Science.gov

Sample records for pediatric chest x-ray

  1. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  2. Lung boundary detection in pediatric chest x-rays

    NASA Astrophysics Data System (ADS)

    Candemir, Sema; Antani, Sameer; Jaeger, Stefan; Browning, Renee; Thoma, George R.

    2015-03-01

    Tuberculosis (TB) is a major public health problem worldwide, and highly prevalent in developing countries. According to the World Health Organization (WHO), over 95% of TB deaths occur in low- and middle- income countries that often have under-resourced health care systems. In an effort to aid population screening in such resource challenged settings, the U.S. National Library of Medicine has developed a chest X-ray (CXR) screening system that provides a pre-decision on pulmonary abnormalities. When the system is presented with a digital CXR image from the Picture Archive and Communication Systems (PACS) or an imaging source, it automatically identifies the lung regions in the image, extracts image features, and classifies the image as normal or abnormal using trained machine-learning algorithms. The system has been trained on adult CXR images, and this article presents enhancements toward including pediatric CXR images. Our adult lung boundary detection algorithm is model-based. We note the lung shape differences during pediatric developmental stages, and adulthood, and propose building new lung models suitable for pediatric developmental stages. In this study, we quantify changes in lung shape from infancy to adulthood toward enhancing our lung segmentation algorithm. Our initial findings suggest pediatric age groupings of 0 - 23 months, 2 - 10 years, and 11 - 18 years. We present justification for our groupings. We report on the quality of boundary detection algorithm with the pediatric lung models.

  3. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  4. Chest X-Ray

    MedlinePlus Videos and Cool Tools

    ... Prostate Ultrasound Video: IMRT Video: Chest CT Video:Thyroid Ultrasound Video: Pediatric MRI Radiology and You About ... Prostate Ultrasound Video: IMRT Video: Chest CT Video:Thyroid Ultrasound Video: Pediatric MRI Radiology and You About ...

  5. Severity Quantification of Pediatric Viral Respiratory Illnesses in Chest X-ray Images

    PubMed Central

    Okada, Kazunori; Golbaz, Marzieh; Mansoor, Awais; Perez, Geovanny F; Pancham, Krishna; Khan, Abia; Nino, Gustavo; Linguraru, Marius George

    2015-01-01

    Accurate assessment of severity of viral respiratory illnesses (VRIs) allows early interventions to prevent morbidity and mortality in young children. This paper proposes a novel imaging biomarker framework with chest X-ray image for assessing VRI’s severity in infants, developed specifically to meet the distinct challenges for pediatric population. The proposed framework integrates three novel technical contributions: a) lung segmentation using weighted partitioned active shape model, b) obtrusive object removal using graph cut segmentation with asymmetry constraint, and c) severity quantification using information-theoretic heterogeneity measures. This paper presents our pilot experimental results with a dataset of 148 images and the ground-truth severity scores given by a board-certified pediatric pulmonologist, demonstrating the effectiveness and clinical relevance of the presented framework. PMID:26736226

  6. Optimization of exposure parameters for pediatric chest x-ray imaging

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Kim, Hee-Joung

    2012-03-01

    The pediatric patients are more susceptible to the effects of ionizing radiation than adults. Pediatric patients are smaller, more radiosensitive than adult patients and many cannot stand unassisted. Their characteristics affect the method of imaging projection and how dose is optimized. The purpose of this study was to investigate the effect of various technical parameters for the dose optimization in pediatric chest radiological examinations by evaluating effective dose and effective detective quantum efficiency (eDQE) including the scatter radiation from the object, the blur caused by the focal spot, geometric magnification and detector characteristics. For the tube voltages ranging from 40 to 90 kV in 10 kV increments at the focus-to-detector distance of 100, 110, 120, 150, 180 cm, the eDQE was evaluated at same effective dose. The results showed that the eDQE was largest at 60 kVp without and with an anti-scatter grid. Especially, the eDQE was considerably higher without the use of an anti-scatter grid on equivalent effective dose. This indicates that the reducing the scatter radiation did not compensate for the loss of absorbed effective photons in the grid. When the grid is not used the eDQE increased with increasing focus-to-detector distance because of the greater effective modulation transfer function (eMTF) with the lower focal spot blurring. In conclusion, for pediatric patients, the amount of scattered radiation is less, and the amount of grid attenuation increased unnecessary radiation dose.

  7. Aspergillosis - chest x-ray (image)

    MedlinePlus

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  8. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  9. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    Tuberculosis is an infectious disease that causes inflammation, the formation of tubercules and other growths within tissue, ... death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light areas (opacities) of varying ...

  10. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  11. Coccidioidomycosis - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows the affects of a fungal infection, coccidioidomycosis. In the middle of the left lung (seen on the ... defined borders. Other diseases that may explain these x-ray findings include lung abscesses, chronic pulmonary tuberculosis, chronic ...

  12. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  13. Bronchial cancer - chest x-ray (image)

    MedlinePlus

    This is a chest x-ray of a person with bronchial cancer. This is a front view. The lungs are the two dark ... white areas visible in the middle of the chest. The light areas that appear as subtle branches ...

  14. Exercises in chest X-ray diagnosis

    SciTech Connect

    Elliott, J.A.; Cowan, M.D.

    1986-01-01

    In the fifty exercises which form the first part of the book, radiographs are combined with a group of questions designed to test the readers clinical and radiological knowledge. The exercises cover all the common and many of the rarer cardiothoracic disorders which are revealed on the chest x-ray. Increasingly, computed tomography is used in the differential diagnosis of thoracic problems, and several examples have been included.

  15. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification of pneumoconiosis and shall conform to the standards for administration and interpretation of chest...

  16. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification of pneumoconiosis and shall conform to the standards for administration and interpretation of chest...

  17. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification of pneumoconiosis and shall conform to the standards for administration and interpretation of chest...

  18. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification of pneumoconiosis and shall conform to the standards for administration and interpretation of chest...

  19. 20 CFR 718.102 - Chest roentgenograms (X-rays).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false Chest roentgenograms (X-rays). 718.102... roentgenograms (X-rays). (a) A chest roentgenogram (X-ray) shall be of suitable quality for proper classification of pneumoconiosis and shall conform to the standards for administration and interpretation of chest...

  20. Selection of patients for x-ray examinations: Chest x-ray screening examinations

    SciTech Connect

    Not Available

    1983-08-01

    Five chest x-ray referral criteria statements have been developed and unanimously endorsed by a panel of physicians convened as part of a major voluntary cooperative effort between FDA's National Center for Devices and Radiological Health (NCDRH) and the medical professional community. The referral criteria statements include recommendations concerning the following applications of chest x-ray screening: mandated routine chest x-ray screening examinations, routine prenatal chest x-ray examinations, routine hospital admission chest x-ray examinations, chest x-ray examinations for tuberculosis detection and control, and routine chest x-ray examinations for occupational medicine. The complete text of the five referral criterial statements plus a brief discussion of the rationale for the development of each statement is presented.

  1. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    This picture is a chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and ... visible in the middle of the chest. The x-ray shows a mass in the right upper lung, ...

  2. Coal worker's lungs - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows coal worker's lungs. There are diffuse, small, light areas on both sides (1 to 3 mm) in ... the lungs. Diseases that may result in an x-ray like this include: simple coal workers pneumoconiosis (CWP) - ...

  3. Implementation of Chest X-ray Observation Report Entry System

    PubMed Central

    Seo, Suk-Tae; Park, Hee-Joon; Kim, Min Soo; Son, Chang-Sik; Park, Hyoung-Seob; Jeon, Hyo Chan; Jung, Chi Young

    2010-01-01

    Objectives X-rays are widely used in medical examinations. In particular, chest X-rays are the most frequent imaging test. However, observations are usually recorded in a free-text format. Therefore, it is difficult to standardize the information provided to construct a database for the sharing of clinical data. Here, we describe a simple X-ray observation entry system that can interlock with an electronic medical record system. Methods We investigated common diagnosis indices. Based on the indices, we have designed an entry system which consists of 5 parts: 1) patient lists, 2) image selection, 3) diagnosis result entry, 4) image view, and 5) main menu. The X-ray observation results can be extracted in an Excel format. Results The usefulness of the proposed system was assessed in a study using over 500 patients' chest X-ray images. The data was readily extracted in a format that allowed convenient assessment. Conclusions We proposed the chest X-ray observation entry system. The proposed X-ray observation system, which can be linked with an electronic medical record system, allows easy extraction of standardized clinical information to construct a database. However, the proposed entry system is limited to chest X-rays and it is impossible to interpret the semantic information. Therefore, further research into domains using other interpretation methods is required. PMID:21818450

  4. Compression of digital chest x-rays

    NASA Astrophysics Data System (ADS)

    Cohn, Michael; Trefler, Martin; Young, Tzay S.

    1990-07-01

    The application of digital technologies to chest radiography holds the promise of routine application of intage processing techniques to effect image enhancement. However, due to their inherent spatial resolution, digital chest images impose severe constraints on data storage devices. Compression of these images will relax such constraints and facilitate image transmission on a digital network. We have evaluated image processing algorithms aimed at compression of digital chest images while improving the diagnostic quality of the image. The image quality has been measured with respect to the task of tumor detection. Compression ratios of as high as 2:1 have been achieved. This compression can then be supplemented by irreversible methods.

  5. Dose optimization in pediatric cardiac x-ray imaging

    SciTech Connect

    Gislason, Amber J.; Davies, Andrew G.; Cowen, Arnold R.

    2010-10-15

    Purpose: The aim of this research was to explore x-ray beam parameters with intent to optimize pediatric x-ray settings in the cardiac catheterization laboratory. This study examined the effects of peak x-ray tube voltage (kVp) and of copper (Cu) x-ray beam filtration independently on the image quality to dose balance for pediatric patient sizes. The impact of antiscatter grid removal on the image quality to dose balance was also investigated. Methods: Image sequences of polymethyl methacrylate phantoms approximating chest sizes typical of pediatric patients were captured using a modern flat-panel receptor based x-ray imaging system. Tin was used to simulate iodine-based contrast medium used in clinical procedures. Measurements of tin detail contrast and flat field image noise provided the contrast to noise ratio. Entrance surface dose (ESD) and effective dose (E) measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose, which evaluated the dose efficiency of the x-ray parameters investigated. The kVp, tube current (mA), and pulse duration were set manually by overriding the system's automatic dose control mechanisms. Images were captured with 0, 0.1, 0.25, 0.4, and 0.9 mm added Cu filtration, for 50, 55, 60, 65, and 70 kVp with the antiscatter grid in place, and then with it removed. Results: For a given phantom thickness, as the Cu filter thickness was increased, lower kVp was favored. Examining kVp alone, lower values were generally favored, more so for thinner phantoms. Considering ESD, the 8.5 cm phantom had the highest FOM at 50 kVp using 0.4 mm of Cu filtration. The 12 cm phantom had the highest FOM at 55 kVp using 0.9 mm Cu, and the 16 cm phantom had highest FOM at 55 kVp using 0.4 mm Cu. With regard to E, the 8.5 and 12 cm phantoms had the highest FOM at 50 kVp using 0.4 mm of Cu filtration, and the 16 cm phantom had the highest FOM at 50 kVp using 0.25 mm Cu. Antiscatter grid removal improved the FOM for a given set of x-ray

  6. Lung mass, right upper lung - chest x-ray (image)

    MedlinePlus

    ... chest x-ray of a person with a lung mass. This is a front view, where the lungs are the two dark areas and the heart ... ray shows a mass in the right upper lung, indicated with the arrow (seen on the left ...

  7. Chest x-ray screening practices: an annotated bibliography

    SciTech Connect

    Torchia, M.; DuChez, J.

    1980-03-01

    This annotated bibliography is a review of the scientific literature on the selection of asymptomatic patients for chest x-ray screening examinations. Selected articles cover a period of time from 1969 through 1979. The articles are organized under 10 main topics which correspond to various categories of chest x-ray screening examinations performed in the United States today. Within each main topic, the articles are presented in chronological order. To aid the reader in identifying specific citations, an author index and a list of citations by journal have been included for user reference. The standard format for each citation includes the title of each article, the author(s), journal, volume, page, date, and abstract.

  8. Sonography of the Pediatric Chest.

    PubMed

    Goh, Yonggeng; Kapur, Jeevesh

    2016-05-01

    Traditionally, pediatric chest diseases are evaluated with chest radiography. Due to advancements in technology, the use of sonography has broadened. It has now become an established radiation-free imaging tool that may supplement plain-film findings and, in certain cases, the first-line modality for evaluation of the pediatric chest. This pictorial essay will demonstrate the diagnostic potential of sonography, review a spectrum of pediatric chest conditions, and discuss their imaging features and clinical importance. PMID:27009313

  9. [An asylum seeker with an abnormal chest X-ray].

    PubMed

    Akkerman, Onno W; Rook, Mieneke; van der Werf, Tjip S

    2016-01-01

    A 29-year-old pregnant woman from Syria was screened for tuberculosis upon arrival in the Netherlands. The chest X-ray showed a smooth sharply demarcated mass in her left upper lobe. A low-dose CT showed that the mass was lobulated and surrounded by a hyperlucent pulmonary segment. To protect the foetus from further exposure to radiation, an MRI was performed, which confirmed bronchial atresia with a mucocele of the distal bronchus. PMID:27096483

  10. Pediatric digital chest imaging

    SciTech Connect

    Tarver, R.D.; Cohen, M.; Broderick, N.J.; Conces, D.J. Jr. )

    1990-01-01

    The Philips Computed Radiography system performs well with pediatric portable chest radiographs, handling the throughout of a busy intensive care service 24 hours a day. Images are excellent and routinely provide a conventional (unenhanced) image and an edge-enhanced image. Radiation dose is decreased by the lowered frequency of repeat examinations and the ability of the plates to respond to a much lower dose and still provide an adequate image. The high quality and uniform density of serial PCR portable radiographs greatly enhances diagnostic content of the films. Decreased resolution has not been a problem clinically. Image manipulation and electronic transfer to remote viewing stations appear to be helpful and are currently being evaluated further. The PCR system provides a marked improvement in pediatric portable chest radiology.

  11. Routine chest x-ray examinations in occupational medicine

    SciTech Connect

    Ashenburg, N.J.

    1982-01-01

    To collect some data on the yield of the chest x-ray examination in pre-employment health evaluations, a retrospective study was carried out. Pre-employment chest x-ray examination reports on 3,266 applicants were reviewed in Eastman Kodak Company's Medical Department in Rochester, N.Y. All radiographs were interpreted by Board-certified radiologists. For the purpose of this study, positive findings were restricted to the pulmonary and cardiovascular systems. The findings included items that would not be considered completely normal. However, many were of no clinical significance. An important point in regard to the findings is that 80% of the applicants were under the age of 35. The data are summarized in Table 1. Positive findings were noted in 52 (1.6%) radiographs. Of these, 25 (0.7%) had some radiologic finding that was relevant in terms of clinical follow-up, appropriate job placement or deferment of employment. Only two of the 3,266 applicants were not employed because of the x-ray examination findings. Results suggests that a selective program, based on clinical history and examination and on past and proposed job exposure, might be appropriate.

  12. Potential for optimisation of paediatric chest X-ray examination.

    PubMed

    Kostova-Lefterova, D; Taseva, D; Ingilizova, K; Hristova-Popova, J; Vassileva, J

    2011-09-01

    The purpose of this study was to compare the important aspects of paediatric radiological practice and the patient doses from chest X-ray examinations performed in three hospitals in Bulgaria. Data from 163 paediatric patients were recorded using a standardised form. Entrance surface air kerma (ESAK) to patient was calculated from the air-kerma air product (KAP) and field size measurements. Large variations were found for KAP and ESAK. Inappropriate film size and insufficient collimation were often used. Inappropriate use of automatic exposure control and antiscatter grid was found. In most cases, no attention was paid to reduce dose to sensitive organs by means of shielding or proper collimation. Recommendations were given to the hospitals on how to reduce patient doses in paediatric chest radiography. PMID:21824872

  13. Approach to Pediatric Chest Radiograph.

    PubMed

    Jana, Manisha; Bhalla, Ashu Seith; Gupta, Arun Kumar

    2016-06-01

    Chest radiograph remains the first line imaging modality even today, especially in ICU settings. Hence proper interpretation of chest radiographs is crucial, which can be achieved by adopting a systematic approach and proper description and identification of abnormalities. In this review, the authors describe a short and comprehensive way of interpreting the pediatric chest radiograph. PMID:26983619

  14. Eigen analysis for classifying chest x-ray images

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.

    2004-10-01

    A method first employed for face recognition has been employed to analyse a set of chest x-ray images. After marking certain common features on the images, they are registered by means of an affine transformation. The differences between each registered image and the mean of all images in the set are computed and the first K principal components are found, where K is less than or equal to the number of images in the set. These form eigenimages (we have coined the term 'eigenchests') from which an approximation to any one of the original images can be reconstructed. Since the method effectively treats each pixel as a dimension in a hyperspace, the matrices concerned are huge; we employ the method developed by Turk and Pentland for face recognition to make the computations tractable. The K coefficients for the eigenimages encode the variation between images and form the basis for discriminating normal from abnormal. Preliminary results have been obtained for a set of eigenimages formed from a set of normal chests and tested on separate sets of normals and patients with pneumonia. The distributions of coefficients have been observed to be different for the two test sets and work is continuing to determine the most sensitive method for detecting the differences.

  15. Free chest x rays for working underground coal miners: questions and answers

    SciTech Connect

    Not Available

    1987-01-01

    This pamphlet provides information on free chest x rays available to working underground coal miners under the Federal Coal Mine Health and Safety Act of 1969. The Act provided that underground coal miners were eligible to participate in a chest x-ray program for the diagnosis of coal-worker's pneumoconiosis. Topics discussed in this pamphlet included coal workers' pneumoconiosis, mine operator payment for x-ray examinations of workers, arrangements for examinations, interpretation of the x rays by physicians, notification of the results, additional medical information from the x-ray examination, black-lung benefits, and general benefits of participation in the examination program.

  16. Caffey's pediatric X-ray diagnosis

    SciTech Connect

    Silverman, F.N.

    1984-01-01

    This edition contains approximately 3,000 photographs in two volumes. There are sections on the chest, heart, urogenital and skeletal systems with special attention given to the skeletal dyplasias. General radiography is represented and computed tomography, ultrasound, radionuclide scintigraphy and standard angiography are all used extensively in this work. Anatomical variants that may simulate disease are explored through detailed discussion.

  17. 20 percent lower lung cancer mortality with low-dose CT vs chest X-ray

    Cancer.gov

    Scientists have found a 20 percent reduction in deaths from lung cancer among current or former heavy smokers who were screened with low-dose helical computed tomography (CT) versus those screened by chest X-ray.

  18. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits OFFICE OF WORKERS... Appendix A to Part 718—Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) The... procedures are used in administering and interpreting X-rays and that the best available medical...

  19. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits OFFICE OF WORKERS... Appendix A to Part 718—Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) The... procedures are used in administering and interpreting X-rays and that the best available medical...

  20. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits OFFICE OF WORKERS... Appendix A to Part 718—Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) The... procedures are used in administering and interpreting X-rays and that the best available medical...

  1. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits OFFICE OF WORKERS... Appendix A to Part 718—Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) The... procedures are used in administering and interpreting X-rays and that the best available medical...

  2. The value of the chest X-ray in making the diagnosis of bronchial asthma.

    PubMed

    Rubenstein, H S; Rosner, B A; LeMay, M; Neidorf, R

    1993-01-01

    Although bronchial asthma is one of the most common chronic illnesses of children and young adults, it remains underdiagnosed. To assess the value of the chest X-ray in helping to make the diagnosis of asthma at the primary care level, we studied the medical records of 58 patients aged 18-40 with the diagnosis of mild to moderate asthma and for whom both simple spirometry-forced one-second expiratory volume (FEV1) and/or peak expiratory flow rate (PEFR)--and a chest X-ray had been performed. Only 21 of 58 (36%) had spirometry indicative of asthma (SPI+) while 34 of 58 (59%) had abnormal chest X-rays (CXR+)--"increased markings" and/or "low diaphragm." Although CXR+ discriminated between asthmatic patients and a normal control group, no difference was found between asthmatic patients and a group of patients with acute bronchitis. Nonetheless, the number of asthmatic patients with CXR+ and SPI - (n = 23) was significantly larger than the number with CXR- and SPI+ (n = 10), which indicates that for mild asthma the chest X-ray may be more sensitive than spirometry even though not as specific. These results were surprising at the time of the investigation. Subsequently, however, the importance of the inflammatory response in asthma came to light, which rendered the results more interesting than surprising. We conclude that the chest X-ray has value in making the diagnosis of mild bronchial asthma. PMID:8237539

  3. Chest x-ray screening practices: an annotated bibliography. Final report

    SciTech Connect

    Torchia, M.; DuChez, J.

    1980-03-01

    This bibliography represents one of many professional educational activities designed to eliminate nonefficacious x-ray exposure by educating those individuals responsible for requesting x-ray examinations to the factors that should be considered in the selection process. It was developed to complement the work of the BRH-supported Chest X-Ray Referral Criteria Panel. This panel is working to develop appropriate guidelines for selecting asymptomatic persons for chest x-ray screening examinations. Further, this bibliography will serve as a resource guide for educators, students, radiologists, and other medical specialists. It is divided into 10 main topics and contains references chosen for their relevance to the subject of patient selection. Each article contains an abstract to allow individuals a quick review of an article.

  4. Impact of routine admission chest X-ray films on patient care

    SciTech Connect

    Hubbell, F.A.; Greenfield, S.; Tyler, J.L.; Chetty, K.; Wyle, F.A.

    1985-01-24

    The authors evaluated the impact of routine chest X-ray films, obtained on admission, on the treatment of patients on internal medicine wards of the Veterans Administration Medical Center, Long Beach, California - a population known to have a high prevalence of cardiopulmonary disease. The reasons for ordering chest films were determined prospectively, and three Department of Medicine faculty members reviewed the charts of admitted patients to determine the impact of chest-film results on patient care. Routine chest X-ray films were ordered for 294 (60 per cent) of the 491 patients studied. Abnormalities were noted in 106 (36 per cent) of these 294 patients. The findings were previously known, chronic, and stable in 86 patients; they were new in only 20. Treatment was changed because of chest-film results in only 12 (4 per cent) of the patients. In only one of these patients would appropriate treatment probably have been omitted if a chest film had not been obtained, and the patient's outcome was not improved by the treatment instituted. The authors conclude that the impact of routine admission chest X-ray films on patient care is very small, even in a population with a high prevalence of cardiopulmonary disease. They recommend that such films not be ordered solely because of admission. 16 references, 3 tables.

  5. Viewing Another Person's Eye Movements Improves Identification of Pulmonary Nodules in Chest X-Ray Inspection

    ERIC Educational Resources Information Center

    Litchfield, Damien; Ball, Linden J.; Donovan, Tim; Manning, David J.; Crawford, Trevor

    2010-01-01

    Double reading of chest x-rays is often used to ensure that fewer abnormalities are missed, but very little is known about how the search behavior of others affects observer performance. A series of experiments investigated whether radiographers benefit from knowing where another person looked for pulmonary nodules, and whether the expertise of…

  6. Annual Screening with Chest X-Ray Does Not Reduce Lung Cancer Deaths

    Cancer.gov

    Annual screening for lung cancer using a standard chest x-ray does not reduce the risk of dying from lung cancer when compared with no annual screening, according to findings from the NCI-led Prostate, Lung, Colorectal, and Ovarian (PLCO) screening trial.

  7. Comparison of dual energy subtraction chest radiography and traditional chest X-rays in the detection of pulmonary nodules

    PubMed Central

    Wang, Jiheng; Norman, Geoff; Wang, Zhou; Koff, David

    2016-01-01

    Background Dual energy subtraction (DES) radiography is a powerful but underutilized technique which aims to improve the diagnostic value of an X-ray by separating soft tissue from bones, producing two different images. Compared to traditional chest X-rays, DES requires exposure to higher doses of radiation but may achieve higher accuracy. The objective of this study was to assess the clinical benefits of DES radiography by comparing the speed and accuracy of diagnosis of pulmonary nodules with DES versus traditional chest X-rays. Methods Five radiologists and five radiology residents read the DES and traditional chest X-rays of 51 patients, 34 with pulmonary nodules and 17 without. Their accuracy and speed in the detection of nodules were measured using specialized image display software. Results DES radiography reduced reading time from 13 to 10 sec (P<0.0001) in staff and from 21 to 15 sec in residents (P<0.0001). There was also a small increase in sensitivity 0.58 to 0.67 overall (P<0.10) with no change in specificity (0.85 overall). Conclusions By eliminating rib shadows in soft tissue images, DES improved the speed and accuracy of radiologists in the diagnosis of pulmonary nodules. PMID:26981449

  8. Is it useful to perform a chest X-ray in asymptomatic patients with late latent syphilis?

    PubMed

    Dabis, R; Radcliffe, K

    2011-02-01

    According to the British Association for Sexual Health and HIV (BASHH) guidelines, a chest X-ray is recommended as part of the assessment of patients with late latent syphilis to exclude cardiovascular complications. The aims of this study were firstly to audit all cases of late latent syphilis seen at our centre since 1994 and to see whether a chest X-ray was requested and secondly to assess whether performing a chest X-ray was clinically useful. Of the 456 case notes audited, 298 chest X-rays were requested; 182 (61%) were reported as normal. Results were not available for 64 (21%) and 32 (11%) patients either declined or did not attend for follow-up. There were 20 (7%) chest X-rays that were reported as abnormal, yet none of these radiological findings were consistent with the cardiovascular complications of syphilis. In view of the lack of significant chest X-ray findings in asymptomatic patients with late latent syphilis, a chest X-ray should not be requested. PMID:21427433

  9. [Manifestations of lobar atelectasis on chest x-rays and correlation with computed tomography findings].

    PubMed

    Cortés Campos, A; Martínez Rodríguez, M

    2014-01-01

    Atelectasis is an important indicator of potentially severe underlying disease that must be diagnosed as early as possible. One of the most common mechanisms is the reabsorption of air distal to respiratory tract obstruction. The chest x-ray is an excellent tool to diagnose atelectasis, and it is especially useful for ruling out central bronchial obstructions (e.g., from endobronchial tumors). If the signs of volume loss are not recognized correctly, the diagnosis and treatment can be delayed. This article describes the main findings of lobar atelectasis on chest x-rays and their correlations with CT findings, including the classic signs described in the literature and other, less known and sometimes subtle signs. PMID:24252304

  10. A rib abnormality mimicking pulmonary nodule: a pitfall in the plain chest x-ray.

    PubMed

    Akturk, Yeliz; Günes, Serra Ozbal; Hekimoglu, Baki

    2016-01-01

    The ribs show a wide range of normal and pathologic radiographic appearences as well as congenital variations. Intrathoracic ribs are isolated and rare anomalies. They are usually super-numerary, more often right-sided, and involve the middle part of the thorax. We describe a case with intrathorasic rib abnormality mimicking a peripheral metastatic lung nodule in the plain chest x-ray and emphasize the use of coronal and sagittal reformatted images in thorasic imaging. Utilisation of multiplanar reformatted images in chest computerised tomography increase diagnostic quality. PMID:27374213

  11. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  12. Relation of physicians' predicted probabilities of pneumonia to their utilities for ordering chest x-rays to detect pneumonia.

    PubMed

    Heckerling, P S; Tape, T G; Wigton, R S

    1992-01-01

    To investigate the relation between physicians' predicted probabilities of pneumonia and their utilities for ordering chest x-rays to detect pneumonia, the authors studied 52 physicians who ordered chest x-rays of 886 patients presenting to an emergency department with fever or respiratory complaints. Physicians estimated the probability of pneumonia prior to obtaining the results of the chest x-ray. Utilities were assessed by asking physicians to consider a hypothetical patient presenting with acute respiratory symptoms, with unknown chest x-ray status, and to rank on a scale from +50 ("best thing I could do") to -50 ("worst thing I could do") their rating scale utilities for not diagnosing pneumonia and not ordering a chest x-ray when the patient had pneumonia (i.e., missing a pneumonia), and for diagnosing pneumonia and ordering a chest x-ray when the patient did not have pneumonia (i.e., ordering an unnecessary x-ray). The utility for ordering an unnecessary x-ray was negatively correlated with average predicted probability (r = -0.1495, p = 0.29), whereas the utility for missing a pneumonia was positively correlated with average predicted probability (r = 0.2254, p = 0.11), although the correlations were not statistically significant. Relative chagrin, defined as the difference in these utilities, was significantly inversely correlated with average predicted probability (r = -0.2992, p less than 0.035), even after adjusting for the prevalence of pneumonia seen by each physician (partial r = -0.42, p less than 0.0027). It is concluded that physicians who experienced greater regret over missing a pneumonia than over ordering an unnecessary x-ray estimated lower probabilities of pneumonia for patients for whom they ordered x-rays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1538630

  13. Prospective gated chest tomosynthesis using CNT X-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Burk, Laurel; Wu, Gongting; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2015-03-01

    Chest tomosynthesis is a low-dose 3-D imaging modality that has been shown to have comparable sensitivity as CT in detecting lung nodules and other lung pathologies. We have recently demonstrated the feasibility of stationary chest tomosynthesis (s-DCT) using a distributed CNT X-ray source array. The technology allows acquisition of tomographic projections without moving the X-ray source. The electronically controlled CNT x-ray source also enables physiologically gated imaging, which will minimize image blur due to the patient's respiration motion. In this paper, we investigate the feasibility of prospective gated chest tomosynthesis using a bench-top s-DCT system with a CNT source array, a high- speed at panel detector and realistic patient respiratory signals captured using a pressure sensor. Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phantom were acquired at different respiration rate, with and without gating for image quality comparison. Metal beads of 2 mm diameter were placed on the pig lung for quantitative measure of the image quality. Without gating, the beads were blurred to 3:75 mm during a 3 s tomosynthesis acquisition. When gated to the end of the inhalation and exhalation phase the detected bead size reduced to 2:25 mm, much closer to the actual bead size. With gating the observed airway edges are sharper and there are more visible structural details in the lung. Our results demonstrated the feasibility of prospective gating in the s-DCT, which substantially reduces image blur associated with lung motion.

  14. MANAGEMENT OF PATIENT DOSES FROM DIGITAL X-RAY CHEST SCREENING EXAMINATIONS.

    PubMed

    Vodovatov, A V; Drozdov, A A; Telnova, A U; Bernhardsson, C

    2016-06-01

    An anthropomorphic phantom study was carried out in 2013-14 in two hospitals, one located in Russia (Mariinsky Hospital, Saint Petersburg) and the other in Sweden (Skåne University Hospital, Malmö). The aim of the study was to investigate the possibilities to reduce the patient dose from digital X-ray chest screening examinations. The existing chest imaging protocols were adjusted by changing the tube voltage, total filtration and grid in order to determine the most dose-effective combination of the examination parameters. It was possible to achieve up to 50 % dose-area product (DAP) and 30 % effective dose reduction by raising the tube voltage from 100 to 125 or 150 kV, and simultaneously decrease the total filtration to the minimum allowed by the X-ray unit (3 mm Al). The absence of a grid allowed to further reduce the DAP and effective dose by up to 80 %. Comparison between Russian and Swedish X-ray units showed the same trend in DAP and effective dose reduction, but the absolute dose values were lower by almost a factor of 10 for the Swedish units due to different image receptors and automatic exposure control settings. PMID:26769906

  15. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography. PMID:27294264

  16. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study.

    PubMed

    Shan, Jing; Tucker, Andrew W; Lee, Yueh Z; Heath, Michael D; Wang, Xiaohui; Foos, David H; Lu, Jianping; Zhou, Otto

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs(-1) at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm(-1) along the scanning direction, and 3.4 cycles mm(-1) perpendicular to the scanning direction. As the angular coverage of 11.6°-34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible. PMID:25478786

  17. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Tucker, Andrew W.; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David H.; Lu, Jianping; Zhou, Otto

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs-1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm-1 along the scanning direction, and 3.4 cycles mm-1 perpendicular to the scanning direction. As the angular coverage of 11.6°-34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible.

  18. Immunological profile of chest x-ray-negative, asymptomatic asbestos workers

    SciTech Connect

    Lahat, N.; Sobel, E.; Djerassi, L.; Kaufman, G.; Horenstein, L.; Gruener, N.

    1988-01-01

    Several immunologic parameters, both humoral and cellular, were studied in the serum and peripheral blood lymphocytes derived from chest x-ray-negative, asymptomatic asbestos workers. All humoral and cellular parameters were intact, except the con-A-induced T cell suppressor activity and T cell division in autologous mixed lymphocyte reaction, which were significantly elevated in the asbestos plant workers. The significance of these increased T cell activities in asbestos exposed people is not clear, and further clinical and immunological follow-up is warranted.

  19. Procarbazine-induced interstitial pneumonitis with a normal chest x-ray: a case report

    SciTech Connect

    Garbes, I.D.; Henderson, E.S.; Gomez, G.A.; Bakshi, S.P.; Parthasarathy, K.L.; Castillo, N.B.

    1986-01-01

    Pulmonary toxicity due to cytotoxic drugs is well described in the literature. This is most commonly described in association with bleomycin, busulfan, and methotrexate. This report presents a case of interstitial pneumonitis with a normal chest x-ray that is most certainly due to procarbazine. In addition, the role of gallium-67 citrate scintigraphy in early diagnosis is discussed. This is especially important since discontinuation of the drug before radiographic manifestations of pulmonary toxicity become evident may prevent permanent pulmonary injury and its sequelae.

  20. Atlas-based rib-bone detection in chest X-rays.

    PubMed

    Candemir, Sema; Jaeger, Stefan; Antani, Sameer; Bagci, Ulas; Folio, Les R; Xu, Ziyue; Thoma, George

    2016-07-01

    This paper investigates using rib-bone atlases for automatic detection of rib-bones in chest X-rays (CXRs). We built a system that takes patient X-ray and model atlases as input and automatically computes the posterior rib borders with high accuracy and efficiency. In addition to conventional atlas, we propose two alternative atlases: (i) automatically computed rib bone models using Computed Tomography (CT) scans, and (ii) dual energy CXRs. We test the proposed approach with each model on 25 CXRs from the Japanese Society of Radiological Technology (JSRT) dataset and another 25 CXRs from the National Library of Medicine CXR dataset. We achieve an area under the ROC curve (AUC) of about 95% for Montgomery and 91% for JSRT datasets. Using the optimal operating point of the ROC curve, we achieve a segmentation accuracy of 88.91±1.8% for Montgomery and 85.48±3.3% for JSRT datasets. Our method produces comparable results with the state-of-the-art algorithms. The performance of our method is also excellent on challenging X-rays as it successfully addressed the rib-shape variance between patients and number of visible rib-bones due to patient respiration. PMID:27156048

  1. Clinical evaluation of wavelet compression of digitized chest x-rays

    NASA Astrophysics Data System (ADS)

    Erickson, Bradley J.; Manduca, Armando; Persons, Kenneth R.

    1997-05-01

    In this paper we assess lossy image compression of digitalized chest x-rays using radiologist assessment of anatomic structures and numerical measurements of image accuracy. Forty chest x-rays were digitized and compressed using an irreversible wavelet technique at 10, 20, 40 and 80:1. These were presented in a blinded fashion with an uncompressed image for subjective A-B comparison of 11 anatomic structures as well as overall quality. Mean error, RMS error, maximum pixel error, and number of pixels within 1 percent of original value were also computed for compression ratios from 10:1 to 80:1. We found that at low compression there was a slight preference for compressed images. There was no significant difference at 20:1 and 40:1. There was a slight preference on some structures for the original compared with 80:1 compressed images. Numerical measures demonstrated high image faithfulness, both in terms of number of pixels that were within 1 percent of their original value, and by the average error for all pixels. Our findings suggest that lossy compression at 40:1 or more can be used without perceptible loss in the demonstration of anatomic structures.

  2. Gray-scale transform and evaluation for digital x-ray chest images on CRT monitor

    NASA Astrophysics Data System (ADS)

    Furukawa, Isao; Suzuki, Junji; Ono, Sadayasu; Kitamura, Masayuki; Ando, Yutaka

    1997-04-01

    In this paper, an experimental evaluation of a super high definition (SHD) imaging system for digital x-ray chest images is presented. The SHD imaging system is proposed as a platform for integrating conventional image media. We are involved in the use of SHD images in the total digitizing of medical records that include chest x-rays and pathological microscopic images, both which demand the highest level of quality among the various types of medical images. SHD images use progressive scanning and have a spatial resolution of 2000 by 2000 pixels or more and a temporal resolution (frame rate) of 60 frames/sec or more. For displaying medical x-ray images on a CRT, we derived gray scale transform characteristics based on radiologists' comments during the experiment, and elucidated the relationship between that gray scale transform and the linearization transform for maintaining the linear relationship with the luminance of film on a light box (luminance linear transform). We then carried out viewing experiments based on a five-stage evaluation. Nine radiologists participated in our experiment, and the ten cases evaluated included pulmonary fibrosis, lung cancer, and pneumonia. The experimental results indicated that conventional film images and those on super high definition CRT monitors have nearly the same quality. They also show that the gray scale transform for CRT images decided according to radiologists' comments agrees with the luminance linear transform in the high luminance region. And in the low luminance region, it was found that the gray scale transform had the characteristics of level expansion to increase the number of levels that can be expressed.

  3. Value of routine preoperative chest x-rays: a meta-analysis.

    PubMed

    Archer, C; Levy, A R; McGregor, M

    1993-11-01

    The purpose of this study was to estimate the frequency with which routine postoperative chest x-rays lead to clinically relevant new information. All articles in English, French and Spanish relating to routine chest radiography in North American or European populations were reviewed, using the Medline database and references listed in reviews and periodicals published from 1966 to 1992, inclusive. Twenty-one reports which supplied sufficient information were included for meta-analysis. On average, abnormalities were found in 10% of routine preoperative chest films. In only 1.3% of films were the abnormalities unexpected, i.e., were not already known or would not otherwise have been detected (95% CI: 0 to 2.8%). These findings were of sufficient importance to cause modification of management in only 0.1% (95% CI: 0 to 0.6%). The frequency with which the new information influenced health could not be estimated. Assuming only the direct cost to the health care system of each radiograph ($23), each finding which influenced management in any way would cost $23,000. It is concluded that in North American or European populations when a reliable history and a clinical examination are carried out, the cost of this test is so high relation to the clinical information provided that it is no longer justifiable. PMID:8269561

  4. Radiation dose levels for conventional chest and abdominal X-ray procedures in elected hospitals in Sudan.

    PubMed

    Babikir, E; Hasan, Hussein A; Abdelrazig, A; Alkhorayef, M A; Manssor, E; Sulieman, A

    2015-07-01

    This study aimed to assess patient entrance surface air kerma (ESAK) during chest and abdominal X-ray procedures in screen film radiography (SFR) and computed radiography (CR) to establish dose reference levels. Patients' doses were measured in five hospitals for a total of 196 patients. ESAK was calculated from exposure parameters using DosCal software. The X-ray tube output (mGy mAs(-1)), accuracy of exposure factors, linearity and reproducibility were measured using an Unfors Xi dosimeter. The overall mean and range of ESAK during chest X-ray were 0.6 ± 0.3 (0.1-1.3) mGy, while for abdominal X-rays they were 4.0 ± 3.2 (1.3-9.2) mGy. Hospital with a CR system was found to use relatively higher doses. Dose values for abdominal X-ray procedures were comparable with previous studies. The dose for chest X-ray procedure was higher by a factor of 2-3 compared with the current international reference levels. PMID:25852182

  5. SOSORT 2012 consensus paper: reducing x-ray exposure in pediatric patients with scoliosis

    PubMed Central

    2014-01-01

    This 2012 Consensus paper reviews the literature on side effects of x-ray exposure in the pediatric population as it relates to scoliosis evaluation and treatment. Alternative methods of spinal assessment and imaging are reviewed, and strategies for reducing the number of radiographs are developed. Using the Delphi technique, SOSORT members developed consensus statements that describe how often radiographs should be taken in each of the pediatric and adolescent sub-populations. PMID:24782912

  6. Aspergillus and mucormycosis presenting with normal chest X-ray in an immunocompromised host

    PubMed Central

    Gupta, Vipin; Rajagopalan, Natarajan; Patil, Mahantesh; C, Shivaprasad

    2014-01-01

    Invasive aspergillus and mucormycosis infection are not uncommon in immunocompromised individuals. Endobronchial fungal infections have been reported in the literature, especially in patient's with diabetes complicated by diabetic ketoacidosis, but end bronchial coinfection with aspergillus and mucormycosis without pulmonary involvement has not been described in the literature. We report the case of a woman with diabetes who presented with gastrointestinal symptoms, ketoacidosis and respiratory distress, with an apparently normal chest X-ray. Investigations revealed a cavitatory lesion in the left lower lobe of the lungs on CT scan. Bronchoscopy revealed intense mucosal oedema and whitish plaques at the lower end of the trachea and right main stem bronchus with a normal left bronchial tree. Microbiological and pathological results confirmed aspergillus and mucormycosis. Despite aggressive medical management, the patient deteriorated and died of respiratory failure. Strong suspicion of invasive fungal infections in immunocompromised patients with respiratory failure and minimal chest infiltrates, early fibreoptic bronchoscopy and early aggressive treatment is crucial for the patient's survival. PMID:24717585

  7. Experimental system for detecting lung nodules by chest x-ray image processing

    NASA Astrophysics Data System (ADS)

    Suzuki, Hideo; Inaoka, Noriko; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Suzuki, Akira

    1991-07-01

    This paper describes a system for automatic detection of lung nodules by means of digital image-processing techniques. The objective of the system is to help chest physicians to improve their accuracy of detection. For detecting lung nodules in chest x-ray images, the authors developed the directional contrast filter for nodules (DCF-N), which consists of three concentric circles. The DCF-N is effective for detecting patterns with obscure peripheries, such as lung cancer. The filter was evaluated using 192 lung cancer cases, and a detection ratio of 88.5% with false-positive foci was obtained. The authors also developed a rule-based system for eliminating these false-positive foci. The rule-base contains six rules that were heuristically developed according to a common method of diagnosis used by chest physicians. By using the rule-base, the authors succeeded in eliminating 63.3% of false-positive foci without increasing the number of false-negatives significantly (5.0%). In addition to the rule- base, a logic was developed for discriminating between lung nodules and false-positive foci by using the nine measured values on each shadow. The discrimination was tested by using 192 lung cancer cases and 74 normal control cases. As a result, figures of 92.2% and 71.6% were obtained for the sensitivity and specificity of the system, respectively. To evaluate the logic by using external data, 30 cases of lung cancer and 78 control cases were collected. As a result of the evaluation, the authors obtained figures of 71.3%, 76.7%, and 69.2% for the accuracy, sensitivity, and specificity of the system, respectively.

  8. 20 CFR Appendix A to Part 718 - Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays)

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Standards for Administration and Interpretation of Chest Roentgenograms (X-Rays) A Appendix A to Part 718 Employees' Benefits EMPLOYMENT STANDARDS ADMINISTRATION, DEPARTMENT OF LABOR FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED STANDARDS FOR DETERMINING COAL MINERS'...

  9. [A man with an abnormality of the upper arm on an X-ray of the chest].

    PubMed

    van Deudekom, Floor J A; Kuper, Ingeborg M J A; Groote, Maureen E

    2015-01-01

    A 82-year-old man was referred to our hospital because of a history of falling. Routine radiography of the chest accidentally showed an abnormality of the left upper arm. The x-ray showed calcifications - rings and arcs - also known as popcorn calcifications. This is a typical radiological sign which may indicate a tumour of the condroid matrix. PMID:26556494

  10. Determination of chest x-ray cost using activity based costing approach at Penang General Hospital, Malaysia

    PubMed Central

    Atif, Muhammad; Sulaiman, Syed Azhar Syed; Shafie, Asrul Akmal; Saleem, Fahad; Ahmad, Nafees

    2012-01-01

    Background Activity based costing (ABC) is an approach to get insight of true costs and to solve accounting problems. It provides more accurate information on product cost than conventional accounting system. The purpose of this study was to identify detailed resource consumption for chest x-ray procedure. Methods Human resource cost was calculated by multiplying the mean time spent by employees doing specific activity to their per-minute salaries. The costs of consumables and clinical equipments were obtained from the procurement section of the Radiology Department. The cost of the building was calculated by multiplying the area of space used by the chest X-ray facility with the unit cost of public building department. Moreover, straight-line deprecation with a discount rate of 3% was assumed for calculation of equivalent annual costs for building and machines. Cost of electricity was calculated by multiplying number of kilo watts used by electrical appliance in the year 2010 with electricity tariff for Malaysian commercial consumers (MYR 0.31 per kWh). Results Five activities were identified which were required to develop one chest X-ray film. Human resource, capital, consumable and electricity cost was MYR 1.48, MYR 1.98, MYR 2.15 and MYR 0.04, respectively. Total cost of single chest X-ray was MYR 5.65 (USD 1.75). Conclusion By applying ABC approach, we can have more detailed and precise estimate of cost for specific activity or service. Choice of repeating a chest X-ray can be based on our findings, when cost is a limiting factor. PMID:22891098

  11. An integrated approach for prescribing fewer chest x-rays in the ICU

    PubMed Central

    2011-01-01

    Chest x-rays (CXRs) are the main imaging tool in intensive care units (ICUs). CXRs also are associated with concerns inherent to their use, considering both healthcare organization and patient perspectives. In recent years, several studies have focussed on the feasibility of lowering the number of bedside CXRs performed in the ICU. Such a decrease may result from two independent and complementary processes: a raw reduction of CXRs due to the elimination of unnecessary investigations, and replacement of the CXR by an alternative technique. The goal of this review is to outline emblematic examples corresponding to these two processes. The first part of the review concerns the accumulation of evidence-based data for abandoning daily routine CXRs in mechanically ventilated patients and adopting an on-demand prescription strategy. The second part of the review addresses the use of alternative techniques to CXRs. This part begins with the presentation of ultrasonography or capnography combined with epigastric auscultation for ensuring the correct position of enteral feeding tubes. Ultrasonography is then also presented as an alternative to CXR for diagnosing and monitoring pneumothoraces, as well as a valuable post-procedural technique after central venous catheter insertion. The combination of the emblematic examples presented in this review supports an integrated global approach for decreasing the number of CXRs ordered in the ICU. PMID:21906323

  12. Measurement of radiotherapy x-ray skin dose on a chest wall phantom.

    PubMed

    Quach, K Y; Morales, J; Butson, M J; Rosenfeld, A B; Metcalfe, P E

    2000-07-01

    Sufficient skin dose needs to be delivered by a radiotherapy chest wall treatment regimen to ensure the probability of a near surface tumor recurrence is minimized. To simulate a chest wall treatment a hemicylindrical solid water phantom of 7.5 cm radius was irradiated with 6 MV x-rays using 20x20 cm2 and 10x20 cm2 fields at 100 cm source surface distance (SSD) to the base of the phantom. A surface dose profile was obtained from 0 to 180 degrees, in 10 degrees increments around the circumference of the phantom. Dosimetry results obtained from radiochromic film (effective depth of 0.17 mm) were used in the investigation, the superficial doses were found to be 28% (of Dmax) at the 0 degrees beam entry position and 58% at the 90 degrees oblique beam position. Superficial dose results were also obtained using extra thin thermoluminescent dosimeters (TLD) (effective depth 0.14 mm) of 30% at 0 degrees, 57% at 90 degrees, and a metal oxide semiconductor field effect transistor (MOSFET) detector (effective depth 0.5 mm) of 43% at 0 degrees, 62% at 90 degrees. Because the differences in measured superficial doses were significant and beyond those related to experimental error, these differences are assumed to be mostly attributable to the effective depth of measurement of each detector. We numerically simulated a bolus on/bolus off technique and found we could increase the coverage to the skin. Using an alternate "bolus on," "bolus off" regimen, the skin would receive 36.8 Gy at 0 degrees incidence and 46.4 Gy at 90 degrees incidence for a prescribed midpoint dose of 50 Gy. From this work it is evident that, as the circumference of the phantom is traversed the SSD increases and hence there is an inverse square fluence fall-off, this is more than offset by the increase in skin dose due to surface curvature to a plateau at about 90 degrees. Beyond this angle it is assumed that beam attenuation through the phantom and inverse square fall-off is causing the surface dose to

  13. Reading a radiologist's mind: monitoring rising and falling interest levels while scanning chest x-rays

    NASA Astrophysics Data System (ADS)

    Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.

    2010-02-01

    Radiological images constitute a special class of images that are captured (or computed) specifically for the purpose of diagnosing patients. However, because these are not "natural" images, radiologists must be trained to interpret them through a process called "perceptual learning". However, because perceptual learning is implicit, experienced radiologists may sometimes find it difficult to explicitly (i.e. verbally) train less experienced colleagues. As a result, current methods of training can take years before a new radiologist is fully competent to independently interpret medical images. We hypothesize that eye tracking technology (coupled with multimedia technology) can be used to accelerate the process of perceptual training, through a Hebbian learning process. This would be accomplished by providing a radiologist-in-training with real-time feedback as he/she is fixating on important regions of an image. Of course this requires that the training system have information about what regions of an image are important - information that could presumably be solicited from experienced radiologists. However, our previous work has suggested that experienced radiologists are not always aware of those regions of an image that attract their attention, but are not clinically significant - information that is very important to a radiologist in training. This paper discusses a study in which local entropy computations were done on scan path data, and were found to provide a quantitative measure of the moment-by-moment interest level of radiologists as they scanned chest x-rays. The results also showed a striking contrast between the moment-by-moment deployment of attention between experienced radiologists and radiologists in training.

  14. Non-malignant chest x ray changes in patients with mesothelioma in a large cohort of asbestos insulation workers.

    PubMed Central

    Lilis, R; Ribak, J; Suzuki, Y; Penner, L; Bernstein, N; Selikoff, I J

    1987-01-01

    To assess the prevalence of non-malignant chest x ray abnormalities in cases of mesothelioma 184 cases of mesothelioma (72 pleural and 112 peritoneal) which had occurred in a cohort of asbestos insulation workers followed up since 1967 were studied. Chest x ray films of satisfactory quality, on which the presence or absence of non-malignant radiological changes indicating interstitial pulmonary fibrosis or pleural fibrosis or both, could be assessed with a high degree of certainty were available. In some cases (20% for pleural mesothelioma, 11.6% for peritoneal mesothelioma) non-malignant radiological changes were not radiologically detectable. Parenchymal interstitial fibrosis (small irregular opacities) only was found in a proportion of cases (25.4% of pleural mesotheliomas, 12.5% of peritoneal mesotheliomas). Pleural fibrosis only was detected in 17% of cases of pleural mesothelioma and 27% of cases of peritoneal mesothelioma. Most patients had both parenchymal and pleural fibrosis. Although these results tend to indicate that in peritoneal mesothelioma the proportion of pleural fibrosis is significantly higher, these findings might have been due to the fact that in most cases of pleural mesothelioma non-malignant changes were interpreted in one hemithorax only. In 46 cases (21 pleural, 25 peritoneal) in which sufficient lung tissue was available histopathology of lung parenchyma indicated the presence of interstitial fibrosis; in 20 (43.5%) of these the chest x ray film had been read as negative. Thus the absence of radiologically detectable small opacities on the chest x ray film does not exclude the existence of interstitial pulmonary fibrosis in cases of mesothelioma among insulation workers. With lower levels of exposure (such as in family contacts of asbestos workers) it is conceivable that mesothelioma might occur in the absence of interstitial pulmonary fibrosis. PMID:3606969

  15. Annual Screening with Chest X-Ray Does Not Reduce Lung Cancer Deaths | Division of Cancer Prevention

    Cancer.gov

    Annual screening for lung cancer using a standard chest x-ray does not reduce the risk of dying from lung cancer when compared with no annual screening, according to findings from the NCI-led Prostate, Lung, Colorectal, and Ovarian (PLCO) screening trial. The results from a median of nearly 12 years of follow-up were published online October 26 in JAMA. |

  16. Performing chest x-rays at inspiration in uncooperative children: the effect of exercises with a training program for radiology technicians.

    PubMed

    Langen, Heinz-Jakob; Kohlhauser-Vollmuth, Christiane; Sengenberger, Corinna; Bielmeier, Johann; Jocher, Renate; Eschmann, Martina

    2014-01-01

    Objective. It is difficult to acquire a chest X-ray of a crying infant at maximum inspiration. A computer program was developed for technician training. Method. Video clips of 3 babies were used and the moment of deepest inspiration was determined in the single-frame view. 12 technicians simulated chest radiographs at normal video speed by pushing a button. The computer program stopped the video and calculated the period of time to the optimal instant for a chest X-ray. Demonstration software can be tested at website online. Every technician simulated 10 chest X-rays for each of the 3 video clips. The technicians then spent 40 minutes practicing performing chest X-rays at optimal inspiration. The test was repeated after 5, 20, and 40 minutes of practice. Results. 6 participants showed a significant improvement after exercises (collective 1). Deviation from the optimal instant for taking an X-ray at inspiration decreased from 0.39 to 0.22 s after 40 min of practice. 6 technicians showed no significant improvement (collective 2). Deviation decreased from a low starting value of 0.25 s to 0.21 s. Conclusion. The tested computer program improves the ability of radiology technicians to take a chest X-ray at optimal inspiration in a crying child. PMID:25120930

  17. Diagnostic chest x-rays and breast cancer risk before age 50 years for BRCA1 and BRCA2 mutation carriers

    PubMed Central

    John, Esther M.; McGuire, Valerie; Thomas, Duncan; Haile, Robert; Ozcelik, Hilmi; Milne, Roger L.; Felberg, Anna; West, Dee W.; Miron, Alexander; Knight, Julia A.; Terry, Mary Beth; Daly, Mary; Buys, Saundra S.; Andrulis, Irene L.; Hopper, John L.; Southey, Melissa C.; Giles, Graham G.; Apicella, Carmel; Thorne, Heather; Whittemore, Alice S.

    2013-01-01

    Background The effects of low-dose medical radiation on breast cancer risk are uncertain, and few studies have included genetically susceptible women, such as those who carry germline BRCA1 and BRCA2 mutations. Methods We studied 454 BRCA1 and 273 BRCA2 mutation carriers aged <50 years from three breast cancer family registries in the USA, Canada, and Australia/New Zealand. We estimated breast cancer risk associated with diagnostic chest x-rays by comparing mutation carriers with breast cancer (cases) with those without breast cancer (controls). Exposure to chest x-rays was self-reported. Mammograms were not considered in the analysis. Results After adjusting for known risk factors for breast cancer, the odds ratio (OR) for a history of diagnostic chest x-rays, excluding those for tuberculosis or pneumonia, was 1.16 (95% confidence interval (CI) = 0.64–2.11) for BRCA1 mutations carriers and 1.22 (95% CI=0.62–2.42) for BRCA2 mutations carriers. The OR was statistically elevated for BRCA2 mutation carriers with 3–5 diagnostic chest x-rays (p = 0.01), but not for those with 6 or more chest x-rays. Few women reported chest fluoroscopy for tuberculosis or chest x-rays for pneumonia; the OR estimates were elevated, but not statistically significant, for BRCA1 mutation carriers. Conclusions Our findings do not support a positive association between diagnostic chest x-rays and breast cancer risk before age 50 years for BRCA1 or BRCA2 mutation carriers. Impact Given the increasing use of diagnostic imaging involving higher ionizing radiation doses, further studies of genetically predisposed women are warranted. PMID:23853209

  18. Senile Calcification of the Trachea, Aortic Arch, and Mitral Annulus: An Incidental Finding on Chest X-Ray.

    PubMed

    Hosseinzadeh Maleki, Mahmood; Kazemi, Toba; Davoody, Navid

    2015-10-27

    A 94-year-old woman presented with dizziness and hypotension of 2 days' duration. She denied any syncope, presyncope, or angina. She had received a permanent pacemaker 12 years previously for the management of complete heart block (CHB), but she failed to program it. Twelve-lead electrocardiography revealed CHB with ventricular escape rhythm (40/min), so we inserted a temporary pacemaker. Anteroposterior chest X-ray showed trachea, aortic arch, and severe mitral valve calcification. Tracheal calcification is usually seen after 40 years old without clinical importance. However, it is seen in patients with renal failure, metastases, and prolonged use of warfarin as well as in pregnancy.(1) (-) (3). PMID:26985213

  19. Automatic detection method of lung cancers including ground-glass opacities from chest x-ray CT images

    NASA Astrophysics Data System (ADS)

    Ezoe, Toshiharu; Takizawa, Hotaka; Yamamoto, Shinji; Shimizu, Akinobu; Matsumoto, Tohru; Tateno, Yukio; Iimura, Takeshi; Matsumoto, Mitsuomi

    2002-05-01

    In this paper, we described an algorithm of automatic detection of ground glass opacities (GGO) from X-ray CT images. In this algorithm, at first, pathological shadow candidates are extracted by our variable N-Quoit filter which is a kind of mathematical morphology filter. Next, shadow candidates are classified into some classes using feature values calculated from the shadow candidates. By using discriminate functions, at last, shadow candidates are discriminated between normal shadows and abnormal ones. This method was examined by 38 samples (including GGO's shadows) of chest CT images, and proved to be very effective.

  20. Anatomy-based transmission factors for technique optimization in portable chest x-ray

    NASA Astrophysics Data System (ADS)

    Liptak, Christopher L.; Tovey, Deborah; Segars, William P.; Dong, Frank D.; Li, Xiang

    2015-03-01

    Portable x-ray examinations often account for a large percentage of all radiographic examinations. Currently, portable examinations do not employ automatic exposure control (AEC). To aid in the design of a size-specific technique chart, acrylic slabs of various thicknesses are often used to estimate x-ray transmission for patients of various body thicknesses. This approach, while simple, does not account for patient anatomy, tissue heterogeneity, and the attenuation properties of the human body. To better account for these factors, in this work, we determined x-ray transmission factors using computational patient models that are anatomically realistic. A Monte Carlo program was developed to model a portable x-ray system. Detailed modeling was done of the x-ray spectrum, detector positioning, collimation, and source-to-detector distance. Simulations were performed using 18 computational patient models from the extended cardiac-torso (XCAT) family (9 males, 9 females; age range: 2-58 years; weight range: 12-117 kg). The ratio of air kerma at the detector with and without a patient model was calculated as the transmission factor. Our study showed that the transmission factor decreased exponentially with increasing patient thickness. For the range of patient thicknesses examined (12-28 cm), the transmission factor ranged from approximately 21% to 1.9% when the air kerma used in the calculation represented an average over the entire imaging field of view. The transmission factor ranged from approximately 21% to 3.6% when the air kerma used in the calculation represented the average signals from two discrete AEC cells behind the lung fields. These exponential relationships may be used to optimize imaging techniques for patients of various body thicknesses to aid in the design of clinical technique charts.

  1. Utilization of 3-D elastic transformation in the registration of chest x-ray CT and whole body PET

    SciTech Connect

    Tai, Yuan-Chuan; Hoh, C.K.; Hoffman, E.J.

    1996-12-31

    X-ray CT is widely used for detection and localization of lesions in the thorax. Whole Body PET with 18-FDG is becoming accepted for staging of cancer because of its ability to detect malignancy. Combining information from these two modalities has a significant value to improve lung cancer staging and treatment planning. Due to the non-rigid nature of the thorax and the differences in the acquisition conventions, the subject is stretched non-uniformly and the images of these two modalities requires non-rigid transformation for proper registration. Techniques to register chest x-ray CT and Whole Body PET images were developed and evaluated. Accuracy of 3-D elastic transformation was tested by phantom study. Studies on patients with lung carcinoma were used to validate the technique in localizing the 18-FDG uptake and in correlating PET to x-ray CT images. The fused images showed an accurate alignment and provided confident identification of the detailed anatomy of the CT with the functional information of the PET images.

  2. EVALUATION OF DOSE REDUCTION POTENTIALS OF A NOVEL SCATTER CORRECTION SOFTWARE FOR BEDSIDE CHEST X-RAY IMAGING.

    PubMed

    Renger, Bernhard; Brieskorn, Carina; Toth, Vivien; Mentrup, Detlef; Jockel, Sascha; Lohöfer, Fabian; Schwarz, Martin; Rummeny, Ernst J; Noël, Peter B

    2016-06-01

    Bedside chest X-rays (CXR) for catheter position control may add up to a considerable radiation dose for patients in the intensive care unit (ICU). In this study, image quality and dose reduction potentials of a novel X-ray scatter correction software (SkyFlow, Philips Healthcare, Hamburg, Germany) were evaluated. CXRs of a 'LUNGMAN' (Kyoto Kagaku Co., LTD, Kyoto, Japan) thoracic phantom with a portacath system, a central venous line and a dialysis catheter were performed in an experimental set-up with multiple tube voltage and tube current settings without and with an antiscatter grid. Images with diagnostic exposure index (EI) 250-500 were evaluated for the difference in applied mAs with and without antiscatter grid. Three radiologists subjectively assessed the diagnostic image quality of grid and non-grid images. Compared with a non-grid image, usage of an antiscatter grid implied twice as high mAs in order to reach diagnostic EI. SkyFlow significantly improved the image quality of images acquired without grid. CXR with grid provided better image contrast than grid-less imaging with scatter correction. PMID:26977074

  3. Selecting a Variable for Predicting the Diagnosis of PTB Patients From Comparison of Chest X-ray Images

    NASA Astrophysics Data System (ADS)

    Mohd. Rijal, Omar; Mohd. Noor, Norliza; Teng, Shee Lee

    A statistical method of comparing two digital chest radiographs for Pulmonary Tuberculosis (PTB) patients has been proposed. After applying appropriate image registration procedures, a selected subset of each image is converted to an image histogram (or box plot). Comparing two chest X-ray images is equivalent to the direct comparison of the two corresponding histograms. From each histogram, eleven percentiles (of image intensity) are calculated. The number of percentiles that shift to the left (NLSP) when second image is compared to the first has been shown to be an indicator of patients` progress. In this study, the values of NLSP is to be compared with the actual diagnosis (Y) of several medical practitioners. A logistic regression model is used to study the relationship between NLSP and Y. This study showed that NLSP may be used as an alternative or second opinion for Y. The proposed regression model also show that important explanatory variables such as outcomes of sputum test (Z) and degree of image registration (W) may be omitted when estimating Y-values.

  4. Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts

    SciTech Connect

    Boice, J.D. Jr.; Preston, D.; Davis, F.G.; Monson, R.R. )

    1991-02-01

    The incidence of breast cancer was determined in 4940 women treated for tuberculosis between 1925 and 1954 in Massachusetts. Among 2573 women examined by X-ray fluoroscopy an average of 88 times during lung collapse therapy and followed for an average of 30 years, 147 breast cancers occurred in contrast to 113.6 expected (observed/expected (O/E) = 1.29; 95% confidence interval (CI) = 1.1-1.5). No excess of breast cancer was seen among 2367 women treated by other means: 87 observed versus 100.9 expected. Increased rates for breast cancer were not apparent until about 10 to 15 years after the initial fluoroscopy examination. Excess risk then remained high throughout all intervals of follow-up, up to 50 years after first exposure. Age at exposure strongly influenced the risk of radiation-induced breast cancer with young women being at highest risk and those over age 40 being at lowest risk (relative risk (RR) = 1.06). Mean radiation dose to the breast was estimated to be 79 cGy, and there was strong evidence for a linear relationship between dose and breast cancer risk. Allowing for a 10-year minimum latent period, the relative risk at 1 Gy was estimated as 1.61 and the absolute excess as 10.7 per 10(4) woman-years per gray. When compared to other studies, our data suggest that the breast is one of the most sensitive tissues to the carcinogenic force of radiation, that fractionated exposures are similar to single exposures of the same total dose in their ability to induce breast cancer, that risk remains high for many years after exposure, and that young women are especially vulnerable to radiation injury.

  5. A Comparative Study Using Numerical Methods for Surface X Ray Doses with Conventional and Digital Radiology Equipment in Pediatric Radiology

    NASA Astrophysics Data System (ADS)

    Dan, Posa Ioan; Florin, Georgescu Remus; Virgil, Ciobanu; Antonescu, Elisabeta

    2011-09-01

    The place of the study is a pediatrics clinic which realizes a great variety of emergency, ambulatory ad hospital examinations. The radiology compartment respects work procedures and a system to ensure the quality of X ray examinations. The results show a constant for the programmator of the digital detector machine for the tension applied to the tube. For the screen-film detector machine the applied tension increases proportionally with the physical development of the child considering the trunk thickness.

  6. A Comparative Study Using Numerical Methods for Surface X Ray Doses with Conventional and Digital Radiology Equipment in Pediatric Radiology

    SciTech Connect

    Dan, Posa Ioan; Florin, Georgescu Remus; Virgil, Ciobanu; Antonescu, Elisabeta

    2011-09-14

    The place of the study is a pediatrics clinic which realizes a great variety of emergency, ambulatory ad hospital examinations. The radiology compartment respects work procedures and a system to ensure the quality of X ray examinations. The results show a constant for the programmator of the digital detector machine for the tension applied to the tube. For the screen-film detector machine the applied tension increases proportionally with the physical development of the child considering the trunk thickness.

  7. Comparison of image quality among three X-ray systems for chest radiography: first step in optimisation.

    PubMed

    Nocetti, D; Ubeda, C; Calcagno, S; Acevedo, J; Pardo, D

    2015-07-01

    The aim of this study was to compare the performance of three digital X-ray systems [one flat-panel (DR) and two computed radiography (CR)] for chest radiography in terms of the entrance surface air kerma (ESAK) delivered to a polymethyl methacrylate phantom of 20 cm (equivalent to an adult patient) and image quality through of numerical evaluations using a test object (TO). The tube charge applied was ranged from 0.6 to 32 mAs, to a fixed tension of 125 kVp. The DR system presented the highest mean values of ESAK (615.9 µGy) along with the highest signal-to-noise ratio values, whereas CR systems showed a better high-contrast spatial resolution. Differences were statistically significant in both cases regarding the tube charge used. Thus, this parameter should be mainly considered to optimise the radiological protection through exposure settings selected. This survey represents the first effort to achieve optimisation in digital radiology for Chile. PMID:25821212

  8. Screening for pulmonary tuberculosis in a Tanzanian prison and computer-aided interpretation of chest X-rays

    PubMed Central

    Mangu, C.; van den Hombergh, J.; van Deutekom, H.; van Ginneken, B.; Clowes, P.; Mhimbira, F.; Mfinanga, S.; Rachow, A.; Hoelscher, M.

    2015-01-01

    Setting: Tanzania is a high-burden country for tuberculosis (TB), and prisoners are a high-risk group that should be screened actively, as recommended by the World Health Organization. Screening algorithms, starting with chest X-rays (CXRs), can detect asymptomatic cases, but depend on experienced readers, who are scarce in the penitentiary setting. Recent studies with patients seeking health care for TB-related symptoms showed good diagnostic performance of the computer software CAD4TB. Objective: To assess the potential of computer-assisted screening using CAD4TB in a predominantly asymptomatic prison population. Design: Cross-sectional study. Results: CAD4TB and seven health care professionals reading CXRs in local tuberculosis wards evaluated a set of 511 CXRs from the Ukonga prison in Dar es Salaam. Performance was compared using a radiological reference. Two readers performed significantly better than CAD4TB, three were comparable, and two performed significantly worse (area under the curve 0.75 in receiver operating characteristics analysis). On a superset of 1321 CXRs, CAD4TB successfully interpreted >99%, with a predictably short time to detection, while 160 (12.2%) reports were delayed by over 24 h with conventional CXR reading. Conclusion: CAD4TB reliably evaluates CXRs from a mostly asymptomatic prison population, with a diagnostic performance inferior to that of expert readers but comparable to local readers. PMID:26767179

  9. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays

    SciTech Connect

    Schlumberger, M.; Arcangioli, O.; Piekarski, J.D.; Tubiana, M.; Parmentier, C.

    1988-11-01

    Lung metastases were demonstrated by total-body /sup 131/I scans in 23 patients with differentiated thyroid carcinoma, at a time when chest x-ray was normal. This total-body /sup 131/I scan was performed after the administration of 2 mCi (in 11 patients) or 100 mCi (in 12 patients). Overall uptake of 131I in lungs was less than 1% of the administered dose in 11 patients. All patients were treated with radioiodine. No lung uptake was found in 20 patients at the last 100 mCi post-therapy scan. Among them, Tg level became undetectable during T4 treatment in eight, lung CT scan showed the disappearance of the micronodules in seven, and lung biopsy did not show evidence of disease in two patients. No patient developed radiation lung fibrosis. In conclusion, favorable responses to radioiodine treatment were observed despite relatively low overall uptake, in relation to the small size of lung metastases. This provides high concentrations of radioiodine and therefore high radiation doses.

  10. A detection method of ground glass opacities in chest x-ray CT images using automatic clustering techniques

    NASA Astrophysics Data System (ADS)

    Tanino, Mitsuhiro; Takizawa, Hotaka; Yamamoto, Shinji; Matsumoto, Tohru; Tateno, Yukio; Iinuma, Takeshi

    2003-05-01

    In this paper, we described an algorithm of automatic detection of Ground Glass Opacities (GGO) from X-ray CT images. In this algorithm, first, suspicious shadows are extracted by our Variable N-Quoit (VNQ) filter which is a type of Mathematical Morphology filters. This filter can detect abnormal shadows with high sensitivity. Next, the suspicious shadows are classified into a certain number of classes using feature values calculated from the suspicious shadows. In our traditional clustering method, a medical doctor has to manually classify the suspicious shadows into 5 clusters. The manual classification is very hard for the doctor. Thus, in this paper, we propose a new automatic clustering method which is based on a Principal Component (PC) theory. In this method, first, the detected shadows are classified into two sub-clusters according to their sizes. And then, each sub-cluster is further classified into two sub-sub-clusters according to PC Scores(PCS) calcuated from the feature values of the shadows in the sub-cluster. In this PCS-based classification, we use a threshold which maximizes the distance between the two sub-sub-clusters. The PCS-based classification is iterated recursively. Using discriminate functions based on Mahalanobis distance, the suspicious shadows are determined to be normal or abnormal. This method was examined by many samples (including GGO's shadows) of chest CT images, and proved to be very effective.

  11. Population doses, excess deaths and loss of life expectancy from mass chest x-ray examination in Japan-1980

    SciTech Connect

    Kumamoto, Y.

    1985-07-01

    The number of mass chest x-ray examinations in Japan in 1980 was 26.6 million and the average effective dose equivalent was 26 mrem per examination. The genetically significant dose was. 017 mrem per person per year, the per caput mean marrow dose was 5.9 mrem, the leukemia significant dose was 5.2 mrem and the malignancy significant dose was 2.8 mrem. The excess deaths were calculated to be 70-280 depending on the risk model used. Those would be in excess to the 3.7 million cancer deaths normally expected among the examined population. The loss of life expectancy calculated with a relative risk model was 38 yr for males and 43 yr for females due to leukemia with a latent period of 2 yr and an expression period of 25 yr, and 12 yr for males and 14 yr for females due to other cancers with a latent period of 10 yr and an expression period of lifetime in the 20-24 age group.

  12. Dosimetric evaluation of X-ray examinations of paranasal sinuses in pediatric patients*

    PubMed Central

    Cantalupo, Beatriz de Lucena Villa-Chan; Xavier, Aline Carvalho da Silva; da Silva, Clemanzy Mariano Leandro; Andrade, Marcos Ely Almeida; de Barros, Vinícius Saito Monteiro; Khoury, Helen Jamil

    2016-01-01

    Objective To estimate the entrance surface air kerma (Ka,e) and air kerma in the region of radiosensitive organs in radiographs of pediatric paranasal sinuses. Materials and Methods Patient data and irradiation parameters were collected in examinations of the paranasal sinuses in children from 0 to 15 years of age at two children's hospitals in the city of Recife, PE, Brazil. We estimated the Ka,e using the X-ray tube outputs and selected parameters. To estimate the air kerma values in the regions of the eyes and thyroid, we used thermoluminescent dosimeters. Results The Ka,e values ranged from 0.065 to 1.446 mGy in cavum radiographs, from 0.104 to 7.298 mGy in Caldwell views, and from 0.113 to 7.824 mGy in Waters views. Air kerma values in the region of the eyes ranged from 0.001 to 0.968 mGy in cavum radiographs and from 0.011 to 0.422 mGy in Caldwell and Waters views . In the thyroid region, air kerma values ranged from 0.005 to 0.932 mGy in cavum radiographs and from 0.002 to 0.972 mGy in Caldwell and Waters views. Conclusion The radiation levels used at the institutions under study were higher than those recommended in international protocols. We recommend that interventions be initiated in order to reduce patient exposure to radiation and therefore the risks associated with radiological examination of the paranasal sinuses. PMID:27141129

  13. Measurement of entrance skin dose and estimation of organ dose during pediatric chest radiography.

    PubMed

    Kumaresan, M; Kumar, Rajesh; Biju, K; Choubey, Ajay; Kantharia, S

    2011-06-01

    Entrance skin dose (ESD) was measured to calculate the organ doses from the anteroposterior (AP) and posteroanterior (PA) chest x-ray projections for pediatric patients in an Indian hospital. High sensitivity tissue-equivalent thermoluminescent dosimeters (TLD, LiF: Mg, Cu, P chips) were used for measuring entrance skin dose. The respective organ doses were calculated using the Monte Carlo method (MCNP 3.1) to simulate the examination set-up and a three-dimensional mathematical phantom for representing an average 5-y-old Indian child. Using this method, conversion coefficients were derived for translating the measured ESD to organ doses. The average measured ESDs for the chest AP and PA projections were 0.305 mGy and 0.171 mGy, respectively. The average calculated organ doses in the AP and the PA projections were 0.196 and 0.086 mSv for the thyroid, 0.167 and 0.045 mSv for the trachea, 0.078 and 0.043 mSv for the lungs, 0.110 and 0.013 mSv for the liver, 0.002 and 0.016 mSv for the bone marrow, 0.024 and 0.002 mSv for the kidneys, and 0.109 and 0.023 mSv for the heart, respectively. The ESD and organ doses can be reduced significantly with the proper radiological technique. According to these results, the chest PA projection should be preferred over the AP projection in pediatric patients. The estimated organ doses for the chest AP and PA projections can be used for the estimation of the associated risk. PMID:22004934

  14. The x-ray light valve: A potentially low-cost, digital radiographic imaging system--a liquid crystal cell design for chest radiography

    SciTech Connect

    Szeto, Timothy C.; Webster, Christie Ann; Koprinarov, Ivaylo; Rowlands, J. A.

    2008-03-15

    Digital x-ray radiographic systems are desirable as they offer high quality images which can be processed, transferred, and stored without secondary steps. However, current clinical systems are extraordinarily expensive in comparison to film-based systems. Thus, there is a need for an economical digital imaging system for general radiology. The x-ray light valve (XLV) is a novel digital x-ray detector concept with the potential for high image quality and low cost. The XLV is comprised of a photoconductive detector layer and liquid crystal (LC) cell physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected at the surface of the photoconductor, causing a change in the reflective properties of the LC cell. The visible image so formed can subsequently be digitized with an optical scanner. By choosing the properties of the LC cell in combination with the appropriate photoconductor thickness and bias potentials, the XLV can be optimized for various diagnostic imaging tasks. Specifically for chest radiography, we identified three potentially practical reflective cell designs by selecting from those commonly used in LC display technology. The relationship between reflectance and x-ray exposure (i.e., the characteristic curve) was determined for all three cells using a theoretical model. The results indicate that the reflective electrically controlled birefringence (r-ECB) cell is the preferred choice for chest radiography, provided that the characteristic curve can be shifted towards lower exposures. The feasibility of the shift of the characteristic curve is shown experimentally. The experimental results thus demonstrate that an XLV based on the r-ECB cell design exhibits a characteristic curve suitable for chest radiography.

  15. Interest of chest X-ray in tailoring the diagnostic strategy in patients with suspected pulmonary embolism.

    PubMed

    Robin, Philippe; Le Roux, Pierre-Yves; Tissot, Valentin; Delluc, Aurélien; Le Duc-Pennec, Alexandra; Abgral, Ronan; Palard, Xavier; Couturaud, Francis; Le Gal, Grégoire; Salaun, Pierre-Yves

    2015-09-01

    Current diagnostic strategies for pulmonary embolism rely on the sequential use of noninvasive diagnostic tests including ventilation-perfusion (V/Q) scan and computed tomography pulmonary angiography (CTPA). V/Q scan remains criticized because of a high proportion of nondiagnostic test results, especially when the chest X-ray (CXR) is abnormal. The present study assesses whether CXR results have an impact on the conclusiveness of a noninvasive diagnostic strategy of pulmonary embolism based on the combination of pretest probability, compression ultrasonography, V/Q scan, and CTPA. Patients suspected of having pulmonary embolism were managed according to a validated diagnostic strategy. All patients underwent a CXR within 24 h of the suspicion of pulmonary embolism. CXR results were correlated to strategy conclusiveness, as assessed by the rate of required CTPA as per the diagnostic algorithm. Two hundred and twenty-three patients were retrospectively analyzed. CXRs were considered as normal in 108 (48%) patients and abnormal in 115 (52%) patients. According to the diagnostic algorithm, a CTPA was required to reach a diagnostic conclusion in 11 (10%) patients of the normal CXR group, and in 14 (12%) patients of the abnormal CXR group (P > 0.05). In this study, the presence of CXR abnormalities did not have an impact on the conclusiveness of a diagnostic strategy of pulmonary embolism based on V/Q scan. CXR abnormalities should likely not be regarded as a contraindication to the use of V/Q scan in patients with suspected pulmonary embolism. PMID:26126170

  16. Aortic arch calcification on chest X-ray combined with coronary calcium score show additional benefit for diagnosis and outcome in patients with angina

    PubMed Central

    Woo, Jong Shin; Kim, Weon; Kwon, Se Hwan; Youn, Hyo Chul; Kim, Hyun Soo; Kim, Jin Bae; Kim, Soo Joong; Kim, Woo-Shik; Kim, Kwon Sam

    2016-01-01

    Background The coronary artery calcium (CAC) and aortic arch calcification (AoAC) are individually associated with cardiovascular disease and outcome. This study investigated the predictive value of AoAC combined with CAC for cardiovascular diagnosis and outcome in patients with angina. Methods A total of 2018 stable angina patients who underwent chest X-ray and cardiac multi-detector computed tomography were followed up for four years to assess adverse events, which were categorized as cardiac death, stroke, myocardial infarction, or repeated revascularization. The extent of AoAC on chest X-ray was graded on a scale from 0 to 3. Results During the four years of follow-up, 620 patients were treated by coronary stenting and 153 (7%) adverse events occurred. A higher grade of AoAC was associated with a higher CAC score. Cox regression showed that the CAC score, but not AoAC, were associated with adverse events. In patients with CAC score < 400, AoAC showed an additive predictive value in detecting significant coronary artery disease (CAD). A gradual increases in the risk of adverse events were noted if AoAC was present in patients with similar CAC score. Conclusions As AoAC is strongly correlated with the CAC score regardless of age or gender, careful evaluation of CAD would be required in patients with AoAC on conventional chest X-rays. PMID:27103916

  17. Shielding during x-ray examination of pediatric female patients with developmental dysplasia of the hip.

    PubMed

    Tsai, Yi-Shan; Liu, Yi-Sheng; Chuang, Ming-Tsung; Wang, Chien-Kuo; Lai, Cheng-Shih; Tsai, Hong-Ming; Lin, Chii-Jeng; Lu, Chia-Hsing

    2014-12-01

    Patients with developmental dysplasia of the hip (DDH) generally undergo multiple x-ray examinations of both hip joints. During these examinations, the gonads are completely exposed to radiation, unless shielded. Although many types and sizes of gonad shields exist, they often do not provide adequate protection because of size and placement issues; additionally, these shields are frequently omitted for female patients. Our aim was to assess gonad protection during x-ray examination that is provided by gonad shields designed for individual female patients with DDH.We retrospectively retrieved data from the Picture Archiving and Communication System database; pelvic plain x-ray films from 766 females, 18 years old or younger, were included in our analysis. Based on x-ray measurements of the anterior superior iliac spine, we developed a system of gonad shield design that depended on the distance between anterior superior iliac spine markers. We custom-made shields and then examined shielding rates and shielding accuracy before and after these new shields became available. Standard (general-purpose) shields were used before our custom design project was implemented. The shielding rate and shielding accuracy were, respectively, 14.5% and 8.4% before the project was implemented and 72.7% and 32.2% after it was implemented. A shield that is more anatomically correct and available in several different sizes may increase the likelihood of gonad protection during pelvic x-ray examinations. PMID:25325378

  18. A More Efficient, Radiation-Free Alternative to Systematic Chest X-Ray for the Detection of Embolized Seeds to the Lung

    SciTech Connect

    Morrier, Janelle; Chretien, Mario; Martin, Andre-Guy; Vigneault, Eric; Beaulieu, Luc

    2010-11-15

    Purpose: To evaluate the efficacy of a seed-migration detector and to compare its performance to fluoroscopy and postoperative chest radiographs. Methods and Materials: A gamma scintillation survey meter was converted to a seed-migration detector by adding a shield on the probe detection window. The detector response to three {sup 125}I seed activities was characterized for different source-to-detector distances in water. The detector was used to perform a chest evaluation on 737 patients at their first postoperative visit. When the detector showed positive activity, seed migration was confirmed by taking a chest radiograph and by looking at the region with fluoroscopy. Results: One hundred and three patients (14.0%) presented at least one embolized seed. This accounts for 123 of the 39,887 seeds. Eighty-seven, 12, and 4 patients had respectively one, two, and three seed embolization. Compared with the seed-migration detector, detection based on fluoroscopy would have led to 13 false-negative detections (of 103, or 12.6%), and the radiograph would have resulted in 31 or 30.1%. More important, standard chest X-ray would have required a survey and extra radiation dose to lung to 100% of the patients, rather than the 14% who required it. Conclusions: The usual recommendation to perform chest radiographs at the first follow-up visit to scan lungs for embolized seeds should be revised because of the high false-negative rate. Scintillator-based gamma counter detector provides superior detection sensitivity and should be adopted as a standard of practice. Chest X-ray could be limited to documenting cases of positive migration.

  19. Complete blood counts, liver function tests, and chest x-rays as routine screening in early-stage breast cancer: value added or just cost?

    PubMed

    Louir, Raphael J; Tonneson, Jennifer E; Gowarty, Minda; Goodney, Philip P; Barth, Richard J; Rosenkranz, Kari M

    2015-11-01

    Current National Comprehensive Cancer Network guidelines for breast cancer staging include pre-treatment complete blood count (CBC) and liver function tests (LFT) to screen for occult metastatic disease. To date, the relevance of these tests in detecting metastatic disease in asymptomatic women with early-stage breast cancer (Stage I/II) has not been demonstrated. Although chest x-rays are no longer recommended in the NCCN guidelines, many centers continue to include this imaging as part of their screening process. We aim to determine the clinical and financial impact of these labs and x-rays in the evaluation of early-stage breast cancer patients. A single institution IRB-approved retrospective chart review was conducted of patients with biopsy-proven invasive breast cancer treated from January 1, 2005–December 31, 2009. We collected patient demographics, clinical and pathologic staging, chest x-ray, CBC, and LFT results at the time of referral. Patients were stratified according to radiographic stage at the time of diagnosis. We obtained Medicare reimbursement fees for cost analysis. From 2005 to 2009, 1609 patients with biopsy-proven invasive breast cancer were treated at our institution. Of the 1082 patients with radiographic stage I/II disease, 27.3 % of patients had abnormal CBCs. No additional testing was performed to evaluate these abnormalities. In the early-stage population, 24.7 % of patients had elevated LFTs, resulting in 84 additional imaging studies. No metastatic disease was detected. The cost of CBC, LFTs and chest x-rays was $110.20 per patient, totaling $106,410.99. Additional tests prompted by abnormal results cost $58,143.30 over the five-year period. We found that pre-treatment CBCs, LFTs, and chest x-rays did not improve detection of occult metastatic disease but resulted in additional financial costs. Avoiding routine ordering of these tests would save the US healthcare system $25.7 million annually. PMID:26467045

  20. Automated extraction of aorta and pulmonary artery in mediastinum from 3D chest x-ray CT images without contrast medium

    NASA Astrophysics Data System (ADS)

    Kitasaka, Takayuki; Mori, Kensaku; Hasegawa, Jun-ichi; Toriwaki, Jun-ichiro; Katada, Kazuhiro

    2002-05-01

    This paper proposes a method for automated extraction of the aorta and pulmonary artery (PA) in the mediastinum of the chest from uncontrasted chest X-ray CT images. The proposed method employs a model fitting technique to use shape features of blood vessels for extraction. First, edge voxels are detected based on the standard deviation of CT values. A likelihood image, which shows the degree of likelihood on medial axes of vessels, are calculated by applying the Euclidean distance transformation to non-edge voxels. Second, the medial axis of each vessel is obtained by fitting the model. This is done by referring the likelihood image. Finally, the aorta and PA areas are recovered from the medial axes by executing the reverse Euclidean distance transformation. We applied the proposed method to seven cases of uncontrasted chest X-ray CT images and evaluated the results by calculating the coincidence index computed from the extracted regions and the regions manually traced. Experimental results showed that the extracted aorta and the PA areas coincides with manually input regions with the coincidence indexes values 90% and 80-90%,respectively.

  1. Feasibility study of the diagnosis and monitoring of cystic fibrosis in pediatric patients using stationary digital chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Potuzko, Marci; Shan, Jing; Pearce, Caleb; Lee, Yueh Z.; Lu, Jianping; Zhou, Otto

    2015-03-01

    Digital chest tomosynthesis (DCT) is a 3D imaging modality which has been shown to approach the diagnostic capability of CT, but uses only one-tenth the radiation dose of CT. One limitation of current commercial DCT is the mechanical motion of the x-ray source which prolongs image acquisition time and introduces motion blurring in images. By using a carbon nanotube (CNT) x-ray source array, we have developed a stationary digital chest tomosynthesis (s- DCT) system which can acquire tomosynthesis images without mechanical motion, thus enhancing the image quality. The low dose and high quality 3D image makes the s-DCT system a viable imaging tool for monitoring cystic fibrosis (CF) patients. The low dose is especially important in pediatric patients who are both more radiosensitive and have a longer lifespan for radiation symptoms to develop. The purpose of this research is to evaluate the feasibility of using s-DCT as a faster, lower dose means for diagnosis and monitoring of CF in pediatric patients. We have created an imaging phantom by injecting a gelatinous mucus substitute into porcine lungs and imaging the lungs from within an anthropomorphic hollow chest phantom in order to mimic the human conditions of a CF patient in the laboratory setting. We have found that our s-DCT images show evidence of mucus plugging in the lungs and provide a clear picture of the airways in the lung, allowing for the possibility of using s- DCT to supplement or replace CT as the imaging modality for CF patients.

  2. Patient-specific dose estimation for pediatric chest CT

    SciTech Connect

    Li Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2008-12-15

    Current methods for organ and effective dose estimations in pediatric CT are largely patient generic. Physical phantoms and computer models have only been developed for standard/limited patient sizes at discrete ages (e.g., 0, 1, 5, 10, 15 years old) and do not reflect the variability of patient anatomy and body habitus within the same size/age group. In this investigation, full-body computer models of seven pediatric patients in the same size/protocol group (weight: 11.9-18.2 kg) were created based on the patients' actual multi-detector array CT (MDCT) data. Organs and structures in the scan coverage were individually segmented. Other organs and structures were created by morphing existing adult models (developed from visible human data) to match the framework defined by the segmented organs, referencing the organ volume and anthropometry data in ICRP Publication 89. Organ and effective dose of these patients from a chest MDCT scan protocol (64 slice LightSpeed VCT scanner, 120 kVp, 70 or 75 mA, 0.4 s gantry rotation period, pitch of 1.375, 20 mm beam collimation, and small body scan field-of-view) was calculated using a Monte Carlo program previously developed and validated to simulate radiation transport in the same CT system. The seven patients had normalized effective dose of 3.7-5.3 mSv/100 mAs (coefficient of variation: 10.8%). Normalized lung dose and heart dose were 10.4-12.6 mGy/100 mAs and 11.2-13.3 mGy/100 mAs, respectively. Organ dose variations across the patients were generally small for large organs in the scan coverage (<7%), but large for small organs in the scan coverage (9%-18%) and for partially or indirectly exposed organs (11%-77%). Normalized effective dose correlated weakly with body weight (correlation coefficient: r=-0.80). Normalized lung dose and heart dose correlated strongly with mid-chest equivalent diameter (lung: r=-0.99, heart: r=-0.93); these strong correlation relationships can be used to estimate patient-specific organ dose for

  3. 77 FR 27463 - Device Improvements for Pediatric X-Ray Imaging; Public Meeting; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    .../#!docketDetail ;rpp=10;po=0;D=FDA-2010-N-0080. 5. The Federal Register notice (75 FR 8375-8377) lists all... approximately [insert patient size (e.g., body part thickness or height and weight appropriate to your device... radiation exposure vs. image quality. Although CDRH has defined the ``pediatric population'' as...

  4. Low-dose digital computed radiography in pediatric chest imaging

    SciTech Connect

    Kogutt, M.S.; Jones, J.P.; Perkins, D.D.

    1988-10-01

    A prototype digital computed radiographic imaging system that uses laser-stimulated luminescence was evaluated for its ability to achieve reproducible, high-detail, low-dose pediatric chest radiographs. Using this system, we performed a total of 401 examinations in infants and children, and achieved an 85% reduction in radiation dose, as compared with that delivered when film-screen techniques were used. We also achieved satisfactory image resolution, and the images obtained were of acceptable diagnostic quality. A direct comparison of analog and digital radiographs showed that comparable quality and clinical acceptability could be readily maintained between the two techniques. This study shows that high-quality images can be produced by this system at radiation doses reduced by 85% when compared with doses from standard radiographic techniques.

  5. [Metastasizing Leiomyoma of the Lung Detected on Chest X-ray after Surgery for Breast Cancer;Report of a Case].

    PubMed

    Kiyokawa, Hiroki; Omiya, Hideyasu; Takami, Koji; Sekimoto, Mitsugu; Mori, Kiyoshi

    2015-12-01

    A 60-year-old postmenopausal woman presented with a lung nodule, which was detected on a chest X-ray 2 years after surgery for breast cancer. Pulmonary metastasis from the breast cancer was suspected and surgical resection was performed. On histopathological examination, the lung nodule showed a smooth muscle cell tumor, and immunohistochemical staining was positive for estrogen and progesterone receptors. As a mass in the uterine was detected by computed tomography images before surgical resection, benign metastasizing leiomyoma of the lung was suspected. Subsequently, the patient underwent hysterectomy and bilateral salpingo-oophorectomy. The pathological findings revealed that the mass in the uterine was atypical leiomyoma, which was consistent with the primary lesion of the lung metastasis. Atypical leiomyoma is classified as a benign tumor, but in this case, careful follow-up is required because of its clinical course and histological features. PMID:26759955

  6. Investigation of optimum X-ray beam tube voltage and filtration for chest radiography with a computed radiography system.

    PubMed

    Moore, C S; Beavis, A W; Saunderson, J R

    2008-10-01

    The purpose of this study was to determine the optimum tube voltage and amount of added copper (Cu) filtration for processed chest radiographs obtained with an Agfa 75.0 Computed Radiography (CR) system. The contrast-to-noise ratio (CNR) was measured in the lung, heart/spine and diaphragm compartments of a validated chest phantom using various tube voltages and amounts of Cu filtration. The CNR was derived as a function of air kerma at the CR plate and with the effective dose. As rib contrast can interfere with detection of nodules in chest radiography, a tissue-to-rib ratio (TRR) was derived to investigate which tube voltages suppress the contrast of rib. Although processing algorithms affect the signal and noise in a way that is hard to predict, we found that, for a given set of processing parameters, the CNR was related to the plate air kerma and effective dose in a logarithmic manner (all R(2) >or=0.97). For imaging of the lung region, a low voltage (60 kVp) produced the highest CNR, whereas a high voltage (125 kVp) produced the highest TRR. In the heart/spine region, 80-125 kVp produced the highest CNR, while in the diaphragm region 60-90 kVp produced the highest CNR. For chest radiography with this CR system, the optimal tube voltage depends upon the region of interest. Of the filters tested, a 0.1 mm Cu thickness was found to provide a statistically significant increase in the CNR in the diaphragm region with tube potentials of 60 kVp and 80 kVp, without affecting the CNR in the other anatomical compartments. PMID:18662964

  7. The role of dual energy x-ray absorptiometry in aiding the diagnosis of pediatric osteogenesis imperfecta.

    PubMed

    Moore, M S; Minch, C M; Kruse, R W; Harcke, H T; Jacobson, L; Taylor, A

    1998-12-01

    The role of dual energy x-ray absorptiometry (DEXA) in the evaluation of the pediatric patient with multiple fractures has not been well established. We retrospectively examined the medical records of 45 patients who had presented to our institution with multiple fractures of unknown cause, who were not known to have osteogenesis imperfecta, and who had obtained DEXA as part of their evaluation. Of these, 26 patients had sufficient clinical data for inclusion in this study. Patients underwent DEXA of the anteroposterior spine and whole body. A z score was calculated to normalize the DEXA values for age. The diagnosis of osteogenesis imperfecta was correlated with the outcome of each DEXA scan to assess the validity of DEXA as a diagnostic tool. The DEXA of the anteroposterior spine had the highest sensitivity at 91.7%, while DEXA of the whole body had the highest specificity at 100.0%. Decreased bone mineral density may be associated with osteogenesis imperfecta, and DEXA is helpful in detecting low bone mineral density that may be missed on plain radiographs of children with milder forms of osteogenesis imperfecta. PMID:9880097

  8. Impact of positive chest X-ray findings and blood cultures on adverse outcomes following hospitalized pneumococcal lower respiratory tract infection: a population-based cohort study

    PubMed Central

    2013-01-01

    Background Little is known about the clinical presentation and outcome of pneumococcal lower respiratory tract infection (LRTI) without positive chest X-ray findings and blood cultures. We investigated the prognostic impact of a pulmonary infiltrate and bacteraemia on the clinical course of hospitalized patients with confirmed pneumococcal LRTI. Methods We studied a population-based multi-centre cohort of 705 adults hospitalized with LRTI and Streptococcus pneumoniae in LRT specimens or blood: 193 without pulmonary infiltrate or bacteraemia, 250 with X-ray confirmed pneumonia, and 262 with bacteraemia. We compared adverse outcomes in the three groups and used multiple regression analyses to adjust for differences in age, sex, comorbidity, and lifestyle factors. Results Patients with no infiltrate and no bacteraemia were of similar age but had more comorbidity than the other groups (Charlson index score ≥1: no infiltrate and no bacteraemia 81% vs. infiltrate without bacteraemia 72% vs. bacteraemia 61%), smoked more tobacco, and had more respiratory symptoms. In contrast, patients with a pulmonary infiltrate or bacteraemia had more inflammation (median C-reactive protein: no infiltrate and no bacteraemia 82 mg/L vs. infiltrate without bacteraemia 163 mg/L vs. bacteraemia 316 mg/L) and higher acute disease severity scores. All adverse outcomes increased from patients with no infiltrate and no bacteraemia to those with an infiltrate and to those with bacteraemia: Length of hospital stay (5 vs. 6 vs. 8 days); intensive care admission (7% vs. 20% vs. 23%); pulmonary complications (1% vs. 5% vs. 14%); and 30-day mortality (5% vs. 11% vs. 21%). Compared with patients with no infiltrate and no bacteraemia, the adjusted 30-day mortality rate ratio was 1.9 (95% confidence interval (CI) 0.9-4.1) in patients with an infiltrate without bacteraemia and 4.1 (95% CI 2.0-8.5) in bacteraemia patients. Adjustment for acute disease severity and inflammatory markers weakened these

  9. Evaluation of entrance surface air kerma in pediatric chest radiography

    NASA Astrophysics Data System (ADS)

    Porto, L.; Lunelli, N.; Paschuk, S.; Oliveira, A.; Ferreira, J. L.; Schelin, H.; Miguel, C.; Denyak, V.; Kmiecik, C.; Tilly, J.; Khoury, H.

    2014-11-01

    The objective of this study was to evaluate the entrance surface air kerma in pediatric chest radiography. An evaluation of 301 radiographical examinations in anterior-posterior (AP) and posterior-anterior (PA) (166 examinations) and lateral (LAT) (135 examinations) projections was performed. The analyses were performed on patients grouped by age; the groups included ages 0-1 y, 1-5 y, 5-10 y, and 10-15 y. The entrance surface air kerma was determined with DoseCal software (Radiological Protection Center of Saint George's Hospital, London) and thermoluminescent dosimeters. Two different exposure techniques were compared. The doses received by patients who had undergone LAT examinations were 40% higher, on average, those in AP/PA examinations because of the difference in tube voltage. A large high-dose “tail” was observed for children up to 5 y old. An increase in tube potential and corresponding decrease in current lead to a significant dose reduction. The difference between the average dose values for different age ranges was not practically observed, implying that the exposure techniques are still not optimal. Exposure doses received using the higher tube voltage and lower current-time product correspond to the international diagnostic reference levels.

  10. Comparison of patient radiation dose from chest and lumbar spine X-ray examinations in 10 hospitals in Ghana.

    PubMed

    Ofori, E K; Antwi, W K; Arthur, L; Duah, H

    2012-05-01

    This study estimated the patient dose in chest and lumbar spine radiographic examinations in 10 hospitals in Ghana. Dose estimations were done on 1045 patients (aged, 39.6 ± 10.6 y; range 18-85 y) involving 501 (47.9%) males and 544 (52.1%) females for a total of 1495 individual projections. The entrance surface dose (ESD) for the patients was assessed by an indirect method, using the patient's anatomical data and exposure parameters utilised for the specific examination and a Quality Assurance Dose Database software developed by Integrated Radiological Services Ltd in Liverpool, UK. The study showed variations in the ESDs for chest examinations with five of the hospitals having values above the internationally recommended levels. ESDs for lumbar spine anterior-posterior and lateral projections were within acceptable limits. Diagnostic reference levels proposed by the International Commission on Radiological Protection based on patient dose data are imperative to the current Ghanaian situation and will lead to a reduction of the radiation dose. PMID:21775316

  11. Eye-tracking AFROC study of the influence of experience and training on chest x-ray interpretation

    NASA Astrophysics Data System (ADS)

    Manning, David; Ethell, Susan C.; Crawford, Trevor

    2003-05-01

    Four observer groups with different levels of expertise were tested in an investigation into the comparative nature of expert performance. The radiological task was the detection and localization of significant pulmonary nodules in postero-anterior vies of the chest in adults. Three test banks of 40 images were used. The observer groups were 6 experienced radiographers prior to a six month training program in chest image interpretation, the same radiographers after their tr4aining program, and 6 fresher undergraduate radiography students. Eye tracking was carried out on all observers to demonstrate differences in visual activity and nodule detection performance was measured with an AFROC technique. Detection performances of the four groups showed the radiologists and radiographers after training were measurably superior at the task. The eye-tracking parameters saccadic length, number of fixations visual coverage and scrutiny timer per film were measured for all subjects and compared. The missed nodules fixated and not fixated were also determined for the radiologist group. Results have shown distinct stylistic differences in the visual scanning strategies between the experienced and inexperienced observers that we believe can be generalized into a description of characteristics of expert versus non-expert performance. The findings will be used in the educational program of image interpretation for non-radiology practitioners.

  12. WE-E-18A-02: Enhancement of Lung Tumor Visibility by Dual-Energy X-Ray Imaging in An Anthropomorphic Chest Phantom Study

    SciTech Connect

    Menten, MJ; Fast, MF; Nill, S; Oelfke, U

    2014-06-15

    Purpose: Intrafractional lung tumor motion during radiotherapy can be compensated for by tracking the tumor position using x-ray imaging and adapting the treatment in real-time. However, locating the tumor with an automated template-matching algorithm is often challenging if the tumor is obscured by ribs. This study investigates the feasibility of creating dual-energy (DE) images of the chest with increased tumor visibility on an Elekta XVI system. Methods: An anthropomorphic chest phantom was imaged at two different energies. Low-energy images were obtained at 80 kVp (0.8 mAs); high-energy images at 129 kVp (0.6 mAs, additional 1.26 mm tin filter). A Geant4 Monte-Carlo framework was developed allowing simulation of the x-ray tube, flat-panel detector and phantom in order to optimize the beam energies, filtration and the weighting factor used to subtract the individual images into a synthetic DE image. The weighting factor was selected to minimize the visibility of bones while maintaining a sufficient tumor visibility. We scored the bone visibility as the contrast of tumor (with bone) to tumor (without bone), and similarly of lung tissue (with bone) to lung tissue (without bone). Tumor visibility was quantified as the contrast between tumor and lung tissue (both without bone). Results: In the experimentally obtained DE image the bone visibility was reduced by 79.2% in tumor and by 96.8% in lung tissue while the overall tumor visibility only decreased by 69.5%. The Monte-Carlo simulation yielded similar results reducing the scores by 90.0%, 85.3% and only 71.9%, respectively. Conclusion: This work demonstrates the feasibility of DE imaging to enhance lung tumor detectability. In the future, we hope to further refine the Monte-Carlo simulation to more accurately predict the weighting factors which would aid real-time implementation. Furthermore, we plan to use the Monte-Carlo framework to simulate DE images of actual lung tumors. The authors would like to thank Paul

  13. Comparison of effective radiation doses from X-ray, CT, and PET/CT in pediatric patients with neuroblastoma using a dose monitoring program

    PubMed Central

    Kim, Yeun Yoon; Shin, Hyun Joo; Kim, Myung-Joon; Lee, Mi-Jung

    2016-01-01

    PURPOSE We aimed to evaluate the use of a dose monitoring program for calculating and comparing the diagnostic radiation doses in pediatric patients with neuroblastoma. METHODS We retrospectively reviewed diagnostic and therapeutic imaging studies performed on pediatric patients with neuroblastoma from 2003 to 2014. We calculated the mean effective dose per exam for X-ray, conventional computed tomography (CT), and CT of positron emission tomography/computed tomography (PET/CT) from the data collected using a dose monitoring program (DoseTrack group) since October 2012. Using the data, we estimated the cumulative dose per person and the relative dose from each modality in all patients (Total group). The effective dose from PET was manually calculated for all patients. RESULTS We included 63 patients with a mean age of 3.2±3.5 years; 28 had a history of radiation therapy, with a mean irradiated dose of 31.9±23.2 Gy. The mean effective dose per exam was 0.04±0.19 mSv for X-ray, 1.09±1.11 mSv for CT, and 8.35±7.45 mSv for CT of PET/CT in 31 patients of the Dose-Track group. The mean estimated cumulative dose per patient in the Total group was 3.43±2.86 mSv from X-ray (8.5%), 7.66±6.09 mSv from CT (19.1%), 18.35±13.52 mSv from CT of PET/CT (45.7%), and 10.71±10.05 mSv from PET (26.7%). CONCLUSION CT of PET/CT contributed nearly half of the total cumulative dose in pediatric patients with neuroblastoma. The radiation dose from X-ray was not negligible because of the large number of X-ray images. A dose monitoring program can be useful for calculating radiation doses in patients with cancer. PMID:27306659

  14. Early experience with X-ray magnetic resonance fusion for low-flow vascular malformations in the pediatric interventional radiology suite.

    PubMed

    Hwang, Tiffany J; Girard, Erin; Shellikeri, Sphoorti; Setser, Randolph; Vossough, Arastoo; Ho-Fung, Victor; Cahill, Anne Marie

    2016-03-01

    This technical innovation describes our experience using an X-ray magnetic resonance fusion (XMRF) software program to overlay 3-D MR images on real-time fluoroscopic images during sclerotherapy procedures for vascular malformations at a large pediatric institution. Five cases have been selected to illustrate the application and various clinical utilities of XMRF during sclerotherapy procedures as well as the technical limitations of this technique. The cases demonstrate how to use XMRF in the interventional suite to derive additional information to improve therapeutic confidence with regards to the extent of lesion filling and to guide clinical management in terms of intraprocedural interventional measures. PMID:26681438

  15. Radiological surveillance of formerly asbestos-exposed power industry workers: rates and risk factors of benign changes on chest X-ray and MDCT

    PubMed Central

    2014-01-01

    Background To determine the prevalence of asbestos-related changes on chest X-ray (CXR) and low-dose multidetector-row CT (MDCT) of the thorax in a cohort of formerly asbestos-exposed power industry workers and to assess the importance of common risk factors associated with specific radiological changes. Methods To assess the influence of selected risk factors (age, time since first exposure, exposure duration, cumulative exposure and pack years) on typical asbestos-related radiographic changes, we employed multiple logistic regression and receiver operating characteristic (ROC) analysis. Results On CXR, pleural changes and asbestosis were strongly associated with age, years since first exposure and exposure duration. The MDCT results showed an association between asbestosis and age and between plaques and exposure duration, years since first exposure and cumulative exposure. Parenchymal changes on CXR and MDCT, and diffuse pleural thickening on CXR were both associated with smoking. Using a cut-off of 55 years for age, 17 years for exposure duration and 28 years for latency, benign radiological changes in the cohort with CXR could be predicted with a sensitivity of 82.0% for all of the three variables and a specificity of 47.4%, 39.0% and 40.6%, respectively. Conclusions Participants aged 55 years and older and those with an asbestos exposure of at least 17 years or 28 years since first exposure should be seen as having an increased risk of abnormal radiological findings. For implementing a more focused approach the routine use of low-dose MDCT rather than CXR at least for initial examinations would be justified. PMID:24808921

  16. Pediatric imaging/doppler ultrasound of the chest: Extracardiac diagnosis

    SciTech Connect

    Huhta, J.C.

    1986-01-01

    In this book the author spells out new diagnostic applications in pediatrics for high resolution cross-sectional ultrasonography, and demonstrates the ways in which Doppler techniques complement the cross-sectional method. This reference presents practical, step-by-step methods for non-invasive ultrasound examination of extra-cardiac anatomy and assessment of vascular blood flow.

  17. Dose evaluation for paediatric chest x-ray examinations in Brazil and Sudan: low doses and reliable examinations can be achieved in developing countries

    NASA Astrophysics Data System (ADS)

    Mohamadain, K. E. M.; da Rosa, L. A. R.; Azevedo, A. C. P.; Guebel, M. R. N.; Boechat, M. C. B.; Habani, F.

    2004-03-01

    Radiation protection in paediatric radiology deserves special attention since it is assumed that children are more sensitive to radiation than adults. The aim of this work is to estimate the entrance skin dose (ESD), the body organ dose (BOD) and the effective dose (E) for chest x-ray exposure of paediatric patients in five large units, three in Sudan and two in Brazil, and to compare the results obtained in both countries with each other and with other values obtained by some European countries. Two examination projections have been investigated, namely, postero-anterior (PA) and antero-posterior (AP). The age intervals considered were: 0-1 year, 1-5 years, 5-10 years and 10-15 years. The results have been obtained with the use of a software called DoseCal. Results of mean ESD for the age interval 1-5 years and AP projection are: 66 µGy (Instituto de Pediatria e Puericultura Martagão Gesteira—IPPMG Hospital), 41, 86 and 68 µGy (Instituto Fernandes Figueira—IFF Hospital), 161 µGy (Omdurman Hospital), 395 µGy (Khartoum Hospital) and 23 µGy (Ahmed Gasim Hospital). In the case of the IFF Hospital, the results refer, respectively, to rooms 1, 2 and for the six mobile equipments. The reference dose values given by the European Guidelines were exceeded in the Khartoum Hospital whilst in all the other hospitals results obtained were below CEC reference values and comparable with the results found in Sweden, Germany, Spain and Italy. The mean E for the same age interval was 11 µSv in the IPPMG, 6, 15 and 11 µSv in the IFF, respectively for rooms 1, 2 and the 6 mobiles, 25 µSv in the Omdurman Hospital, 45 µSv in the Khartoum Hospital and 3 µSv in the Ahmed Gasim Hospital. These are some examples of the large discrepancies that have been detected in this survey.

  18. The Depths from Skin to the Major Organs at Chest Acupoints of Pediatric Patients

    PubMed Central

    Ma, Yi-Chun; Peng, Ching-Tien; Huang, Yu-Chuen; Lin, Hung-Yi; Lin, Jaung-Geng

    2015-01-01

    Background. Acupuncture is applied to treat numerous diseases in pediatric patients. Few reports have been published on the depth to which it is safe to insert needle acupoints in pediatric patients. We evaluated the depths to which acupuncture needles can be inserted safely in chest acupoints in pediatric patients and the variations in safe depth according to sex, age, body weight, and body mass index (BMI). Methods. We retrospectively studied computed tomography (CT) images of pediatric patients aged 4 to 18 years who had undergone chest CT at China Medical University Hospital from December 2004 to May 2013. The safe depth of chest acupoints was directly measured from the CT images. The relationships between the safe depth of these acupoints and sex, age, body weight, and BMI were analyzed. Results. The results demonstrated significant differences in depth among boys and girls at KI25 (kidney meridian), ST16 (stomach meridian), ST18, SP17 (spleen meridian), SP19, SP20, PC1 (pericardium meridian), LU2 (lung meridian), and GB22 (gallbladder meridian). Safe depth significantly differed among the age groups (P < 0.001), weight groups (P < 0.05), and BMI groups (P < 0.05). Conclusion. Physicians should focus on large variations in needle depth during acupuncture for achieving optimal therapeutic effect and preventing complications. PMID:26457105

  19. [Report based on Fiscal 2000 Diagnostic X-ray Equipment Questionnaire Survey (conditions of X-ray units and similar equipment)].

    PubMed

    Ishikawa, Mitsuo; Matsuura, Takatoshi; Okuaki, Tomoyuki; Imai, Yoshio; Tsukamoto, Atsuko; Ide, Toshinori; Shinohara, Fuminori; Miyazaki, Shigeru

    2002-08-01

    The X-ray Systems Study Group, in an attempt to determine the current status and changes in the state of X-ray equipment, reception systems, and equipment control, conducted investigational research by distributing a questionnaire survey to 400 facilities. The rate of recovery was 33%. The capacity of transformers has been increasing in spite of the three-phase 415 V decrease in the power supply of X-ray equipment. Among high-voltage generators, inverter-type X-ray equipment accounted for 81.3% of units. The ratio of the X-ray tube of a conventional rotational system to that of a high-speed rotational system was 1:3, and 54.9% had target angles of 12 . Many X-ray tubes had a heat capacity of less than 200-300 kHU. The body parts that had the shortest times on radiography were adult chest and pediatric chest. In many cases, the shortest time used was 10 msec. Facilities in which the shortest time was less than 10 msec accounted for almost half of the total number. Facilities where the radiation dose of radiography had decreased showed 1/4 of the digitalization whole. Measurement was carried out when the equipment was bought in 94.9% of facilities, and measurement when the service contract was finished was done in 77.1% of the responding facilities. PMID:12514560

  20. Non-invasive diagnosis in clinically suspected atrial septal defect of secundum or sinus venosus type. Value of combining chest x-ray, phonocardiography, and M-mode echocardiography.

    PubMed Central

    Egeblad, H; Berning, J; Efsen, F; Wennevold, A

    1980-01-01

    Twenty-three consecutive patients with clinical (auscultatory and electrocardiographic) signs of uncomplicated atrial septal defect of secundum or sinus venosus type were examined by chest x-ray, phonocardiography, and echocardiography, before right heart catheterisation. Seventeen (74%) had atrial septal defect, two patients (9%) had insignificant pulmonary stenosis, and four subjects (17%) were normal. No false positive diagnosis of atrial septal defect was made by chest x-ray examination, whereas increased vascular markings were incorrectly interpreted as pulmonary congestion in one case. Four patients had x-ray films showing questionable signs of left-to-right shunt. Six of 15 patients with a large left-to-right shunt were correctly selected for surgery based on radiological findings. One false negative but no false positive diagnosis of atrial septal defect was made by phonocardiography. Four cases with and four cases without atrial septal defect were classified as having questionable phonocardiographic signs of atrial septal defect. Echocardiographic distinction between those with atrial septal defect and those without atrial septal defect was correct in all cases; quantitative measurement of left-to-right shunt, however, was unsatisfactory. Combined normal findings by x-ray film and echocardiography appeared adequate in all cases for the exclusion of atrial septal defect (six patients). When the six patients who were correctly identified for surgery from the radiological findings are included, there was a total of 12 patients out of 23 (52%:95% confidence limits 31 to 73%) who were evaluated definitively by the non-invasive tests. PMID:7426189

  1. Pleural-based changes on chest x-ray after irradiation for primary breast cancer: correlation with findings on computerized tomography

    SciTech Connect

    Srinivasan, G.; Kurtz, D.W.; Lichter, A.S.

    1983-10-01

    In treating breast cancer with excisional biopsy and irradiation, a volume of lung underlying the breast and chest wall receives significant doses of irradiation. This irradiation can produce pleural and pulmonary changes that can be seen on routine chest radiographs. In five such cases, we have examined pre and post-treatment computerized tomograms of the chest and show that these radiographic changes are pleural-based and lie within the high dose radiation volume. Failure to correct radiation treatment plans for the influence of lung density results in an increased dose to lung and pleura that could, in theory, exacerbate pulmonary and pleural radiation effects.

  2. Genotoxic and cytotoxic effects of X-ray on buccal epithelial cells following panoramic radiography: A pediatric study

    PubMed Central

    Agarwal, Poonam; Vinuth, Dhundanalli puttalingaiah; Haranal, Shashidevi; Thippanna, Chandrashekar K.; Naresh, Nitesh; Moger, Ganapathi

    2015-01-01

    Background: Ionizing radiation is a potent mutagenic agent capable of inducing both mutation and chromosomal aberrations. Non-lethal doses of ionizing radiation may induce genomic instability favoring carcinogenesis. In spite of their mutagenic potential, this kind of radiation is an important tool for diagnosis of the disease and is used in medical and dental practice. It has been believed that the number of micronucleus and increased frequency of other nuclear alterations, including karyorrhexis, condensed chromatin and pyknosis, are related to the increasing effects of carcinogens. Many approaches and techniques have been developed for the monitoring of human populations exposed to various mutagens, but the analysis of micronuclei (MN) has become a standard approach for the assessment of chromosomal damage in human populations. Aim: To assess the effects of radiation exposure from panoramic radiography on the buccal epithelial cells (BECs) of pediatric patients. Materials and Methods: The study included 20 pediatric patients who had to undergo panoramic radiography for further dental treatment. Exfoliated BECs were obtained and examined immediately before and 10 days after radiation exposure. The cells were stained using rapid Papanicolaou (PAP) kit. Evaluation for MN and nuclear alterations was carried out by an oral pathologist and data were statistically analyzed using the “t” test. Results: The mean number of MN in the BECs before exposure of pediatric patients to panoramic radiography was 4.25 and after exposure was 4.40. This difference was not found to be statistically significant (P < 0.0001). However, the mean nuclear alterations of 8.70 and 15.75 before and after exposure were statistically significant (P < 0.0001). Conclusion: Panoramic radiographs can induce cytotoxicity but not genotoxic effects in buccal mucosal cells. Hence, dental radiographs should be prescribed only when deemed indispensable. PMID:26229246

  3. Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry.

    PubMed

    Zemel, Babette S; Stallings, Virginia A; Leonard, Mary B; Paulhamus, Donna R; Kecskemethy, Heidi H; Harcke, H Theodore; Henderson, Richard C

    2009-01-01

    Lateral distal femur (LDF) scans by dual-energy X-ray absorptiometry (DXA) are often feasible in children for whom other sites are not measurable. Pediatric reference data for LDF are not available for more recent DXA technology. The objective of this study was to assess older pediatric LDF reference data, construct new reference curves for LDF bone mineral density (BMD), and demonstrate the comparability of LDF BMD to other measures of BMD and strength assessed by DXA and by peripheral quantitative computed tomography (pQCT). LDF, spine and whole body scans of 821 healthy children, 5-18 yr of age, recruited at a single center were obtained using a Hologic Discovery/Delphi system (Hologic, Inc., Bedford, MA). Tibia trabecular and total BMD (3% site), cortical geometry (38% site) (cortical thickness, section modulus, and strain-strength index) were assessed by pQCT. Sex- and race-specific reference curves were generated using LMS Chartmaker (LMS Chartmaker Pro, version 2.3. Tim Cole and Huiqi Pan. Copyright 1997-2006, Medical Research Council, UK) and Z-scores calculated and compared by correlation analysis. Z-scores for LDF BMD based on published findings demonstrated overestimation or underestimation of the prevalence of low BMD-for-age depending on the region of interest considered. Revised LDF reference curves were generated. The new LDF Z-scores were strongly and significantly associated with weight, body mass index, spine and whole body BMD Z-scores, and all pQCT Z-scores. These findings demonstrate the comparability of LDF measurements to other clinical and research bone density assessment modes, and enable assessment of BMD in children with disabilities, who are particularly prone to low trauma fractures of long bones, and for whom traditional DXA measurement sites are not feasible. PMID:19321369

  4. Revised Pediatric Reference Data for the Lateral Distal Femur Measured by Hologic Discovery/Delphi Dual Energy X-Ray Absorptiometry

    PubMed Central

    Zemel, Babette S.; Stallings, Virginia A.; Leonard, Mary B.; Paulhamus, Donna R.; Kecskemethy, Heidi H.; Harcke, H. Theodore; Henderson, Richard C

    2015-01-01

    Background Lateral distal femur (LDF) scans by dual energy x-ray absorptiometry (DXA) are often feasible in children for whom other sites are not measurable. Pediatric reference data for LDF are not available for more recent DXA technology. Aims To assess older pediatric LDF reference data, construct new reference curves for LDF bone mineral density (BMD), and demonstrate the comparability of LDF BMD to other measures of BMD and strength assessed by DXA and by peripheral quantitative computed tomography (pQCT). Methods LDF, spine and whole body scans of 821 healthy children, 5 to 18 years of age, recruited at a single center were obtained using a Hologic Delphi/Discovery system. Tibia trabecular and total BMD (3% site), cortical geometry (38% site) (cortical thickness, section modulus, strain strength index) were assessed by pQCT. Sex and race-specific reference curves were generated using LMS-ChartMaker and Z-scores calculated and compared by correlation analysis. Results Z-scores for LDF BMD based on published findings demonstrated overestimation or underestimation of the prevalence of low BMD-for-age depending on the region of interest considered. Revised LDF reference curves were generated. The new LDF Z-scores were strongly and significantly associated with weight, BMI, spine and whole body BMD Z-scores, and all pQCT Z-scores. Conclusion These findings demonstrate the comparability of LDF measurements to other clinical and research bone density assessment modes, and enable assessment of BMD in children with disabilities, who are particularly prone to low trauma fractures of long bones, and for whom traditional DXA measurement sites are not feasible. PMID:19321369

  5. Semi-automated measurements of heart-to-mediastinum ratio on 123I-MIBG myocardial scintigrams by using image fusion method with chest X-ray images

    NASA Astrophysics Data System (ADS)

    Kawai, Ryosuke; Hara, Takeshi; Katafuchi, Tetsuro; Ishihara, Tadahiko; Zhou, Xiangrong; Muramatsu, Chisako; Abe, Yoshiteru; Fujita, Hiroshi

    2015-03-01

    MIBG (iodine-123-meta-iodobenzylguanidine) is a radioactive medicine that is used to help diagnose not only myocardial diseases but also Parkinson's diseases (PD) and dementia with Lewy Bodies (DLB). The difficulty of the segmentation around the myocardium often reduces the consistency of measurement results. One of the most common measurement methods is the ratio of the uptake values of the heart to mediastinum (H/M). This ratio will be a stable independent of the operators when the uptake value in the myocardium region is clearly higher than that in background, however, it will be unreliable indices when the myocardium region is unclear because of the low uptake values. This study aims to develop a new measurement method by using the image fusion of three modalities of MIBG scintigrams, 201-Tl scintigrams, and chest radiograms, to increase the reliability of the H/M measurement results. Our automated method consists of the following steps: (1) construct left ventricular (LV) map from 201-Tl myocardium image database, (2) determine heart region in chest radiograms, (3) determine mediastinum region in chest radiograms, (4) perform image fusion of chest radiograms and MIBG scintigrams, and 5) perform H/M measurements on MIBG scintigrams by using the locations of heart and mediastinum determined on the chest radiograms. We collected 165 cases with 201-Tl scintigrams and chest radiograms to construct the LV map. Another 65 cases with MIBG scintigrams and chest radiograms were also collected for the measurements. Four radiological technologists (RTs) manually measured the H/M in the MIBG images. We compared the four RTs' results with our computer outputs by using Pearson's correlation, the Bland-Altman method, and the equivalency test method. As a result, the correlations of the H/M between four the RTs and the computer were 0.85 to 0.88. We confirmed systematic errors between the four RTs and the computer as well as among the four RTs. The variation range of the H

  6. National Survey of Radiation Doses of Pediatric Chest Radiography in Korea: Analysis of the Factors Affecting Radiation Doses

    PubMed Central

    Kim, Bo Hyun; Goo, Hyun Woo; Yang, Dong Hyun; Oh, Sang Young; Kim, Hyeog Ju; Lee, Kwang Yong; Lee, Jung Eun

    2012-01-01

    Objective To investigate radiation doses in pediatric chest radiography in a national survey and to analyze the factors that affect radiation doses. Materials and Methods The study was based on the results of 149 chest radiography machines in 135 hospitals nationwide. For each machine, a chest radiograph was obtained by using a phantom representing a 5-year-old child (ATOM® dosimetry phantom, model 705-D, CIRS, Norfolk, VA, USA) with each hospital's own protocol. Five glass dosimeters (M-GD352M, Asahi Techno Glass Corporation, Shizuoka, Japan) were horizontally installed at the center of the phantom to measure the dose. Other factors including machine's radiography system, presence of dedicated pediatric radiography machine, presence of an attending pediatric radiologist, and the use of automatic exposure control (AEC) were also evaluated. Results The average protocol for pediatric chest radiography examination in Korea was 94.9 peak kilovoltage and 4.30 milliampere second. The mean entrance surface dose (ESD) during a single examination was 140.4 microgray (µGy). The third quartile, median, minimum and maximum value of ESD were 160.8 µGy, 93.4 µGy, 18.8 µGy, and 2334.6 µGy, respectively. There was no significant dose difference between digital and non-digital radiography systems. The use of AEC significantly reduced radiation doses of pediatric chest radiographs (p < 0.001). Conclusion Our nationwide survey shows that the third quartile, median, and mean ESD for pediatric chest radiograph is 160.8 µGy, 93.4 µGy, and 140.4 µGy, respectively. No significant dose difference is noticed between digital and non-digital radiography systems, and the use of AEC helps significantly reduce radiation doses. PMID:22977329

  7. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  8. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  9. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  10. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  11. Pediatric Chest and Abdominopelvic CT: Organ Dose Estimation Based on 42 Patient Models

    PubMed Central

    Tian, Xiaoyu; Li, Xiang; Segars, W. Paul; Paulson, Erik K.; Frush, Donald P.

    2014-01-01

    Purpose To estimate organ dose from pediatric chest and abdominopelvic computed tomography (CT) examinations and evaluate the dependency of organ dose coefficients on patient size and CT scanner models. Materials and Methods The institutional review board approved this HIPAA–compliant study and did not require informed patient consent. A validated Monte Carlo program was used to perform simulations in 42 pediatric patient models (age range, 0–16 years; weight range, 2–80 kg; 24 boys, 18 girls). Multidetector CT scanners were modeled on those from two commercial manufacturers (LightSpeed VCT, GE Healthcare, Waukesha, Wis; SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). Organ doses were estimated for each patient model for routine chest and abdominopelvic examinations and were normalized by volume CT dose index (CTDIvol). The relationships between CTDIvol-normalized organ dose coefficients and average patient diameters were evaluated across scanner models. Results For organs within the image coverage, CTDIvol-normalized organ dose coefficients largely showed a strong exponential relationship with the average patient diameter (R2 > 0.9). The average percentage differences between the two scanner models were generally within 10%. For distributed organs and organs on the periphery of or outside the image coverage, the differences were generally larger (average, 3%–32%) mainly because of the effect of overranging. Conclusion It is feasible to estimate patient-specific organ dose for a given examination with the knowledge of patient size and the CTDIvol. These CTDIvol-normalized organ dose coefficients enable one to readily estimate patient-specific organ dose for pediatric patients in clinical settings. This dose information, and, as appropriate, attendant risk estimations, can provide more substantive information for the individual patient for both clinical and research applications and can yield more expansive information on dose profiles

  12. Chronic cough and a normal chest X-ray - a simple systematic approach to exclude common causes before referral to secondary care: a retrospective cohort study.

    PubMed

    Turner, Richard D; Bothamley, Graham H

    2016-01-01

    Chronic cough is common in the community and can cause significant morbidity. It is not clear how closely treatment guidelines are used in general practice, or how often specialist referral is indicated. We aimed to assess the management of chronic cough in primary care before referral to a cough clinic, and to assess the outcome of managing chronic cough with an approach of simple investigation and empirical treatment trials. Data were extracted from the records of all patients attending a district general hospital respiratory clinic over a two-year period with isolated chronic cough lasting ⩾8 weeks. The clinic assessed symptoms with a cough-severity visual analogue scale and the Leicester Cough Questionnaire. Among 266 patients, the most frequent diagnoses were asthma (29%), gastro-oesophageal reflux (22%) and angiotensin-converting enzyme inhibitor use (14%). In all, 12% had unexplained chronic cough. Common diagnoses had often not been excluded in primary care: only 21% had undergone spirometry, 86% had undergone chest radiography and attempts to exclude asthma with corticosteroids had been made only in 39%. In the clinic few investigations were conducted that were not available in primary care. Substantial improvements in symptoms occurred with a median (interquartile range) total of 2 (2-3) clinic visits. We estimated that 87% of patients could have been managed solely in primary care; we did not identify distinguishing characteristics among this group. Most cases of chronic cough referred to secondary care could be managed with a simple and systematic approach, which is potentially transferrable to a community setting. PMID:26937758

  13. Chronic cough and a normal chest X-ray - a simple systematic approach to exclude common causes before referral to secondary care: a retrospective cohort study

    PubMed Central

    Turner, Richard D; Bothamley, Graham H

    2016-01-01

    Chronic cough is common in the community and can cause significant morbidity. It is not clear how closely treatment guidelines are used in general practice, or how often specialist referral is indicated. We aimed to assess the management of chronic cough in primary care before referral to a cough clinic, and to assess the outcome of managing chronic cough with an approach of simple investigation and empirical treatment trials. Data were extracted from the records of all patients attending a district general hospital respiratory clinic over a two-year period with isolated chronic cough lasting ⩾8 weeks. The clinic assessed symptoms with a cough-severity visual analogue scale and the Leicester Cough Questionnaire. Among 266 patients, the most frequent diagnoses were asthma (29%), gastro-oesophageal reflux (22%) and angiotensin-converting enzyme inhibitor use (14%). In all, 12% had unexplained chronic cough. Common diagnoses had often not been excluded in primary care: only 21% had undergone spirometry, 86% had undergone chest radiography and attempts to exclude asthma with corticosteroids had been made only in 39%. In the clinic few investigations were conducted that were not available in primary care. Substantial improvements in symptoms occurred with a median (interquartile range) total of 2 (2–3) clinic visits. We estimated that 87% of patients could have been managed solely in primary care; we did not identify distinguishing characteristics among this group. Most cases of chronic cough referred to secondary care could be managed with a simple and systematic approach, which is potentially transferrable to a community setting. PMID:26937758

  14. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  15. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  16. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  17. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  18. Extremity x-ray

    MedlinePlus

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Other conditions for which the test may ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Update Date 10/22/2014 Updated ...

  19. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  20. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  1. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  2. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  3. Pediatric Chest Tubes And Pigtails: An Evidence-Based Approach To The Management Of Pleural Space Diseases.

    PubMed

    Strutt, Jonathan; Kharbanda, Anupam

    2015-11-01

    Pediatric thoracostomy procedures are used in the emergency department to treat diseases of the pleural space. As children have unique thoracic anatomy and physiology, they may present with management challenges that the emergency clinician must consider. This issue reviews the use of chest tubes and pigtail catheters in pediatric patients, techniques and indications for placement, and possible complications. Diagnostic and treatment options for diseases of the pleural space, such as spontaneous pneumothorax, traumatic injury, and parapneumonic effusions/empyema, are examined. Additionally, this issue discusses the use of imaging modalities to aid in the diagnosis of pleural space diseases and the emerging practice of ambulatory management in certain cases. PMID:26488231

  4. Patient-specific radiation dose and cancer risk estimation in pediatric chest CT: a study in 30 patients

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Samei, Ehsan; Segars, W. Paul; Sturgeon, Gregory M.; Colsher, James G.; Frush, Donald P.

    2010-04-01

    Radiation-dose awareness and optimization in CT can greatly benefit from a dosereporting system that provides radiation dose and cancer risk estimates specific to each patient and each CT examination. Recently, we reported a method for estimating patientspecific dose from pediatric chest CT. The purpose of this study is to extend that effort to patient-specific risk estimation and to a population of pediatric CT patients. Our study included thirty pediatric CT patients (16 males and 14 females; 0-16 years old), for whom full-body computer models were recently created based on the patients' clinical CT data. Using a validated Monte Carlo program, organ dose received by the thirty patients from a chest scan protocol (LightSpeed VCT, 120 kVp, 1.375 pitch, 40-mm collimation, pediatric body scan field-of-view) was simulated and used to estimate patient-specific effective dose. Risks of cancer incidence were calculated for radiosensitive organs using gender-, age-, and tissue-specific risk coefficients and were used to derive patientspecific effective risk. The thirty patients had normalized effective dose of 3.7-10.4 mSv/100 mAs and normalized effective risk of 0.5-5.8 cases/1000 exposed persons/100 mAs. Normalized lung dose and risk of lung cancer correlated strongly with average chest diameter (correlation coefficient: r = -0.98 to -0.99). Normalized effective risk also correlated strongly with average chest diameter (r = -0.97 to -0.98). These strong correlations can be used to estimate patient-specific dose and risk prior to or after an imaging study to potentially guide healthcare providers in justifying CT examinations and to guide individualized protocol design and optimization.

  5. Traumatic Pulmonary Herniation at the Diaphragmatic Junction in a Pediatric Patient: A Rare Complication of Blunt Chest Trauma.

    PubMed

    Orlik, Kseniya; Simon, Erin Leslie; Hemmer, Carrie; Ramundo, Maria

    2016-07-01

    We present a case of traumatic intercostal pulmonary herniation in an 11-year-old boy after blunt trauma to the chest, without associated chest wall disruption or pneumothorax. This condition is especially uncommon in children, with only 5 previously reported cases and most occurring after penetrating chest trauma. To date, there are no reports in literature describing traumatic intercostal lung herniation at the diaphragmatic junction with a closed chest cavity in a child. The number of traumatic lung herniation diagnoses may be expanded by a more liberal use of computed tomography when serious injury is suspected. Computed tomography and advanced imaging should be considered in pediatric trauma patients presenting with concern for intrathoracic injury that may not be seen on plain film. Traumatic blunt intrathoracic and intra-abdominal injuries in the pediatric population that are within proximity of diaphragmatic insertion should be thoroughly evaluated to rule out diaphragmatic injury. As in our case, invasive surgical intervention such as thoracoscopy may be necessary. PMID:27380604

  6. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  7. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  8. What Is a Chest X Ray?

    MedlinePlus

    ... Topics Cough Heart Failure Idiopathic Pulmonary Fibrosis Pneumonia Sarcoidosis Send a link to NHLBI to someone by ... heart failure , lung cancer, lung tissue scarring , and sarcoidosis (sar-koy-DO-sis). Doctors also may use ...

  9. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  10. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  11. X-ray - skeleton

    MedlinePlus

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  12. Extremity x-ray

    MedlinePlus

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  13. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  14. X-ray monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

  15. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  16. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  17. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  18. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  19. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  20. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  1. Dental x-rays

    MedlinePlus

    ... or impacted teeth The presence and extent of dental caries (cavities) Bone damage (such as from periodontitis ) Abscessed ... Dental x-rays can reveal dental cavities (tooth decay) before they ... take yearly bitewings for the early development of cavities.

  2. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  3. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  4. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, ...

  5. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  6. Bone x-ray

    MedlinePlus

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  7. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  8. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  9. Improved chest recoil using an adhesive glove device for active compression–decompression CPR in a pediatric manikin model☆

    PubMed Central

    Udassi, Jai P.; Udassi, Sharda; Lamb, Melissa A.; Lamb, Kenneth E.; Theriaque, Douglas W.; Shuster, Jonathan J.; Zaritsky, Arno L.; Haque, Ikram U.

    2013-01-01

    Objective We developed an adhesive glove device (AGD) to perform ACD-CPR in pediatric manikins, hypothesizing that AGD-ACD-CPR provides better chest decompression compared to standard (S)-CPR. Design Split-plot design randomizing 16 subjects to test four manikin-technique models in a crossover fashion to AGD-ACD-CPR vs. S-CPR. Healthcare providers performed 5 min of CPR with 30:2 compression:ventilation ratio in the four manikin models: (1) adolescent; (2) child two-hand; (3) child one-hand; and (4) infant two-thumb. Methods Modified manikins recorded compression pressure (CP), compression depth (CD) and decompression depth (DD). The AGD consisted of a modified oven mitt with an adjustable strap; a Velcro patch was sewn to the palmer aspect. The counter Velcro patch was bonded to the anterior chest wall. For infant CPR, the thumbs of two oven mitts were stitched together with Velcro. Subjects were asked to actively pull up during decompression. Subjects’ heart rate (HR), respiratory rate (RR) and recovery time (RT) for HR/RR to return to baseline were recorded. Subjects were blinded to data recordings. Data (mean ± SEM) were analyzed using a two-tailed paired t-test. Significance was defined qualitatively as P ≤ 0.05. Results Mean decompression depth difference was significantly greater with AGD-ACD-CPR compared to S-CPR; 38–75% of subjects achieved chest decompression to or beyond baseline. AGD-ACD-CPR provided 6–12% fewer chest compressions/minute than S-CPR group. There was no significant difference in CD, CP, HR, RR and RT within each group comparing both techniques. Conclusion A simple, inexpensive glove device for ACD-CPR improved chest decompression with emphasis on active pull in manikins without excessive rescuer fatigue. The clinical implication of fewer compressions/minute in the AGD group needs to be evaluated. PMID:19683849

  10. X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  11. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  12. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  13. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  14. X-ray

    MedlinePlus

    ... Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies ... be pregnant. Alternative Names ... CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2014: ...

  15. [Radiological diagnostics of pediatric lungs].

    PubMed

    Beer, M; Ammann, B

    2015-07-01

    Pediatric lung diseases are a common clinical problem. Besides the clinical examination and laboratory tests, imaging studies are the mainstay in the diagnostics of pediatric lung diseases. Thorough consideration of radiation protection based on optimized equipment also includes the protection of relatives and medical staff. The high impact of radiation protection in children necessitates a different choice of imaging modalities compared to adults. Ultrasound and magnetic resonance imaging (MRI) as adjunct or complementary imaging methods are of greater value than computed tomography (CT). The suspicion of pneumonia is the most common reason for chest imaging examinations in children. An anteroposterior or posteroanterior view chest X-ray is sufficient in most cases and sometimes in combination with ultrasound. The latter can also be used alone for follow-up examinations if the clinical presentation does not change. Additionally, ultrasound is applied to examine unclear structures seen on chest X-rays, such as the thymus or pulmonary sequestration in adjunct with color-coded duplex sonography. A chest X-ray is also the method of choice to examine the various forms of respiratory distress syndrome, such as wet lung disease or surfactant deficiency syndrome in newborns. Fluoroscopy is used in older children with suspected ingestion and/or aspiration of foreign bodies and CT is mostly used for staging and follow-up of thoracic and pulmonary structures in pediatric oncology. Recent technical advances, e.g. iterative reconstruction, have dramatically reduced the CT dosage. Apart from some indications (e.g. tumors and sequestration) MRI is rarely used in children; however, its potential for functional analyses (e.g. perfusion and ventilation) may increase the application in the near future. PMID:26152499

  16. Occurrence of Breast Cancer After Chest Wall Irradiation for Pediatric Cancer, as Detected by a Multimodal Screening Program

    SciTech Connect

    Terenziani, Monica; Casalini, Patrizia; Scaperrotta, Gianfranco; Gandola, Lorenza; Trecate, Giovanna; Catania, Serena; Cefalo, Graziella; Conti, Alberto; Massimino, Maura; Meazza, Cristina; Podda, Marta; Spreafico, Filippo; Suman, Laura; Gennaro, Massimiliano

    2013-01-01

    Purpose: To assess the occurrence of breast cancer (BC) after exposure to ionizing radiation for pediatric cancer, by means of a multimodal screening program. Patients and Methods: We identified 86 patients who had received chest wall radiation therapy for pediatric cancer. Clinical breast examination (CBE), ultrasound (US), and mammography (MX) were performed yearly. Magnetic resonance imaging (MRI) was added as of October 2007. We calculated the risk of developing BC by radiation therapy dose, patient age, and menarche before or after primary treatment. Results: Eleven women developed a BC from July 2002-February 2010. The sensitivity of the screening methods was 36% for CBE, 73% for MX, 55% for US, and 100% for MRI; the specificity was 91%, 99%, 95%, and 80% for CBE, MX, US, and MRI, respectively. The annual BC detection rate was 2.9%. The median age at BC diagnosis was 33 years. Although age had no influence, menarche before as opposed to after radiation therapy correlated significantly with BC (P=.027): the annual BC detection rate in the former subgroup was 5.3%. Conclusions: Mammography proved more sensitive and specific in our cohort of young women than CBE or US. Magnetic resonance imaging proved 100% sensitive (but this preliminary finding needs to be confirmed). Our cohort of patients carries a 10-fold BC risk at an age more than 20 years younger than in the general population.

  17. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  18. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  19. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  20. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  1. Myocarditis - pediatric

    MedlinePlus

    ... and rashes. A chest x-ray can show enlargement (swelling) of the heart. If the health care ... Enlargement of the heart that leads to reduced heart function (dilated cardiomyopathy) Heart failure Heart rhythm problems

  2. Neck x-ray

    MedlinePlus

    ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 385. Van Thielen T, van den Hauwe L, Van Goethem JW, Parizel PM. Imaging techniques and anatomy. In: Adam A, Dixon AK, ...

  3. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  4. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  5. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  6. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  7. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  8. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  9. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  10. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  11. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  12. Colon volvulus displaced into the chest – right-sided posttraumatic hernia or congenital malformation?

    PubMed Central

    Dębek, Wojciech; Matuszczak, Ewa

    2016-01-01

    We present the case of a 13.5-year-old girl who was admitted to the Pediatric Surgery Department from the Pediatric Department of a district hospital, where she stayed because of stomachache and vomiting. Interview revealed blunt injury of the epigastrium a week ago. Chest X-ray revealed a loss of the right diaphragmatic outline, irregular radiolucency on the right side of the chest, collapsed right lung and mediastinal displacement to the left. The patient was operated on, and the surgery revealed herniation of the intestines and half of the stomach into the defect of the right dome of the diaphragm. The patient made an uneventful postoperative recovery. A small innate defect of the diaphragm can remain asymptomatic and undiagnosed as long as there is no herniation of the abdominal organs into the chest.

  13. Hard X-ray emission from X-ray bursters.

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Liang, E.

    1996-11-01

    Hard X-ray emission from compact objects has been considered a spectral signature of black hole candidates. However, SIGMA and BATSE recently detected transient emission in the energy range 30-200keV from several X-ray bursters (XRBs) believed to contain weakly magnetized neutron stars. At least seven XRBs (including Aquila X-1 and 4U 1608-52) are currently known to produce erratic hard X-ray outbursts with typical durations of several weeks. These results lead us to reconsider theoretical models of high-energy emission from compact objects, and in particular thermal Comptonization models vs. non-thermal models of particle energization and X-ray emission from weakly magnetized neutron stars. We summarize here recent results for magnetic field reconnection models of non-thermal particle acceleration and high-energy emission of accretion disks. For intermediate soft X-ray luminosities below the Eddington limit, non-thermal hard X-ray emission is predicted to have a (broken) power-law spectrum with intensity anticorrelated with the soft X-ray luminosity. Recent GINGA/BATSE data for the XRB 4U 1608-52 are in agreement with the mechanism of emission proposed here: transient hard X-ray emission consistent with a broken power-law spectrum was detected for a sub-Eddington soft X-ray luminosity.

  14. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  15. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  16. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  17. High performance x-ray anti-scatter grid

    DOEpatents

    Logan, Clinton M.

    1995-01-01

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  18. High performance x-ray anti-scatter grid

    DOEpatents

    Logan, C.M.

    1995-05-23

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  19. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. Manipulating digital x-rays enhances different features

    SciTech Connect

    Not Available

    1986-02-03

    This paper describes a highly versatile system called Philips Computerized Radiography (PCR) which can produce high-resolution digitized x-ray images to meet the needs of a wide variety of radiologic imaging techniques. Developed by Philips Medical Systems Inc., PCR can emphasize a number of different aspects of an x-ray image, thanks to a combination of advanced image processor and software with parallel computer architecture. The image processor digitizes x-ray images produced by cnventional radiographic equipment and records them on an optical disk for electronic viewing and storage. Different views of one picture can be printed out as hard copies or stored in peripheral memories. The system can also transmit the pictures to other diagnostic centers or convert them to film for viewing in a conventional x-ray station. A key advantage is that x-ray pictures can be adjusted to enhance the features required for a particular examination through the use of a proprietary image-plate and reader combination. For example, the image of a compound fracture can be optimized to show soft tissue damage as well as bone fragments. Or one anterior/posterior chest x-ray can be processed to emphasize the detail of a cracked rib, while another picture from the same x-ray image emphasizes the soft tissue of the heart.

  1. X-ray beam pointer

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1980-01-01

    Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alinement and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alinement time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

  2. Plug Would Collimate X Rays

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.; Adams, James F.

    1989-01-01

    Device creates narrow, well-defined beam for radiographic measurements of thickness. Cylindrical plug collimates and aligns X rays with respect to through holes in parts. Helps in determination of wall thickness by radiography. Lead absorbs X rays that do not pass axially through central hole. Lead/vinyl seals prevent off-axis rays from passing along periphery of plug.

  3. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  4. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  5. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  6. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  7. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  8. Model-based segmentation of medical x-ray images

    NASA Astrophysics Data System (ADS)

    Hoare, Frederick; de Jager, Gerhard

    1994-03-01

    This paper discusses the methods used to model the structure of x-ray images of the human body and the individual organs within the body. A generic model of a region is built up from x-ray images to aid in automatic segmentation. By using the ribs from a chest x-ray image as an example, it is shown how models of the different organs can be generated. The generic model of the chest region is built up by using a priori knowledge of the physical structure of the human body. The models of the individual organs are built up by using knowledge of the structure of the organs as well as other information contained within each image. Each image is unique and therefore information from the region surrounding the organs in the image has to be taken into account when adapting the generic model to individual images. Results showing the application of these techniques to x-ray images of the chest region, the labelling of individual organs, and the generation of models of the ribs are presented.

