and T lineage ALL, as single agent (40 mg/m(2)/ day for 5 days), or in combination. In a Group for Research on Adult Acute Lympho- blastic Leukemia (GRAALL) retrospective study of two regimens (clofarabine ± cyclophosphamide + / - etoposide (ENDEVOL) ± mitoxantrone ± asparaginase ± dexamethasone (VANDEVOL)), remission was achieved in 50% of 55 relapsed/refractory patients, and 17-35% could proceed to allogeneic stem cell. Clofarabine warrants further exploration in advanced ALL treatment and bridge-to-transplant. PMID:24996442

  20. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  1. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-30

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  2. Eosinophilic presentation of acute lymphoblastic leukemia

    PubMed Central

    Rezamand, Azim; Ghorashi, Ziaaedin; Ghorashi, Sona; Nezami, Nariman

    2013-01-01

    Patient: Male, 5 Primary Diagnosis: Rule-out appendicitis Co-existing Diseases: Acute lymphoblastic leukemia (ALL) Medication: Chemiotherapy Clinical Procedure: Chest CT • flow cytometry Specialty: Pediatrics’ oncology • infection diseases Objective: Rare disease Background: Leukemias are among the most common childhood malignancies. Acute lymphoblastic leukemia (ALL) accounts for 77% of all leukemias. In rare cases, ALL patients may present with eosinophilia. Case Report: Here, a 5-year old boy was admitted to our hospital with a possible diagnosis of appendicitis. This patient’s complete blood cell count demonstrated leukocytosis with severe eosinophilia. Following a 1-month clinical investigation, 2 bone marrow aspirations, and flow cytometry analysis, a diagnosis of acute lymphoblastic leukemia was proposed. Finally, the patient was transferred to the oncology ward to receive standard therapeutic protocol, which resulted in disease remission. After chemotherapy for 2 years, patient is successfully treated. Conclusions: ALL is diagnosed by eosinophilia in rare cases. These patients need immediate diagnosis and intensive therapy due to worsened prognosis of ALL presenting as hypereosinophilia. PMID:23869247

  3. CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  4. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  5. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Lymphoblastic Leukemia in Complete Remission; Acute Myeloid Leukemia in Remission; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Childhood Acute Lymphoblastic Leukemia in Complete Remission

  6. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  7. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2016-06-27

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  8. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  9. Daunorubicin Hydrochloride, Cytarabine and Oblimersen Sodium in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Lenalidomide and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-01

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia