Birdsong Denoising Using Wavelets.
Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal
2016-01-01
Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391
Birdsong Denoising Using Wavelets
Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal
2016-01-01
Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391
Parallel object-oriented, denoising system using wavelet multiresolution analysis
Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.
2005-04-12
The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.
Doppler ultrasound signal denoising based on wavelet frames.
Zhang, Y; Wang, Y; Wang, W; Liu, B
2001-05-01
A novel approach was proposed to denoise the Doppler ultrasound signal. Using this method, wavelet coefficients of the Doppler signal at multiple scales were first obtained using the discrete wavelet frame analysis. Then, a soft thresholding-based denoising algorithm was employed to deal with these coefficients to get the denoised signal. In the simulation experiments, the SNR improvements and the maximum frequency estimation precision were studied for the denoised signal. From the simulation and clinical studies, it was concluded that the performance of this discrete wavelet frame (DWF) approach is higher than that of the standard (critically sampled) wavelet transform (DWT) for the Doppler ultrasound signal denoising. PMID:11381694
Optimal wavelet denoising for smart biomonitor systems
NASA Astrophysics Data System (ADS)
Messer, Sheila R.; Agzarian, John; Abbott, Derek
2001-03-01
Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.
Experimental wavelet based denoising for indoor infrared wireless communications.
Rajbhandari, Sujan; Ghassemlooy, Zabih; Angelova, Maia
2013-06-01
This paper reports the experimental wavelet denoising techniques carried out for the first time for a number of modulation schemes for indoor optical wireless communications in the presence of fluorescent light interference. The experimental results are verified using computer simulations, clearly illustrating the advantage of the wavelet denoising technique in comparison to the high pass filtering for all baseband modulation schemes. PMID:23736631
Denoising solar radiation data using coiflet wavelets
Karim, Samsul Ariffin Abdul Janier, Josefina B. Muthuvalu, Mohana Sundaram; Hasan, Mohammad Khatim; Sulaiman, Jumat; Ismail, Mohd Tahir
2014-10-24
Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.
Musculoskeletal ultrasound image denoising using Daubechies wavelets
NASA Astrophysics Data System (ADS)
Gupta, Rishu; Elamvazuthi, I.; Vasant, P.
2012-11-01
Among various existing medical imaging modalities Ultrasound is providing promising future because of its ease availability and use of non-ionizing radiations. In this paper we have attempted to denoise ultrasound image using daubechies wavelet and analyze the results with peak signal to noise ratio and coefficient of correlation as performance measurement index. The different daubechies from 1 to 6 is used on four different ultrasound bone fracture images with three different levels from 1 to 3. The images for visual inspection and PSNR, Coefficient of correlation values are graphically shown for quantitaive analysis of resultant images.
Denoising time-domain induced polarisation data using wavelet techniques
NASA Astrophysics Data System (ADS)
Deo, Ravin N.; Cull, James P.
2016-05-01
Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.
Image denoising with the dual-tree complex wavelet transform
NASA Astrophysics Data System (ADS)
Yaseen, Alauldeen S.; Pavlova, Olga N.; Pavlov, Alexey N.; Hramov, Alexander E.
2016-04-01
The purpose of this study is to compare image denoising techniques based on real and complex wavelet-transforms. Possibilities provided by the classical discrete wavelet transform (DWT) with hard and soft thresholding are considered, and influences of the wavelet basis and image resizing are discussed. The quality of image denoising for the standard 2-D DWT and the dual-tree complex wavelet transform (DT-CWT) is studied. It is shown that DT-CWT outperforms 2-D DWT at the appropriate selection of the threshold level.
Undecimated Wavelet Transforms for Image De-noising
Gyaourova, A; Kamath, C; Fodor, I K
2002-11-19
A few different approaches exist for computing undecimated wavelet transform. In this work we construct three undecimated schemes and evaluate their performance for image noise reduction. We use standard wavelet based de-noising techniques and compare the performance of our algorithms with the original undecimated wavelet transform, as well as with the decimated wavelet transform. The experiments we have made show that our algorithms have better noise removal/blurring ratio.
Wavelet Denoising of Mobile Radiation Data
Campbell, D B
2008-10-31
The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems.
Comparative study of wavelet denoising in myoelectric control applications.
Sharma, Tanu; Veer, Karan
2016-04-01
Here, the wavelet analysis has been investigated to improve the quality of myoelectric signal before use in prosthetic design. Effective Surface Electromyogram (SEMG) signals were estimated by first decomposing the obtained signal using wavelet transform and then analysing the decomposed coefficients by threshold methods. With the appropriate choice of wavelet, it is possible to reduce interference noise effectively in the SEMG signal. However, the most effective wavelet for SEMG denoising is chosen by calculating the root mean square value and signal power values. The combined results of root mean square value and signal power shows that wavelet db4 performs the best denoising among the wavelets. Furthermore, time domain and frequency domain methods were applied for SEMG signal analysis to investigate the effect of muscle-force contraction on the signal. It was found that, during sustained contractions, the mean frequency (MNF) and median frequency (MDF) increase as muscle force levels increase. PMID:26887581
Multitaper Spectral Analysis and Wavelet Denoising Applied to Helioseismic Data
NASA Technical Reports Server (NTRS)
Komm, R. W.; Gu, Y.; Hill, F.; Stark, P. B.; Fodor, I. K.
1999-01-01
Estimates of solar normal mode frequencies from helioseismic observations can be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra from the time series, then using wavelet denoising of the log spectra. MTSA leads to a power spectrum estimate with reduced variance and better leakage properties than the conventional periodogram. Under the assumption of stationarity and mild regularity conditions, the log multitaper spectrum has a statistical distribution that is approximately Gaussian, so wavelet denoising is asymptotically an optimal method to reduce the noise in the estimated spectra. We find that a single m-upsilon spectrum benefits greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself can be used to improve m-averaged spectra. We compare estimates using two different 5-taper estimates (Stepian and sine tapers) and the periodogram estimate, for GONG time series at selected angular degrees l. We compare those three spectra with and without wavelet-denoising, both visually, and in terms of the mode parameters estimated from the pre-processed spectra using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger (depending on l and the temporal frequency) when applied to the multitaper estimates than when applied to the periodogram. The estimated mode parameters (frequency, amplitude and width) are comparable for the three power spectrum estimates, except for modes with very small mode widths (a few frequency bins), where the multitaper spectra broadened the modest compared with the periodogram. We tested the influence of the number of tapers used and found that narrow modes at low n values are broadened to the extent that they can no longer be fit if the number of tapers is too large. For helioseismic time series of this length and temporal resolution, the optimal number of tapers is less than 10.
A wavelet multiscale denoising algorithm for magnetic resonance (MR) images
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Fei, Baowei
2011-02-01
Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR images. The approach explicitly accounts for the Rician nature of MR data. Based on noise statistics we apply the Radon transform to the original MR images and use the Gaussian noise model to process the MR sinogram image. A translation invariant wavelet transform is employed to decompose the MR 'sinogram' into multiscales in order to effectively denoise the images. Based on the nature of Rician noise we estimate noise variance in different scales. For the final denoised sinogram we apply the inverse Radon transform in order to reconstruct the original MR images. Phantom, simulation brain MR images, and human brain MR images were used to validate our method. The experiment results show the superiority of the proposed scheme over the traditional methods. Our method can reduce Rician noise while preserving the key image details and features. The wavelet denoising method can have wide applications in MRI as well as other imaging modalities.
Examining Alternatives to Wavelet Denoising for Astronomical Source Finding
NASA Astrophysics Data System (ADS)
Jurek, R.; Brown, S.
2012-08-01
The Square Kilometre Array and its pathfinders ASKAP and MeerKAT will produce prodigious amounts of data that necessitate automated source finding. The performance of automated source finders can be improved by pre-processing a dataset. In preparation for the WALLABY and DINGO surveys, we have used a test HI datacube constructed from actual Westerbork Telescope noise and WHISP HI galaxies to test the real world improvement of linear smoothing, the Duchamp source finder's wavelet denoising, iterative median smoothing and mathematical morphology subtraction, on intensity threshold source finding of spectral line datasets. To compare these pre-processing methods we have generated completeness-reliability performance curves for each method and a range of input parameters. We find that iterative median smoothing produces the best source finding results for ASKAP HI spectral line observations, but wavelet denoising is a safer pre-processing technique. In this paper we also present our implementations of iterative median smoothing and mathematical morphology subtraction.
Wavelet-based ultrasound image denoising: performance analysis and comparison.
Rizi, F Yousefi; Noubari, H Ahmadi; Setarehdan, S K
2011-01-01
Ultrasound images are generally affected by multiplicative speckle noise, which is mainly due to the coherent nature of the scattering phenomenon. Speckle noise filtering is thus a critical pre-processing step in medical ultrasound imaging provided that the diagnostic features of interest are not lost. A comparative study of the performance of alternative wavelet based ultrasound image denoising methods is presented in this article. In particular, the contourlet and curvelet techniques with dual tree complex and real and double density wavelet transform denoising methods were applied to real ultrasound images and results were quantitatively compared. The results show that curvelet-based method performs superior as compared to other methods and can effectively reduce most of the speckle noise content of a given image. PMID:22255196
Electrocardiogram signal denoising based on a new improved wavelet thresholding.
Han, Guoqiang; Xu, Zhijun
2016-08-01
Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method. PMID:27587134
Electrocardiogram signal denoising based on a new improved wavelet thresholding
NASA Astrophysics Data System (ADS)
Han, Guoqiang; Xu, Zhijun
2016-08-01
Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.
[An improved wavelet threshold algorithm for ECG denoising].
Liu, Xiuling; Qiao, Lei; Yang, Jianli; Dong, Bin; Wang, Hongrui
2014-06-01
Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones. PMID:25219225
Denoising portal images by means of wavelet techniques
NASA Astrophysics Data System (ADS)
Gonzalez Lopez, Antonio Francisco
Portal images are used in radiotherapy for the verification of patient positioning. The distinguishing feature of this image type lies in its formation process: the same beam used for patient treatment is used for image formation. The high energy of the photons used in radiotherapy strongly limits the quality of portal images: Low contrast between tissues, low spatial resolution and low signal to noise ratio. This Thesis studies the enhancement of these images, in particular denoising of portal images. The statistical properties of portal images and noise are studied: power spectra, statistical dependencies between image and noise and marginal, joint and conditional distributions in the wavelet domain. Later, various denoising methods are applied to noisy portal images. Methods operating in the wavelet domain are the basis of this Thesis. In addition, the Wiener filter and the non local means filter (NLM), operating in the image domain, are used as a reference. Other topics studied in this Thesis are spatial resolution, wavelet processing and image processing in dosimetry in radiotherapy. In this regard, the spatial resolution of portal imaging systems is studied; a new method for determining the spatial resolution of the imaging equipments in digital radiology is presented; the calculation of the power spectrum in the wavelet domain is studied; reducing uncertainty in film dosimetry is investigated; a method for the dosimetry of small radiation fields with radiochromic film is presented; the optimal signal resolution is determined, as a function of the noise level and the quantization step, in the digitization process of films and the useful optical density range is set, as a function of the required uncertainty level, for a densitometric system. Marginal distributions of portal images are similar to those of natural images. This also applies to the statistical relationships between wavelet coefficients, intra-band and inter-band. These facts result in a better
Wavelet Denoising of Mobile Radiation Data
Campbell, D; Lanier, R
2007-10-29
The investigation of wavelet analysis techniques as a means of filtering the gross-count signal obtained from radiation detectors has shown promise. These signals are contaminated with high frequency statistical noise and significantly varying background radiation levels. Wavelet transforms allow a signal to be split into its constituent frequency components without losing relative timing information. Initial simulations and an injection study have been performed. Additionally, acquisition and analysis software has been written which allowed the technique to be evaluated in real-time under more realistic operating conditions. The technique performed well when compared to more traditional triggering techniques with its performance primarily limited by false alarms due to prominent features in the signal. An initial investigation into the potential rejection and classification of these false alarms has also shown promise.
The application study of wavelet packet transformation in the de-noising of dynamic EEG data.
Li, Yifeng; Zhang, Lihui; Li, Baohui; Wei, Xiaoyang; Yan, Guiding; Geng, Xichen; Jin, Zhao; Xu, Yan; Wang, Haixia; Liu, Xiaoyan; Lin, Rong; Wang, Quan
2015-01-01
This paper briefly describes the basic principle of wavelet packet analysis, and on this basis introduces the general principle of wavelet packet transformation for signal den-noising. The dynamic EEG data under +Gz acceleration is made a de-noising treatment by using wavelet packet transformation, and the de-noising effects with different thresholds are made a comparison. The study verifies the validity and application value of wavelet packet threshold method for the de-noising of dynamic EEG data under +Gz acceleration. PMID:26405863
Class of Fibonacci-Daubechies-4-Haar wavelets with applicability to ECG denoising
NASA Astrophysics Data System (ADS)
Smith, Christopher B.; Agaian, Sos S.
2004-05-01
The presented paper introduces a new class of wavelets that includes the simplest Haar wavelet (Daubechies-2) as well as the Daubechies-4 wavelet. This class is shown to have several properties similar to the Daubechies wavelets. In application, the new class of wavelets has been shown to effectively denoise ECG signals. In addition, the paper introduces a new polynomial soft threshold technique for denoising through wavelet shrinkage. The polynomial soft threshold technique is able to represent a wide class of polynomial behaviors, including classical soft thresholding.
Wavelet denoising of multiframe optical coherence tomography data
Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.
2012-01-01
We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103
GPU-based cone-beam reconstruction using wavelet denoising
NASA Astrophysics Data System (ADS)
Jin, Kyungchan; Park, Jungbyung; Park, Jongchul
2012-03-01
The scattering noise artifact resulted in low-dose projection in repetitive cone-beam CT (CBCT) scans decreases the image quality and lessens the accuracy of the diagnosis. To improve the image quality of low-dose CT imaging, the statistical filtering is more effective in noise reduction. However, image filtering and enhancement during the entire reconstruction process exactly may be challenging due to high performance computing. The general reconstruction algorithm for CBCT data is the filtered back-projection, which for a volume of 512×512×512 takes up to a few minutes on a standard system. To speed up reconstruction, massively parallel architecture of current graphical processing unit (GPU) is a platform suitable for acceleration of mathematical calculation. In this paper, we focus on accelerating wavelet denoising and Feldkamp-Davis-Kress (FDK) back-projection using parallel processing on GPU, utilize compute unified device architecture (CUDA) platform and implement CBCT reconstruction based on CUDA technique. Finally, we evaluate our implementation on clinical tooth data sets. Resulting implementation of wavelet denoising is able to process a 1024×1024 image within 2 ms, except data loading process, and our GPU-based CBCT implementation reconstructs a 512×512×512 volume from 400 projection data in less than 1 minute.
NASA Astrophysics Data System (ADS)
Shafri, Helmi Z. M.; Yusof, Mohd R. M.
2009-05-01
A study of wavelet denoising on hyperspectral reflectance data, specifically the red edge position (REP) and its first derivative is presented in this paper. A synthetic data set was created using a sigmoid to simulate the red edge feature for this study. The sigmoid is injected with Gaussian white noise to simulate noisy reflectance data from handheld spectroradiometers. The use of synthetic data enables better quantification and statistical study of the effects of wavelet denoising on the features of hyperspectral data, specifically the REP. The simulation study will help to identify the most suitable wavelet parameters for denoising and represents the applicability of the wavelet-based denoising procedure in hyperspectral sensing for vegetation. The suitability of the thresholding rules and mother wavelets used in wavelet denoising is evaluated by comparing the denoised sigmoid function with the clean sigmoid, in terms of the shift in the inflection point meant to represent the REP, and also the overall change in the denoised signal compared with the clean one. The VisuShrink soft threshold was used with rescaling based on the noise estimate, in conjunction with wavelets of the Daubechies, Symlet and Coiflet families. It was found that for the VisuShrink threshold with single level noise estimate rescaling, the Daubechies 9 and Symlet 8 wavelets produced the least distortion in the location of sigmoid inflection point and the overall curve. The selected mother wavelets were used to denoise oil palm reflectance data to enable determination of the red edge position by locating the peak of the first derivative.
Application of the dual-tree complex wavelet transform in biomedical signal denoising.
Wang, Fang; Ji, Zhong
2014-01-01
In biomedical signal processing, Gibbs oscillation and severe frequency aliasing may occur when using the traditional discrete wavelet transform (DWT). Herein, a new denoising algorithm based on the dual-tree complex wavelet transform (DTCWT) is presented. Electrocardiogram (ECG) signals and heart sound signals are denoised based on the DTCWT. The results prove that the DTCWT is efficient. The signal-to-noise ratio (SNR) and the mean square error (MSE) are used to compare the denoising effect. Results of the paired samples t-test show that the new method can remove noise more thoroughly and better retain the boundary and texture of the signal. PMID:24211889
ECG signals denoising using wavelet transform and independent component analysis
NASA Astrophysics Data System (ADS)
Liu, Manjin; Hui, Mei; Liu, Ming; Dong, Liquan; Zhao, Zhu; Zhao, Yuejin
2015-08-01
A method of two channel exercise electrocardiograms (ECG) signals denoising based on wavelet transform and independent component analysis is proposed in this paper. First of all, two channel exercise ECG signals are acquired. We decompose these two channel ECG signals into eight layers and add up the useful wavelet coefficients separately, getting two channel ECG signals with no baseline drift and other interference components. However, it still contains electrode movement noise, power frequency interference and other interferences. Secondly, we use these two channel ECG signals processed and one channel signal constructed manually to make further process with independent component analysis, getting the separated ECG signal. We can see the residual noises are removed effectively. Finally, comparative experiment is made with two same channel exercise ECG signals processed directly with independent component analysis and the method this paper proposed, which shows the indexes of signal to noise ratio (SNR) increases 21.916 and the root mean square error (MSE) decreases 2.522, proving the method this paper proposed has high reliability.
Forecasting performance of denoising signal by Wavelet and Fourier Transforms using SARIMA model
NASA Astrophysics Data System (ADS)
Ismail, Mohd Tahir; Mamat, Siti Salwana; Hamzah, Firdaus Mohamad; Karim, Samsul Ariffin Abdul
2014-07-01
The goal of this research is to determine the forecasting performance of denoising signal. Monthly rainfall and monthly number of raindays with duration of 20 years (1990-2009) from Bayan Lepas station are utilized as the case study. The Fast Fourier Transform (FFT) and Wavelet Transform (WT) are used in this research to find the denoise signal. The denoise data obtained by Fast Fourier Transform and Wavelet Transform are being analyze by seasonal ARIMA model. The best fitted model is determined by the minimum value of MSE. The result indicates that Wavelet Transform is an effective method in denoising the monthly rainfall and number of rain days signals compared to Fast Fourier Transform.
[Ultrasound image de-noising based on nonlinear diffusion of complex wavelet transform].
Hou, Wen; Wu, Yiquan
2012-04-01
Ultrasound images are easily corrupted by speckle noise, which limits its further application in medical diagnoses. An image de-noising method combining dual-tree complex wavelet transform (DT-CWT) with nonlinear diffusion is proposed in this paper. Firstly, an image is decomposed by DT-CWT. Then adaptive-contrast-factor diffusion and total variation diffusion are applied to high-frequency component and low-frequency component, respectively. Finally the image is synthesized. The experimental results are given. The comparisons of the image de-noising results are made with those of the image de-noising methods based on the combination of wavelet shrinkage with total variation diffusion, the combination of wavelet/multiwavelet with nonlinear diffusion. It is shown that the proposed image de-noising method based on DT-CWT and nonlinear diffusion can obtain superior results. It can both remove speckle noise and preserve the original edges and textural features more efficiently. PMID:22616185
Biomedical image and signal de-noising using dual tree complex wavelet transform
NASA Astrophysics Data System (ADS)
Rizi, F. Yousefi; Noubari, H. Ahmadi; Setarehdan, S. K.
2011-10-01
Dual tree complex wavelet transform(DTCWT) is a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The purposes of de-noising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal or image. This paper proposes a method for removing white Gaussian noise from ECG signals and biomedical images. The discrete wavelet transform (DWT) is very valuable in a large scope of de-noising problems. However, it has limitations such as oscillations of the coefficients at a singularity, lack of directional selectivity in higher dimensions, aliasing and consequent shift variance. The complex wavelet transform CWT strategy that we focus on in this paper is Kingsbury's and Selesnick's dual tree CWT (DTCWT) which outperforms the critically decimated DWT in a range of applications, such as de-noising. Each complex wavelet is oriented along one of six possible directions, and the magnitude of each complex wavelet has a smooth bell-shape. In the final part of this paper, we present biomedical image and signal de-noising by the means of thresholding magnitude of the wavelet coefficients.
An NMR log echo data de-noising method based on the wavelet packet threshold algorithm
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan
2015-12-01
To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR-NMR log echo data.
Bieleck, T.; Song, L.M.; Yau, S.S.T.; Kwong, M.K.
1995-07-01
The concepts of random wavelet transforms and discrete random wavelet transforms are introduced. It is shown that these transforms can lead to simultaneous compression and de-noising of signals that have been corrupted with fractional noises. Potential applications of algebraic geometric coding theory to encode the ensuing data are also discussed.
Le Pogam, A; Hanzouli, H; Hatt, M; Cheze Le Rest, C; Visvikis, D
2013-12-01
Denoising of Positron Emission Tomography (PET) images is a challenging task due to the inherent low signal-to-noise ratio (SNR) of the acquired data. A pre-processing denoising step may facilitate and improve the results of further steps such as segmentation, quantification or textural features characterization. Different recent denoising techniques have been introduced and most state-of-the-art methods are based on filtering in the wavelet domain. However, the wavelet transform suffers from some limitations due to its non-optimal processing of edge discontinuities. More recently, a new multi scale geometric approach has been proposed, namely the curvelet transform. It extends the wavelet transform to account for directional properties in the image. In order to address the issue of resolution loss associated with standard denoising, we considered a strategy combining the complementary wavelet and curvelet transforms. We compared different figures of merit (e.g. SNR increase, noise decrease in homogeneous regions, resolution loss, and intensity bias) on simulated and clinical datasets with the proposed combined approach and the wavelet-only and curvelet-only filtering techniques. The three methods led to an increase of the SNR. Regarding the quantitative accuracy however, the wavelet and curvelet only denoising approaches led to larger biases in the intensity and the contrast than the proposed combined algorithm. This approach could become an alternative solution to filters currently used after image reconstruction in clinical systems such as the Gaussian filter. PMID:23837964
Gur, Berke M; Niezrecki, Christopher
2007-07-01
Recent interest in the West Indian manatee (Trichechus manatus latirostris) vocalizations has been primarily induced by an effort to reduce manatee mortality rates due to watercraft collisions. A warning system based on passive acoustic detection of manatee vocalizations is desired. The success and feasibility of such a system depends on effective denoising of the vocalizations in the presence of high levels of background noise. In the last decade, simple and effective wavelet domain nonlinear denoising methods have emerged as an alternative to linear estimation methods. However, the denoising performances of these methods degrades considerably with decreasing signal-to-noise ratio (SNR) and therefore are not suited for denoising manatee vocalizations in which the typical SNR is below 0 dB. Manatee vocalizations possess a strong harmonic content and a slow decaying autocorrelation function. In this paper, an efficient denoising scheme that exploits both the autocorrelation function of manatee vocalizations and effectiveness of the nonlinear wavelet transform based denoising algorithms is introduced. The suggested wavelet-based denoising algorithm is shown to outperform linear filtering methods, extending the detection range of vocalizations. PMID:17614478
NASA Astrophysics Data System (ADS)
Wang, Zhengzi; Ren, Zhong; Liu, Guodong
2015-10-01
Noninvasive measurement of blood glucose concentration has become a hotspot research in the world due to its characteristic of convenient, rapid and non-destructive etc. The blood glucose concentration monitoring based on photoacoustic technique has attracted many attentions because the detected signal is ultrasonic signals rather than the photo signals. But during the acquisition of the photoacoustic signals of glucose, the photoacoustic signals are not avoid to be polluted by some factors, such as the pulsed laser, electronic noises and circumstance noises etc. These disturbances will impact the measurement accuracy of the glucose concentration, So, the denoising of the glucose photoacoustic signals is a key work. In this paper, a wavelet shift-invariant threshold denoising method is improved, and a novel wavelet threshold function is proposed. For the novel wavelet threshold function, two threshold values and two different factors are set, and the novel function is high order derivative and continuous, which can be looked as the compromise between the wavelet soft threshold denoising and hard threshold denoising. Simulation experimental results illustrate that, compared with other wavelet threshold denoising, this improved wavelet shift-invariant threshold denoising has higher signal-to-noise ratio(SNR) and smaller root mean-square error (RMSE) value. And this improved denoising also has better denoising effect than others. Therefore, this improved denoising has a certain of potential value in the denoising of glucose photoacoustic signals.
Optimization of wavelet- and curvelet-based denoising algorithms by multivariate SURE and GCV
NASA Astrophysics Data System (ADS)
Mortezanejad, R.; Gholami, A.
2016-06-01
One of the most crucial challenges in seismic data processing is the reduction of noise in the data or improving the signal-to-noise ratio (SNR). Wavelet- and curvelet-based denoising algorithms have become popular to address random noise attenuation for seismic sections. Wavelet basis, thresholding function, and threshold value are three key factors of such algorithms, having a profound effect on the quality of the denoised section. Therefore, given a signal, it is necessary to optimize the denoising operator over these factors to achieve the best performance. In this paper a general denoising algorithm is developed as a multi-variant (variable) filter which performs in multi-scale transform domains (e.g. wavelet and curvelet). In the wavelet domain this general filter is a function of the type of wavelet, characterized by its smoothness, thresholding rule, and threshold value, while in the curvelet domain it is only a function of thresholding rule and threshold value. Also, two methods, Stein’s unbiased risk estimate (SURE) and generalized cross validation (GCV), evaluated using a Monte Carlo technique, are utilized to optimize the algorithm in both wavelet and curvelet domains for a given seismic signal. The best wavelet function is selected from a family of fractional B-spline wavelets. The optimum thresholding rule is selected from general thresholding functions which contain the most well known thresholding functions, and the threshold value is chosen from a set of possible values. The results obtained from numerical tests show high performance of the proposed method in both wavelet and curvelet domains in comparison to conventional methods when denoising seismic data.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.
2015-11-01
The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.
Papadimitriou, S; Papadopoulos, V; Gatzounas, D; Tzigounis, V; Bezerianos, A
1997-01-01
The present paper deals with the performance and the reliability of a Wavelet Denoising method for Doppler ultrasound Fetal Heart Rate (FHR) recordings. It displays strong evidence that the denoising process extracts the actual noise components. The analysis is approached with three methods. First, the power spectrum of the denoised FHR displays more clearly an 1/fa scaling law, i.e. the characteristic of fractal time series. Second, the rescaled scale analysis technique reveals a Hurst exponent at the range of 0.7-0.8 that corresponds to a long memory persistent process. Moreover, the variance of the Hurst exponent across time scales is smaller at the denoised signal. Third, a chaotic attractor reconstructed with the embedding dimension technique becomes evident at the denoised signals, while it is completely obscured at the unfiltered ones. PMID:10179728
G. S., Vijay; H. S., Kumar; Pai P., Srinivasa; N. S., Sriram; Rao, Raj B. K. N.
2012-01-01
The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal. PMID:23213323
NASA Astrophysics Data System (ADS)
Bitenc, M.; Kieffer, D. S.; Khoshelham, K.
2015-08-01
The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.
NASA Astrophysics Data System (ADS)
Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui
2012-01-01
Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.
Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform
Ong, Frank; Uecker, Martin; Tariq, Umar; Hsiao, Albert; Alley, Marcus T; Vasanawala, Shreyas S.; Lustig, Michael
2014-01-01
Purpose To investigate four-dimensional flow denoising using the divergence-free wavelet (DFW) transform and compare its performance with existing techniques. Theory and Methods DFW is a vector-wavelet that provides a sparse representation of flow in a generally divergence-free field and can be used to enforce “soft” divergence-free conditions when discretization and partial voluming result in numerical nondivergence-free components. Efficient denoising is achieved by appropriate shrinkage of divergence-free wavelet and nondivergence-free coefficients. SureShrink and cycle spinning are investigated to further improve denoising performance. Results DFW denoising was compared with existing methods on simulated and phantom data and was shown to yield better noise reduction overall while being robust to segmentation errors. The processing was applied to in vivo data and was demonstrated to improve visualization while preserving quantifications of flow data. Conclusion DFW denoising of four-dimensional flow data was shown to reduce noise levels in flow data both quantitatively and visually. PMID:24549830
Improving wavelet denoising based on an in-depth analysis of the camera color processing
NASA Astrophysics Data System (ADS)
Seybold, Tamara; Plichta, Mathias; Stechele, Walter
2015-02-01
While Denoising is an extensively studied task in signal processing research, most denoising methods are designed and evaluated using readily processed image data, e.g. the well-known Kodak data set. The noise model is usually additive white Gaussian noise (AWGN). This kind of test data does not correspond to nowadays real-world image data taken with a digital camera. Using such unrealistic data to test, optimize and compare denoising algorithms may lead to incorrect parameter tuning or suboptimal choices in research on real-time camera denoising algorithms. In this paper we derive a precise analysis of the noise characteristics for the different steps in the color processing. Based on real camera noise measurements and simulation of the processing steps, we obtain a good approximation for the noise characteristics. We further show how this approximation can be used in standard wavelet denoising methods. We improve the wavelet hard thresholding and bivariate thresholding based on our noise analysis results. Both the visual quality and objective quality metrics show the advantage of the proposed method. As the method is implemented using look-up-tables that are calculated before the denoising step, our method can be implemented with very low computational complexity and can process HD video sequences real-time in an FPGA.
Dual tree complex wavelet transform based denoising of optical microscopy images.
Bal, Ufuk
2012-12-01
Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions. PMID:23243573
Chen, Szi-Wen; Chen, Yuan-Ho
2015-01-01
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290
Chen, Szi-Wen; Chen, Yuan-Ho
2015-01-01
In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290
Implemented Wavelet Packet Tree based Denoising Algorithm in Bus Signals of a Wearable Sensorarray
NASA Astrophysics Data System (ADS)
Schimmack, M.; Nguyen, S.; Mercorelli, P.
2015-11-01
This paper introduces a thermosensing embedded system with a sensor bus that uses wavelets for the purposes of noise location and denoising. From the principle of the filter bank the measured signal is separated in two bands, low and high frequency. The proposed algorithm identifies the defined noise in these two bands. With the Wavelet Packet Transform as a method of Discrete Wavelet Transform, it is able to decompose and reconstruct bus input signals of a sensor network. Using a seminorm, the noise of a sequence can be detected and located, so that the wavelet basis can be rearranged. This particularly allows for elimination of any incoherent parts that make up unavoidable measuring noise of bus signals. The proposed method was built based on wavelet algorithms from the WaveLab 850 library of the Stanford University (USA). This work gives an insight to the workings of Wavelet Transformation.
Boix, Macarena; Cantó, Begoña
2013-04-01
Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells. PMID:23458301
2-D Continuous Wavelet Transform for ESPI phase-maps denoising
NASA Astrophysics Data System (ADS)
Escalante, Nivia; Villa, Jesús; de la Rosa, Ismael; de la Rosa, Enrique; González-Ramírez, Efrén; Gutiérrez, Osvaldo; Olvera, Carlos; Araiza, María
2013-09-01
In this work we introduce a 2-D Continuous Wavelet Transform (2-D CWT) method for denoising ESPI phase-maps. Multiresolution analysis with 2-D wavelets can provide high directional sensitivity and high anisotropy which are proper characteristics for this task. In particular, the 2-D CWT method using Gabor atoms (Gabor mother wavelets) which can naturally model phase fringes, has a good performance against noise and can preserve phase fringes. We describe the theoretical basis of the proposed technique and show some experimental results with real and simulated ESPI phase-maps. As can be verified the proposal is robust and effective.
Image denoising with 2D scale-mixing complex wavelet transforms.
Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani
2014-12-01
This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931
NASA Astrophysics Data System (ADS)
Yaseen, Alauldeen S.; Pavlov, Alexey N.; Hramov, Alexander E.
2016-03-01
Speech signal processing is widely used to reduce noise impact in acquired data. During the last decades, wavelet-based filtering techniques are often applied in communication systems due to their advantages in signal denoising as compared with Fourier-based methods. In this study we consider applications of a 1-D double density complex wavelet transform (1D-DDCWT) and compare the results with the standard 1-D discrete wavelet-transform (1DDWT). The performances of the considered techniques are compared using the mean opinion score (MOS) being the primary metric for the quality of the processed signals. A two-dimensional extension of this approach can be used for effective image denoising.
The Application of Wavelet-Domain Hidden Markov Tree Model in Diabetic Retinal Image Denoising
Cui, Dong; Liu, Minmin; Hu, Lei; Liu, Keju; Guo, Yongxin; Jiao, Qing
2015-01-01
The wavelet-domain Hidden Markov Tree Model can properly describe the dependence and correlation of fundus angiographic images’ wavelet coefficients among scales. Based on the construction of the fundus angiographic images Hidden Markov Tree Models and Gaussian Mixture Models, this paper applied expectation-maximum algorithm to estimate the wavelet coefficients of original fundus angiographic images and the Bayesian estimation to achieve the goal of fundus angiographic images denoising. As is shown in the experimental result, compared with the other algorithms as mean filter and median filter, this method effectively improved the peak signal to noise ratio of fundus angiographic images after denoising and preserved the details of vascular edge in fundus angiographic images. PMID:26628926
Holan, Scott H; Viator, John A
2008-06-21
Photoacoustic image reconstruction may involve hundreds of point measurements, each of which contributes unique information about the subsurface absorbing structures under study. For backprojection imaging, two or more point measurements of photoacoustic waves induced by irradiating a biological sample with laser light are used to produce an image of the acoustic source. Each of these measurements must undergo some signal processing, such as denoising or system deconvolution. In order to process the numerous signals, we have developed an automated wavelet algorithm for denoising signals. We appeal to the discrete wavelet transform for denoising photoacoustic signals generated in a dilute melanoma cell suspension and in thermally coagulated blood. We used 5, 9, 45 and 270 melanoma cells in the laser beam path as test concentrations. For the burn phantom, we used coagulated blood in 1.6 mm silicon tube submerged in Intralipid. Although these two targets were chosen as typical applications for photoacoustic detection and imaging, they are of independent interest. The denoising employs level-independent universal thresholding. In order to accommodate nonradix-2 signals, we considered a maximal overlap discrete wavelet transform (MODWT). For the lower melanoma cell concentrations, as the signal-to-noise ratio approached 1, denoising allowed better peak finding. For coagulated blood, the signals were denoised to yield a clean photoacoustic resulting in an improvement of 22% in the reconstructed image. The entire signal processing technique was automated so that minimal user intervention was needed to reconstruct the images. Such an algorithm may be used for image reconstruction and signal extraction for applications such as burn depth imaging, depth profiling of vascular lesions in skin and the detection of single cancer cells in blood samples. PMID:18495977
Variable-order fractional numerical differentiation for noisy signals by wavelet denoising
NASA Astrophysics Data System (ADS)
Chen, Yi-Ming; Wei, Yan-Qiao; Liu, Da-Yan; Boutat, Driss; Chen, Xiu-Kai
2016-04-01
In this paper, a numerical method is proposed to estimate the variable-order fractional derivatives of an unknown signal in noisy environment. Firstly, the wavelet denoising process is adopted to reduce the noise effect for the signal. Secondly, polynomials are constructed to fit the denoised signal in a set of overlapped subintervals of a considered interval. Thirdly, the variable-order fractional derivatives of these fitting polynomials are used as the estimations of the unknown ones, where the values obtained near the boundaries of each subinterval are ignored in the overlapped parts. Finally, numerical examples are presented to demonstrate the efficiency and robustness of the proposed method.
Gradolewski, Dawid; Redlarski, Grzegorz
2014-09-01
The main obstacle in development of intelligent autodiagnosis medical systems based on the analysis of phonocardiography (PCG) signals is noise. The noise can be caused by digestive and respiration sounds, movements or even signals from the surrounding environment and it is characterized by wide frequency and intensity spectrum. This spectrum overlaps the heart tones spectrum, which makes the problem of PCG signal filtrating complex. The most common method for filtering such signals are wavelet denoising algorithms. In previous studies, in order to determine the optimum wavelet denoising parameters the disturbances were simulated by Gaussian white noise. However, this paper shows that this noise has a variable character. Therefore, the purpose of this paper is adaptation of a wavelet denoising algorithm for the filtration of real PCG signal disturbances from signals recorded by a mobile devices in a noisy environment. The best results were obtained for Coif 5 wavelet at the 10th decomposition level with the use of a minimaxi threshold selection algorithm and mln rescaling function. The performance of the algorithm was tested on four pathological heart sounds: early systolic murmur, ejection click, late systolic murmur and pansystolic murmur. PMID:25038586
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yuan, Guiyang; Lin, Jun; Du, Shangyu; Xie, Lijun; Wang, Yuan
2016-06-01
A denoising method based on wavelet analysis is presented for the removal of noise (background noise and random spike) from time domain electromagnetic (TEM) data. This method includes two signal processing technologies: wavelet threshold method and stationary wavelet transform. First, wavelet threshold method is used for the removal of background noise from TEM data. Then, the data are divided into a series of details and approximations by using stationary wavelet transform. The random spike in details is identified by zero reference data and adaptive energy detector. Next, the corresponding details are processed to suppress the random spike. The denoised TEM data are reconstructed via inverse stationary wavelet transform using the processed details at each level and the approximations at the highest level. The proposed method has been verified using a synthetic TEM data, the signal-to-noise ratio of synthetic TEM data is increased from 10.97 dB to 24.37 dB at last. This method is also applied to the noise suppression of the field data which were collected at Hengsha island, China. The section image results shown that the noise is suppressed effectively and the resolution of the deep anomaly is obviously improved.
Lahmiri, Salim
2014-09-01
Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared. The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the VMD-DWT approach outperforms the conventional EMD-DWT. In addition, a non-local means approach used as a reference technique provides better results than the VMD-DWT approach. PMID:26609387
2014-01-01
Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared. The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the VMD-DWT approach outperforms the conventional EMD–DWT. In addition, a non-local means approach used as a reference technique provides better results than the VMD-DWT approach. PMID:26609387
Application of Wavelet Based Denoising for T-Wave Alternans Analysis in High Resolution ECG Maps
NASA Astrophysics Data System (ADS)
Janusek, D.; Kania, M.; Zaczek, R.; Zavala-Fernandez, H.; Zbieć, A.; Opolski, G.; Maniewski, R.
2011-01-01
T-wave alternans (TWA) allows for identification of patients at an increased risk of ventricular arrhythmia. Stress test, which increases heart rate in controlled manner, is used for TWA measurement. However, the TWA detection and analysis are often disturbed by muscular interference. The evaluation of wavelet based denoising methods was performed to find optimal algorithm for TWA analysis. ECG signals recorded in twelve patients with cardiac disease were analyzed. In seven of them significant T-wave alternans magnitude was detected. The application of wavelet based denoising method in the pre-processing stage increases the T-wave alternans magnitude as well as the number of BSPM signals where TWA was detected.
Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal
Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan
2014-01-01
This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008
Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
Hu, Kai; Cheng, Qiaocui; Gao, Xieping
2016-10-01
Magnetic resonance (MR) images are affected by random noises, which degrade many image processing and analysis tasks. It has been shown that the noise in magnitude MR images follows a Rician distribution. Unlike additive Gaussian noise, the noise is signal-dependent, and consequently difficult to reduce, especially in low signal-to-noise ratio (SNR) images. Wirestam et al. in [20] proposed a Wiener-like filtering technique in wavelet-domain to reduce noise before construction of the magnitude MR image. Based on Wirestam's study, we propose a wavelet-domain translation-invariant (TI) Wiener-like filtering algorithm for noise reduction in complex MR data. The proposed denoising algorithm shows the following improvements compared with Wirestam's method: (1) we introduce TI property into the Wiener-like filtering in wavelet-domain to suppress artifacts caused by translations of the signal; (2) we integrate one Stein's Unbiased Risk Estimator (SURE) thresholding with two Wiener-like filters to make the hard-thresholding scale adaptive; and (3) the first Wiener-like filtering is used to filter the original noisy image in which the noise obeys Gaussian distribution and it provides more reasonable results. The proposed algorithm is applied to denoise the real and imaginary parts of complex MR images. To evaluate our proposed algorithm, we conduct extensive denoising experiments using T1-weighted simulated MR images, diffusion-weighted (DW) phantom and in vivo data. We compare our algorithm with other popular denoising methods. The results demonstrate that our algorithm outperforms others in term of both efficiency and robustness. PMID:27238055
Localization and de-noising seismic signals on SASW measurement by wavelet transform
NASA Astrophysics Data System (ADS)
Golestani, Alireza; S. Kolbadi, S. Mahdi; Heshmati, Ali Akbar
2013-11-01
SASW method is a nondestructive in situ testing method that is used to determine the dynamic properties of soil sites and pavement systems. Phase information and dispersion characteristics of a wave propagating through these systems have a significant role in the processing of recorded data. Inversion of the dispersive phase data provides information on the variation of shear-wave velocity with depth. However, in the case of sanded residual soil, it is not easy to produce the reliable phase spectrum curve. Due to natural noises and other human intervention in surface wave date generation deal with to reliable phase spectrum curve for sanded residual soil turn into the complex issue for geological scientist. In this paper, a time-frequency analysis based on complex Gaussian Derivative wavelet was applied to detect and localize all the events that are not identifiable by conventional signal processing methods. Then, the performance of discrete wavelet transform (DWT) in noise reduction of these recorded seismic signals was evaluated. Furthermore, in particular the influence of the decomposition level choice was investigated on efficiency of this process. This method is developed by various wavelet thresholding techniques which provide many options for controllable de-noising at each level of signal decomposition. Also, it obviates the need for high computation time compare with continuous wavelet transform. According to the results, the proposed method is powerful to visualize the interested spectrum range of seismic signals and to de-noise at low level decomposition.
The EM Method in a Probabilistic Wavelet-Based MRI Denoising.
Martin-Fernandez, Marcos; Villullas, Sergio
2015-01-01
Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959
The EM Method in a Probabilistic Wavelet-Based MRI Denoising
2015-01-01
Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959
NASA Astrophysics Data System (ADS)
Ren, Zhong; Liu, Guodong; Huang, Zhen
2014-10-01
Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.
Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM
Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping
2015-01-01
Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090
Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.
Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping
2015-01-01
Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090
NASA Astrophysics Data System (ADS)
Tao, Yinghua; Brunner, Stephen; Tang, Jie; Speidel, Michael; Rowley, Howard; VanLysel, Michael; Chen, Guang-Hong
2011-03-01
Radiation dose reduction remains at the forefront of research in computed tomography. X-ray tube parameters such as tube current can be lowered to reduce dose; however, images become prohibitively noisy when the tube current is too low. Wavelet denoising is one of many noise reduction techniques. However, traditional wavelet techniques have the tendency to create an artificial noise texture, due to the nonuniform denoising across the image, which is undesirable from a diagnostic perspective. This work presents a new implementation of wavelet denoising that is able to achieve noise reduction, while still preserving spatial resolution. Further, the proposed method has the potential to improve those unnatural noise textures. The technique was tested on both phantom and animal datasets (Catphan phantom and timeresolved swine heart scan) acquired on a GE Discovery VCT scanner. A number of tube currents were used to investigate the potential for dose reduction.
Denoising of X-ray pulsar observed profile in the undecimated wavelet domain
NASA Astrophysics Data System (ADS)
Xue, Meng-fan; Li, Xiao-ping; Fu, Ling-zhong; Liu, Xiu-ping; Sun, Hai-feng; Shen, Li-rong
2016-01-01
The low intensity of the X-ray pulsar signal and the strong X-ray background radiation lead to low signal-to-noise ratio (SNR) of the X-ray pulsar observed profile obtained through epoch folding, especially when the observation time is not long enough. This signifies the necessity of denoising of the observed profile. In this paper, the statistical characteristics of the X-ray pulsar signal are studied, and a signal-dependent noise model is established for the observed profile. Based on this, a profile noise reduction method by performing a local linear minimum mean square error filtering in the un-decimated wavelet domain is developed. The detail wavelet coefficients are rescaled by multiplying their amplitudes by a locally adaptive factor, which is the local variance ratio of the noiseless coefficients to the noisy ones. All the nonstationary statistics needed in the algorithm are calculated from the observed profile, without a priori information. The results of experim! ents, carried out on simulated data obtained by the ground-based simulation system and real data obtained by Rossi X-Ray Timing Explorer satellite, indicate that the proposed method is excellent in both noise suppression and preservation of peak sharpness, and it also clearly outperforms four widely accepted and used wavelet denoising methods, in terms of SNR, Pearson correlation coefficient and root mean square error.
Ye, Linlin; Yang, Dan; Wang, Xu
2014-06-01
A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal. PMID:25219236
Kang, S C; Hong, S H
2001-01-01
One of the most significant features of diagnostic echocardiographic images is to reduce speckle noise and make better image quality. In this paper we proposed a simple and effective filter design for image denoising and contrast enhancement based on multiscale wavelet denoising method. Wavelet threshold algorithms replace wavelet coefficients with small magnitude by zero and keep or shrink the other coefficients. This is basically a local procedure, since wavelet coefficients characterize the local regularity of a function. After we estimate distribution of noise within echocardiographic image, then apply to fitness Wavelet threshold algorithm. A common way of the estimating the speckle noise level in coherent imaging is to calculate the mean-to-standard-deviation ratio of the pixel intensity, often termed the Equivalent Number of Looks(ENL), over a uniform image area. Unfortunately, we found this measure not very robust mainly because of the difficulty to identify a uniform area in a real image. For this reason, we will only use here the S/MSE ratio and which corresponds to the standard SNR in case of additivie noise. We have simulated some echocardiographic images by specialized hardware for real-time application;processing of a 512*512 images takes about 1 min. Our experiments show that the optimal threshold level depends on the spectral content of the image. High spectral content tends to over-estimate the noise standard deviation estimation performed at the finest level of the DWT. As a result, a lower threshold parameter is required to get the optimal S/MSE. The standard WCS theory predicts a threshold that depends on the number of signal samples only. PMID:11604864
Gadaleta, Matteo; Giorgio, Agostino
2012-01-01
This study proposes a method for ventricular late potentials (VLPs) detection using time-frequency representation and wavelet denoising in high-resolution electrocardiography (HRECG). The analysis is performed both with the signal averaged electrocardiography (SAECG) and in real time. A comparison between the temporal and the time-frequency analysis is also reported. In the first analysis the standard parameters QRSd, LAS40, and RMS40 were used; in the second normalized energy in time-frequency domain was calculated. The algorithm was tested adding artificial VLPs to real ECGs. PMID:22957271
NASA Astrophysics Data System (ADS)
Sayadi, Omid; Shamsollahi, Mohammad B.
2007-12-01
We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.
Three-dimensional object recognition using wavelets for feature denoising
NASA Astrophysics Data System (ADS)
Kim, Sung-Soo; Kasparis, Takis; Schiavone, Guy A.
1996-06-01
Recognition of 3D objects independent of size, position, and rotation is an important and difficult subject in computer vision. A 3D feature extraction method referred to as the Open Ball Operator (OBO) is proposed as an approach to solving the 3D object recognition problem. The OBO feature extraction method has the three characteristics of invariance to rotation, scaling, and translation invariance. Additionally, the OBO is capable of distinguishing between convexities and concavities in the surface of 3D object. The OBO also exhibits a good robustness to noise and uncertainty caused by inaccuracies in 3D measurements. A wavelet de- noising method is used for filtering out noise contained in the feature vectors of 3D objects.
Interferometric side-scan sonar signal denoised by wavelets
NASA Astrophysics Data System (ADS)
Sintes, Christophe R.; Legris, Michel; Solaiman, Basel
2003-04-01
This paper concerns the possibilities that side scan sonar have to determine the bathymetry. New side scan sonars, which are able to image the sea bottom with a high definition, estimate the relief with the same definition as conventional sonar images, using an interferometric multisensors system. Drawbacks concern the accuracy and errors of the numerical altitude model. Interferometric methods use a phase difference to determine a time delay between two sensors. The phase difference belongs to a finite interval (-π, +π), but the time delay between two sensors does not belong to a finite interval: the phase is 2π biased. The used sonar is designend for the use of the vernier technique, which allows to remove this bias. The difficulty comes from interferometric noise, which generates errors on the 2π bias estimation derived from the verier. The traditional way to reduce noise impact on the interferometric signal, is to average data. This method does not preserve the resolution of the bathymetric estimation. This paper presents an attempt to improve the accuracy and resolution of the interferometric signal through a wavelets based method of image despecklization. Traditionally, despecklization is processed on the logarithm of absolute value of the signal. But for this application, the proposed interferometric despecklizaiotn is achieved directly on the interferometric signal by integrating information, guided by the despeckled image. Finally, this multiscale analysis corresponds to an auto adaptive average filtering. A variant of this method is introduced and based on this assumption. This method used the identify function to reconstruct the signal. On the presented results, phase despecklization improves considerably the quality of the interferometric signal in terms of to noise ratio, without an important degradation of resolution.
Real-time wavelet denoising with edge enhancement for medical x-ray imaging
NASA Astrophysics Data System (ADS)
Luo, Gaoyong; Osypiw, David; Hudson, Chris
2006-02-01
X-ray image visualized in real-time plays an important role in clinical applications. The real-time system design requires that images with the highest perceptual quality be acquired while minimizing the x-ray dose to the patient, which can result in severe noise that must be reduced. The approach based on the wavelet transform has been widely used for noise reduction. However, by removing noise, high frequency components belonging to edges that hold important structural information of an image are also removed, which leads to blurring the features. This paper presents a new method of x-ray image denoising based on fast lifting wavelet thresholding for general noise reduction and spatial filtering for further denoising by using a derivative model to preserve edges. General denoising is achieved by estimating the level of the contaminating noise and employing an adaptive thresholding scheme with variance analysis. The soft thresholding scheme is to remove the overall noise including that attached to edges. A new edge identification method of using approximation of spatial gradient at each pixel location is developed together with a spatial filter to smooth noise in the homogeneous areas but preserve important structures. Fine noise reduction is only applied to the non-edge parts, such that edges are preserved and enhanced. Experimental results demonstrate that the method performs well both visually and in terms of quantitative performance measures for clinical x-ray images contaminated by natural and artificial noise. The proposed algorithm with fast computation and low complexity provides a potential solution for real-time applications.
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud
2012-11-01
Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.
Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud
2012-01-01
Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804
Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud
2012-11-01
ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804
The application of wavelet shrinkage denoising to magnetic Barkhausen noise measurements
Thomas, James
2014-02-18
The application of Magnetic Barkhausen Noise (MBN) as a non-destructive method of defect detection has proliferated throughout the manufacturing community. Instrument technology and measurement methodology have matured commensurately as applications have moved from the R and D labs to the fully automated manufacturing environment. These new applications present a new set of challenges including a bevy of error sources. A significant obstacle in many industrial applications is a decrease in signal to noise ratio due to (i) environmental EMI and (II) compromises in sensor design for the purposes of automation. The stochastic nature of MBN presents a challenge to any method of noise reduction. An application of wavelet shrinkage denoising is proposed as a method of decreasing extraneous noise in MBN measurements. The method is tested and yields marked improvement on measurements subject to EMI, grounding noise, and even measurements in ideal conditions.
NASA Astrophysics Data System (ADS)
Li, Ruijie; Dang, Anhong
2015-10-01
This paper investigates a detection scheme without channel state information for wireless optical communication (WOC) systems in turbulence induced fading channel. The proposed scheme can effectively diminish the additive noise caused by background radiation and photodetector, as well as the intensity scintillation caused by turbulence. The additive noise can be mitigated significantly using the modified wavelet threshold denoising algorithm, and then, the intensity scintillation can be attenuated by exploiting the temporal correlation of the WOC channel. Moreover, to improve the performance beyond that of the maximum likelihood decision, the maximum a posteriori probability (MAP) criterion is considered. Compared with conventional blind detection algorithm, simulation results show that the proposed detection scheme can improve the signal-to-noise ratio (SNR) performance about 4.38 dB while the bit error rate and scintillation index (SI) are 1×10-6 and 0.02, respectively.
NASA Astrophysics Data System (ADS)
Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain; Messaoudi, Cedric; Marco, Sergio
2015-01-01
The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the
Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain E-mail: cedric.messaoudi@curie.fr Messaoudi, Cedric E-mail: cedric.messaoudi@curie.fr Marco, Sergio E-mail: cedric.messaoudi@curie.fr
2015-01-13
The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the
NASA Astrophysics Data System (ADS)
Wang, Yanxue; He, Zhengjia; Zi, Yanyang
2010-01-01
In order to enhance the desired features related to some special type of machine fault, a technique based on the dual-tree complex wavelet transform (DTCWT) is proposed in this paper. It is demonstrated that DTCWT enjoys better shift invariance and reduced spectral aliasing than second-generation wavelet transform (SGWT) and empirical mode decomposition by means of numerical simulations. These advantages of the DTCWT arise from the relationship between the two dual-tree wavelet basis functions, instead of the matching of the used single wavelet basis function to the signal being analyzed. Since noise inevitably exists in the measured signals, an enhanced vibration signals denoising algorithm incorporating DTCWT with NeighCoeff shrinkage is also developed. Denoising results of vibration signals resulting from a crack gear indicate the proposed denoising method can effectively remove noise and retain the valuable information as much as possible compared to those DWT- and SGWT-based NeighCoeff shrinkage denoising methods. As is well known, excavation of comprehensive signatures embedded in the vibration signals is of practical importance to clearly clarify the roots of the fault, especially the combined faults. In the case of multiple features detection, diagnosis results of rolling element bearings with combined faults and an actual industrial equipment confirm that the proposed DTCWT-based method is a powerful and versatile tool and consistently outperforms SGWT and fast kurtogram, which are widely used recently. Moreover, it must be noted, the proposed method is completely suitable for on-line surveillance and diagnosis due to its good robustness and efficient algorithm.
Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun
2016-03-01
In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. PMID:26753616
NASA Astrophysics Data System (ADS)
Hafizi, Z. M.; Kahandawa, G. C.; Epaarachchi, J.; Lau, K. T.; Canning, J.; Cook, K.
2013-08-01
During the past decade, many successful studies have evidently shown remarkable capability of Fiber Bragg Gratings (FBG) sensor for dynamic sensing. Most of the research works utilized the 1550 nm wavelength range of FBG sensors. However near infra-red (NIR) FBG sensors can offer the lower cost of Structural health Monitoring (SHM) systems which uses cheaper silicon sources and detectors. Unfortunately, the excessive noise levels that experienced in NIR wavelengths have caused the rejection of sensor that operating in this range of wavelengths for SHM systems. However, with the appropriate use of signal processing tools, these noisy signals can be easily `cleaned'. Wavelet analysis is one of the powerful signal processing tools nowadays, not only for time-frequency analysis but also for signal denoising. This present study revealed that the NIR FBG range gave good response to impact signals. Furthermore, these `noisy' signals' response were successfully filtered using one dimensional wavelet analysis.
2016-01-01
The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today’s increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong’s Hang Seng futures, Japan’s NIKKEI 225 futures, Singapore’s MSCI futures, South Korea’s KOSPI 200 futures, and Taiwan’s TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692
Chan Phooi M'ng, Jacinta; Mehralizadeh, Mohammadali
2016-01-01
The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today's increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong's Hang Seng futures, Japan's NIKKEI 225 futures, Singapore's MSCI futures, South Korea's KOSPI 200 futures, and Taiwan's TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692
Na, Man Gyun; Oh, Seungrohk
2002-11-15
A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.
Paul, Sabyasachi; Suman, V; Sarkar, P K; Ranade, A K; Pulhani, V; Dafauti, S; Datta, D
2013-08-01
A wavelet transform based denoising methodology has been applied to detect the presence of any discernable trend in (137)Cs and (90)Sr activity levels in bore-hole water samples collected four times a year over a period of eight years, from 2002 to 2009, in the vicinity of typical nuclear facilities inside the restricted access zones. The conventional non-parametric methods viz., Mann-Kendall and Spearman rho, along with linear regression when applied for detecting the linear trend in the time series data do not yield results conclusive for trend detection with a confidence of 95% for most of the samples. The stationary wavelet based hard thresholding data pruning method with Haar as the analyzing wavelet was applied to remove the noise present in the same data. Results indicate that confidence interval of the established trend has significantly improved after pre-processing to more than 98% compared to the conventional non-parametric methods when applied to direct measurements. PMID:23524202
NASA Astrophysics Data System (ADS)
Dong, Junliang; Locquet, Alexandre; Citrin, D. S.
2016-03-01
Terahertz (THz) reflection imaging is applied to characterize a woven glass fibre-reinforced composite laminate with a small region of forced delamination. The forced delamination is created by inserting a disk of 25- μ m-thick Upilex film, which is below the THz axial resolution, resulting in one featured echo with small amplitude in the reflected THz pulses. Low-amplitude components of the temporal signal due to ambient water vapor produce features of comparable amplitude with features associated with the THz pulse reflected off the interfaces of the delamination and suppress the contrast of THz C- and B-scans. Wavelet shrinkage de-noising is performed to remove water-vapor features, leading to enhanced THz C- and B-scans to locate the delamination in three dimensions with high contrast.
NASA Astrophysics Data System (ADS)
Dolabdjian, Ch.; Fadili, J.; Huertas Leyva, E.
2002-11-01
We have implemented a real-time numerical denoising algorithm, using the Discrete Wavelet Transform (DWT), on a TMS320C3x Digital Signal Processor (DSP). We also compared from a theoretical and practical viewpoints this post-processing approach to a more classical low-pass filter. This comparison was carried out using an ECG-type signal (ElectroCardiogram). The denoising approach is an elegant and extremely fast alternative to the classical linear filters class. It is particularly adapted to non-stationary signals such as those encountered in biological applications. The denoising allows to substantially improve detection of such signals over Fourier-based techniques. This processing step is a vital element in our acquisition chain using high sensitivity magnetic sensors. It should enhance detection of cardiac-type magnetic signals or magnetic particles in movement.
Mahajan, Ruhi; Morshed, Bashir I
2015-01-01
Brain activities commonly recorded using the electroencephalogram (EEG) are contaminated with ocular artifacts. These activities can be suppressed using a robust independent component analysis (ICA) tool, but its efficiency relies on manual intervention to accurately identify the independent artifactual components. In this paper, we present a new unsupervised, robust, and computationally fast statistical algorithm that uses modified multiscale sample entropy (mMSE) and Kurtosis to automatically identify the independent eye blink artifactual components, and subsequently denoise these components using biorthogonal wavelet decomposition. A 95% two-sided confidence interval of the mean is used to determine the threshold for Kurtosis and mMSE to identify the blink related components in the ICA decomposed data. The algorithm preserves the persistent neural activity in the independent components and removes only the artifactual activity. Results have shown improved performance in the reconstructed EEG signals using the proposed unsupervised algorithm in terms of mutual information, correlation coefficient, and spectral coherence in comparison with conventional zeroing-ICA and wavelet enhanced ICA artifact removal techniques. The algorithm achieves an average sensitivity of 90% and an average specificity of 98%, with average execution time for the datasets ( N = 7) of 0.06 s ( SD = 0.021) compared to the conventional wICA requiring 0.1078 s ( SD = 0.004). The proposed algorithm neither requires manual identification for artifactual components nor additional electrooculographic channel. The algorithm was tested for 12 channels, but might be useful for dense EEG systems. PMID:24968340
NASA Astrophysics Data System (ADS)
Tehrani, Kayvan Forouhesh; Mortensen, Luke J.; Kner, Peter
2016-03-01
Wavefront sensorless schemes for correction of aberrations induced by biological specimens require a time invariant property of an image as a measure of fitness. Image intensity cannot be used as a metric for Single Molecule Localization (SML) microscopy because the intensity of blinking fluorophores follows exponential statistics. Therefore a robust intensity-independent metric is required. We previously reported a Fourier Metric (FM) that is relatively intensity independent. The Fourier metric has been successfully tested on two machine learning algorithms, a Genetic Algorithm and Particle Swarm Optimization, for wavefront correction about 50 μm deep inside the Central Nervous System (CNS) of Drosophila. However, since the spatial frequencies that need to be optimized fall into regions of the Optical Transfer Function (OTF) that are more susceptible to noise, adding a level of denoising can improve performance. Here we present wavelet-based approaches to lower the noise level and produce a more consistent metric. We compare performance of different wavelets such as Daubechies, Bi-Orthogonal, and reverse Bi-orthogonal of different degrees and orders for pre-processing of images.
De-Noising Ultrasound Images of Colon Tumors Using Daubechies Wavelet Transform
NASA Astrophysics Data System (ADS)
Moraru, Luminita; Moldovanu, Simona; Nicolae, Mariana Carmen
2011-10-01
In this paper, we present a new approach to analysis of the cancer of the colon in ultrasonography. A speckle suppression method was presented. Daubechies wavelet transform is used due to its approximate shift invariance property and extra information in imaginary plane of complex wavelet domain when compared to real wavelet domain. The methods that we propose have provided quite satisfactory results and show the usefulness of image processing techniques in the diagnosis by means of medical imaging. Local echogenicity variance of ROI is utilized so as to compare with local echogenicity distribution within entire acquired image. Also the image was analyzed using the histogram which interprets the gray-level of images. Such information is valuable for the discrimination of tumors. The aim of this work is not the substitution of the specialist, but the generation of a series of parameters which reduce the need of carrying out the biopsy.
Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras.
Jovanov, Ljubomir; Pižurica, Aleksandra; Philips, Wilfried
2010-10-25
In this paper we present a new denoising method for the depth images of a 3D imaging sensor, based on the time-of-flight principle. We propose novel ways to use luminance-like information produced by a time-of flight camera along with depth images. Firstly, we propose a wavelet-based method for estimating the noise level in depth images, using luminance information. The underlying idea is that luminance carries information about the power of the optical signal reflected from the scene and is hence related to the signal-to-noise ratio for every pixel within the depth image. In this way, we can efficiently solve the difficult problem of estimating the non-stationary noise within the depth images. Secondly, we use luminance information to better restore object boundaries masked with noise in the depth images. Information from luminance images is introduced into the estimation formula through the use of fuzzy membership functions. In particular, we take the correlation between the measured depth and luminance into account, and the fact that edges (object boundaries) present in the depth image are likely to occur in the luminance image as well. The results on real 3D images show a significant improvement over the state-of-the-art in the field. PMID:21164605
Digel, S.W.; Zhang, B.; Chiang, J.; Fadili, J.M.; Starck, J.-L.; /Saclay /Stanford U., Statistics Dept.
2005-12-02
Zhang, Fadili, & Starck have recently developed a denoising procedure for Poisson data that offers advantages over other methods of intensity estimation in multiple dimensions. Their procedure, which is nonparametric, is based on thresholding wavelet coefficients. The restoration algorithm applied after thresholding provides good conservation of source flux. We present an investigation of the procedure of Zhang et al. for the detection and characterization of astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope (LAT). The LAT is to be launched in late 2007 on the Gamma-ray Large Area Space Telescope mission. Source detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial background, the limited angular resolution, and the tremendous variation of that resolution with energy (from tens of degrees at {approx}30 MeV to 0.1{sup o} at 10 GeV). The algorithm is very fast relative to traditional likelihood model fitting, and permits immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring properties of newly-detected sources.
NASA Astrophysics Data System (ADS)
Mishra, C.; Samantaray, A. K.; Chakraborty, G.
2016-05-01
Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1
Image enhancement and denoising by wavelet transform for concealed weapon detection
NASA Astrophysics Data System (ADS)
Raghuveer, M. R.
1997-02-01
Wavelet transform based techniques were developed and investigated for isolation and enhancement of objects in images. The primary motivation is the development of image processing algorithms as part of an automatic system for the detection of concealed weapons under a person's clothing; a problem of considerable potential utility to the military in certain common types of deployment in the post cold war environment such as small unit operations. The issue has potential for other dual use purposes such as law enforcement applications. Wavelet decompositions of the currently available images in the Rome Laboratory database, namely, noisy, low contrast, infrared images, were studied in space-scale-amplitude space. An isolation technique for separating potential suspicious regions/objects from surrounding clutter has been proposed. Based on the images available, the study indicates that the technique is promising in providing the image enhancement necessary for further pattern detection and classification.
NASA Astrophysics Data System (ADS)
Bitenc, M.; Kieffer, D. S.; Khoshelham, K.
2016-06-01
Terrestrial Laser Scanning (TLS) is a well-known remote sensing tool that enables precise 3D acquisition of surface morphology from distances of a few meters to a few kilometres. The morphological representations obtained are important in engineering geology and rock mechanics, where surface morphology details are of particular interest in rock stability problems and engineering construction. The actual size of the discernible surface detail depends on the instrument range error (noise effect) and effective data resolution (smoothing effect). Range error can be (partly) removed by applying a denoising method. Based on the positive results from previous studies, two denoising methods, namely 2D wavelet transform (WT) and non-local mean (NLM), are tested here, with the goal of obtaining roughness estimations that are suitable in the context of rock engineering practice. Both methods are applied in two variants: conventional Discrete WT (DWT) and Stationary WT (SWT), classic NLM (NLM) and probabilistic NLM (PNLM). The noise effect and denoising performance are studied in relation to the TLS effective data resolution. Analyses are performed on the reference data acquired by a highly precise Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. Roughness ratio is computed by comparing the noisy and denoised surfaces to the original ATOS surface. The roughness ratio indicates the success of all denoising methods. Besides, it shows that SWT oversmoothes the surface and the performance of the DWT, NLM and PNLM vary with the noise level and data resolution. The noise effect becomes less prominent when data resolution decreases.
Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising
Lentini, Marianela; Paluszny, Marco
2014-01-01
The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108
Performances of a specific denoising wavelet process for high-resolution gamma imaging
NASA Astrophysics Data System (ADS)
Pousse, Annie; Dornier, Christophe; Parmentier, Michel; Kastler, Bruno; Chavanelle, Jerome
2004-02-01
Due to its functional capabilities, gamma imaging is an interesting tool for medical diagnosis. Recent developments lead to improved intrinsic resolution. However this gain is impaired by the poor activity detected and the Poissonian feature of gamma ray emission. High resolution gamma images are grainy. This is a real nuisance for detecting cold nodules in an emitting organ. A specific translation wavelet filter which takes into account the Poissonian feature of noise, has been developed in order to improve the diagnostic capabilities of radioisotopic high resolution images. Monte Carlo simulations of a hot thyroid phantom in which cold spheres, 3-7 mm in diameter, could be included were performed. The loss of activity induced by cold nodules was determined on filtered images by using catchment basins determination. On the original images, only 5-7 mm cold spheres were clearly visible. On filtered images, 3 and 4 mm spheres were put in prominent. The limit of the developed filter is approximately the detection of 3 mm spherical cold nodule in acquisition and activity conditions which mimic a thyroid examination. Furthermore, no disturbing artifacts are generated. It is therefore a powerful tool for detecting small cold nodules in a gamma emitting medium.
NASA Astrophysics Data System (ADS)
Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun
2016-05-01
The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.
NASA Astrophysics Data System (ADS)
Su, Yi; Shoghi, Kooresh I.
2008-11-01
Voxel-based estimation of PET images, generally referred to as parametric imaging, can provide invaluable information about the heterogeneity of an imaging agent in a given tissue. Due to high level of noise in dynamic images, however, the estimated parametric image is often noisy and unreliable. Several approaches have been developed to address this challenge, including spatial noise reduction techniques, cluster analysis and spatial constrained weighted nonlinear least-square (SCWNLS) methods. In this study, we develop and test several noise reduction techniques combined with SCWNLS using simulated dynamic PET images. Both spatial smoothing filters and wavelet-based noise reduction techniques are investigated. In addition, 12 different parametric imaging methods are compared using simulated data. With the combination of noise reduction techniques and SCWNLS methods, more accurate parameter estimation can be achieved than with either of the two techniques alone. A less than 10% relative root-mean-square error is achieved with the combined approach in the simulation study. The wavelet denoising based approach is less sensitive to noise and provides more accurate parameter estimation at higher noise levels. Further evaluation of the proposed methods is performed using actual small animal PET datasets. We expect that the proposed method would be useful for cardiac, neurological and oncologic applications.
NASA Astrophysics Data System (ADS)
Xiang, Li; Xu, Zhang; Peng, Li; Xiaohui, Hu; Hongda, Chen
2016-05-01
A low power wavelet denoising chip for photoplethysmography (PPG) detection and portable heart rate monitoring is presented. To eliminate noise and improve detection accuracy, Harr wavelet (HWT) is chosen as the processing tool. An optimized finite impulse response structure is proposed to lower the computational complexity of proposed algorithm, which is benefit for reducing the power consumption of proposed chip. The modulus maxima pair location module is design to accurately locate the PPG peaks. A clock control unit is designed to further reduce the power consumption of the proposed chip. Fabricated with the 0.18 μm N-well CMOS 1P6M technology, the power consumption of proposed chip is only 8.12 μW in 1 V voltage supply. Validated with PPG signals in multiparameter intelligent monitoring in intensive care databases and signals acquired by the wrist photoelectric volume detection front end, the proposed chip can accurately detect PPG signals. The average sensitivity and positive prediction are 99.91% and 100%, respectively.
Local thresholding de-noise speech signal
NASA Astrophysics Data System (ADS)
Luo, Haitao
2013-07-01
De-noise speech signal if it is noisy. Construct a wavelet according to Daubechies' method, and derive a wavelet packet from the constructed scaling and wavelet functions. Decompose the noisy speech signal by wavelet packet. Develop algorithms to detect beginning and ending point of speech. Construct polynomial function for local thresholding. Apply different strategies to de-noise and compress the decomposed terminal nodes coefficients. Reconstruct the wavelet packet tree. Re-build audio file using reconstructed data and compare the effectiveness of different strategies.
A New Adaptive Image Denoising Method Based on Neighboring Coefficients
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.
NASA Astrophysics Data System (ADS)
Ochoa Domínguez, Humberto de Jesús; Máynez, Leticia O.; Vergara Villegas, Osslan O.; Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G.
2015-06-01
PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image.
NASA Astrophysics Data System (ADS)
Messer, Sheila R.; Agzarian, John; Abbott, Derek
2001-05-01
Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they may be replayed, may be analyzed for spectral and frequency content, and frequencies inaudible to the human ear may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise and noise generated from contact between the recording device and the skin. Because PCG signals are known to be nonlinear and it is often not possible to determine their noise content, traditional de-noising methods may not be effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general, the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels of decomposition. Averaging also proved a highly useful de- noising technique; however, in some cases averaging is not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract instantaneous features including instantaneous amplitude, frequency, and phase.
A wavelet phase filter for emission tomography
Olsen, E.T.; Lin, B.
1995-07-01
The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.
Multiresolution Bilateral Filtering for Image Denoising
Zhang, Ming; Gunturk, Bahadir K.
2008-01-01
The bilateral filter is a nonlinear filter that does spatial averaging without smoothing edges; it has shown to be an effective image denoising technique. An important issue with the application of the bilateral filter is the selection of the filter parameters, which affect the results significantly. There are two main contributions of this paper. The first contribution is an empirical study of the optimal bilateral filter parameter selection in image denoising applications. The second contribution is an extension of the bilateral filter: multiresolution bilateral filter, where bilateral filtering is applied to the approximation (low-frequency) subbands of a signal decomposed using a wavelet filter bank. The multiresolution bilateral filter is combined with wavelet thresholding to form a new image denoising framework, which turns out to be very effective in eliminating noise in real noisy images. Experimental results with both simulated and real data are provided. PMID:19004705
Nonlocal means denoising of ECG signals.
Tracey, Brian H; Miller, Eric L
2012-09-01
Patch-based methods have attracted significant attention in recent years within the field of image processing for a variety of problems including denoising, inpainting, and super-resolution interpolation. Despite their prevalence for processing 2-D signals, they have received little attention in the 1-D signal processing literature. In this letter, we explore application of one such method, the nonlocal means (NLM) approach, to the denoising of biomedical signals. Using ECG as an example, we demonstrate that a straightforward NLM-based denoising scheme provides signal-to-noise ratio improvements very similar to state of the art wavelet-based methods, while giving ~3 × or greater reduction in metrics measuring distortion of the denoised waveform. PMID:22829361
An image denoising application using shearlets
NASA Astrophysics Data System (ADS)
Sevindir, Hulya Kodal; Yazici, Cuneyt
2013-10-01
Medical imaging is a multidisciplinary field related to computer science, electrical/electronic engineering, physics, mathematics and medicine. There has been dramatic increase in variety, availability and resolution of medical imaging devices for the last half century. For proper medical imaging highly trained technicians and clinicians are needed to pull out clinically pertinent information from medical data correctly. Artificial systems must be designed to analyze medical data sets either in a partially or even a fully automatic manner to fulfil the need. For this purpose there has been numerous ongoing research for finding optimal representations in image processing and computer vision [1, 18]. Medical images almost always contain artefacts and it is crucial to remove these artefacts to obtain healthy results. Out of many methods for denoising images, in this paper, two denoising methods, wavelets and shearlets, have been applied to mammography images. Comparing these two methods, shearlets give better results for denoising such data.
MR image denoising method for brain surface 3D modeling
NASA Astrophysics Data System (ADS)
Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan
2014-11-01
Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.
Dynamic Denoising of Tracking Sequences
Michailovich, Oleg; Tannenbaum, Allen
2009-01-01
In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences. Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement “collaborate” in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over “static” approaches, in which the tracking images are enhanced independently of each other. PMID:18482881
Simultaneous denoising and compression of multispectral images
NASA Astrophysics Data System (ADS)
Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.
2013-01-01
A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.
Research and Implementation of Heart Sound Denoising
NASA Astrophysics Data System (ADS)
Liu, Feng; Wang, Yutai; Wang, Yanxiang
Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.
Zhang, Chu; Ye, Hui; Liu, Fei; He, Yong; Kong, Wenwen; Sheng, Kuichuan
2016-01-01
Biomass energy represents a huge supplement for meeting current energy demands. A hyperspectral imaging system covering the spectral range of 874–1734 nm was used to determine the pH value of anaerobic digestion liquid produced by water hyacinth and rice straw mixtures used for methane production. Wavelet transform (WT) was used to reduce noises of the spectral data. Successive projections algorithm (SPA), random frog (RF) and variable importance in projection (VIP) were used to select 8, 15 and 20 optimal wavelengths for the pH value prediction, respectively. Partial least squares (PLS) and a back propagation neural network (BPNN) were used to build the calibration models on the full spectra and the optimal wavelengths. As a result, BPNN models performed better than the corresponding PLS models, and SPA-BPNN model gave the best performance with a correlation coefficient of prediction (rp) of 0.911 and root mean square error of prediction (RMSEP) of 0.0516. The results indicated the feasibility of using hyperspectral imaging to determine pH values during anaerobic digestion. Furthermore, a distribution map of the pH values was achieved by applying the SPA-BPNN model. The results in this study would help to develop an on-line monitoring system for biomass energy producing process by hyperspectral imaging. PMID:26901202
Zhang, Chu; Ye, Hui; Liu, Fei; He, Yong; Kong, Wenwen; Sheng, Kuichuan
2016-01-01
Biomass energy represents a huge supplement for meeting current energy demands. A hyperspectral imaging system covering the spectral range of 874-1734 nm was used to determine the pH value of anaerobic digestion liquid produced by water hyacinth and rice straw mixtures used for methane production. Wavelet transform (WT) was used to reduce noises of the spectral data. Successive projections algorithm (SPA), random frog (RF) and variable importance in projection (VIP) were used to select 8, 15 and 20 optimal wavelengths for the pH value prediction, respectively. Partial least squares (PLS) and a back propagation neural network (BPNN) were used to build the calibration models on the full spectra and the optimal wavelengths. As a result, BPNN models performed better than the corresponding PLS models, and SPA-BPNN model gave the best performance with a correlation coefficient of prediction (rp) of 0.911 and root mean square error of prediction (RMSEP) of 0.0516. The results indicated the feasibility of using hyperspectral imaging to determine pH values during anaerobic digestion. Furthermore, a distribution map of the pH values was achieved by applying the SPA-BPNN model. The results in this study would help to develop an on-line monitoring system for biomass energy producing process by hyperspectral imaging. PMID:26901202
... the complications or potential side effects of a chemical peel? Temporary or permanent change in skin color, particularly for women on birth control pills, who subsequently become pregnant or have a history of brownish facial ... after having a chemical peel? All peels require some follow-up care: ...
Astronomical image denoising using dictionary learning
NASA Astrophysics Data System (ADS)
Beckouche, S.; Starck, J. L.; Fadili, J.
2013-08-01
Astronomical images suffer a constant presence of multiple defects that are consequences of the atmospheric conditions and of the intrinsic properties of the acquisition equipment. One of the most frequent defects in astronomical imaging is the presence of additive noise which makes a denoising step mandatory before processing data. During the last decade, a particular modeling scheme, based on sparse representations, has drawn the attention of an ever growing community of researchers. Sparse representations offer a promising framework to many image and signal processing tasks, especially denoising and restoration applications. At first, the harmonics, wavelets and similar bases, and overcomplete representations have been considered as candidate domains to seek the sparsest representation. A new generation of algorithms, based on data-driven dictionaries, evolved rapidly and compete now with the off-the-shelf fixed dictionaries. Although designing a dictionary relies on guessing the representative elementary forms and functions, the framework of dictionary learning offers the possibility of constructing the dictionary using the data themselves, which provides us with a more flexible setup to sparse modeling and allows us to build more sophisticated dictionaries. In this paper, we introduce the centered dictionary learning (CDL) method and we study its performance for astronomical image denoising. We show how CDL outperforms wavelet or classic dictionary learning denoising techniques on astronomical images, and we give a comparison of the effects of these different algorithms on the photometry of the denoised images. The current version of the code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A132
A comparison of de-noising methods for differential phase shift and associated rainfall estimation
NASA Astrophysics Data System (ADS)
Hu, Zhiqun; Liu, Liping; Wu, Linlin; Wei, Qing
2015-04-01
Measured differential phase shift UDP is known to be a noisy unstable polarimetric radar variable, such that the quality of UDP data has direct impact on specific differential phase shift KDP estimation, and subsequently, the KDP-based rainfall estimation. Over the past decades, many UDP de-noising methods have been developed; however, the de-noising effects in these methods and their impact on KDP-based rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy UDP data were generated and de-noised by using several methods such as finite-impulse response (FIR), Kalman, wavelet, traditional mean, and median filters. The biases were compared between KDP from simulated and observed UDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman, and wavelet methods have a better de-noising effect than the traditional methods. After UDP was de-noised, the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with UDP de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h ≥1. However, the improved estimation was not significant when the precipitation intensity further increased to a rainfall rate beyond 10 mm h ≥1. The performance of wavelet analysis was found to be the most stable of these filters.
Minimum entropy approach to denoising time-frequency distributions
NASA Astrophysics Data System (ADS)
Aviyente, Selin; Williams, William J.
2001-11-01
Signals used in time-frequency analysis are usually corrupted by noise. Therefore, denoising the time-frequency representation is a necessity for producing readable time-frequency images. Denoising is defined as the operation of smoothing a noisy signal or image for producing a noise free representation. Linear smoothing of time-frequency distributions (TFDs) suppresses noise at the expense of considerable smearing of the signal components. For this reason, nonlinear denoising has been preferred. A common example to nonlinear denoising methods is the wavelet thresholding. In this paper, we introduce an entropy based approach to denoising time-frequency distributions. This new approach uses the spectrogram decomposition of time-frequency kernels proposed by Cunningham and Williams.In order to denoise the time-frequency distribution, we combine those spectrograms with smallest entropy values, thus ensuring that each spectrogram is well concentrated on the time-frequency plane and contains as little noise as possible. Renyi entropy is used as the measure to quantify the complexity of each spectrogram. The threshold for the number of spectrograms to combine is chosen adaptively based on the tradeoff between entropy and variance. The denoised time-frequency distributions for several signals are shown to demonstrate the effectiveness of the method. The improvement in performance is quantitatively evaluated.
Coleman, W P
2001-07-01
Dermal chemical peeling is a very satisfying procedure for patients and physicians alike. Although not providing the ablation of deep wrinkles and scars that dermabrasion and laser procedures may accomplish, trichloroacetic acid peels usually result in few complications and rapid recovery. Patients can usually expect photographic improvement in their skin. The results are usually long lasting, and most patients do not need to repeat dermal peels for at least 2 years. Of all resurfacing procedures, dermal peeling provides the best benefit-to-risk ratio. PMID:11599397
A multiscale products technique for denoising of DNA capillary electrophoresis signals
NASA Astrophysics Data System (ADS)
Gao, Qingwei; Lu, Yixiang; Sun, Dong; Zhang, Dexiang
2013-06-01
Since noise degrades the accuracy and precision of DNA capillary electrophoresis (CE) analysis, signal denoising is thus important to facilitate the postprocessing of CE data. In this paper, a new denoising algorithm based on dyadic wavelet transform using multiscale products is applied for the removal of the noise in the DNA CE signal. The adjacent scale wavelet coefficients are first multiplied to amplify the significant features of the CE signal while diluting noise. Then, noise is suppressed by applying a multiscale threshold to the multiscale products instead of directly to the wavelet coefficients. Finally, the noise-free CE signal is recovered from the thresholded coefficients by using inverse dyadic wavelet transform. We compare the performance of the proposed algorithm with other denoising methods applied to the synthetic CE and real CE signals. Experimental results show that the new scheme achieves better removal of noise while preserving the shape of peaks corresponding to the analytes in the sample.
Image denoising via Bayesian estimation of local variance with Maxwell density prior
NASA Astrophysics Data System (ADS)
Kittisuwan, Pichid
2015-10-01
The need for efficient image denoising methods has grown with the massive production of digital images and movies of all kinds. The distortion of images by additive white Gaussian noise (AWGN) is common during its processing and transmission. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. Indeed, one of the cruxes of the Bayesian image denoising algorithms is to estimate the local variance of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with Maxwell density prior for local observed variance and Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by analytical and computational tractability. The experimental results show that the proposed method yields good denoising results.
A new performance evaluation scheme for jet engine vibration signal denoising
NASA Astrophysics Data System (ADS)
Sadooghi, Mohammad Saleh; Esmaeilzadeh Khadem, Siamak
2016-08-01
Denoising of a cargo-plane jet engine compressor vibration signal is investigated in this article. Discrete wavelet transform and two families of Donoho-Johnston and parameter method thresholding, are applied to vibration signal. Eighty four combinations of wavelet thresholding and mother wavelet are evaluated. A new performance evaluation scheme for optimal selection of mother wavelet and thresholding method combination is proposed in this paper, which is make a trade off between four performance criteria of signal to noise ratio, percentage root mean square difference, Cross-correlation, and mean square error. Dmeyer mother wavelet (dmey) combined with Rigorous SURE thresholding has the maximum trade off value and was selected as the most appropriate combination for denoising of the signal. It was shown that inappropriate combination leads to data losing. Also higher performance of proposed trade off with respect to other criteria was proven graphically.
Denoising of Multi-Modal Images with PCA Self-Cross Bilateral Filter
NASA Astrophysics Data System (ADS)
Qiu, Yu; Urahama, Kiichi
We present the PCA self-cross bilateral filter for denoising multi-modal images. We firstly apply the principal component analysis for input multi-modal images. We next smooth the first principal component with a preliminary filter and use it as a supplementary image for cross bilateral filtering of input images. Among some preliminary filters, the undecimated wavelet transform is useful for effective denoising of various multi-modal images such as color, multi-lighting and medical images.
Research on Medical Image Enhancement Algorithm Based on GSM Model for Wavelet Coefficients
NASA Astrophysics Data System (ADS)
Wang, Lei; Jiang, Nian-de; Ning, Xing
For the complexity and application diversity of medical CT image, this article presents a medical CT Image enhancing algorithm based on Gaussian Scale Mixture Model for wavelet coefficient in the study of wavelet multi-scale analysis. The noisy image is firstly denoised in auto-adapted Wiener filter. Secondly, through the qualitative analysis and classification of wavelet coefficients for the signal and noise, the wavelet's approximate distribution and statistical characteristics are described, combining GSM(Gaussian scale mixture) model for wavelet coefficient in this paper. It is shown that this algorithm can improve the denoised result and enhanced the medical CT image obviously.
Twofold processing for denoising ultrasound medical images.
Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y
2015-01-01
Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285
[DR image denoising based on Laplace-Impact mixture model].
Feng, Guo-Dong; He, Xiang-Bin; Zhou, He-Qin
2009-07-01
A novel DR image denoising algorithm based on Laplace-Impact mixture model in dual-tree complex wavelet domain is proposed in this paper. It uses local variance to build probability density function of Laplace-Impact model fitted to the distribution of high-frequency subband coefficients well. Within Laplace-Impact framework, this paper describes a novel method for image denoising based on designing minimum mean squared error (MMSE) estimators, which relies on strong correlation between amplitudes of nearby coefficients. The experimental results show that the algorithm proposed in this paper outperforms several state-of-art denoising methods such as Bayes least squared Gaussian scale mixture and Laplace prior. PMID:19938519
A new study on mammographic image denoising using multiresolution techniques
NASA Astrophysics Data System (ADS)
Dong, Min; Guo, Ya-Nan; Ma, Yi-De; Ma, Yu-run; Lu, Xiang-yu; Wang, Ke-ju
2015-12-01
Mammography is the most simple and effective technology for early detection of breast cancer. However, the lesion areas of breast are difficult to detect which due to mammograms are mixed with noise. This work focuses on discussing various multiresolution denoising techniques which include the classical methods based on wavelet and contourlet; moreover the emerging multiresolution methods are also researched. In this work, a new denoising method based on dual tree contourlet transform (DCT) is proposed, the DCT possess the advantage of approximate shift invariant, directionality and anisotropy. The proposed denoising method is implemented on the mammogram, the experimental results show that the emerging multiresolution method succeeded in maintaining the edges and texture details; and it can obtain better performance than the other methods both on visual effects and in terms of the Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Structure Similarity (SSIM) values.
Shearlet-based total variation diffusion for denoising.
Easley, Glenn R; Labate, Demetrio; Colonna, Flavia
2009-02-01
We propose a shearlet formulation of the total variation (TV) method for denoising images. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. Common approaches in combining wavelet-like representations such as curvelets with TV or diffusion methods aim at reducing Gibbs-type artifacts after obtaining a nearly optimal estimate. We show that it is possible to obtain much better estimates from a shearlet representation by constraining the residual coefficients using a projected adaptive total variation scheme in the shearlet domain. We also analyze the performance of a shearlet-based diffusion method. Numerical examples demonstrate that these schemes are highly effective at denoising complex images and outperform a related method based on the use of the curvelet transform. Furthermore, the shearlet-TV scheme requires far fewer iterations than similar competitors. PMID:19095539
Denoising in digital speckle pattern interferometry using wave atoms.
Federico, Alejandro; Kaufmann, Guillermo H
2007-05-15
We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented. PMID:17440544
Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-07-17
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
NASA Astrophysics Data System (ADS)
Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.
2012-07-01
The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.
Mining wavelet transformed boiler data sets
NASA Astrophysics Data System (ADS)
Letsche, Terry Lee
Accurate combustion models provide information that allows increased boiler efficiency optimization, saving money and resources while reducing waste. Boiler combustion processes are noted for being complex, nonstationary and nonlinear. While numerous methods have been used to model boiler processes, data driven approaches reflect actual operating conditions within a particular boiler and do not depend on idealized, complex, or expensive empirical models. Boiler and combustion processes vary in time, requiring a denoising technique that preserves the temporal and frequency nature of the data. Moving average, a common technique, smoothes data---low frequency noise is not removed. This dissertation examines models built with wavelet denoising techniques that remove low and high frequency noise in both time and frequency domains. The denoising process has a number of parameters, including choice of wavelet, threshold value, level of wavelet decomposition, and disposition of attributes that appear to be significant at multiple thresholds. A process is developed to experimentally evaluate the predictive accuracy of these models and compares this result against two benchmarks. The first research hypothesis compares the performance of these wavelet denoised models to the model generated from the original data. The second research hypothesis compares the performance of the models generated with this denoising approach to the most effective model generated from a moving average process. In both experiments it was determined that the Daubechies 4 wavelet was a better choice than the more typically chosen Haar wavelet, wavelet packet decomposition outperforms other levels of wavelet decomposition, and discarding all but the lowest threshold repeating attributes produces superior results. The third research hypothesis examined using a two-dimensional wavelet transform on the data. Another parameter for handling the boundary condition was introduced. In the two-dimensional case
Real-time image denoising algorithm in teleradiology systems
NASA Astrophysics Data System (ADS)
Gupta, Pradeep Kumar; Kanhirodan, Rajan
2006-02-01
Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.