  9. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  10. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  11. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  12. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  13. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  14. Picosecond x-ray science.

    SciTech Connect

    Landahl, E.; Reis, D.; Wang, J.; Young, L.

    2006-01-01

    The report discusses the exciting times for short pulse X-rays and the current users of the technology in the United States. Tracking nuclear motions with X-rays transcends scientific disciplines and includes Biology, Materials Science, Condensed Matter and Chemistry. 1 picosecond accesses many phenomena previously hidden at 100ps. Synchrotron advantage over laser plasma and LCLS is that it's easily tunable. There is a large and diverse user community of this technology that is growing rapidly. A working group is being formed to implement 'fast track' Phases 1 and 2 which includes tunable, polarized, monochromatic, focused X-rays; variable pulse length (1 to 100ps) and 1 kHz, 10{sup 9} X-rays/s with 1% bandwidth. ERL would be a major advance for ultrafast time-resolved studies.

  15. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  16. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  17. X-Ray Exam: Hip

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  18. X-Ray Exam: Foot

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  19. X-Ray Exam: Ankle

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  20. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  1. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  2. X-Ray Exam: Wrist

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  3. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  4. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The current status of the X-ray spectroscopy of celestial X-ray sources, ranging from nearby stars to distant quasars, is reviewed. Particular emphasis is placed on the role of such spectroscopy as a useful and unique tool in the elucidation of the physical parameters of the sources. The spectroscopic analysis of degenerate and nondegenerate stellar systems, galactic clusters and active galactic nuclei, and supernova remnants is discussed.

  5. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  6. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  7. Why Do I Need X-Rays?

    MedlinePlus

    ... to your desktop! more... Why Do I Need X-Rays? Article Chapters Why Do I Need X-Rays? ... of tooth decay. Updated: January 2012 Related Articles: X-Rays The Academy of General Dentistry (AGD) Sets the ...

  8. Radiation exposure of pediatric patients and physicians during cardiac catheterization and balloon pulmonary valvuloplasty

    SciTech Connect

    Wu, J.R.; Huang, T.Y.; Wu, D.K.; Hsu, P.C.; Weng, P.S. )

    1991-07-15

    Thermoluminescent dosimeters were applied to various areas of 61 pediatric patients and physicians to measure radiation doses during routine cardiac catheterization and during 4 cases of balloon pulmonary valvuloplasty. Radiation doses were measured during chest roentgenography, fluoroscopy and cineangiography. Average skin dose to the chest was 121 microGy during chest x-ray, 5,182 microGy during catheterization and 641 mGy during valvuloplasty. For the eyes, thyroid and gonads of the patients, the exposure during routine catheterization was equal to 0.4, 6 and 0.2 chest x-rays, respectively. Radiation dose of the operator was 3 microGy for the eyes and 6 miCroGy in the thyroid. About 56% of the operator's dose could be reduced by thyroid shields, and 80% by lead aprons. The assistant received only 1 microGy outside the thyroid shield. Therefore, the authors have concluded that the patients dose during routine catheterization is largely based on our experimental results, but the dose is acceptable based on the risk factor analysis. The skin dose to the right lateral chest of the patient during valvuloplasty is extremely high, perhaps as high as the equivalent of 1,000 chest x-rays. Besides the clinical benefits of valvuloplasty, the long-term radiation-related hazards to the patient should be carefully monitored.

  9. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  10. Universal x-ray unit

    SciTech Connect

    Charrier, P.

    1988-04-26

    An X-ray apparatus capable of X-ray beaming in a multiplicity of directions around and through the body of a horizontally lying stationary patient is described comprising: a horizontal patient's table; a ring in circumscribing position around the table; a X-ray equipment fixedly mounted on the ring for X-ray beaming through the table and through the body of a patient when lying thereon, the X-ray equipment comprising a source of X-rays; support means for holding the ring in the circumscribing position and first drive means on the support means and on the ring for rotating the ring about a first axis perpendicular to the general plane of the ring through the ring center; a suspension member having downwardly extending side legs, second drive means for oscillating the ring support means and the ring together in unison about the second axis; a frame having a top structure above the table, the ring and the suspension member; and a carrier assembly mounted on the top structure and at the center of the suspension member.

  11. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  12. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  13. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  14. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  15. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  16. X-ray Timing Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2008-01-01

    We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\

  17. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  18. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  19. X-ray fluorescence holography.

    PubMed

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. PMID:22318258

  20. X-ray imaging: Perovskites target X-ray detection

    NASA Astrophysics Data System (ADS)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  1. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  2. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  3. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  4. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  5. X-ray backscatter imaging

    NASA Astrophysics Data System (ADS)

    Dinca, Dan-Cristian; Schubert, Jeffrey R.; Callerame, J.

    2008-04-01

    In contrast to transmission X-ray imaging systems where inspected objects must pass between source and detector, Compton backscatter imaging allows both the illuminating source as well as the X-ray detector to be on the same side of the target object, enabling the inspection to occur rapidly and in a wide variety of space-constrained situations. A Compton backscatter image is similar to a photograph of the contents of a closed container, taken through the container walls, and highlights low atomic number materials such as explosives, drugs, and alcohol, which appear as especially bright objects by virtue of their scattering characteristics. Techniques for producing X-ray images based on Compton scattering will be discussed, along with examples of how these systems are used for both novel security applications and for the detection of contraband materials at ports and borders. Differences between transmission and backscatter images will also be highlighted. In addition, tradeoffs between Compton backscatter image quality and scan speed, effective penetration, and X-ray source specifications will be discussed.

  6. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. PMID:26288956

  7. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  8. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  9. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  10. The Importance of Esophageal and Gastric Diseases as Causes of Chest Pain

    PubMed Central

    Shin, Eun Jung; Kim, Nam Su; Lee, Young Ho; Nam, Eun Woo

    2015-01-01

    Purpose Pediatric chest pain is considered to be idiopathic or caused by benign diseases. This study was to find out how much upper gastrointestinal (UGI) diseases are major causes of chest pain in pediatric patients. Methods The records of 75 children (42 boys and 33 girls, aged 3-17 years old) who have presented with mainly chest pain from January 1995 to March 2015 were retrospectively reviewed. Chest X-ray and electrocardiography (ECG) were performed in all aptients. Further cardiologic and gastrointestinal (GI) evaluations were performed in indicated patients. Results Chest pain was most common in the children of 6 and 9 to 14 years old. Esopha-gogastric diseases were unexpectedly the most common direct causes of the chest pain, the next are idiopathic, cardiac diseases, chest trauma, respiratory disease, and psychosomatic disease. Even though 21 showed abnormal ECG findings and 7 showed abnormalities on echocardiography, cardiac diseases were determined to be the direct causes only in 9. UGI endoscopy was performed in 57 cases, and esophago-gastric diseases which thereafter were thought to be causative diseases were 48 cases. The mean age of the children with esophago-gastric diseases were different with marginal significance from that of the other children with chest pain not related with esophago-gastric diseases. All the 48 children diagnosed with treated with GI medicines based on the diagnosis, and 37 cases (77.1%) subsequently showed clinical improvement. Conclusion Diagnostic approaches to find out esophageal and gastric diseases in children with chest pain are important as well as cardiac and respiratory investigations. PMID:26770901

  11. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  12. X-ray microdiffraction of biominerals.

    PubMed

    Tamura, Nobumichi; Gilbert, Pupa U P A

    2013-01-01

    Biominerals have complex and heterogeneous architectures, hence diffraction experiments with spatial resolutions between 500 nm and 10 μm are extremely useful to characterize them. X-ray beams in this size range are now routinely produced at many synchrotrons. This chapter provides a review of the different hard X-ray diffraction and scattering techniques, used in conjunction with efficient, state-of-the-art X-ray focusing optics. These include monochromatic X-ray microdiffraction, polychromatic (Laue) X-ray microdiffraction, and microbeam small-angle X-ray scattering. We present some of the most relevant discoveries made in the field of biomineralization using these approaches. PMID:24188780

  13. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  14. Microgap x-ray detector

    SciTech Connect

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  15. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  16. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  17. Soft x-ray tomoholography

    NASA Astrophysics Data System (ADS)

    Guehrs, Erik; Stadler, Andreas M.; Flewett, Sam; Frömmel, Stefanie; Geilhufe, Jan; Pfau, Bastian; Rander, Torbjörn; Schaffert, Stefan; Büldt, Georg; Eisebitt, Stefan

    2012-01-01

    We demonstrate an x-ray imaging method that combines Fourier transform holography with tomography (‘tomoholography’) for three-dimensional (3D) microscopic imaging. A 3D image of a diatom shell with a spatial resolution of 140 nm is presented. The experiment is realized by using a small gold sphere as the reference wave source for holographic imaging. This setup allows us to rotate the sample and to collect a number of 2D projections for tomography.

  18. X-ray Diode Preparation

    SciTech Connect

    Henderson, D J; Good, D E; Hogge, K W; Molina, I; Howe, R A; Lutz, S S; Flores, P A; McGillivray, K D; Skarda, W M; Nelson, D S; Ormond, E S; Cordova, S R

    2011-06-16

    A rod pinch x-ray diode assembly culminates in a coaxial anode cathode arrangement where a small anode rod extends through the aperture of a cathode plate. Shotto- shot repeatability in rod placement, and thus x-ray source spot position, has potential to positively affect radiographic image quality. Thus, how to both control and measure, according to a Cartesian coordinate system, anode rod tip displacement (x, y) (off the beam line-of-sight retical) and also anode rod tip extension (z) (along the line-of-sight center line) become salient issues relative to radiographic image set utility. To address these issues both hardware fabrication and x-ray diode assembly methods were reviewed, and additional controls were introduced. A photogrammetric procedure was developed to quantify anode rod tip position in situ. Computer models and mock-up assemblies with precision fiducials were produced to validate this procedure. Therefore, both anode rod tip displacement and anode rod tip extension parameters were successfully controlled. Rod position was measured and met the required specifications: (1) radial displacement <0.25 mm and (2) axial placement of ±0.25 mm. We demonstrated that precision control and measurement of large scale components is achievable in a pulse power system (i.e., hardware and operations). Correlations with diode performance and radiography are presented.

  19. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  20. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  1. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  2. Producing X-rays at the APS

    ScienceCinema

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  3. Producing X-rays at the APS

    SciTech Connect

    2011-01-01

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  4. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  5. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  6. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Sun, Haohua; Kou, Bingquan; Xi, Yan; Qi, Juncheng; Sun, Jianqi; Mohr, Jürgen; Börner, Martin; Zhao, Jun; Xu, Lisa X.; Xiao, Tiqiao; Wang, Yujie

    2012-07-01

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  7. The recent development of an X-ray grating interferometer at Shanghai Synchrotron Radiation Facility

    SciTech Connect

    Sun Haohua; Kou Bingquan; Xi Yan; Qi Juncheng; Sun Jianqi; Mohr, Juergen; Boerner, Martin; Zhao Jun; Xu, Lisa X.; Xiao Tiqiao; Wang Yujie

    2012-07-31

    An X-ray grating interferometer has been installed at Shanghai Synchrotron Radiation Facility (SSRF). Three sets of phase gratings were designed to cover the wide X-ray energy range needed for biological and soft material imaging capabilities. The performance of the grating interferometer has been evaluated by a tomography study of a PMMA particle packing and a new born mouse chest. In the mouse chest study, the carotid artery and carotid vein inside the mouse can be identified in situ without contrast agents.

  8. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  9. Student X-Ray Fluorescence Experiments

    ERIC Educational Resources Information Center

    Fetzer, Homer D.; And Others

    1975-01-01

    Describes the experimental arrangement for x-ray analysis of samples which involves the following: the radioisotopic x-ray disk source; a student-built fluorescence chamber; the energy dispersive x-ray detector, linear amplifier and bias supply; and a multichannel pulse height analyzer. (GS)

  10. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  11. Optical observations of X-ray systems

    NASA Astrophysics Data System (ADS)

    Gudets, R.

    The significance of optical observations of X-ray sources is discussed. A short review of X-ray and optical observations of X-ray stars in socialist countries, carried out by the Intercosmos program and by multilateral cooperation of the Academies of Sciences of Socialist Countries is given. Some examples and results of observations are presented.

  12. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  13. Zernike x-ray ptychography.

    PubMed

    Vartiainen, Ismo; Mohacsi, Istvan; Stachnik, Karolina; Guizar-Sicairos, Manuel; David, Christian; Meents, Alke

    2016-02-15

    We present an imaging technique combining Zernike phase-contrast imaging and ptychography. The contrast formation is explained by following the theory of Zernike phase-contrast imaging. The method is demonstrated with x-rays at a photon energy of 6.2 keV, showing how ptychographic reconstruction of a phase sample leads to a Zernike phase-contrast image appearing in the amplitude reconstruction. In addition, the results presented in this Letter indicate an improvement of the resolution of the reconstructed object in the case of Zernike ptychography compared with the conventional one. PMID:26872172

  14. Pediatrics

    NASA Technical Reports Server (NTRS)

    Spackman, T. J.

    1978-01-01

    The utilization of the Lixiscope in pediatrics was investigated. The types of images that can presently be obtained are discussed along with the problems encountered. Speculative applications for the Lixiscope are also presented.

  15. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  16. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. Three-dimensional x-ray microtomography

    SciTech Connect

    Flannery, B.P.; Deckman, H.W.; Roberge, W.G.; D'Amico, K.L.

    1987-09-18

    The new technique of x-ray microtomography nondestructively generates three-dimensional maps of the x-ray attenuation coefficient inside small samples with approximately 1 percent accuracy and with resolution approaching 1 micrometer. Spatially resolved elemental maps can be produced with synchrotron x-ray sources by scanning samples at energies just above and below characteristic atomic absorption edges. The system consists of a high-resolution imaging x-ray detector and high-speed algorithms for tomographic image reconstruction. The design and operation of the microtomography device are described, and tomographic images that illustrate it performance with both synchrotron and laboratory x-ray sources are presented.

  18. Comets: mechanisms of x-ray activity

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  19. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  20. X-ray Spectroscopy of Cooling Cluster

    SciTech Connect

    Peterson, J.R.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  1. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  2. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  3. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  4. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  5. Extended range X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1981-01-01

    An X-ray telescope system is described which is comprised of a tubular mount having a collecting region remote from the one axial end. A soft X-ray/XUV subsystem associated with the collecting region directs only relatively soft, near on-axis X-rays/XUV radiation incident on a first portion of the collecting region into a first detector sensitive to relatively soft X-rays/XUV radiation. A hard X-ray subsystem associated with the collecting region directs only relatively hard near on-axis X-rays incident on a second portion of the collecting region into a second detector sensitive to relatively hard X-rays.

  6. X-ray deconvolution microscopy

    PubMed Central

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-01-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship pn with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  7. Submicron X-ray diffraction

    SciTech Connect

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-08-17

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample.

  8. Parametric X-Ray Radiation

    NASA Astrophysics Data System (ADS)

    Shchagin, Alexander

    1997-10-01

    The main PXR properties [1,2] are considered in the paper: energy, width, smooth tuning of monochromatic PXR spectral line; fine structure and absolute differential yields of PXR in the vicinity of and at angular distances from Brag directions; angular spread of the PXR beam; the influence of incident electron energy and of the density effect on the PXR properties; linear polarization of PXR; background in PXR spectra. Experimental setups for linacs and the results of measurements are discussed. Experimental data are compared to theoretical calculations at PXR energies between 5 and 400 keV for incident electron energies ranging from 15 to 1200 MeV. Possible applications of PXR as a new source of a bright, tunable X-ray beam in science and industry are discussed. [1] A.V. Shchagin and N.A. Khizhnyak, NIM B119, 115-122 (1996). [2] A.V. Shchagin and X.K. Maruyama, "Parametric X-rays", a chapter in the book "Accelerator-based Atomic Physics Techniques and Applications", edited by S.M. Shafroth and J.C. Austin, AIP Press, 1997, pp 279-307.

  9. Transportable X-ray cart

    SciTech Connect

    1995-12-01

    The main body of the report summarizes the project scope, project milestones, highlights any unresolved problems encountered during the project and includes a summary of the financial information. The purpose of this CRADA was to assist Digiray Corporation in the development and evaluation of a Transportable Reverse Geometry X-Ray 0 (RGX-T) cart for aircraft inspection Scope: LLNL was to provide a review of the RGX-T engineering drawing package supplied by Digiray, suggest and incorporate design modifications, fabricate, assemble and provide performance evaluation testing of the RGX-T prototype. Major deliverables were (a) engineering design analysis and evaluation (b) cart prototype hardware, and (c) performance evaluation. Schedule: Procurement and technical delays extended the project twelve months past than the original four month project duration estimate. LLNL reviewed engineering drawings of the RGX-T prototype provided by Digiray, performed a engineering design analysis and evaluation, suggested and incorporated modifications to improve design safety factors, fabricated and assembled the prototype system, and evaluated the motion and positioning capabilities of the assembled system. The RGX-T provides a limited set of positioning orientations for the Digiray x-ray tube head that do not meet the overall Digiray requirements for aircraft inspection. In addition, mechanical stability concerns remain for positioning the tube head with the mechanical arm and for rolling the assembly with arbitrary orientation of the mechanical arm.

  10. X-ray lasing - Theory

    SciTech Connect

    Not Available

    1985-11-01

    The theoretical basis of lasing at very short wavelengths is discussed, and lasing at soft-x-ray (4-50 nm) wavelengths using the electron-collisional excitation scheme is successfully demonstrated. In research at LLNL, thin foils of selenium and yttrium are irradiated with laser light to generate a roughly cylindrical plasma containing neon-like ions. Excitation of ground state 2p electrons to the 3p state in the lasant medium is followed by very fast radioactive decay out of the 3s state, creating a population inversion between the 3s and 3p states. Stimulated x-ray emission is initiated by slower spontaneous decay from a 3p to 3s state. Design goals are to produce a plasma with a flat electron density of approximately 5 x 10 to the 20th/cu cm, a flat temperature profile, a scale length of at least 100 microns, and a population inversion lasting at least the 100 ps necessary to produce a significant gain. Good correlation is seen between experimental data and LANEX and XRASER theoretical modeling predictions over large variations in intensity, pulse length, and probing times. No explanation is found for the weakness of the J = 0 to J = 1 lasing transition line at 18.3 nm. 13 references.

  11. X-ray lasing - Theory

    NASA Astrophysics Data System (ADS)

    1985-11-01

    The theoretical basis of lasing at very short wavelengths is discussed, and lasing at soft-X-ray (4-50 nm) wavelengths using the electron-collisional excitation scheme is successfully demonstrated. In research at LLNL, thin foils of selenium and yttrium are irradiated with laser light to generate a roughly cylindrical plasma containing neon-like ions. Excitation of ground state 2p electrons to the 3p state in the lasant medium is followed by very fast radioactive decay out of the 3s state, creating a population inversion between the 3s and 3p states. Stimulated X-ray emission is initiated by slower spontaneous decay from a 3p to 3s state. Design goals are to produce a plasma with a flat electron density of approximately 5 x 10 to the 20th/cu cm, a flat temperature profile, a scale length of at least 100 microns, and a population inversion lasting at least the 100 ps necessary to produce a significant gain. Good correlation is seen between experimental data and LANEX and XRASER theoretical modeling predictions over large variations in intensity, pulse length, and probing times. No explanation is found for the weakness of the J = 0 to J = 1 lasing transition line at 18.3 nm.

  12. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  13. Controlling X-rays With Light

    SciTech Connect

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  14. Controlling x-rays with light.

    SciTech Connect

    Glover, T. E.; Hertlein, M. P.; Southworth, S. H.; Allison, T. K.; van Tilborg, J.; Kanter, E. P.; Krassig, B.; Varma, H. R.; Rude, B.; Santra, R.; Belkacem, A.; Young, L.; Chemical Sciences and Engineering Division; LBNL; Univ. of California at Berkley; Univ. of Chicago

    2010-01-01

    Ultrafast X-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largely unexplored area of ultrafast X-ray science is the use of light to control how X-rays interact with matter. To extend control concepts established for long-wavelength probes to the X-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here, an intense optical control pulse is observed to efficiently modulate photoelectric absorption for X-rays and to create an ultrafast transparency window. We demonstrate an application of X-ray transparency relevant to ultrafast X-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond X-ray pulse. The ability to control X-ray-matter interactions with light will create new opportunities for present and next-generation X-ray light sources.

  15. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  16. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  17. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  18. Late B Star X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.

    The most basic conclusion to be drawn from the EINSTEIN stellar X-ray observations was that all stars are X-ray sources - except the late-B and early- to mid-A stars. While this is still true in general, observations with the ROSAT X-ray observatory have shown that young late-B/early-A stars, those in and near regions of star formation, are often bright X-ray sources. It is not yet clear why (or, indeed, whether) young B-A stars are often X-ray sources. We request time on the IUE to observe a sample of these stars. We will compare the line profiles against B star models against archival spectra, looking for evidence of mass loss or mass inflows, as well as evidence of transition region gas. Detection of the latter will prove that the B stars are indeed X-ray sources.

  19. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  20. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  1. Soft x-ray polarimeter laboratory tests

    NASA Astrophysics Data System (ADS)

    Murphy, Kendrah D.; Marshall, Herman L.; Schulz, Norbert S.; Jenks, Kevin; Sommer, Sophie J. B.; Marshall, Eric A.

    2010-07-01

    Multilayer-coated optics can strongly polarize X-rays and are central to a new design of a broad-band, soft X-ray polarimeter. We have begun laboratory work to verify the performance of components that could be used in future soft X-ray polarimetric instrumentation. We have reconfigured a 17 meter beamline facility, originally developed for testing transmission gratings for Chandra, to include a polarized X-ray source, an X-ray-dispersing transmission grating, and a multilayer-coated optic that illuminates a CCD detector. The X-rays produced from a Manson Model 5, multi-anode source are polarized by a multilayer-coated flat mirror. The current configuration allows for a 180 degree rotation of the source in order to rotate the direction of polarization. We will present progress in source characterization and system modulation measurements as well as null and robustness tests.

  2. Time resolved x-ray detection

    NASA Astrophysics Data System (ADS)

    Rentzepis, Peter M.

    1994-04-01

    The goal of the project was to design, develop and construct an x-ray detector with high sensitivity and picosecond time resolution. This was achieved. A Ford Aerospace Charged Coupled Device, CCD, was utilized as the x-ray sensitive material around which the design and construction of the picosecond x-ray detector was built. This device has now become a commercial product sold, among other companies, by Photometrics Inc., and Princeton Research Inc. In addition we designed and built the first picosecond x-ray system. This system was utilized for the first ever picosecond x-ray diffraction experiments. The picosecond x-ray system was utilized in the oxidative fuel cell project to measure the decomposition of methanol and the change of the structure of its platinum catalyst. Another direct product of the work is the publication of 36 papers, in major scientific journals, and two patents.

  3. X-rays for medical use

    NASA Astrophysics Data System (ADS)

    Hessenbruch, A.

    1995-11-01

    1995 is the centenary of the discovery of X-rays by the German physicist Wilhelm C Rontgen. In the past hundred years, the new rays have developed from being unknown to finding application in many walks of life, not least in medicine. This is so much so that in common speech the word `x-ray` refers not to a form of radiation but to an X-ray photograph taken for the purposes of diagnosis (as in: `I had an X-ray done to see if my leg was broken`). X-rays are now used routinely, and they are used both for diagnosis and for therapy. This paper will give an outline of the use of X-rays in medicine throughout our present century.

  4. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  5. Topological X-Rays and MRIs

    ERIC Educational Resources Information Center

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  6. X ray microcalorimeters: Principles and performance

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Juda, M.; Kelley, R. L.; Mccammon, D.; Stahle, C. K.; Szymkowiak, A. E.; Zhang, J.

    1992-01-01

    Microcalorimeters operating at cryogenic temperatures can be excellent X-ray spectrometers. They simultaneously offer very high spectral resolving power and high efficiency. These attributes are important for X-ray astronomy where most sources have low fluxes and where high spectral resolution is essential for understanding the physics of the emitting regions. The principles of operation of these detectors, limits to their sensitivity, design considerations, techniques of fabrication, and their performance as X-ray spectrometers, are reviewed.

  7. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  8. X-ray data booklet. Revision

    SciTech Connect

    Vaughan, D.

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  9. Lobster-Eye X-Ray Astronomy

    SciTech Connect

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2010-07-15

    We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

  10. X-ray microlaminography with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Wróbel, A.; Korecki, P.

    2013-06-01

    We demonstrate layer-by-layer x-ray microimaging using polycapillary optics. The depth resolution is achieved without sample or source rotation and in a way similar to classical tomography or laminography. The method takes advantage from large angular apertures of polycapillary optics and from their specific microstructure, which is treated as a coded aperture. The imaging geometry is compatible with polychromatic x-ray sources and with scanning and confocal x-ray fluorescence setups.

  11. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  12. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  13. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  14. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  15. Bent crystal X-ray topography

    NASA Technical Reports Server (NTRS)

    Parker, D. L.

    1978-01-01

    A television X-ray topographic camera system was constructed. The system differs from the previous system in that it incorporates the X-ray TV imaging system and has a semi-automatic wafer loading system. Also the X-ray diffraction is in a vertical plane. This feature makes wafer loading easier and makes the system compatible with any commercial X-ray generating system. Topographs and results obtained from a study of the diffraction contrast variation with impurity concentration for both boron implanted and boron diffused silicon are included.

  16. Symbiotic stars in X-rays

    NASA Astrophysics Data System (ADS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2013-11-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of nine white dwarf symbiotics that were not previously known to be X-ray sources and one that had previously been detected as a supersoft X-ray source. The nine new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. The Swift/XRT telescope detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component that we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component that probably originates in a region where low-velocity shocks produce X-ray emission, i.e., a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the α/β/γ classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new δ classification

  17. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  18. Models for galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Joss, P. C.

    1980-01-01

    Attention is given to those compact galactic X-ray sources whose X-ray luminosities are considerably in excess of the solar luminosity. It is pointed out that the key breakthrough in the development of an understanding of compact galactic X-ray sources was the discovery of X-ray pulsars with the UHURU satellite. There is now overwhelming evidence that these objects are neutron stars in close binary stellar systems. The X-ray pulsations are thought to be thermal emission from the magnetic polar caps of a neutron star that is accreting matter from a companion star and whose magnetic field is misaligned with its rotation axis. Among the compact galactic X-ray sources that are not X-ray pulsars, some still show direct evidence of binary membership, such as X-ray eclipses. There is evidence that the galactic-bulge sources are, in fact, close binary stellar systems. It is concluded, that the great majority of bright galactic X-ray sources, with only a tiny handful of exceptions (such as the Crab and Vela pulsars), are likely to be binaries.

  19. The Lunar X-ray Observatory (LXO)

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

  20. The efficacy of x-ray pelvimetry

    SciTech Connect

    Barton, J.J.; Garbaciak, J.A. Jr.; Ryan, G.M., Jr.

    1982-06-01

    Comparison is made of x-ray pelvimetry use on a public and private service in 1974 with experience in 1979, when the clinic service did no x-ray pelvimetry while the private service continued as before. It is concluded that the use of x-ray pelvimetry is inadequate as a predictor of cesarean section because of cephalopelvic disproportion, does not improve neonatal mortality, and poses potential hazards to the mother and fetus. Its use in the management of breech presentations is not currently established by our data. Guidelines are presented for the management of patients in labor without using x-ray pelvimetry.

  1. Tenma - Japan's X-ray satellite

    NASA Astrophysics Data System (ADS)

    Simpson, C.

    1984-06-01

    Japan's second X-ray satellite, designated 'Tenma', has temporal and spectral sensitivity superior to that of its predecessor, Hakucho. It is a spin-stabilized satellite whose attitude maneuvers are performed through the activation of a magnetic torquing coil, by means of which a typical, 20-deg transfer occupies several orbits. Tenma carries as its instrument set scintillation proportional counters for spectral and temporal studies, an X-ray focusing collector for the study of very soft X-ray sources, a transient source monitor for wide-field sky monitoring, and a radiation belt monitor/gamma-ray burst detector for monitoring the non-X-ray background.

  2. X-rays from the youngest stars

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  3. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  4. The Diffuse X-ray Spectrometer Experiment

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Edgar, R. J.; Juda, M.; Kraushaar, W. L.; Mccammon, D.; Snowden, S. L.; Zhang, J.; Skinner, M. A.

