Science.gov

Sample records for pediatric acute leukemias

  1. The biology of pediatric acute megakaryoblastic leukemia

    PubMed Central

    Downing, James R.

    2015-01-01

    Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non–DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis. PMID:26186939

  2. Renal Presentation in Pediatric Acute Leukemia

    PubMed Central

    Sherief, Laila M.; Azab, Seham F.; Zakaria, Marwa M.; Kamal, M.; Elbasset Aly, Maha Abd; Ali, Adel; Alhady, Mohamed Abd

    2015-01-01

    Abstract Renal enlargement at time of diagnosis of acute leukemia is very unusual. We here in report 2 pediatric cases of acute leukemia who had their renal affection as the first presenting symptom with no evidences of blast cells in blood smear and none of classical presentation of acute leukemia. The first case is a 4-year-old girl who presented with pallor and abdominal enlargement. Magnetic resonance imaging showed bilateral symmetrical homogenous enlarged kidneys suggestive of infiltration. Complete blood picture (CBC) revealed white blood count 11 × 109/L, hemoglobin 8.7 g/dL and platelet count 197 × 109/L. Bone marrow aspiration was performed, and diagnosed precursor B-cell ALL was made. The child had an excellent response to modified CCG 1991 standard risk protocol of chemotherapy with sustained remission, but unfortunately relapsed 11 month after the end of therapy. The second child was 13-month old, presented with pallor, vomiting, abdominal enlargement, and oliguria 2 days before admission. Initial CBC showed bicytopenia, elevated blood urea, creatinine, and serum uric acid, while abdominal ultrasonography revealed bilateral renal enlargement. Bone marrow examination was done and showed 92% blast of biphenotypic nature. So, biphynotypic leukemia with bilateral renal enlargement and acute renal failure was subsequently diagnosed. The patients admitted to ICU and received supportive care and prednisolone. Renal function normalized and chemotherapy was started. The child achieved complete remission with marked reduction of kidney size but, unfortunately she died from sepsis in consolidation phase of therapy. This case demonstrates an unusual early renal enlargement in childhood acute leukemia. Renal involvement of acute leukemia should be considered in child presenting with unexplained bilateral renal enlargement with or without renal function abnormalities and bone marrow examination should be included in the workup. PMID:26376384

  3. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  4. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia

    PubMed Central

    de Rooij, Jasmijn D.E.; Beuling, Eva; van den Heuvel-Eibrink, Marry M.; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E.S.; Pieters, Rob; Zimmermann, Martin; Zwaan, C. Michel; Fornerod, Maarten

    2015-01-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1–0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1–4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7 PMID:26069293

  5. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  6. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. PMID:25361367

  7. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.

    PubMed

    Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L

    2015-09-20

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  8. Predictors of Antiemetic Alteration in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Freedman, Jason L.; Faerber, Jennifer; Kang, Tammy I.; Dai, Dingwei; Fisher, Brian T.; Huang, Yuan-Shung; Li, Yimei; Aplenc, Richard; Feudtner, Chris

    2014-01-01

    Background Better knowledge of patient and cancer treatment factors associated with nausea/vomiting (NV) in pediatric oncology patients could enhance prophylaxis. We aimed to describe such factors in children receiving treatment for acute myeloid leukemia (AML). Methods Retrospective longitudinal cohort study of 1668 hospitalized children undergoing treatment for AML from the Pediatric Health Information System database (39 hospitals, 1999–2010). Antiemetic alteration, which included switch (a change in prescribed 5-HT3 receptor antagonists) and rescue (receipt of an adjunct antiemetic), were first validated and then used as surrogates of problematic NV. Logistic and negative binomial regression modeling were used to test whether patient characteristics were associated with problematic NV. Results Increasing age is associated with greater odds of experiencing antiemetic switch and higher relative rate of antiemetic rescue. Within a treatment cycle, each consecutive inpatient chemotherapy-day decreased the likelihood of requiring antiemetic alteration. Each consecutive inpatient day post-chemotherapy was associated with decreased need for switch, but increased need for rescue. Subsequent cycles of AML therapy were associated with lower odds of antiemetic switch on both chemotherapy and non-chemotherapy days, a lower rate of antiemetic rescue on chemotherapy days, and an increased rate of rescue on non-chemotherapy days. Conclusion In pediatric patients with AML, increasing age is strongly associated with greater antiemetic alteration. Antiemetic alteration occurs early in treatment overall, and early within each admission. While additional cycles of therapy are associated with less alteration overall, there is persistent rescue in the days after chemotherapy, suggesting additional etiologies of NV in pediatric cancer patients. PMID:24939039

  9. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  10. Murine models of acute leukemia: important tools in current pediatric leukemia research.

    PubMed

    Jacoby, Elad; Chien, Christopher D; Fry, Terry J

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  11. Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research

    PubMed Central

    Jacoby, Elad; Chien, Christopher D.; Fry, Terry J.

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  12. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides

    PubMed Central

    Soldin, Offie P.; Nsouly-Maktabi, Hala; Genkinger, Jeanine M.; Loffredo, Christopher A.; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B.; Luban, Naomi L.; Shad, Aziza T.; Nelson, David

    2013-01-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case–control study of children newly diagnosed with ALL, and their mothers (n = 41 child–mother pairs) were recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography–high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association. PMID:19571777

  13. Immunotherapy for Pediatric Leukemia

    PubMed Central

    Shah, Nirali N.; Dave, Hema; Wayne, Alan S.

    2013-01-01

    Substantial progress has been made in the treatment of leukemia in childhood. Despite this, leukemia remains a leading cause of pediatric cancer-related mortality and the prognosis is guarded for individuals with relapsed or refractory disease. Standard therapies are associated with a wide array of acute and long-term toxicities and further treatment intensification may not be tolerable or beneficial. The curative potential of allogeneic stem cell transplantation is due in part to the graft-versus-leukemia effect, which provides evidence for the therapeutic capacity of immune-based therapies. In recent years there have been significant advances in the development and application of immunotherapy in the treatment of leukemias, including the demonstration of activity in chemotherapy-resistant cases. This review summarizes immunotherapeutic approaches in the treatment of pediatric leukemia including current results and future directions. PMID:23847759

  14. Beyond CD19: Opportunities for Future Development of Targeted Immunotherapy in Pediatric Relapsed-Refractory Acute Leukemia

    PubMed Central

    Shalabi, Haneen; Angiolillo, Anne; Fry, Terry J.

    2015-01-01

    Chimeric antigen receptor (CAR) T cell therapy has been used as a targeted approach in cancer therapy. Relapsed and refractory acute leukemia in pediatrics has been difficult to treat with conventional therapy due to dose-limiting toxicities. With the recent success of CD 19 CAR in pediatric patients with B cell acute lymphoblastic leukemia (ALL), this mode of therapy has become a very attractive option for these patients with high-risk disease. In this review, we will discuss current treatment paradigms of pediatric acute leukemia and potential therapeutic targets for additional high-risk populations, including T cell ALL, AML, and infant ALL. PMID:26484338

  15. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    PubMed Central

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3–16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P<0.05): HDL, LDL, total cholesterol, triglycerides, glucose, and insulin. In addition, dexamethasone increased insulin resistance (HOMA-IR>3.4) from 8% to 85% (P<0.01). Dexamethasone treatment also significantly increased the diastolic and systolic blood pressure. Lastly, dexamethasone trough levels (N = 24) were directly correlated with high glucose levels at T2, but not with other parameters. These results indicate that dexamethasone treatment acutely induces three components of the MetS. Together with the weight gain typically associated with dexamethasone treatment, these factors may contribute to the higher prevalence of MetS and cardiovascular risk among survivors of childhood leukemia who received dexamethasone treatment. PMID:27362350

  16. Cerebral aspergillus infection in pediatric acute lymphoblastic leukemia induction therapy

    PubMed Central

    Prakash, Gaurav; Thulkar, Sanjay; Arava, Sudheer Kumar; Bakhshi, Sameer

    2012-01-01

    Angioinvasive pulmonary infection from filamentous fungi is not an uncommon occurrence in immunocompromised patients like acute lymphoblastic leukemia (ALL). Rarely, these lesions can spread via the hematogenous route and involve multiple visceral organs. We report a case of a 14-year-old boy with ALL who developed angioinvasive pulmonary aspergillosis early in the course of induction therapy, which was followed by hematogenous dissemination and formation of multiple brain abscesses. The patient was treated with intravenous amphotericin B. There was no response to the therapy and the patient succumbed to disseminated infection. Postmortem lung biopsy confirmed angioinvasive pulmonary aspergillosis. Poor penetration of amphotericin B across the blood-brain barrier could be one of the contributory factors for poor response to antifungal therapy. We discuss the various antifungal agents with respect to their penetration in brain. PMID:23580827

  17. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia.

    PubMed

    Dolnikov, Alla; Shen, Sylvie; Klamer, Guy; Joshi, Swapna; Xu, Ning; Yang, Lu; Micklethwaite, Kenneth; O'Brien, Tracey A

    2015-12-01

    Adoptive therapy with chimeric antigen receptor (CAR) T cells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy. PMID:26384559

  18. Absence of Genomic Ikaros/IKZF1 Deletions in Pediatric B-Precursor Acute Lymphoblastic Leukemia

    PubMed Central

    Qazi, Sanjive; Ma, Hong; Uckun, Fatih M

    2013-01-01

    Here we report the results of gene expression analyses using multiple probesets aimed at determining the incidence of Ikaros/IKZF1 deletions in pediatric B-precursor acute lymphoblastic leukemia (BPL). Primary leukemia cells from 122 Philadelphia chromosome (Ph)+ BPL patients and 237 Ph− BPL patients as well as normal hematopoietic cells from 74 normal non-leukemic bone marrow specimens were organized according to expression levels of IKZF1 transcripts utilizing two-way hierarchical clustering technique to identify specimens with low IKZF1 expression for the 10 probesets interrogating Exons 1 through 4 and Exon 8. Our analysis demonstrated no changes in expression that would be expected from homozygous or heterozygous deletions of IKZF1 in primary leukemic cells. Similar results were obtained in gene expression analysis of primary leukemic cells from 20 Ph+ positive and 155 Ph− BPL patients in a validation dataset. Taken together, our gene expression analyses in 534 pediatric BPL cases, including 142 cases with Ph+ BPL, contradict previous reports that were based on SNP array data and suggested that Ph+ pediatric BPL is characterized by a high frequency of homozygous or heterozygous IKZF1 deletions. Further, exon-specific genomic PCR analysis of primary leukemia cells from 21 high-risk pediatric BPL patients and 11 standard-risk pediatric BPL patients, and 8 patients with infant BPL did not show any evidence for homozygous IKZF1 locus deletions. Nor was there any evidence for homozygous or heterozygous intragenic IKZF1 deletions. PMID:24478816

  19. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells

    PubMed Central

    Torelli, Giovanni F.; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S.; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-01-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL+ blasts, regardless of patient age. Accordingly, BCR-ABL+ blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL+, are worth pursuing further. PMID:24658822

  20. Biology, Risk Stratification, and Therapy of Pediatric Acute Leukemias: An Update

    PubMed Central

    Pui, Ching-Hon; Carroll, William L.; Meshinchi, Soheil; Arceci, Robert J.

    2011-01-01

    Purpose We review recent advances in the biologic understanding and treatment of childhood acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), identify therapeutically challenging subgroups, and suggest future directions of research. Methods A review of English literature on childhood acute leukemias from the past 5 years was performed. Results Contemporary treatments have resulted in 5-year event-free survival rates of approximately 80% for childhood ALL and almost 60% for pediatric AML. The advent of high-resolution genome-wide analyses has provided new insights into leukemogenesis and identified many novel subtypes of leukemia. Virtually all ALL and the vast majority of AML cases can be classified according to specific genetic abnormalities. Cooperative mutations involved in cell differentiation, cell cycle regulation, tumor suppression, drug responsiveness, and apoptosis have also been identified in many cases. The development of new formulations of existing drugs, molecularly targeted therapy, and immunotherapies promises to further advance the cure rates and improve quality of life of patients. Conclusion The application of new high-throughput sequencing techniques to define the complete DNA sequence of leukemia and host normal cells and the development of new agents targeted to leukemogenic pathways promise to further improve outcome in the coming decade. PMID:21220611

  1. Gene set enrichment and topological analyses based on interaction networks in pediatric acute lymphoblastic leukemia

    PubMed Central

    SUI, SHUXIANG; WANG, XIN; ZHENG, HUA; GUO, HUA; CHEN, TONG; JI, DONG-MEI

    2015-01-01

    Pediatric acute lymphoblastic leukemia (ALL) accounts for over one-quarter of all pediatric cancers. Interacting genes and proteins within the larger human gene interaction network of the human genome are rarely investigated by studies investigating pediatric ALL. In the present study, interaction networks were constructed using the empirical Bayesian approach and the Search Tool for the Retrieval of Interacting Genes/proteins database, based on the differentially-expressed (DE) genes in pediatric ALL, which were identified using the RankProd package. Enrichment analysis of the interaction network was performed using the network-based methods EnrichNet and PathExpand, which were compared with the traditional expression analysis systematic explored (EASE) method. In total, 398 DE genes were identified in pediatric ALL, and LIF was the most significantly DE gene. The co-expression network consisted of 272 nodes, which indicated genes and proteins, and 602 edges, which indicated the number of interactions adjacent to the node. Comparison between EASE and PathExpand revealed that PathExpand detected more pathways or processes that were closely associated with pediatric ALL compared with the EASE method. There were 294 nodes and 1,588 edges in the protein-protein interaction network, with the processes of hematopoietic cell lineage and porphyrin metabolism demonstrating a close association with pediatric ALL. Network enrichment analysis based on the PathExpand algorithm was revealed to be more powerful for the analysis of interaction networks in pediatric ALL compared with the EASE method. LIF and MLLT11 were identified as the most significantly DE genes in pediatric ALL. The process of hematopoietic cell lineage was the pathway most significantly associated with pediatric ALL. PMID:26788135

  2. Valproic Acid Synergistically Enhances The Cytotoxicity of Clofarabine in Pediatric Acute Myeloid Leukemia Cells

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; LoGrasso, Salvatore B.; Buck, Steven A.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2012-01-01

    SUMMARY Background Acute myeloid leukemia (AML) remains a major therapeutic challenge in pediatric oncology even with intensified cytarabine (ara-C)-based chemotherapy. Therefore, new therapies are urgently needed to improve treatment outcome of this deadly disease. In this study, we evaluated antileukemic interactions between clofarabine (a second-generation purine nucleoside analog) and valproic acid (VPA, a FDA-approved agent for treating epilepsy in both children and adult and a histone deacetylase inhibitor), in pediatric AML. Methodology In vitro clofarabine and VPA cytotoxicities of the pediatric AML cell lines and diagnostic blasts were measured by using MTT assays. The effects of clofarabine and VPA on apoptosis and DNA double strand breaks (DSBs) were determined by flow cytometry analysis and Western blotting, respectively. Active form of Bax was measured by Western blotting post immunoprecipitation. Results We demonstrated synergistic antileukemic activities between clofarabine and VPA in both pediatric AML cell lines and diagnostic blasts sensitive to VPA. In contrast, antagonism between the two agents could be detected in AML cells resistant to VPA. Clofarabine and VPA cooperate in inducing DNA DSBs, accompanied by Bax activation and apoptosis in pediatric AML cells. Conclusion Our results document synergistic antileukemic activities of combined VPA and clofarabine in pediatric AML and suggest that this combination could be an alternative treatment option for the disease. PMID:22488775

  3. Advancements in the treatment of pediatric acute leukemia and brain tumor - continuous efforts for 100% cure.

    PubMed

    Ju, Hee Young; Hong, Che Ry; Shin, Hee Young

    2014-10-01

    Treatment outcomes of pediatric cancers have improved greatly with the development of improved treatment protocols, new drugs, and better supportive measures, resulting in overall survival rates greater than 70%. Survival rates are highest in acute lymphoblastic leukemia, reaching more than 90%, owing to risk-based treatment through multicenter clinical trials and protocols developed to prevent central nervous system relapse and testicular relapse in boys. New drugs including clofarabine and nelarabine are currently being evaluated in clinical trials, and other targeted agents are continuously being developed. Chimeric antigen receptor-modified T cells are now attracting interest for the treatment of recurrent or refractory disease. Stem cell transplantation is still the most effective treatment for pediatric acute myeloid leukemia (AML). However, in order to reduce treatment-related death after stem cell transplantation, there is need for improved treatments. New drugs and targeted agents are also needed for improved outcome of AML. Surgery and radiation therapy have been the mainstay for brain tumor treatment. However, chemotherapy is becoming more important for patients who are not eligible for radiotherapy owing to age. Stem cell transplant as a means of high dose chemotherapy and stem cell rescue is a new treatment modality and is often repeated for improved survival. Drugs such as temozolomide are new chemotherapeutic options. In order to achieve 100% cure in children with pediatric cancer, every possible treatment modality and effort should be considered. PMID:25379043

  4. Zinc finger protein 382 is downregulated by promoter hypermethylation in pediatric acute myeloid leukemia patients

    PubMed Central

    TAO, YAN-FANG; HU, SHAO-YAN; LU, JUN; CAO, LAN; ZHAO, WEN-LI; XIAO, PEI-FANG; XU, LI-XIAO; LI, ZHI-HENG; WANG, NA-NA; DU, XIAO-JUAN; SUN, LI-CHAO; ZHAO, HE; FANG, FANG; SU, GUANG-HAO; LI, YAN-HONG; LI, YI-PING; XU, YUN-YUN; NI, JIAN; WANG, JIAN; FENG, XING; PAN, JIAN

    2014-01-01

    Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are characteristic of AML. Zinc finger protein 382 (ZNF382) has been suggested to be a tumor suppressor gene possibly regulated by promoter hypermethylation in various types of human cancer. However, ZNF382 expression and methylation status in pediatric AML is unknown. In the present study, ZNF382 transcription levels were evaluated by quantitative reverse-transcription PCR. Methylation status was investigated by methylation-specific (MSP) PCR and bisulfate genomic sequencing (BGS). The prognostic significance of ZNF382 expression and promoter methylation was assessed in 105 cases of pediatric AML. The array data suggested that the ZNF382 promoter was hypermethylated in the AML cases examined. MSP PCR and BGS analysis revealed that ZNF382 was hypermethylated in leukemia cell lines. Furthermore, treatment with 5-aza-2′-deoxycytidine (5-Aza) upregulated ZNF382 expression in the selected leukemia cell lines. The aberrant methylation of ZNF382 was observed in 10% (2/20) of the control samples compared with 26.7% (28/105) of the AML samples. ZNF382 expression was significantly decreased in the 105 AML patients compared with the controls. Patients with ZNF382 methylation showed lower ZNF382 transcript levels compared with patients exhibiting no methylation. There were no significant differences in clinical characteristics or cytogenetic analysis between the patients with or without ZNF382 methylation. ZNF382 methylation correlated with minimal residual disease (MRD). Kaplan-Meier survival analysis revealed similar survival times in the samples with ZNF382 methylation, and multivariate analysis revealed that ZNF382 methylation was not an independent prognostic factor in pediatric AML. The epigenetic inactivation of ZNF382 by promoter hypermethylation can be observed in AML cell lines and pediatric AML samples. Therefore, our study suggests that ZNF382

  5. Acute myelogenous leukemia (AML) - children

    MedlinePlus

    Acute myelogenous leukemia - children; AML; Acute myeloid leukemia - children; Acute granulocytic leukemia - children; Acute myeloblastic leukemia - children; Acute non-lymphocytic leukemia (ANLL) - children

  6. Posterior reversible encephalopathy syndrome in pediatric acute leukemia: Case series and literature review

    PubMed Central

    Appachu, M. Sandhya; Purohit, Samit; Lakshmaiah, K. C.; Kumari, B.S. Aruna; Appaji, L.

    2014-01-01

    Posterior reversible encephalopathy syndrome (PRES) is a neurotoxic state coupled with a unique radio imaging appearance. We describe this rare, mostly reversible condition in five cases undergoing similar treatment under preset protocol (MCP-841) for acute lymphoblastic leukemia (ALL) at our centre. Hypertension is a well-known adverse effect of high-dose corticosteroid therapy primarily mediated by its effects on the mineralocorticoid receptor especially in pediatric population and we hypothesize that this may be the etiology of PRES in two of these patients. PMID:25006290

  7. Executive Function Late Effects in Survivors of Pediatric Brain Tumors and Acute Lymphoblastic Leukemia

    PubMed Central

    Winter, Amanda L.; Conklin, Heather M.; Tyc, Vida L.; Stancel, Heather; Hinds, Pamela S.; Hudson, Melissa M.; Kahalley, Lisa S.

    2014-01-01

    BACKGROUND Survivors of pediatric brain tumors (BT) and acute lymphoblastic leukemia (ALL) are at risk for neurocognitive late effects related to executive function. PROCEDURE Survivors of BT (48) and ALL (50) completed neurocognitive assessment. Executive function was compared to estimated IQ and population norms by diagnostic group. RESULTS Both BT and ALL demonstrated relative executive function weaknesses. As a group, BT survivors demonstrated weaker executive functioning than expected for age. Those BT survivors with deficits exhibited a profile suggestive of global executive dysfunction, while affected ALL survivors tended to demonstrate specific rapid naming deficits. CONCLUSION Findings suggest that pediatric BT and ALL survivors may exhibit different profiles of executive function late effects, which may necessitate distinct intervention plans. PMID:25126830

  8. Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations.

    PubMed

    Wang, Yan; Xue, Jing; Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jinzhi; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  9. Oral Microbiota Distinguishes Acute Lymphoblastic Leukemia Pediatric Hosts from Healthy Populations

    PubMed Central

    Zhou, Xuedong; You, Meng; Du, Qin; Yang, Xue; He, Jingzhi; Zou, Jing; Cheng, Lei; Li, Mingyun; Li, Yuqing; Zhu, Yiping; Li, Jiyao; Shi, Wenyuan; Xu, Xin

    2014-01-01

    In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota. PMID:25025462

  10. Antibody Therapy for Pediatric Leukemia

    PubMed Central

    Vedi, Aditi; Ziegler, David S.

    2014-01-01

    Despite increasing cure rates for pediatric leukemia, relapsed disease still carries a poor prognosis with significant morbidity and mortality. Novel targeted therapies are currently being investigated in an attempt to reduce adverse events and improve survival outcomes. Antibody therapies represent a form of targeted therapy that offers a new treatment paradigm. Monoclonal antibodies are active in pediatric acute lymphoblastic leukemia (ALL) and are currently in Phase III trials. Antibody-drug conjugates (ADCs) are the next generation of antibodies where a highly potent cytotoxic agent is bound to an antibody by a linker, resulting in selective targeting of leukemia cells. ADCs are currently being tested in clinical trials for pediatric acute myeloid leukemia and ALL. Bispecific T cell engager (BiTE) antibodies are a construct whereby each antibody contains two binding sites, with one designed to engage the patient’s own immune system and the other to target malignant cells. BiTE antibodies show great promise as a novel and effective therapy for childhood leukemia. This review will outline recent developments in targeted agents for pediatric leukemia including monoclonal antibodies, ADCs, and BiTE antibodies. PMID:24795859

  11. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays

    PubMed Central

    2012-01-01

    Background The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Methods Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. Results We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington’s disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. Conclusions The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We found some genes dyes

  12. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Pharmacogenetics of microRNAs and microRNAs biogenesis machinery in pediatric acute lymphoblastic leukemia.

    PubMed

    López-López, Elixabet; Gutiérrez-Camino, Ángela; Piñán, Maria Ángeles; Sánchez-Toledo, José; Uriz, Jose Javier; Ballesteros, Javier; García-Miguel, Purificación; Navajas, Aurora; García-Orad, África

    2014-01-01

    Despite the clinical success of acute lymphoblastic leukemia (ALL) therapy, toxicity is frequent. Therefore, it would be useful to identify predictors of adverse effects. In the last years, several studies have investigated the relationship between genetic variation and treatment-related toxicity. However, most of these studies are focused in coding regions. Nowadays, it is known that regions that do not codify proteins, such as microRNAs (miRNAs), may have an important regulatory function. MiRNAs can regulate the expression of genes affecting drug response. In fact, the expression of some of those miRNAs has been associated with drug response. Genetic variations affecting miRNAs can modify their function, which may lead to drug sensitivity. The aim of this study was to detect new toxicity markers in pediatric B-ALL, studying miRNA-related polymorphisms, which can affect miRNA levels and function. We analyzed 118 SNPs in pre-miRNAs and miRNA processing genes in association with toxicity in 152 pediatric B-ALL patients all treated with the same protocol (LAL/SHOP). Among the results found, we detected for the first time an association between rs639174 in DROSHA and vomits that remained statistically significant after FDR correction. DROSHA had been associated with alterations in miRNAs expression, which could affect genes involved in drug transport. This suggests that miRNA-related SNPs could be a useful tool for toxicity prediction in pediatric B-ALL. PMID:24614921

  14. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  15. MECHANISMS OF SYNERGISTIC ANTILEUKEMIC INTERACTIONS BETWEEN VALPROIC ACID AND CYTARABINE IN PEDIATRIC ACUTE MYELOID LEUKEMIA

    PubMed Central

    Xie, Chengzhi; Edwards, Holly; Xu, Xuelian; Zhou, Hui; Buck, Steven A.; Stout, Mark L.; Yu, Qun; Rubnitz, Jeffrey E.; Matherly, Larry H.; Taub, Jeffrey W.; Ge, Yubin

    2010-01-01

    Purpose To determine the possibility of synergistic anti-leukemic activity and the underlying molecular mechanisms associated with cytarabine combined with valproic acid (VPA) [a histone deacetylase inhibitor (HDACI) and an FDA-licensed drug for treating both children and adults with epilepsy] in pediatric acute myeloid leukemia (AML). Experimental Design The type and extent of anti-leukemic interactions between cytarabine and VPA in clinically relevant pediatric AML cell lines and diagnostic blasts from children with AML were determined by MTT assays and standard isobologram analyses. The effects of cytarabine and VPA on apoptosis and cell cycle distributions were determined by flow cytometry analysis and caspase enzymatic assays. The effects of the two agents on DNA damage and Bcl-2 family proteins were determined by Western blotting. Results We demonstrated synergistic antileukemic activities between cytarabine and VPA in 4 pediatric AML cell lines and 9 diagnostic AML blast samples. t(8;21) AML blasts were significantly more sensitive to VPA and showed far greater sensitivities to combined cytarabine and VPA than non-t(8;21) AML cases. Cytarabine and VPA cooperatively induced DNA double strand breaks, reflected in induction of γH2AX and apoptosis, accompanied by activation of caspases 9 and 3. Further, VPA induced Bim expression and shRNA knockdown of Bim resulted in significantly decreased apoptosis induced by cytarabine, and by cytarabine plus VPA. Conclusions Our results establish global synergistic antileukemic activity of combined VPA and cytarabine in pediatric AML and provide compelling evidence to support the use of VPA in the treatment of children with this deadly disease. PMID:20889917

  16. Oral manifestations in pediatric patients receiving chemotherapy for acute lymphoblastic leukemia.

    PubMed

    Ponce-Torres, Elena; Ruíz-Rodríguez, Ma del Socorro; Alejo-González, Francisco; Hernández-Sierra, Juan Francisco; Pozos-Guillén, Amaury de J

    2010-01-01

    The purpose of this study was to determine the prevalence of oral manifestations in pediatric patients with acute lymphoblastic leukemia (ALL) receiving chemotherapy, and to evaluate the significance of independent risk factors (oral health, gender, age, time and type of treatment, and phase of chemotherapy). A cross-sectional study was made in 49 children with ALL between 2 and 14 years of age. To describe oral manifestations, a clinical diagnosis was made and the following criteria were applied: the OHI-S index to describe oral health and the IMPA index to describe periodontal conditions and to differentiate gingivitis from periodontitis. The prevalence of oral manifestations was: gingivitis, 91.84%; caries, 81.63%; mucositis, 38.77%; periodontitis, 16.32%; cheilitis, 18.36%; recurrent herpes, 12.24%; and primary herpetic gingivostomatitis, 2.04%. Other oral manifestations were: dry lips, mucosal pallor, mucosal petechiae, ecchymoses, and induced ulcers. The prevalence of oral candidiasis was 6.12%. It was observed that high risk ALL and poor oral hygiene were important risk factors for the development of candidiasis and gingivitis. The type of leukemia, gender and phase of chemotherapy were apparently associated with the presence of candidiasis, gingivitis, and periodontitis, and they could be considered risk factors for the development of oral manifestations. PMID:20578668

  17. Haploidentical hematopoietic stem cell transplantation without total body irradiation for pediatric acute leukemia: a single-center experience

    PubMed Central

    Mu, Yanshun; Qin, Maoquan; Wang, Bin; Li, Sidan; Zhu, Guanghua; Zhou, Xuan; Yang, Jun; Wang, Kai; Lin, Wei; Zheng, Huyong

    2016-01-01

    Hematopoietic stem cell transplantation (HSCT) is a promising method for therapy of pediatric patients with acute leukemia. However, less availability of matched donors limited its wide application. Recently, haploidentical HSCT has become a great resource. Here, we have retrospectively reported our experience of 20 pediatric patients with acute leukemia who underwent haploidentical HSCT without total body irradiation (TBI) myeloablative regimen in our center from November 2007 to June 2014. All the patients attained successful HSCT engraftment in terms of myeloid and platelet recovery. Thirteen patients developed grade I–IV acute graft-versus-host disease (a-GVHD). The incidence of grade I–II a-GVHD, grade III–IV a-GVHD, and chronic GVHD (c-GVHD) was 45%, 20%, and 25%, respectively. The mean myeloid and platelet recovery time was 13.20±2.41 and 19.10±8.37 days. The median follow-up time was 43.95±29.26 months. During the follow-up, three patients died. The overall survival (OS) rate was 85%. The present study indicated that haploidentical HSCT without TBI myeloablative regimen significantly improved the OS rate of pediatric patients with acute leukemia. PMID:27217774

  18. Trisomy 8 in pediatric acute myeloid leukemia: A NOPHO-AML study.

    PubMed

    Laursen, Anne Cathrine Lund; Sandahl, Julie Damgaard; Kjeldsen, Eigil; Abrahamsson, Jonas; Asdahl, Peter; Ha, Shau-Yin; Heldrup, Jesper; Jahnukainen, Kirsi; Jónsson, Ólafur G; Lausen, Birgitte; Palle, Josefine; Zeller, Bernward; Forestier, Erik; Hasle, Henrik

    2016-09-01

    Trisomy 8 (+8) is a common cytogenetic aberration in acute myeloid leukemia (AML); however, the impact of +8 in pediatric AML is largely unknown. We retrospectively investigated 609 patients from the NOPHO-AML database to determine the clinical and cytogenetic characteristics of +8 in pediatric AML and to investigate its prognostic impact. Complete cytogenetic data were available in 596 patients (98%) aged 0-18 years, diagnosed from 1993 to 2012, and treated according to the NOPHO-AML 1993 and 2004 protocols in the Nordic countries and Hong Kong. We identified 86 patients (14%) with +8. Trisomy 8 was combined with other cytogenetic aberrations in 68 patients (11%) (+8 other) and in 18 patients (3%), it was the sole abnormality (+8 alone). Trisomy 8 was associated with FAB M5 (36%) but otherwise clinically comparable with non-trisomy 8 patients. Trisomy 8 was favorable in patients of young age and with t(9;11). Trisomy 8 alone was associated with older age (median age 10.1 years), FAB M2 (33%), and FLT3-ITD mutations (58%). The 5-year event-free survival for patients with +8 alone was 50% and 5-year overall survival was 75%. In conclusion, +8 is one of the most common cytogenetic aberrations in pediatric AML. Trisomy 8 positive AML is a heterogeneous group and the majority of cases have additional cytogenetic aberrations. Patients with +8 alone differed from patients with +8 other and were associated with older age, FAB M2, and FLT3-ITD aberrations. There were no differences in survival despite the more frequent occurrence of FLT3-ITD in +8 alone. © 2016 Wiley Periodicals, Inc. PMID:27153159

  19. Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia.

    PubMed

    Warris, Lidewij T; van den Akker, Erica L T; Aarsen, Femke K; Bierings, Marc B; van den Bos, Cor; Tissing, Wim J E; Sassen, Sebastiaan D T; Veening, Margreet A; Zwaan, Christian M; Pieters, Rob; van den Heuvel-Eibrink, Marry M

    2016-10-01

    Although dexamethasone is an effective treatment for acute lymphoblastic leukemia (ALL), it can induce a variety of serious neurobehavioral side effects. We hypothesized that these side effects are influenced by glucocorticoid sensitivity at the tissue level. We therefore prospectively studied whether we could predict the occurrence of these side effects using the very low-dose dexamethasone suppression test (DST) or by measuring trough levels of dexamethasone. Fifty pediatric patients (3-16 years of age) with acute lymphoblastic leukemia (ALL) were initially included during the maintenance phase (with dexamethasone) of the Dutch ALL treatment protocol. As a marker of glucocorticoid sensitivity, the salivary very low-dose DST was used. A post-dexamethasone cortisol level <2.0nmol/L was considered a hypersensitive response. The neurobehavioral endpoints consisted of questionnaires regarding psychosocial and sleeping problems administered before and during the course of dexamethasone (6mg/m(2)), and dexamethasone trough levels were measured during dexamethasone treatment. Patients with a hypersensitive response to dexamethasone had more behavioral problems (N=11), sleeping problems, and/or somnolence (N=12) (P<0.05 for all three endpoints). The positive predictive values of the DST for psychosocial problems and sleeping problems were 50% and 30%, respectively. Dexamethasone levels were not associated with neurobehavioral side effects. We conclude that neither the very low-dose DST nor measuring dexamethasone trough levels can accurately predict dexamethasone-induced neurobehavioral side effects. However, patients with glucocorticoid hypersensitivity experienced significantly more symptoms associated with dexamethasone-induced depression. Future studies should elucidate further the mechanisms by which neurobehavioral side effects are influenced by glucocorticoid sensitivity. PMID:27448086

  20. Vitamin D receptor gene polymorphism in Egyptian pediatric acute lymphoblastic leukemia correlation with BMD

    PubMed Central

    Tantawy, Maha; Amer, Mahmoud; Raafat, Tarek; Hamdy, Nayera

    2016-01-01

    Introduction We studied the frequencies of the 3′ and 5′-end vitamin D receptor (VDR) gene polymorphisms and their correlation with bone mineral density (BMD) in Egyptian pediatric acute lymphoblastic leukemia (ALL) patients receiving calcium and vitamin D supplements. The purpose of this study is to find out the relation between VDR polymorphism and the response to vitamin D intake in pediatric ALL cases who receive corticosteroid therapy which predispose to osteoporosis. This study might shed the light on some genetic variants that are effect the response of individuals to vitamin D therapy. Methods Forty newly diagnosed pediatrics ALL cases were studied. Three SNPs at the 3′-end of the VDR gene (BsmI rs1544410, ApaI rs739837and TaqI rs731236) and two SNPs at the 5′-end (Cdx-2 rs11568820 and GATA rs4516035) were analyzed by Allelic discrimination assay. Of those twenty-six cases with initial BMD data available were further analyzed with regards to the effect of various VDR genotypes/haplotypes on BMD. Results The genotype frequencies at 3′-end of VDR gene were, TaqI TT 23%, Tt 54% and tt 23%, BsmI bb 19.2%, Bb 65.4% and BB 15.4% and ApaI AA 12%, Aa 27% and aa 61%. The frequencies at the 5′-end were Cdx-2 GG 34.5%, GA 54% and AA 11.5% and GATA AA 8%, AG 50% and GG 42%. Eight and four possible haplotypes were observed at the 3′ and 5′-ends of the VDR gene respectively. The Tt genotype was significantly correlated with high BMD as compared to other TaqI genotypes (P = 0.0420). There was a trend towards higher BMD with the genotype Bb as compared to other BsmI genotypes. No statistical significance was found between the other VDR genotypes or haplotypes studied and BMD. Conclusions This is the first report on VDR gene polymorphisms in Egyptian pediatric ALL patients. The Tt genotype was associated with increased BMD. Our study showed marked genetic heterogeneity in VDR gene in Egyptian pediatric ALL patients. PMID:27114922

  1. Improved outcome of pediatric patients with acute megakaryoblastic leukemia in the AML-BFM 04 trial.

    PubMed

    Schweitzer, Jana; Zimmermann, Martin; Rasche, Mareike; von Neuhoff, Christine; Creutzig, Ursula; Dworzak, Michael; Reinhardt, Dirk; Klusmann, Jan-Henning

    2015-08-01

    Despite recent advances in the treatment of children with acute megakaryoblastic leukemia (AMKL) using intensified treatment protocols, clear prognostic indicators, and treatment recommendations for this acute myeloid leukemia (AML) subgroup are yet to be defined. Here, we report the outcome of 97 pediatric patients with de novo AMKL (excluding Down syndrome [DS]) enrolled in the prospective multicenter studies AML-BFM 98 and AML-BFM 04 (1998-2014). AMKL occurred in 7.4 % of pediatric AML cases, at younger age (median 1.44 years) and with lower white blood cell count (mean 16.5 × 10(9)/L) as compared to other AML subgroups. With 60 ± 5 %, children with AMKL had a lower 5-year overall survival (5-year OS; vs. 68 ± 1 %, P log rank = 0.038). Yet, we achieved an improved 5-year OS in AML-BFM 04 compared to AML-BFM 98 (70 ± 6 % vs. 45 ± 8 %, P log rank = 0.041). Allogeneic hematopoietic stem cell transplantation in first remission did not provide a significant survival benefit (5-year OS 70 ± 11 % vs. 63 ± 6 %; P Mantel-Byar = 0.85). Cytogenetic data were available for n = 78 patients. AMKL patients with gain of chromosome 21 had a superior 5-year OS (80 ± 9 %, P log rank = 0.034), whereas translocation t(1;22)(p13;q13) was associated with an inferior 5-year event-free survival (38 ± 17 %, P log rank = 0.04). However, multivariate analysis showed that treatment response (bone marrow morphology on day 15 and 28) was the only independent prognostic marker (RR = 4.39; 95 % CI, 1.97-9.78). Interestingly, GATA1-mutations were detected in six patients (11 %) without previously known trisomy 21. Thus, AMKL (excluding DS) remains an AML subgroup with inferior outcome. Nevertheless, with intensive therapy regimens, a steep increase in the survival rates was achieved. PMID:25913479

  2. Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.

    2014-01-01

    The t(9;22)(q34;q11) or Philadelphia chromosome creates a BCR–ABL1 fusion gene encoding for a chimeric BCR–ABL1 protein. It is present in 3–4% of pediatric acute lymphoblastic leukemia (Ph+ ALL), and about 25% of adult ALL cases. Prior to the advent of tyrosine kinase inhibitors (TKI), Ph+ ALL was associated with a very poor prognosis despite the use of intensive chemotherapy and frequently hematopoietic stem-cell transplantation (HSCT) in first remission. The development of TKIs revolutionized the therapy of Ph+ ALL. Addition of the first generation ABL1 class TKI imatinib to intensive chemotherapy dramatically increased the survival for children with Ph+ ALL and established that many patients can be cured without HSCT. In parallel, the mechanistic understanding of Ph+ ALL expanded exponentially through careful mapping of pathways downstream of BCR–ABL1, the discovery of mutations in master regulators of B-cell development such as IKZF1 (Ikaros), PAX5, and early B-cell factor (EBF), the recognition of the complex clonal architecture of Ph+ ALL, and the delineation of genomic, epigenetic, and signaling abnormalities contributing to relapse and resistance. Still, many important basic and clinical questions remain unanswered. Current clinical trials are testing second generation TKIs in patients with newly diagnosed Ph+ ALL. Neither the optimal duration of therapy nor the optimal chemotherapy backbone are currently defined. The role of HSCT in first remission and post-transplant TKI therapy also require further study. In addition, it will be crucial to continue to dig deeper into understanding Ph+ ALL at a mechanistic level, and translate findings into complementary targeted approaches. Expanding targeted therapies hold great promise to decrease toxicity and improve survival in this high-risk disease, which provides a paradigm for how targeted therapies can be incorporated into treatment of other high-risk leukemias. PMID:24724051

  3. Progress and Prospects in Pediatric Leukemia.

    PubMed

    Madhusoodhan, P Pallavi; Carroll, William L; Bhatla, Teena

    2016-07-01

    Pediatric leukemia is the single most common malignancy affecting children, representing up to 30% of all pediatric cancers. Dramatic improvements in survival for acute lymphoblastic leukemia (ALL) have taken place over the past 4 decades with outcomes approaching 90% in the latest studies. However, progress has been slower for myeloid leukemia and certain subgroups like infant ALL, adolescent/young adult ALL, and relapsed ALL. Recent advances include recognition of molecularly defined subgroups, which has ushered in precision medicine approaches. We discuss the current understanding of the biology of the various childhood leukemias, recent advances in research, and future challenges in this field. PMID:27283082

  4. Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia.

    PubMed

    Yadav, Babasaheb D; Samuels, Amy L; Wells, Julia E; Sutton, Rosemary; Venn, Nicola C; Bendak, Katerina; Anderson, Denise; Marshall, Glenn M; Cole, Catherine H; Beesley, Alex H; Kees, Ursula R; Lock, Richard B

    2016-08-11

    Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy. PMID:27623214

  5. Banding cytogenetic analysis in pediatric patients with acute lymphoblastic leukemia (ALL) in a Brazilian population

    PubMed Central

    2013-01-01

    Background Cytogenetic studies in Brazilian population about childhood acute lymphoblastic leukemia (ALL), the most common childhood malignancy, are scarce. Moreover, Brazilian race is very heterogeneous and is made by the confluence of people of several different origins, from the original Native Brazilians, with the influx of Portuguese colonizers, Black African slaves, and recent European, Arab and Japanese immigration. The purpose of this prospective, multicentric study was to assess the sociodemographic, clinic and cytogenetic characteristics of the children treated for ALL in the Northeast region of Brazil. Results This study includes thirty patients between 4 months and 17 years old treated for ALL from January 1st, 2009 to November 30th, 2010. Cytogenetic analysis showed that in nineteen out of thirty patients (64%) presented some chromosome abnormalities, in which 53% corresponds to numerical abnormalities, 21% structural and numerical abnormalities, and 26% only structural changes. Moreover, seven patients presented complexes karyotype not yet described in the literature. Taken together these results show the importance of the cytogenetic analysis in ALL pediatric patients and illustrates that the studied population presented unexpected complexes karyotypes which were correlated to poor outcome. Conclusion The results demonstrate the importance of banding cytogenetics for ALL diagnosis despite the use of most modern techniques such as FISH and aCGH, and provide reliable insight into the ALL in Brazil. PMID:24025689

  6. ABL kinase mutation and relapse in 4 pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia cases.

    PubMed

    Aoe, Michinori; Shimada, Akira; Muraoka, Michiko; Washio, Kana; Nakamura, Yoshimi; Takahashi, Takahide; Imada, Masahide; Watanabe, Toshiyuki; Okada, Ken; Nishiuchi, Ritsuo; Miyamura, Takako; Chayama, Kosuke; Shibakura, Misako; Oda, Megumi; Morishima, Tsuneo

    2014-01-01

    The tyrosine kinase inhibitor (TKI) imatinib mesylate (IM) revolutionized the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL), which had showed poor prognosis before the dawn of IM treatment. However, if Ph-ALL patients showed IM resistance due to ABL kinase mutation, second-generation TKI, dasatinib or nilotinib, was recommended. We treated 4 pediatric Ph-ALL patients with both IM and bone marrow transplantation (BMT); however, 3 relapsed. We retrospectively examined the existence of ABL kinase mutation using PCR and direct sequencing methods, but there was no such mutation in all 4 diagnostic samples. Interestingly, two relapsed samples from patients who were not treated with IM before relapse did not show ABL kinase mutation and IM was still effective even after relapse. On the other hand, one patient who showed resistance to 3 TKI acquired dual ABL kinase mutations, F359C at the IM-resistant phase and F317I at the dasatinib-resistant phase, simultaneously. In summary, Ph-ALL patients relapsed with or without ABL kinase mutation. Furthermore, ABL kinase mutation was only found after IM treatment, so an IM-resistant clone might have been selected during the IM treatment and intensive chemotherapy. The appropriate combination of TKI and BMT must be discussed to cure Ph-ALL patients. PMID:24652384

  7. Impact of registration on clinical trials on infection risk in pediatric acute myeloid leukemia.

    PubMed

    Dix, David; Aplenc, Richard; Bowes, Lynette; Cellot, Sonia; Ethier, Marie-Chantal; Feusner, Jim; Gillmeister, Biljana; Johnston, Donna L; Lewis, Victor; Michon, Bruno; Mitchell, David; Portwine, Carol; Price, Victoria; Silva, Mariana; Stobart, Kent; Yanofsky, Rochelle; Zelcer, Shayna; Beyene, Joseph; Sung, Lillian

    2016-04-01

    Little is known about the impact of enrollment on therapeutic clinical trials on adverse event rates. Primary objective was to describe the impact of clinical trial registration on sterile site microbiologically documented infection for children with newly diagnosed acute myeloid leukemia (AML). We conducted a multicenter cohort study that included children aged ≤18 years with de novo AML. Primary outcome was microbiologically documented sterile site infection. Infection rates were compared between those registered and not registered on clinical trials. Five hundred seventy-four children with AML were included of which 198 (34.5%) were registered on a therapeutic clinical trial. Overall, 400 (69.7%) had at least one sterile site microbiologically documented infection. In multiple regression, registration on clinical trials was independently associated with a higher risk of microbiologically documented sterile site infection [adjusted odds ratio (OR) 1.24, 95% confidence interval (CI) 1.01-1.53; p = 0.040] and viridans group streptococcal infection (OR 1.46, 95% CI 1.08-1.98; p = 0.015). Registration on trials was not associated with Gram-negative or invasive fungal infections. Children with newly diagnosed AML enrolled on clinical trials have a higher risk of microbiologically documented sterile site infection. This information may impact on supportive care practices in pediatric AML. PMID:26515793

  8. The Need for Evidence Based Nutritional Guidelines for Pediatric Acute Lymphoblastic Leukemia Patients: Acute and Long-Term Following Treatment

    PubMed Central

    Owens, Joyce L.; Hanson, Sheila J.; McArthur, Jennifer A.; Mikhailov, Theresa A.

    2013-01-01

    High survival rates for pediatric leukemia are very promising. With regard to treatment, children tend to be able to withstand a more aggressive treatment protocol than adults. The differences in both treatment modalities and outcomes between children and adults make extrapolation of adult studies to children inappropriate. The higher success is associated with a significant number of children experiencing nutrition-related adverse effects both in the short and long term after treatment. Specific treatment protocols have been shown to deplete nutrient levels, in particular antioxidants. The optimal nutrition prescription during, after and long-term following cancer treatment is unknown. This review article will provide an overview of the known physiologic processes of pediatric leukemia and how they contribute to the complexity of performing nutritional assessment in this population. It will also discuss known nutrition-related consequences, both short and long term in pediatric leukemia patients. Since specific antioxidants have been shown to be depleted as a consequence of therapy, the role of oxidative stress in the pediatric leukemia population will also be explored. More pediatric studies are needed to develop evidence based therapeutic interventions for nutritional complications of leukemia and its treatment. PMID:24177709

  9. [Expression of ICAM-1 (CD54) in pediatric tumor and acute leukemia and its clinic significance in immunotherapy with CIK cell].

    PubMed

    Xiong, Xi-Lin; Li, Yang; Wang, Lin; Wei, Jing; Ma, Lei; Shen, Xi-Ming

    2012-04-01

    This study was aimed to investigate the expression of ICAM-1 (CD54) in pediatric tumor and acute leukemia (AL), so as to understand the distribution of ICAM-1 and its clinical significance. The expression of ICAM-1 in tissues of 46 pediatric tumor patients were detected by immunohistochemistry, and in bone marrow cells of 60 pediatric acute leukemia (AL) patients were detected by flow cytometry. 46 pediatric tumor patients included 10 lymphoma, 3 hepatoblastoma, 6 neuroblastoma, 2 rhabdomyosarcoma, 6 Ewing's bone sarcoma, 2 fibrosarcoma, 5 primitive neuroectodermal tumor, 11 nephroblastoma and 1 osteosarcoma. 60 AL pediatric patients included 20 acute lymphocytic leukemia (ALL) patients and 40 acute nonlymphocytic leukemia (ANLL) patients containing 20 M1, M2, M3 patients and 20 M4, M5. The results indicated that expression of ICAM-1 was more positive in all 3 hepatoblastoma cases, which represent a higher positive rate than that in lymphoma, neuroblastoma, rhabdomyosarcoma, Ewing's sarcoma of bone and osteosarcoma. However, no expression of ICAM-1 was observed in fibrosarcoma, nephroblastoma and primitive neuroectodermal tumor patients. On the other hand, the expression rate of ICAM-1 was 55 in ALL, 65 in ANLL M1, M2, M3, and 50 in ANLL M4, M5. It is concluded that the expression of ICAM-1 in pediatric tumor and AL has variability. The ICAM-1 positive expression is observed in hepatoblastoma and ANLL M1, M2, M3 patients, whereas it is undetectable in fibrosarcoma, nephroblastoma and primitive neuroectodermal tumor patients. PMID:22541082

  10. Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells

    PubMed Central

    Wang, Na-Na; Li, Zhi-Heng; Zhao, He; Tao, Yan-Fang; Xu, Li-Xiao; Lu, Jun; Cao, Lan; Du, Xiao-Juan; Sun, Li-Chao; Zhao, Wen-Li; Xiao, Pei-Fang; Fang, Fang; Su, Guang-Hao; Li, Yan-Hong; Li, Gang; Li, Yi-Ping; Xu, Yun-Yun; Zhou, Hui-Ting; Wu, Yi; Jin, Mei-Fang; Liu, Lin; Ni, Jian; Wang, Jian; Hu, Shao-Yan; Zhu, Xue-Ming; Feng, Xing; Pan, Jian

    2015-01-01

    Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined. PMID:25574601

  11. A novel spliced fusion of MLL with CT45A2 in a pediatric biphenotypic acute leukemia

    PubMed Central

    2010-01-01

    Background Abnormalities of 11q23 involving the MLL gene are found in approximately 10% of human leukemias. To date, nearly 100 different chromosome bands have been described in rearrangements involving 11q23 and 64 fusion genes have been cloned and characterized at the molecular level. In this work we present the identification of a novel MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia. Methods Cytogenetics, fluorescence in situ hybridization (FISH), molecular studies (RT-PCR and LDI-PCR), and bioinformatic sequence analysis were used to characterize the CT45A2 gene as novel MLL fusion partner in pediatric acute leukemia. Results Fluorescence in situ hybridization of bone marrow G-banded metaphases demonstrated a cryptic insertion of 11q23 in Xq26.3 involving the MLL gene. Breakpoint fusion analysis revealed that a DNA fragment of 653 kb from 11q23, containing MLL exons 1-9 in addition to 16 other 11q23 genes, was inserted into the upstream region of the CT45A2 gene located at Xq26.3. In addition, a deletion at Xq26.3 encompassing the 3' region of the DDX26B gene (exons 9-16) and the entire CT45A1 gene was identified. RNA analysis revealed the presence of a novel MLL-CT45A2 fusion transcript in which the first 9 exons of the MLL gene were fused in-frame to exon 2 of the CT45A2 gene, resulting in a spliced MLL fusion transcript with an intact open reading frame. The resulting chimeric transcript predicts a fusion protein where the N-terminus of MLL is fused to the entire open reading frame of CT45A2. Finally, we demonstrate that all breakpoint regions are rich in long repetitive motifs, namely LINE/L1 and SINE/Alu sequences, but all breakpoints were exclusively identified outside these repetitive DNA sequences. Conclusion We have identified CT45A2 as a novel spliced MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia, as a result of a cryptic insertion of 11q23 in Xq26.3. Since CT45A2 is the first

  12. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Clinical and genetic features of pediatric acute lymphoblastic leukemia in Down syndrome in the Nordic countries

    PubMed Central

    2014-01-01

    Background Children with Down syndrome (DS) have an increased risk for acute lymphoblastic leukemia (ALL). Although previous studies have shown that DS-ALL differs clinically and genetically from non-DS-ALL, much remains to be elucidated as regards genetic and prognostic factors in DS-ALL. Methods To address clinical and genetic differences between DS-ALL and non-DS-ALL and to identify prognostic factors in DS-ALL, we ascertained and reviewed all 128 pediatric DS-ALL diagnosed in the Nordic countries between 1981 and 2010. Their clinical and genetic features were compared with those of the 4,647 B-cell precursor (BCP) ALL cases diagnosed during the same time period. Results All 128 DS-ALL were BCP ALL, comprising 2.7% of all such cases. The 5-year event-free survival (EFS) and overall survival (OS) were significantly (P = 0.026 and P = 0.003, respectively) worse for DS-ALL patients with white blood cell counts ≥50 × 109/l. The age distributions varied between the DS and non-DS cases, with age peaks at 2 and 3 years, respectively; none of the DS patients had infant ALL (P = 0.029). The platelet counts were lower in the DS-ALL group (P = 0.005). Abnormal karyotypes were more common in non-DS-ALL (P < 0.0001), and there was a significant difference in the modal number distribution, with only 2% high hyperdiploid DS-ALL cases (P < 0.0001). The 5-year EFS and 5-year OS were significantly worse for DS-ALL (0.574 and 0.691, respectively) compared with non-DS-ALL (0.783 and 0.894, respectively) in the NOPHO ALL-1992/2000 protocols (P < 0.001). Conclusions The present study adds further support for genetic and clinical differences between DS-ALL and non-DS-ALL. PMID:24726034

  14. Prognostic significance of FLT3-ITD in pediatric acute myeloid leukemia: a meta-analysis of cohort studies.

    PubMed

    Wu, Xiaoli; Feng, Xuefeng; Zhao, Xiaoqing; Ma, Futian; Liu, Na; Guo, Hongming; Li, Chaonan; Du, Huan; Zhang, Baoxi

    2016-09-01

    The purpose of the study was to assess the effect of the internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) on the outcome in pediatric acute myeloid leukemia (AML) patients. We identified eligible studies from several databases including PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) (from January 1995 to July 2015). Ten studies of 1661 pediatric patients with AML were included in exploring the relationship between the FLT3-ITD and overall survival (OS)/event free survival (EFS). Pediatric patients with AML with FLT3-ITD had worse OS [HR = 2.19 (1.60-3.01)]/EFS [HR = 1.70 (1.37-2.11)] than those patients without FLT3-ITD. Furthermore, FLT3-ITD had unfavorable effect on OS/EFS in the subgroups of NOS, uni/multivariate model, number of patients, the length of following-up, and patient source. The findings of this meta-analysis indicated that FLT3-ITD had negative impact on pediatric patients with AML. PMID:27435859

  15. Acute Lymphocytic Leukemia

    MedlinePlus

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  16. Patterns and frequencies of acquired and constitutional uniparental isodisomies in pediatric and adult B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Lundin, Kristina B; Olsson, Linda; Safavi, Setareh; Biloglav, Andrea; Paulsson, Kajsa; Johansson, Bertil

    2016-05-01

    Single nucleotide polymorphism (SNP) arrays are increasingly being used in clinical routine for genetic analysis of pediatric B-cell precursor acute lymphoblastic leukemias (BCP ALL). Because constitutional DNA is not readily available as a control at the time of diagnosis, it is important to be able to distinguish between acquired and constitutional aberrations in a diagnostic setting. In the present study we focused on uniparental isodisomies (UPIDs). SNP array analyses of 143 pediatric and 38 adult B-cell precursor acute lymphoblastic leukemias and matched remission samples revealed acquired whole chromosome or segmental UPIDs (wUPIDs, sUPIDs) in 32 cases (18%), without any age- or gender-related frequency differences. Acquired sUPIDs were larger than the constitutional ones (mean 35.3 Mb vs. 10.7 Mb; P < 0.0001) and were more often terminally located in the chromosomes (69% vs. 4.5%; P < 0.0001). Chromosomes 3, 5, and 9 were most often involved in acquired wUPIDs, whilst recurrent acquired sUPIDs targeted 6p, 9p, 9q, and 14q. The majority (56%) of sUPID9p was associated with homozygous CDKN2A deletions. In pediatric ALL, all wUPIDs were found in high hyperdiploid (51-67 chromosomes) cases and an extended analysis, also including unmatched diagnostic samples, revealed a higher frequency of wUPID-positivity in higher modal number (56-67 chromosomes) than in lower modal number (51-55 chromosomes) high hyperdiploid cases (34% vs. 11%; P = 0.04), suggesting different underlying mechanisms of formation of these subtypes of high hyperdiploidy. © 2016 Wiley Periodicals, Inc. PMID:26773847

  17. Applying molecular epidemiology in pediatric leukemia.

    PubMed

    Schiffman, Joshua D

    2016-02-01

    Molecular epidemiology is the study of genetic and environmental risk for disease, with much effort centered on cancer. Childhood leukemia occurs in nearly a third of all patients newly diagnosed with pediatric cancer. only a small percentage of these new cases of childhood leukemia are associated with high penetrant hereditary cancer syndromes. Childhood leukemia, especially acute lymphoblastic leukemia, has been associated with a dysregulated immune system due to delayed infectious exposure at a young age. Identical twins with childhood leukemia suggest that acute lymphoblastic leukemia begins in utero and that the concordant presentation is due to a shared preleukemia subclone via placental transfer. Investigation of single nucleotide polymorphisms within candidate genes find that leukemia risk may be attributed to population-based polymorphisms affecting folate metabolism, xenobiotic metabolism, DNA repair, immunity, and B-cell development. More recently, genome-wide association studies for leukemia risk has led investigators to genes associated with B-cell development. When describing leukemia predisposition due to hereditary cancer syndromes, the following 6 categories become apparent on the basis of biology and clinical presentation: (1) genetic instability/DNA repair syndromes, (2) cell cycle/differentiation syndromes, (3) bone marrow failure syndromes, (4) telomere maintenance syndromes, (5) immunodeficiency syndromes, and (6) transcription factor syndromes and pure familial leukemia. understanding the molecular epidemiology of childhood leukemia can affect the treatment and tumor surveillance strategies for these high risk patients and their family members. PMID:25973690

  18. Profiling gene mutations, translocations, and multidrug resistance in pediatric acute lymphoblastic leukemia: a step forward to personalizing medicine.

    PubMed

    Rose-James, Alphy; Shiji, R; Kusumakumary, P; Nair, Manjusha; George, Suraj K; Sreelekha, T T

    2016-09-01

    Precise risk stratification and tailored therapy in acute lymphoblastic leukemia (ALL) can lead to enhanced survival rates among children. Translocations and mutations along with multidrug resistance markers are important factors that determine therapeutic efficacy. Gene mutation profiling of patients at the time of diagnosis can offer accurate clinical decision-making. Multiplex PCR was used to screen for various translocations, mutations, and P-glycoprotein (P-gp) status in pediatric ALL samples. The roles of P-gp were analyzed at the transcriptional and translational levels by using real-time PCR and immunoblotting, respectively. ALL specific cell line Jurkat was used to validate the functional role of P-gp in imparting drug resistance by siRNA knockdown studies. Co-occurrence of translocations and mutations contributes to cellular drug resistance. Presence of any translocation in addition to FLT3/ITD hints for overactive P-gp. Co-occurrence of E2A/PBX and TEL/AML has also been positively correlated with P-gp status. Multiplex PCR provides a rapid and cost effective technique for profiling translocations, mutations, and multidrug resistance status that determines what therapy patients could be administered. Mutation profiling in patients for analyzing genetic lesions along with drug resistance profiling will help improve risk stratification and personalized medicine, thereby increasing the treatment success rates among pediatric patients with leukemia. PMID:27449773

  19. Elevated common acute lymphoblastic leukemia antigen expression in pediatric immune thrombocytopenic purpura.

    PubMed

    Cornelius, A S; Campbell, D; Schwartz, E; Poncz, M

    1991-01-01

    Bone marrow examination is often performed in thrombocytopenic children to distinguish immune thrombocytopenic purpura (ITP) from acute leukemia. We describe a patient with thrombocytopenia and 50% common acute lymphoblastic leukemia antigen (CALLA) positivity in his marrow who was subsequently shown to have ITP. CALLA (CD10) is a surface antigen found in early B-lymphocytes and is elevated in most cases of childhood acute lymphoblastic leukemia (ALL). This case prompted us to prospectively study the frequency of immature lymphocyte populations in children with ITP. Fourteen patients with acute ITP and five with other conditions were studied. The two groups were comparable with respect to age: ITP mean, 4.3 (range 0.3-15.5) years; control mean, 5.8 (0.6-13.8) years. The ITP group had a significantly higher percentage of CD10 positive bone marrow lymphocytes (p = 0.007). Five of the 10 patients younger than 4 years of age in the ITP group had CD10 levels of greater than 30%, which is in the leukemic range, whereas none of the control patients had a CD10 levels of greater than 17% (p = 0.003). There was good correlation between CD10 positivity and B4 positivity indicating that both of these markers arise from the same population of immature B-lymphocytes. None of the ITP patients who were older than 4 years had a CD10 level of greater than 30%. We conclude that it is common to have an increase in the proportion of immature lymphocytes in the marrow of young children with ITP. The cause of this increase in CD10 positive cells is unknown.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1827572

  20. Allogeneic Transplantation for Patients With Acute Leukemia or Chronic Myelogenous Leukemia (CML)

    ClinicalTrials.gov

    2016-06-14

    Leukemia, Lymphocytic, Acute; Leukemia; Leukemia Acute Promyelocytic Leukemia (APL); Leukemia Acute Lymphoid Leukemia (ALL); Leukemia Chronic Myelogenous Leukemia (CML); Leukemia Acute Myeloid Leukemia (AML); Leukemia Chronic Lymphocytic Leukemia (CLL)

  1. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  2. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia.

    PubMed

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). 'Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  3. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia

    PubMed Central

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). ‘Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  4. Detailed gene dose analysis reveals recurrent focal gene deletions in pediatric B-cell precursor acute lymphoblastic leukemia.

    PubMed

    Ivanov Öfverholm, Ingegerd; Tran, Anh Nhi; Olsson, Linda; Zachariadis, Vasilios; Heyman, Mats; Rudd, Eva; Syk Lundberg, Elisabeth; Nordenskjöld, Magnus; Johansson, Bertil; Nordgren, Ann; Barbany, Gisela

    2016-09-01

    To identify copy number alterations (CNAs) in pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL), array comparative genomic hybridization was performed on 50 cases; detected CNAs were validated in a cohort of 191 cases analyzed by single nucleotide polymorphism arrays. Apart from CNAs involving leukemia-associated genes, recurrent deletions targeting genes not previously implicated in BCP ALL, e.g. INIP, IRF1 and PDE4B, were identified. Deletions of the DNA repair gene INIP were exclusively found in cases with t(12;21), and deletions of SH2B3 were associated with intrachromosomal amplification of chromosome 21 (p < 0.001). A majority of BTLA deletions (7/11; 64%) affected samples with gain of 21q chromosome material, suggesting that BTLA deletions are associated with both germline and somatic gain of chromosome 21. In cases without known risk-associated cytogenetic markers, CNAs associated with adverse prognosis were identified in 50% (10/20), indicating that a majority of these cases could be assigned to distinct genetic subtypes. PMID:27090575

  5. Low expression of Toll-like receptors in peripheral blood mononuclear cells of pediatric patients with acute lymphoblastic leukemia.

    PubMed

    Sánchez-Cuaxospa, María; Contreras-Ramos, Alejandra; Pérez-Figueroa, Erandi; Medina-Sansón, Aurora; Jiménez-Hernández, Elva; Torres-Nava, José R; Rojas-Castillo, Emilio; Maldonado-Bernal, Carmen

    2016-08-01

    Cancer is the second most common cause of death among children aged 1-14 years. Leukemia accounts for one-third of all childhood cancers, 78% of which is acute lymphoblastic leukemia (ALL). The development of cancer has been associated with malignant cells that express low levels of immunogenic molecules, which facilitates their escape from the antineoplastic immune response. It is thought that it may be possible to rescue the antineoplastic immune response through the activation of recognition receptors, such as Toll-like receptors (TLRs), which activate the innate immune system. TLRs are type I membrane glycoproteins expressed mainly in immune system cells such as monocytes, neutrophils, macrophages, dendritic cells, T, B and natural killer cells. The aim of the present study was to evaluate the expression of TLR1, TLR3, TLR4, TLR7 and TLR9 in peripheral blood mononuclear cells (PBMCs) in patients with ALL and prior to any treatment. PBMCs were obtained from 50 pediatric patients diagnosed with ALL and from 20 children attending the ophthalmology and orthopedics services. The mean fluorescence intensity was obtained by analysis of immunofluorescence. We found lower expression levels of TLR1, TLR3, TLR4, TLR7 and TLR9 in PBMCs from patients with ALL compared with those from control patients. We also observed that the PBMCs from patients with Pre-B and B ALL had lower TLR4 expression than controls and patients with Pro-B, Pre-B, B and T ALL had lower TLR7 expression than controls. The present study is the first to demonstrate reduced expression of TLRs in PBMCs from pediatric patients with ALL. This finding is of great relevance and may partly explain the reduction in the antineoplastic immune response in patients with ALL. PMID:27277333

  6. Clinical Utility of Array Comparative Genomic Hybridization for Detection of Chromosomal Abnormalities in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Rabin, Karen R.; Man, Tsz-Kwong; Yu, Alexander; Folsom, Matthew R.; Zhao, Yi-Jue; Rao, Pulivarthi H.; Plon, Sharon E.; Naeem, Rizwan C.

    2014-01-01

    Background Accurate detection of recurrent chromosomal abnormalities is critical to assign patients to risk-based therapeutic regimens for pediatric acute lymphoblastic leukemia (ALL). Procedure We investigated the utility of array comparative genomic hybridization (aCGH) for detection of chromosomal abnormalities compared to standard clinical evaluation with karyotype and fluorescent in-situ hybridization (FISH). Fifty pediatric ALL diagnostic bone marrows were analyzed by bacterial artificial chromosome (BAC) array, and findings compared to standard clinical evaluation. Results Sensitivity of aCGH was 79% to detect karyotypic findings other than balanced translocations, which cannot be detected by aCGH because they involve no copy number change. aCGH also missed abnormalities occurring in subclones constituting less than 25% of cells. aCGH detected 44 additional abnormalities undetected or misidentified by karyotype, 21 subsequently validated by FISH, including abnormalities in 4 of 10 cases with uninformative cytogenetics. aCGH detected concurrent terminal deletions of both 9p and 20q in three cases, in two of which the 20q deletion was undetected by karyotype. A narrow region of loss at 7p21 was detected in two cases. Conclusions An array with increased BAC density over regions important in ALL, combined with PCR for fusion products of balanced translocations, could minimize labor- and time-intensive cytogenetic assays and provide key prognostic information in the approximately 35% of cases with uninformative cytogenetics. PMID:18253961

  7. Effective VCR/DEX pulse maintenance therapy in the KYCCSG ALL-02 protocol for pediatric acute lymphoblastic leukemia.

    PubMed

    Okamoto, Yasuhiro; Koga, Yuki; Inagaki, Jiro; Ozono, Shuichi; Ueda, Koichiro; Shimoura, Maiko; Itonaga, Nobuyoshi; Shinkoda, Yuichi; Moritake, Hiroshi; Nomura, Yuko; Nakayama, Hideki; Hotta, Noriko; Hidaka, Yasufumi; Shimonodan, Hidemi; Suga, Naohiro; Tanabe, Takayuki; Nakashima, Kentaro; Fukano, Reiji; Kawano, Yoshifumi

    2016-02-01

    In a previous study of childhood acute lymphoblastic leukemia (ALL) by the Kyushu-Yamaguchi Children's Cancer Study Group, ALL-96, we achieved a 72.1 % 5-year event-free survival (EFS) and an 84.8 % 5-year overall survival (OS). In a subsequent study, ALL-02, we adopted a vincristine dexamethasone (VCR/DEX) pulse regimen as maintenance therapy in the context of the ALL-96 study using the same risk classification and treatment schedule. A total of 156 pediatric cases of ALL were treated with ALL-02. All of the patients were classified as standard-risk or high-risk. Risk stratification was based on white cell counts, immunophenotype, the presence of central nervous system (CNS) disease at diagnosis, organomegaly, and early treatment response (day 14 bone marrow status). The 7-year EFS and OS rates were 77.7 % (95 % CI 70.6-84.8 %) and 89.5 % (95 % CI 84.6-94.4 %), respectively. CNS 3 status [hazard ratio (HR) = 5.0, p = 0.009] and high white blood cell count at diagnosis (HR = 2.6, p = 0.047) were risk factors for poor EFS in multivariate analysis. Our strategies to categorize patients into two risk groups, and to treat with a VCR/DEX pulse were feasible and reasonably effective treatments for pediatric ALL. PMID:26586463

  8. NPM1, FLT3, and c-KIT mutations in pediatric acute myeloid leukemia in Russian population.

    PubMed

    Yatsenko, Yuliya; Kalennik, Olga; Maschan, Mikhail; Kalinina, Irina; Maschan, Alexey; Nasedkina, Tatyana

    2013-04-01

    We evaluated frequencies of NPM1, FLT3, c-KIT mutations in childhood acute myeloid leukemia (AML) in Russia and assessed prognostic relevance of the mutations. RNA and DNA were extracted from bone marrow samples of 186 (106 male and 80 female) pediatric patients younger than 17 year with de novo AML. Mutations and chromosomal rearrangements were detected by sequencing of a corresponding gene. NPM1 mutations were found in 5.2%, FLT3 mutations in 12.1%, c-KIT mutations in 3.7% of the patients. NPM1 mutations were associated with the absence of chromosomal aberrations (P=0.007) and FLT3/ITD (P=0.018). New data on incidence of c-KIT mutations in various AML subtypes as well as new variations of c-KIT mutations in the exon 8 are presented. The results are compared to previously published studies on NPM1, FLT3, c-KIT mutations in various populations. No statistically significant differences in survival rates between groups with or without of FLT3, NPM1, c-KIT mutations were found (P>0.05). Meanwhile, 4-year overall survival rates were higher in patients having NPM1 mutations comparing with NPM1/WT patients (100% vs. 50%) and in patients having FLT3 mutations comparing with FLT3/WT patients (70% vs. 50%). The data presented contribute to knowledge on incidence and prognostic significance of the mutations in pediatric AML. PMID:23511494

  9. Phase 1 study of clofarabine in pediatric patients with relapsed/refractory acute lymphoblastic leukemia in Japan.

    PubMed

    Koh, Katsuyoshi; Ogawa, Chitose; Okamoto, Yasuhiro; Kudo, Kazuko; Inagaki, Jiro; Morimoto, Tsuyoshi; Mizukami, Hideya; Ecstein-Fraisse, Evelyne; Kikuta, Atsushi

    2016-08-01

    A phase 1 study was conducted to evaluate the safety, pharmacokinetics (PK), efficacy and pharmacogenetic characteristics of clofarabine in seven Japanese pediatric patients with relapsed/refractory acute lymphoblastic leukemia (ALL). Patients in Cohort 1 received clofarabine 30 mg/m(2)/day for 5 days, followed by 52 mg/m(2)/day for 5 days in subsequent cycles. Cohort 2 patients were consistently treated with 52 mg/m(2)/day for 5 days. No more than six cycles were performed. Every patient had at least one ≥Grade 3 adverse event (AE). AEs (≥Grade 3) related to clofarabine were anaemia, neutropenia, febrile neutropenia, thrombocytopenia, alanine aminotransferase increased, aspartate aminotransferase increased, haemoglobin decreased, and platelet (PLT) count decreased. C max and AUC of clofarabine increased in a dose-dependent fashion, but its elimination half-life (T 1/2) did not appear to be dependent on dose or duration of treatment. Clofarabine at 52 mg/m(2)/day shows similarly tolerable safety and PK profiles compared to those in previous studies. No complete remission (CR), CR without PLT recovery, or partial remission was observed. Since clofarabine is already used as a key drug for relapsed/refractory ALL patients in many countries, the efficacy of clofarabine in Japanese pediatric patients should be evaluated in larger study including more patients, such as by post-marketing surveillance. PMID:27086352

  10. A Possible Role for WNT5A Hypermethylation in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Hatırnaz Ng, Özden; Fırtına, Sinem; Can, İsmail; Karakaş, Zeynep; Ağaoğlu, Leyla; Doğru, Ömer; Celkan, Tiraje; Akçay, Arzu; Yıldırmak, Yıldız; Timur, Çetin; Özbek, Uğur; Sayitoğlu, Müge

    2015-01-01

    Objective: WNT5A is one of the most studied noncanonical WNT ligands and is shown to be deregulated in different tumor types. Our aim was to clarify whether hypermethylation might be the cause of low WNT5A mRNA levels and whether we could restore this downregulation by reversing the event. Materials and Methods: The expression of WNT5A mRNA was studied in a large acute lymphoblastic leukemia (ALL) patient group (n=86) by quantitative real-time PCR. The methylation status was detected by methylation-specific PCR (MSPCR) and bisulphate sequencing. In order to determine whether methylation has a direct effect on WNT5A expression, disease-representative cell lines were treated by 5’-aza-20-deoxycytidine. Results: Here we designed a validation experiment of the WNT5A gene, which was previously examined and found to be differentially expressed by microarray study in 31 T-cell ALL patients. The expression levels were confirmed by quantitative real-time PCR and the expression levels were significantly lower in T-cell ALL patients than in control thymic subsets (p=0.007). MSPCR revealed that 86% of the patients were hypermethylated in the WNT5A promoter region. Jurkat and RPMI cell lines were treated with 5’-aza-20-deoxycytidine and WNT5A mRNA expression was restored after treatment. Conclusion: According to our results, WNT5A hypermethylation does occur in ALL patients and it has a direct effect on mRNA expression. Our findings show that epigenetic changes of WNT signaling can play a role in ALL pathogenesis and reversing methylation might be useful as a possible treatment of leukemia. PMID:26316480

  11. Data on affected cancer-related genes in pediatric t(12;21)-positive acute lymphoblastic leukemia patients harboring unbalanced der(6)t(X;6) translocations.

    PubMed

    Kjeldsen, Eigil

    2016-09-01

    The t(12;21)(p13;q22), leading to ETV6/RUNX1 fusion, is of importance for leukemogenesis in acute lymphoblastic leukemia but is not sufficient for the leukemic transformation. Acquired secondary chromosomal aberrations are necessary for overt leukemia but their complete nature and genes involved are still elusive. In our recent publication, "Oligo-based aCGH analysis reveals cryptic unbalanced der(6)t(X;6) in pediatric t(12;21)-positive acute lymphoblastic leukemia", we identified acquired common concurrent regions with 6q deletion and Xq duplication E. Kjeldsen (2016) [1]. The present article provides data on genes that are associated with hematological malignancy and other cancers located in these common regions of chromosomal aberrations. PMID:27508240

  12. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia.

    PubMed

    Almamun, Md; Levinson, Benjamin T; van Swaay, Annette C; Johnson, Nathan T; McKay, Stephanie D; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery assay followed by next-generation sequencing. More than 25,000 differentially methylated regions (DMR) were observed in ALL patients with ∼ 90% present within intronic or intergenic regions. To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed and integrated with methylation data. Aberrant promoter methylation was associated with the altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant methylation in these regions was associated with the altered expression of neighboring genes involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL. PMID:26308964

  13. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia.

    PubMed

    Moorman, Anthony V; Enshaei, Amir; Schwab, Claire; Wade, Rachel; Chilton, Lucy; Elliott, Alannah; Richardson, Stacey; Hancock, Jeremy; Kinsey, Sally E; Mitchell, Christopher D; Goulden, Nicholas; Vora, Ajay; Harrison, Christine J

    2014-08-28

    Recent genomic studies have provided a refined genetic map of acute lymphoblastic leukemia (ALL) and increased the number of potential prognostic markers. Therefore, we integrated copy-number alteration data from the 8 most commonly deleted genes, subordinately, with established chromosomal abnormalities to derive a 2-tier genetic classification. The classification was developed using 809 ALL97/99 patients and validated using 742 United Kingdom (UK)ALL2003 patients. Good-risk (GR) genetic features included ETV6-RUNX1, high hyperdiploidy, normal copy-number status for all 8 genes, isolated deletions affecting ETV6/PAX5/BTG1, and ETV6 deletions with a single additional deletion of BTG1/PAX5/CDKN2A/B. All other genetic features were classified as poor risk (PR). Three-quarters of UKALL2003 patients had a GR genetic profile and a significantly improved event-free survival (EFS) (94%) compared with patients with a PR genetic profile (79%). This difference was driven by a lower relapse rate (4% vs 17%), was seen across all patient subgroups, and was independent of other risk factors. Even genetic GR patients with minimal residual disease (>0.01%) at day 29 had an EFS in excess of 90%. In conclusion, the integration of genomic and cytogenetic data defines 2 subgroups with distinct responses to treatment and identifies a large subset of children suitable for treatment deintensification. PMID:24957142

  14. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia

    PubMed Central

    Almamun, Md; Levinson, Benjamin T; van Swaay, Annette C; Johnson, Nathan T; McKay, Stephanie D; Arthur, Gerald L; Davis, J Wade; Taylor, Kristen H

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery assay followed by next-generation sequencing. More than 25,000 differentially methylated regions (DMR) were observed in ALL patients with ∼90% present within intronic or intergenic regions. To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed and integrated with methylation data. Aberrant promoter methylation was associated with the altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant methylation in these regions was associated with the altered expression of neighboring genes involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL. PMID:26308964

  15. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts

    PubMed Central

    Kang, Min H.; Liem, Natalia L. M.; Carol, Hernan; Boehm, Ingrid; Groepper, Daniel; Reynolds, C. Patrick; Stewart, Clinton F.; Lock, Richard B.

    2012-01-01

    Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL. PMID:22479469

  17. Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Kang, Min-Gu; Kim, Yu-Na; Lee, Jun Hyung; Szardenings, Michael; Baek, Hee-Jo; Kook, Hoon

    2016-01-01

    Background To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. Methods Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. Results mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. Conclusions The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML. PMID:26709256

  18. Targeting the Wee1 Kinase for Treatment of Pediatric Down Syndrome Acute Myeloid Leukemia

    PubMed Central

    Caldwell, J. Timothy; Edwards, Holly; Buck, Steven A.; Ge, Yubin; Taub, Jeffrey W.

    2014-01-01

    Background Most Down syndrome children with acute myeloid leukemia (DS-AML) have an overall excellent prognosis, however, patients who suffer an induction failure or relapse, have an extremely poor prognosis. Hence, new therapies need to be developed for this subgroup of DS-AML patients. One new therapeutic approach is preventing cell cycle checkpoint activation by inhibiting the upstream kinase wee1 with the first-in-class inhibitor MK-1775 in combination with the standard genotoxic agent cytarabine (AraC). Procedure Using the clinically relevant DS-AML cell lines CMK and CMY, as well as ex vivo primary DS-AML patient samples, the ability of MK-1775 to enhance the cytotoxicity of AraC was investigated with MTT assays. The mechanism by which MK-1775 enhanced AraC cytotoxicity was investigated in the cell lines using Western blots to probe CDK1 and H2AX phosphorylation and flow cytometry to determine apoptosis, cell cycle arrest, DNA damage, and aberrant mitotic entry. Results MK-1775 alone had modest single-agent activity, however, MK-1775 was able to synergize with AraC in causing proliferation arrest in both cell lines and primary patient samples, and enhance AraC-induced apoptosis. MK-1775 was able to decrease inhibitory CDK1(Y15) phosphorylation at the relatively low concentration of 100 nM after only 4 hours. Furthermore, it was able to enhance DNA damage induced by AraC and partially abrogate cell cycle arrest. Importantly, the DNA damage enhancement appeared in early S-phase. Conclusions MK-1775 is able to enhance the cytotoxicity of AraC in DS-AML cells and presents a promising new treatment approach for DS-AML. PMID:24962331

  19. Genomic Profiling of Pediatric Acute Myeloid Leukemia Reveals a Changing Mutational Landscape from Disease Diagnosis to Relapse.

    PubMed

    Farrar, Jason E; Schuback, Heather L; Ries, Rhonda E; Wai, Daniel; Hampton, Oliver A; Trevino, Lisa R; Alonzo, Todd A; Guidry Auvil, Jaime M; Davidsen, Tanja M; Gesuwan, Patee; Hermida, Leandro; Muzny, Donna M; Dewal, Ninad; Rustagi, Navin; Lewis, Lora R; Gamis, Alan S; Wheeler, David A; Smith, Malcolm A; Gerhard, Daniela S; Meshinchi, Soheil

    2016-04-15

    The genomic and clinical information used to develop and implement therapeutic approaches for acute myelogenous leukemia (AML) originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative used whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML. One hundred forty-five somatic variants at diagnosis (median 6 mutations/patient) and 149 variants at relapse (median 6.5 mutations) were identified and verified by orthogonal methodologies. Recurrent somatic variants [in (greater than or equal to) 2 patients] were identified for 10 genes (FLT3, NRAS, PTPN11, WT1, TET2, DHX15, DHX30, KIT, ETV6, KRAS), with variable persistence at relapse. The variant allele fraction (VAF), used to measure the prevalence of somatic mutations, varied widely at diagnosis. Mutations that persisted from diagnosis to relapse had a significantly higher diagnostic VAF compared with those that resolved at relapse (median VAF 0.43 vs. 0.24, P < 0.001). Further analysis revealed that 90% of the diagnostic variants with VAF >0.4 persisted to relapse compared with 28% with VAF <0.2 (P < 0.001). This study demonstrates significant variability in the mutational profile and clonal evolution of pediatric AML from diagnosis to relapse. Furthermore, mutations with high VAF at diagnosis, representing variants shared across a leukemic clonal structure, may constrain the genomic landscape at relapse and help to define key pathways for therapeutic targeting. Cancer Res; 76(8); 2197-205. ©2016 AACR. PMID:26941285

  20. miR expression profiling at diagnosis predicts relapse in pediatric precursor B-cell acute lymphoblastic leukemia.

    PubMed

    Avigad, Smadar; Verly, Iedan R N; Lebel, Asaf; Kordi, Oshrit; Shichrur, Keren; Ohali, Anat; Hameiri-Grossman, Michal; Kaspers, Gertjan J L; Cloos, Jacqueline; Fronkova, Eva; Trka, Jan; Luria, Drorit; Kodman, Yona; Mirsky, Hadar; Gaash, Dafna; Jeison, Marta; Avrahami, Galia; Elitzur, Sarah; Gilad, Gil; Stark, Batia; Yaniv, Isaac

    2016-04-01

    Our aim was to identify miRNAs that can predict risk of relapse in pediatric patients with acute lymphoblastic leukemia (ALL). Following high-throughput miRNA expression analysis (48 samples), five miRs were selected for further confirmation performed by real time quantitative PCR on a cohort of precursor B-cell ALL patients (n = 138). The results were correlated with clinical parameters and outcome. Low expression of miR-151-5p, and miR-451, and high expression of miR-1290 or a combination of all three predicted inferior relapse free survival (P = 0.007, 0.042, 0.025, and <0.0001, respectively). Cox regression analysis identified aberrant expression of the three miRs as an independent prognostic marker with a 10.5-fold increased risk of relapse (P = 0.041) in PCR-MRD non-high risk patients. Furthermore, following exclusion of patients harboring IKZF1 deletion, the aberrant expression of all three miRs could identify patients with a 24.5-fold increased risk to relapse (P < 0.0001). The prognostic relevance of the three miRNAs was evaluated in a non-BFM treated precursor B-cell ALL cohort (n = 33). A significant correlation between an aberrant expression of at least one of the three miRs and poor outcome was maintained (P < 0.0001). Our results identify an expression profile of miR-151-5p, miR-451, and miR-1290 as a novel biomarker for outcome in pediatric precursor B-cell ALL patients, regardless of treatment protocol. The use of these markers may lead to improved risk stratification at diagnosis and allow early therapeutic interventions in an attempt to improve survival of high risk patients. PMID:26684414

  1. Pharmacogenetic Analysis of Pediatric Patients with Acute Lymphoblastic Leukemia: A Possible Association between Survival Rate and ITPA Polymorphism

    PubMed Central

    Kim, Hyery; Kang, Hyoung Jin; Kim, Hyo Jeong; Jang, Mi Kyung; Kim, Nam Hee; Oh, Yongtaek; Han, Byoung-Don; Choi, Ji-Yeob; Kim, Chul Woo; Lee, Ji Won; Park, Kyung Duk; Shin, Hee Young; Ahn, Hyo Seop

    2012-01-01

    Genetic polymorphisms are important factors in the effects and toxicity of chemotherapeutics. To analyze the pharmacogenetic and ethnic differences in chemotherapeutics, major genes implicated in the treatment of acute lymphoblastic leukemia (ALL) were analyzed. Eighteen loci of 16 genes in 100 patients with ALL were analyzed. The distribution of variant alleles were CYP3A4*1B (0%), CYP3A5*3 (0%), GSTM1 (21%), GSTP1 (21%), GSTT1 (16%), MDR1 exon 21 (77%), MDR1 exon 26 (61%), MTHFR 677 (63%), MTHFR 1298 (29%), NR3C1 1088 (0%), RFC1 80 (68%), TPMT combined genotype (7%), VDR intron 8 (11%), VDR FokI (83%), TYMS enhancer repeat (22%) and ITPA 94 (30%). The frequencies of single nucleotide polymorphisms (SNPs) of 10 loci were statistically different from those in Western Caucasians. Dose percents (actual/planned dose) or toxicity of mercaptopurine and methotrexate were not related to any SNPs. Event free survival (EFS) rate was lower in ITPA variants, and ITPA 94 AC/AA variant genotypes were the only independent risk factor for lower EFS in multivariate analysis, which was a different pharmacogenetic implication from Western studies. This study is the first pharmacogenetic study in Korean pediatric ALL. Our result suggests that there are other possible pharmacogenetic factors besides TPMT or ITPA polymorphisms which influence the metabolism of mercaptopurine in Asian populations. PMID:23029095

  2. Outcome of refractory and relapsed acute myeloid leukemia in children treated during 2005–2011 – experience of the Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG)

    PubMed Central

    Wachowiak, Jacek; Skalska-Sadowska, Jolanta; Wachowiak, Jacek; Zając-Spychała, Olga; Niewiadomska-Wojnałowicz, Izabela; Januszkiewicz-Lewandowska, Danuta; Balwierz, Walentyna; Pawińska-Wąsikowska, Katarzyna; Goździk, Jolanta; Chybicka, Alicja; Potocka, Kinga; Krawczuk-Rybak, Maryna; Muszyńska-Rosłan, Katarzyna; Adamkiewicz-Drożyńska, Elżbieta; Maciejka-Kapuścińska, Lucyna; Karolczyk, Grażyna; Kowalczyk, Jerzy; Wójcik, Beata; Badowska, Wanda; Urasiński, Tomasz; Ociepa, Tomasz; Matysiak, Michał; Sikorska-Fic, Barbara; Szczepański, Tomasz; Tomaszewska, Renata; Sobol, Grażyna; Wieczorek, Maria; Karpińska-Derda, Irena

    2014-01-01

    Aim of the study Recent studies showed relatively better outcome for children with refractory (refAML) and relapsed acute myeloid leukemia (relAML). Treatment of these patients has not been unified within Polish Pediatric Leukemia/Lymphoma Study Group (PPLLSG) so far. The goal of this study is to analyze the results of this therapy performed between 2005–2011. Material and methods The outcome data of 16 patients with refAML and 62 with relAML were analyzed retrospectively. Reinduction was usually based on idarubicine, fludarabine and cytarabine with allogenic hematopoietic stem cell transplant (alloHSCT) in 5 refAML and 30 relAML children. Results Seventy seven percent relAML patients entered second complete remission (CR2). Five-year OS and disease-free survival (DFS) were estimated at 16% and 30%. The outcome for patients after alloHSCT in CR2 (63%) was better than that of those not transplanted (36%) with 5-year OS of 34% vs. 2-year of 7% and 5-year DFS of 40% vs. 12.5%. Second complete remission achievement and alloHSCT were the most significant predictors of better prognosis (p = 0.000 and p = 0.024). The outcome of refAML children was significantly worse than relAML with first remission (CR1) rate of 33%, OS and DFS of 25% at 3 years and 53% at 2 years, respectively. All survivors of refAML were treated with alloHSCT after CR1. Conclusions The uniform reinduction regimen of the documented efficacy and subsequent alloHSCT in remission is needed to improve the outcome for ref/relAML children treated within PPLLSG. The focus should be on the future risk-directed both front and second line AML therapy. PMID:24876821

  3. Reasons for Non-Completion of Health Related Quality of Life Evaluations in Pediatric Acute Myeloid Leukemia: A Report from the Children’s Oncology Group

    PubMed Central

    Johnston, Donna L.; Nagarajan, Rajaram; Caparas, Mae; Schulte, Fiona; Cullen, Patricia; Aplenc, Richard; Sung, Lillian

    2013-01-01

    Background Health related quality of life (HRQL) assessments during therapy for pediatric cancer are important. The objective of this study was to describe reasons for failure to provide HRQL assessments during a pediatric acute myeloid leukemia (AML) clinical trial. Methods We focused on HRQL assessments embedded in a multicenter pediatric AML clinical trial. The PedsQL 4.0 Generic Core Scales, PedsQL 3.0 Acute Cancer Module, PedsQL Multidimensional Fatigue Scale, and Pediatric Inventory for Parents were obtained from parent/guardian respondents at a maximum of six time points. Children provided self-report optionally. A central study coordinator contacted sites with delinquent HRQL data. Reasons for failure to submit the HRQL assessments were evaluated by three pediatric oncologists and themes were generated using thematic analysis. Results There were 906 completed and 1091 potential assessments included in this analysis (83%). The median age of included children was 12.9 years (range 2.0 to 18.9). The five themes for non-completion were: patient too ill; passive or active refusal by respondent; developmental delay; logistical challenges; and poor knowledge of study processes from both the respondent and institutional perspective. Conclusions We identified reasons for non-completion of HRQL assessments during active therapy. This information will facilitate recommendations to improve study processes and future HRQL study designs to maximize response rates. PMID:24040278

  4. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner

    PubMed Central

    2013-01-01

    The current study evaluated the differential expression detected in the proteomic profiles of low risk- and high risk- ALL pediatric patients to characterize candidate biomarkers related to diagnosis, prognosis and patient targeted therapy. Bone marrow and peripheral blood plasma and cell lysates samples were obtained from pediatric patients with low- (LR) and high-risk (HR) ALL at diagnosis. As controls, non-leukemic pediatric patients were studied. Cytogenetic analysis was carried out by G- banding and interphase fluorescent in situ hybridization. Differential proteomic analysis was performed using two-dimensional gel electrophoresis and protein identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The differential expression of certain proteins was confirmed by Western blot analysis. The obtained data revealed that CLUS, CERU, APOE, APOA4, APOA1, GELS, S10A9, AMBP, ACTB, CATA and AFAM proteins play a significant role in leukemia prognosis, potentially serving as distinctive biomarkers for leukemia aggressiveness, or as suppressor proteins in HR-ALL cases. In addition, vitronectin and plasminogen probably contributed to leukemogenesis, whilst bicaudal D-related protein 1 could afford a significant biomarker for pediatric ALL therapeutics. PMID:23849470

  5. A retrospective analysis of treatment-related hospitalization costs of pediatric, adolescent, and young adult acute lymphoblastic leukemia.

    PubMed

    Kaul, Sapna; Korgenski, Ernest Kent; Ying, Jian; Ng, Christi F; Smits-Seemann, Rochelle R; Nelson, Richard E; Andrews, Seth; Raetz, Elizabeth; Fluchel, Mark; Lemons, Richard; Kirchhoff, Anne C

    2016-02-01

    This retrospective study examined the longitudinal hospital outcomes (costs adjusted for inflation, hospital days, and admissions) associated with the treatment of pediatric, adolescent, and young adult acute lymphoblastic leukemia (ALL). Patients between one and 26 years of age with newly diagnosed ALL, who were treated at Primary Children's Hospital (PCH) in Salt Lake City, Utah were included. Treatment and hospitalization data were retrieved from system-wide cancer registry and enterprise data warehouse. PCH is a member of the Children's Oncology Group (COG) and patients were treated on, or according to, active COG protocols. Treatment-related hospital costs of ALL were examined by computing the average annual growth rates (AAGR). Longitudinal regressions identified patient characteristics associated with costs. A total of 505 patients (46.9% female) were included. The majority of patients had B-cell lineage ALL, 6.7% had T-ALL, and the median age at diagnosis was 4 years. Per-patient, first-year ALL hospitalization costs at PCH rose from $24,197 in 1998 to $37,924 in 2012. The AAGRs were 6.1, 13.0, and 7.6% for total, pharmacy, and room and care costs, respectively. Average days (AAGR = 5.2%) and admissions (AAGR = 3.8%) also demonstrated an increasing trend. High-risk patients had 47% higher costs per 6-month period in the first 5 years from diagnosis than standard-risk patients (P < 0.001). Similarly, relapsed ALL and stem cell transplantations were associated with significantly higher costs than nonrelapsed and no transplantations, respectively (P < 0.001). Increasing treatment-related costs of ALL demonstrate an area for further investigation. Value-based interventions such as identifying low-risk fever and neutropenia patients and managing them in outpatient settings should be evaluated for reducing the hospital burden of ALL. PMID:26714675

  6. 5-Azacitidine Monotherapy Followed by Related Haploidentical Hematopoietic Stem Cell Transplantation Achieves Durable Remission in a Pediatric Patient With Acute Undifferentiated Leukemia Refractory to High-Dose Chemotherapy.

    PubMed

    Polishchuk, Veronika; Khazal, Sajad; Berulava, Giorgi; Roth, Michael; Mahadeo, Kris M

    2016-06-01

    Patients with acute leukemias of undifferentiated lineage (AUL) generally have guarded prognosis. Here, we describe the first reported pediatric patient with AUL refractory to high-dose chemotherapy who achieved clinical remission with ALL maintenance therapy and 5-azacitidine. His induction remission was followed by consolidation with reduced toxicity haploidentical hematopoietic stem cell transplant (HSCT). At 9 months post-HSCT, the patient is alive and in remission. This combination therapy of remission induction with ALL maintenance therapy and 5-azacitidine and consolidation with reduced toxicity haploidentical HSCT is novel and promising for patients who lack conventional donors and are not candidates for myeloablative therapy. PMID:26914221

  7. Azacitidine and Sorafenib Therapy in a Pediatric Patient With Refractory Acute Myeloid Leukemia With Monosomy 7 and Somatic PTPN11 Mutation.

    PubMed

    Dahl, Nathan A; Michaels, Samantha T; McMasters, Richard L; Chandra, Sharat; O'Brien, Maureen M

    2016-03-01

    Monosomy 7 is a well-documented cytogenetic aberration in pediatric acute myeloid leukemia (AML) and may occur in combinations with molecular abnormalities including PTPN11 mutation. PTPN11 mutations contribute to leukemogenesis through upregulation of Ras pathway signaling. We present the case of a 3-year-old female with AML with monosomy 7 and somatic PTPN11 mutation who was refractory to conventional AML chemotherapy but responded to a novel regimen of azacitidine and sorafenib followed by stem cell transplantation. Combination therapy with azacitidine and sorafenib may be an effective therapeutic strategy for patients with AML with Ras pathway abnormalities. PMID:26485542

  8. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  9. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse post induction therapy in preclinical models of pediatric acute lymphoblastic leukemia

    PubMed Central

    Carol, Hernan; Szymanska, Barbara; Evans, Kathryn; Boehm, Ingrid; Houghton, Peter J; Smith, Malcolm A; Lock, Richard B

    2013-01-01

    Purpose Relapsed or refractory pediatric acute lymphoblastic leukemia (ALL) remains a major cause of death from cancer in children. In this study we evaluated the efficacy of SAR3419, an antibody-drug conjugate of the maytansinoid DM4 and a humanized anti-CD19 antibody, against B cell precursor (BCP)-ALL and infant mixed lineage leukemia (MLL) xenografts. Experimental Design ALL xenografts were established as systemic disease in immune-deficient (NOD/SCID) mice from direct patient explants. SAR3419 was administered as a single agent and in combination with an induction-type regimen of vincristine/dexamethasone/L-asparaginase (VXL). Leukemia progression and response to treatment were assessed in real-time, and responses were evaluated using strict criteria modeled after the clinical setting. Results SAR3419 significantly delayed the progression of four out of four CD19+ BCP-ALL and three out of three MLL-ALL xenografts, induced objective responses in all but one xenograft, but was ineffective against T-lineage ALL xenografts. Relative surface CD19 expression across the xenograft panel significantly correlated with leukemia progression delay and objective response measure scores. SAR3419 also exerted significant efficacy against chemoresistant BCP-ALL xenografts over a large (10-fold) dose range, and significantly enhanced VXL-induced leukemia progression delay in two highly chemoresistant xenografts by up to 82 days. When administered as protracted therapy following remission induction with VXL, SAR3419 prevented disease recurrence into hematolymphoid and other major organs with the notable exception of central nervous system involvement. Conclusion These results suggest that incorporation of SAR3419 into remission induction protocols may improve the outcome for high-risk pediatric and adult CD19+ ALL. PMID:23426279

  10. Associations between genetic variants in folate and drug metabolizing pathways and relapse risk in pediatric acute lymphoid leukemia on CCG-1952

    PubMed Central

    Vujkovic, Marijana; Kershenbaum, Aaron; Wray, Lisa; McWilliams, Thomas; Cannon, Shannon; Devidas, Meenakshi; Stork, Linda; Aplenc, Richard

    2015-01-01

    Genetic variation in drug detoxification pathways may influence outcomes in pediatric acute lymphoblastic leukemia (ALL). We evaluated relapse risk and 24 variants in 17 genes in 714 patients in CCG-1961. Three TPMT and 1 MTR variant were associated with increased risks of relapse (rs4712327, OR 3.3, 95%CI 1.2–8.6; rs2842947, OR 2.7, 95%CI 1.1–6.8; rs2842935, OR 2.5, 95%CI 1.1–5.0; rs10925235, OR 4.9, 95%CI 1.1–25.1). One variant in SLC19A1 showed a protective effect (rs4819128, OR 0.5, 95%CI 0.3–0.9). Our study provides data that relapse risk in pediatric ALL is associated with germline variations in TPMT, MTR and SLC19A1. PMID:26605150

  11. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePlus

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  12. Impaired long-term expansion and self-renewal potential of pediatric acute myeloid leukemia-initiating cells by PTK787/ZK 222584.

    PubMed

    Weidenaar, Alida C; Ter Elst, Arja; Kampen, Kim R; Meeuwsen-de Boer, Tiny; Kamps, Willem A; Schuringa, Jan Jacob; de Bont, Eveline S J M

    2013-04-01

    Although most children with acute myeloid leukemia (AML) achieve complete remission, the relapse rate is 30% to 40%. Because it is thought that leukemia-initiating cells (LIC) are responsible for AML relapses, targeting these cells might improve outcome. Treatment of pediatric AML blasts with the receptor tyrosine kinase (RTK) inhibitor PTK787/ZK 222584 (PTK/ZK) induces cell death in vitro. However, the role of PTK/ZK inhibition on outgrowth of (pediatric) LICs is unknown. In this study, we cultured CD34+ cells from pediatric patients with AML on MS5 stromal cells in long-term cocultures. In analogy to adult AML, long-term expansion of leukemic cells up to 10 weeks could be generated in 9 of 13 pediatric AMLs. Addition of PTK/ZK to long-term cocultures significantly inhibited leukemic expansion in all samples, ranging from 4% to 80% growth inhibition at week 5 compared with untreated samples. In 75% of the samples, the inhibitory effect was more pronounced at week 10. Proteome profiler array analysis of downstream kinases revealed that PTK/ZK reduced activation of PI3K/Akt kinase signaling. Although main targets of PTK/ZK are VEGF receptors (VEGFR), no effect was seen on outgrowth of LICs when cultured with bevacizumab (monoclonal VEGFA-antibody), specific antibodies against VEGFR2 or VEGFR3, or exposed to stroma-derived VEGFA. These data suggest that the effect of PTK/ZK on LICs is not only dependent on inhibition of VEGFA/VEGFR signaling. Taken together, our data elucidated antileukemic properties of PTK/ZK in long-term expansion cultures, and suggest that targeting multiple RTKs by PTK/ZK might be a potential effective approach in eradicating (pediatric) LICs. PMID:23393162

  13. The prognostic significance of early treatment response in pediatric relapsed acute myeloid leukemia: results of the international study Relapsed AML 2001/01

    PubMed Central

    Creutzig, Ursula; Zimmermann, Martin; Dworzak, Michael N.; Gibson, Brenda; Tamminga, Rienk; Abrahamsson, Jonas; Ha, Shau-Yin; Hasle, Henrik; Maschan, Alexey; Bertrand, Yves; Leverger, Guy; von Neuhoff, Christine; Razzouk, Bassem; Rizzari, Carmelo; Smisek, Petr; Smith, Owen P.; Stark, Batia; Reinhardt, Dirk; Kaspers, Gertjan L.

    2014-01-01

    The prognostic significance of early response to treatment has not been reported in relapsed pediatric acute myeloid leukemia. In order to identify an early and easily applicable prognostic factor allowing subsequent treatment modifications, we assessed leukemic blast counts in the bone marrow by morphology on days 15 and 28 after first reinduction in 338 patients of the international Relapsed-AML2001/01 trial. Both day 15 and day 28 status was classified as good (≤20% leukemic blasts) in 77% of patients. The correlation between day 15 and 28 blast percentages was significant, but not strong (Spearman correlation coefficient = 0.49, P<0.001). Survival probability decreased in a stepwise fashion along with rising blast counts at day 28. Patients with bone marrow blast counts at this time-point of ≤5%, 6–10%, 11–20% and >20% had 4-year probabilities of survival of 52%±3% versus 36%±10% versus 21%±9% versus 14%±4%, respectively, P<0.0001; this trend was not seen for day 15 results. Multivariate analysis showed that early treatment response at day 28 had the strongest prognostic significance, superseding even time to relapse (< or ≥12 months). In conclusion, an early response to treatment, measured on day 28, is a strong and independent prognostic factor potentially useful for treatment stratification in pediatric relapsed acute myeloid leukemia. This study was registered with ISRCTN code: 94206677. PMID:24763401

  14. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation

    PubMed Central

    2014-01-01

    Background Acute myeloid leukemia (AML) is the second most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature in various tumors, including AML. Metallothionein III (MT3) is a tumor suppresser reported to show promoter hypermethylated in various cancers. However, the expression and molecular function of MT3 in pediatric AML is unclear. Methods Eleven human leukemia cell lines and 41 pediatric AML samples and 20 NBM/ITP (Norma bone marrow/Idiopathic thrombocytopenic purpura) control samples were analyzed. Transcription levels of MT3 were evaluated by semi-quantitative and real-time PCR. MT3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BSG). The molecular mechanism of MT3 was investigated by apoptosis assays and PCR array analysis. Results The MT3 promoter was hypermethylated in leukemia cell lines. More CpG’s methylated of MT3 was observed 39.0% pediatric AML samples compared to 10.0% NBM controls. Transcription of MT3 was also significantly decreased in AML samples compared to NBM/ITP controls (P < 0.001); patients with methylated MT3 exhibited lower levels of MT3 expression compared to those with unmethylated MT3 (P = 0.049). After transfection with MT3 lentivirus, proliferation was significantly inhibited in AML cells in a dose-dependent manner (P < 0.05). Annexin V assay showed that apoptosis was significantly upregulated MT3-overexpressing AML cells compared to controls. Real-time PCR array analysis revealed 34 dysregulated genes that may be implicated in MT3 overexpression and apoptosis in AML, including FOXO1. Conclusion MT3 may be a putative tumor suppressor gene in pediatric AML. Epigenetic inactivation of MT3 via promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Overexpression of MT3 may inhibit proliferation and induce apoptosis in AML cells. FOXO1 was dysregulated in MT3-overexpressing cells

  15. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance

    PubMed Central

    2012-01-01

    Background We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population. Methods The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls. Altogether 66 single nucleotide polymorphisms (SNPs) in 19 candidate genes were genotyped. Results With logistic regression, we identified 6 SNPs in the ARID5B and IKZF1 genes associated with increased risk to B-cell ALL, and two SNPs in the STAT3 gene, which decreased the risk to hyperdiploid ALL. Because the associated SNPs were in linkage in each gene, these associations corresponded to one signal per gene. The odds ratio (OR) associated with the tag SNPs were: OR = 1.69, P = 2.22x10-7 for rs4132601 (IKZF1), OR = 1.53, P = 1.95x10-5 for rs10821936 (ARID5B) and OR = 0.64, P = 2.32x10-4 for rs12949918 (STAT3). With the BN-BMLA we confirmed the findings of the frequentist-based method and received additional information about the nature of the relations between the SNPs and the disease. E.g. the rs10821936 in ARID5B and rs17405722 in STAT3 showed a weak interaction, and in case of T-cell lineage sample group, the gender showed a weak interaction with three SNPs in three genes. In the hyperdiploid patient group the BN-BMLA detected a strong interaction among SNPs in the NOTCH1, STAT1, STAT3 and BCL2 genes. Evaluating the survival rate of the patients with ALL, the BN-BMLA showed that besides risk groups and subtypes, genetic variations in the BAX and CEBPA genes might also influence the probability of survival of the patients. Conclusions In the present study we confirmed the roles of genetic variations in ARID5B and IKZF1 in the susceptibility to B-cell ALL

  16. Protracted Administration of L-Asparaginase in Maintenance Phase Is the Risk Factor for Hyperglycemia in Older Patients with Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Yoshida, Hideki; Imamura, Toshihiko; Saito, Akiko M; Takahashi, Yoshihiro; Suenobu, So-ichi; Hasegawa, Daiichiro; Deguchi, Takao; Hashii, Yoshiko; Kawasaki, Hirohide; Endo, Mikiya; Hori, Hiroki; Suzuki, Nobuhiro; Kosaka, Yoshiyuki; Kato, Koji; Yumura-Yagi, Keiko; Hara, Junichi; Oda, Megumi; Sato, Atsushi; Horibe, Keizo

    2015-01-01

    Although L-asparaginase related hyperglycemia is well known adverse event, it is not studied whether the profile of this adverse event is affected by intensification of L-asparaginase administration. Here, we analyzed the profile of L-asparaginase related hyperglycemia in a 1,176 patients with pediatric acute lymphoblastic leukemia treated according to the Japan Association of Childhood Leukemia Study ALL-02 protocol using protracted L-asparaginase administration in maintenance phase. We determined that a total of 75 L-asparaginase related hyperglycemia events occurred in 69 patients. Although 17 events (17/1176, 1.4%) developed in induction phase, which was lower incidence than those (10-15%) in previous reports, 45 events developed during the maintenance phase with protracted L-asparaginase administration. Multivariate analysis showed that older age at onset (≥ 10 years) was a sole independent risk factor for L-asparaginase-related hyperglycemia (P<0.01), especially in maintenance phase. Contrary to the previous reports, obesity was not associated with L-asparaginase-related hyperglycemia. These findings suggest that protracted administration of L-asparaginase is the risk factor for hyperglycemia when treating adolescent and young adult acute lymphoblastic leukemia patients. PMID:26317422

  17. Pharmacogenomics in pediatric leukemia

    PubMed Central

    Paugh, Steven W.; Stocco, Gabriele; Evans, William E.

    2013-01-01

    Purpose of review The therapeutic index of many medications, especially in children, is very narrow with substantial risk for toxicity at doses required for therapeutic effects. This is particularly relevant to cancer chemotherapy, where the risk of toxicity must be balanced against potential suboptimal (low) systemic exposure that can be less effective in patients with the higher rates of drug clearance. The purpose of this review is to discuss genetic factors that lead to interpatient differences in the pharmacokinetics and pharmacodynamics of these medications. Recent findings Genome wide agonistic studies of pediatric patient populations are revealing genome variations that may affect susceptibility to specific diseases and that influence the pharmacokinetic and pharmacodynamic characteristics of medications. Several genetic factors with relatively small effect may be combined in the determination of a pharmacogenomic phenotype and considering these polygenic models may be mandatory in order to predict the related drug response phenotypes. These findings have potential to yield new insights into disease pathogenesis, and lead to molecular diagnostics that can be used to optimize the treatment of childhood cancers Summary Advances in genome technology and their comprehensive and systematic deployment to elucidate the genomic basis of inter-patient differences in drug response and disease risk, hold great promise to ultimately enhance the efficacy and reduce the toxicity of drug therapy in children. PMID:20861736

  18. Radioimmunotherapy for Treatment of Acute Leukemia.

    PubMed

    Bodet-Milin, Caroline; Kraeber-Bodéré, Françoise; Eugène, Thomas; Guérard, François; Gaschet, Joëlle; Bailly, Clément; Mougin, Marie; Bourgeois, Mickaël; Faivre-Chauvet, Alain; Chérel, Michel; Chevallier, Patrice

    2016-03-01

    Acute leukemias are characterized by accumulation of immature cells (blasts) and reduced production of healthy hematopoietic elements. According to the lineage origin, two major leukemias can be distinguished: acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Although the survival rate for pediatric ALL is close to 90%, half of the young adults with AML or ALL and approximately 90% of older patients with AML or ALL still die of their disease, raising the need for innovative therapeutic approaches. As almost all leukemic blasts express specific surface antigens, targeted immunotherapy appears to be particularly promising. However, published results of immunotherapy alone are generally modest. Radioimmunotherapy (RIT) brings additional therapeutic mechanisms using radiolabeled monoclonal antibodies (mAbs) directed to tumor antigens, thus adding radiobiological cytotoxicity to immunologic cytotoxicity. Because of the high radiosensitivity of tumor cells and the diffuse widespread nature of the disease, making it rapidly accessible to circulating radiolabeled mAbs, acute leukemias represent relevant indications for RIT. With the development of recombinant and humanized mAbs, innovative radionuclides, and more efficient radiolabeling and pretargeting techniques, RIT has significantly improved over the last 10 years. Different approaches of α and β RIT targeting CD22, CD33, CD45, or CD66 antigens have already been evaluated or are currently being developed in the treatment of acute leukemia. This review summarizes the preclinical and clinical studies demonstrating the potential of RIT in treatment of AML and ALL. PMID:26897718

  19. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  20. Socioeconomic status and event free survival in pediatric acute lymphoblastic leukemia: a population-based cohort study.

    PubMed

    Gupta, Sumit; Sutradhar, Rinku; Guttmann, Astrid; Sung, Lillian; Pole, Jason D

    2014-12-01

    The impact of socioeconomic status (SES) upon childhood cancer outcomes has not been extensively examined. Our objective was to determine the association between SES and event-free survival (EFS) among children with acute lymphoblastic leukemia (ALL) diagnosed in Ontario, Canada from 1995-2011 (N=1541) using Cox proportional hazards. Neither neighborhood-level median income quintile, distance from tertiary center, or rural residence significantly predicted EFS in the context of a universal healthcare system. Immigrant children experienced significantly superior EFS; confounding by ethnicity could not be ruled out. Confirmatory studies using additional individual-level SES variables are warranted. PMID:25224660

  1. IMMUNOTHERAPY IN ACUTE LEUKEMIA

    PubMed Central

    Leung, Wing

    2010-01-01

    Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has lead to new strategies of immunotherapy, and even past failure in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia. PMID:19100371

  2. Efficacy and safety of intrathecal liposomal cytarabine for the treatment of meningeal relapse in acute lymphoblastic leukemia: experience of two pediatric institutions.

    PubMed

    Parasole, Rosanna; Menna, Giuseppe; Marra, Nicoletta; Petruzziello, Fara; Locatelli, Franco; Mangione, Argia; Misuraca, Aldo; Buffardi, Salvatore; Di Cesare-Merlone, Alessandra; Poggi, Vincenzo

    2008-08-01

    The treatment of meningeal relapse in acute lymphoblastic leukemia (ALL) remains a challenging clinical problem. Liposomal cytarabine (DepoCyte) permits to decrease frequency of lumbar punctures, without loss of efficacy, because intrathecal levels of the drug remain cytotoxic for up to 14 days. We investigated the efficacy and safety of intrathecal DepoCyte in six children with meningeal relapse, treated in two pediatric institutions. DepoCyte was well tolerated in all patients, who achieved complete clearance of blasts from the cerebrospinal fluid after the first three intrathecal drug administrations. Five of the six patients were concurrently treated with high-dose administration of systemic cytarabine, without additional neurological side effects. Our results suggest that DepoCyte is a valid option for children with ALL experiencing meningeal relapse; it deserves further investigation in intensive treatment regimens, taking into due consideration potential neurotoxicity. PMID:18766969

  3. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2015-07-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  4. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  5. Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia.

    PubMed

    Salina, Thais Ditolvo da Costa; Ferreira, Yvelise Antunes; Alves, Eliana Brasil; Ferreira, Cristina Motta; De Paula, Erich Vinícius; Mira, Marcelo Távora; Passos, Leny da Mota

    2016-01-01

    Risk stratification and treatment intensification, based on minimal residual disease (MRD) mensurement, changed the prognosis of pediatric patients with acute lymphocytic leukemia (ALL). The main aim of this study was to investigate whether peripheral blood (PB) MRD measurement at day 8 (D8) could predict the risk stratification category determined by bone marrow (BM) MRD at day 15 (D15). The study was performed prospectively, in a cohort of 40 children with B-lineage ALL, adopting the protocol of the Brazilian Cooperative Group of the Treatment Childhood Leukemia (GBTLI-2009). MRD was detected by flow cytometry (FC) using a simplifed panel that can reliably identify MRD at early phases of induction therapy. Upon diagnosis, the proportion of low and high-risk patients, was 24:16 (60%:40%). The main result of our study demonstrated the potential of D8 MRD in anticipating of week the risk stratification of high-risk patients as determined by D15 BM MRD. In these patients D8 MRD level of 1% was able to segregate high risk fast responders from high risk slow responders (p = 0.0097). This result could represent an opportunity for early treatment intensification, as already performed in some protocols. PMID:27526794

  6. Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia

    PubMed Central

    Salina, Thais Ditolvo da Costa; Ferreira, Yvelise Antunes; Alves, Eliana Brasil; Ferreira, Cristina Motta; De Paula, Erich Vinícius; Mira, Marcelo Távora; Passos, Leny da Mota

    2016-01-01

    Risk stratification and treatment intensification, based on minimal residual disease (MRD) mensurement, changed the prognosis of pediatric patients with acute lymphocytic leukemia (ALL). The main aim of this study was to investigate whether peripheral blood (PB) MRD measurement at day 8 (D8) could predict the risk stratification category determined by bone marrow (BM) MRD at day 15 (D15). The study was performed prospectively, in a cohort of 40 children with B-lineage ALL, adopting the protocol of the Brazilian Cooperative Group of the Treatment Childhood Leukemia (GBTLI-2009). MRD was detected by flow cytometry (FC) using a simplifed panel that can reliably identify MRD at early phases of induction therapy. Upon diagnosis, the proportion of low and high-risk patients, was 24:16 (60%:40%). The main result of our study demonstrated the potential of D8 MRD in anticipating of week the risk stratification of high-risk patients as determined by D15 BM MRD. In these patients D8 MRD level of 1% was able to segregate high risk fast responders from high risk slow responders (p = 0.0097). This result could represent an opportunity for early treatment intensification, as already performed in some protocols. PMID:27526794

  7. Rationale for a Pediatric-Inspired Approach in the Adolescent and Young Adult Population with Acute Lymphoblastic Leukemia, with a Focus on Asparaginase Treatment

    PubMed Central

    Putti, Maria Caterina; Colombini, Antonella; Casagranda, Sara; Ferrari, Giulia Maria; Papayannidis, Cristina; Iacobucci, Ilaria; Abbenante, Maria Chiara; Sartor, Chiara; Martinelli, Giovanni

    2014-01-01

    In the last two decades great improvements have been made in the treatment of childhood acute lymphoblastic leukemia, with 5-year overall survival rates currently approaching almost 90%. In comparison, results reported in adolescents and young adults (AYAs) are relatively poor. In adults, results have improved, but are still lagging behind those obtained in children. Possible reasons for this different pattern of results include an increased incidence of unfavorable and a decreased incidence of favorable cytogenetic abnormalities in AYAs compared with children. Furthermore, in AYAs less intensive treatments (especially lower cumulative doses of drugs such as asparaginase, corticosteroids and methotrexate) and longer gaps between courses of chemotherapy are planned compared to those in children. However, although favorable results obtained in AYAs receiving pediatric protocols have been consistently reported in several international collaborative trials, physicians must also be aware of the specific toxicity pattern associated with increased success in AYAs, since an excess of toxicity may compromise overall treatment schedule intensity. Cooperative efforts between pediatric and adult hematologists in designing specific protocols for AYAs are warranted. PMID:25317319

  8. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Expression of CD25 is a specific and relatively sensitive marker for the Philadelphia chromosome (BCR-ABL1) translocation in pediatric B acute lymphoblastic leukemia

    PubMed Central

    Gaikwad, Amos S; Donohue, Rachel E; Elghetany, M Tarek; Sheehan, Andrea M; Lu, Xinyan Y; Gramatges, Maria M; McClain, Kenneth L; Mistretta, Toni-Ann; Punia, Jyotinder N; Moore, Timothy J; Goltsova, Tatiana; Cubbage, Michael; Curry, Choladda V

    2014-01-01

    Background: Precursor B acute lymphoblastic leukemia (B-ALL) is the most common cancer in children and overall, has an excellent prognosis. However, the Philadelphia chromosome translocation (Ph+), t(9;22)(q34;q11), is present in a small subset of patients and confers poor outcomes. CD25 (IL-2 receptor alpha chain) expression has been associated with Ph+ B-ALL in adults, but no similar study has been performed in pediatric B-ALL. Methods: A retrospective analysis of 221 consecutive pediatric patients with a diagnosis of B-ALL (blood and/or bone marrow) from 2009 to 2012 was performed to determine an association between Ph+ B-ALL and CD25 expression. A threshold of 25% was used to define positive cases for CD25 expression by flow cytometry. Results: There were 221 patients with a diagnosis of B-ALL ranging from 2 to 22 years (median, 6 years). Eight (3.6%) B-ALL patients were positive for the Philadelphia chromosome translocation (Ph+ B-ALL) and 213 were negative (Ph-negative B-ALL). CD25 expression was observed in 6 of 8 (75%) Ph+ B-ALL patients and 6 of 213 (2.8%) Ph-negative B-ALL patients. CD25 expression was significantly higher in Ph+ B-ALL compared to Ph-negative B-ALL, with median CD25 expression of 64% (range 0-93%) and 0.1% (range 0-91%), respectively (P ≤ 0.0002). Therefore, CD25 expression as a predictor of Ph+ B-ALL had 75% sensitivity, 97% specificity, 50% positive predictive value and 99% negative predictive value. Conclusions: CD25 expression is a specific and relatively sensitive marker for the identification of Ph+ B-ALL in the pediatric population. PMID:25337274

  10. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

    PubMed

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  12. Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia

    PubMed Central

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  13. Prompt recognition and percutaneous coronary intervention leads to favorable myocardial recovery after ST-segment elevation myocardial infarction secondary to acute promyelocytic leukemia: pediatric case report.

    PubMed

    Thomas, Tamara O; Ramachandran, Preeti; Jefferies, John L; Beekman, Robert H; Hor, Kan; Lorts, Angela

    2013-01-01

    Acute myocardial infarction (AMI) is extremely rare in children, and unlike the adult disease, the etiology of the infarction is rarely due to atherosclerotic coronary disease. This unique reported case involved a 15-year-old boy with severe chest pain who presented with an ST-segment-elevation myocardial infarction secondary to in situ thrombus formation in the left anterior descending (LAD) coronary artery. The initial electrocardiogram (ECG) had a Q-wave pattern in V6 and ST depression in the inferior leads with ST-segment elevation in reciprocal leads. The cardiac enzymes and routine labs showed evidence of myocardial damage. The boy was urgently taken to the cardiac catheterization laboratory for percutaneous coronary intervention, where complete occlusion of the LAD was found and successfully stented. Eventually, a peripheral blood smear showed pancytopenia with 38 % hypergranular blast-like cells consistent with acute myeloid leukemia (AML), and chemotherapy with all-transretinoic acid was implemented. This first pediatric case report of an AML-associated AMI emphasizes the benefit resulting from expedient reperfusion of the ischemic myocardium by quick reestablishment of coronary perfusion. It also emphasizes the limitations of existing noninvasive technologies in detecting myocardial viability. PMID:23263162

  14. Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

    ClinicalTrials.gov

    2015-04-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Blastic Phase; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Acute myelogenous leukemia (AML) -- children

    MedlinePlus

    ... Leung WH, Pounds S, Cao X, e t al. Definition of cure in childhood acute myeloid leukemia. Cancer . 2014 Aug ... MD, Medical Oncologist, Fresno, CA. Review provided by VeriMed Healthcare Network. Also reviewed by ...

  18. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan.

    PubMed

    Imamura, T; Kiyokawa, N; Kato, M; Imai, C; Okamoto, Y; Yano, M; Ohki, K; Yamashita, Y; Kodama, Y; Saito, A; Mori, M; Ishimaru, S; Deguchi, T; Hashii, Y; Shimomura, Y; Hori, T; Kato, K; Goto, H; Ogawa, C; Koh, K; Taki, T; Manabe, A; Sato, A; Kikuta, A; Adachi, S; Horibe, K; Ohara, A; Watanabe, A; Kawano, Y; Ishii, E; Shimada, H

    2016-01-01

    Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase-PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined. PMID:27176795

  19. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan

    PubMed Central

    Imamura, T; Kiyokawa, N; Kato, M; Imai, C; Okamoto, Y; Yano, M; Ohki, K; Yamashita, Y; Kodama, Y; Saito, A; Mori, M; Ishimaru, S; Deguchi, T; Hashii, Y; Shimomura, Y; Hori, T; Kato, K; Goto, H; Ogawa, C; Koh, K; Taki, T; Manabe, A; Sato, A; Kikuta, A; Adachi, S; Horibe, K; Ohara, A; Watanabe, A; Kawano, Y; Ishii, E; Shimada, H

    2016-01-01

    Recent studies revealed that a substantial proportion of patients with high-risk B-cell precursor acute lymphoblastic leukemia (BCP-ALL) harbor fusions involving tyrosine kinase and cytokine receptors, such as ABL1, PDGFRB, JAK2 and CRLF2, which are targeted by tyrosine kinase inhibitors (TKIs). In the present study, transcriptome analysis or multiplex reverse transcriptase–PCR analysis of 373 BCP-ALL patients without recurrent genetic abnormalities identified 29 patients with kinase fusions. Clinically, male predominance (male/female: 22/7), older age at onset (mean age at onset: 8.8 years) and a high white blood cell count at diagnosis (mean: 94 200/μl) reflected the predominance of National Cancer Institute high-risk (NCI-HR) patients (NCI-standard risk/HR: 8/21). Genetic analysis identified three patients with ABL1 rearrangements, eight with PDGFRB rearrangements, two with JAK2 rearrangements, three with IgH-EPOR and one with NCOR1-LYN. Of the 14 patients with CRLF2 rearrangements, two harbored IgH-EPOR and PDGFRB rearrangements. IKZF1 deletion was present in 16 of the 22 patients. The 5-year event-free and overall survival rates were 48.6±9.7% and 73.5±8.6%, respectively. The outcome was not satisfactory without sophisticated minimal residual disease-based stratification. Furthermore, the efficacy of TKIs combined with conventional chemotherapy without allogeneic hematopoietic stem cell transplantation in this cohort should be determined. PMID:27176795

  20. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  1. Acute Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  2. A comparison of discharge strategies after chemotherapy completion in pediatric patients with acute myeloid leukemia: a report from the Children's Oncology Group.

    PubMed

    Miller, Tamara P; Getz, Kelly D; Kavcic, Marko; Li, Yimei; Huang, Yuan-Shun V; Sung, Lillian; Alonzo, Todd A; Gerbing, Robert; Daves, Marla; Horton, Terzah M; Pulsipher, Michael A; Pollard, Jessica; Bagatell, Rochelle; Seif, Alix E; Fisher, Brian T; Gamis, Alan S; Aplenc, Richard

    2016-07-01

    While most children receive acute myeloid leukemia (AML) chemotherapy as inpatients, there is variability in timing of discharge after chemotherapy completion. This study compared treatment-related morbidity, mortality and cumulative hospitalization in children with AML who were discharged after chemotherapy completion (early discharge) and those who remained hospitalized. Chart abstraction data for 153 early discharge-eligible patients enrolled on a Children's Oncology Group trial were compared by discharge strategy. Targeted toxicities included viridans group streptococcal (VGS) bacteremia, hypoxia and hypotension. Early discharge occurred in 11% of courses post-Induction I. Re-admission occurred in 80-100%, but median hospital stay was 7 days shorter. Patients discharged early had higher rates of VGS (adjusted risk ratio (aRR) = 1.67, 95% CI = 1.11-2.51), hypoxia (aRR = 1.92, 95% CI = 1.06-3.48) and hypotension (aRR = 4.36, 95% CI = 2.01-9.46), but there was no difference in mortality. As pressure increases to shorten hospitalizations, these results have important implications for determining discharge practices in pediatric AML. PMID:26727639

  3. Novel Therapies for Relapsed Acute Lymphoblastic Leukemia

    PubMed Central

    Fullmer, Amber; O’Brien, Susan; Kantarjian, Hagop; Jabbour, Elias

    2015-01-01

    The outcome of salvage therapy for relapsed acute lymphoblastic leukemia (ALL) remains poor. Salvage therapy mimics regimens with activity in newly diagnosed ALL. Novel strategies under investigation as monotherapy or in combination with chemotherapy improve the treatment of relapsed disease. For some ALL subsets, specific therapies are indicated. The addition of targeted therapy in Philadelphia chromosome–positive ALL has improved responses in relapsed patients without resistance to available tyrosine kinase inhibitors. Nelarabine demonstrates activity as monotherapy in T-cell ALL and is approved by the US Food and Drug Administration. Clofarabine, a second-generation purine analogue approved in pediatric leukemia, has shown activity in adult acute leukemias including ALL and acute myeloid leukemia. The role of pegaspargase in adult ALL requires further investigation. The benefit of matched related-donor allogeneic stem cell transplantation is significant for standard-risk ALL but not for high-risk ALL. Development of new drugs and agents tailored to subset-specific cytogenetic-molecular characteristics remains vital to success in treating adult ALL. PMID:20425428

  4. Newly Diagnosed Acute Promyelocytic Leukemia

    PubMed Central

    Avvisati, Giuseppe

    2011-01-01

    Acute promyelocytic leukemia (APL) represents a medical emergency with a high rate of early mortality. As a consequence, as soon as the diagnosis is suspected based upon cytologic criteria, it is necessary to start all- trans retinoic acid (ATRA) treatment without delay. For patients with newly diagnosed APL, induction therapy with ATRA plus anthracycline based chemotherapy is recommended. At present the combination of arsenic trioxide plus ATRA should be considered for patients who are not candidates for anthracycline-based therapy. For pediatric and adult patients with APL aged < 60 years who achieve a CR with induction, I recommend 3 intensive courses of consolidation chemotherapy associated to ATRA, targeted on the basis of the risk group at diagnosis. In patients treated with a very intensive consolidation chemotherapy maintenance treatment can be omitted. However If a maintenance treatment has to be adopted I suggest the use of intermittent ATRA for 15 days every 3 months for a period of 2 years, rather than ATRA associated to chemotherapy. Moreover, taking into account the medical literature, a reduced dosage of ATRA ( 25 mg/m2) in pediatric patients and a consolidation chemotherapy of reduced intensity in elderly patients is recommended. Furthermore, in order to maximize survival, careful attention should be reserved to the coagulopathy and to the appearance of the differentiation syndrome. Finally, PCR for the PML/RARA fusion gene on a bone marrow specimen every three months for two years, and then every six months for additional three years are needed during the follow-up. PMID:22220261

  5. The contributions of the European Medicines Agency and its pediatric committee to the fight against childhood leukemia

    PubMed Central

    Rose, Klaus; Walson, Philip D

    2015-01-01

    Background Although the diagnosis of childhood leukemia is no longer a death sentence, too many patients still die, more with acute myeloid leukemia than with acute lymphoblastic leukemia. The European Union pediatric legislation was introduced to improve pharmaceutical treatment of children, but some question whether the European Medicines Agency (EMA) approach is helping children with leukemia. Some have even suggested that the decisions of EMA pediatric committee (PDCO) are counterproductive. This study was designed to investigate the impact of PDCO-issued pediatric investigation plans (PIPs) for leukemia drugs. Methods All PIPs listed under “oncology” were downloaded from the EMA website. Non-leukemia decisions including misclassifications, waivers (no PIP), and solid tumors were discarded. The leukemia decisions were analyzed, compared to pediatric leukemia trials in the database http://www.clinicaltrials.gov, and discussed in the light of current literature. Results The PDCO leukemia decisions demand clinical trials in pediatric leukemia for all new adult drugs without prioritization. However, because leukemia in children is different and much rarer than in adults, these decisions have resulted in proposed studies that are scientifically and ethically questionable. They are also unnecessary, since once promising new compounds are approved for adults, more appropriate, prioritized pediatric leukemia trials are initiated worldwide without PDCO involvement. Conclusion EMA/PDCO leukemia PIPs do little to advance the treatment of childhood leukemia. The unintended negative effects of the flawed EMA/PDCO’s standardized requesting of non-prioritized testing of every new adult leukemia drug in children with relapsed or refractory disease expose these children to questionable trials, and could undermine public trust in pediatric clinical research. Institutions, investigators, and ethics committees/institutional review boards need to be skeptical of trials

  6. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  7. Same sibling marrow following cord allogeneic transplantation as therapy for second relapse acute promyelocytic leukemia in a pediatric patient.

    PubMed

    De Oliveira, Satiro N; Kao, Roy L; Pham, Andrew; Smith, LaMarr Taylor; Kempert, Pamela; Moore, Theodore B

    2016-03-01

    Optimal therapy for relapsed APL in pediatric patients is controversial. Allogeneic HSCT is an alternative, with event-free survival of 70-75%. We report a pediatric patient with APL who relapsed 28 months after CBT from her sibling and then was treated with BMT from the same donor. Bone marrow was selected for higher cell dose, donor availability, and partial donor chimerism. Persistent molecular remission was achieved, currently at 65 months after BMT. This case suggests the potential role of GVL activity in APL and illustrates the use of different cell sources from the same donor in allogeneic transplantation for pediatric patients. PMID:26849401

  8. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  9. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Flavopiridol and Vorinostat in Treating Patients With Relapsed or Refractory Acute Leukemia or Chronic Myelogenous Leukemia or Refractory Anemia

    ClinicalTrials.gov

    2013-04-01

    Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. How Is Acute Lymphocytic Leukemia Classified?

    MedlinePlus

    ... How is acute lymphocytic leukemia treated? How is acute lymphocytic leukemia classified? Most types of cancers are assigned numbered ... ALL are now named as follows: B-cell ALL Early pre-B ALL (also called pro-B ...

  13. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. General Information about Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  15. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  16. Treatment Options for Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  17. Stages of Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  18. Treatment Option Overview (Adult Acute Myeloid Leukemia)

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  19. Acute myeloid leukemia.

    PubMed

    Appelbaum, F R; Rowe, J M; Radich, J; Dick, J E

    2001-01-01

    Through the hard work of a large number of investigators, the biology of acute myeloid leukemia (AML) is becoming increasingly well understood, and as a consequence, new therapeutic targets have been identified and new model systems have been developed for testing novel therapies. How these new therapies can be most effectively studied in the clinic and whether they will ultimately improve cure rates are questions of enormous importance. In this article, Dr. Jacob Rowe presents a summary of the current state-of-the-art therapy for adult AML. His contribution emphasizes the fact that AML is not a single disease, but a number of related diseases each distinguished by unique cytogenetic markers which in turn help determine the most appropriate treatment. Dr. Jerald Radich continues on this theme, emphasizing how these cytogenetic abnormalities, as well as other mutations, give rise to abnormal signal transduction and how these abnormal pathways may represent ideal targets for the development of new therapeutics. A third contribution by Dr. Frederick Appelbaum describes how AML might be made the target of immunologic attack. Specifically, strategies using antibody-based or cell-based immunotherapies are described including the use of unmodified antibodies, drug conjugates, radioimmunoconjugates, non-ablative allogeneic transplantation, T cell adoptive immunotherapy and AML vaccines. Finally, Dr. John Dick provides a review of the development of the NOD/SCID mouse model of human AML emphasizing both what it has taught us about the biology of the disease as well as how it can be used to test new therapies. Taken together, these reviews are meant to help us understand more about where we are in the treatment of AML, where we can go and how we might get there. PMID:11722979

  20. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-07

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Simultaneous targeting of PI3Kδ and a PI3Kδ-dependent MEK1/2-Erk1/2 pathway for therapy in pediatric B-cell acute lymphoblastic leukemia

    PubMed Central

    Wang, Xiang; Zhang, Xi; Li, Ben-shang; Zhai, Xiaowen; Yang, Zhuo; Ding, Li-xia; Wang, Hongsheng; Liang, Chris; Zhu, Weiliang; Ding, Jian; Meng, Ling-hua

    2014-01-01

    B cell acute lymphoblastic leukemia (B-ALL) is the most common hematological malignancy diagnosed in children, and blockade of the abnormally activated PI3Kδ displayed promising outcomes in B cell acute or chronic leukemias, but the mechanisms are not well understood. Here we report a novel PI3Kδ selective inhibitor X-370, which displays distinct binding mode with p110δ and blocks constitutively active or stimulus-induced PI3Kδ signaling. X-370 significantly inhibited survival of human B cell leukemia cells in vitro, with associated induction of G1 phase arrest and apoptosis. X-370 abrogated both Akt and Erk1/2 signaling via blockade of PDK1 binding to and/or phosphorylation of MEK1/2. Forced expression of a constitutively active MEK1 attenuated the antiproliferative activity of X-370. X-370 preferentially inhibited the survival of primary pediatric B-ALL cells displaying PI3Kδ-dependent Erk1/2 phosphorylation, while combined inhibition of PI3Kδ and MEK1/2 displayed enhanced activity. We conclude that PI3Kδ inhibition led to abrogation of both Akt and Erk1/2 signaling via a novel PI3K-PDK1/MEK1/2-Erk1/2 signaling cascade, which contributed to its efficacy against B-ALL. These findings support the rationale for clinical testing of PI3Kδ inhibitors in pediatric B-ALL and provide insights needed to optimize the therapeutic strategy. PMID:25313141

  2. Pharmacokinetics of Chemotherapeutic Drugs in Pediatric Patients With Down Syndrome and Leukemia.

    PubMed

    Hefti, Erik; Blanco, Javier G

    2016-05-01

    Children with Down syndrome (DS) have a 10- to 30-fold increased risk of developing acute myeloid leukemia or acute lymphoblastic leukemia. Patients with DS and leukemia are treated with the same chemotherapeutic agents as patients without DS. Treatment regimens for pediatric leukemia comprise multiple cytotoxic drugs including methotrexate, doxorubicin, vincristine, cytarabine, and etoposide. There have been reports of increased toxicity, as well as altered therapeutic outcomes in pediatric patients with DS and leukemia. This review is focused on the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS. The available literature suggests that methotrexate and thioguanine display altered pharmacokinetic parameters in pediatric patients with DS. It has been hypothesized that the variable pharmacokinetics of these drugs may contribute to the increased incidence of treatment-related toxicities seen in DS. Data from a small number of studies suggest that the pharmacokinetics of vincristine, etoposide, doxorubicin, and busulfan are similar between patients with and without DS. Definitive conclusions regarding the pharmacokinetics of cytotoxic drugs in pediatric patients with leukemia and DS are difficult to reach due to limitations in the available studies. PMID:26907658

  3. Impact of pretransplant minimal residual disease on the post-transplant outcome of pediatric acute lymphoblastic leukemia.

    PubMed

    Umeda, Katsutsugu; Hiramatsu, Hidefumi; Kawaguchi, Koji; Iwai, Atsushi; Mikami, Masamitsu; Nodomi, Seishiro; Saida, Satoshi; Heike, Toshio; Ohomori, Katsuyuki; Adachi, Souichi

    2016-08-01

    There are few reports on the clinical significance of MRD before HSCT in pediatric ALL. We retrospectively analyzed the clinical significance of FCM-based detection of MRD (FCM-MRD) before allogeneic HSCT in pediatric ALL. Of 38 pediatric patients who underwent allogeneic HSCT for the first time between 1998 and 2014, 33 patients were in CR and five patients were in non-CR. The CR group was further divided into two groups based on the pretransplant FCM-MRD level: the MRD(neg) (<0.01%; 30 patients) group and the MRD(pos) (≥0.01%; three patients) group. There were significant differences in the three-yr event-free survival rates between the CR and non-CR group, and between the MRD(neg) and MRD(pos) group. The three-yr cumulative RI in the MRD(neg) group were 27.3% ± 8.8%, whereas two of the three patients in the MRD(pos) group relapsed within one yr after HSCT. The clinical outcome of the MRD(pos) group was as poor as that of the non-CR group in pediatric ALL. Therefore, an improvement in pretransplant treatment that aims to achieve a more profound remission would contribute to reducing the risk of relapse. PMID:27256540

  4. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. herg1b expression as a potential specific marker in pediatric acute myeloid leukemia patients with HERG 897K/K genotype.

    PubMed

    Erdem, Merve; Tekiner, Tugce Ayca; Fejzullahu, Arta; Akan, Gokce; Anak, Sema; Saribeyoglu, Ebru Tugrul; Ozbek, Ugur; Atalar, Fatmahan

    2015-04-01

    Human ether-a-go-go related gene (herg) encoding HERG K(+) channel has been demonstrated in many previous studies with its association to cell cycle progression and growth in tumor cells. The upregulated expression of HERG K+ channels was determined in different tumor types. Furthermore, not only full-length transcript herg1 but also a truncated isoform herg1b was shown to be expressed in cancer cells. In this study, the expression levels of herg1 and herg1b and the impact of K897T mutation on their expressions were investigated in pediatric acute myeloid leukemia (pAML). Expression levels of herg1 and herg1b isoforms were analyzed by quantitative real time polymerase chain reaction (PCR) in pAML patients together with healthy donors, and their expressions were confirmed by western blotting. The 2690 A>C nucleotide variation in KCNH2 gene corresponding to K897T amino acid change was analyzed by PCR followed by restriction enzyme digestion. herg1b overexpression was observed in tumor cells compared to healthy controls (P = .0024). However, herg1 expression was higher in healthy control cells than tumor cells (P = .001). The prevalence of polymorphic allele 897T was 26% in our patient group and 897T carriers showed increased herg1b expression compared to wild-type allele carriers. Our results demonstrate the presence of the increased levels of herg1b expression in pAML. In addition, we report for the first time that, pAML subgroup with HERG 897K/K genotype compared to 897K/T and T/T genotypes express increased levels of herg1b. In conclusion, HERG 897K/K genotype with increased level of herg1b expression might well be a prognostic marker for pAML. PMID:25247487

  6. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  7. Acute lymphoblastic leukemia (ALL)

    MedlinePlus

    ... WBC) count Platelet count Bone marrow biopsy Lumbar puncture (spinal tap) to check for leukemia cells in ... home Managing your pets during chemotherapy Bleeding problems Dry mouth Eating enough calories Safe eating during cancer ...

  8. Acute myeloid leukemia

    MedlinePlus

    ... a low number of platelets. A white blood cell count ( WBC ) can be high, low, or normal. Bone ... and overall health How high your white blood cell count was Certain genetic changes in the leukemia cells ...

  9. 8-Chloro-Adenosine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-11

    Recurrent Adult Acute Myeloid Leukemia; Relapsed Adult Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia Arising From Previous Myeloproliferative Disorder

  10. General Information about Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

    MedlinePlus

    ... Other Myeloid Malignancies Treatment (PDQ®)–Patient Version General Information About Childhood Acute Myeloid Leukemia and Other Myeloid ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  11. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  12. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  13. Idarubicin and Cytarabine With or Without Bevacizumab in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-23

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Münster AML-study group

    PubMed Central

    Coenen, Eva A.; Zwaan, C. Michel; Reinhardt, Dirk; Harrison, Christine J.; Haas, Oskar A.; de Haas, Valerie; Mihál, Vladimir; De Moerloose, Barbara; Jeison, Marta; Rubnitz, Jeffrey E.; Tomizawa, Daisuke; Johnston, Donna; Alonzo, Todd A.; Hasle, Henrik; Auvrignon, Anne; Dworzak, Michael; Pession, Andrea; van der Velden, Vincent H. J.; Swansbury, John; Wong, Kit-fai; Terui, Kiminori; Savasan, Sureyya; Winstanley, Mark; Vaitkeviciene, Goda; Zimmermann, Martin; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2013-01-01

    In pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical characteristics, morphology, and immunophenotypes of 62 pediatric AML patients with t(8;16)(p11;p13) from 18 countries participating in the International Berlin-Frankfurt-Münster (I-BFM) AML study group. We used the AML-BFM cohort diagnosed from 1995-2005 (n = 543) as a reference cohort. Median age of the pediatric t(8;16)(p11;p13) AML patients was significantly lower (1.2 years). The majority (97%) had M4-M5 French-American-British type, significantly different from the reference cohort. Erythrophagocytosis (70%), leukemia cutis (58%), and disseminated intravascular coagulation (39%) occurred frequently. Strikingly, spontaneous remissions occurred in 7 neonates with t(8;16)(p11;p13), of whom 3 remain in continuous remission. The 5-year overall survival of patients diagnosed after 1993 was 59%, similar to the reference cohort (P = .14). Gene expression profiles of t(8;16)(p11;p13) pediatric AML cases clustered close to, but distinct from, MLL-rearranged AML. Highly expressed genes included HOXA11, HOXA10, RET, PERP, and GGA2. In conclusion, pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features in whom spontaneous remissions occur in a subset of neonatal cases. PMID:23974201

  15. Medullary allotransplant in acute myeloblastic leukemia in a child

    PubMed Central

    Buga Corbu, V; Glűck, R; Arion, C

    2014-01-01

    Abstract Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor. PMID:25408774

  16. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  17. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  18. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  19. Safety, Pharmacokinetics, and Efficacy of Palifermin in Children and Adolescents with Acute Leukemias Undergoing Myeloablative Therapy and Allogeneic Hematopoietic Stem Cell Transplantation: A Pediatric Blood and Marrow Transplant Consortium Trial.

    PubMed

    Morris, Joan; Rudebeck, Mattias; Neudorf, Steven; Moore, Theodore; Duerst, Reggie; Shah, Ami J; Graham, Michael; Aquino, Victor; Morris, Christopher; Olsson, Birgitta

    2016-07-01

    Currently, effective pharmacologic treatment to reduce severe oral mucositis (OM) resulting from high-dose myeloablative cytotoxic therapy in the pediatric population is not available. Palifermin has been proven to decrease the incidence and duration of severe OM in adults with hematologic malignancies undergoing hematopoietic stem cell transplantation (HSCT). In the pediatric population, however, data on palifermin treatment are limited. A phase I dose-escalation study of palifermin in pediatric patients with acute leukemias undergoing myeloablative HSCT with total body irradiation, etoposide, and cyclophosphamide was performed to determine a safe and tolerable dose and to characterize the pharmacokinetic (PK) profile and efficacy of palifermin. Twenty-seven patients in 3 age groups (1 to 2, 3 to 11, and 12 to 16 years) and 3 dose levels (40, 60, and 80 μg/kg/day) were studied. There were no deaths, dose-limiting toxicities, or treatment-related serious adverse events. Long-term safety outcomes did not differ from what would be expected in this population. PK data showed no differences between the 3 age groups. Exposure did not increase with increase in dose. The maximum severity of OM (WHO grade 4) occurred in 6 patients (22%), none of whom was in the 80-μg/kg/day dosing group. This study showed that all doses were well tolerated and a good safety profile in all 3 pediatric age groups was seen. PMID:26968792

  20. Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment.

    PubMed

    Mesrian Tanha, Hamzeh; Mojtabavi Naeini, Marjan; Rahgozar, Soheila; Moafi, Alireza; Honardoost, Mohammad Amin

    2016-06-01

    Acute lymphoblastic leukemia (ALL) is the major neoplasia type among children. Despite the tremendous success of current treatment strategies, drug resistance still remains a major cause of chemotherapy failure and relapse in pediatric patients. Overwhelming evidence illustrates that microRNAs (miRNAs) act as post-transcriptional regulators of drug-resistance-related genes. The current study was aimed at how dysregulated miRNA-mRNA-signaling pathway interaction networks mediate resistance to four commonly used chemotherapy agents in pediatric ALL, including asparaginase, daunorubicin, prednisolone, and vincristine. Using public expression microarray datasets, a holistic in silico approach was utilized to investigate candidate drug resistance miRNA-mRNA-signaling pathway interaction networks in pediatric ALL. Our systems biology approach nominated significant drug resistance and cross-resistance miRNAs, mRNAs, and cell signaling pathways based on anti-correlative relationship between miRNA and mRNA expression pattern. To sum up, our systemic analysis disclosed either a new potential role of miRNAs, or a possible mechanism of cellular drug resistance, in chemotherapy resistance of pediatric ALL. The current study may shed light on predicting drug response and overcoming drug resistance in childhood ALL for subsequent generations of chemotherapies. PMID:26700663

  1. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  4. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  5. The MLL recombinome of acute leukemias in 2013

    PubMed Central

    Meyer, C; Hofmann, J; Burmeister, T; Gröger, D; Park, T S; Emerenciano, M; Pombo de Oliveira, M; Renneville, A; Villarese, P; Macintyre, E; Cavé, H; Clappier, E; Mass-Malo, K; Zuna, J; Trka, J; De Braekeleer, E; De Braekeleer, M; Oh, S H; Tsaur, G; Fechina, L; van der Velden, V H J; van Dongen, J J M; Delabesse, E; Binato, R; Silva, M L M; Kustanovich, A; Aleinikova, O; Harris, M H; Lund-Aho, T; Juvonen, V; Heidenreich, O; Vormoor, J; Choi, W W L; Jarosova, M; Kolenova, A; Bueno, C; Menendez, P; Wehner, S; Eckert, C; Talmant, P; Tondeur, S; Lippert, E; Launay, E; Henry, C; Ballerini, P; Lapillone, H; Callanan, M B; Cayuela, J M; Herbaux, C; Cazzaniga, G; Kakadiya, P M; Bohlander, S; Ahlmann, M; Choi, J R; Gameiro, P; Lee, D S; Krauter, J; Cornillet-Lefebvre, P; Te Kronnie, G; Schäfer, B W; Kubetzko, S; Alonso, C N; zur Stadt, U; Sutton, R; Venn, N C; Izraeli, S; Trakhtenbrot, L; Madsen, H O; Archer, P; Hancock, J; Cerveira, N; Teixeira, M R; Lo Nigro, L; Möricke, A; Stanulla, M; Schrappe, M; Sedék, L; Szczepański, T; Zwaan, C M; Coenen, E A; van den Heuvel-Eibrink, M M; Strehl, S; Dworzak, M; Panzer-Grümayer, R; Dingermann, T; Klingebiel, T; Marschalek, R

    2013-01-01

    Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements. PMID:23628958

  6. CD200/BTLA deletions in pediatric precursor B-cell acute lymphoblastic leukemia treated according to the EORTC-CLG 58951 protocol

    PubMed Central

    Ghazavi, Farzaneh; Clappier, Emmanuelle; Lammens, Tim; Suciu, Stefan; Caye, Aurélie; Zegrari, Samira; Bakkus, Marleen; Grardel, Nathalie; Benoit, Yves; Bertrand, Yves; Minckes, Odile; Costa, Vitor; Ferster, Alina; Mazingue, Françoise; Plat, Geneviève; Plouvier, Emmanuel; Poirée, Marilyne; Uyttebroeck, Anne; van der Werff-ten Bosch, Jutte; Yakouben, Karima; Helsmoortel, Hetty; Meul, Magali; Van Roy, Nadine; Philippé, Jan; Speleman, Frank; Cavé, Hélène; Van Vlierberghe, Pieter; De Moerloose, Barbara

    2015-01-01

    DNA copy number analysis has been instrumental for the identification of genetic alterations in B-cell precursor acute lymphoblastic leukemia. Notably, some of these genetic defects have been associated with poor treatment outcome and might be relevant for future risk stratification. In this study, we characterized recurrent deletions of CD200 and BTLA genes, mediated by recombination-activating genes, and used breakpoint-specific polymerase chain reaction assay to screen a cohort of 1154 cases of B-cell precursor acute lymphoblastic leukemia uniformly treated according to the EORTC-CLG 58951 protocol. CD200/BTLA deletions were identified in 56 of the patients (4.8%) and were associated with an inferior 8-year event free survival in this treatment protocol [70.2% ± 1.2% for patients with deletions versus 83.5% ± 6.4% for non-deleted cases (hazard ratio 2.02; 95% confidence interval 1.23–3.32; P=0.005)]. Genetically, CD200/BTLA deletions were strongly associated with ETV6-RUNX1-positive leukemias (P<0.0001), but were also identified in patients who did not have any genetic abnormality that is currently used for risk stratification. Within the latter population of patients, the presence of CD200/BTLA deletions was associated with inferior event-free survival and overall survival. Moreover, the multivariate Cox model indicated that these deletions had independent prognostic impact on event-free survival when adjusting for conventional risk criteria. All together, these findings further underscore the rationale for copy number profiling as an important tool for risk stratification in human B-cell precursor acute lymphoblastic leukemia. This trial was registered at www.ClinicalTrials.gov as #NCT00003728. PMID:26137961

  7. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  8. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  9. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  10. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  11. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-06-28

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  12. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  13. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-10

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  14. Epidemiology of acute lymphoblastic leukemia

    SciTech Connect

    Pendergrass, T.W.

    1985-06-01

    Although the etiology of acute leukemia is largely unknown, some facets of the puzzle are becoming clarified. Recognition of important patterns in age-specific mortality rates has suggested that events early in life, perhaps even prenatally, may have an influence on developing leukemia in childhood. The racial differences evident in mortality, incidence, and immunologic subtype of ALL suggest either differences in exposures to certain factors or differences in responses to those factors by white children. Hereditary factors appear to play a role. Familial and hereditary conditions exist that have high incidences of acute leukemia. Chromosomal anomalies are common in these conditions. Viral infections may play a role by contributing to alteration in genetic material through incorporation of the viral genome. How that virus is dealt with after primary infection seems important. The presence of immunodeficiency may allow wider dissemination or enhanced replication of such viruses, thereby increasing the likelihood of cellular transformation to an abnormal cell. Proliferation of that malignant cell to a clone may depend on other cofactors. Perhaps prolonged exposure to substances like benzene or alkylating agents may enhance these interactions between virus and genetic material. Does this change DNA repair mechanisms. Are viral infections handled differently. Is viral genomic information more easily integrated into host cells. Ionizing radiation has multiple effects. Alteration in genetic material occurs both at the molecular and chromosomal levels. DNA may be altered, lost, or added in the cell's attempt to recover from the injury.

  15. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Acute myeloid leukemia in children: Current status and future directions.

    PubMed

    Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi

    2016-02-01

    Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. PMID:26645706

  17. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  18. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  19. Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia

    PubMed Central

    Sherborne, Amy L.; Hemminki, Kari; Kumar, Rajiv; Bartram, Claus R.; Stanulla, Martin; Schrappe, Martin; Petridou, Eleni; Semsei, Ágnes F.; Szalai, Csaba; Sinnett, Daniel; Krajinovic, Maja; Healy, Jasmine; Lanciotti, Marina; Dufour, Carlo; Indaco, Stefania; El-Ghouroury, Eman A; Sawangpanich, Ruchchadol; Hongeng, Suradej; Pakakasama, Samart; Gonzalez-Neira, Anna; Ugarte, Evelia L.; Leal, Valeria P.; Espinoza, Juan P.M.; Kamel, Azza M.; Ebid, Gamal T.A.; Radwan, Eman R.; Yalin, Serap; Yalin, Erdinc; Berkoz, Mehmet; Simpson, Jill; Roman, Eve; Lightfoot, Tracy; Hosking, Fay J.; Vijayakrishnan, Jayaram; Greaves, Mel; Houlston, Richard S.

    2011-01-01

    Acute lymphoblastic leukemia is the major pediatric cancer in developed countries. To date most association studies of acute lymphoblastic leukemia have been based on the candidate gene approach and have evaluated a restricted number of polymorphisms. Such studies have served to highlight difficulties in conducting statistically and methodologically rigorous investigations into acute lymphoblastic leukemia risk. Recent genome-wide association studies of childhood acute lymphoblastic leukemia have provided robust evidence that common variation at four genetic loci confers a modest increase in risk. The accumulated experience to date and relative lack of success of initial efforts to identify novel acute lymphoblastic leukemia predisposition loci emphasize the need for alternative study designs and methods. The International Childhood Acute Lymphoblastic Leukaemia Genetics Consortium includes 12 research groups in Europe, Asia, the Middle East and the Americas engaged in studying the genetics of acute lymphoblastic leukemia. The initial goal of this consortium is to identify and characterize low-penetrance susceptibility variants for acute lymphoblastic leukemia through association-based analyses. Efforts to develop genome-wide association studies of acute lymphoblastic leukemia, in terms of both sample size and single nucleotide polymorphism coverage, and to increase the number of single nucleotide polymorphisms taken forward to large-scale replication should lead to the identification of additional novel risk variants for acute lymphoblastic leukemia. Ethnic differences in the risk of acute lymphoblastic leukemia are well recognized and thus in assessing the interplay between inherited and non-genetic risk factors, analyses using different population cohorts with different incidence rates are likely to be highly informative. Given that the frequency of many acute lymphoblastic leukemia subgroups is small, identifying differential effects will realistically only be

  20. Donor and Recipient CMV Serostatus and Outcome of Pediatric Allogeneic HSCT for Acute Leukemia in the Era of CMV-Preemptive Therapy

    PubMed Central

    Behrendt, Carolyn E.; Rosenthal, Joseph; Bolotin, Ellen; Nakamura, Ryotaro; Zaia, John; Forman, Stephen J.

    2009-01-01

    In the era of cytomegalovirus(CMV)-preemptive therapy, it is unclear whether CMV serostatus of donor or recipient affects outcome of allogeneic hematopoietic stem cell transplantation (HSCT) among children with leukemia. To investigate, consecutive patients age 0–8 who underwent primary HSCT for acute leukemia in 1997–007 (HLA-matched sibling or unrelated donor, myeloablative conditioning, unmanipulated bone marrow or peripheral blood, preemptive therapy, no CMV prophylaxis) were followed retrospectively through January 2008. Treatment failure (relapse or death) was analyzed using survival-based proportional hazards regression. Competing risks (relapse and non-relapse mortality, NRM) were analyzed using generalized linear models of cumulative incidence-based proportional hazards. Excluding 4 (2.8%) patients lacking serostatus of donor or recipient, there were 140 subjects, of whom 50 relapsed and 24 died in remission. Pretransplant CMV seroprevalence was 55.7% in recipients, 57.1% in donors. Thirty-five (25.0%) grafts were from seronegative donor to seronegative recipient (D−/R−). On univariate analysis, D−/R− grafts were associated with shorter relapse-free survival (RFS) than other grafts (median 1.06 versus 3.15 years, p<0.05). Adjusted for donor type, diagnosis, disease stage, recipient and donor age, female-to-male graft, graft source, and year, D−/R− graft was associated with relapse (hazards ratio 3.15, 95% confidence interval 1.46–6.76) and treatment failure (2.45, 1.46–4.12) but not significantly with NRM (2.00, 0.44–9.09). In the current era, children who undergo allogeneic HSCT for acute leukemia have reduced risk of relapse and superior RFS when recipient and/or donor is CMV-seropositive before transplantation. However, no net improvement in RFS would be gained from substituting seropositive unrelated for seronegative sibling donors. PMID:19135943

  1. What Are the Key Statistics about Acute Myeloid Leukemia?

    MedlinePlus

    ... for acute myeloid leukemia? What are the key statistics about acute myeloid leukemia? The American Cancer Society’s ... myeloid leukemia .” Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Last Medical Review: ...

  2. What Should You Ask Your Doctor about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... leukemia? What should you ask your doctor about acute lymphocytic leukemia? It is important to have frank, honest discussions ... answer many of your questions. What kind of acute lymphocytic leukemia (ALL) do I have? Do I have any ...

  3. What Are the Key Statistics about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the key statistics about acute lymphocytic leukemia? The American Cancer Society’s estimates for acute lymphocytic leukemia (ALL) in the United States for 2016 (including ...

  4. Immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G

    2005-09-01

    Immunotherapeutic strategies have become part of standard cancer treatment. Chimeric and humanized antibodies have demonstrated activity against a variety of tumors. Although the humanized anti-CD33 antibody HuM195 has only modest activity against overt acute myeloid leukemia (AML), it can eliminate minimal residual disease in acute promyelocytic leukemia. High-dose radioimmunotherapy with b-particle-emitting isotopes targeting CD33, CD45, and CD66 can potentially allow intensification of antileukemic therapy before hematopoietic stem cell transplantation. Conversely, a-particle immunotherapy with isotopes such as bismuth-213 or actinium-225 offers the possibility of selective tumor cell kill while sparing surrounding normal tissues. Targeted chemotherapy with the anti-CD33- calicheamicin construct gemtuzumab ozogamicin has produced remissions in relapsed AML and appears promising when used in combination with standard chemotherapy for newly diagnosed AML. T-cell recognition of peptide antigens presented on the cell surface in combination with major histocompatibility complex antigen provides another potentially promising approach for the treatment of AML. PMID:16091194

  5. Acute leukemias in children with Down syndrome.

    PubMed

    Seewald, Laura; Taub, Jeffrey W; Maloney, Kelly W; McCabe, Edward R B

    2012-09-01

    Children with Down syndrome (DS) often present with hematopoietic abnormalities, and are at increased risk of developing leukemia. Specifically, 3-10% of newborns with DS are diagnosed with transient myeloproliferative disease, and children with DS are 500 times more likely to develop acute megakaryoblastic leukemia (AMKL) and 20 times more likely to develop acute lymphoblastic leukemia (ALL) than typical children. This review examines the characteristics of these leukemias and their development in the unique genetic background of trisomy 21. A discussion is also provided for areas of future research and potential therapeutic development. PMID:22867885

  6. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  7. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  8. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-02-17

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  10. High Expression of Suppressor of Cytokine Signaling-2 Predicts Poor Outcome in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group

    PubMed Central

    Laszlo, George S.; Ries, Rhonda E.; Gudgeon, Chelsea J.; Harrington, Kimberly H.; Alonzo, Todd A.; Gerbing, Robert B.; Raimondi, Susana C.; Hirsch, Betsy A.; Gamis, Alan S.; Meshinchi, Soheil; Walter, Roland B.

    2015-01-01

    Deregulated cytokine signaling is a characteristic feature of acute myeloid leukemia (AML), and expression signatures of cytokines and chemokines have been identified as significant prognostic factor in this disease. Given this aberrant signaling, we hypothesized that expression of Suppressor of Cytokine Signaling-2 (SOCS2), a negative regulator of cytokine signaling, might be altered in AML and could provide predictive information. Among 188 participants of the Children's Oncology Group AAML03P1 trial, SOCS2 mRNA levels varied >6,000-fold. Higher (>median) SOCS2 expression was associated with inferior overall (60±10% vs. 75±9%, p=0.026) and event-free (44±10% vs. 59±10%, p=0.031) survival. However, these differences were accounted for by higher prevalence of high-risk and lower prevalence of low-risk disease among patients with higher SOCS2 expression, limiting the clinical utility of SOCS2 as predictive marker. It remains untested whether high SOCS2 expression identifies a subset of leukemias with deregulated cytokine signaling that could be amenable to therapeutic intervention. PMID:24559289

  11. Final results of a single institution experience with a pediatric-based regimen, the augmented Berlin-Frankfurt-Münster, in adolescents and young adults with acute lymphoblastic leukemia, and comparison to the hyper-CVAD regimen.

    PubMed

    Rytting, Michael E; Jabbour, Elias J; Jorgensen, Jeffrey L; Ravandi, Farhad; Franklin, Anna R; Kadia, Tapan M; Pemmaraju, Naveen; Daver, Naval G; Ferrajoli, Alessandra; Garcia-Manero, Guillermo; Konopleva, Marina Y; Borthakur, Gautam; Garris, Rebecca; Wang, Sa; Pierce, Sherry; Schroeder, Kurt; Kornblau, Steven M; Thomas, Deborah A; Cortes, Jorge E; O'Brien, Susan M; Kantarjian, Hagop M

    2016-08-01

    Several studies reported improved outcomes of adolescents and young adults (AYA) with acute lymphoblastic leukemia (ALL) treated with pediatric-based ALL regimens. This prompted the prospective investigation of a pediatric Augmented Berlin-Frankfurt-Münster (ABFM) regimen, and its comparison with hyper-fractionated cyclophosphamide, vincristine, Adriamycin, and dexamethasone (hyper-CVAD) in AYA patients. One hundred and six AYA patients (median age 22 years) with Philadelphia chromosome- (Ph) negative ALL received ABFM from October 2006 through March 2014. Their outcome was compared to 102 AYA patients (median age 27 years), treated with hyper-CVAD at our institution. The complete remission (CR) rate was 93% with ABFM and 98% with hyper-CVAD. The 5-year complete remission duration (CRD) were 53 and 55%, respectively (P = 0.98). The 5-year overall survival (OS) rates were 60 and 60%, respectively. The MRD status on Day 29 and Day 84 of therapy was predictive of long-term outcomes on both ABFM and hyper-CVAD. Severe regimen toxicities with ABFM included hepatotoxicity in 41%, pancreatitis in 11%, osteonecrosis in 9%, and thrombosis in 19%. Myelosuppression-associated complications were most significant with hyper-CVAD. In summary, ABFM and hyper-CVAD resulted in similar efficacy outcomes, but were associated with different toxicity profiles, asparaginase-related with ABFM and myelosuppression-related with hyper-CVAD. Am. J. Hematol. 91:819-823, 2016. © 2016 Wiley Periodicals, Inc. PMID:27178680

  12. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-08-10

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  13. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-23

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  14. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  15. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  16. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  17. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  18. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  19. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  20. Acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Acute kidney injury is a common complication after pediatric cardiac surgery. The definition, staging, risk factors, biomarkers and management of acute kidney injury in children is detailed in the following review article. PMID:27052074

  1. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-16

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  2. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  3. New developments in acute lymphoblastic leukemia.

    PubMed

    Douer, Dan; Thomas, Deborah A

    2014-06-01

    Acute lymphoblastic leukemia (ALL) occurs in both children and adults. Significant improvements in survival outcomes have been realized over the last decade for all age groups with de novo ALL. Frontline treatment incorporates a tailored approach, based on factors such as the patient’s age and the disease subtype. Children, adolescents, and young adults are likely to receive intensifying or deintensifying chemotherapy regimens using standard chemotherapeutics (eg, anthracyclines, vincristine, asparaginase) based on risk stratification. Older adults appear to benefit from reduced-intensity chemotherapy regimens, which incorporate targeted therapy (eg, monoclonal antibodies). New data suggest that a more intensive pediatric protocol might be feasible in adult patients. More than half of ALL patients relapse, and their limited survival has led to the development of novel approaches. Recently approved chemotherapeutic agents include clofarabine, nelarabine, asparaginase Erwinia chrysanthemi, and vincristine sulfate liposome injection, a novel formulation that permits administration of a higher dosage of vincristine than that used in standard regimens. Approaches under investigation include cell therapy using autologous T-cell technologies, antibody-drug conjugates, and agents targeting common gene mutations. Many novel agents are undergoing evaluation in both the frontline and relapsed settings. PMID:25768275

  4. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  5. S1312, Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-04-14

    Acute Leukemias of Ambiguous Lineage; B-cell Adult Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma

  6. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-29

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  7. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-15

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  8. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  9. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  10. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  11. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-06

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  17. Levofloxacin in Preventing Infection in Young Patients With Acute Leukemia Receiving Chemotherapy or Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2016-04-08

    Acute Leukemias of Ambiguous Lineage; Bacterial Infection; Diarrhea; Fungal Infection; Musculoskeletal Complications; Neutropenia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Advanced Vertebral Fracture among Newly Diagnosed Children with Acute Lymphoblastic Leukemia: Results of the Canadian STeroid-associated Osteoporosis in the Pediatric Population (STOPP) Research Program

    PubMed Central

    Halton, J.; Gaboury, I.; Grant, R.; Alos, N.; Cummings, E. A.; Matzinger, M.; Shenouda, N.; Lentle, B.; Abish, S.; Atkinson, S.; Cairney, E.; Dix, D.; Israels, S.; Stephure, D.; Wilson, B.; Hay, J.; Moher, D.; Rauch, F.; Siminoski, K.; Ward, L.M.

    2013-01-01

    Vertebral compression is a serious complication of childhood acute lymphoblastic leukemia (ALL). The prevalence and pattern of vertebral fractures, as well as their relationship to bone mineral density (BMD) and other clinical indices, have not been systematically studied. We evaluated spine health in 186 newly diagnosed children (median age 5.3 years, 108 boys) with ALL (precursor B cell: N=167; T-cell: N=19), who were enrolled in a national bone health research program. Patients were assessed within 30 days of diagnosis by lateral thoraco-lumbar spine radiograph, bone age (also used for metacarpal morphometry) and BMD. Vertebral morphometry was carried out by the Genant semi-quantitative method. Twenty-nine patients (16%) had a total of 75 grade 1 or higher prevalent vertebral compression fractures (53 thoracic, 71%; 22 lumbar). Grade 1 fractures as the worst grade were present in 14 children (48%), 9 patients (31%) had grade 2 fractures, and 6 children (21%) had grade 3 fractures. The distribution of spine fracture was bi-modal, with most occurring in the mid-thoracic and thoraco-lumbar regions. Children with grade 1 or higher vertebral compression had reduced lumbar spine (LS) areal BMD Z-scores compared to those without (mean±SD, −2.1±1.5 vs. −1.1±1.2; P < 0.001). LS BMD Z-score, second metacarpal percent cortical area Z-score, and back pain were associated with increased odds for fracture. For every 1 SD reduction in LS BMD Z-score, the odds for fracture increased by 80% (95% CI 10% to 193%); the presence of back pain had an odds ratio of 4.7 (95% CI, 1.5 to 14.5). These results show that vertebral compression is an under-recognized complication of newly diagnosed ALL. Whether the fractures will resolve through bone growth during or after leukemia chemotherapy remains to be determined. PMID:19210218

  19. GTI-2040 in Treating Patients With Relapsed, Refractory, or High-Risk Acute Leukemia, High-Grade Myelodysplastic Syndromes, or Refractory or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-12-03

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Management of acute myeloid leukemia during pregnancy.

    PubMed

    Avivi, Irit; Brenner, Benjamin

    2014-06-01

    Diagnosis of acute leukemia during pregnancy presents significant medical challenges. Pancytopenia, caused by bone marrow substitution with leukemic cells, impairs maternal and fetal health. Chemotherapeutic agents required to be immediately used to save the mother's life are likely to adversely affect fetal development and outcome, especially if administered at an early gestational stage. Patients diagnosed with acute leukemia during the first trimester are, therefore, recommended to undergo pregnancy termination. At later gestational stages, antileukemic therapy can be administered, although in this case, fetal outcome is still associated with increased incidence of growth restriction and loss. Special attention to the issue of future reproduction, adopting a personalized fertility preservation approach, is required. This article addresses these subjects, presenting women diagnosed with acute myeloid and acute promyelocytic leukemia in pregnancy. The rarity of this event, resulting in insufficient data, emphasizes the need for collaborative efforts to optimize management of this complicated clinical condition. PMID:25052751

  1. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  2. Oblimersen, Cytarabine, and Daunorubicin in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Transplantations in adult acute lymphoblastic leukemia--grounds for optimism?

    PubMed

    Goldstone, Anthony H

    2009-01-01

    The large MRC/ECOG Adult Acute Lymphoblastic Leukemia Study establishes the value of sibling donor allogeneic transplantation in patients with standard risk, demonstrating superior outcome to conventional chemotherapy. The small but significant number of patients having matched unrelated donor transplantations on this study protocol appear to do well and might establish the value of such an approach for those without a sibling. Reduced-intensity conditioning might begin to address the transplantation-related mortality problems of the older patients. The youngest adults might not need to undergo transplantation at all. If they are now treated on pediatric chemotherapy protocols, their outcome appears to improve significantly. PMID:19778843

  4. Bioelectrical Impedance Measurement for Predicting Treatment Outcome in Patients With Newly Diagnosed Acute Leukemia

    ClinicalTrials.gov

    2015-09-22

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Computer-aided detection of therapy-induced leukoencephalopathy in pediatric acute lymphoblastic leukemia patients treated with intravenous high-dose methotrexate.

    PubMed

    Glass, John O; Reddick, Wilburn E; Li, Chin-Shang; Laningham, Fred H; Helton, Kathleen J; Pui, Ching-Hon

    2006-07-01

    The purpose of this study was to use objective quantitative magnetic resonance imaging (MRI) methods to develop a computer-aided detection (CAD) tool to differentiate white matter (WM) hyperintensities into either leukoencephalopathy (LE) induced by chemotherapy or normal maturational processes in children treated for acute lymphoblastic leukemia without irradiation. A combined MRI set consisting of T1-weighted, T2-weighted, proton-density-weighted and fluid-attenuated inversion recovery images and WM, gray matter and cerebrospinal fluid proportional volume maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen self-organizing map (SOM). Segmented maps were manually classified to identify the most hyperintense WM region and the normal-appearing genu region. Signal intensity differences normalized to the genu within each examination were generated for four time points in 228 children. A second Kohonen SOM was trained on the first examination data and divided the WM into normal-appearing or LE groups. Reviewing labels from the CAD tool revealed a consistency measure of 89.8% (167 of 186) within patients. The overall agreement between the CAD tool and the consensus reading of two trained observers was 84.1% (535 of 636), with 84.2% (170 of 202) agreement in the training set and 84.1% (365 of 434) agreement in the testing set. These results suggest that subtle therapy-induced LE can be objectively and reproducibly detected in children treated for cancer using this CAD approach based on relative differences in quantitative signal intensity measures normalized within each examination. PMID:16824973

  6. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T- cell acute lymphoblastic leukemia: A report from the Children's Oncology Group

    PubMed Central

    Gedman, Amanda Larson; Chen, Qing; Desmoulin, Sita Kugel; Ge, Yubin; LaFiura, Katherine; Haska, Christina L.; Cherian, Christina; Devidas, Meenakshi; Linda, Stephen B.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    We explored the impact of mutations in the NOTCH1, FBW7 and PTEN genes on prognosis and downstream signaling in a well-defined cohort of 47 pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients. In T-ALL lymphoblasts, we identified high frequency mutations in NOTCH1 (n=16), FBW7 (n=5) and PTEN (n=26). NOTCH1 mutations resulted in 1.3-3.3-fold increased transactivation of a HES1 reporter construct over wild-type NOTCH1; mutant FBW7 resulted in further augmentation of reporter gene activity. NOTCH1 and FBW7 mutations were accompanied by increased median transcripts for NOTCH1 target genes (HES1, DELTEX1, cMYC). However, none of these mutations were associated with treatment outcome. Elevated HES1, DELTEX1 and cMYC transcripts were associated with significant increases in transcript levels of several chemotherapy relevant genes, including MDR1, ABCC5, reduced folate carrier, asparagine synthetase, thiopurine methyltranserase, Bcl-2 and dihydrofolate reductase. PTEN transcripts positively correlated with HES1 and cMYC transcript levels. Our results suggest that (1) multiple factors should be considered with attempting to identify molecular-based prognostic factors for pediatric T-ALL, and (2) depending on the NOTCH1 signaling status, modifications in the types or dosing of standard chemotherapy drugs for T-ALL, or combinations of agents capable of targeting NOTCH1, AKT and/or mTOR with standard chemotherapy agents may be warranted. PMID:19340001

  7. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for acute myeloid leukemia What’s new in acute myeloid leukemia research and treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  8. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  9. Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-04-27

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  10. PHF6 mutations in T-cell acute lymphoblastic leukemia

    PubMed Central

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-01-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer1,2. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males3. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is significantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease. PMID:20228800

  11. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Actual biological diagnosis of acute myeloblastic leukemia in children

    PubMed Central

    Buga Corbu, V; Glűck, A; Arion, C

    2014-01-01

    Abstract Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy. PMID:25408742

  13. An Initial Reintegration Treatment of Children with Acute Lymphoblastic Leukemia (ALL).

    ERIC Educational Resources Information Center

    Lurie, Michelle; Kaufman, Nadeen

    2001-01-01

    Evaluated the cognitive, psychological, and social adjustment of pediatric acute lymphoblastic leukemia (ALL) patients and assessed how their needs could best be met through reintegration programs focusing on learning/ educational needs. Findings from three case studies highlight the need for ALL patients to be provided with comprehensive programs…

  14. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  15. Cardiac Manifestation of Acute Lymphoblastic Leukemia.

    PubMed

    Werner, Rudolf A; Rudelius, Martina; Thurner, Annette; Higuchi, Takahiro; Lapa, Constantin

    2016-07-01

    Here, we report on a 38-year-old man with unclear right heart failure. Imaging with cardiac MRI and combined PET/CT with F-FDG revealed a hypermetabolic mass extending from the right ventricle to the atrium. In addition, intense glucose utilization throughout the bone marrow was noted. Biopsies of both bone marrow and cardiac mass were performed and revealed precursor B-cell acute lymphoblastic leukemia with gross leukemic infiltration of the myopericardium, a rare manifestation of acute lymphoblastic leukemia at initial diagnosis. PMID:27088389

  16. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  17. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  18. Multimerin-1 (MMRN1) as Novel Adverse Marker in Pediatric Acute Myeloid Leukemia: A Report from the Children’s Oncology Group

    PubMed Central

    Laszlo, George S.; Alonzo, Todd A.; Gudgeon, Chelsea J.; Harrington, Kimberly H.; Gerbing, Robert B.; Wang, Yi-Cheng; Ries, Rhonda E.; Raimondi, Susana C.; Hirsch, Betsy A.; Gamis, Alan S.; Meshinchi, Soheil; Walter, Roland B.

    2015-01-01

    PURPOSE Exploratory gene expression array analyses suggested multimerin-1 (MMRN1) to be a predictive biomarker in acute myeloid leukemia (AML). Following-up on these studies, we evaluated the role of MMRN1 expression as outcome predictor in 2 recent Children’s Oncology Group trials. EXPERIMENTAL DESIGN We retrospectively quantified MMRN1 expression in 183 participants of AAML03P1 and 750 participants of AAML0531 by reverse-transcriptase polymerase chain reaction and correlated expression levels with disease characteristics and clinical outcome. RESULTS In AAML03P1, the highest quartile of MMRN1 expression (expression ≥0.5 relative to β-glucuronidase; n=45) was associated with inferior event-free survival (EFS; P<0.002) and higher relapse risk (P<0.004). In AAML0531, in which we quantified MMRN1 mRNA for validation, patients with relative MMRN1 expression ≥0.5 (n=160) less likely achieved remission (67% vs. 77%, P=0.006), and more frequently had minimal residual disease (43% vs. 24%, P=0.001) after one induction course. They had inferior overall survival (44±9% vs. 69±4% at 5 years; P<0.001) and EFS (32±8% vs. 54±4% at 5 years; P<0.001) and higher relapse risk (57±10% vs. 35±5% at 5 years; P<0.001). These differences were partly attributable to the fact that patients with high MMRN1 expression less likely had cytogenetic/molecular low-risk disease (P<0.001) than those with low MMRN1 expression. Nevertheless, after multivariable adjustment, high MMRN1 expression remained statistically significantly associated with shorter OS (hazard ratio [HR]=1.57 [95% confidence interval: 1.17–2.12] p=0.003) and EFS (HR=1.34 [1.04–1.73] p=0.025), and higher relapse risk (HR=1.40 [1.01–1.94] p=0.044). CONCLUSIONS Together, our studies identify MMRN1 expression as a novel biomarker that may refine AML risk-stratification. PMID:25825478

  19. Clofarabine for the treatment of adult acute lymphoid leukemia: the Group for Research on Adult Acute Lymphoblastic Leukemia intergroup.

    PubMed

    Huguet, Françoise; Leguay, Thibaut; Raffoux, Emmanuel; Rousselot, Philippe; Vey, Norbert; Pigneux, Arnaud; Ifrah, Norbert; Dombret, Hervé

    2015-04-01

    Clofarabine, a second-generation purine analog displaying potent inhibition of DNA synthesis and favorable pharmacologic profile, is approved for the treatment of acute lymphoblastic leukemia (ALL) after failure of at least two previous regimens in patients up to 21 years of age at diagnosis. Good neurologic tolerance, synergy with alkylating agents, management guidelines defined through pediatric ALL and adult acute myeloid leukemia, have also prompted its administration in more than 100 adults with Philadelphia chromosome-positive and negative B lineage and T lineage ALL, as single agent (40 mg/m(2)/ day for 5 days), or in combination. In a Group for Research on Adult Acute Lympho- blastic Leukemia (GRAALL) retrospective study of two regimens (clofarabine ± cyclophosphamide + / - etoposide (ENDEVOL) ± mitoxantrone ± asparaginase ± dexamethasone (VANDEVOL)), remission was achieved in 50% of 55 relapsed/refractory patients, and 17-35% could proceed to allogeneic stem cell. Clofarabine warrants further exploration in advanced ALL treatment and bridge-to-transplant. PMID:24996442

  20. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers sequenced the tyrosine kinome and downstream signaling genes in 45 high-risk pediatric ALL cases with activated kinase signaling, including Ph-like ALL, to establish the incidence of tyrosine kinase mutations in this cohort. The study confirmed previously identified somatic mutations in JAK and FLT3, but did not find novel alterations in any additional tyrosine kinases or downstream genes. The mechanism of kinase signaling activation in this high-risk subgroup of pediatric ALL remains largely unknown.

  1. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-30

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  2. Eosinophilic presentation of acute lymphoblastic leukemia

    PubMed Central

    Rezamand, Azim; Ghorashi, Ziaaedin; Ghorashi, Sona; Nezami, Nariman

    2013-01-01

    Patient: Male, 5 Primary Diagnosis: Rule-out appendicitis Co-existing Diseases: Acute lymphoblastic leukemia (ALL) Medication: Chemiotherapy Clinical Procedure: Chest CT • flow cytometry Specialty: Pediatrics’ oncology • infection diseases Objective: Rare disease Background: Leukemias are among the most common childhood malignancies. Acute lymphoblastic leukemia (ALL) accounts for 77% of all leukemias. In rare cases, ALL patients may present with eosinophilia. Case Report: Here, a 5-year old boy was admitted to our hospital with a possible diagnosis of appendicitis. This patient’s complete blood cell count demonstrated leukocytosis with severe eosinophilia. Following a 1-month clinical investigation, 2 bone marrow aspirations, and flow cytometry analysis, a diagnosis of acute lymphoblastic leukemia was proposed. Finally, the patient was transferred to the oncology ward to receive standard therapeutic protocol, which resulted in disease remission. After chemotherapy for 2 years, patient is successfully treated. Conclusions: ALL is diagnosed by eosinophilia in rare cases. These patients need immediate diagnosis and intensive therapy due to worsened prognosis of ALL presenting as hypereosinophilia. PMID:23869247

  3. CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  4. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  5. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Lymphoblastic Leukemia in Complete Remission; Acute Myeloid Leukemia in Remission; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Childhood Acute Lymphoblastic Leukemia in Complete Remission

  6. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2016-06-27

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  7. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  8. Lenalidomide and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-01

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  9. Daunorubicin Hydrochloride, Cytarabine and Oblimersen Sodium in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  11. Cancer Statistics: Acute Lymphocytic Leukemia (ALL)

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 6,590 % of All New Cancer Cases 0.4% Estimated Deaths in 2016 1,430 % of All Cancer ... of This Cancer : In 2013, there were an estimated 77,855 people living with acute lymphocytic leukemia ...

  12. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Malignant Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  13. Ixazomib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-24

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  14. AKT Inhibitor MK-2206 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  15. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2011-11-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  16. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  17. Combination Chemotherapy With or Without Valspodar in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  18. Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-04

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  19. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  20. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL. PMID:27149388

  1. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation

    PubMed Central

    Kunz, Joachim B.; Rausch, Tobias; Bandapalli, Obul R.; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M.; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O.; Muckenthaler, Martina U.; Kulozik, Andreas E.

    2015-01-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, ‘type 1’ relapse derives from the primary leukemia whereas ‘type 2’ relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  3. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation.

    PubMed

    Kunz, Joachim B; Rausch, Tobias; Bandapalli, Obul R; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O; Muckenthaler, Martina U; Kulozik, Andreas E

    2015-11-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, 'type 1' relapse derives from the primary leukemia whereas 'type 2' relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  4. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  5. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy.

    PubMed

    Mei, Lin; Ontiveros, Evelena P; Griffiths, Elizabeth A; Thompson, James E; Wang, Eunice S; Wetzler, Meir

    2015-07-01

    Acute lymphoblastic leukemia (ALL) is a relatively rare disease in adults accounting for no more than 20% of all cases of acute leukemia. By contrast with the pediatric population, in whom significant improvements in long term survival and even cure have been achieved over the last 30years, adult ALL remains a significant challenge. Overall survival in this group remains a relatively poor 20-40%. Modern research has focused on improved pharmacokinetics, novel pharmacogenetics and personalized principles to optimize the efficacy of the treatment while reducing toxicity. Here we review the pharmacogenetics of medications used in the management of patients with ALL, including l-asparaginase, glucocorticoids, 6-mercaptopurine, methotrexate, vincristine and tyrosine kinase inhibitors. Incorporating recent pharmacogenetic data, mainly from pediatric ALL, will provide novel perspective of predicting response and toxicity in both pediatric and adult ALL therapies. PMID:25614322

  6. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  7. Management and treatment of osteonecrosis in children and adolescents with acute lymphoblastic leukemia

    PubMed Central

    te Winkel, Mariël L.; Pieters, Rob; Wind, Ernst-Jan D.; Bessems, J.H.J.M. (Gert); van den Heuvel-Eibrink, Marry M.

    2014-01-01

    There is no consensus regarding how to manage osteonecrosis in pediatric acute lymphoblastic leukemia patients. Therefore, we performed a quality assessment of the literature with the result of a search strategy using the MESH terms osteonecrosis, children, childhood cancer, surgery, bisphosphonates, 6 hydroxymethyl-glutaryl CoA reductase inhibitors, anticoagulants and hyperbaric oxygen, and terms related to these MESH terms. A randomized controlled trial showed that osteonecrosis can be prevented by intermittent, instead of continuous, corticosteroid administration. The studies on interventions after onset of osteonecrosis were of low-quality evidence. Seven pediatric acute lymphoblastic leukemia studies described non-surgical interventions; bisphosphonates (n=5), hyperbaric oxygen therapy (n=1), or prostacyclin analogs (n=1). Safety and efficacy studies are lacking. Five studies focused on surgical interventions; none was of sufficient quality to draw definite conclusions. In conclusion, preventing osteonecrosis is feasible in a proportion of the pediatric acute lymphoblastic leukemia patients by discontinuous, instead of continuous, steroid scheduling. The questions as to how to treat childhood acute lymphoblastic leukemia patients with osteonecrosis cannot be answered as good-quality studies are lacking. PMID:24598854

  8. Imatinib use immediately before stem cell transplantation in children with Philadelphia chromosome-positive acute lymphoblastic leukemia: Results from Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) Study Ph+ALL04

    PubMed Central

    Manabe, Atsushi; Kawasaki, Hirohide; Shimada, Hiroyuki; Kato, Itaru; Kodama, Yuichi; Sato, Atsushi; Matsumoto, Kimikazu; Kato, Keisuke; Yabe, Hiromasa; Kudo, Kazuko; Kato, Motohiro; Saito, Tomohiro; Saito, Akiko M; Tsurusawa, Masahito; Horibe, Keizo

    2015-01-01

    Incorporation of imatinib into chemotherapeutic regimens has improved the prognosis of children with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL). We investigated a role of imatinib immediately before hematopoietic stem cell transplantation (HSCT). Children with Ph+ALL were enrolled on JPLSG Ph+ALL 04 Study within 1 week of initiation of treatment for ALL. Treatment regimen consisted of Induction phase, Consolidation phase, Reinduction phase, 2 weeks of imatinib monotherapy phase, and HSCT phase (Etoposide+CY+TBI conditioning). Minimal residual disease (MRD), the amount of BCR–ABL transcripts, was measured with the real-time PCR method. The study was registered in UMIN-CTR: UMIN ID C000000290. Forty-two patients were registered and 36 patients (86%) achieved complete remission (CR). Eight of 17 patients (47%) who had detectable MRD at the beginning of imatinib monotherapy phase showed disappearance or decrease in MRD after imatinib treatment. Consequently, 26 patients received HSCT in the first CR and all the patients had engraftment and no patients died because of complications of HSCT. The 4-year event-free survival rates and overall survival rates among all the 42 patients were 54.1 ± 7.8% and 78.1 ± 6.5%, respectively. Four of six patients who did achieve CR and three of six who relapsed before HSCT were salvaged with imatinib-containing chemotherapy and subsequently treated with HSCT. The survival rate was excellent in this study although all patients received HSCT. A longer use of imatinib concurrently with chemotherapy should eliminate HSCT in a subset of patients with a rapid clearance of the disease. PMID:25641907

  9. Imatinib use immediately before stem cell transplantation in children with Philadelphia chromosome-positive acute lymphoblastic leukemia: Results from Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) Study Ph(+) ALL04.

    PubMed

    Manabe, Atsushi; Kawasaki, Hirohide; Shimada, Hiroyuki; Kato, Itaru; Kodama, Yuichi; Sato, Atsushi; Matsumoto, Kimikazu; Kato, Keisuke; Yabe, Hiromasa; Kudo, Kazuko; Kato, Motohiro; Saito, Tomohiro; Saito, Akiko M; Tsurusawa, Masahito; Horibe, Keizo

    2015-05-01

    Incorporation of imatinib into chemotherapeutic regimens has improved the prognosis of children with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL). We investigated a role of imatinib immediately before hematopoietic stem cell transplantation (HSCT). Children with Ph(+) ALL were enrolled on JPLSG Ph(+) ALL 04 Study within 1 week of initiation of treatment for ALL. Treatment regimen consisted of Induction phase, Consolidation phase, Reinduction phase, 2 weeks of imatinib monotherapy phase, and HSCT phase (Etoposide+CY+TBI conditioning). Minimal residual disease (MRD), the amount of BCR-ABL transcripts, was measured with the real-time PCR method. The study was registered in UMIN-CTR: UMIN ID C000000290. Forty-two patients were registered and 36 patients (86%) achieved complete remission (CR). Eight of 17 patients (47%) who had detectable MRD at the beginning of imatinib monotherapy phase showed disappearance or decrease in MRD after imatinib treatment. Consequently, 26 patients received HSCT in the first CR and all the patients had engraftment and no patients died because of complications of HSCT. The 4-year event-free survival rates and overall survival rates among all the 42 patients were 54.1 ± 7.8% and 78.1 ± 6.5%, respectively. Four of six patients who did achieve CR and three of six who relapsed before HSCT were salvaged with imatinib-containing chemotherapy and subsequently treated with HSCT. The survival rate was excellent in this study although all patients received HSCT. A longer use of imatinib concurrently with chemotherapy should eliminate HSCT in a subset of patients with a rapid clearance of the disease. PMID:25641907

  10. Hematopoietic stem cell transplantation for pediatric mature B-cell acute lymphoblastic leukemia with non-L3 morphology and MLL-AF9 gene fusion: three case reports and review of the literature.

    PubMed

    Sarashina, Takeo; Iwabuchi, Haruko; Miyagawa, Naoyuki; Sekimizu, Masahiro; Yokosuka, Tomoko; Fukuda, Kunio; Hamanoue, Satoshi; Iwasaki, Fuminori; Goto, Shoko; Shiomi, Masae; Imai, Chihaya; Goto, Hiroaki

    2016-07-01

    Mature B-cell acute lymphoblastic leukemia (B-ALL) is typically associated with French-American-British (FAB)-L3 morphology and MYC gene rearrangement. However, rare cases of mature B-ALL with non-L3 morphology and MLL-AF9 fusion have been reported, and such cases are characterized by a rapid and aggressive clinical course. We here report three such cases of pediatric mature B-ALL in female patients respectively aged 15 months, 4 years, and 4 months. Bone marrow smears at diagnosis showed FAB-L1 morphology in all patients. Immunophenotypically, they were positive for cluster of differentiation (CD)10, CD19, CD20 (or CD22), Human Leukocyte Antigen-DR, and surface immunoglobulin λ. No evidence of MYC rearrangement was detected in any of the cases by fluorescent in situ hybridization (FISH) analysis. However, MLL rearrangement was detected by FISH, and MLL-AF9 fusion was confirmed by reverse transcriptase-polymerase chain reaction. All patients achieved complete remission after conventional chemotherapy and subsequently underwent hematopoietic stem cell transplantation as high-risk ALL; patient 3 for infantile ALL with MLL rearrangement and the others for ALL with MLL rearrangement and hyperleukocytosis (white blood cell count at diagnosis >50 × 10(9)/L). At the latest follow-up for each case (12-98 months post-transplantation), complete remission was maintained. Moreover, we discuss the clinical, genetic, and immunophenotypic features of this rare disease. PMID:27084248

  11. Association between body mass index at diagnosis and pediatric leukemia mortality and relapse: a systematic review and meta-analysis.

    PubMed

    Amankwah, Ernest K; Saenz, Ashleigh M; Hale, Gregory A; Brown, Patrick A

    2016-05-01

    Obesity is a risk factor for mortality and relapse of certain cancers. However, existing evidence for pediatric leukemia is inconsistent. The aim of this systematic review and meta-analysis was to evaluate the association between obesity at diagnosis and pediatric acute leukemia mortality and relapse. This study systematically searched MEDLINE and EMBASE from inception to February 5, 2015. Random-effect models were used to generate pooled estimates of study-specific hazard ratios (HR) and 95% confidence intervals (CI). Eleven studies were included. An increased risk of mortality with a high BMI at diagnosis was observed (overall survival: HR = 1.30, 95% CI = 1.16-1.46 and event-free survival: HR = 1.46, 95% CI = 1.29-1.64). Only two studies reported HR for relapse; one reported a reduced risk, while the other reported an increased risk. A high BMI at diagnosis is associated with poor overall and event-free survival among pediatric acute leukemia patients. Targeted therapeutic approaches for obese pediatric leukemia patients may potentially improve survival outcomes. PMID:26453440

  12. Differentiation Therapy of Acute Myeloid Leukemia

    PubMed Central

    Gocek, Elzbieta; Marcinkowska, Ewa

    2011-01-01

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML. PMID:24212816

  13. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. What Are the Risk Factors for Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the risk factors for acute lymphocytic leukemia? A risk factor is something that affects your ... this is unknown. Having an identical twin with ALL Someone who has an identical twin who develops ...

  15. Targeting MTHFD2 in acute myeloid leukemia.

    PubMed

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M; Frumm, Stacey M; Ross, Linda; Fenouille, Nina; Bassil, Christopher F; Lewis, Caroline A; Ramos, Azucena; Gould, Joshua; Stone, Richard M; DeAngelo, Daniel J; Galinsky, Ilene; Clish, Clary B; Kung, Andrew L; Hemann, Michael T; Vander Heiden, Matthew G; Banerji, Versha; Stegmaier, Kimberly

    2016-06-27

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. PMID:27325891

  16. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-12

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-10-19

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  18. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  19. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    ClinicalTrials.gov

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  20. Baseline low immunoglobulin A predicts inferior disease-free survival in pediatric acute myeloid leukemia and serial evaluation suggests role of immunoglobulin A in leukemogenesis.

    PubMed

    Bansal, Anuj Kumar; Vishnubhatla, Sreenivas; Kumar, Uma; Bakhshi, Sameer

    2014-05-01

    Abstract Data on serial evaluation of immunoglobulins (Ig) in pediatric AML is lacking. From April 2010 to May 2011, 45 consecutive patients with AML aged 1-18 years were prospectively enrolled along with nine healthy controls. Ig were assessed at diagnosis, post-induction, post-consolidation, 3 and 6 months follow-up and relapse. At diagnosis, Ig levels were significantly higher in patients than in healthy controls. Patienths with gum hypertrophy had low Ig levels (IgG, p = 0.007; IgA, p = 0.003; IgM, p = 0.06). Baseline Ig did not correlate with complete remission (CR). Patients who relapsed had a lower baseline IgA level than those in continuous CR (169 ± 94 g/dL vs. 310 ± 177 g/dL, p = 0.019). Patients with a low baseline IgA level (less than median) had inferior disease-free-survival (DFS) on multivariate analysis (p = 0.048). Post-induction, IgM (p < 0.001) and IgA (p = 0.048) were significantly reduced as compared to their baseline values. On serial follow-up in patients who were in continuous CR, there was a significant decrease in IgA from post-induction until 6 months after treatment completion. This is the first study to evaluate the trend of humoral immunity in sequential pediatric patients with AML. Our study demonstrates that in pediatric AML, baseline Ig were higher than in controls. Gum hypertrophy was observed in patients with low Ig (IgA and IgG) levels. Relatively lower baseline IgA predicted disease relapse and inferior DFS. On serial follow-up, IgA significantly decreased in those who continued to stay in CR but not in patients who relapsed, suggesting an association of IgA with leukemogenesis. PMID:23865831

  1. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse | Office of Cancer Genomics

    Cancer.gov

    The genomic and clinical information used to develop and implement therapeutic approaches for AML originated primarily from adult patients and has been generalized to patients with pediatric AML. However, age-specific molecular alterations are becoming more evident and may signify the need to age-stratify treatment regimens. The NCI/COG TARGET-AML initiative employed whole exome capture sequencing (WXS) to interrogate the genomic landscape of matched trios representing specimens collected upon diagnosis, remission, and relapse from 20 cases of de novo childhood AML.

  2. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  3. Granulocytic Sarcoma in MLL-Positive Infant Acute Myelogenous Leukemia

    PubMed Central

    Park, Kyoung Un; Lee, Dong Soon; Lee, Hye Seung; Kim, Chong Jai; Cho, Han Ik

    2001-01-01

    Granulocytic sarcoma is considered to be rare and its frequent occurrence is associated with specific genetic changes such as t(8;21). To investigate an association between MLL (mixed lineage leukemia or myeloid-lymphoid leukemia) rearrangement and granulocytic sarcoma, we applied fluorescence in situ hybridization for detection of the 11q23/MLL rearrangements on the bone marrow cells of 40 patients with childhood acute myelogenous leukemia (AML). Nine (22.5%) of 40 patients exhibited MLL rearrangements. Three (33.3%) of these nine patients had granulocytic sarcoma and were younger than 12 months of age. Of these three patients one presented as granulocytic sarcoma of both testes with cerebrospinal fluid involvement, the second case presented in the form of an abdominal mass, and the third as a periorbital granulocytic sarcoma. On the other hand, no granulocytic sarcomas were found among MLL-negative patients. It is likely that MLL-positive infant AML may predispose granulocytic sarcoma. Regarding the findings of our study and those of other reports, we would guess that the incidence of granulocytic sarcoma in pediatric MLL-positive AML may be equal to or greater than the 18 to 24% described in AML with t(8;21). Further investigations designed to identify 11q23/MLL abnormalities of leukemic cells or extramedullary tumor may be helpful for the precise diagnosis of granulocytic sarcoma. PMID:11733351

  4. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  5. Hematopoietic ontogeny and its relevance for pediatric leukemias.

    PubMed

    Udroiu, Ion; Sgura, Antonella

    2016-03-01

    Fetal and infant hematopoiesis display characteristics different from the adult one: our suggestion is that these features may help to explain the peculiar incidence rates of acute leukemias. Hematopoietic stem cells (HSCs) are fast-cycling (those in adults instead are largely quiescent) and studies in mice demonstrated that their relative contribution to myelo- and lymphopoiesis varies during development. We hypothesize that during development some of the "hits" needed for the onset of leukemia are usually occurring (being part of the normal development), so leukemogenesis needs less mutations than in adults to take place and therefore it's more probable. The switch between the relative incidence of acute myeloid and lymphoid leukemias may be related to the changes of the percentage of lymphoid-deficient and lymphoid-proficient sub-set of HSCs during development. Further investigations may clarify this hypothesis, elucidating also the roles of the different microenvironments in determining the myeloid/lymphoid predisposition of the HSCs. PMID:26880643

  6. Open Label, Phase II Study to Evaluate Efficacy and Safety of Oral Nilotinib in Philadelphia Positive (Ph+) Chronic Myelogenous Leukemia (CML) Pediatric Patients.

    ClinicalTrials.gov

    2016-08-05

    Leukemia; Leukemia,Pediatric; Leukemia, Myleiod; Leukemia, Mylegenous, Chronic; Leukemia, Mylegenous, Accelerated; BCR-ABL Positive; Myeloproliferative Disorder; Bone Marrow Disease; Hematologic Diseases; Neoplastic Processes; Imatinib; Dasatinib; Enzyme Inhibitor; Protein Kinase Inhibitor

  7. Expression of CD133 in acute leukemia.

    PubMed

    Tolba, Fetnat M; Foda, Mona E; Kamal, Howyda M; Elshabrawy, Deena A

    2013-06-01

    There have been conflicting results regarding a correlation between CD133 expression and disease outcome. To assess CD133 expression in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome, the present study included 60 newly diagnosed acute leukemic patients; 30 ALL patients with a male to female ratio of 1.5:1 and their ages ranged from 9 months to 48 years, and 30 AML patients with a male to female ratio of 1:1 and their ages ranged from 17 to 66 years. Flow cytometric assessment of CD133 expression was performed on blast cells. In ALL, no correlations were elicited between CD133 expression and some monoclonal antibodies, but in AML group, there was a significant positive correlation between CD133 and HLA-DR, CD3, CD7 and TDT, CD13 and CD34. In ALL group, patients with negative CD133 expression achieved complete remission more than patients with positive CD133 expression. In AML group, there was no statistically significant association found between positive CD133 expression and treatment outcome. The Kaplan-Meier curve illustrated a high significant negative correlation between CD133 expression and the overall survival of the AML patients. CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemic patients with higher resistance to standard chemotherapy and relapse. CD133 expression was highly associated with poor prognosis in acute leukemic patients. PMID:23532815

  8. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Hematopoietic Cell Transplantation for Acute Lymphoblastic Leukemia in Adults.

    PubMed

    Speziali, Craig; Paulson, Kristjan; Seftel, Matthew

    2016-06-01

    The majority of adults with acute lymphoblastic leukemia will achieve a first complete remission (CR). However relapse is the most common cause of treatment failure. Outcomes after relapse remain poor, with long-term survival in the order of 10 %. Treatment decisions made at the time of first complete remission are thus critical to ensuring long-term survival. Allogeneic hematopoietic cell transplant (HCT) is effective at preventing relapse in many transplant recipients but is also associated with significant treatment related morbidity and mortality. Alternatively, ongoing systemic chemotherapy offers lower toxicity at the expense of increased relapse rates. Over the past decades, both the safety of transplant and the efficacy of non-transplant chemotherapy have improved. Emerging data show substantially improved outcomes for young adults treated with pediatric-inspired chemotherapy regimens that question the role of HCT in the upfront setting. In this review, we review the data supporting the role of allogeneic transplantation in adult acute lymphoblastic leukemia (ALL), and we propose a therapeutic algorithm for upfront therapy of adults with ALL. PMID:26984203

  10. Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-27

    Acute Erythroid Leukemia; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ring Sideroblasts

  11. 7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasms; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  13. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  14. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia or Acute Leukemia in Remission

    ClinicalTrials.gov

    2016-06-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia

  16. Tretinoin, Cytarabine, and Daunorubicin Hydrochloride With or Without Arsenic Trioxide Followed by Tretinoin With or Without Mercaptopurine and Methotrexate in Treating Patients With Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  17. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  18. Acute nonlymphocytic leukemia following bladder instillations with thiotepa.

    PubMed Central

    Easton, D. J.; Poon, M. A.

    1983-01-01

    A case of therapy-related leukemia is described. Other cases of acute nonlymphocytic leukemia have been associated with the intramuscular administration of thiotepa (an alkylating agent), but this patient received only intravesical instillations of the drug. The interval between the start of chemotherapy and the onset of leukemia was 56 months. PMID:6411320

  19. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  20. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice.

    PubMed

    Gopalakrishnapillai, Anilkumar; Kolb, E Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W; Corao, Diana; Barwe, Sonali P

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80-90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  1. Generation of Pediatric Leukemia Xenograft Models in NSG-B2m Mice: Comparison with NOD/SCID Mice

    PubMed Central

    Gopalakrishnapillai, Anilkumar; Kolb, E. Anders; Dhanan, Priyanka; Bojja, Aruna Sri; Mason, Robert W.; Corao, Diana; Barwe, Sonali P.

    2016-01-01

    Generation of orthotopic xenograft mouse models of leukemia is important to understand the mechanisms of leukemogenesis, cancer progression, its cross talk with the bone marrow microenvironment, and for preclinical evaluation of drugs. In these models, following intravenous injection, leukemic cells home to the bone marrow and proliferate there before infiltrating other organs, such as spleen, liver, and the central nervous system. Moreover, such models have been shown to accurately recapitulate the human disease and correlate with patient response to therapy and prognosis. Thus, various immune-deficient mice strains have been used with or without recipient preconditioning to increase engraftment efficiency. Mice homozygous for the severe combined immune deficiency (SCID) mutation and with non-obese diabetic background (NOD/SCID) have been used in the majority of leukemia xenograft studies. Later, NOD/SCID mice deficient for interleukin 2 receptor gamma chain (IL2Rγ) gene called NSG mice became the model of choice for leukemia xenografts. However, engraftment of leukemia cells without irradiation preconditioning still remained a challenge. In this study, we used NSG mice with null alleles for major histocompatibility complex class I beta2-microglobulin (β2m) called NSG-B2m. This is a first report describing the 100% engraftment efficiency of pediatric leukemia cell lines and primary samples in NSG-B2m mice in the absence of host preconditioning by sublethal irradiation. We also show direct comparison of the engraftment efficiency and growth rate of pediatric acute leukemia cells in NSG-B2m and NOD/SCID mice, which showed 80–90% engraftment efficiency. Secondary and tertiary xenografts in NSG-B2m mice generated by injection of cells isolated from the spleens of leukemia-bearing mice also behaved similar to the primary patient sample. We have successfully engrafted 25 acute lymphoblastic leukemia (ALL) and 5 acute myeloid leukemia (AML) patient samples with

  2. Ipilimumab in Treating Patients With Relapsed or Refractory High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-27

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  3. WEE1 Inhibitor AZD1775 With or Without Cytarabine in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-01-25

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In ... 1 link) PubMed Sources for This Page Döhner H. Implication of the molecular characterization of acute myeloid ...

  5. Pediatric donor cell leukemia after allogeneic hematopoietic stem cell transplantation in AML patient from related donor.

    PubMed

    Bobadilla-Morales, Lucina; Pimentel-Gutiérrez, Helia J; Gallegos-Castorena, Sergio; Paniagua-Padilla, Jenny A; Ortega-de-la-Torre, Citlalli; Sánchez-Zubieta, Fernando; Silva-Cruz, Rocio; Corona-Rivera, Jorge R; Zepeda-Moreno, Abraham; González-Ramella, Oscar; Corona-Rivera, Alfredo

    2015-01-01

    Here we present a male patient with acute myeloid leukemia (AML) initially diagnosed as M5 and with karyotype 46,XY. After induction therapy, he underwent a HLA-matched allogeneic hematopoietic stem cell transplantation, and six years later he relapsed as AML M1 with an abnormal karyotype //47,XX,+10[2]/47,XX,+11[3]/48,XX,+10,+11[2]/46,XX[13]. Based on this, we tested the possibility of donor cell origin by FISH and molecular STR analysis. We found no evidence of Y chromosome presence by FISH and STR analysis consistent with the success of the allogeneic hematopoietic stem cell transplantation from the female donor. FISH studies confirmed trisomies and no evidence of MLL translocation either p53 or ATM deletion. Additionally 28 fusion common leukemia transcripts were evaluated by multiplex reverse transcriptase-polymerase chain reaction assay and were not rearranged. STR analysis showed a complete donor chimerism. Thus, donor cell leukemia (DCL) was concluded, being essential the use of cytological and molecular approaches. Pediatric DCL is uncommon, our patient seems to be the sixth case and additionally it presented a late donor cell leukemia appearance. Different extrinsic and intrinsic mechanisms have been considered to explain this uncommon finding as well as the implications to the patient. PMID:25674158

  6. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-03-01

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  7. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  8. Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-10

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Targeting the Microenvironment in Acute Myeloid Leukemia

    PubMed Central

    Rashidi, Armin; Uy, Geoffrey L.

    2015-01-01

    The bone marrow microenvironment plays a critical role in the development, progression, and relapse of acute myeloid leukemia (AML). Similar to normal hematopoietic stem cells, AML blasts express receptors on their surface, allowing them to interact with specific components of the marrow microenvironment. These interactions contribute to both chemotherapy resistance and disease relapse. Preclinical studies and early phase clinical trials have demonstrated the potential for targeting the tumor-microenvironment interactions in AML. Agents currently under investigation include hypoxia-inducible agents and inhibitors of CXCR4 and adhesion molecules such as VLA-4 and E-selectin. PMID:25921388

  10. Acute Myeloid Leukemia: A Concise Review

    PubMed Central

    Saultz, Jennifer N.; Garzon, Ramiro

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field including new drug targets and increased understanding of the biology, AML treatment remains unchanged for the past three decades with the majority of patients eventually relapsing and dying of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate or high risk disease. In this review, we discuss the landmark genetic studies that have improved outcome prediction and novel therapies. PMID:26959069

  11. Corrigendum: The Associations Between Maternal Factors During Pregnancy and the Risk of Childhood Acute Lymphoblastic Leukemia: A Meta-Analysis.

    PubMed

    Yan, Kangkang; Xu, Xuejing; Liu, Xiaodong; Wang, Xikui; Hua, Shucheng; Wang, Chunpeng; Liu, Xin

    2016-05-01

    Because of the erroneous application of multiple publications, the conclusions of our recent paper (Pediatr Blood Cancer 2015;62:1162-70) were not reliable. The corrected results show that coffee drinking during pregnancy was risk factor for childhood acute lymphoblastic leukemia (OR = 1.44, 95% confidence interval = 1.07-1.92). PMID:26999072

  12. Acute myeloid leukemia: advances in diagnosis and classification.

    PubMed

    Hasserjian, R P

    2013-06-01

    Acute myeloid leukemia is an aggressive myeloid neoplasm characterized by ≥20% myeloblasts in the blood or bone marrow. Current treatment strategies for acute myeloid leukemia are based on both patient-related parameters such as age and performance status as well as the intrinsic characteristics of particular disease subtypes. Subtyping of acute myeloid leukemia requires an integration of information from the patient's clinical history (such as any prior preleukemic myeloid neoplasm or cytotoxic potentially leukemogenic therapy), the leukemia morphology, cytogenetic findings, and the mutation status of particular genes (NPM1, FLT3, and CEBPA). In recent years, a barrage of information has become available regarding gene mutations that occur in acute myeloid leukemia and their influence on prognosis. Future therapies for acute myeloid leukemia will increasingly rely on the genetic signatures of individual leukemias and will adjust therapy to the predicted disease aggressiveness as well as employ therapies targeted against particular deregulated genetic pathways. This article reviews current standards for diagnosing and classifying acute myeloid leukemia according to the 2008 WHO Classification. Data that have subsequently accumulated regarding newly characterized gene mutations are also presented. It is anticipated that future leukemia classifications will employ a combination of karyotypic features and the gene mutation pattern to stratify patients to increasingly tailored treatment plans. PMID:23590662

  13. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-04-26

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  14. Microenvironmental cues for T-cell acute lymphoblastic leukemia development.

    PubMed

    Passaro, Diana; Quang, Christine Tran; Ghysdael, Jacques

    2016-05-01

    Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia. PMID:27088913

  15. Epidemiology of childhood acute myelogenous leukemia.

    PubMed

    Bhatia, S; Neglia, J P

    1995-05-01

    Acute myelogenous leukemia (AML) is the second most common leukemia in children, with approximately 400 new cases occurring annually in the United States. Worldwide, the highest rates of childhood AML occur in Asia and the lowest rates are reported from India and South America. Numerous genetic risk factors for childhood AML have been defined, including Down syndrome, neurofibromatosis, and Fanconi anemia. Research into environmental risk factors has been limited by the rarity of this disease; however, studies of AML in adults have implicated ionizing radiation, solvents, and petroleum products as potential etiologic agents. The largest analytic study of childhood AML found that occupational exposures of either parent to pesticides, paternal exposure to petroleum products, and postnatal exposures to pesticides are increased in children with AML. In addition, maternal use of marijuana during pregnancy was associated with an increased risk of AML, especially the monocytic subtypes. Further study of childhood AML, including occurrence of the disease as a second malignancy, is needed in order to confirm these findings and to increase our understanding of this leukemia. PMID:7749772

  16. Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms

    PubMed Central

    Hernández, Antonio F.; Menéndez, Pablo

    2016-01-01

    Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events. PMID:27043530

  18. Nuclear imaging in the pediatric acute scrotum

    SciTech Connect

    Valvo, J.R.; Caldamone, A.A.; O'Mara, R.; Rabinowitz, R.

    1982-09-01

    The acute scrotum in the pediatric patient frequently presents a diagnostic dilemma for even the most experienced clinician. In an effort to improve testicular salvage in equivocal cases, immediate surgical intervention has been recommended, despite a large number of unnecessary explorations. Evaluating the sodium pertechnetate /sup 99m/Tc radioisotopic scan in 46 boys, we found this study to be a rapid, reliable, sensitive, and noninvasive test that allows the selection of those patients who require immediate surgical intervention.

  19. Dasatinib and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-03-25

    Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  20. [Leukemia research in Germany: the Competence Network Acute and Chronic Leukemias].

    PubMed

    Kossak-Roth, Ute; Saußele, Susanne; Aul, Carlo; Büchner, Thomas; Döhner, Hartmut; Dugas, Martin; Ehninger, Gerhard; Ganser, Arnold; Giagounidis, Aristoteles; Gökbuget, Nicola; Griesshammer, Martin; Hasford, Jörg; Heuser, Michael; Hiddemann, Wolfgang; Hochhaus, Andreas; Hoelzer, Dieter; Niederwieser, Dietger; Reiter, Andreas; Röllig, Christoph; Hehlmann, Rüdiger

    2016-04-01

    The Competence Network "Acute and Chronic Leukemias" was founded in 1997 by the consolidation of the leading leukemia study groups in Germany. Key results are the development of new trials and cooperative studies, the setup of patient registries and biobanking facilities, as well as the improvement of study infrastructure. In 2003, the concept of the competence network contributed to the foundation of the European LeukemiaNet (ELN). Synergy with the ELN resulted in cooperation on a European and international level, standardization of diagnostics and treatment, and recommendations for each leukemia and interdisciplinary specialty. The ultimate goal of the network is the cure of leukemia through cooperative research. PMID:26979719

  1. Sorafenib Tosylate and Chemotherapy in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-05

    Acute Myeloid Leukemia (Megakaryoblastic) With t(1;22)(p13;q13); RBM15-MKL1; Acute Myeloid Leukemia With a Variant RARA Translocation; Acute Myeloid Leukemia With Inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1; Acute Myeloid Leukemia With t(6;9)(p23;q34); DEK-NUP214; Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Acute Myeloid Leukemia With Variant MLL Translocations; Untreated Adult Acute Myeloid Leukemia

  2. Acute megakaryoblastic leukemia, unlike acute erythroid leukemia, predicts an unfavorable outcome after allogeneic HSCT.

    PubMed

    Ishiyama, Ken; Yamaguchi, Takuhiro; Eto, Tetsuya; Ohashi, Kazuteru; Uchida, Naoyuki; Kanamori, Heiwa; Fukuda, Takahiro; Miyamura, Koichi; Inoue, Yoshiko; Taguchi, Jun; Mori, Takehiko; Iwato, Koji; Morishima, Yasuo; Nagamura-Inoue, Tokiko; Atsuta, Yoshiko; Sakamaki, Hisashi; Takami, Akiyoshi

    2016-08-01

    Acute erythroid leukemia (FAB-M6) and acute megakaryoblastic leukemia (FAB-M7) exhibit closely related properties in cells regarding morphology and the gene expression profile. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the mainstay of the treatment for both subtypes of leukemia due to their refractoriness to chemotherapy and high rates of relapse, it remains unclear whether allo-HSCT is curative in such cases due to their scarcity. We retrospectively examined the impact of allo-HSCT in 382 patients with M6 and 108 patients with M7 using nationwide HSCT data and found the overall survival (OS) and relapse rates of the M6 patients to be significantly better than those of the M7 patients after adjusting for confounding factors and statistically comparable with those of the patients with M0/M1/M2/M4/M5 disease. Consequently, the factors of age, gender, performance status, karyotype, disease status at HSCT and development of graft-vs.-host disease predicted the OS for the M6 patients, while the performance status and disease status at HSCT were predictive of the OS for the M7 patients. These findings substantiate the importance of distinguishing between M6 and M7 in the HSCT setting and suggest that unknown mechanisms influence the HSCT outcomes of these closely related subtypes of leukemia. PMID:27244257

  3. MEK Inhibitor MEK162, Idarubicin, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  4. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2012-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  5. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  6. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  7. Challenges of clinical trial design for targeted agents against pediatric leukemias.

    PubMed

    Mussai, Francis Jay; Yap, Christina; Mitchell, Christopher; Kearns, Pamela

    2014-01-01

    The past 40 years have seen significant improvements in both event-free and overall survival for children with acute lymphoblastic and acute myeloid leukemia (ALL and AML, respectively). Serial national and international clinical trials have optimized the use of conventional chemotherapeutic drugs and, along with improvements in supportive care that have enabled the delivery of more intensive regimens, have been responsible for the major improvements in patient outcome seen over the past few decades. However, the benefits of dose intensification have likely now been maximized, and over the same period, the identification of new cytotoxic drugs has been limited. Therefore, challenges remain if survival is to be improved further. In pediatric ALL, 5-year-survival rates of over 85% have been achieved with risk-stratified therapy, but a notable minority of patients will still not be cured. In pediatric AML, different challenges remain. A slower improvement in overall survival has taken place in this patient population. Despite the obvious morphological heterogeneity of AML blasts, biological stratification is comparatively limited, and translation into risk-stratified therapeutic approaches has only best characterized by the use of retinoic acid for t(15;17)-positive AML. Even where prognostic markers have been identified, limited therapeutic options or multi-drug resistance of AML blasts has limited the impact on patient benefit. For both, the acute morbidities of current treatment remain significant and may be life-threatening alone. In addition, the Childhood Cancer Survivor Study (CCSS) highlighted many leukemia survivors develop one or more chronic medical conditions attributable to treatment (1, 2). As the biology of leukemogenesis has become better understood, key molecules and intracellular pathways have been identified that offer the possibility of targeting directly the leukemia cells while sparing normal cells. Consequently, there is now a drive to develop

  8. Varicella zoster immune status in children treated for acute leukemia.

    PubMed

    Patel, Soonie R; Bate, Jessica; Maple, Peter A C; Brown, Kevin; Breuer, Judith; Heath, Paul T

    2014-11-01

    Children treated for acute leukemia are at increased risk of severe infection with varicella zoster virus (VZV). We studied the VZV sero-status of children with acute leukemia prior to starting chemotherapy and after completion of chemotherapy. VZV sero-status was assessed using time resolved fluorescence immunoassay (TRFIA) before starting treatment and 6 months after completion of treatment. Prior to starting treatment for acute leukemia, a significant proportion of children (35%) are VZV seronegative. On completion of treatment most patients maintained protective VZV antibody levels; however, 35% had reduced/loss VZV antibody to a level considered non-protective and susceptible to VZV infection. PMID:24789692

  9. Prethymic Cytoplasmic CD3 Negative Acute Lymphoblastic Leukemia or Acute Undifferentiated Leukemia: A Case Report

    PubMed Central

    Cannizzo, Elisa; Carulli, Giovanni; Del Vecchio, Luigi; Azzarà, Antonio; Galimberti, Sara; Ottaviano, Virginia; Preffer, Frederic; Petrini, Mario

    2011-01-01

    Acute undiffentiated leukemia (AUL) is an acute leukemia with no more than one membrane marker of any given lineage. Blasts often express HLA-DR, CD34, and/or CD38 and may be positive for terminal deoxynucleotidyl transferase (TdT). The expression of CD34, HLA-DR, and CD38 has been shown in pro-T-ALL, although in this case, blasts should also express CD7 and cyCD3. However, some cases of T-ALL without CD3 in the cytoplasm and all TCR chain genes in germ line configuration are reported, features that fit well with a very early hematopoietic cell. We report a case of acute leukemia CD34+/−HLADR+CD7+CD38+cyCD3− in which a diagnosis of AUL was considered. However the blasts were also positive for CD99 and TCR delta gene rearrangement which was found on molecular studies. Therefore a differential diagnosis between AUL and an early cyCD3 negative T-ALL was debated. PMID:22937302

  10. Acute myeloid leukemia in the vascular niche.

    PubMed

    Cogle, Christopher R; Bosse, Raphael C; Brewer, Takae; Migdady, Yazan; Shirzad, Reza; Kampen, Kim Rosalie; Saki, Najmaldin

    2016-10-01

    The greatest challenge in treating acute myeloid leukemia (AML) is refractory disease. With approximately 60-80% of AML patients dying of relapsed disease, there is an urgent need to define and target mechanisms of drug resistance. Unfortunately, targeting cell-intrinsic resistance has failed to improve clinical outcomes in AML. Emerging data show that cell-extrinsic factors in the bone marrow microenvironment protect and support AML cells. The vascular niche, in particular, regulates AML cell survival and cell cycling by both paracrine secretion and adhesive contact with endothelial cells. Moreover, AML cells can functionally integrate within vascular endothelia, undergo quiescence, and resist cytotoxic chemotherapy. Together, these findings support the notion of blood vessels as sanctuary sites for AML. Therefore, vascular targeting agents may serve to remit AML. Several early phase clinical trials have tested anti-angiogenic agents, leukemia mobilizing agents, and vascular disrupting agents in AML patients. In general, these agents can be safely administered to AML patients and cardiovascular side effects were reported. Response rates to vascular targeting agents in AML have been modest; however, a majority of vascular targeting trials in AML are monotherapy in design and indiscriminate in patient recruitment. When considering the chemosensitizing effects of targeting the microenvironment, there is a strong rationale to build upon these early phase clinical trials and initiate phase IB/II trials of combination therapy where vascular targeting agents are positioned as priming agents for cytotoxic chemotherapy. PMID:25963886

  11. Monoclonal antibodies in acute lymphoblastic leukemia

    PubMed Central

    O’Brien, Susan; Ravandi, Farhad; Kantarjian, Hagop

    2015-01-01

    With modern intensive combination polychemotherapy, the complete response (CR) rate in adults with acute lymphoblastic leukemia (ALL) is 80% to 90%, and the cure rate is 40% to 50%. Hence, there is a need to develop effective salvage therapies and combine novel agents with standard effective chemotherapy. ALL leukemic cells express several surface antigens amenable to target therapies, including CD20, CD22, and CD19. Monoclonal antibodies target these leukemic surface antigens selectively and minimize off-target toxicity. When added to frontline chemotherapy, rituximab, an antibody directed against CD20, increases cure rates of adults with Burkitt leukemia from 40% to 80% and those with pre-B ALL from 35% to 50%. Inotuzumab ozogamicin, a CD22 monoclonal antibody bound to calicheamicin, has resulted in marrow CR rates of 55% and a median survival of 6 to 7 months when given to patients with refractory-relapsed ALL. Blinatumomab, a biallelic T cell engaging the CD3-CD19 monoclonal antibody, also resulted in overall response rates of 40% to 50% and a median survival of 6.5 months in a similar refractory-relapsed population. Other promising monoclonal antibodies targeting CD20 (ofatumumab and obinutuzumab) or CD19 or CD20 and bound to different cytotoxins or immunotoxins are under development. Combined modalities of chemotherapy and the novel monoclonal antibodies are under investigation. PMID:25999456

  12. Mixed Phenotypic Acute Leukemia Presenting as Mediastinal Mass-2 Cases.

    PubMed

    Vardhan, Rig; Kotwal, Jyoti; Ganguli, Prosenjit; Ahmed, Rehan; Sharma, Ajay; Singh, Jasjit

    2016-06-01

    Mixed phenotype acute leukemia symbolizes a very small subset of acute leukemia that simply cannot be allocated as lymphoid or myeloid lineage. The 2008 World Health Organisation classification established stringent standard for diagnosis of mixed phenotype acute leukemia, accentuating myeloperoxidase for myeloid lineage, cytoplasmic CD3 for T lineage and CD19 with other B markers for B lineage obligation. Mixed phenotype leukemia is rare and 3-5 % of acute leukmias of all age groups, is associated with poor outcome with overall survival of 18 months. We wish to present two cases of mixed phenotypic acute leukemia who presented with mediastinal masses, were suspected to be T cell lymphoma/leukemia clinically and radiologically. In one case, tissue diagnosis was given as lymphoma for which treatment was given. These cases show that patients diagnosed as lymphoma on histopathology can be cases of mixed phenotype acute leukemia and varying specific treatment protocols and follow up are required. Awareness of these entities will help in proper diagnosis and treatment. PMID:27408360

  13. New Strategies in Acute Myelogenous Leukemia: Leukemogenesis and Personalized Medicine

    PubMed Central

    Gojo, Ivana; Karp, Judith E.

    2014-01-01

    Recent advances in molecular technology have unraveled the complexity of leukemogenesis and provided the opportunity to design more personalized and pathophysiology-targeted therapeutic strategies. Despite the use of intensive chemotherapy, relapse remains the most common cause for therapeutic failure in acute myelogenous leukemia (AML). The interactions between leukemia stem cells (LSC) and marrow microenvironment appear to be critical in promoting therapeutic resistance through progressive acquisition of genetic and epigenetic changes within leukemia cells and immune evasion, resulting in leukemia cell survival. With advances in genomic sequencing efforts, epigenetic and phenotypic characterization, personalized therapeutic strategies aimed at critical leukemia survival mechanisms may be feasible in the near future. Here, we review select novel approaches to therapy of AML such as targeting LSC, altering leukemia/marrow microenvironment interactions, inhibiting DNA repair or cell cycle checkpoints, and augmenting immune-based anti-leukemia activity. PMID:25324141

  14. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  15. Comparative proteomics in acute myeloid leukemia

    PubMed Central

    Luczak, Magdalena; Kaźmierczak, Maciej; Hadschuh, Luiza; Lewandowski, Krzysztof; Komarnicki, Mieczysław

    2012-01-01

    The term proteomics was used for the first time in 1995 to describe large-scale protein analyses. At the same time proteomics was distinguished as a new domain of the life sciences. The major object of proteomic studies is the proteome, i.e. the set of all proteins accumulating in a given cell, tissue or organ. During the last years several new methods and techniques have been developed to increase the fidelity and efficacy of proteomic analyses. The most widely used are two-dimensional electrophoresis (2DE) and mass spectrometry (MS). In the past decade proteomic analyses have also been successfully applied in biomedical research. They allow one to determine how various diseases affect the pattern of protein accumulation. In this paper, we attempt to summarize the results of the proteomic analyses of acute myeloid leukemia (AML) cells. They have increased our knowledge on the mechanisms underlying AML development and contributed to progress in AML diagnostics and treatment. PMID:23788862

  16. Novel Therapeutic Strategies in Acute Lymphoblastic Leukemia.

    PubMed

    Dias, Ajoy; Kenderian, Saad J; Westin, Gustavo F; Litzow, Mark R

    2016-08-01

    Chemotherapy cures only a minority of adult patients with acute lymphoblastic leukemia (ALL). In addition, relapsed ALL has a poor outcome with 5-year survival as low as 7 %. Hence, there is a need to develop effective therapies to treat relapsed disease and to combine these agents with chemotherapy to improve outcomes in newly diagnosed patients. ALL cells express several antigens amenable to target therapies including CD19, CD20, CD22, and CD52. Over the last decade, there has been a surge in the development of immune therapies which target these receptors and that have induced robust responses. In this manuscript, we review these novel immune agents in the treatment of B-ALL. As these new therapies mature, the challenge going forward will be to find safe and effective combinations of these agents with chemotherapy and to determine their place in the current treatment schema. PMID:27101015

  17. Aspergillus osteoarthritis in acute lymphoblastic leukemia.

    PubMed

    Gunsilius, E; Lass-Flörl, C; Mur, E; Gabl, C; Gastl, G; Petzer, A L

    1999-11-01

    We report an unusual case of arthritis of the right wrist due to Aspergillus fumigatus without evidence for a generalized infection, following chemotherapy for acute lymphoblastic leukemia. The diagnosis was made by surgical biopsy. Amphotericin-B (Am-B) was not tolerated by the patient. Liposomal preparations of Am-B penetrate poorly into bone and cartilage. Therefore, oral itraconazole was given; the arthritis improved and chemotherapy was continued without infectious complications. Two weeks after complete hematopoietic recovery, an intracranial hemorrhage from a mycotic aneurysm of a brain vessel occurred, although the patient was still receiving itraconazole. We emphasize the importance of prompt and thorough efforts to identify the causative agent in immunocompromised patients with a joint infection. Itraconazole is effective in Aspergillus osteoarthritis but, due to its poor penetration into the brain, the combination with a liposomal formulation of Am-B is recommended. PMID:10602898

  18. Acute Myeloid Leukemia Presenting with Pulmonary Tuberculosis

    PubMed Central

    Thomas, Merlin; AlGherbawe, Mushtak

    2014-01-01

    We report the case of a 58-year-old immunocompetent man presenting with fever, cough, anorexia, weight loss, and cervical lymphadenopathy. Blood investigations revealed severe neutropenia with monocytosis. Chest imaging showed bilateral reticular infiltrates with mediastinal widening. Bronchoalveolar lavage culture and molecular test were positive for Mycobacterium tuberculosis and treatment with isoniazid, rifampicin, pyrazinamide, and ethambutol was started. Although pulmonary tuberculosis could explain this clinical presentation we suspected associated blood dyscrasias in view of significant monocytosis and mild splenomegaly. Bone marrow aspiration revealed acute myeloid leukemia. Thereafter the patient received induction chemotherapy and continued antituberculous treatment. After first induction of chemotherapy patient was in remission and successfully completed 6 months antituberculosis therapy without any complications. To our knowledge there has been no such case reported from the State of Qatar to date. PMID:24987539

  19. Perinatal risk factors for acute myeloid leukemia.

    PubMed

    Crump, Casey; Sundquist, Jan; Sieh, Weiva; Winkleby, Marilyn A; Sundquist, Kristina

    2015-12-01

    Infectious etiologies have been hypothesized for acute leukemias because of their high incidence in early childhood, but have seldom been examined for acute myeloid leukemia (AML). We conducted the first large cohort study to examine perinatal factors including season of birth, a proxy for perinatal infectious exposures, and risk of AML in childhood through young adulthood. A national cohort of 3,569,333 persons without Down syndrome who were born in Sweden in 1973-2008 were followed up for AML incidence through 2010 (maximum age 38 years). There were 315 AML cases in 69.7 million person-years of follow-up. We found a sinusoidal pattern in AML risk by season of birth (P < 0.001), with peak risk among persons born in winter. Relative to persons born in summer (June-August), incidence rate ratios for AML were 1.72 (95 % CI 1.25-2.38; P = 0.001) for winter (December-February), 1.37 (95 % CI 0.99-1.90; P = 0.06) for spring (March-May), and 1.27 (95 % CI 0.90-1.80; P = 0.17) for fall (September-November). Other risk factors for AML included high fetal growth, high gestational age at birth, and low maternal education level. These findings did not vary by sex or age at diagnosis. Sex, birth order, parental age, and parental country of birth were not associated with AML. In this large cohort study, birth in winter was associated with increased risk of AML in childhood through young adulthood, possibly related to immunologic effects of early infectious exposures compared with summer birth. These findings warrant further investigation of the role of seasonally varying perinatal exposures in the etiology of AML. PMID:26113060

  20. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-04-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  1. Adult Acute Myeloid Leukemia Long-term Survivors

    PubMed Central

    Cheng, M. Jennifer; Hourigan, Christopher S.; Smith, Thomas J.

    2014-01-01

    The number of leukemia patients and survivors is growing. This review summarizes what is known regarding the health related quality of life (HRQOL) and medical complications associated with acute myeloid leukemia (AML) disease and treatment and highlights understudied aspects of adult AML survivorship care, and potential novel areas for intervention. PMID:25243197

  2. Symptom-Adapted Physical Activity Intervention in Minimizing Physical Function Decline in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-09-14

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  4. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    MedlinePlus

    ... N. A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation. Genes Chromosomes Cancer. 2010 Mar; ...

  5. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers with the potential to i

  6. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  7. Acute Lymphoblastic Leukemia (ALL) Treatment in Adults (Beyond the Basics)

    MedlinePlus

    ... 2016 UpToDate, Inc. Patient information: Acute lymphoblastic leukemia (ALL) treatment in adults (Beyond the Basics) Author Richard ... the content. Appropriately referenced content is required of all authors and must conform to UpToDate standards of ...

  8. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy.

    PubMed

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M Iqbal; Rahman, Atta-Ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using (1)H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  9. Molecular Analysis of Central Nervous System Disease Spectrum in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Hicks, Chindo; Sitthi-Amorn, Jitsuda; Douglas, Jessica; Ramani, Ritika; Miele, Lucio; Vijayakumar, Vani; Karlson, Cynthia; Chipeta, James; Megason, Gail

    2016-01-01

    Treatment of the central nervous system (CNS) is an essential therapeutic component in childhood acute lymphoblastic leukemia (ALL). The goal of this study was to identify molecular signatures distinguishing patients with CNS disease from those without the disease in pediatric patients with ALL. We analyzed gene expression data from 207 pediatric patients with ALL. Patients without CNS were classified as CNS1, while those with mild and advanced CNS disease were classified as CNS2 and CNS3, respectively. We compared gene expression levels among the three disease classes. We identified gene signatures distinguishing the three disease classes. Pathway analysis revealed molecular networks and biological pathways dysregulated in response to CNS disease involvement. The identified pathways included the ILK, WNT, B-cell receptor, AMPK, ERK5, and JAK signaling pathways. The results demonstrate that transcription profiling could be used to stratify patients to guide therapeutic decision-making in pediatric ALL. PMID:26997880

  10. Splenic actinomycotic abscess in a patient with acute myeloid leukemia.

    PubMed

    Chen, C-Y; Chen, Y-C; Tang, J-L; Lin, W-C; Su, I-J; Tien, H-F

    2002-09-01

    Actinomycosis is a gram-positive anaerobic bacterium. Actinomyces organisms are important constituents of the normal flora of mucous membranes and are considered opportunistic pathogens. The three major clinical presentations of actinomycosis include the cervicofacial, thoracic, and abdominopelvic regions. Actinomycosis infection in patients with febrile neutropenia is uncommon and actinomycosis splenic involvement in acute leukemia patients is very rare. We describe a man with acute myeloid leukemia and splenic actinomycotic abscess that developed after chemotherapy following prolonged neutropenia. PMID:12373356

  11. Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-10-09

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  12. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Novel and Emerging Drugs for Acute Myeloid Leukemia

    PubMed Central

    Stein, E.M.; Tallman, M.S.

    2014-01-01

    Acute myeloid leukemia (AML) is a challenging disease to treat with the majority of patients dying from their illness. While overall survival has been markedly prolonged in acute promyelocytic leukemia (APL), survival in younger adults with other subtypes of AML has only modestly improved over the last twenty years. Physicians who treat AML eagerly await drugs like Imatinib for chronic myeloid leukemia, Cladribine for hairy cell leukemia, and Rituximab for non-Hodgkin Lymphoma which have had an important impact on improving outcome. Recent research efforts have focused on refining traditional chemotherapeutic agents to make them more active in AML, targeting specific genetic mutations in myeloid leukemia cells, and utilizing novel agents such as Lenalidomide that have shown activity in other hematologic malignancies. Here, we focus on reviewing the recent literature on agents that may assume a role in clinical practice for patients with AML over the next five years. PMID:22483153

  14. Allogeneic Hematopoietic Cell Transplantation for Patients with Mixed Phenotype Acute Leukemia.

    PubMed

    Munker, Reinhold; Brazauskas, Ruta; Wang, Hai Lin; de Lima, Marcos; Khoury, Hanna J; Gale, Robert Peter; Maziarz, Richard T; Sandmaier, Brenda M; Weisdorf, Daniel; Saber, Wael

    2016-06-01

    Acute biphenotypic leukemias or mixed phenotype acute leukemias (MPAL) are rare and considered high risk. The optimal treatment and the role of allogeneic hematopoietic stem cell transplantation (alloHCT) are unclear. Most prior case series include only modest numbers of patients who underwent transplantation. We analyzed the outcome of 95 carefully characterized alloHCT patients with MPAL reported to the Center for International Blood and Marrow Transplant Research between 1996 and 2012. The median age was 20 years (range, 1 to 68). Among the 95 patients, 78 were in first complete remission (CR1) and 17 were in second complete remission (CR2). Three-year overall survival (OS) of 67% (95% confidence interval [CI], 57 to 76), leukemia-free survival of 56% (95% CI, 46 to 66), relapse incidence of 29% (95% CI, 20 to 38), and nonrelapse mortality of 15% (95% CI, 9 to 23) were encouraging. OS was best in younger patients (<20 years), but no significant differences were observed between those 20 to 40 years of age and those who were 40 years or older. A matched-pair analysis showed similar outcomes comparing MPAL cases to 375 acute myelogenous leukemia or 359 acute lymphoblastic leukemia cases. MPAL patients had more acute and a trend for more chronic graft-versus-host disease. No difference was observed between patients who underwent transplantation in CR1 versus those who underwent transplantation in CR2. AlloHCT is a promising treatment option for pediatric and adult patients with MPAL with encouraging long-term survival. PMID:26903380

  15. Outcomes of pediatric bone marrow transplantation for leukemia and myelodysplasia using matched sibling, mismatched related, or matched unrelated donors

    PubMed Central

    Kan, Fangyu; Woo Ahn, Kwang; Spellman, Stephen R.; Aljurf, Mahmoud; Ayas, Mouhab; Burke, Michael; Cairo, Mitchell S.; Chen, Allen R.; Davies, Stella M.; Frangoul, Haydar; Gajewski, James; Gale, Robert Peter; Godder, Kamar; Hale, Gregory A.; Heemskerk, Martin B.A.; Horan, John; Kamani, Naynesh; Kasow, Kimberly A.; Chan, Ka Wah; Lee, Stephanie J.; Leung, Wing H.; Lewis, Victor A.; Miklos, David; Oudshoorn, Machteld; Petersdorf, Effie W.; Ringdén, Olle; Sanders, Jean; Schultz, Kirk R.; Seber, Adriana; Setterholm, Michelle; Wall, Donna A.; Yu, Lolie; Pulsipher, Michael A.

    2010-01-01

    Although some trials have allowed matched or single human leukocyte antigen (HLA)–mismatched related donors (mmRDs) along with HLA-matched sibling donors (MSDs) for pediatric bone marrow transplantation in early-stage hematologic malignancies, whether mmRD grafts lead to similar outcomes is not known. We compared patients < 18 years old reported to the Center for International Blood and Marrow Transplant Research with acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and myelodysplastic syndrome undergoing allogeneic T-replete, myeloablative bone marrow transplantation between 1993 and 2006. In total, patients receiving bone marrow from 1208 MSDs, 266 8/8 allelic-matched unrelated donors (URDs), and 151 0-1 HLA-antigen mmRDs were studied. Multivariate analysis showed that recipients of MSD transplants had less transplantation-related mortality, acute graft-versus-host disease (GVHD), and chronic GVHD, along with better disease-free and overall survival than the URD and mmRD groups. No differences were observed in transplant-related mortality, acute and chronic GVHD, relapse, disease-free survival, or overall survival between the mmRD and URD groups. These data show that mmRD and 8/8 URD outcomes are similar, whereas MSD outcomes are superior to the other 2 sources. Whether allele level typing could identify mmRD recipients with better outcomes will not be known unless centers alter practice and type mmRD at the allele level. PMID:20671124

  16. Acute Promyelocytic Leukemia (APL): Comparison Between Children and Adults

    PubMed Central

    Testi, Anna Maria; D’Angiò, Mariella; Locatelli, Franco; Pession, Andrea; Lo Coco, Francesco

    2014-01-01

    The outcome of adults and children with Acute Promyelocytic Leukemia (APL) has dramatically changed since the introduction of all trans retinoic acid (ATRA) therapy. Based on the results of several multicenter trials, the current recommendations for the treatment of patients with APL include ATRA and anthracycline-based chemotherapy for the remission induction and consolidation, and ATRA combined with low-dose chemotherapy for maintenance. This has improved the prognosis of APL by increasing the complete remission (CR) rate, actually > 90%, decreasing the induction deaths and by reducing the relapse rate, leading to cure rates nowadays exceeding 80% considering both adults and children.1–9 More recently the combination of ATRA and arsenic trioxide (ATO) as induction and consolidation therapy has been shown to be at least not inferior and possibly superior to ATRA plus chemotherapy in adult patients with APL conventionally defined as non-high risk (Sanz score).10 Childhood APL has customarily been treated on adult protocols. Data from several trials have shown that the overall outcome in pediatric APL appears similar to that reported for the adult population; however, some clinical and therapeutic aspects differ in the two cohorts which require some important considerations and treatment adjustments. PMID:24804005

  17. Leukemia-associated phenotypes: their characteristics and incidence in acute leukemia.

    PubMed

    Babusíková, O; Glasová, M; Koníková, E; Kusenda, J

    1996-01-01

    Leukemia-associated phenotypes have been suggested to be a valuable tool for the detection of minimal residual disease in acute leukemia patients, as they allow to distinguish leukemic blasts from normal hematopoietic progenitor cells. The aim of the present study was to analyze the proportion of acute leukemia patients (both with lymphoid and myeloid leukemias) in which the immunological detection of leukemia-associated phenotypes was convenient for the distinction of leukemic and normal cells. For this purpose we have studied the blast cells from 186 acute leukemia patients at diagnosis with a large panel of monoclonal antibodies by flow cytometry using double staining combinations. From aberrant phenotypes on blast cells we followed lineage infidelity (coexpression of myeloid markers in lymphoid leukemia cells and vice versa, as well as the simultaneous expression of both, T and B cell markers in one lymphoid blast cell) and asynchronous marker expression (simultaneous expression of early and late markers in one cell). One hundred and five of the 186 acute leukemia cases analyzed (56%) showed the presence of leukemia-associated phenotypes. In 41 of the 90 ALL cases followed (46%) and in 40 of the 96 AML cases studied (42%) lineage infidelity was observed. Asynchronous antigen expression was detected in 24 followed cases (13%). Evaluation of the cell marker density by means of calibration microbeads demonstrated abnormal mean channel immunofluorescence and molecules of equivalent soluble fluorescein for CD8 in two patients with T cell malignancies at diagnosis. Abnormal CD8 density might thus represent a characteristic feature of malignant CD8-positive T cell clone. Quantitative marker evaluation therefore seems to be another important mean for the detection of aberrant phenotypes on leukemia cells suitable for the detection of minimal residual disease. PMID:8996560

  18. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia.

    PubMed

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; Deryckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  19. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia

    PubMed Central

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  20. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance.

    PubMed

    Wojtuszkiewicz, Anna; Raz, Shachar; Stark, Michal; Assaraf, Yehuda G; Jansen, Gerrit; Peters, Godefridus J; Sonneveld, Edwin; Kaspers, Gertjan J L; Cloos, Jacqueline

    2016-04-01

    Methotrexate (MTX), a folate antagonist which blocks de novo nucleotide biosynthesis and DNA replication, is an anchor drug in acute lymphoblastic leukemia (ALL) treatment. However, drug resistance is a primary hindrance to curative chemotherapy in leukemia and its molecular mechanisms remain poorly understood. We have recently shown that impaired folylpolyglutamate synthetase (FPGS) splicing possibly contributes to the loss of FPGS activity in MTX-resistant leukemia cell line models and adult leukemia patients. However, no information is available on the possible splicing alterations in FPGS in pediatric ALL. Here, using a comprehensive PCR-based screen we discovered and characterized a spectrum of FPGS splicing alterations including exon skipping and intron retention, all of which proved to frequently emerge in both pediatric and adult leukemia patient specimens. Furthermore, an FPGS activity assay revealed that these splicing alterations resulted in loss of FPGS function. Strikingly, pulse-exposure of leukemia cells to antifolates and other chemotherapeutics markedly enhanced the prevalence of several FPGS splicing alterations in antifolate-resistant cells, but not in their parental antifolate-sensitive counterparts. These novel findings suggest that an assortment of deleterious FPGS splicing alterations may constitute a mechanism of antifolate resistance in childhood ALL. Our findings have important implications for the rational overcoming of drug resistance in individual leukemia patients. PMID:26547381

  1. Decitabine as Maintenance Therapy After Standard Therapy in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Untreated Adult Acute Myeloid Leukemia

  2. Acute myeloid leukemia developing in patients with autoimmune diseases

    PubMed Central

    Ramadan, Safaa M.; Fouad, Tamer M; Summa, Valentina; Hasan, Syed KH; Lo-Coco, Francesco

    2012-01-01

    Therapy-related acute myeloid leukemia is an unfortunate complication of cancer treatment, particularly for patients with highly curable primary malignancies and favorable life expectancy. The risk of developing therapy-related acute myeloid leukemia also applies to patients with non-malignant conditions, such as autoimmune diseases treated with cytotoxic and/or immunosuppressive agents. There is considerable evidence to suggest that there is an increased occurrence of hematologic malignancies in patients with autoimmune diseases compared to the general population, with a further increase in risk after exposure to cytotoxic therapies. Unfortunately, studies have failed to reveal a clear correlation between leukemia development and exposure to individual agents used for the treatment of autoimmune diseases. Given the dismal outcome of secondary acute myeloid leukemia and the wide range of available agents for treatment of autoimmune diseases, an increased awareness of this risk and further investigation into the pathogenetic mechanisms of acute leukemia in autoimmune disease patients are warranted. This article will review the data available on the development of acute myeloid leukemia in patients with autoimmune diseases. Possible leukemogeneic mechanisms in these patients, as well as evidence supporting the association of their primary immunosuppressive status and their exposure to specific therapies, will also be reviewed. This review also supports the idea that it may be misleading to label leukemias that develop in patients with autoimmune diseases who are exposed to cytotoxic agents as ‘therapy-related leukemias’. A better understanding of the molecular defects in autoimmune disease patients who develop acute leukemia will lead to a better understanding of the association between these two diseases entities. PMID:22180424

  3. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party

    PubMed Central

    Iacobucci, Ilaria; Lonetti, Annalisa; Paoloni, Francesca; Papayannidis, Cristina; Ferrari, Anna; Storlazzi, Clelia Tiziana; Vignetti, Marco; Cilloni, Daniela; Messa, Francesca; Guadagnuolo, Viviana; Paolini, Stefania; Elia, Loredana; Messina, Monica; Vitale, Antonella; Meloni, Giovanna; Soverini, Simona; Pane, Fabrizio; Baccarani, Michele; Foà, Robin; Martinelli, Giovanni

    2010-01-01

    Background Recently, in genome-wide analyses of DNA copy number abnormalities using single nucleotide polymorphism microarrays, genetic alterations targeting PAX5 were identified in over 30% of pediatric patients with acute lymphoblastic leukemia. So far the occurrence of PAX5 alterations and their clinical correlation have not been investigated in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Design and Methods The aim of this study was to characterize the rearrangements on 9p involving PAX5 and their clinical significance in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Eighty-nine adults with de novo BCR-ABL1-positive acute lymphoblastic leukemia were enrolled into institutional (n=15) or GIMEMA (Gruppo Italiano Malattie EMatologiche dell’Adulto) (n=74) clinical trials and, after obtaining informed consent, their genome was analyzed by single nucleotide polymorphism arrays (Affymetrix 250K NspI and SNP 6.0), genomic polymerase chain reaction analysis and re-sequencing. Results PAX5 genomic deletions were identified in 29 patients (33%) with the extent of deletions ranging from a complete loss of chromosome 9 to the loss of a subset of exons. In contrast to BCR-ABL1-negative acute lymphoblastic leukemia, no point mutations were found, suggesting that deletions are the main mechanism of inactivation of PAX5 in BCR-ABL1-positive acute lymphoblastic leukemia. The deletions were predicted to result in PAX5 haploinsufficiency or expression of PAX5 isoforms with impaired DNA-binding. Deletions of PAX5 were not significantly correlated with overall survival, disease-free survival or cumulative incidence of relapse, suggesting that PAX5 deletions are not associated with outcome. Conclusions PAX5 deletions are frequent in adult BCR-ABL1-positive acute lymphoblastic leukemia and are not associated with a poor outcome. PMID:20534699

  4. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Lymphocytic or Myelogenous Leukemia

    ClinicalTrials.gov

    2016-09-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  5. Busulfan and Etoposide Followed by Peripheral Blood Stem Cell Transplant and Low-Dose Aldesleukin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  6. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2016-01-19

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  7. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-16

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Diffuse Alveolar Hemorrhage in Acute Myeloid Leukemia.

    PubMed

    Nanjappa, Sowmya; Jeong, Daniel K; Muddaraju, Manjunath; Jeong, Katherine; Hill, Ebone D; Greene, John N

    2016-07-01

    Diffuse alveolar hemorrhage is a potentially fatal pulmonary disease syndrome that affects individuals with hematological and nonhematological malignancies. The range of inciting factors is wide for this syndrome and includes thrombocytopenia, underlying infection, coagulopathy, and the frequent use of anticoagulants, given the high incidence of venous thrombosis in this population. Dyspnea, fever, and cough are commonly presenting symptoms. However, clinical manifestations can be variable. Obvious bleeding (hemoptysis) is not always present and can pose a potential diagnostic challenge. Without prompt treatment, hypoxia that rapidly progresses to respiratory failure can occur. Diagnosis is primarily based on radiological and bronchoscopic findings. This syndrome is especially common in patients with hematological malignancies, given an even greater propensity for thrombocytopenia as a result of bone marrow suppression as well as the often prolonged immunosuppression in this patient population. The syndrome also has an increased incidence in individuals with hematological malignancies who have received a bone marrow transplant. We present a case series of 5 patients with acute myeloid leukemia presenting with diffuse alveolar hemorrhage at our institution. A comparison of clinical manifestations, radiographic findings, treatment course, and outcomes are described. A review of the literature and general overview of the diagnostic evaluation, differential diagnoses, pathophysiology, and treatment of this syndrome are discussed. PMID:27556667

  9. Acute myeloid leukemia masquerading as hepatocellular carcinoma

    PubMed Central

    Abu-Zeinah, Ghaith F.; Weisman, Paul; Ganesh, Karuna; Katz, Seth S.; Dogan, Ahmet; Abou-Alfa, Ghassan K.; Stein, Eytan M.; Jarnagin, William; Mauro, Michael J.

    2016-01-01

    Hepatocellular carcinoma (HCC) is often diagnosed on the basis of high quality imaging without a biopsy in the cirrhotic liver. This is a case of a 64-year-old Caucasian man with no history of liver disease or cirrhosis that presented with fatigue, weight loss, and abdominal distension and was found to have a large, isolated liver mass with arterial enhancement and portal venous washout on triple-phase computed tomography (CT) suspicious for HCC. The patient was initially referred for a surgical evaluation. Meanwhile, he developed fevers, pancytopenia, and worsening back pain, and a subsequent spinal MRI revealed a heterogeneous bone marrow signal suspicious for metastatic disease. A bone marrow biopsy that followed was diffusely necrotic. A core biopsy of the patient’s liver mass was then performed and was diagnostic of acute monocytic-monoblastic leukemia. Findings from peripheral flow cytometry and a repeat bone marrow biopsy were also consistent with this diagnosis, and induction chemotherapy with cytarabine and idarubicin was initiated. This case describes a rare presentation of myeloid sarcoma (MS) as an isolated, hypervascular liver mass that mimics HCC in its radiographic appearance. Due to the broad differential for a liver mass, a confirmatory biopsy should routinely be considered prior to surgical intervention. PMID:27284485

  10. Acute myeloid leukemia masquerading as hepatocellular carcinoma.

    PubMed

    Abu-Zeinah, Ghaith F; Weisman, Paul; Ganesh, Karuna; Katz, Seth S; Dogan, Ahmet; Abou-Alfa, Ghassan K; Stein, Eytan M; Jarnagin, William; Mauro, Michael J; Harding, James J

    2016-06-01

    Hepatocellular carcinoma (HCC) is often diagnosed on the basis of high quality imaging without a biopsy in the cirrhotic liver. This is a case of a 64-year-old Caucasian man with no history of liver disease or cirrhosis that presented with fatigue, weight loss, and abdominal distension and was found to have a large, isolated liver mass with arterial enhancement and portal venous washout on triple-phase computed tomography (CT) suspicious for HCC. The patient was initially referred for a surgical evaluation. Meanwhile, he developed fevers, pancytopenia, and worsening back pain, and a subsequent spinal MRI revealed a heterogeneous bone marrow signal suspicious for metastatic disease. A bone marrow biopsy that followed was diffusely necrotic. A core biopsy of the patient's liver mass was then performed and was diagnostic of acute monocytic-monoblastic leukemia. Findings from peripheral flow cytometry and a repeat bone marrow biopsy were also consistent with this diagnosis, and induction chemotherapy with cytarabine and idarubicin was initiated. This case describes a rare presentation of myeloid sarcoma (MS) as an isolated, hypervascular liver mass that mimics HCC in its radiographic appearance. Due to the broad differential for a liver mass, a confirmatory biopsy should routinely be considered prior to surgical intervention. PMID:27284485

  11. Genetic abnormalities associated with acute lymphoblastic leukemia.

    PubMed

    Yokota, Takafumi; Kanakura, Yuzuru

    2016-06-01

    Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next-generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome-like B-lineage ALL is one of the new high-risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome-like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole-genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm-related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient-oriented therapies. PMID:26991355

  12. Genomic characterization of childhood acute lymphoblastic leukemia

    PubMed Central

    Mullighan, Charles G.

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise sub-classification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance. PMID:24246699

  13. Acute myeloid leukemia in the older patient.

    PubMed

    Godwin, John E; Smith, Scott E

    2003-10-15

    Acute myeloid leukemia (AML) is an extremely heterogeneous disorder. The biology of AML is incompletely understood, but much data indicates that older patients have a more biologically diverse and chemotherapy resistant form of AML that is quite different from that seen in the younger patients. Approximately 60% of AML cases are in patients greater than 60 years of age, so the predominant burden is in older patients. This problem will be magnified in the future, because the US population is both growing and aging. When one examines the treatment outcomes of older AML patients over the last three decades, there is little progress in long-term survival. Nine major published randomized placebo controlled trials of myeloid growth factors given during induction for AML have been conducted. All of these trials with one exception demonstrated no significant impact on the clinical outcomes of complete response (CR) rate, disease-free, and overall survival. However, the duration of neutropenia was consistently and uniformly reduced by the use of growth factor in all nine of these trials. Because of the favorable impact of the colony-stimulating factors (CSFs) on resource use, antibiotic days, hospital days, etc., it can be more economical and beneficial to use CSFs in AML than to withhold use. The overall dismal outlook for the older AML patient can only be altered by clinical trials with new therapeutic agents. New cellular and molecularly targeted agents are entering clinical trials and bring hope for progress to this area of cancer therapy. PMID:14563517

  14. Genomic characterization of childhood acute lymphoblastic leukemia.

    PubMed

    Mullighan, Charles G

    2013-10-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise subclassification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase-driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance. PMID:24246699

  15. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  16. Acute Myeloid Leukemia Presenting as Intracerebral Granulocytic Sarcoma.

    PubMed

    Dhandapani, E; Thirumavalavan; Sowrirajan

    2015-10-01

    The CNS involvement of acute myeloid leukemia (AML) is more commonly manifest as meningeal involvement. Rarely it may present as intravascular tumor aggregates called granulocytic sarcoma which presents as intracranial hemorrhage. We are presenting a case of intracranial, intra-parenchymal granulocytic sarcoma (other names: chloroma, extramedullary myeloblastoma), presenting as acute hemiplegia without cerebral hemorrhage. PMID:27608697

  17. Clinical and Pathologic Features of Secondary Acute Promyelocytic Leukemia

    PubMed Central

    Duffield, Amy S.; Aoki, Joseph; Levis, Mark; Cowan, Kathleen; Gocke, Christopher D.; Burns, Kathleen H.; Borowitz, Michael J.; Vuica-Ross, Milena

    2013-01-01

    Acute promyelocytic leukemia (APL) is a relatively common form of acute myeloid leukemia (AML) that has an excellent prognosis. In contrast, secondary acute myeloid leukemias, including therapy-related AML and AML with myelodysplasia-related changes, have a relatively poor prognosis. We identified 9 cases of APL at our institution in which there was a history of chemotherapy, radiotherapy, chronic immunosuppression, or antecedent myelodysplastic syndrome. The clinical and pathologic findings in these cases of secondary APL were compared with the clinical and pathologic findings in cases of de novo APL. We found that secondary and de novo APL had abnormal promyelocytes with similar morphologic and immunophenotypic features, comparable cytogenetic findings, comparable rates of FMS-like tyrosine kinase mutations, and similar rates of recurrent disease and death. These data suggest that secondary APL is similar to de novo APL and, thus, should be considered distinct from other secondary acute myeloid neoplasms. PMID:22338051

  18. Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Myelodysplastic Syndrome; Childhood Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia

  19. Combination Chemotherapy With or Without Bone Marrow Transplantation in Treating Children With Acute Myelogenous Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-15

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  20. Cediranib Maleate in Treating Patients With Relapsed, Refractory, or Untreated Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-09-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  1. Institutional adherence to cardiovascular risk factor screening guidelines for young survivors of acute lymphoblastic leukemia.

    PubMed

    Lin, Maria H; Wood, Jamie R; Mittelman, Steven D; Freyer, David R

    2015-05-01

    Survivors of acute lymphoblastic leukemia have increased risk for long-term cardiovascular complications. Early identification of cardiovascular risk factors (CVRF) may allow for effective interventions. In this retrospective cohort study of 194 patients at Children's Hospital Los Angeles, we investigated CVRF screening practices in an established childhood cancer survivorship program relative to both the Children's Oncology Group (COG) Long-Term Follow-Up Guidelines and American Academy of Pediatrics (AAP) recommendations. CVRF screening practices met COG but not the more stringent AAP recommendations, particularly in areas of dyslipidemia and diabetes screening. Implications of our findings are discussed. PMID:25757021

  2. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia

    PubMed Central

    Kastner, Philippe; Dupuis, Arnaud; Gaub, Marie-Pierre; Herbrecht, Raoul; Lutz, Patrick; Chan, Susan

    2013-01-01

    The Ikaros transcription factor is crucial for many aspects of hematopoiesis. Loss of function mutations in IKZF1, the gene encoding Ikaros, have been implicated in adult and pediatric B cell acute lymphoblastic leukemia (B-ALL). These mutations result in haploinsufficiency of the Ikaros gene in approximately half of the cases. The remaining cases contain more severe or compound mutations that lead to the generation of dominant-negative proteins or complete loss of function. All IKZF1 mutations are associated with a poor prognosis. Here we review the current genetic, clinical and mechanistic evidence for the role of Ikaros as a tumor suppressor in B-ALL. PMID:23358883

  3. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  4. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  5. What's New in Adult Acute Lymphocytic Leukemia (ALL) in Adults Research?

    MedlinePlus

    ... Topic Additional resources for acute lymphocytic leukemia What’s new in acute lymphocytic leukemia research and treatment? Researchers ... have the Philadelphia chromosome. Gene expression profiling This new lab technique is being studied to help identify ...

  6. The clinical utility of genetic testing for t(8;16)(p11;p13) in congenital acute myeloid leukemia.

    PubMed

    Daifu, Tomoo; Kato, Itaru; Kozuki, Kagehiro; Umeda, Katsutsugu; Hiramatsu, Hidefumi; Watanabe, Ken-Ichiro; Kamiya, Ichiro; Taki, Tomohiko; Nakahata, Tatsutoshi; Heike, Toshio; Adachi, Souichi

    2014-07-01

    Acute myeloid leukemia (AML) with t(8;16)(p11;p13) is known to have very poor prognosis in adults. In contrast, the prognosis is not clear in pediatric patients and chemotherapy is generally started immediately in cases of congenital leukemia because of its association with hyperleukocytosis and poor prognosis. This study reports a case of congenital AML where chemotherapy was discontinued after detection of a MOZ-CBP fusion, which remains in remission without additional treatment. This article stresses the importance of examination for the presence of the MOZ-CBP fusion at diagnosis to inform treatment decisions in congenital AML. PMID:24390445

  7. A Long-term Survivor after Congenital Acute Myeloid Leukemia with t(8 ; 16)(p11 ; p13).

    PubMed

    Hanada, Takae; Kanamitsu, Kiichiro; Chayama, Kosuke; Miyamura, Takako; Kanazawa, Yui; Muraoka, Michiko; Washio, Kana; Imada, Masahide; Kageyama, Misao; Takeuchi, Akihito; Tamai, Kei; Oda, Megumi; Shimada, Akira

    2016-01-01

    The treatment of patients with congenital leukemia is difficult and often results in a poor prognosis. We present here the case of a female child with congenital acute myeloid leukemia (AML) with t(8 ; 16) (p11 ; p13) who received chemotherapy and survived for more than 10 years without relapse. A novel MOZ-CBP chimera was found in her diagnostic sample. Although adult AML patients with MOZ-CBP have mainly been reported as having therapy-related AML and showed poor prognoses, the present case supports the idea that AML with MOZ-CBP in the pediatric population might show better prognoses. PMID:26899607

  8. Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidence from four decades of US population data.

    PubMed

    Hossain, Md Jobayer; Xie, Li; Caywood, Emi H

    2015-10-01

    Growing insight into prognosis of pediatric acute myeloid leukemia (AML) survival has led to improved outcome over time and could be further enhanced through investigation using a large number of patients. To characterize the extent of the association of pediatric AML survival with its identified prognostic factors, we analyzed the United States population-based Surveillance Epidemiology and End Results (SEER) large dataset of 3442 pediatric AML patients diagnosed and followed between 1973 and 2011 using a Cox proportional hazards model stratified by year of diagnosis. Patients diagnosed between 10 and 19 years of age were at a higher risk of death compared to those diagnosed before age 10 (adjusted hazard ratio (aHR): 1.30, 95% confidence interval (CI): 1.17-1.44). African Americans (1.27, 1.09-1.48) and Hispanics (1.15, 1.00-1.32) had an elevated risk of mortality than Caucasians. Compared to the subtype acute promyelocytic leukemia, AML with minimal differentiation (2.44, 1.78-3.35); acute erythroid leukemia (2.34, 1.60-3.40); AML without maturation (1.87, 1.35-2.59); and most other AML subtypes had a higher risk of mortality, whereas AML with inv(16) had a substantially lower risk. Age at diagnosis, race-ethnicity, AML subtype, county level poverty and geographic region appeared as significant prognostic factors of pediatric AML survival in the US. Contrary to previous findings, the subtypes of AML with t(9;11)(p22;q23)MLLT3-MLL, AML without maturation and acute myelomonocytic leukemia emerged to be indicative of poor outcome. PMID:26159683

  9. Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders

    ClinicalTrials.gov

    2016-04-05

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Hematopoietic and Lymphoid Cell Neoplasm; Philadelphia Chromosome Negative, BCR-ABL1 Positive Chronic Myelogenous Leukemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Myelodysplastic Syndrome

  10. Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia or Chronic Myeloid Leukemia in Lymphoid Blast Crisis.

    PubMed

    Kolenova, Alexandra; Maloney, Kelly W; Hunger, Stephen P

    2016-08-01

    The clinical characteristics of chronic myeloid leukemia (CML) in lymphoid blast crisis (BC) can resemble those of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph ALL). Because of this, there can be concern as to whether a patient with newly diagnosed Ph leukemia has Ph ALL or CML in lymphoid BC. This distinction has significant potential therapeutic implications because most children with Ph ALL are now treated with chemotherapy plus a tyrosine kinase inhibitor, whereas allogeneic stem cell transplant is usually recommended for any patient with CML that presents in or later develops BC. PMID:27164534

  11. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia.

    PubMed

    Ma, Yussanne; Dobbins, Sara E; Sherborne, Amy L; Chubb, Daniel; Galbiati, Marta; Cazzaniga, Giovanni; Micalizzi, Concetta; Tearle, Rick; Lloyd, Amy L; Hain, Richard; Greaves, Mel; Houlston, Richard S

    2013-04-30

    Acute lymphoblastic leukemia (ALL) is the major pediatric cancer. At diagnosis, the developmental timing of mutations contributing critically to clonal diversification and selection can be buried in the leukemia's covert natural history. Concordance of ALL in monozygotic, monochorionic twins is a consequence of intraplacental spread of an initiated preleukemic clone. Studying monozygotic twins with ALL provides a unique means of uncovering the timeline of mutations contributing to clonal evolution, pre- and postnatally. We sequenced the whole genomes of leukemic cells from two twin pairs with ALL to comprehensively characterize acquired somatic mutations in ALL, elucidating the developmental timing of all genetic lesions. Shared, prenatal, coding-region single-nucleotide variants were limited to the putative initiating lesions. All other nonsynonymous single-nucleotide variants were distinct between tumors and, therefore, secondary and postnatal. These changes occurred in a background of noncoding mutational changes that were almost entirely discordant in twin pairs and likely passenger mutations acquired during leukemic cell proliferation. PMID:23569245

  12. Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

    ClinicalTrials.gov

    2013-05-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  13. Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Childhood Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Myeloid Neoplasm

  14. Acute Myeloid Leukemia in Children: Experience from Tertiary Cancer Centre in India.

    PubMed

    Radhakrishnan, Venkatraman; Thampy, Cherian; Ganesan, Prasanth; Rajendranath, Rejiv; Ganesan, Trivadi S; Rajalekshmy, K R; Sagar, Tenali Gnana

    2016-09-01

    There is paucity of data in pediatric Acute Myeloid Leukemia (AML) from developing countries. We analyzed the outcomes of 65 consecutive patients with pediatric AML treated at our centre from January-2008 to May-2013. The median event free survival (EFS) and overall survival (OS) were 12.6 and 14.6 months respectively. Patients with good-risk cytogenetics had a better EFS (p = 0.004) and OS (p = 0.01). Overall, these results are not comparable to that observed in other centres globally and leaves scope for further improvement. This includes implementing allogeneic bone marrow transplantation as a treatment for all children with high-risk AML. PMID:27429516

  15. Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  16. Campylobacter jejuni Bacteremia in a Patient With Acute Lymphocytic Leukemia

    PubMed Central

    Anvarinejad, Mojtaba; Amin Shahidi, Maneli; Pouladfar, Gholam Reza; Dehyadegari, Mohammad Ali; Mardaneh, Jalal

    2016-01-01

    Introduction Campylobacter jejuni is a slender, motile, non-spore-forming, helical-shaped, gram-negative bacterium. It is one of the most common causes of human gastroenteritis in the world. The aim of this study was to present a patient with acute lymphocytic leukemia (ALL), who was infected with Campylobacter jejuni. Case Presentation We describe the medical records of a pediatric ALL patient with bacteremia caused by C. jejuni, who was diagnosed at Amir hospital, Shiraz, Iran. This 14-year-old male visited the emergency department of Amir hospital with night sweats, severe polar high-grade fever, reduced appetite, and nausea in August 2013. Given the suspected presence of an anaerobic or microaerophilic microorganism, aerobic and anaerobic blood cultures were performed using an automated blood cultivator, the BACTEC 9240 system. In order to characterize the isolate, diagnostic biochemical tests were used. Antibiotic susceptibility testing was done with the disk diffusion method. The primary culture was found to be positive for Campylobacter, and the subculture of the solid plate yielded a confluent growth of colonies typical for Campylobacter, which was identified as C. jejuni by morphological and biochemical tests. The isolate was resistant to ciprofloxacin, cefotaxime, cephalexin, piperacillin/tazobactam, nalidixic acid, aztreonam, cefuroxime, cefixime, ceftazidime, and tobramycin. Conclusions C. jejuni should be considered in the differential diagnosis as a potential cause of bacteremia in immunosuppressed patients. In cases where the BACTEC result is positive in aerobic conditions but the organism cannot be isolated, an anaerobic culture medium is suggested, especially in immunocompromised patients. PMID:27621914

  17. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology

    PubMed Central

    2011-01-01

    Background Worldwide, acute leukemia is the most common type of childhood cancer. It is particularly common in the Hispanic populations residing in the United States, Costa Rica, and Mexico City. The objective of this study was to determine the incidence of acute leukemia in children who were diagnosed and treated in public hospitals in Mexico City. Methods Included in this study were those children, under 15 years of age and residents of Mexico City, who were diagnosed in 2006 and 2007 with leukemia, as determined by using the International Classification of Childhood Cancer. The average annual incidence rates (AAIR), and the standardized average annual incidence rates (SAAIR) per million children were calculated. We calculated crude, age- and sex-specific incidence rates and adjusted for age by the direct method with the world population as standard. We determined if there were a correlation between the incidence of acute leukemias in the various boroughs of Mexico City and either the number of agricultural hectares, the average number of persons per household, or the municipal human development index for Mexico (used as a reference of socio-economic level). Results Although a total of 610 new cases of leukemia were registered during 2006-2007, only 228 fit the criteria for inclusion in this study. The overall SAAIR was 57.6 per million children (95% CI, 46.9-68.3); acute lymphoblastic leukemia (ALL) was the most frequent type of leukemia, constituting 85.1% of the cases (SAAIR: 49.5 per million), followed by acute myeloblastic leukemia at 12.3% (SAAIR: 6.9 per million), and chronic myeloid leukemia at 1.7% (SAAIR: 0.9 per million). The 1-4 years age group had the highest SAAIR for ALL (77.7 per million). For cases of ALL, 73.2% had precursor B-cell immunophenotype (SAAIR: 35.8 per million) and 12.4% had T-cell immunophenotype (SAAIR 6.3 per million). The peak ages for ALL were 2-6 years and 8-10 years. More than half the children (58.8%) were classified as high

  18. No involvement of bovine leukemia virus in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma

    SciTech Connect

    Bender, A.P.; Robison, L.L.; Kashmiri, S.V.; McClain, K.L.; Woods, W.G.; Smithson, W.A.; Heyn, R.; Finlay, J.; Schuman, L.M.; Renier, C.

    1988-05-15

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine lymphosarcoma. Much speculation continues to be directed at the role of BLV in human leukemia. To test this hypothesis rigorously, a case-control study of childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma was conducted between December 1983 and February 1986. Cases (less than or equal to 16 years at diagnosis) derived from patients diagnosed at the primary institutions and affiliated hospitals were matched (age, sex, and race) with regional population controls. DNA samples from bone marrow or peripheral blood from 157 cases (131 acute lymphoblastic leukemia, 26 non-Hodgkin's lymphoma) and peripheral blood from 136 controls were analyzed by Southern blot technique, under highly stringent conditions, using cloned BLV DNA as a probe. None of the 157 case or 136 control DNA samples hybridized with the probe. The high statistical power and specificity of this study provide the best evidence to date that genomic integration of BLV is not a factor in childhood acute lymphoblastic leukemia/non-Hodgkin's lymphoma.

  19. Acute promyelocytic leukemia presenting as a paraspinal mass.

    PubMed

    Shah, Nirav N; Stonecypher, Mark; Gopal, Pallavi; Luger, Selina; Bagg, Adam; Perl, Alexander

    2016-03-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) that is characterized by a balanced translocation between chromosomes 15 and 17 [t(15;17)], which results in the fusion of the promyelocytic leukemia (PML) and retinoic acid receptor α (RARA) genes. Historically, APL was a fatal disease because of the high relapse rates with cytotoxic chemotherapy alone and a significant bleeding risk secondary to disseminated intravascular coagulation (DIC). However, APL is now one of the most curable hematological malignancies because of molecularly targeted therapies. With the advent of all-trans retinoic acid (ATRA) containing chemotherapy regimens, rates of complete remission and long-term, disease-free survival have improved dramatically. More recently, regimens incorporating both ATRA and arsenic trioxide (ATO) have allowed a substantial number of patients to be treated with little or no additional cytotoxic chemotherapy. PMID:27058871

  20. Acute Lymphoblastic Leukemia Arising in CALR Mutated Essential Thrombocythemia

    PubMed Central

    Langabeer, Stephen E.; Haslam, Karl; O'Brien, David; Kelly, Johanna; Andrews, Claire; Ryan, Ciara; Flavin, Richard; Hayden, Patrick J.; Bacon, Christopher L.

    2016-01-01

    The development of acute lymphoblastic leukemia in an existing myeloproliferative neoplasm is rare with historical cases unable to differentiate between concomitant malignancies or leukemic transformation. Molecular studies of coexisting JAK2 V617F-positive myeloproliferative neoplasms and mature B cell malignancies indicate distinct disease entities arising in myeloid and lymphoid committed hematopoietic progenitor cells, respectively. Mutations of CALR in essential thrombocythemia appear to be associated with a distinct phenotype and a lower risk of thrombosis yet their impact on disease progression is less well defined. The as yet undescribed scenario of pro-B cell acute lymphoblastic leukemia arising in CALR mutated essential thrombocythemia is presented. Intensive treatment for the leukemia allowed for expansion of the original CALR mutated clone. Whether CALR mutations in myeloproliferative neoplasms predispose to the acquisition of additional malignancies, particularly lymphoproliferative disorders, is not yet known. PMID:26904322

  1. Exploitation of natural killer cells for the treatment of acute leukemia.

    PubMed

    Handgretinger, Rupert; Lang, Peter; André, Maya C

    2016-06-30

    Natural killer (NK) cells play an important role in surveillance and elimination of malignant cells. Their spontaneous cytotoxicity was first demonstrated in vitro against leukemia cell lines, and NK cells might play a crucial role in the therapy of leukemia. NK cell activity is controlled by an array of germ line-encoded activating and inhibitory receptors, as well as modulating coreceptors. This biologic feature can be exploited in allogeneic cell therapy, and the recognition of "missing-self" on target cells is crucial for promoting NK cell-mediated graft-versus-leukemia effects. In this regard, NK cells that express an inhibitory killer immunoglobulin-like receptor (iKIR) for which the respective major histocompatibility complex class I ligand is absent on leukemic target cells can exert alloreactivity in vitro and in vivo. Several models regarding potential donor-patient constellations have been described that have demonstrated the clinical benefit of such alloreactivity of the donor-derived NK cell system in patients with adult acute myeloid leukemia and pediatric B-cell precursor acute lymphoblastic leukemia after allogeneic stem cell transplantation. Moreover, adoptive transfer of mature allogeneic NK cells in the nontransplant or transplant setting has been shown to be safe and feasible, whereas its effectivity needs further evaluation. NK cell therapy can be further improved by optimal donor selection based on phenotypic and genotypic properties, by adoptive transfer of NK cells with ex vivo or in vivo cytokine stimulation, by the use of antibodies to induce antibody-dependent cellular cytotoxicity or to block iKIRs, or by transduction of chimeric antigen receptors. PMID:27207791

  2. Radiolabeled BC8 Antibody, Busulfan, Cyclophosphamide Followed by Donor Stem Cell Transplant in Treating Patients With Acute Myelogenous Leukemia in First Remission

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  3. Upregulation of Leukocytic Syncytin-1 in Acute Myeloid Leukemia Patients.

    PubMed

    Sun, Yi; Zhu, Hongyan; Song, Jianxin; Jiang, Yaxian; Ouyang, Hongmei; Huang, Rongzhong; Zhang, Guiqian; Fan, Xin; Tao, Rui; Jiang, Jie; Niu, Hua

    2016-01-01

    BACKGROUND Syncytin-1, a cell membrane-localizing fusogen, is abnormally expressed in several cancers, including endometrial cancer, breast cancer, and leukemia. Although abnormal syncytin-1 expression has been detected in two-thirds of leukemia blood samples, its expression profile in acute leukemia patients has not yet been analyzed. MATERIAL AND METHODS Bone marrow samples from 50 acute myelogenous leukemia (AML) cases and 14 B-cell acute lymphocytic leukemia (B-cell ALL) patients were subjected to flow cytometry to assess leukocyte type distributions and leukocytic syncytin-1 surface expression. RT-PCR was applied to assess leukocytic syncytin-1 mRNA expression. Statistical analysis was applied to compare syncytin-1 expression between AML and B-cell ALL patients across blasts, granulocytes, lymphocytes, and monocytes as well as to determine clinical factors statistically associated with changes in syncytin-1 expression. RESULTS The leukocyte type distributions of the AML and B-cell ALL cohorts highly overlapped, with an observable difference in blast distribution between the 2 cohorts. The AML cohort displayed significantly greater syncytin-1 surface and mRNA expression (p<0.05). Syncytin-1 surface and mRNA expression was significantly increased across all 4 leukocyte types (p<0.05). The percentage of syncytin-1-expressing blasts was significantly greater in AML patients (p<0.05), with blasts showing the largest fold-change in syncytin-1 expression (p<0.05). M5, M5a, and M5b AML patients displayed significantly higher syncytin-1 surface expression relative to all other AML French-American-British (FAB) classifications (p<0.05). CONCLUSIONS These findings suggest leukocytic syncytin-1 expression may play a role in the development and/or maintenance of the AML phenotype and the acute monocytic leukemia phenotype in particular. PMID:27393911

  4. Upregulation of Leukocytic Syncytin-1 in Acute Myeloid Leukemia Patients

    PubMed Central

    Sun, Yi; Zhu, Hongyan; Song, Jianxin; Jiang, Yaxian; Ouyang, Hongmei; Huang, Rongzhong; Zhang, Guiqian; Fan, Xin; Tao, Rui; Jiang, Jie; Niu, Hua

    2016-01-01

    Background Syncytin-1, a cell membrane-localizing fusogen, is abnormally expressed in several cancers, including endometrial cancer, breast cancer, and leukemia. Although abnormal syncytin-1 expression has been detected in two-thirds of leukemia blood samples, its expression profile in acute leukemia patients has not yet been analyzed. Material/Methods Bone marrow samples from 50 acute myelogenous leukemia (AML) cases and 14 B-cell acute lymphocytic leukemia (B-cell ALL) patients were subjected to flow cytometry to assess leukocyte type distributions and leukocytic syncytin-1 surface expression. RT-PCR was applied to assess leukocytic syncytin-1 mRNA expression. Statistical analysis was applied to compare syncytin-1 expression between AML and B-cell ALL patients across blasts, granulocytes, lymphocytes, and monocytes as well as to determine clinical factors statistically associated with changes in syncytin-1 expression. Results The leukocyte type distributions of the AML and B-cell ALL cohorts highly overlapped, with an observable difference in blast distribution between the 2 cohorts. The AML cohort displayed significantly greater syncytin-1 surface and mRNA expression (p<0.05). Syncytin-1 surface and mRNA expression was significantly increased across all 4 leukocyte types (p<0.05). The percentage of syncytin-1-expressing blasts was significantly greater in AML patients (p<0.05), with blasts showing the largest fold-change in syncytin-1 expression (p<0.05). M5, M5a, and M5b AML patients displayed significantly higher syncytin-1 surface expression relative to all other AML French-American-British (FAB) classifications (p<0.05). Conclusions These findings suggest leukocytic syncytin-1 expression may play a role in the development and/or maintenance of the AML phenotype and the acute monocytic leukemia phenotype in particular. PMID:27393911

  5. Epidemiology and Treatment of Acute Promyelocytic Leukemia in Latin America

    PubMed Central

    Rego, E.M.; Jácomo, R.H.

    2011-01-01

    Distinct epidemiological characteristics have been described in Acute Promielocytic Leukemia (APL). Populations from Latin America have a higher incidence of APL and in some geographic areas a distinct distribution of the PML-RARA isoforms is present. Here, we review the main differences in APL epidemilogy in Latin America as well as treatment outcomes. PMID:22110899

  6. Acute non-lymphocytic leukemia following multimodality therapy for retinoblastoma

    SciTech Connect

    White, L.; Ortega, J.A.; Ying, K.L.

    1985-02-01

    The genetic form of retinoblastoma carries a high risk of secondary malignant neoplasm, apparently not related to the use of chemotherapy. A child with unilateral non-genetic retinoblastoma who had received chemotherapy and radiation therapy and developed acute non-lymphocytic leukemia (ANLL) is reported. The occurrence of ANLL and retinoblastoma has not been previously reported.

  7. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  8. Best Practices in Adolescent and Young Adult Patients with Acute Lymphoblastic Leukemia: A Focus on Asparaginase

    PubMed Central

    Boissel, Nicolas

    2015-01-01

    The inclusion of asparaginase in chemotherapy regimens to treat acute lymphoblastic leukemia (ALL) has had a positive impact on survival in pediatric patients. Historically, asparaginase has been excluded from most treatment protocols for adolescent and young adult (AYA) patients because of perceived toxicity in this population, and this is believed to have contributed to poorer outcomes in these patients. However, retrospective analyses over the past 12 years have shown that 2-, 5-, and 7-year overall survival of AYA patients is significantly improved with pediatric versus adult protocols. The addition of asparaginase to adult protocols yielded high rates of first remission and improved survival. However, long-term survival remains lower compared with what has been seen in pediatrics. The notion that asparaginase is poorly tolerated by AYA patients has been challenged in multiple studies. In some, but not all, studies, the incidences of hepatic and pancreatic toxicities were higher in AYA patients, whereas the rates of hypersensitivity reactions did not appear to differ with age. There is an increased risk of venous thromboembolic events, and management with anti-coagulation therapy is recommended. Overall, the risk of therapy-related mortality is low. Together, this suggests that high-intensity pediatric protocols offer an effective and tolerable approach to treating ALL in the AYA population. PMID:26421220

  9. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Mosna, Federico

    2016-01-01

    Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987

  11. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia

    PubMed Central

    Jones, Courtney L.; Gearheart, Christy M.; Fosmire, Susan; Delgado-Martin, Cristina; Evensen, Nikki A.; Bride, Karen; Waanders, Angela J.; Pais, Faye; Wang, Jinhua; Bhatla, Teena; Bitterman, Danielle S.; de Rijk, Simone R.; Bourgeois, Wallace; Dandekar, Smita; Park, Eugene; Burleson, Tamara M.; Madhusoodhan, Pillai Pallavi; Teachey, David T.; Raetz, Elizabeth A.; Hermiston, Michelle L.; Müschen, Markus; Loh, Mignon L.; Hunger, Stephen P.; Zhang, Jinghui; Garabedian, Michael J.; Porter, Christopher C.

    2015-01-01

    The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease. PMID:26324703

  12. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia.

    PubMed

    Jones, Courtney L; Gearheart, Christy M; Fosmire, Susan; Delgado-Martin, Cristina; Evensen, Nikki A; Bride, Karen; Waanders, Angela J; Pais, Faye; Wang, Jinhua; Bhatla, Teena; Bitterman, Danielle S; de Rijk, Simone R; Bourgeois, Wallace; Dandekar, Smita; Park, Eugene; Burleson, Tamara M; Madhusoodhan, Pillai Pallavi; Teachey, David T; Raetz, Elizabeth A; Hermiston, Michelle L; Müschen, Markus; Loh, Mignon L; Hunger, Stephen P; Zhang, Jinghui; Garabedian, Michael J; Porter, Christopher C; Carroll, William L

    2015-11-01

    The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease. PMID:26324703

  13. Leukemia-associated marker combinations in acute leukemia suitable for detection of minimal residual disease.

    PubMed

    Babusíková, O; Mesárosová, A; Koníková, M; Kusenda, J; Glasová, M; Klobusická, M

    1993-01-01

    In the absence of truly leukemia-specific antigen, antigen combinations were identified in leukemia cells that are absent or extremely rare among normal hemopoietic cells. Some of the studied combinations related to the simultaneous surface and cytoplasmic marker expression, others, expressed mainly on cell surface membrane, represented atypical or aberrant combinations. Comparing membrane (m) and cytoplasmic (c) antigen expression (followed in 23 acute leukemia cases), we observed that CD3 could be detected in cytoplasm in the majority of T-ALL cells, while was absent on cell surface membrane where simultaneous expression of more immature T cell markers, such as CD7 and CD5, could be detected. Combination of mCD7/cCD3 could be regarded as a suitable marker of individual T-ALL cells. In cases of B-precursors of acute leukemia cells, leukemia-related combination of mCD19/cCD22 was found, which could characterize a single leukemia cell. The cells in one of 11 AML followed cases were positive for CD13 in cytoplasm, but not on cell surface membrane, where CD33 and other myeloid antigens were expressed. The cells in another two AML cases were positive for CD11 in cytoplasm but not on cell surface membrane, where CD13 or CD33 were expressed. Again, marker combinations of mCD33/cCD13 and mCD13 or mCD33/cCD11, respectively, represent a leukemia-related feature, suitable for tracing single leukemia cells in double immunofluorescence. Acute leukemia defined by the coexpression on most blast cells of antigens classically attributed to different lineages (referred as atypical/aberrant marker combinations) remains a rare event. We isolated a series of 27 (12%) such cases of 225 acute leukemia patients whose cells were immunophenotyped at diagnosis. Myeloid markers were present in T-ALL of two cases, T and B markers were coexpressed in 13 cases, markers of B and myeloid lineage were associated in one case, and T cell and myeloid antigens were found in 10 AML cases; in one AML

  14. BCL11A expression in acute phase chronic myeloid leukemia.

    PubMed

    Yin, Jiawei; Zhang, Fan; Tao, Huiquan; Ma, Xiao; Su, Guangsong; Xie, Xiaoli; Xu, Zhongjuan; Zheng, Yanwen; Liu, Hong; He, Chao; Mao, Zhengwei Jenny; Wang, Zhiwei; Chang, Weirong; Gale, Robert Peter; Wu, Depei; Yin, Bin

    2016-08-01

    Chronic myeloid leukemia (CML) has chronic and acute phases. In chronic phase myeloid differentiation is preserved whereas in acute phase myeloid differentiation is blocked. Acute phase CML resembles acute myeloid leukemia (AML). Chronic phase CML is caused by BCR-ABL1. What additional mutation(s) cause transition to acute phase is unknown and may differ in different persons with CML. BCL11A encodes a transcription factor and is aberrantly-expressed in several haematological and solid neoplasms. We analyzed BCL11A mRNA levels in subjects with chronic and acute phase CML. BCL11A transcript levels were increased in subjects with CML in acute phase compared with those in normals and in subjects in chronic phase including some subjects studied in both phases. BCL11A mRNA levels were correlated with percent bone marrow blasts and significantly higher in lymphoid versus myeloid blast crisis. Differentiation of K562 with butyric acid, a CML cell line, decreased BCL11A mRNA levels. Cytology and flow cytometry analyses showed that ectopic expression of BCL11A in K562 cells blocked differentiation. These data suggest BCL11A may operate in transformation of CML from chronic to acute phase in some persons. PMID:27285855

  15. Growth factors in the management of adult acute leukemia.

    PubMed

    Bernstein, S H

    1993-02-01

    This review has explored the various ways that growth factors may be used in the management of adult acute leukemia. Growth factors have the potential to reduce the morbidity and mortality of both induction and postremission therapy by enhancing hematopoietic recovery or, when used as an adjunct to standard antimicrobial therapy, reducing the infectious complications of chemotherapy. In addition, they may have favorable effects on the biology of leukemia either by recruitment of leukemic progenitors into cycle, rendering them more sensitive to the cytotoxic effects of chemotherapy, or by inducing the terminal differentiation of the leukemic clone. Finally, disruption of aberrant growth factor networks, thought to play a role in the pathogenesis of leukemia, may be a therapeutic strategy now that soluble receptors and receptor antagonists to such growth factors as IL-1 are available. Whether growth factors used in such ways will have beneficial, or in fact adverse, effects on the treatment outcome for acute leukemia is not yet known. As such, the use of growth factors in the management of adults with acute leukemia is still experimental and needs to be studied in the context of clinical trials. Perhaps the ultimate benefit to be derived from the study of these growth factors will be a deeper understanding of the genetic perturbations that define the leukemic state. The development of molecular therapeutic techniques, such as gene transfer technology and the use of antisense oligonucleotides, has paralleled our increasing knowledge of cytokines. The hope is that as we come to understand leukemia at the molecular level, we will be able to develop the new therapeutic tools necessary to increase the numbers of patients cured. PMID:8449861

  16. Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier

    PubMed Central

    Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich

    2015-01-01

    Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists. PMID:25709941

  17. Unilateral Eye Findings: A Rare Herald of Acute Leukemia

    PubMed Central

    Patel, Avni V.; Miller, John B.; Nath, Rajneesh; Shih, Helen A.; Yoon, Michael K.; Freitag, Suzanne K.; Papaliodis, George; Chen, Teresa C.; Eliott, Dean; Kim, Ivana K.

    2016-01-01

    Background/Aim Unilateral choroidal infiltration as the initial manifestation of leukemic relapse in adults is rare, particularly after an extended period of remission. This report describes this unique ophthalmic presentation, highlights the associated diagnostic challenges, and reviews the literature. Methods Two cases are described and an extensive literature review was conducted. Results A 59-year-old male with acute lymphoid leukemia, in remission for 18 months, presented with unilateral scleritis, exudative retinal detachment, and choroidal thickening. A 57-year-old male with a history of acute myeloid leukemia, in remission for 4 years, presented with unilateral choroidal thickening leading to secondary angle closure. In both cases, there was a significant lag from the onset of eye symptoms to establishing a systemic diagnosis of acute leukemia, leading to a delay in definitive systemic treatment, despite a high suspicion of disease based on ophthalmic findings. Conclusions These two cases illustrate the fundus findings consistent with leukemic choroidal infiltration that can represent the first sign of relapsed leukemia. The successful treatment of these patients hinges on collaboration between ophthalmologists and oncologists to optimize patient outcomes, highlighting the need for both groups to be aware of this rare ophthalmic presentation. PMID:27239459

  18. Leukostasis in adult acute hyperleukocytic leukemia: a clinician's digest.

    PubMed

    Ali, Alaa M; Mirrakhimov, Aibek E; Abboud, Camille N; Cashen, Amanda F

    2016-06-01

    Leukostasis is a poorly understood and life-threatening complication of acute hyperleukocytic leukemia. The incidence of hyperleukocytosis and leukostasis differs among various subtypes of leukemias. While the pathophysiology of leukostasis is not fully understood, recent research has elucidated many novel pathways that may have therapeutic implications in the future. Respiratory and neurological compromise represents the classical clinical manifestations of leukostasis. If it is not diagnosed and treated rapidly, the one-week mortality rate is approximately 40%. Targeted induction chemotherapy is an important component of the successful treatment of leukostasis, although other modalities of cytoreduction are being used and investigated. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27018197

  19. An experience with plasma exchange treatment of acute lymphoblastic leukemia in a case with fulminant hepatitis related to L-asparaginase.

    PubMed

    Bilgir, Oktay; Calan, Mehmet; Bilgir, Ferda; Cagliyan, Gulsum; Arslan, Oyku

    2013-10-01

    Acute lymphoblastic leukemia (ALL) is a malignant disorder resulting from the clonal proliferation of lymphoid precursors with arrested maturation. L-asparaginase is commonly used in combination chemotherapy of both pediatric and adult acute lymphoblastic leukemias. The most commonly encountered side effects of L-asparaginase are hypersensitivity reactions like pyrexia, urticaria, skin rash, and respiratory distress. There are also other side effects like anaphylaxis, coagulopathy, pancreatitis, thrombosis, and hepatic toxicity. Plasmapheresis can sometimes be appropriate to manage an overdose of drugs that circulate in the plasma compartment. We have reported plasmapheresis treatment of fulminant hepatitis in a patient with ALL after L-asparaginase treatment. PMID:23871581

  20. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-07-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  1. Low-Dose or High-Dose Conditioning Followed by Peripheral Blood Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2014-10-23

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  2. Ovarian Reserve in Women Treated for Acute Lymphocytic Leukemia or Acute Myeloid Leukemia with Chemotherapy, but Not Stem Cell Transplantation

    PubMed Central

    Rossi, Brooke V.; Missmer, Stacey; Correia, Katharine F.; Wadleigh, Martha; Ginsburg, Elizabeth S.

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation. PMID:23050166

  3. Mutations in RIT1 cause Noonan syndrome with possible juvenile myelomonocytic leukemia but are not involved in acute lymphoblastic leukemia.

    PubMed

    Cavé, Hélène; Caye, Aurélie; Ghedira, Nehla; Capri, Yline; Pouvreau, Nathalie; Fillot, Natacha; Trimouille, Aurélien; Vignal, Cédric; Fenneteau, Odile; Alembik, Yves; Alessandri, Jean-Luc; Blanchet, Patricia; Boute, Odile; Bouvagnet, Patrice; David, Albert; Dieux Coeslier, Anne; Doray, Bérénice; Dulac, Olivier; Drouin-Garraud, Valérie; Gérard, Marion; Héron, Delphine; Isidor, Bertrand; Lacombe, Didier; Lyonnet, Stanislas; Perrin, Laurence; Rio, Marlène; Roume, Joëlle; Sauvion, Sylvie; Toutain, Annick; Vincent-Delorme, Catherine; Willems, Marjorie; Baumann, Clarisse; Verloes, Alain

    2016-08-01

    Noonan syndrome is a heterogeneous autosomal dominant disorder caused by mutations in at least eight genes involved in the RAS/MAPK signaling pathway. Recently, RIT1 (Ras-like without CAAX 1) has been shown to be involved in the pathogenesis of some patients. We report a series of 44 patients from 30 pedigrees (including nine multiplex families) with mutations in RIT1. These patients display a typical Noonan gestalt and facial phenotype. Among the probands, 8.7% showed postnatal growth retardation, 90% had congenital heart defects, 36% had hypertrophic cardiomyopathy (a lower incidence compared with previous report), 50% displayed speech delay and 52% had learning difficulties, but only 22% required special education. None had major skin anomalies. One child died perinatally of juvenile myelomonocytic leukemia. Compared with the canonical Noonan phenotype linked to PTPN11 mutations, patients with RIT1 mutations appear to be less severely growth retarded and more frequently affected by cardiomyopathy. Based on our experience, we estimate that RIT1 could be the cause of 5% of Noonan syndrome patients. Because mutations found constitutionally in Noonan syndrome are also found in several tumors in adulthood, we evaluated the potential contribution of RIT1 to leukemogenesis in Noonan syndrome. We screened 192 pediatric cases of acute lymphoblastic leukemias (96 B-ALL and 96 T-ALL) and 110 cases of juvenile myelomonocytic leukemias (JMML), but detected no variation in these tumoral samples, suggesting that Noonan patients with germline RIT1 mutations are not at high risk to developing JMML or ALL, and that RIT1 has at most a marginal role in these sporadic malignancies. PMID:26757980

  4. The acute pediatric scrotum: presentation, differential diagnosis and management.

    PubMed

    Vasdev, Nikhil; Chadwick, David; Thomas, David

    2012-09-01

    Both pediatric and adult urologists frequently evaluate pediatric patients with an acute scrotum. We present a detailed review on the acute pediatric scrotum highlighting the clinical presentation, differential diagnosis and management of this common clinical condition. It is important to highlight that a testicular torsion is the most important differential diagnosis and the main priority in each case is to diagnosis and treat a potential testicular torsion is of the essence. The aim of our extensive review is to update/review the appropriate evaluation and management of the acute scrotum and to guide the clinician in distinguishing testicular torsion from the other conditions that commonly mimic this surgical emergency. This review is useful for trainees in UK and Europe who plan to take the FRCS (Urol) examination. PMID:24917714

  5. RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia.

    PubMed

    Podgornik, Helena; Debeljak, Marusa; Zontar, Darja; Cernelc, Peter; Prestor, Veronika Velensek; Jazbec, Janez

    2007-10-01

    Amplification of RUNX1 (alias AML1) is a recurrent karyotypic abnormality in childhood acute lymphoblastic leukemia (ALL) that is generally associated with a poor outcome. It does not occur with other primary chromosomal abnormalities in acute ALL. AML1 amplification in acute myelogenous leukemia (AML) is a rare secondary event described mainly in therapy-related cases. AML1 amplification was found in a 13-year-old patient with AML M4/M5 leukemia that occurred 5 years after she had been diagnosed with common B-cell ALL. Conventional cytogenetic, fluorescent in situ hybridization (FISH), and polymerase chain reaction methods revealed no other chromosomal change expected to occur in a disease that we assumed to be a secondary leukemia. Due to the lack of cytogenetic data from the diagnostic sample, we developed a new approach to analyze the archived bone marrow smear, which had been stained previously with May-Grünwald-Geimsa by the FISH method. This analysis confirmed that in addition to t(12;21), AML1 amplification and overexpression existed already at the time the diagnosis was made. The chromosomal changes, however, were found in different clones of bone marrow cells. While the first course of chemotherapy successfully eradicated the cell line with the t(12;21), the second cell line with AML1 amplification remained latent during the time of complete remission and reappeared with a different immunophenotype. PMID:17889714

  6. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia.

    PubMed

    Curran, Emily; Chen, Xiufen; Corrales, Leticia; Kline, Douglas E; Dubensky, Thomas W; Duttagupta, Priyanka; Kortylewski, Marcin; Kline, Justin

    2016-06-14

    Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-β and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML. PMID:27264175

  7. The acute lymphoblastic leukemia of Down Syndrome - Genetics and pathogenesis.

    PubMed

    Izraeli, Shai

    2016-03-01

    Children with Down Syndrome (DS) are at markedly increased risk for acute lymphoblastic leukemia (ALL). The ALL is of B cell precursor (BCP) phenotype. T-ALL is only rarely diagnosed as well as infant leukemia. Gene expression profiling and cytogenetics suggest that DS-ALL is an heterogeneous disease. More than half of the leukemias are characterized by aberrant expression of the thymic stromal lymphopoietin (TSLP) receptor CRLF2 caused by genomic rearrangements. These rearrangements are often associated with somatic activating mutations in the receptors or in the downstream components of the JAK-STAT pathway. The activation of JAK-STAT pathway suggests that targeted therapy with JAK or downstream inhibitors may be effective for children with DS-ALL. The basis of the increased risk of BCP-ALL and in particular of the CRLF2 aberrations is presently unknown. Neither is it known which genes on the trisomic chromosome 21 are involved. PMID:26631987

  8. Progress and perspectives in pediatric acute respiratory distress syndrome.

    PubMed

    Rotta, Alexandre Tellechea; Piva, Jefferson Pedro; Andreolio, Cinara; de Carvalho, Werther Brunow; Garcia, Pedro Celiny Ramos

    2015-01-01

    Acute respiratory distress syndrome is a disease of acute onset characterized by hypoxemia and infiltrates on chest radiographs that affects both adults and children of all ages. It is an important cause of respiratory failure in pediatric intensive care units and is associated with significant morbidity and mortality. Nevertheless, until recently, the definitions and diagnostic criteria for acute respiratory distress syndrome have focused on the adult population. In this article, we review the evolution of the definition of acute respiratory distress syndrome over nearly five decades, with a special focus on the new pediatric definition. We also discuss recommendations for the implementation of mechanical ventilation strategies in the treatment of acute respiratory distress syndrome in children and the use of adjuvant therapies. PMID:26331971

  9. Progress and perspectives in pediatric acute respiratory distress syndrome

    PubMed Central

    Rotta, Alexandre Tellechea; Piva, Jefferson Pedro; Andreolio, Cinara; de Carvalho, Werther Brunow; Garcia, Pedro Celiny Ramos

    2015-01-01

    Acute respiratory distress syndrome is a disease of acute onset characterized by hypoxemia and infiltrates on chest radiographs that affects both adults and children of all ages. It is an important cause of respiratory failure in pediatric intensive care units and is associated with significant morbidity and mortality. Nevertheless, until recently, the definitions and diagnostic criteria for acute respiratory distress syndrome have focused on the adult population. In this article, we review the evolution of the definition of acute respiratory distress syndrome over nearly five decades, with a special focus on the new pediatric definition. We also discuss recommendations for the implementation of mechanical ventilation strategies in the treatment of acute respiratory distress syndrome in children and the use of adjuvant therapies. PMID:26331971

  10. Leukemia Cutis: An Unusual Presentation of Acute Lymphoblastic Leukemia in a Child

    PubMed Central

    Jiang, Xia; Wang, Weixia; Zhang, Min

    2015-01-01

    Leukemia cutis (LC) is a nonspecific word used for cutaneous infiltration of leukemia, which is a rare presentation of acute lymphoblastic leukemia (ALL), and always a harbinger of poor prognosis. We report a case of LC in a 5-year-old boy with a past medical history of ALL (L1) presented with multiple asymptomatic oval or annular red patches and plaques on his thighs, buttocks and back waist, and part of them were scaling lesions. A biopsy was performed and histopathological examination showed that medium-sized atypical cells with round to oval contours, scant cytoplasm, and finely dispersed chromatin infiltrated into the dermis and subcutis, and the perivascular and periadnexal areas were involved. Immunophenotyping showed that the atypical cells were positive for CD45, CD3ε, CD99, and Ki67 (about 70%). Considering the patient's medical history and the histopathology, the patient was diagnosed with LC. PMID:26677299

  11. Genetic and clinical characterization of 45 acute leukemia patients with MLL gene rearrangements from a single institution.

    PubMed

    Cerveira, Nuno; Lisboa, Susana; Correia, Cecília; Bizarro, Susana; Santos, Joana; Torres, Lurdes; Vieira, Joana; Barros-Silva, João D; Pereira, Dulcineia; Moreira, Cláudia; Meyer, Claus; Oliva, Tereza; Moreira, Ilídia; Martins, Ângelo; Viterbo, Luísa; Costa, Vítor; Marschalek, Rolf; Pinto, Armando; Mariz, José M; Teixeira, Manuel R

    2012-10-01

    Chromosomal rearrangements affecting the MLL gene are associated with high-risk pediatric, adult and therapy-associated acute leukemia. In this study, conventional cytogenetic, fluorescence in situ hybridization, and molecular genetic studies were used to characterize the type and frequency of MLL rearrangements in a consecutive series of 45 Portuguese patients with MLL-related leukemia treated in a single institution between 1998 and 2011. In the group of patients with acute lymphoblastic leukemia and an identified MLL fusion partner, 47% showed the presence of an MLL-AFF1 fusion, as a result of a t(4;11). In the remaining cases, a MLL-MLLT3 (27%), a MLL-MLLT1 (20%), or MLL-MLLT4 (7%) rearrangement was found. The most frequent rearrangement found in patients with acute myeloid leukemia was the MLL-MLLT3 fusion (42%), followed by MLL-MLLT10 (23%), MLL-MLLT1 (8%), MLL-ELL (8%), MLL-MLLT4 (4%), and MLL-MLLT11 (4%). In three patients, fusions involving MLL and a septin family gene (SEPT2, SEPT6, and SEPT9), were identified. The most frequently identified chromosomal rearrangements were reciprocal translocations, but insertions and deletions, some cryptic, were also observed. In our series, patients with MLL rearrangements were shown to have a poor prognosis, regardless of leukemia subtype. Interestingly, children with 1 year or less showed a statistically significant better overall survival when compared with both older children and adults. The use of a combined strategy in the initial genetic evaluation of acute leukemia patients allowed us to characterize the pattern of MLL rearrangements in our institution, including our previous discovery of two novel MLL fusion partners, the SEPT2 and CT45A2 genes, and a very rare MLL-MLLT4 fusion variant. PMID:22846743

  12. Acute megakaryoblastic leukemia with a four-way variant translocation originating the RBM15-MKL1 fusion gene.

    PubMed

    Torres, Lurdes; Lisboa, Susana; Vieira, Joana; Cerveira, Nuno; Santos, Joana; Pinheiro, Manuela; Correia, Cecília; Bizarro, Susana; Almeida, Marta; Teixeira, Manuel R

    2011-05-01

    Acute megakaryoblastic leukemia (AMKL) with t(1;22)(p13;q13) is a subset of acute myeloid leukemia (AML) representing <1% of all cases and about 70% of pediatric AMKL in the first year of life. We present a case of a 7-month-old female in whom the bone marrow karyotype showed the derivative chromosome der(22)t(1;22)(p13;q13). The RBM15-MKL1 fusion transcript was detected by RT-PCR and confirmed by sequencing analyses. FISH analyses revealed the presence of the four-way translocation t(1;22;17;18)(p13;q13;q22;q12). PMID:21370421

  13. t(6;9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients

    PubMed Central

    Sandahl, Julie Damgaard; Coenen, Eva A.; Forestier, Erik; Harbott, Jochen; Johansson, Bertil; Kerndrup, Gitte; Adachi, Souichi; Auvrignon, Anne; Beverloo, H. Berna; Cayuela, Jean-Michel; Chilton, Lucy; Fornerod, Maarten; de Haas, Valérie; Harrison, Christine J.; Inaba, Hiroto; Kaspers, Gertjan J.L.; Liang, Der-Cherng; Locatelli, Franco; Masetti, Riccardo; Perot, Christine; Raimondi, Susana C.; Reinhardt, Katarina; Tomizawa, Daisuke; von Neuhoff, Nils; Zecca, Marco; Zwaan, C. Michel; van den Heuvel-Eibrink, Marry M.; Hasle, Henrik

    2014-01-01

    Acute myeloid leukemia with t(6;9)(p22;q34) is listed as a distinct entity in the 2008 World Health Organization classification, but little is known about the clinical implications of t(6;9)-positive myeloid leukemia in children. This international multicenter study presents the clinical and genetic characteristics of 62 pediatric patients with t(6;9)/DEK-NUP214-rearranged myeloid leukemia; 54 diagnosed as having acute myeloid leukemia, representing <1% of all childhood acute myeloid leukemia, and eight as having myelodysplastic syndrome. The t(6;9)/DEK-NUP214 was associated with relatively late onset (median age 10.4 years), male predominance (sex ratio 1.7), French-American-British M2 classification (54%), myelodysplasia (100%), and FLT3-ITD (42%). Outcome was substantially better than previously reported with a 5-year event-free survival of 32%, 5-year overall survival of 53%, and a 5-year cumulative incidence of relapse of 57%. Hematopoietic stem cell transplantation in first complete remission improved the 5-year event-free survival compared with chemotherapy alone (68% versus 18%; P<0.01) but not the overall survival (68% versus 54%; P=0.48). The presence of FLT3-ITD had a non-significant negative effect on 5-year overall survival compared with non-mutated cases (22% versus 62%; P=0.13). Gene expression profiling showed a unique signature characterized by significantly higher expression of EYA3, SESN1, PRDM2/RIZ, and HIST2H4 genes. In conclusion, t(6;9)/DEK-NUP214 represents a unique subtype of acute myeloid leukemia with a high risk of relapse, high frequency of FLT3-ITD, and a specific gene expression signature. PMID:24441146

  14. Acute parotitis during induction therapy including L-asparaginase in acute lymphoblastic leukemia.

    PubMed

    Sica, S; Pagano, L; Salutari, P; Di Mario, A; Rutella, S; Leone, G

    1994-02-01

    In a patient affected by acute lymphoblastic leukemia (ALL) and subjected to therapy with Erwinia L-asparaginase, acute parotitis was observed. Microbiological studies excluded any infectious etiology. Regression of parotitis was spontaneous. This complication has not been previously reported and could be due to the same mechanism of pancreatic injury. The occurrence of acute parotitis needs to be promptly recognized in order to avoid the continuation of L-asparaginase. PMID:8148421

  15. Treatment of Acute Promyelocytic Leukemia for Older Patients

    PubMed Central

    Prebet, Thomas; Gore, Steven D.

    2013-01-01

    Acute promyelocytic leukemia (APL) represents a remarkable disease in which leukemogenesis is driven by the PML-RARα oncogene and for which targeted treatment with all-trans retinoic acid (ATRA)–based therapy allows substantial chance of cure. APL is seen in a small subset of older patients, with age representing one of the most important prognostic factors for outcome of treatment. Unlike other acute leukemias, the inferior outcomes for APL in older patients relates less to changes in disease biology and more to increased toxicity of ATRA and chemotherapy combination regimens used to induce hematologic and molecular responses. Risk-adapted strategies that use less-toxic agents, such as arsenic trioxide, allow treatment of older patients, with greater efficiency and better chances of cure. PMID:21393443

  16. 'Acute myeloid leukemia: a comprehensive review and 2016 update'.

    PubMed

    De Kouchkovsky, I; Abdul-Hay, M

    2016-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an incidence of over 20 000 cases per year in the United States alone. Large chromosomal translocations as well as mutations in the genes involved in hematopoietic proliferation and differentiation result in the accumulation of poorly differentiated myeloid cells. AML is a highly heterogeneous disease; although cases can be stratified into favorable, intermediate and adverse-risk groups based on their cytogenetic profile, prognosis within these categories varies widely. The identification of recurrent genetic mutations, such as FLT3-ITD, NMP1 and CEBPA, has helped refine individual prognosis and guide management. Despite advances in supportive care, the backbone of therapy remains a combination of cytarabine- and anthracycline-based regimens with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens, and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of AML. PMID:27367478

  17. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL. PMID:24862130

  18. Acute megakaryoblastic leukemia with increased hematogones in children.

    PubMed

    Anton-Harisi, Marieta; Douna, Varvara; Baka, Margarita; Servitzoglou, Marina; Kosmidis, Helen V; Georgouli, Helen; Anastasiou, Theodora

    2012-11-01

    We describe 2 patients, a 4-month-old male and a 17-month-old female, with de novo acute megakaryoblastic leukemia with increased number of hematogones at diagnosis. Both children were admitted in the hospital with thrombocytopenia. The bone marrow smears in the first child revealed the presence of 60% cells with morphologic features consistent with acute megakaryoblastic leukemia. In the other, the initial bone marrow aspirate was dry tap but on the following aspirate 10% cells with lymphoblastic morphology could be seen. The bone marrow flow cytometry showed the presence of hematogones-38% in the first case and 20% in the second-with absence of blasts. Repeated bone marrow aspirates, trephines, and immunophenotypic as well as molecular studies, confirmed the diagnosis of M7. Both children were treated according to the Berlin-Frankfurt-Munster 2004 protocol. PMID:22983420

  19. New decision support tool for acute lymphoblastic leukemia classification

    NASA Astrophysics Data System (ADS)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  20. Idiopathic thrombocytopenic purpura following successful treatment of acute lymphoblastic leukemia.

    PubMed

    Tannir, N M; Kantarjian, H

    2001-03-01

    Thrombocytopenia is common in patients with acute lymphocytic leukemia (ALL) at diagnosis. It is a universal side effect of dose-intensive regimens employed in the treatment of adult ALL. In patients with ALL who achieve remission, thrombocytopenia frequently indicates relapse. We report three adult patients successfully treated for ALL who developed thrombocytopenia and were found to have immune-mediated thrombocytopenia (ITP). Possible pathophysiologic mechanisms underlying the association of ALL and ITP are discussed. PMID:11342378

  1. [Massive bilateral subconjunctival hemorrhage revealing acute lymphoblastic leukemia].

    PubMed

    Taamallah-Malek, I; Chebbi, A; Bouladi, M; Nacef, L; Bouguila, H; Ayed, S

    2013-03-01

    We report the case of 20-year-old patient who presented in emergency with bilateral massive, spontaneous subconjunctival hemorrhage. Clinical findings suggested a blood dyscrasia, which was confirmed by blood cell count. The patient was urgently referred to hematology where the diagnosis of acute lymphoblastic leukemia was made. This case highlights the importance of working up any unusual subconjunctival hemorrhage, as it may reveal, in certain cases, a severe life-threatening disease. PMID:23122838

  2. Massive Pulmonary Embolism at the Onset of Acute Promyelocytic Leukemia

    PubMed Central

    Sorà, Federica; Chiusolo, Patrizia; Laurenti, Luca; Autore, Francesco; Giammarco, Sabrina; Sica, Simona

    2016-01-01

    Life-threatening bleeding is a major and early complication of acute promyelocytic leukemia (APL), but in the last years there is a growing evidence of thromboses in APL. We report the first case of a young woman with dyspnea as the first symptom of APL due to massive pulmonary embolism (PE) successfully treated with thrombolysis for PE and heparin. APL has been processed with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) obtaining complete remission. PMID:27413520

  3. Wntless (GPR177) expression correlates with poor prognosis in B-cell precursor acute lymphoblastic leukemia via Wnt signaling.

    PubMed

    Chiou, Shyh-Shin; Wang, Li-Ting; Huang, Shih-Bo; Chai, Chee-Yin; Wang, Shen-Nien; Liao, Yu-Mei; Lin, Pei-Chin; Liu, Kwei-Yan; Hsu, Shih-Hsien

    2014-10-01

    B-cell precursor acute lymphoblastic leukemia (BCP ALL) is the most common childhood leukemia, with a cure rate of 80%. Nevertheless, disease relapse is the most important prognostic factor for the disease outcome. We aimed to elucidate the role of Wnt secretion-regulating protein, Wntless (Wls)/GPR177, on disease outcome in pediatric patients with BCP ALL, and assess its pathogenetic role in the regulation of the disease. Wls expression was characterized and correlated with Wnt pathway signaling in the bone marrow leukemia cells isolated from 44 pediatric patients with BCP ALL. The overexpression of Wls was detected in leukemia cells and was significantly correlated with the disease relapse and poor survival in the patients. The high expression of Wls also correlated with the Wnt expression and consequent downstream signaling activation, which was shown to provide essential proliferation, transformation and anti-apoptotic activity during leukemogenesis. These results indicated that Wls played an essential role in disease relapse and poor survival in patients with BCP ALL. Therefore, Wls may provide a potential future therapeutic target, particularly for patients who do not respond to existing therapies and suffer relapse. PMID:25115440

  4. Intracellular markers in acute myeloid leukemia diagnosis.

    PubMed

    Koníková, E; Glasová, M; Kusenda, J; Babusíková, O

    1998-01-01

    In our study we used a new proposed system of CD45 monoclonal antibody in combination with the side scatter (SSC) parameter as a very useful gating method allowing myeloblast detection especially in cases with low blasts percentage in examined samples. Immunological demonstration of myeloperoxidase (MPO) in the cytoplasm of AML blasts is considered to be a reliable and highly sensitive marker. Using a direct single and double immunofluorescence staining method and flow cytometry we evaluated the intracellular expression of two granular constituents of myeloid cells--MPO and lactoferrin (LF) in leukemia cells from 18 patients at AML diagnosis, two patients in remission after allogenic bone marrow transplantation and in six controls. Two different fixation/permeabilization techniques were used: Fix&Perm, paraformaldehyde and saponin prior to monoclonal antibody staining in order to verify the sensitivity of two labeling methods for MPO. Although both reagents used in this study proved to be efficient tools for the fixation and permeabilization of leukemia cells, the second one was characterized by higher sensitivity in detection of MPO. By double staining of MPO and LF we were able to distinguish undifferentiated cells from the granulomonocytic maturation compartments in bone marrow, since LF is proposed to be selectively expressed from the myelocyte stage of differentiation onward. Cytoplasmic CD13 expression was detectable in AML blasts after their buffered-formaldehyde-acetone fixation/permeabilization. According to our results the detection of MPO and CD13 markers in the cytoplasm of leukemia cells is of great importance in the definition of FAB M0-M1 subtype of AML. Furthermore we described overexpression of CD34 antigen in AML and revealed the characteristic marker combination when CD34 was studied simultaneously with MPO. This finding also coincided with some atypical phenotypic features (CD15/MPO, CD7/cCD13, CD2/cCD13, CD33/cCD13, MPO/cCD13) contributing to

  5. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia

    PubMed Central

    Smith, Ellen M. Lavoie; Li, Lang; Chiang, ChienWei; Thomas, Karin; Hutchinson, Raymond J.; Wells, Elizabeth M.; Ho, Richard H.; Skiles, Jodi; Chakraborty, Arindom; Bridges, Celia M.; Renbarger, Jamie

    2015-01-01

    Vincristine, a critical component of combination chemotherapy treatment for pediatric acute lymphoblastic leukemia (ALL), can lead to vincristine-induced peripheral neuropathy (VIPN). Longitudinal VIPN assessments were obtained over 12 months from newly diagnosed children with ALL (N = 128) aged 1–18 years who received vincristine at one of four academic children’s hospitals. VIPN assessments were obtained using the Total Neuropathy Score-Pediatric Vincristine (TNS©-PV), National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE©), Balis© grading scale, and Pediatric Neuropathic Pain Scale©–Five (PNPS©-5). Of children who provided a full TNS©-PV score, 85/109 (78%) developed VIPN (TNS©-PV ≥4). Mean TNS©-PV, grading scale, and pain scores were low. CTCAE©-derived grades 3 and 4 sensory and motor VIPN occurred in 1.6%/0%, and 1.9%/0% of subjects, respectively. VIPN did not resolve in months 8–12 despite decreasing dose density. VIPN was worse in older children. Partition cluster analysis revealed 2–3 patient clusters; one cluster (n = 14) experienced severe VIPN. In this population, VIPN occurs more commonly than previous research suggests, persists throughout the first year of treatment, and can be severe. PMID:25977177

  6. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  7. Laboratory-Treated Donor Cord Blood Cell Infusion Following Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-30

    Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Association of Serum Leptin Level with Obesity in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Zareifar, S; Shorafa, S; Haghpanah, S; Karamizadeh, Z; Adelian, R

    2015-01-01

    Background Obesity is a medical problem in survivors of childhood acute lymphoblastic leukemia. Obesity is associated with many complications, so it is important to investigate the respective etiology. Leptin is a protein synthesized in the fatty tissue and is effective in the control of obesity. Survey of leptin in acute lymphoblastic leukemia (ALL) survivors could be helpful in controlling obesity. Materials and Methods In this prospective study, 53 pediatric patients diagnosed with ALL between 2006 and 2012 from Southern Iran, were enrolled. We examined body mass index (BMI) status and performed laboratory measuring tests including triglyceride, cholesterol, fasting blood sugar, leptin at diagnosis time and then every 6 months and in the last visit. Results Participants consisted of 35 male and 18 female patients. At the time of diagnosis, 5.66% were overweight or obese, whereas at the end of treatment, approximately 13 patients (24.53%) were overweight or obese. The median and interquartile range (IQR) for blood leptin level were significantly higher for obese patients than other patients (885, 1120 vs. 246, 494 pg/ml), (P=0.030). The median and IQR were also significantly higher in females than in males (861, 969 vs. 204, 267 pg/ml), (P=0.006). Conclusion Obesity is a complication of ALL treatment. It is associated with elevated blood leptin level. Hypothalamus leptin resistance in obese patients should be considered. In each visit, clinicians should weight and their patient’s BMI take into account. PMID:26705449

  9. Effects of Race/Ethnicity and Socioeconomic Status on Outcome in Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Acharya, Sahaja; Hsieh, Samantha; Shinohara, Eric T; DeWees, Todd; Frangoul, Haydar; Perkins, Stephanie M

    2016-07-01

    With modern therapy, overall survival (OS) for children with acute lymphoblastic leukemia approaches 90%. However, inferior outcomes for minority children have been reported. Data on the effects of ethnicity/race as it relates to socioeconomic status are limited. Using state cancer registry data from Texas and Florida, we evaluated the impact of neighborhood-level poverty rate and race/ethnicity on OS for 4719 children with acute lymphoblastic leukemia. On multivariable analysis, patients residing in neighborhoods with the highest poverty rate had a 1.8-fold increase in mortality compared with patients residing in neighborhoods with the lowest poverty rate (hazard ratio [HR], 1.8; 95% confidence interval [CI], 1.41-2.30). Hispanic and non-Hispanic black patients also had increased risk of mortality compared with non-Hispanic white patients (Hispanic: HR, 1.18; 95% CI, 1.01-1.39; non-Hispanic black: HR, 1.31; 95% CI, 1.03-1.66). On subgroup analysis, there was a 21.7% difference in 5-year OS when comparing non-Hispanic white children living in the lowest poverty neighborhoods (5-year OS, 91.2%; 95% CI, 88.6-93.2) to non-Hispanic black children living in the highest poverty neighborhoods (5-year OS, 69.5%; 95% CI, 61.5-76.1). To address such disparities in survival, further work is needed to identify barriers to cancer care in this pediatric population. PMID:27177145

  10. Acute promyelocytic leukemia transformation in a patient with aplastic anemia: a case report with literature review

    PubMed Central

    Wang, Xiaoning; Yuan, Tingting; Wang, Wenjuan; Chen, Limei; Wang, Huaiyu; Liu, Yalin

    2015-01-01

    Aplastic anemia (AA) is a hematological disorder presenting with pancytopenia in peripheral blood and hypocellularity in bone marrow. AA patients with immunosuppressive therapy and granulocyte colony-stimulating factor treatment have a risk of development of acute leukemia including acute myeloid leukemia (M0, M1, M2, M4, M5, M6) and acute lymphoblastic leukemia. However, AA with transformation to acute promyelocytic leukemia (APL) has never been reported. Here, we reported a patient initially diagnosed with AA. while 19 years later, PML/RAR αfusion gene were detected and the patient was eventually diagnosed as APL. The diagnosis and management of this interesting case are discussed. PMID:26884990

  11. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  12. The Approach to Acute Lymphoblastic Leukemia in Older Patients: Conventional Treatments and Emerging Therapies.

    PubMed

    Fedorov, Victor D; Upadhyay, Vivek A; Fathi, Amir T

    2016-06-01

    Acute lymphoblastic leukemia (ALL) among older adult patients presents significant clinical challenges. As opposed to pediatric populations, in whom long-term outcomes are markedly superior, those for adults remain grim. Nevertheless, younger adults with ALL have experienced a steady improvement in long-term survival in the last few decades. This is significantly different for older ALL patients, for whom long-term outcomes remain poor. Conventional chemotherapies are associated with sub-optimal outcomes and increased toxicity in this population. However, several emerging therapies, including antibody-drug conjugates, bi-specific engagers, and chimeric antigen receptor (CAR) T cells, have demonstrated much promise and are either incorporated into the existing therapeutic paradigms or being actively investigated to improve outcomes. PMID:26939921

  13. Clofarabine and Cytarabine in Treating Older Patients With Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-08-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  14. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  15. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  16. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  17. Dasatinib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Did Not Respond to Imatinib Mesylate

    ClinicalTrials.gov

    2013-02-04

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Meningeal Chronic Myelogenous Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  18. Aggressive chemotherapy for acute leukemia relapsed after transplantation.

    PubMed

    Sica, S; Salutari, P; Di Mario, A; D'Onofrio, G; Etuk, B; Leone, G

    1994-09-01

    Bone marrow transplantation procedure has emerged as an effective treatment for hematological malignancies. However, recurrence of leukemia is still the major cause of treatment failure. Subsequent treatment in this category of patients, generally considered incurable, has not been yet standardized. At our institution, 13 patients, 7 with acute non lymphoid leukemia (ANLL) and 6 with acute lymphoid leukemia (ALL), were treated at relapse after bone marrow transplantation either autologous or allogeneic (AuBMT 8, ABMT 4) performed in complete remission (CR). The interval between BMT and relapse was less than 9 months in 6 patients (2 ABMT and 4 AuBMT) and more than 9 months in 7 patients. Early relapsed patients showed no response to treatment and died at a median of 5.5 months (range 1-13) after relapse. Late relapse after BMT was characterized by a high percentage of response (5 CR and 1 PR), particularly after intensive chemotherapy and by a longer survival (median 14 months; range 2-36). Chemotherapy after transplantation should be carefully evaluated in patients relapsed after BMT in order to select a population that can achieve long term disease free survival. PMID:7858490

  19. Haploidentical Transplantation in Children with Acute Leukemia: The Unresolved Issues

    PubMed Central

    Jaiswal, Sarita Rani; Chakrabarti, Suparno

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) remains a curative option for children with high risk and advanced acute leukemia. Yet availability of matched family donor limits its use and although matched unrelated donor or mismatched umbilical cord blood (UCB) are viable options, they fail to meet the global need. Haploidentical family donor is almost universally available and is emerging as the alternate donor of choice in adult patients. However, the same is not true in the case of children. The studies of haploidentical HSCT in children are largely limited to T cell depleted grafts with not so encouraging results in advanced leukemia. At the same time, emerging data from UCBT are challenging the existing paradigm of less stringent HLA match requirements as perceived in the past. The use of posttransplantation cyclophosphamide (PTCY) has yielded encouraging results in adults, but data in children is sorely lacking. Our experience of using PTCY based haploidentical HSCT in children shows inadequacy of this approach in younger children compared to excellent outcome in older children. In this context, we discuss the current status of haploidentical HSCT in children with acute leukemia in a global perspective and dwell on its future prospects. PMID:27110243

  20. Comparative genomics reveals multistep pathogenesis of E2A-PBX1 acute lymphoblastic leukemia

    PubMed Central

    Duque-Afonso, Jesús; Feng, Jue; Scherer, Florian; Lin, Chiou-Hong; Wong, Stephen H.K.; Wang, Zhong; Iwasaki, Masayuki; Cleary, Michael L.

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood cancer; however, its genetic diversity limits investigation into the molecular pathogenesis of disease and development of therapeutic strategies. Here, we engineered mice that conditionally express the E2A-PBX1 fusion oncogene, which results from chromosomal translocation t(1;19) and is present in 5% to 7% of pediatric ALL cases. The incidence of leukemia in these mice varied from 5% to 50%, dependent on the Cre-driving promoter (Cd19, Mb1, or Mx1) used to induce E2A-PBX1 expression. Two distinct but highly similar subtypes of B cell precursor ALLs that differed by their pre–B cell receptor (pre-BCR) status were induced and displayed maturation arrest at the pro-B/large pre–B II stages of differentiation, similar to human E2A-PBX1 ALL. Somatic activation of E2A-PBX1 in B cell progenitors enhanced self-renewal and led to acquisition of multiple secondary genomic aberrations, including prominent spontaneous loss of Pax5. In preleukemic mice, conditional Pax5 deletion cooperated with E2A-PBX1 to expand progenitor B cell subpopulations, increasing penetrance and shortening leukemia latency. Recurrent secondary activating mutations were detected in key signaling pathways, most notably JAK/STAT, that leukemia cells require for proliferation. These data support conditional E2A-PBX1 mice as a model of human ALL and suggest targeting pre-BCR signaling and JAK kinases as potential therapeutic strategies. PMID:26301816

  1. Vincristine-induced paralytic ileus during induction therapy of treatment protocols for acute lymphoblastic leukemia in adult patients.

    PubMed

    Yasu, Takeo; Ohno, Nobuhiro; Kawamata, Toyotaka; Kurokawa, Yosuke

    2016-06-01

    Vincristine (VCR) is an important drug used in the treatment of acute lymphoblastic leukemia (ALL). VCR-induced neurotoxicity can manifest as peripheral neuropathy, constipation, or paralytic ileus. While there are some case reports describing VCR-induced paralytic ileus (VIPI) in pediatric ALL, there are fewer publication on adult ALL patients. Therefore, we retrospectively investigated VIPI during induction therapy of treatment protocols for ALL in 19 adult patients. The incidence of VIPI was 32%. VIPI was significantly increased in patients receiving concomitant itraconazole (ITCZ) (p = 0.04). We recommend avoidance of the combination of VCR and ITCZ. PMID:27087157

  2. Mucormycosis Rhinosinusitis at Diagnosis of Acute Lymphoblastic Leukemia: Diagnostics and Management Challenges in a Low-Middle-income Country.

    PubMed

    Mandegari, Elham; Fu, Ligia; Arambú, Carolina; Montoya, Sandra; Peña, Armando; Johnson, Kyle M; Perfect, John R; Caniza, Miguela A

    2015-04-01

    We present the case of an adolescent with mucor rhinosinusitis diagnosed concomitantly with acute lymphoblastic leukemia at a hospital in Tegucigalpa, Honduras. We also discuss the challenges faced in the dual management of hematologic malignancies and invasive fungal disease in a low-middle-income country, such as access to diagnostics, immunosuppressants, imaging, and antifungals. Despite these shortcomings, the patient was successfully treated for both the diseases. Low-middle-income country hospitals can effectively treat invasive fungal diseases by providing adequate diagnostic and support services, which can improve the outcomes of pediatric cancer patients. PMID:24942033

  3. Prognostic Significance and Treatment Implications of Minimal Residual Disease Studies in Philadelphia-Negative Adult Acute Lymphoblastic Leukemia

    PubMed Central

    Spinelli, Orietta; Tosi, Manuela; Peruta, Barbara; Guinea Montalvo, Marie Lorena; Maino, Elena; Scattolin, Anna Maria; Parolini, Margherita; Viero, Piera; Rambaldi, Alessandro; Bassan, Renato

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is curable in about 40–50% of adult patients, however this is subject to ample variations owing to several host- and disease-related prognostic characteristics. Currently, the study of minimal residual disease (MRD) following induction and early consolidation therapy stands out as the most sensitive individual prognostic marker to define the risk of relapse following the achievement of remission, and ultimately that of treatment failure or success. Because substantial therapeutic advancement is now being achieved using intensified pediatric-type regimens, MRD analysis is especially useful to orientate stem cell transplantation choices. These strategic innovations are progressively leading to greater than 50% cure rates. PMID:25237475

  4. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia

    PubMed Central

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification. PMID:24716037

  5. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Papaemmanuil, Elli; Ford, Anthony; Kweon, Soo-Mi; Trageser, Daniel; Hasselfeld, Brian; Henke, Nadine; Mooster, Jana; Geng, Huimin; Schwarz, Klaus; Kogan, Scott C.; Casellas, Rafael; Schatz, David G.; Lieber, Michael R; Greaves, Mel F.; Müschen, Markus

    2015-01-01

    Childhood acute lymphoblastic leukemia can often be retraced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution towards overt leukemia. RAG1-RAG2 and AID enzymes, the diversifiers of immunoglobulin genes, are strictly segregated to early and late stages of B-lymphopoiesis, respectively. Here, we identified small pre-BII cells as a natural subset of increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B-lymphopoiesis at the large to small pre-BII transition is exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrate that AID and RAG1-RAG2 drive leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood. PMID:25985233

  6. ACER3 supports development of acute myeloid leukemia.

    PubMed

    Chen, Chen; Yin, Yancun; Li, Chunling; Chen, Jinliang; Xie, Jingjing; Lu, Zhigang; Li, Minjing; Wang, Yuesi; Zhang, Cheng Cheng

    2016-09-01

    No new therapy for acute myeloid leukemia (AML) has been approved for more than 30 years. To effectively treat AML, new molecular targets and therapeutic approaches must be identified. In silico analysis of several databases of AML patients demonstrated that the expression of alkaline ceramidase 3 (ACER3) significantly inversely correlates with the overall survival of AML patients. To determine whether ACER3 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit acer3 expression in human AML cells including NB4, U937, and THP-1 cells. The ACER3 deficiency resulted in decreased cell growth and colony formation, elevated apoptosis, and lower AKT signaling of leukemia cells. Our study indicates that ACER3 contributes to AML pathogenesis, and suggests that alkaline ceramidase inhibition is an option to treat AML. PMID:27470583

  7. THE GENOMIC LANDSCAPE OF HYPODIPLOID ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Holmfeldt, Linda; Wei, Lei; Diaz-Flores, Ernesto; Walsh, Michael; Zhang, Jinghui; Ding, Li; Payne-Turner, Debbie; Churchman, Michelle; Andersson, Anna; Chen, Shann-Ching; McCastlain, Kelly; Becksfort, Jared; Ma, Jing; Wu, Gang; Patel, Samir N.; Heatley, Susan L.; Phillips, Letha A.; Song, Guangchun; Easton, John; Parker, Matthew; Chen, Xiang; Rusch, Michael; Boggs, Kristy; Vadodaria, Bhavin; Hedlund, Erin; Drenberg, Christina; Baker, Sharyn; Pei, Deqing; Cheng, Cheng; Huether, Robert; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda L.; Tabib, Yashodhan; Dooling, David J.; Ochoa, Kerri; Minden, Mark; Lewis, Ian D.; To, L. Bik; Marlton, Paula; Roberts, Andrew W.; Raca, Gordana; Stock, Wendy; Neale, Geoffrey; Drexler, Hans G.; Dickins, Ross A.; Ellison, David W.; Shurtleff, Sheila A.; Pui, Ching-Hon; Ribeiro, Raul C.; Devidas, Meenakshi; Carroll, Andrew J.; Heerema, Nyla A.; Wood, Brent; Borowitz, Michael J.; Gastier-Foster, Julie M.; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.

    2013-01-01

    The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole genome and exome sequencing of 40 cases, identified two subtypes that differ in severity of aneuploidy, transcriptional profile and submicroscopic genetic alterations. Near haploid cases with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase- and Ras signaling (71%) and the lymphoid transcription factor IKZF3 (AIOLOS; 13%). In contrast, low hypodiploid ALL with 32–39 chromosomes are characterized by TP53 alterations (91.2%) which are commonly present in non-tumor cells, and alterations of IKZF2 (HELIOS; 53%) and RB1 (41%). Both near haploid and low hypodiploid tumors exhibit activation of Ras- and PI3K signaling pathways, and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia. PMID:23334668

  8. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia

    PubMed Central

    Klco, Jeffery M.; Spencer, David H.; Miller, Christopher A.; Griffith, Malachi; Lamprecht, Tamara L.; O’Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Fulton, Robert S.; Eades, William C.; Link, Daniel C.; Graubert, Timothy A.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically-defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients. PMID:24613412

  9. Pharmacogenetics of alkylator-associated acute myeloid leukemia.

    PubMed

    Knoche, Eric; McLeod, Howard L; Graubert, Timothy A

    2006-07-01

    Therapy-related acute myeloid leukemia (t-AML) is a lethal late complication of alkylator chemotherapy. The genetic basis of susceptibility to t-AML is poorly understood. Both t-AML and de novo AML are complex genetic diseases, requiring cooperating mutations in interacting pathways for disease initiation and progression. Germline variants of these 'leukemia pathway' genes may cooperate with somatic mutations to induce both de novo and therapy-related AML. Several cancer susceptibility syndromes have been identified that cause an inherited predisposition to de novo and t-AML. The genes responsible for these syndromes are also somatically mutated in sporadic AML. We reason that germline polymorphism in any gene somatically mutated in AML could contribute to t-AML risk in the general population. Identification of these susceptibility alleles should help clinicians develop tailored therapies that reduce the relative risk of t-AML. PMID:16886897

  10. Update on developmental therapeutics for acute lymphoblastic leukemia.

    PubMed

    Smith, Malcolm A

    2009-07-01

    This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins. PMID:20425431

  11. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Gang, Eun Ji; Hsieh, Yao-Te; Schaefer, Paul; Chae, Sanna; Klemm, Lars; Huantes, Sandra; Loh, Mignon; Conway, Edward M.; Kang, Eun-Suk; Hoe Koo, Hong; Hofmann, Wolf-Karsten; Heisterkamp, Nora; Pelus, Louis; Keerthivasan, Ganesan; Crispino, John; Kahn, Michael; Müschen, Markus

    2011-01-01

    Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL. PMID:21715311

  12. TPMT and MTHFR Genotype is not Associated With Altered Risk of Thioguanine-Related Sinusoidal Obstruction Syndrome in Pediatric Acute Lymphoblastic Leukemia: A Report from the Children’s Oncology Group

    PubMed Central

    Wray, Lisa; Vujkovic, Marijana; McWilliams, Thomas; Cannon, Shannon; Devidas, Meenakshi; Stork, Linda; Aplenc, Richard

    2014-01-01

    Sinusoidal obstruction syndrome is a complication of therapy for pediatric ALL and may be modified by thiopurine methyltransferase activity as well as by MTHFR genotype. We assessed TPMT * 3A, * 3B, * 3C, and MTHFR C677T and A1298C germline genetic polymorphisms among 351 patients enrolled in the thioguanine treatment arm of CCG-1952 clinical trial. TPMT and MTHFR C677T genotypes were not associated with SOS risk. The combination of MTHFR and TPMT variant genotypes was not associated with SOS risk. These suggest that germline genetic variation in TPMT and MTHFR do not significantly alter SOS risk in patients exposed to thioguanine. PMID:24737678

  13. Obesity is associated with residual leukemia following induction therapy for childhood B-precursor acute lymphoblastic leukemia.

    PubMed

    Orgel, Etan; Tucci, Jonathan; Alhushki, Waseem; Malvar, Jemily; Sposto, Richard; Fu, Cecilia H; Freyer, David R; Abdel-Azim, Hisham; Mittelman, Steven D

    2014-12-18

    Obesity is associated with poorer event-free survival (EFS) in pediatric acute lymphoblastic leukemia (ALL). Persistent minimal residual disease (MRD) in the bone marrow as measured by multidimensional flow cytometry (MDF) is a key early prognostic indicator and is strongly associated with EFS. We therefore hypothesized that obesity during induction would be associated with positive end-of-induction MRD (≥0.01%). We analyzed MDF of end-induction bone marrow samples from a historical cohort of 198 children newly diagnosed with B-precursor ALL (BP-ALL) and treated with Children's Oncology Group induction regimens. We assessed the influence of body mass index on risk for positive end-induction MRD in the bone marrow. In our cohort of BP-ALL, 30 children (15.2%) were overweight and 41 (20.7%) were obese at diagnosis. Independent of established predictors of treatment response, obesity during induction was associated with significantly greater risk for persistent MRD (odds ratio, 2.57; 95% confidence interval, 1.19 to 5.54; P = .016). Obesity and overweight were associated with poorer EFS irrespective of end-induction MRD (P = .012). Obese children with newly diagnosed BP-ALL are at increased risk for positive end-induction MRD and poorer EFS. PMID:25349177

  14. The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leukemia and review of the literature.

    PubMed

    Bal, Zumrut Sahbudak; Sen, Semra; Karapinar, Deniz Yilmaz; Aydemir, Sohret; Vardar, Fadil

    2015-01-01

    Brevibacterium spp. are catalase-positive, non-spore-forming, non motile, aerobic Gram-positive rods that were considered apathogenic until a few reports of infections in immunocompromised patients had been published. To the best of our knowledge, this is the first report of B. casei catheter-related bloodstream infection in a child with acute leukemia. We aim to enhance the awareness of pediatric hematology and infectious disease specialists about this pathogen and review of the literature. PMID:25636191

  15. Clofarabine, Cytarabine, and Filgrastim in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome, and/or Advanced Myeloproliferative Neoplasm

    ClinicalTrials.gov

    2015-12-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia; Myeloproliferative Neoplasm With 10% Blasts or Higher

  16. Pediatric Acute Respiratory Distress Syndrome: Fibrosis versus Repair

    PubMed Central

    Im, Daniel; Shi, Wei; Driscoll, Barbara

    2016-01-01

    Clinical and basic experimental approaches to pediatric acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), have historically focused on acute care and management of the patient. Additional efforts have focused on the etiology of pediatric ALI and ARDS, clinically defined as diffuse, bilateral diseases of the lung that compromise function leading to severe hypoxemia within 7 days of defined insult. Insults can include ancillary events related to prematurity, can follow trauma and/or transfusion, or can present as sequelae of pulmonary infections and cardiovascular disease and/or injury. Pediatric ALI/ARDS remains one of the leading causes of infant and childhood morbidity and mortality, particularly in the developing world. Though incidence is relatively low, ranging from 2.9 to 9.5 cases/100,000 patients/year, mortality remains high, approaching 35% in some studies. However, this is a significant decrease from the historical mortality rate of over 50%. Several decades of advances in acute management and treatment, as well as better understanding of approaches to ventilation, oxygenation, and surfactant regulation have contributed to improvements in patient recovery. As such, there is a burgeoning interest in the long-term impact of pediatric ALI/ARDS. Chronic pulmonary deficiencies in survivors appear to be caused by inappropriate injury repair, with fibrosis and predisposition to emphysema arising as irreversible secondary events that can severely compromise pulmonary development and function, as well as the overall health of the patient. In this chapter, the long-term effectiveness of current treatments will be examined, as will the potential efficacy of novel, acute, and long-term therapies that support repair and delay or even impede the onset of secondary events, including fibrosis. PMID:27066462

  17. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  18. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  19. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  20. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia

    PubMed Central

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M.; Dombkowski, Alan A.; Buck, Steven A.; Boerner, Julie L.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    RUNX1 (AML1) encodes the core binding factor α subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the δ catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)–kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease. PMID:19638627

  1. Single dose rasburicase in the management of tumor lysis syndrome in childhood acute lymphoblastic leukemia: A case series

    PubMed Central

    Latha, S. M.; Krishnaprasadh, D.; Murugapriya, P.; Scott, J. X.

    2015-01-01

    Tumor lysis syndrome (TLS) occurs in malignancies with high proliferative potential and tumor burden, such as lymphomas and leukemias. TLS syndrome is an oncologic emergency, requiring prompt intervention. The metabolic derangements cause acute kidney failure and may lead to cardiac arrhythmias, seizures, and death. With the advent of rasburicase, a recombinant urate oxidase, there has been a decline in the TLS-mediated renal failure and the need for dialysis. The recommended regimen and doses pose a heavy financial burden for patients in developing countries like India. With data and studies proving a similar efficacy for the reduced dose and lesser number of rasburicase, we report here a case series of seven children with acute leukemias, whose TLS was managed by a single dose of rasburicase. A retrospective analysis of case records of seven children with acute lymphoblastic leukemia and TLS, admitted to our Pediatric Oncology Unit of our Hospital between the period 2011 and 2013, was done. All our patients responded to a single dose, indicating that in appropriately monitored patients, single dose followed by as-needed dosing can be cost-saving. PMID:25838646

  2. Persistent Multiyear Control of Relapsed T-Cell Acute Lymphoblastic Leukemia With Successive Donor Lymphocyte Infusions: A Case Report.

    PubMed

    Huo, Jeffrey S; Symons, Heather J; Robey, Nancy; Borowitz, Michael J; Schafer, Eric S; Chen, Allen R

    2016-07-01

    There are few therapeutic options for patients with T-cell acute lymphoblastic leukemia (T-ALL) who have recurrent disease after initial matched sibling hematopoietic stem cell transplantation. While a second hematopoietic stem cell transplant (HSCT) from a haploidentical donor offers the conceptual possibility of greater graft versus leukemia effect, there is minimal literature to describe the efficacy of this approach in recurrent pediatric T-ALL. We present the case of a now 9-year-old female in whom second haploidentical HSCT, followed by successive donor lymphocyte infusions in response to minimal residual disease reemergence, has led to 3+ years of ongoing disease control without graft versus host disease and excellent quality of life. PMID:26990138

  3. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes.

    PubMed

    Eckstein, Olive S; Wang, Linghua; Punia, Jyotinder N; Kornblau, Steven M; Andreeff, Michael; Wheeler, David A; Goodell, Margaret A; Rau, Rachel E

    2016-08-01

    Mixed-phenotype acute leukemia (MPAL) is a heterogeneous group of poor-prognosis leukemias with immunophenotypic features of at least two cell lineages. The full spectrum of genetic mutations in this rare disease has not been elucidated, limiting our understanding of disease pathogenesis and our ability to devise targeted therapeutic strategies. Here, we sought to define the mutational landscape of MPAL by performing whole-exome sequencing on samples from 23 adult and pediatric MPAL patients. We identified frequent mutations of epigenetic modifiers, most notably mutations of DNMT3A, in 33% of adult MPAL patients. Mutations of activated signaling pathways, tumor suppressors, and transcription factors were also frequent. Importantly, many of the identified mutations are potentially therapeutically targetable, with agents currently available or in various stages of clinical development. Therefore, the mutational spectrum that we have identified provides potential biological insights and is likely to have clinical relevance for patients with this poor-prognosis disease. PMID:27208809

  4. [Progress in molecularly targeted therapies for acute myeloid leukemia].

    PubMed

    Tomita, Akihiro

    2015-02-01

    Genetic abnormalities including specific point mutations have recently been confirmed by applying comprehensive genome sequencing analyses. Molecular targeting therapies, which focus on the mutated proteins and over-expressed proteins in acute myeloid leukemia (AML) cells, are now being developed in clinical studies and/or based on in vitro analyses. This manuscript summarizes the genetic abnormalities in AML cells and some of the current molecular targeting therapies including FLT3 inhibitors (e.g. AC220; Quizartinib), Polo like kinase 1 (PLK1) inhibitors (e.g. BI-6727; Volasertib), IDH2 inhibitors (e.g. AG-221), and XPO1 inhibitors (e.g. KPT-330; Selinexor). PMID:25765792

  5. Management of Acute Myeloid Leukemia in the Intensive Care Setting.

    PubMed

    Cowan, Andrew J; Altemeier, William A; Johnston, Christine; Gernsheimer, Terry; Becker, Pamela S

    2015-10-01

    Patients with acute myeloid leukemia (AML) who are newly diagnosed or relapsed and those who are receiving cytotoxic chemotherapy are predisposed to conditions such as sepsis due to bacterial and fungal infections, coagulopathies, hemorrhage, metabolic abnormalities, and respiratory and renal failure. These conditions are common reasons for patients with AML to be managed in the intensive care unit (ICU). For patients with AML in the ICU, providers need to be aware of common problems and how to manage them. Understanding the pathophysiology of complications and the recent advances in risk stratification as well as newer therapy for AML are relevant to the critical care provider. PMID:24756309

  6. Acute Myeloid Leukemia Complicated by Giant Cell Arteritis.

    PubMed

    Tsunemine, Hiroko; Umeda, Ryosuke; Nohda, Yasuhiro; Sakane, Emiko; Akasaka, Hiroshi; Itoh, Kiminari; Izumi, Mayuko; Tsuji, Goh; Kodaka, Taiichi; Itoh, Tomoo; Takahashi, Takayuki

    2016-01-01

    Giant cell arteritis (GCA), a type of systemic arteritis, is rare in Japan. We herein report a case of acute myeloid leukemia (AML) complicated by GCA that manifested during chemotherapy for AML. A 77-year-old woman with severe back pain was diagnosed with AML. She achieved complete remission with the resolution of her back pain following induction chemotherapy. However, she developed a headache and fever after consolidation chemotherapy. A diagnosis of GCA was made based on a biopsy of the temporal artery and arterial imaging. GCA should therefore be included in the differential diagnosis in AML patients complicated with a headache and fever of unknown origin. PMID:26831026

  7. Glucocorticoid-Induced Proliferation in Untreated Pediatric Acute Myeloid Leukemic Blasts.

    PubMed

    Klein, Kim; Haarman, Eric G; de Haas, Valerie; Zwaan, Ch Michel; Creutzig, Ursula; Kaspers, Gertjan L

    2016-08-01

    We evaluated the in vitro glucocorticoid (GC) responsiveness of 117 pediatric acute myeloid leukemia cells by considering GC resistance, GC-induced proliferation, and GC-induced differentiation. None of the samples was highly GC sensitive, and only 15% were intermediately sensitive. GC-induced differentiation was not observed, while GC-induced proliferation was observed in 27% of the samples. Samples with French-American-British classification (FAB) type M5 or activating Fms-like tyrosine kinase 3 (FLT3) mutations were significantly more prone to this phenomenon. Although we could not confirm this in our study, if induced proliferation in vitro is paralleled in vivo, GCs during consolidation may have adverse effects on minimal residual leukemic cells, which might increase relapse risk. PMID:27093190

  8. Combination Chemotherapy and Rituximab in Treating Young Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; L3 Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma

  9. Management of acute bronchospasm in pediatric populations.

    PubMed

    Chipps, Bradley E

    2005-12-01

    Asthma affects more than 6 million children in the United States. It is extremely important to recognize those children who are at risk of life-threatening bronchospasm episodes. This article outlines the importance of peak expiratory flow, (PEF), forced expiratory flow in 1 second (FEV1), and percent arterial oxygen saturation (SaO2) as predictors of the exacerbation severity, degree of airflow obstruction, and need for hospitalization. In addition, clinical data on the safety and efficacy of levalbuterol among pediatric patients are also presented. PMID:19667715

  10. Leukemia

    MedlinePlus

    ... version of this page please turn Javascript on. Leukemia What Is Leukemia? Leukemia is a cancer of the blood cells. ... diagnosed with leukemia are over 50 years old. Leukemia Starts in Bone Marrow Click for more information ...

  11. Mer receptor tyrosine kinase is a therapeutic target in pre–B-cell acute lymphoblastic leukemia

    PubMed Central

    Linger, Rachel M. A.; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Cohen, Rebecca A.; Jacobsen, Kristen M.; McGranahan, Amy; Brandão, Luis N.; Winges, Amanda; Sawczyn, Kelly K.; Liang, Xiayuan; Keating, Amy K.; Tan, Aik Choon; Earp, H. Shelton

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre–B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  12. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia.

    PubMed

    Linger, Rachel M A; Lee-Sherick, Alisa B; DeRyckere, Deborah; Cohen, Rebecca A; Jacobsen, Kristen M; McGranahan, Amy; Brandão, Luis N; Winges, Amanda; Sawczyn, Kelly K; Liang, Xiayuan; Keating, Amy K; Tan, Aik Choon; Earp, H Shelton; Graham, Douglas K

    2013-08-29

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre-B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  13. Oral hairy leukoplakia which occurred as a presenting sign of acute myeloid leukemia in a child.

    PubMed

    Cho, Hyun-Ho; Kim, Su-Han; Seo, Sang-Hee; Jung, Do-Sang; Ko, Hyun-Chang; Kim, Moon-Bum; Kwon, Kyung-Sool

    2010-02-01

    Oral hairy leukoplakia (OHL) is caused by the reactivation of a previous Epstein-Barr virus (EBV) infection in the epithelium of the tongue. Most lesions are characterized by corrugated whitish patches on the lateral border of the tongue. It is frequently associated with AIDS, but cases in patients with other immunosuppressed states have also been reported. In leukemia patients, OHL is rarely encountered, and appears only after chemotherapy. We report a case of OHL which occurred as a presenting sign of acute myeloid leukemia (AML) in a previously healthy 15-year-old child. A 15-year-old boy presented with a whitish patch on the left lateral border of the tongue. The biopsy specimen revealed papillomatosis, hyperkeratosis, acanthosis and ballooning degeneration in the stratum spinosum. The patient was EBV seropositive, and PCR analysis of EBV DNA in the lesional tissue was positive. After the diagnosis of OHL in dermatologic department, the patient was referred to pediatrics due to the abnormal peripheral blood smear, and was diagnosed with AML. PMID:20548888

  14. Physiologically based toxicokinetic modeling of secondary acute myelolytic leukemia.

    PubMed

    Mukhopadhyay, Manas Kumar; Nath, Debjani

    2014-01-01

    Benzene, designated as environmental and occupational carcinogen and hematotoxin, has been associated with secondary leukemia. To develop a toxicokinetic model of AML, benzene can be used as leukemogenic agent. The aim of the present study was to optimize the dose, period and time of cumulative benzene exposure of Swiss Albino mice and to analyze survival rate; alteration in cell cycle regulation and other clinical manifestations in mice exposed to benzene vapour at a dose 300 ppm × 6 h/day × 5 days/week for 2 weeks, i.e., 9000(a)ppm cumulative dose. Analyzing physiological parameters like plasma enzyme profile, complete hematology (Hb %, RBC indices and WBC differentials), hematopoietic cells morphology, expression of cell cycle regulatory proteins, tissue histology and analysis of DNA fragmentation, optimum conditions were established. Down regulation of p53 and p21 and up regulation of CDK2, CDK4, CDK6, cyclin D1 and E in this exposed group were marked as the optimum conditions of cellular deregulation for the development of secondary AML. Elevated level of Plasma AST/ALT with corresponding changes in liver histology showing extended sinusoids within the hepatocytic cell cords in optimally exposed animals also confirmed the toxicokinetic relation of benzene with leukemia. It can be concluded from the above observations that the 9000(a)ppm exposed animals can serve as the induced laboratory model of secondary acute myeloid leukemia. PMID:24440606

  15. Novel drugs for older patients with acute myeloid leukemia.

    PubMed

    Montalban-Bravo, G; Garcia-Manero, G

    2015-04-01

    Acute myeloid leukemia (AML) is the second most common form of leukemia and the most frequent cause of leukemia-related deaths in the United States. The incidence of AML increases with advancing age and the prognosis for patients with AML worsens substantially with increasing age. Many older patients are ineligible for intensive treatment and require other therapeutic approaches to optimize clinical outcome. To address this treatment gap, novel agents with varying mechanisms of action targeting different cellular processes are currently in development. Hypomethylating agents (azacitidine, decitabine, SGI-110), histone deacetylase inhibitors (vorinostat, pracinostat, panobinostat), FMS-like tyrosine kinase receptor-3 inhibitors (quizartinib, sorafenib, midostaurin, crenolanib), cytotoxic agents (clofarabine, sapacitabine, vosaroxin), cell cycle inhibitors (barasertib, volasertib, rigosertib) and monoclonal antibodies (gentuzumab ozogamicin, lintuzumab-Ac225) represent some of these promising new treatments. This review provides an overview of novel agents that have either completed or are currently in ongoing phase III trials in patients with previously untreated AML for whom intensive treatment is not an option. Other potential drugs in earlier stages of development will also be addressed in this review. PMID:25142817

  16. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia.

    PubMed

    Zhou, Jianbiao; Chng, Wee-Joo

    2014-09-26

    Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC. PMID:25258669

  17. Survival improvements in adolescents and young adults after myeloablative allogeneic transplantation for acute lymphoblastic leukemia.

    PubMed

    Wood, William A; Lee, Stephanie J; Brazauskas, Ruta; Wang, Zhiwei; Aljurf, Mahmoud D; Ballen, Karen K; Buchbinder, David K; Dehn, Jason; Freytes, Cesar O; Lazarus, Hillard M; Lemaistre, Charles F; Mehta, Paulette; Szwajcer, David; Joffe, Steven; Majhail, Navneet S

    2014-06-01

    Adolescents and young adults (AYAs, ages 15 to 40 years) with cancer have not experienced survival improvements to the same extent as younger and older patients. We compared changes in survival after myeloablative allogeneic hematopoietic cell transplantation (HCT) for acute lymphoblastic leukemia (ALL) among children (n = 981), AYAs (n = 1218), and older adults (n = 469) who underwent transplantation over 3 time periods: 1990 to 1995, 1996 to 2001, and 2002 to 2007. Five-year survival varied inversely with age group. Survival improved over time in AYAs and paralleled that seen in children; however, overall survival did not change over time for older adults. Survival improvements were primarily related to lower rates of early treatment-related mortality in the most recent era. For all cohorts, relapse rates did not change over time. A subset of 222 AYAs between the ages of 15 and 25 at 46 pediatric or 49 adult centers were also analyzed to describe differences by center type. In this subgroup, there were differences in transplantation practices among pediatric and adult centers, although HCT outcomes did not differ by center type. Survival for AYAs undergoing myeloablative allogeneic HCT for ALL improved at a similar rate as survival for children. PMID:24607554

  18. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia

    PubMed Central

    Egler, Rachel A.; Ahuja, Sanjay P.; Matloub, Yousif

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a hematologic malignancy that predominantly occurs in children between 2 and 10 years of age. L-asparaginase is an integral component of treatment for patients with ALL and since its introduction into pediatric treatment protocols in the 1960s, survival rates in children have progressively risen to nearly 90%. Outcomes for adolescent and young adult (AYA) patients, aged 15-39 years and diagnosed with ALL, have historically been less favorable. However, recent reports suggest substantially increased survival in AYA patients treated on pediatric-inspired protocols that include a greater cumulative dose of asparaginase. All  currently available asparaginases share the same mechanism of action - the deamination and depletion of serum asparagine levels - yet each displays a markedly different pharmacokinetic profile. Pegylated asparaginase derived from the bacterium Escherichia coli is used as first-line therapy; however, up to 30% of patients develop a treatment-limiting hypersensitivity reaction. Patients who experience a hypersensitivity reaction to an E. coli-derived asparaginase can continue treatment with Erwinia chrysanthemi asparaginase. Erwinia asparaginase is immunologically distinct from E. coli-derived asparaginases and exhibits no cross-reactivity. Studies have shown that with adequate dosing, therapeutic levels of Erwinia asparaginase activity can be achieved, and patients switched to Erwinia asparaginase due to hypersensitivity can obtain outcomes similar to patients who do not experience a hypersensitivity reaction. Therapeutic drug monitoring may be required to ensure that therapeutic levels of asparaginase activity are maintained. PMID:27440950

  19. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  20. Emerging role for microRNAs in acute promyelocytic leukemia.

    PubMed

    Nervi, C; Fazi, F; Rosa, A; Fatica, A; Bozzoni, I

    2007-01-01

    Hematopoiesis is highly controlled by lineage-specific transcription factors that, by interacting with specific DNA sequences, directly activate or repress specific gene expression. These transcription factors have been found mutated or altered by chromosomal translocations associated with leukemias, indicating their role in the pathogenesis of these malignancies. The post-genomic era, however, has shown that transcription factors are not the only key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, posttranslational modifications of histones, remodeling of nucleosomes, and expression of small regulatory RNAs all contribute to the regulation of gene expression and determination of cell and tissue specificity. Deregulation ofthese epigenetic mechanisms cooperates with genetic alterations to the establishment and progression of tumors. MicroRNAs (miRNAs) are negative regulators of the expression of genes involved in development, differentiation, proliferation, and apoptosis. Their expression appears to be tissue-specific and highly regulated according to the cell's developmental lineage and stage. Interestingly, miRNAs expressed in hematopoietic cells have been found mutated or altered by chromosomal translocations associated with leukemias. The expression levels of a specific miR-223 correlate with the differentiation fate of myeloid precursors. The activation of both pathways of transcriptional regulation by the myeloid lineage-specific transcription factor C/EBPalpha (CCAAT/enhancer-binding protein-alpha), and posttranscriptional regulation by miR-223 appears essential for granulocytic differentiation and clinical response of acute promyelocytic leukemia (APL) blasts to all-trans retinoic acid (ATRA). Together, this evidence underlies transcription factors, chromatin remodeling, and miRNAs as ultimate determinants for the correct organization of cell type-specific gene arrays and hematopoietic differentiation, therefore providing new