Zhang, Chunmin; Ren, Wenyi; Mu, Tingkui; Fu, Lili; Jia, Chenling
2013-02-11
Based on empirical mode decomposition (EMD), the background removal and de-noising procedures of the data taken by polarization interference imaging interferometer (PIIS) are implemented. Through numerical simulation, it is discovered that the data processing methods are effective. The assumption that the noise mostly exists in the first intrinsic mode function is verified, and the parameters in the EMD thresholding de-noising methods is determined. In comparison, the wavelet and windowed Fourier transform based thresholding de-noising methods are introduced. The de-noised results are evaluated by the SNR, spectral resolution and peak value of the de-noised spectrums. All the methods are used to suppress the effect from the Gaussian and Poisson noise. The de-noising efficiency is higher for the spectrum contaminated by Gaussian noise. The interferogram obtained by the PIIS is processed by the proposed methods. Both the interferogram without background and noise free spectrum are obtained effectively. The adaptive and robust EMD based methods are effective to the background removal and de-noising in PIIS. PMID:23481716
A procedure for denoising dual-axis swallowing accelerometry signals.
Sejdić, Ervin; Steele, Catriona M; Chau, Tom
2010-01-01
Dual-axis swallowing accelerometry is an emerging tool for the assessment of dysphagia (swallowing difficulties). These signals however can be very noisy as a result of physiological and motion artifacts. In this note, we propose a novel scheme for denoising those signals, i.e. a computationally efficient search for the optimal denoising threshold within a reduced wavelet subspace. To determine a viable subspace, the algorithm relies on the minimum value of the estimated upper bound for the reconstruction error. A numerical analysis of the proposed scheme using synthetic test signals demonstrated that the proposed scheme is computationally more efficient than minimum noiseless description length (MNDL)-based denoising. It also yields smaller reconstruction errors than MNDL, SURE and Donoho denoising methods. When applied to dual-axis swallowing accelerometry signals, the proposed scheme exhibits improved performance for dry, wet and wet chin tuck swallows. These results are important for the further development of medical devices based on dual-axis swallowing accelerometry signals. PMID:19940343
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin
2015-01-01
Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991
Adapting overcomplete wavelet models to natural images
NASA Astrophysics Data System (ADS)
Sallee, Phil; Olshausen, Bruno A.
2003-11-01
Overcomplete wavelet representations have become increasingly popular for their ability to provide highly sparse and robust descriptions of natural signals. We describe a method for incorporating an overcomplete wavelet representation as part of a statistical model of images which includes a sparse prior distribution over the wavelet coefficients. The wavelet basis functions are parameterized by a small set of 2-D functions. These functions are adapted to maximize the average log-likelihood of the model for a large database of natural images. When adapted to natural images, these functions become selective to different spatial orientations, and they achieve a superior degree of sparsity on natural images as compared with traditional wavelet bases. The learned basis is similar to the Steerable Pyramid basis, and yields slightly higher SNR for the same number of active coefficients. Inference with the learned model is demonstrated for applications such as denoising, with results that compare favorably with other methods.
The use of ensemble empirical mode decomposition as a novel denoising technique
NASA Astrophysics Data System (ADS)
Gaci, Said; Hachay, Olga; Zaourar, Naima
2016-04-01
Denoising is of a high importance in geophysical data processing. This paper suggests a new denoising technique based on the Ensemble Empirical mode decomposition (EEMD). This technique has been compared with the discrete wavelet transform (DWT) thresholding. Firstly, both methods have been implemented on synthetic signals with diverse waveforms ('blocks', 'heavy sine', 'Doppler', and 'mishmash'). The EEMD denoising method is proved to be the most efficient for 'blocks', 'heavy sine' and 'mishmash' signals for all the considered signal-to-noise ratio (SNR) values. However, the results obtained using the DWT thresholding are the most reliable for 'Doppler' signal, and the difference between the calculated mean square error (MSE) values using the studied methods is slight and decreases as the SNR value gets smaller values. Secondly, the denoising methods have been applied on real seismic traces recorded in the Algerian Sahara. It is shown that the proposed technique outperforms the DWT thresholding. In conclusion, the EEMD technique can provide a powerful tool for denoising seismic signals. Keywords: Ensemble Empirical mode decomposition (EEMD), Discrete wavelet transform (DWT), seismic signal.
Research of Gear Fault Detection in Morphological Wavelet Domain
NASA Astrophysics Data System (ADS)
Hong, Shi; Fang-jian, Shan; Bo, Cong; Wei, Qiu
2016-02-01
For extracting mutation information from gear fault signal and achieving a valid fault diagnosis, a gear fault diagnosis method based on morphological mean wavelet transform was designed. Morphological mean wavelet transform is a linear wavelet in the framework of morphological wavelet. Decomposing gear fault signal by this morphological mean wavelet transform could produce signal synthesis operators and detailed synthesis operators. For signal synthesis operators, it was just close to orginal signal, and for detailed synthesis operators, it contained fault impact signal or interference signal and could be catched. The simulation experiment result indicates that, compared with Fourier transform, the morphological mean wavelet transform method can do time-frequency analysis for original signal, effectively catch impact signal appears position; and compared with traditional linear wavelet transform, it has simple structure, easy realization, signal local extremum sensitivity and high denoising ability, so it is more adapted to gear fault real-time detection.
A fast non-local image denoising algorithm
NASA Astrophysics Data System (ADS)
Dauwe, A.; Goossens, B.; Luong, H. Q.; Philips, W.
2008-02-01
In this paper we propose several improvements to the original non-local means algorithm introduced by Buades et al. which obtains state-of-the-art denoising results. The strength of this algorithm is to exploit the repetitive character of the image in order to denoise the image unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Due to the enormous amount of weight computations, the original algorithm has a high computational cost. An improvement of image quality towards the original algorithm is to ignore the contributions from dissimilar windows. Even though their weights are very small at first sight, the new estimated pixel value can be severely biased due to the many small contributions. This bad influence of dissimilar windows can be eliminated by setting their corresponding weights to zero. Using the preclassification based on the first three statistical moments, only contributions from similar neighborhoods are computed. To decide whether a window is similar or dissimilar, we will derive thresholds for images corrupted with additive white Gaussian noise. Our accelerated approach is further optimized by taking advantage of the symmetry in the weights, which roughly halves the computation time, and by using a lookup table to speed up the weight computations. Compared to the original algorithm, our proposed method produces images with increased PSNR and better visual performance in less computation time. Our proposed method even outperforms state-of-the-art wavelet denoising techniques in both visual quality and PSNR values for images containing a lot of repetitive structures such as textures: the denoised images are much sharper and contain less artifacts. The proposed optimizations can also be applied in other image processing tasks which employ the concept of repetitive structures such as intra-frame super-resolution or detection of digital image forgery.
Design Methodology of a New Wavelet Basis Function for Fetal Phonocardiographic Signals
Chourasia, Vijay S.; Tiwari, Anil Kumar
2013-01-01
Fetal phonocardiography (fPCG) based antenatal care system is economical and has a potential to use for long-term monitoring due to noninvasive nature of the system. The main limitation of this technique is that noise gets superimposed on the useful signal during its acquisition and transmission. Conventional filtering may result into loss of valuable diagnostic information from these signals. This calls for a robust, versatile, and adaptable denoising method applicable in different operative circumstances. In this work, a novel algorithm based on wavelet transform has been developed for denoising of fPCG signals. Successful implementation of wavelet theory in denoising is heavily dependent on selection of suitable wavelet basis function. This work introduces a new mother wavelet basis function for denoising of fPCG signals. The performance of newly developed wavelet is found to be better when compared with the existing wavelets. For this purpose, a two-channel filter bank, based on characteristics of fPCG signal, is designed. The resultant denoised fPCG signals retain the important diagnostic information contained in the original fPCG signal. PMID:23766693
NASA Astrophysics Data System (ADS)
Kishan, Harini; Seelamantula, Chandra Sekhar
2015-09-01
We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques.
Omitaomu, Olufemi A; Protopopescu, Vladimir A; Ganguly, Auroop R
2011-01-01
A new approach is developed for denoising signals using the Empirical Mode Decomposition (EMD) technique and the Information-theoretic method. The EMD technique is applied to decompose a noisy sensor signal into the so-called intrinsic mode functions (IMFs). These functions are of the same length and in the same time domain as the original signal. Therefore, the EMD technique preserves varying frequency in time. Assuming the given signal is corrupted by high-frequency Gaussian noise implies that most of the noise should be captured by the first few modes. Therefore, our proposition is to separate the modes into high-frequency and low-frequency groups. We applied an information-theoretic method, namely mutual information, to determine the cut-off for separating the modes. A denoising procedure is applied only to the high-frequency group using a shrinkage approach. Upon denoising, this group is combined with the original low-frequency group to obtain the overall denoised signal. We illustrate our approach with simulated and real-world data sets. The results are compared to two popular denoising techniques in the literature, namely discrete Fourier transform (DFT) and discrete wavelet transform (DWT). We found that our approach performs better than DWT and DFT in most cases, and comparatively to DWT in some cases in terms of: (i) mean square error, (ii) recomputed signal-to-noise ratio, and (iii) visual quality of the denoised signals.
3D Wavelet-Based Filter and Method
Moss, William C.; Haase, Sebastian; Sedat, John W.
2008-08-12
A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.
Spatio-Temporal Multiscale Denoising of Fluoroscopic Sequence.
Amiot, Carole; Girard, Catherine; Chanussot, Jocelyn; Pescatore, Jeremie; Desvignes, Michel
2016-06-01
In the past 20 years, a wide range of complex fluoroscopically guided procedures have shown considerable growth. Biologic effects of the exposure (radiation induced burn, cancer) lead to reduce the dose during the intervention, for the safety of patients and medical staff. However, when the dose is reduced, image quality decreases, with a high level of noise and a very low contrast. Efficient restoration and denoising algorithms should overcome this drawback. We propose a spatio-temporal filter operating in a multi-scales space. This filter relies on a first order, motion compensated, recursive temporal denoising. Temporal high frequency content is first detected and then matched over time to allow for a strong denoising in the temporal axis. We study this filter in the curvelet domain and in the dual-tree complex wavelet domain, and compare those results to state of the art methods. Quantitative and qualitative analysis on both synthetic and real fluoroscopic sequences demonstrate that the proposed filter allows a great dose reduction. PMID:26812705
Comparison of de-noising techniques for FIRST images
Fodor, I K; Kamath, C
2001-01-22
Data obtained through scientific observations are often contaminated by noise and artifacts from various sources. As a result, a first step in mining these data is to isolate the signal of interest by minimizing the effects of the contaminations. Once the data has been cleaned or de-noised, data mining can proceed as usual. In this paper, we describe our work in denoising astronomical images from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. We are mining this survey to detect radio-emitting galaxies with a bent-double morphology. This task is made difficult by the noise in the images caused by the processing of the sensor data. We compare three different approaches to de-noising: thresholding of wavelet coefficients advocated in the statistical community, traditional Altering methods used in the image processing community, and a simple thresholding scheme proposed by FIRST astronomers. While each approach has its merits and pitfalls, we found that for our purpose, the simple thresholding scheme worked relatively well for the FIRST dataset.
Machinery vibration signal denoising based on learned dictionary and sparse representation
NASA Astrophysics Data System (ADS)
Guo, Liang; Gao, Hongli; Li, Jun; Huang, Haifeng; Zhang, Xiaochen
2015-07-01
Mechanical vibration signal denoising has been an import problem for machine damage assessment and health monitoring. Wavelet transfer and sparse reconstruction are the powerful and practical methods. However, those methods are based on the fixed basis functions or atoms. In this paper, a novel method is presented. The atoms used to represent signals are learned from the raw signal. And in order to satisfy the requirements of real-time signal processing, an online dictionary learning algorithm is adopted. Orthogonal matching pursuit is applied to extract the most pursuit column in the dictionary. At last, denoised signal is calculated with the sparse vector and learned dictionary. A simulation signal and real bearing fault signal are utilized to evaluate the improved performance of the proposed method through the comparison with kinds of denoising algorithms. Then Its computing efficiency is demonstrated by an illustrative runtime example. The results show that the proposed method outperforms current algorithms with efficiency calculation.
The use of wavelet filters for reducing noise in posterior fossa Computed Tomography images
Pita-Machado, Reinado; Perez-Diaz, Marlen Lorenzo-Ginori, Juan V. Bravo-Pino, Rolando
2014-11-07
Wavelet transform based de-noising like wavelet shrinkage, gives the good results in CT. This procedure affects very little the spatial resolution. Some applications are reconstruction methods, while others are a posteriori de-noising methods. De-noising after reconstruction is very difficult because the noise is non-stationary and has unknown distribution. Therefore, methods which work on the sinogram-space don’t have this problem, because they always work over a known noise distribution at this point. On the other hand, the posterior fossa in a head CT is a very complex region for physicians, because it is commonly affected by artifacts and noise which are not eliminated during the reconstruction procedure. This can leads to some false positive evaluations. The purpose of our present work is to compare different wavelet shrinkage de-noising filters to reduce noise, particularly in images of the posterior fossa within CT scans in the sinogram-space. This work describes an experimental search for the best wavelets, to reduce Poisson noise in Computed Tomography (CT) scans. Results showed that de-noising with wavelet filters improved the quality of posterior fossa region in terms of an increased CNR, without noticeable structural distortions.
Research on infrared-image denoising algorithm based on the noise analysis of the detector
NASA Astrophysics Data System (ADS)
Liu, Songtao; Zhou, Xiaodong; Shen, Tongsheng; Han, Yanli
2005-01-01
Since the conventional denoising algorithms have not considered the influence of certain concrete detector, they are not very effective to remove various noises contained in the low signal-to-noise ration infrared image. In this paper, a new thinking for infrared image denoising is proposed, which is based on the noise analyses of detector with an example of L model infrared multi-element detector. According to the noise analyses of this detector, the emphasis is placed on how to filter white noise and fractal noise in the preprocessing phase. Wavelet analysis is a good tool for analyzing 1/f process. 1/f process can be viewed as white noise approximately since its wavelet coefficients are stationary and uncorrelated. So if wavelet transform is adopted, the problem of removing white noise and fraction noise is simplified as the only one problem, i.e., removing white noise. To address this problem, a new wavelet domain adaptive wiener filtering algorithm is presented. From the viewpoint of quantitative and qualitative analyses, the filtering effect of our method is compared with those of traditional median filter, mean filter and wavelet thresholding algorithm in detail. The results show that our method can reduce various noises effectively and raise the ratio of signal-to-noise evidently.
Iterative denoising of ghost imaging.
Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie
2014-10-01
We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001
NASA Astrophysics Data System (ADS)
Nex, F.; Gerke, M.
2014-08-01
Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.
Latest chemical peel innovations.
Langsdon, Phillip R; Rodwell, David W; Velargo, Parker A; Langsdon, Carol H; Guydon, Amanda
2012-05-01
For decades, chemical peels have remained a trusted option for treatment of aging facial skin. However, emerging technologies are being adopted by many practitioners who may not have had sufficient opportunity to learn the art of chemical peeling. Properly performed peels can improve the condition of the skin, are less expensive than light-based machines, and exfoliate the skin without the thermal damage associated with light-based machines. This article presents a new variation of a trusted method, using a series of low-strength trichloroacetic acid peels and proper skin preparation that is cost-effective and produces excellent results in selected patients. PMID:22537780
Schlossnagle, G.; Restrepo, J.M.; Leaf, G.K.