    1992-01-01

    The Diffuse X-ray Spectrometer Experiment, or 'DXS', is designed to measure the spectrum of the low-energy diffuse X-ray background with about 10 eV energy resolution and 15-deg spatial resolution. During a 5-day Space Shuttle mission, DXS is to measure the spectrum of ten 15 x 15 deg regions lying along a single 150-deg-long great circle arc on the sky. DXS carries two large-area X-ray Bragg spectrometers for the 44-84 A wavelength range; these permit measurement of the wavelength spectrum of the cosmic low-energy diffuse X-ray background with good spectral resolution.

  5. Ultrashort X-ray pulse science

    SciTech Connect

    Chin, Alan Hap

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90{sup o} Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated {approx} 300 fs, 30 keV (0.4 {angstrom}) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has

  6. Microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Zhang, Kun; Li, Changqing

    2015-03-01

    X-ray luminescence computed tomography (XLCT) was emerged as a new hybrid imaging modality, in which the x-rays are used to excite phosphors emitting optical photons to be measured for imaging. In this paper, we reported a microscopic x-ray luminescence computed tomography (microXLCT) with a spatial resolution up to hundreds of micrometers for deep targets. We use a superfine x-ray pencil beam to scan the phosphor targets. The superfine x-ray pencil beam is generated by a small collimator mounted in front of a powerful x-ray tube (93212, Oxford Instrument). A CT detector is used to image the x-ray beam. We have generated an x-ray beam with a diameter of 192 micrometers with a collimator of 100 micrometers in diameter. The emitted optical photons on the top surface of phantom are reflected by a mirror and acquired by an electron multiplier charge-coupled device (EMCCD) camera (C9100-13, Hamamatsu Photonics). The microXLCT imaging system is built inside an x-ray shielding and light tight cabinet. The EMCCD camera is placed in a lead box. All the imaging components are controlled by a VC++ program. The optical photon propagation is modeled with the diffusion equation solved by the finite element method. We have applied different regularization methods including L2 and L1 in the microXLCT reconstruction algorithms. Numerical simulations and phantom experiments are used to validate the microXLCT imaging system.

  7. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

  8. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  9. Imaging with x-ray lasers

    SciTech Connect

    Da Silva, L.B.; Cauble, B.; Frieders, G.; Koch, J.A.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Ress, D.; Trebes, J.E.; Weiland, T.L.

    1993-11-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35--300 {Angstrom}. These sources have high peak brightness and are now being utilized for x-ray imaging and plasma interferometry. In this paper we will describe our efforts to probe long scalelength plasmas using Moire deflectrometry and soft x-ray imaging. The progress in the development of short pulse x-ray lasers using a double pulse irradiation technique which incorporates a travelling wave pump will also be presented.

  10. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  11. Determination of regional myocardial perfusion by x-ray fluorescence.

    PubMed

    Palmer, B M; McInerney, J J

    1990-05-01

    Validation studies were performed to demonstrate the effectiveness of an x-ray induced fluorescence system in quantitating regional myocardial perfusion in vivo. In a series of 13 open-chested canines, x-ray induced fluorescence was used to simultaneously monitor iodine concentration transients which arose in the left ventricular lumen and in the myocardium after the intravenous injection of an iodinated flow tracer. Deconvolution of the recorded transients produced a transfer function from which the mean transit time for the tracer to travel between the left ventricular lumen and the myocardium was calculated. Measurements of regional myocardial perfusion (Q) made by radioactive microspheres were compared with the reciprocals of the mean transit times (MTT-1) and gave a linear correlation (n = 38): MTT-1 = 0.033 + 0.069 Q, r = 0.71. Comparison of the percent change in perfusion (dQ) relative to a control study for each dog with the percent change in the respective reciprocals of the mean transit times (dMTT-1) produced a linear correlation coefficient of r = 0.88 for the regression line dMTT-1 = 0.46 dQ - 10.7. The x-ray induced fluorescence system may provide a minimally invasive means for monitoring iodine concentration transients and determining relative, if not absolute, measures of regional myocardial perfusion. PMID:2345078

  12. Lung partitioning for x-ray CAD applications

    NASA Astrophysics Data System (ADS)

    Annangi, Pavan; Raja, Anand

    2011-03-01

    Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.

  13. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    NASA Astrophysics Data System (ADS)

    Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.

    2015-09-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.

  14. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  15. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  16. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  17. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  18. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    SciTech Connect

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-05-16

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed.

  19. The X-ray optics for X-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Dongdong; Li, Wenbin; Lian, Jian; Shi, Yufeng; Song, Juan; Wang, Wencong; Sun, Shukun

    2016-01-01

    The effective X-ray optics is a key premise for X-ray pulsar detection and navigation. However, it is very difficult to focus the X-ray photons through refraction for the reason that the X-ray photon is very easy to be absorbed by the materials. The most effective ways for the X-ray focusing is reflection. In this paper, we will give a brief introduction of the theory of the grazing incidence and the corresponding optical systems. By comparing the design parameters of main X-ray astronomical telescope in NASA and ESA, we will give the development trend of the X-ray optics for X-ray pulsar navigation and introduce several new technology for the manufacture of the micro-pore optics (MPO).

  20. Dose in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kalender, Willi A.

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment.

  1. Dose in x-ray computed tomography.

    PubMed

    Kalender, Willi A

    2014-02-01

    Radiation dose in x-ray computed tomography (CT) has become a topic of high interest due to the increasing numbers of CT examinations performed worldwide. This review aims to present an overview of current concepts for both scanner output metrics and for patient dosimetry and will comment on their strengths and weaknesses. Controversial issues such as the appropriateness of the CT dose index (CTDI) are discussed in detail. A review of approaches to patient dose assessment presently in practice, of the dose levels encountered and options for further dose optimization are also given and discussed. Patient dose assessment remains a topic for further improvement and for international consensus. All approaches presently in use are based on Monte Carlo (MC) simulations. Estimates for effective dose are established, but they are crude and not patient-specific; organ dose estimates are rarely available. Patient- and organ-specific dose estimates can be provided with adequate accuracy and independent of CTDI phantom measurements by fast MC simulations. Such information, in particular on 3D dose distributions, is important and helpful in optimization efforts. Dose optimization has been performed very successfully in recent years and even resulted in applications with effective dose values of below 1 mSv. In general, a trend towards lower dose values based on technical innovations has to be acknowledged. Effective dose values are down to clearly below 10 mSv on average, and there are a number of applications such as cardiac and pediatric CT which are performed routinely below 1 mSv on modern equipment. PMID:24434792

  2. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  3. SMM X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  4. X-ray satellite (Rosat)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An overview of the current status of the ROSAT X-Ray satellite project is given. Areas discussed include an overview of problem areas, systems and mechanical subsystems, the electrical subsystem, power supply, data processing and transmission, the wide field camera, ground support equipment and the production scheduling. It is shown that the project is proceeding according to schedule, including the hardware production and costs. However, it is stated that estimated additional costs will exceed the plan. The previous schedule for production of the flight model will no longer be met. A modified milestone plan has been worked out with Dornier Systems. The current working schedule calls for a launch data of December 21, 1987; however, this does not take into account a 4-week buffer prior to transporting the flight model to the launch site. As of the date of this report, milestone M5 has been met. Previous problems with the gold vapor deposition on the flight model mirror due to contamination have been eliminated.

  5. Nonthermal X-ray Microflares

    NASA Astrophysics Data System (ADS)

    Christe, S.; Rauscher, E.; Krucker, S.; Lin, R. P.

    2004-12-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides unique sensitivity in the 3-15 keV energy range, with an effective area ˜100 times larger than similar past instruments. Along with its high spectral resolution (1 keV) RHESSI is uniquely suited to study small events. Microflares have been observed by Benz & Grigis (2002) and Krucker et al. (2002) to have anomalously steep spectra ( spectral index between -5 and -8) extending down to ˜ 7 keV. Thermal emission is found to dominate below ˜ 7 keV. In many other respects, microflares show properties similar to larger flares. We present single event studies of different types of x-ray microflares. RHESSI observations during quiet times (04-May 10-14; GOES level low B class) reveal a set 5 microflares (>=A Class). These microflares show power law spectra (spectral index of ˜4-8) with little or no thermal emission in the 3- ˜7 keV energy range above the nonthermal part of the spectrum. Other microflares in the same GOES class range, however, have been found which show extremely hard spectra with emission up to 50 keV (power law index ˜2). At lower energies, emission is dominated by a hot thermal component (20 MK). This work was supported by NASA contract NAS5-98033.

  6. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  7. X-ray Attenuation and Absorption Calculations.

    Energy Science and Technology Software Center (ESTSC)

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  8. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  9. X-ray determination of parts alignment

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    A method for determining the alignment of adjoining metal objects is provided. The method comprises producing an X-ray image of adjoining surfaces of the two metal objects. The X-ray beam is tangential to the point the surfaces are joined. The method is particularly applicable where the alignment of the two metal objects is not readily susceptible to visual inspection.

  10. X-Ray Determination of Weld Misalinement

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    Simple technique uses ordinary X-ray equipment. Weld line between hemispheres of hidden spherical pressure vessel examined for misalinement between hemispheres. Central X-ray tangent to pressure vessel at weld line. Technique not limited to spheres. Also used to check alinement between insulated sections of pipelines or chemical-reaction vessels without removing insulation or interrupting flow or process.

  11. Tracing the X-Ray Trail

    MedlinePlus

    What you need to know about… Tracing the X-ray Trail If you’ve just completed an x-ray, computed tomography (CT), magnetic resonance (MR) Start here! or other diagnostic imaging procedure, you probably want to know when you will ... los rayos X Si acaba de hacerse una radiografía, tomografía ¡Empezar ...

  12. X-rays Flares and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.

    2011-04-01

    X-ray observations of star forming regions show that magnetic reconnection flares are powerful and frequent in pre-main sequence solar-type stars. Well-defined samples in the Orion Nebula Cluster and Taurus clouds exhibit flares with peak X- ray luminosities Lx˜10^29 - 10^32 erg/s, orders of magnitude stronger and more frequent than contemporary solar flares. X-rays are emitted in magnetic loops extending 0.1-10 R * above the stellar surface and thus have a favorable geometry to irradiate the protoplanetary disk. Several lines of evidence - fluorescent iron X-ray emission line, forbidden [NeII] infrared line, and excited molecular bands - support X-ray irradiation of cold material in some young systems. Several astrophysical consequences of X-ray irradiation are outlined. As ionization fractions need only reach 10-12 to induce the magnetorotational instability and associated turbulence, X-rays may be the principal determinant of the extent of the viscous "active zone" and laminar "dead zone" in the layered accretion disk. X-ray irradiation may thus play a major role in planet formation processes: particle settling; meter-size inspiral; protoplanetary migration; and dissipation of the gaseous disk.

  13. Course Manual for X-Ray Applications.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This publication is the third of three sequential course manuals for instructors in x-ray science and engineering. This course manual has been tested by introducing it into the Oregon State University curriculum. The publication is prepared for the purpose of improving the qualifications of x-ray users and to reduce the ionizing radiation exposure…

  14. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2012-12-31

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  15. Building X-ray tube based irradiators

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...

  16. X-Ray Detection Visits the Classroom

    ERIC Educational Resources Information Center

    Peralta, Luis; Farinha, Ana; Pinto, Ana

    2008-01-01

    Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

  17. X-ray spectroscopy of magnetic CVs

    NASA Astrophysics Data System (ADS)

    Matt, Giorgio

    I discuss two topics in X-ray spectroscopy of magnetic CVs: reflection from the white dwarf surface, and opacity effects in the post shock plasma. I also briefly mention future observational perspectives, with particular emphasis on the Constellation X-ray mission.

  18. Nearly Anastigmatic X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Korsch, D.

    1985-01-01

    Proposed X-ray telescope made of many concentric reflecting rings, each of which consists of two portions of cone. Proposed design is variation on conventional grazing incidence X-ray telescope, which has just one twosegment reflecting element but suffers from excessive astigmatism and field curvature. Using many short elements instead of single long element, new design gives nearly anastigmatic image.

  19. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  20. Soft X-Ray Spectra of AGN Discovered Via Their Hard X-Ray

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel

    1998-01-01

    This final report is a study of the Active Galactic Nuclei (AGN). Investigation of the soft x-ray spectra of AGN were performed by using their hard x-ray emission. ROSAT observations of AGN was also performed, which allowed for the study of these x-ray spectra and the structures of 7 clusters of galaxies.

  1. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  2. X-rays from hot subdwarfs

    NASA Astrophysics Data System (ADS)

    Mereghetti, Sandro; La Palombara, Nicola

    2016-09-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  3. X-Rays from Green Pea Analogs

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew

    2014-09-01

    X-rays may have contributed to the heating and reionization of the IGM in the early universe. High mass X-ray binaries (HMXB) within small, low-metallicity galaxies are expected to be the main source of X-rays at this time. Since studying these high-redshift galaxies is currently impossible, we turn to local analogs that have the same properties the galaxies in the early are expected to have. A number of recent studies have shown an enhanced number of HMXBs in nearby low metallicity galaxies. We propose to observe a sample of metal-deficient luminous compact galaxies (LCG) in order to determine if the X-ray luminosity is enhanced relative to SFR, thereby providing further evidence to the importance of X-rays in the early universe.

  4. X-ray emission from normal galaxies

    NASA Technical Reports Server (NTRS)

    Long, K. S.; Van Speybroeck, L. P.

    1983-01-01

    The results of Einstein Observatory studies of X-ray emission from normal galaxies, including the LMC and SMC, M31, M33, M101, NGC 247, M81 and M100, and N253 are surveyed. The X-ray luminosity of normal galaxies is proportional to their optical luminosity, revealing no strong dependence on galaxy type. The number of individual sources detected are comparable to the number of sources expected on mass considerations. There are substantial numbers of X-ray sources in the Magellanic Clouds with luminosities in the range 10 to the 35th-36th ergs/s, lower than most X-ray binaries but higher than known uncollapsed stellar systems. About seven X-ray sources with luminosities of at least 10 to the 39th ergs/s in the 0.5-3.0 keV band have been found in the arms of nearby spiral galaxies.

  5. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  6. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  7. White beam x-ray waveguide optics

    SciTech Connect

    Jarre, A.; Salditt, T.; Panzner, T.; Pietsch, U.; Pfeiffer, F.

    2004-07-12

    We report a white beam x-ray waveguide (WG) experiment. A resonant beam coupler x-ray waveguide (RBC) is used simultaneously as a broad bandpass (or multibandpass) monochromator and as a beam compressor. We show that, depending on the geometrical properties of the WG, the exiting beam consists of a defined number of wavelengths which can be shifted by changing the angle of incidence of the white x-ray synchrotron beam. The characteristic far-field pattern is recorded as a function of exit angle and energy. This x-ray optical setup may be used to enhance the intensity of coherent x-ray WG beams since the full energetic acceptance of the WG mode is transmitted.

  8. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2010-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton observations of those X-ray selected polars and genuine discoveries of new polar systems reveal growing evidence that the prevailence or even the existence of a soft X-ray component may be rather the exception than the rule. In the last decade polars were discovered in optical surveys like the SDSS and the CSS. Here we propose XMM-Newton observations of 5 optically selected polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution of polars.

  9. X-ray diagnostics of globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1982-01-01

    The presence of compact X-ray sources in globular clusters allows diagnostic studies of both the X-ray sources themselves and the globular clusters to be carried out. A review of much of this work, primarily based on Einstein X-ray observations and supporting studies of globular clusters at radio through UV wavelengths, is presented. The compact X-ray sources in globular clusters are found to be compact binaries containing neutron stars and - in a separate lower luminosity component of an apparently bimodal luminosity function - possibly white dwarfs. Implications for the formation and evolution of compact binary X-ray sources in globular clusters and in the galactic bulge are discussed. In particular, new evidence is presented that the galactic bulge sources may be compact binaries in the remnants of disrupted globular clusters.

  10. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  11. Instrument Development for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Current x-ray observatories such as Chandra and XMM-Newton have delivered spectacular results at soft-x-ray energies thanks to their grazing incidence mirrors. To continue these advances necessitates the development of mirrors with even larger collecting areas, yet within manageable weights and budgets, and focal detectors with improved energy resolution. At higher energies where x-ray critical-grazing angles become very small, x-ray optics have typically not been employed and thus this region remains relatively unexplored at high sensitivity levels and fine angular resolutions. This situation is changing with the development of hard-x-ray optics carried aloft by high-altitude balloons, which promise to bring about dramatic advances. This presentation will review developments in all these areas.

  12. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  13. Guides for intraoral x-rays

    SciTech Connect

    Ogunsunlade, O.A.

    1988-03-15

    An h-shaped exterior guide for use in combination with a SNAP-A-RAY film holder for accurately aligning a beam from an X-ray cone with an X-ray film during the process of taking intraoral periapical dental X-rays of the maxillary and mandibular teeth is described comprising: a first guide arm laterally and detachably connectable through a housing means; a traverse arm extending from the midpoint of the first guide arm and parallel to the X-ray film; and a second guide arm extending perpendicularly from an end of the traverse arm toward a plane of the X-ray film and in parallel relation up to an end point of the first guide arm.

  14. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  15. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  16. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  17. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  18. X-ray magnetic circular dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Ueji, Y; Okitsu, K; Matsushita, T; Amemiya, Y

    2001-05-01

    X-ray polarization-contrast images resulting from X-ray magnetic circular dichroism (XMCD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders, and a high-spatial-resolution X-ray charge-coupled-device detector. The sample used was a hexagonal-close-packed cobalt polycrystal foil having a thickness of about 4 microns. The X-ray polarization-contrast image resulting from XMCD was observed at a photon energy of 10 eV above the cobalt K-absorption edge (7709 eV). The observed contrast in the image was reversed by inversion of the magnetic field. Furthermore, the contrast was reversed again at a photon energy of 32 eV above the cobalt K-absorption edge. PMID:11486407

  19. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  20. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  1. X-rays and Planet Formation

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.

    2005-12-01

    Planets form in cold circumstellar disks that can not emit X-rays. Nonetheless, X-ray band studies may have profound implications for the physical processes of planet formation in several ways. Observations of young stellar clusters, such as the recent Chandra Orion Ultradeep Project (COUP), demonstrate that all pre-main sequence stars produce powerful magnetic reconnection flares during the planet formation era. Calculations indicate that the X-rays can penetrate deeply into protoplanetary disks and will be the dominant source of gas ionization. COUP observations of fluorescent line emission in heavy disk stars and soft X-ray absorption in proplyds demonstrate that disk irradiation by X-rays does in fact occur. This may induce MHD turbulence in disk gases, which may substantially affect planetesimal growth and protoplanet migration. X-ray flares or associated shock waves may flash melt dustballs into chondrules, and spallation by energetic flare particles may generate shortlived radioactive isotopes which are prevalent in the meteoritic record. X-ray surveys are also useful for locating older stellar systems where the protoplanetary disk is dissipating but magnetic flaring continues. Infrared studies of such systems show a great diversity of older disk properties. The planned Constellation-X mission will propel all of these investigations in powerful ways. For example, reverberation mapping of fluorescent line emission following flares could give unique insights into the structure of the gaseous components of protoplanetary disks.

  2. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  3. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  4. Technological Challenges to X-Ray FELs

    SciTech Connect

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.

  5. Technological challenges to X-ray FELs

    NASA Astrophysics Data System (ADS)

    Nuhn, Heinz-Dieter

    2000-05-01

    There is strong interest in the development of X-ray Free Electron Lasers (X-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent X-rays. An X-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-ray FEL user-facilities around the 0.1 nm wavelength regime (LCLS at SLAC, TESLA X-ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments at longer wavelengths (TTF FEL Phase I at 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-ray FEL projects.

  6. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  7. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  8. Quasar X-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1993-01-01

    A sample of 45 quasars observed by the IPC on the Einstein satellite is used to reexamine the relationship of the soft X-ray energy index with radio properties and the optical Fe II emission. The tendency for radio-loud quasars to have systematically flatter X-ray energy indices than radio-quiet quasars is confirmed with the soft X-ray excess having negligible effect. There is a tendency for the flatness of the X-ray slope to correlate with radio core dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed. For the radio-quiet quasars, the soft X-ray energy indices with a mean of about 1.0 are consistent with the indices found at higher energies, although steeper than those observed for Seyfert 1 galaxies where the reflection model gives a good fit to the data. The correlation of Fe II emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 objects. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and line emission from the broad emission-line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models. The correlations of X-ray slope with radio core dominance and Fe II equivalent width within the radio-loud and radio-quiet subclasses, respectively, imply that the observed wide range of X-ray energy indices is real rather than due to the large measuring uncertainties for individual objects.

  9. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  10. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  11. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  12. X-ray phase-contrast methods

    SciTech Connect

    Lider, V. V. Kovalchuk, M. V.

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  13. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    We are developing a hard x-ray microscope for direct observation of solidification dynamics in metal alloys and metal matrix composites. The Fein-Focus Inc. x-ray source was delivered in September and found to perform better than expected. Confirmed resolution of better than 2 micrometers was obtained and magnifications up to 800X were measured. Nickel beads of 30 micrometer diameter were easily detected through 6mm of aluminum. X-ray metallography was performed on several specimens showing high resolution and clear definition of 3-dimensional structures. Prototype furnace installed and tested.

  14. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  15. The Future of X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  16. X-ray streak crystal spectography

    SciTech Connect

    Kauffman, R.L.; Brown, T.; Medecki, H.

    1983-07-01

    We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11/sup 0/ to 38/sup 0/ and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/..delta..E > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given.

  17. 'Microquasars' and the X-ray background

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1984-01-01

    The recent discovery of small active nuclei (via emission lines) in normal spiral galaxies greatly expands the range of the quasar phenomenon. By using the relationship between Lx and L(H-alpha) found in more luminous Seyfert galaxies and assuming that it holds for smaller active nuclei, a bivariate X-ray luminosity function can be calculated. This luminosity function fits naturally onto the higher luminosity X-ray luminosity function derived from the HEAO-1/A2 survey. The contribution to the X-ray background from small active nuclei hiding in large spiral galaxies is greater than 15 percent.

  18. X-ray based radiological procedures in Malaysia--1990-1994.

    PubMed

    Ng, K H; Abdullah, B J; Rassiah, P; Sivalingam, S

    1999-06-01

    X-ray based radiological procedure statistics and trend in Malaysia for 1990-1994 is reported; this information allows comparisons to be made with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) Report. Additionally it is essential information for health care planners and providers. Malaysia is categorised as a health care level II country based on the UNSCEAR definition. In 1994, the number of physicians, radiologists, x-ray units and x-ray examinations per 1000 population was 0.45, 0.005, 0.065 and 183 respectively. 3.6 million x-ray examinations were performed in 1994, with chest radiography being the commonest study (63%). Information on x-ray examinations, number of hospitals and x-ray units is reported for the Ministry of Health, private practice and teaching hospitals. Examination frequency increased in computed tomography (161%), cardiac procedures (190%), and mammography (240%); while a decrease in barium studies (-23%), cholecystography (-36%), and intravenous urography (-51%) was noted. There is a potential and need to expand and upgrade radiological services. PMID:10972028

  19. Novel large-area MIS-type x-ray image sensor for digital radiography

    NASA Astrophysics Data System (ADS)

    Kameshima, Toshio; Kaifu, Noriyuki; Takami, Eiichi; Morishita, Masakazu; Yamazaki, Tatsuya

    1998-07-01

    We have developed a brand new, large-area X-ray image sensor for Digital Radiography System (DRS). The sensor utilizes a thin film transistor (TFT)/metal insulator semiconductor (MIS)-type photoelectric converter array made from hydrogenated amorphous silicon (a-Si:H). The sensor has 2688 X 2688 pixels at a pitch of 160 micrometer. The active area is 17 inch X 17 inch. The sensor utilizes scintillator coupled to the array. The light generated by X-rays is detected by the MIS-type photoelectric converters, and the resultant signals are scanned out by switching the TFTs. The a-Si TFT/MIS-type photoelectric converter array is characterized by high signal to noise ratio (SNR) and simple fabrication process. We will describe the principle and the performance of the sensor. In addition, we will present some X-ray images of a human subject obtained with this sensor. Dynamic range of the sensor covers most of the exposure range for radiography. SNR is limited almost only by the X-ray photon noise. MTF is sufficient for digital chest radiography. X-ray images have good contrast. The experimental results and obtained images show that the brand new sensor has great advantages for replacing X-ray film. The simple fabrication process of the sensor promises high productivity and low cost of DRS.

  20. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  1. Thymic carcinoma presenting as atypical chest pain.

    PubMed

    Siddiqui, Sadiq; Connelly, Tara; Keita, Luther; Blazkova, Sylvie; Veerasingam, Dave

    2015-01-01

    A 58-year-old woman with a 2-month history of atypical chest pain was referred to the chest pain clinic by the general practitioner. Exercise stress test was positive and subsequent coronary angiogram revealed significant triple vessel disease with left ventricular impairment requiring a coronary artery bypass graft (CABG). The patient had a chest X-ray as part of the preoperative work up. Chest X-ray revealed a large anterior mediastinal mass. Subsequent thorax CT revealed a 7.2 cm anterior mediastinal mass. CT-guided biopsy of the mass revealed the diagnosis of a poorly differentiated thymic basaloid carcinoma. The patient was successfully treated with concomitant surgery involving complete resection of the mass and a CABG procedure. PMID:26607199

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  5. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  6. Implications of cost-effectiveness analysis of medical technology. background paper number 5. four common x-ray procedures: problems and prospects for economic evaluation

    SciTech Connect

    Wagner, J.L.; Krieger, M.J.

    1982-04-01

    This paper is about the economic evaluation of diagnostic procedures. The issue of economic evaluation is explored in the context of four common diagnostic X-ray procedures: the chest X-ray, the skull X-ray, the barium enema study, and the excretory urogram. The paper is divided into two parts. The first part summarizes the different evaluative models underlying studies of the four diagnostic X-ray procedures and to lay out the strengths and weaknesses of each method. The second part contains four separate chapters summarizing what is known about the utilization, costs, risks, and benefits of each procedure, with particular emphasis on the evaluative methods employed.

  7. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  8. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  9. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  10. Rosat and the X-ray universe

    SciTech Connect

    Beatty, J.K.

    1990-08-01

    A major new satellite (Rosat) promises to provide astronomers with a map of perhaps 100,000 beacons in the X-ray sky, fresh images of high-energy objects approaching the resolution of visible-light photographs, and a first-ever survey of the sky at extreme-ultraviolet wavelengths. The German and British governments along with NASA are participating in this program. The grazing incidence technique previously used by Einstein and other missions is used to bring the X-rays to a focus and thus to create images. The X-ray telescope is equipped with three instruments, though only one can occupy the focus at any given time. Two are redundant detectors called position-sensitive proportional counters. The whole-sky survey will yield a complete X-ray image of the celestial sphere with 1/2-arc-minute detail of sources large and small, not just crude scans by wide-angle sensors.

  11. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  12. Future X-Ray Timing Missions

    NASA Astrophysics Data System (ADS)

    Barret, Didier; van der Klis, Michiel; Skinner, Gerry K.; Staubert, Rüdiger; Stella, Luigi

    Thanks to the Rossi X-ray Timing Explorer (RXTE), it is now widely recognized that fast X-ray timing can be used to probe strong gravity fields around collapsed objects and constrain the equation of state of dense matter in neutron stars. We first discuss some of the outstanding issues which could be solved with an X-ray timing mission building on the great successes of RXTE and providing an order of magnitude better sensitivity. Then we briefly describe the `Experiment for X-ray timing and Relativistic Astrophysics' (EXTRA) recently proposed to the European Space Agency as a follow-up to RXTE and the related US mission `Relativistic Astrophysics Explorer' (RAE).

  13. Inelastic magnetic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Platzman, P. M.; Tzoar, N.

    1985-04-01

    The theory of magnetic X-ray scattering is used to discuss the possibilities for employing inelastic scattering to probe the magnetic properties of condensed matter systems. In particular, it is shown how the interference between the nonmagnetic (Compton) and magnetic scattering arising from the use of circularly polarized X-rays is absolutely essential in such experiments. The very beautiful preliminary experiments by Sakai and Ono (1976) on Fe which use circularly polarized Moessbauer gamma-rays will be discussed. They already show the sensitivity of the technique to the 'magnetic form factor'. In addition, the physics of a unique quarter wave plate employed in obtaining circularly polarized X-rays is considered, and the implications of this advance for doing such experiments on existing synchrotron X-ray sources are discussed.

  14. The Need for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy R.; Cirtain, Jonathan; Kobayashi, Ken

    2011-01-01

    For over four decades, X-ray, EUV, and UV spectral observations have been used to measure physical properties of the solar atmosphere. During this time, there has been substantial improvement in the spectral, spatial, and temporal resolution of the observations for the EUV and UV wavelength ranges. At wavelengths below 100 Angstroms, however, observations of the solar corona with simultaneous spatial and spectral resolution are limited, and not since the late 1970's have spatially resolved solar X-ray spectra been measured. The soft-X-ray wavelength range is dominated by emission lines formed at high temperatures and provides diagnostics unavailable in any other wavelength range. In this presentation, we will discuss the important science questions that can be answered using spatially and spectrally resolved X-ray spectra.

  15. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  16. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  17. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  18. The X-ray emission of subflares

    NASA Astrophysics Data System (ADS)

    Valnichek, B. I.; Likin, O. B.; Morozova, E. I.; Pisarenko, N. F.; Farnik, F.

    1983-08-01

    Optical observations of subflares in the active region Mc Math 14553 in the period 8-15 December, 1976 are compared with the X-ray emission bursts measured during the same period by the X-ray photometer on board the Prognoz-5 automatic observatory. X-ray emissions with energies 2-7 and 6-10 keV are used in the analysis presented here. It is found that energy release in the X-ray emissions is directly proportional to the area of the H-alpha flare events over a wide range of flare intensities, i.e., from subflares to high-power flares of the class 3B.

  19. X-ray holography in-flight

    NASA Astrophysics Data System (ADS)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Ekeberg, Tomas; Hantke, Max; Daurer, Benedikt; Nettelblad, Carl; Bielecki, Johan; Faigel, Guila; Hasse, Dirk; Morgan, Andrew; Mühlig, Kerstin; Seibert, Marvin; Chapman, Henry; Hajdu, Janos; Maia, Filipe; Moeller, Thomas; Bostedt, Christoph

    2016-05-01

    The advent of X-ray free-electron lasers, delivering ultra intense femtosecond X-ray flashes, opens the door for structure determination of single nanoparticles and biosamples with single shots. The first X-ray diffraction imaging experiments at LCLS delivered promising results on samples in the gas phase. However, the reconstruction of non-periodic structures is still challenging due to the loss of phase information. Meanwhile, X-ray holographic approaches allow for recording the phase directly into the diffraction image. In my talk, I will present the first successful proof-of-principle experiment for ``in-flight''-holography with free viruses. Our experiments pave the way for unique studies on levitating nanospecimen that are of central interest in several scientific communities including atmosphere research, chemistry, material sciences, and studies on matter under extreme conditions.

  20. Solar flare hard X-ray observations

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.

    1988-01-01

    Recent hard X-ray observations of solar flares are reviewed with emphasis on results obtained with instruments on the solar maximum satellite. Flares with three sets of characteristics, designated as Type A, Type B, and Type C, are discussed and hard X-ray temporal, spatial spectral, and polarization measurements are reviewed in this framework. Coincident observations are reviewed at other wavelengths including the UV, microwaves, and soft X-rays, with discussions of their interpretations. In conclusion, a brief outline is presented of the potential of future hard X-ray observations with sub-second time resolution, arcsecond spatial resolution, and keV energy resolution, and polarization measurements at the few percent level up to 100 keV.

  1. X-ray imaging: Status and trends

    SciTech Connect

    Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

    1987-08-01

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas.

  2. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  3. Capillary Optics generate stronger X-rays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  4. Polars - soft X-ray emitters?

    NASA Astrophysics Data System (ADS)

    Schwope, Axel

    2011-10-01

    The defining criterion of polars (AM Herculis stars) was their prominent soft X-ray emission, which led to numerous discoveries with the EINSTEIN, EXOSAT, ROSAT and EUVE satellites. XMM-Newton discovered polars however and new polar systems from optical surveys (SDSS, CSS) reveal growing evidence that the prevalence or even the existence of a soft X-ray component may be rather the exception than the rule. Here we propose XMM-Newton observations of 5 optically identified polars to search for soft X-ray spectral components, answer the question why they escaped detection in past X-ray surveys and shed new light on the intrinsic energy distribution and accretion energy release of polars.

  5. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  6. X-Ray Shawdowgraph Camera Design

    SciTech Connect

    Edward J. McCrea; Michael J. Doman; Randy A. Rohde

    1999-01-01

    An imagining camera that is used with X-Ray radiography systems in high explosive experiments has been built and fielded. The camera uses a 40mm diameter Micro-Channel Plate Itensifier (MCPI) for optical gain and photographic film for image recording. In the normal location of the X-ray film pack, a scintillating screen is placed instead. The camera system views the screen and records the image. The sensitivity of the MCPI to light makes the camera design sensitive to small details that a film pack does not need to consider. The X-ray image recording system was designed and bulit for situations where the film pack of the X-ray shadowgraph is not retrievable after the experiment. The system has been used in a number of experiments.

  7. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  8. X-Ray Exam: Neck (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... a radiologist (a doctor who's specially trained in reading and interpreting X-ray images). The radiologist will ...

  9. X-Ray Exam: Scoliosis (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... by a radiologist (a doctor specially trained in reading and interpreting X-ray images). The radiologist will ...

  10. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  11. X-Ray Exam: Femur (Upper Leg)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  12. Spectra of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mccray, R.

    1982-01-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  13. Coherent x-ray lasers for applications

    SciTech Connect

    London, R.A.; Amendt, P.; Rosen, M.D.; Feit, M.D.; Fleck, J.A. ); Strauss, M. )

    1990-12-01

    Many of the projected applications of x-ray lasers require high quality output radiation with properties such as short wavelength, high power, good focusability, short pulse, and high degree of coherence. We discuss the requirements of an x-ray laser for the application of holography of biological samples. We present ideas for achieving these properties. Given that population inversions can be established to provide laser gain, we discuss how the propagation and amplification of x-rays within the lasing medium affect the quality of the output radiation. Particular attention is given toward the development of transverse coherence. Results are presented from several methods for calculating the coherence, including a modal analysis and a numerical-wave propagation code. Calculations of the expected degree of coherence of standard x-ray lasers are given, as well as designs for more coherent lasers. 9 refs., 6 figs., 1 tab.

  14. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  15. X-ray microbeam for speech research

    NASA Astrophysics Data System (ADS)

    Thompson, Murray A.; Robl, Phillip E.

    A steerable X-ray beam system is being built for use in speech research. A beam of 150 keV to 600 keV electrons will be steered by a computer and the resulting X-rays will be selected by a pinhole to give a beam with a width of 0.6 mm. The X-ray beam will be used to follow about 8 gold pellets on tongue and throat surfaces at sampling frequencies of about 125 frames/s. The pattern recognition system and X-ray energies have been chosen to allow the tracking of pellets behind some teeth fillings of mercury amalgam and gold caps.

  16. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  17. X ray opacity in cluster cooling flows

    NASA Technical Reports Server (NTRS)

    Wise, Michael W.; Sarazin, Craig L.

    1993-01-01

    We have calculated the emergent x-ray properties for a set of spherically symmetric, steady-state cluster cooling flow models including the effects of radiative transfer. Opacity due to resonant x-ray lines, photoelectric absorption, and electron scattering have been included in these calculations, and homogeneous and inhomogeneous gas distributions were considered. The effects of photoionization opacity are small for both types of models. In contrast, resonant line optical depths can be quite high in both homogeneous and inhomogeneous models. The presence of turbulence in the gas can significantly lower the line opacity. We find that integrated x-ray spectra for the flow cooling now are only slightly affected by radiative transfer effects. However x-ray line surface brightness profiles can be dramatically affected by radiative transfer. Line profiles are also strongly affected by transfer effects. The combined effects of opacity and inflow cause many of the lines in optically thick models to be asymmetrical.

  18. Principles of X-ray Navigation

    SciTech Connect

    Hanson, John Eric; /SLAC

    2006-03-17

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a

  19. Scattered X-ray beam nondestructive testing

    NASA Astrophysics Data System (ADS)

    Harding, G.; Kosanetzky, J.

    1989-08-01

    X-ray scatter interactions generally dominate the linear attenuation coefficient at the photon energies typical of medical and industrial radiography. Specific advantages of X-ray scatter imaging, including a flexible choice of measurement geometry, direct 3D-imaging capability (tomography) and improved information for material characterization, are illustrated with results from Compton and coherent scatter devices. Applications of a Compton backscatter scanner (ComScan) in the aerospace industry and coherent scatter imaging in security screening are briefly considered.

  20. X-ray laser program at MBI

    NASA Astrophysics Data System (ADS)

    Nickles, P. V.; Janulewicz, K. A.; Lucianetti, A.; Priebe, G.; Zigler, A.; Rocca, J. J.; Sandner, W.

    2002-11-01

    A survey of the Max Born Institute (MBI) activities in the field of X-ray lasers (XRLs) is presented. The main interest is focused on the transient soft X-ray lasers. Additionally, much work is put to look for new, efficient, compact (table-top) pumping schemes with a prospect to be applied in practice. The current state of the research and the plans for the future are described as well.

  1. Next-Generation X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.

    2012-04-01

    This review of future timing capabilities in X-ray astronomy includes missions in implementation (astro-h, gems, srg and astrosat), those under study (currently nicer, athena and loft), and new technologies that may be the seeds for future missions, such as lobster-eye optics. Those missions and technologies will offer exciting new capabilities that will take X-ray Astronomy into a new generation of achievements.

  2. X-Ray Emission from Compact Sources

    SciTech Connect

    Cominsky, L

    2004-03-23

    This paper presents a review of the physical parameters of neutron stars and black holes that have been derived from X-ray observations. I then explain how these physical parameters can be used to learn about the extreme conditions occurring in regions of strong gravity, and present some recent evidence for relativistic effects seen in these systems. A glossary of commonly used terms and a short tutorial on the names of X-ray sources are also included.

  3. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  4. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  5. Handbook of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta

    2011-09-01

    1. X-ray astronomy optics Daniel A. Schwartz; 2. Proportional counters and other detector techniques Richard J. Edgar; 3. CCDs for x-ray astronomy Catherine E. Grant; 4. Data reduction and calibration Keith A. Arnaud and Randall K. Smith; 5. Data analysis Randall K. Smith, Keith A. Arnaud and Aneta Siemiginowska; 6. Archives, surveys, catalogues and software Keith Arnaud; 7. Statistics Aneta Siemiginowska; 8. Analysis of extended emission K. D. Kuntz; Appendices; Index.

  6. X-ray apparatus for tomosynthesis

    SciTech Connect

    Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

    1981-01-20

    Apparatus for examining objects includes a group of x-ray sources, which are activated group-wise by a generator. A group of sub-images are separately projected onto a photographic film. During a subsequent step, the film is re-imaged with the aid of an optical lens matrix the lenses in the matrix are arranged in a manner similar to the x-ray sources.

  7. Einstein observations of extended galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Seward, F. D.

    1979-01-01

    Features of the X-ray pictures taken aboard the space observatory are presented. Imaging proportional counter pictures in three broad X-ray energy ranges were obtained. The X-ray spectrum of supernova remnants is described.

  8. Imaging slitless spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Gursky, H.; Zehnpfennig, T.

    1968-01-01

    Imaging slitless spectrometer, a combination of an X ray transmission /or reflection/ grating and image-forming X ray telescope, is capable of obtaining simultaneous spatial and spectral information about celestial X ray sources.

  9. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  10. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  11. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  12. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  13. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  14. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  15. X-ray emission from normal stars

    NASA Technical Reports Server (NTRS)

    Rosner, Robert

    1990-01-01

    The paper addresses the potential for future X-ray missions to determine the fundamental cause of stellar X-ray emissions based on available results and existing analyses. The determinants of stellar X-ray emission are listed, and the relation of stellar X-ray emissions to the 'universal' activity-rotation connection is discussed. The specific rotation-activity connection for evolved stars is mentioned, and the 'decay' of stellar activity at the low-mass end of the main sequence is related to observational data. The data from Einstein and EXOSAT missions that correspond to these issues are found to be sparse, and more observational work is found to be necessary. Also, it is concluded that some issues need to be addressed, such as the X-ray dividing line in evolved stars and the absence of X-ray emission from dA stars. The related observational requirements and instrumental capabilities are given for each significant research focus.

  16. X-ray nanotomography in a SEM

    NASA Astrophysics Data System (ADS)

    Pauwels, Bart; Liu, Xuan; Sasov, Alexander

    2010-09-01

    We have developed an x-ray computer tomography (CT) add-on to perform X-ray micro- and nanotomography in any scanning electron microscope (SEM). The electron beam inside the SEM is focused on a metal target to generate x-rays. Part of the X-rays pass through the object that is installed on a rotation stage. Shadow X-ray images are collected by a CCD camera with direct photon detection mounted on the external wall of the SEM specimen chamber. An extensive description on the working principles of this micro/nano-CT add-on together with some examples of CT-scans will be given in this paper. The resolution that can be obtained with this set-up and the influence of the shape of the electron beam are discussed. Furthermore, possible improvements on this SEM-CT set-up will be discussed: replacing the backilluminated CCD with a fully depleted CCD with improved quantum efficiency (QE) for higher energies, reduces the exposure time by 6 when using metal targets with x-ray characteristic lines around 10 keV.

  17. The ROSAT X-ray background dipole

    NASA Astrophysics Data System (ADS)

    Plionis, M.; Georgantopoulos, I.

    1999-06-01

    We estimate the dipole of the diffuse 1.5-keV X-ray background from the ROSAT all-sky survey map of Snowden et al. We first subtract the diffuse Galactic emission by fitting an exponential scaleheight, finite-radius, disc model to the data. We further exclude regions of low galactic latitudes, of local X-ray emission (e.g. the North Polar Spur) and model them using two different methods. We find that the ROSAT X-ray background dipole points towards (l,b) ~ (288 deg 25 deg) +/- 19 deg in consistency with the cosmic microwave background (within ~ 30 deg) its direction is also in good agreement with the HEAO-1 X-ray dipole at harder energies. The normalized amplitude of the ROSAT XRB dipole is ~ 1.7 per cent. Subtracting from the ROSAT map the expected X-ray background dipole resulting from the reflex motion of the observer with respect to the cosmic rest frame (Compton-Getting effect) we find the large-scale dipole of the X-ray emitting extragalactic sources having an amplitude D_LSS ~ 0.9 D_XRB, in general agreement with the predictions of Lahav et al. We finally estimate that the Virgo cluster is responsible for ~ 20 per cent of the total measured XRB dipole amplitude.

  18. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  19. A million X-ray detections

    NASA Astrophysics Data System (ADS)

    Webb, N.; XMM-Newton Survey Science Centre (SSC)

    2016-06-01

    Part of the XMM-Newton Survey Science Centre responsibilities include producing an X-ray catalogue of all X-ray sources detected with XMM-Newton. The latest version, 3XMM, takes advantage of improvements made to the source characterisation, reducing the number of spurious detections, but providing better astrometric precision, greater net sensitivity, as well as spectra and timeseries for a quarter of all catalogue detections. The data release 5 (3XMM-DR5, April 2015) is derived from the first 13 years of observations with XMM-Newton. 3XMM-DR5 includes 565962 X-ray detections and 396910 unique sources, detected as many as 48 times. 3XMM-DR5 is therefore the largest X-ray source catalogue. 3XMM-DR6 will be made available during 2016 and will augment the catalogue with 70000 X-ray detections. Over the next decade the catalogue will reach 1 million X-ray detections, including galaxy clusters, galaxies, tidal disruption events, gamma-ray bursts, stars, stellar mass compact objects, supernovae, planets, comets and many other systems. Thanks to the wide range of data products for each catalogue detection, the catalogue is an excellent resource for finding populations of sources as well as new and extreme objects. Here we present results achieved from searching the catalogue and discuss improvements that will be provided in future versions.

  20. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  1. Years of Magnetic X-Ray Dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, Gerrit

    A historical overview of magnetic x-ray dichroism is presented. I describe the first theoretical and experimental results that have led to the development of this powerful technique for element-specific magnetometry. The theoretical progress of the sum rules is also described, starting with the spinorbit sum rule for the isotropic spectrum which led on to the spin and orbital moment sum rules for x-ray magnetic circular dichroism. The latter has been particularly useful to understand the magnetic anisotropy in thin films and multilayers. Further developments of circular dichroism in (resonant) photoemission and Auger, as well as x-ray detected optical activity, also are summarized. Currently, magnetic x-ray dichroism finds a wide application in x-ray spectroscopy and imaging for the study of magnetic materials and it is considered to be one of the most important discoveries in the field of magnetism in the last few decennia. It is hard to imagine modern research into magnetism without the aid of polarized x-rays.

  2. Development of x-ray laminography under an x-ray microscopic condition.

    PubMed

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique. PMID:21806188

  3. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  4. Development of x-ray laminography under an x-ray microscopic condition

    SciTech Connect

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  5. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  6. Development of x-ray laminography under an x-ray microscopic condition

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  7. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  8. Multilayer Monochromator For Hard X Rays And Gamma Rays

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.

    1992-01-01

    Compact monochromator for hard x rays and gamma rays provides high spectral resolution with high throughput. Resembles instruments in "Compact X-Ray and Extreme-Ultraviolet Monochromator" (MFS-28499), "Scanning X-Ray or Extreme-Ultraviolet Monochromator" (MFS-28492), "Ultra-High-Spectral-Resolution X-Ray/EUV Monochromator" (MFS-28500), and "Four-Mirror X-Ray and Extreme-Ultraviolet Monochromator" (MFS-28498). Operates on principle of multilayer Bragg reflector. Used in nuclear, astronomical, and biomedical research, x-ray crystallography, research on processing materials, research in x-ray lasers, and x-ray lithography.

  9. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  10. Laser-based X-ray and electron source for X-ray fluorescence studies

    NASA Astrophysics Data System (ADS)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  11. Images of single X-ray photons from X-ray phosphor screens

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1981-01-01

    Photographs show the efficiency and resolution characteristics of single X-ray photons converted to optical photons in a variety of commercial X-ray phosphor screens. The recording system uses a cooled, two-stage image intensifier system with fiber optics coupling to the phosphor screen. High efficiencies in the energy range 20-100 keV with position resolution of the order 200 microns are readily achievable, although the sensitive area is presently limited. Potential applications include X-ray astronomy, high-speed X-ray diffractometry, and extremely low dose radiography.

  12. Demonstration of X-ray linear dichroism imaging with hard X-rays.

    PubMed

    Sato, K; Okitsu, K; Ueji, Y; Matsushita, T; Amemiya, Y

    2000-11-01

    X-ray polarization-contrast images resulting from X-ray linear dichroism (XLD) in the hard X-ray region have been successfully recorded for the first time. The apparatus used consisted of an X-ray polarizer, double X-ray phase retarders and a high-spatial-resolution X-ray charge-coupled device (CCD) detector. The sample used was a hexagonal close packed (h.c.p.) cobalt single-crystal foil of thickness about 12 microm. The experiment was performed at X-ray energies of 23 and 29 eV above the cobalt K edge (7709 eV), at which the maximum linear dichroisms (approximately 3%) were observed, with their signs reversed, in the XLD spectrum measured with quadruple X-ray phase retarders. The contrasts in the images at the two X-ray energies were reversed as a result of the XLD in the sample. Furthermore, the values of the contrast in the images arising from the linear dichroism (approximately 3%) were in good agreement with those yielded by the XLD spectrum. PMID:16609223

  13. Pressure Dependence of X-Ray Yield on Cooling for Crystal X-Ray Generator

    NASA Astrophysics Data System (ADS)

    Trott, D. W.; Shafroth, S. M.

    1999-11-01

    The UNC crystal x-ray generator consists of a 6.5 x 3.1 x 2 mm LiTaO3 pyroelectric crystal, whose temperature can range from 22 to 120 degrees Celsius. A SiLi detector, placed approximately 1 cm away from a target, is used to detect x-rays from both the pyroelectric crystal and a thin target of Fe evaporated on to a Cu foil. When one surface of the crystal is heated a strong electric field is produced on the other side which accelerates electrons toward the crystal producing Ta L and M x-rays. During cooling, the electric field reverses and a target x-ray spectrum is obtained. The chamber can be pumped on so that effects of gas pressure can be studied. The x-ray intensity changes with varying pressure. Repeatable measurements have been done using the x-ray generator at various low pressures ranging from 5 to 30 mTorr. At low pressures, the x-ray yield is relatively constant with time. As the pressure increases an initial high x-ray peak is produced which decreases rapidly with time. The most dramatic increase seen in x-ray yield peak occurs between 20 and 30 mTorr differing by 64 counts/sec and 224 counts/sec, respectively.

  14. Low Energy X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Woodruff, Wayne R.

    1981-10-01

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d=9.95Å) crystal. To preclude higher order (n≳1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than ˜1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surfaced photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminum light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any UV generated on or scattered by the crystal from illuminating the detector. High spectral enegy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni Lα1,2 lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy X-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable.

  15. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  16. Low energy x-ray spectrometer

    SciTech Connect

    Woodruff, W.R.

    1981-06-05

    A subkilovolt spectrometer has been produced to permit high-energy-resolution, time-dependent x-ray intensity measurements. The diffracting element is a curved mica (d = 9.95A) crystal. To preclude higher order (n > 1) diffractions, a carbon x-ray mirror that reflects only photons with energies less than approx. 1.1 keV is utilized ahead of the diffracting element. The nominal energy range of interest is 800 to 900 eV. The diffracted photons are detected by a gold-surface photoelectric diode designed to have a very good frequency response, and whose current is recorded on an oscilloscope. A thin, aluminium light barrier is placed between the diffracting crystal and the photoelectric diode detector to keep any uv generated on or scattered by the crystal from illuminating the detector. High spectral energy resolution is provided by many photocathodes between 8- and 50-eV wide placed serially along the diffracted x-ray beam at the detector position. The spectrometer was calibrated for energy and energy dispersion using the Ni L..cap alpha../sub 1/ /sub 2/ lines produced in the LLNL IONAC accelerator and in third order using a molybdenum target x-ray tube. For the latter calibration the carbon mirror was replaced by one surfaced with rhodium to raise the cut-off energy to about 3 keV. The carbon mirror reflection dependence on energy was measured using one of our Henke x-ray sources. The curved mica crystal diffraction efficiency was measured on our Low-Energy x-ray (LEX) machine. The spectrometer performs well although some changes in the way the x-ray mirror is held are desirable. 16 figures.

  17. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  18. Pediatric ultrasonography

    SciTech Connect

    Hayden, C.K. Jr.; Swischuk, L.E.

    1987-01-01

    Two leading experts explore the benefits and limitations of pediatric ultrasonography, explaining the latest techniques for optimal imaging of specific body regions: the head, chest, abdomen, pelvis, extremities, and soft tissues. Numerous illustrations emphasize significant points and combine with the text to show specifically what to look for when imaging children.

  19. Context sensitive cardiac x-ray imaging: a machine vision approach to x-ray dose control

    NASA Astrophysics Data System (ADS)

    Kengyelics, Stephen M.; Gislason-Lee, Amber J.; Keeble, Claire; Magee, Derek R.; Davies, Andrew G.

    2015-09-01

    Modern cardiac x-ray imaging systems regulate their radiation output based on the thickness of the patient to maintain an acceptable signal at the input of the x-ray detector. This approach does not account for the context of the examination or the content of the image displayed. We have developed a machine vision algorithm that detects iodine-filled blood vessels and fits an idealized vessel model with the key parameters of contrast, diameter, and linear attenuation coefficient. The spatio-temporal distribution of the linear attenuation coefficient samples, when appropriately arranged, can be described by a simple linear relationship, despite the complexity of scene information. The algorithm was tested on static anthropomorphic chest phantom images under different radiographic factors and 60 dynamic clinical image sequences. It was found to be robust and sensitive to changes in vessel contrast resulting from variations in system parameters. The machine vision algorithm has the potential of extracting real-time context sensitive information that may be used for augmenting existing dose control strategies.

  20. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  1. X-ray Pinhole Camera Measurements

    SciTech Connect

    Nelson, D. S.; Berninger, M. J.; Flores, P. A.; Good, D. E.; Henderson, D. J.; Hogge, K. W.; Huber, S. R.; Lutz, S. S.; Mitchell, S. E.; Howe, R. A.; Mitton, C. V.; Molina, I.; Bozman, D. R.; Cordova, S. R.; Mitchell, D. R.; Oliver, B. V.; Ormond, E. C.

    2013-07-01

    The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

  2. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  3. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  4. Polarisation modulation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  5. Ultrafast X-Ray Coherent Control

    SciTech Connect

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.

  6. Visualization of x-ray backscatter data

    SciTech Connect

    Greenawald, E.C.; Ham, Y.S.; Poranski, C.F. Jr.

    1993-12-31

    Of the several processes which occur when x-rays interact with matter, Compton scattering is dominant in the range of energies commonly used in industrial radiography. The Compton interaction between an x-ray photon and a free or outer shell electron causes the electron to recoil and the photon to be propagated in a new direction with a reduced energy. Regardless of the incident beam energy, some photons are always scattered in the backwards direction. The potential for determining material properties by the detection of x-ray backscatter has been recognized for years. Although work in this area has been eclipsed by the rapid development of computerized tomography (CT), a variety of industrial backscatter imaging techniques and applications have been demonstrated. Backscatter inspection is unique among x-ray methods in its applicability with access to only one side of the object. The authors are currently developing the application of x-ray backscatter tomography (XBT) to the inspection of steel-reinforced rubber sonar domes on US Navy vessels. In this paper, the authors discuss the visualization methods they use to interpret the XBT data. They present images which illustrate the capability of XBT as applied to sonar domes and a variety of other materials and objects. They also demonstrate and discuss the use of several data visualization software products.

  7. High-resolution x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Brissenden, Roger J.; Davis, William N.; Elsner, Ronald F.; Elvis, Martin S.; Freeman, Mark D.; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhail V.; Jerius, Diab; Juda, Michael; Kolodziejczak, Jeffery J.; Murray, Stephen S.; Petre, Robert; Podgorski, William; Ramsey, Brian D.; Reid, Paul B.; Saha, Timo; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Weisskopf, Martin C.; Wilke, Rudeger H. T.; Wolk, Scott; Zhang, William W.

    2010-08-01

    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellarmass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  8. X-Ray Surveyor Mission Concept

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica

    2015-10-01

    An initial concept study for the X-ray Surveyor mission was carried-out by the Advanced Concept Office at Marshall Space Flight Center (MSFC), with a strawman payload and related requirements that were provided by an Informal Mission Concept Team, comprised of MSFC and Smithsonian Astrophysics Observatory (SAO) scientists plus a diverse cross-section of the X-ray community. The study included a detailed assessment of the requirements, a preliminary design, a mission analysis, and a preliminary cost estimate. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades, such as Con-X, AXSIO and IXO, and in most areas, points to mission requirements no more stringent than those of Chandra.

  9. Radiographic X-Ray Pulse Jitter

    SciTech Connect

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  10. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  11. X-ray optics of gold nanoparticles.

    PubMed

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp. PMID:25402878

  12. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  13. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  14. The Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The Chandra X-ray Observatory, the third of NASA's four Great Observatories and its flagship mission for X-ray astronomy, was launched by NASA's Space Shuttle Columbia on July 23, 1999. The first X-ray sources were observed on August 12, 1999. The brightest of these sources named Leon X-1 in honor of Chandra's Telescope Scientist who played the leading role in establishing the key to Chandra's great advance in angular resolution. Over the past years, the Observatory's ability to provide sub-arc second X-ray images and high resolution spectra has established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the high-energy regions of the universe, observing X-ray sources with fluxes ranging over more than 10 orders of magnitude. The longevity of Chandra also provides a long observing baseline enabling temporal studies over time-scales of years. I will discuss how the Observatory works, the current operational status, and scientific highlights covering a variety of objects from stars with nearby planets that impact the stellar activity to the deepest Chandra surveys.

  15. Oscillations During Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290Hz) has, been claimed.

  16. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  17. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  18. X-ray properties of quasars

    NASA Technical Reports Server (NTRS)

    Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.

    1980-01-01

    The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.

  19. Bomb detection using backscattered x rays

    NASA Astrophysics Data System (ADS)

    Lockwood, Grant J.; Shope, Steve L.; Wehlburg, Joseph C.; Selph, Michael M.; Jacobs, Jennifer

    1999-01-01

    Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sites of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be 'booby trapped.' We have developed a method to x-ray a package using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them are scattered back toward the source. The backscattering of x-rays is proportional to the atomic number (Z) of the material raised to the 4.1 power. This Z4.1 dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. We are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen.

  20. Advanced X-ray diffractive optics

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Jefimovs, K.; Pilvi, T.; Ritala, M.; Sarkar, S. S.; Solak, H. H.; Guzenko, V. A.; Stampanoni, M.; Marone, F.; Raabe, J.; Tzvetkov, G.; Fink, R. H.; Grolimund, D.; Borca, C. N.; Kaulich, B.; David, C.

    2009-09-01

    X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.