1993-12-01
The properties of periodized Daubechies wavelets on [0,1] are detailed and contrasted against their counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrate by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and several tabulated values are included.
A de-noising algorithm to improve SNR of segmented gamma scanner for spectrum analysis
NASA Astrophysics Data System (ADS)
Li, Huailiang; Tuo, Xianguo; Shi, Rui; Zhang, Jinzhao; Henderson, Mark Julian; Courtois, Jérémie; Yan, Minhao
2016-05-01
An improved threshold shift-invariant wavelet transform de-noising algorithm for high-resolution gamma-ray spectroscopy is proposed to optimize the threshold function of wavelet transforms and reduce signal resulting from pseudo-Gibbs artificial fluctuations. This algorithm was applied to a segmented gamma scanning system with large samples in which high continuum levels caused by Compton scattering are routinely encountered. De-noising data from the gamma ray spectrum measured by segmented gamma scanning system with improved, shift-invariant and traditional wavelet transform algorithms were all evaluated. The improved wavelet transform method generated significantly enhanced performance of the figure of merit, the root mean square error, the peak area, and the sample attenuation correction in the segmented gamma scanning system assays. We also found that the gamma energy spectrum can be viewed as a low frequency signal as well as high frequency noise superposition by the spectrum analysis. Moreover, a smoothed spectrum can be appropriate for straightforward automated quantitative analysis.
Zhang, Yi; Hirakawa, Keigo
2016-09-01
Low light photography suffers from blur and noise. In this paper, we propose a novel method to recover a dense estimate of spatially varying blur kernel as well as a denoised and deblurred image from a single noisy and object motion blurred image. A proposed method takes the advantage of the sparse representation of double discrete wavelet transform-a generative model of image blur that simplifies the wavelet analysis of a blurred image-and the Bayesian perspective of modeling the prior distribution of the latent sharp wavelet coefficient and the likelihood function that makes the noise handling explicit. We demonstrate the effectiveness of the proposed method on moderate noise and severely blurred images using simulated and real camera data. PMID:27337717
[An analytic method of wavelet energy value to evaluate the contraction intensity of uterus].
Yang, Jianping; Xiao, Kaixuan
2012-02-01
The data of uterine contraction pressure is the information source for extracting uterine contractions status. Because there is a variety of interference existing in contraction pressure data, commonly used methods such as uterine contraction intensity integration method can not obtain decent evaluation results. We used the bior 2.4 biorthogonal wavelet to decompose and reconstruct the pressure data in order to obtain the best denoising effect. Combining with the denoised results, we proposed an algorithm of the wavelet energy value. Based on the algorithm, we calculated the curve of wavelet energy value. It was proved that using the curve of wavelet energy value can better identify contractions waveform and evaluation contractions intensity. PMID:22404012
Based on the wavelet neural network analysis and forecast of deformation monitoring data
NASA Astrophysics Data System (ADS)
Zhou, Conglin; Tang, Shihua; Tang, Changzeng; Huang, Qing; Liu, Yintao; Zhong, Xinying; Li, Feida; Xu, Hongwei
2015-12-01
Combines the wavelet analysis and neural network, this paper will be processed the data and the traditional BP neural network and kalman filter are analyzed and compared. First of all to obtain data of dam deformation wavelet denoising, excluding the contaminated data, obtain the optimal data set. Threshold denoising is generally adopted. Then based on the BP neural network, wavelet analysis to improve the traditional neural network model. Improve the underlying layer upon layer number and the number of nodes. Combined with the optimized dam deformation data, using the improved network model, the results to the regression model, ordinary kalman filter, this paper compares and analyzes the prediction effect evaluation.Comparison result is more ideal, which indicates that the combination of wavelet neural network model for deformation data processing has a good precision.
A novel de-noising method for B ultrasound images
NASA Astrophysics Data System (ADS)
Tian, Da-Yong; Mo, Jia-qing; Yu, Yin-Feng; Lv, Xiao-Yi; Yu, Xiao; Jia, Zhen-Hong
2015-12-01
B ultrasound as a kind of ultrasonic imaging, which has become the indispensable diagnosis method in clinical medicine. However, the presence of speckle noise in ultrasound image greatly reduces the image quality and interferes with the accuracy of the diagnosis. Therefore, how to construct a method which can eliminate the speckle noise effectively, and at the same time keep the image details effectively is the research target of the current ultrasonic image de-noising. This paper is intended to remove the inherent speckle noise of B ultrasound image. The novel algorithm proposed is based on both wavelet transformation of B ultrasound images and data fusion of B ultrasound images, with a smaller mean squared error (MSE) and greater signal to noise ratio (SNR) compared with other algorithms. The results of this study can effectively remove speckle noise from B ultrasound images, and can well preserved the details and edge information which will produce better visual effects.
Weak transient fault feature extraction based on an optimized Morlet wavelet and kurtosis
NASA Astrophysics Data System (ADS)
Qin, Yi; Xing, Jianfeng; Mao, Yongfang
2016-08-01
Aimed at solving the key problem in weak transient detection, the present study proposes a new transient feature extraction approach using the optimized Morlet wavelet transform, kurtosis index and soft-thresholding. Firstly, a fast optimization algorithm based on the Shannon entropy is developed to obtain the optimized Morlet wavelet parameter. Compared to the existing Morlet wavelet parameter optimization algorithm, this algorithm has lower computation complexity. After performing the optimized Morlet wavelet transform on the analyzed signal, the kurtosis index is used to select the characteristic scales and obtain the corresponding wavelet coefficients. From the time-frequency distribution of the periodic impulsive signal, it is found that the transient signal can be reconstructed by the wavelet coefficients at several characteristic scales, rather than the wavelet coefficients at just one characteristic scale, so as to improve the accuracy of transient detection. Due to the noise influence on the characteristic wavelet coefficients, the adaptive soft-thresholding method is applied to denoise these coefficients. With the denoised wavelet coefficients, the transient signal can be reconstructed. The proposed method was applied to the analysis of two simulated signals, and the diagnosis of a rolling bearing fault and a gearbox fault. The superiority of the method over the fast kurtogram method was verified by the results of simulation analysis and real experiments. It is concluded that the proposed method is extremely suitable for extracting the periodic impulsive feature from strong background noise.
Shi, Yan; Yang, Xiaoyuan; Guo, Yuhua
2014-01-01
This paper is devoted to the study of a directional lifting transform for wavelet frames. A nonsubsampled lifting structure is developed to maintain the translation invariance as it is an important property in image denoising. Then, the directionality of the lifting-based tight frame is explicitly discussed, followed by a specific translation invariant directional framelet transform (TIDFT). The TIDFT has two framelets ψ1, ψ2 with vanishing moments of order two and one respectively, which are able to detect singularities in a given direction set. It provides an efficient and sparse representation for images containing rich textures along with properties of fast implementation and perfect reconstruction. In addition, an adaptive block-wise orientation estimation method based on Gabor filters is presented instead of the conventional minimization of residuals. Furthermore, the TIDFT is utilized to exploit the capability of image denoising, incorporating the MAP estimator for multivariate exponential distribution. Consequently, the TIDFT is able to eliminate the noise effectively while preserving the textures simultaneously. Experimental results show that the TIDFT outperforms some other frame-based denoising methods, such as contourlet and shearlet, and is competitive to the state-of-the-art denoising approaches. PMID:24215934
Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frederic
2015-02-15
Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimation of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a
ERIC Educational Resources Information Center
Borer, Londa; Larsen, Eric
1997-01-01
Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)
Lifting wavelet method of target detection
NASA Astrophysics Data System (ADS)
Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin
2009-11-01
Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.
Green Channel Guiding Denoising on Bayer Image
Zhang, Maojun
2014-01-01
Denoising is an indispensable function for digital cameras. In respect that noise is diffused during the demosaicking, the denoising ought to work directly on bayer data. The difficulty of denoising on bayer image is the interlaced mosaic pattern of red, green, and blue. Guided filter is a novel time efficient explicit filter kernel which can incorporate additional information from the guidance image, but it is still not applied for bayer image. In this work, we observe that the green channel of bayer mode is higher in both sampling rate and Signal-to-Noise Ratio (SNR) than the red and blue ones. Therefore the green channel can be used to guide denoising. This kind of guidance integrates the different color channels together. Experiments on both actual and simulated bayer images indicate that green channel acts well as the guidance signal, and the proposed method is competitive with other popular filter kernel denoising methods. PMID:24741370
R-L Method and BLS-GSM Denoising for Penumbra Image Reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Mei; Li, Yang; Sheng, Liang; Li, Chunhua; Wei, Fuli; Peng, Bodong
2013-12-01
When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.
A study of infrared spectroscopy de-noising based on LMS adaptive filter
NASA Astrophysics Data System (ADS)
Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao
2015-12-01
Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.
Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.
Navarro, X; Porée, F; Beuchée, A; Carrault, G
2015-03-01
Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233
NASA Astrophysics Data System (ADS)
Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Wang, Xiaodong
2013-07-01
Gearbox fault detection under strong background noise is a challenging task. It is feasible to make the fault feature distinct through multiwavelet denoising. In addition to the advantage of multi-resolution analysis, multiwavelet with several scaling functions and wavelet functions can detect the different fault features effectively. However, the fixed basis functions not related to the given signal may lower the accuracy of fault detection. Moreover, the multiwavelet transform may result in Gibbs phenomena in the step of reconstruction. Furthermore, both traditional term-by-term threshold and neighboring coefficients do not consider the direct spatial dependency of wavelet coefficients at adjacent scale. To overcome these deficiencies, adaptive redundant multiwavelet (ARM) denoising with improved neighboring coefficients (NeighCoeff) is proposed. Based on symmetric multiwavelet lifting scheme (SMLS), taking kurtosis—partial envelope spectrum entropy as the evaluation objective and genetic algorithms as the optimization method, ARM is proposed. Considering the intra-scale and inter-scale dependency of wavelet coefficients, the improved NeighCoeff method is developed and incorporated into ARM. The proposed method is applied to both the simulated signal and the practical gearbox vibration signal under different conditions. The results show its effectiveness and reliance for gearbox fault detection.
Wavelet analysis deformation monitoring data of high-speed railway bridge
NASA Astrophysics Data System (ADS)
Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa
2015-12-01
Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring
Bandages of boiled potato peels.
Patil, A R; Keswani, M H
1985-08-01
The use of potato peels as a dressing for burn wounds has been reported previously. A technique of preparing bandage rolls with boiled potato peels is now presented, which makes dressing of a burn wound more convenient. PMID:4041947
Denoising Medical Images using Calculus of Variations
Kohan, Mahdi Nakhaie; Behnam, Hamid
2011-01-01
We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674
Vector anisotropic filter for multispectral image denoising
NASA Astrophysics Data System (ADS)
Ben Said, Ahmed; Foufou, Sebti; Hadjidj, Rachid
2015-04-01
In this paper, we propose an approach to extend the application of anisotropic Gaussian filtering for multi- spectral image denoising. We study the case of images corrupted with additive Gaussian noise and use sparse matrix transform for noise covariance matrix estimation. Specifically we show that if an image has a low local variability, we can make the assumption that in the noisy image, the local variability originates from the noise variance only. We apply the proposed approach for the denoising of multispectral images corrupted by noise and compare the proposed method with some existing methods. Results demonstrate an improvement in the denoising performance.
Complications of Macular Peeling
Asencio-Duran, Mónica; Manzano-Muñoz, Beatriz; Vallejo-García, José Luis; García-Martínez, Jesús
2015-01-01
Macular peeling refers to the surgical technique for the removal of preretinal tissue or the internal limiting membrane (ILM) in the macula for several retinal disorders, ranging from epiretinal membranes (primary or secondary to diabetic retinopathy, retinal detachment…) to full-thickness macular holes, macular edema, foveal retinoschisis, and others. The technique has evolved in the last two decades, and the different instrumentations and adjuncts have progressively advanced turning into a safer, easier, and more useful tool for the vitreoretinal surgeon. Here, we describe the main milestones of macular peeling, drawing attention to its associated complications. PMID:26425351
Complications of Macular Peeling.
Asencio-Duran, Mónica; Manzano-Muñoz, Beatriz; Vallejo-García, José Luis; García-Martínez, Jesús
2015-01-01
Macular peeling refers to the surgical technique for the removal of preretinal tissue or the internal limiting membrane (ILM) in the macula for several retinal disorders, ranging from epiretinal membranes (primary or secondary to diabetic retinopathy, retinal detachment…) to full-thickness macular holes, macular edema, foveal retinoschisis, and others. The technique has evolved in the last two decades, and the different instrumentations and adjuncts have progressively advanced turning into a safer, easier, and more useful tool for the vitreoretinal surgeon. Here, we describe the main milestones of macular peeling, drawing attention to its associated complications. PMID:26425351
Noise reduction of FBG sensor signal by using a wavelet transform
NASA Astrophysics Data System (ADS)
Cho, Yo-Han; Song, Minho
2011-05-01
We constructed a FBG (fiber Bragg grating) sensor system based on a fiber-optic Sagnac interferometer. A fiber-optic laser source is used as a strong light source to attain high signal-to-noise ratio. However the unstable output power and coherence noises of the fiber laser made it hard to separate the FBG signals from the interference signals of the fiber coils. To reduce noises and extract FBG sensor signals, we used a Gaussian curve-fitting and a wavelet transform. The wavelet transform is a useful tool for analyzing and denoising output signals. The feasibility of the wavelet transform denoising process is presented with the preliminary experimental results, which showed much better accuracy than the case with only the Gaussian curve-fitting algorithm.
Langsdon, Phillip R; Shires, Courtney B
2012-02-01
Chemexfoliation is an excellent method to reduce facial rhytids. For 25 years, we have used the traditional formula as described by T. J. Baker but with a moist healing technique rather than a tape mask. We have found the peel to be inexpensive and easy to perform, with results that are excellent and consistent, with minimal side effects. PMID:22418821
OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM.
Guo, Qing; Sun, Shuifa; Dong, Fangmin; Gao, Bruce Z; Wang, Rui
2012-01-01
Optical Coherence Tomography(OCT) gradually becomes a very important imaging technology in the Biomedical field for its noninvasive, nondestructive and real-time properties. However, the interpretation and application of the OCT images are limited by the ubiquitous noise. In this paper, a denoising algorithm based on contourlet transform for the OCT heart tube image is proposed. A bivariate function is constructed to model the joint probability density function (pdf) of the coefficient and its cousin in contourlet domain. A bivariate shrinkage function is deduced to denoise the image by the maximum a posteriori (MAP) estimation. Three metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and equivalent number of look (ENL), are used to evaluate the denoised image using the proposed algorithm. The results show that the signal-to-noise ratio is improved while the edges of object are preserved by the proposed algorithm. Systemic comparisons with other conventional algorithms, such as mean filter, median filter, RKT filter, Lee filter, as well as bivariate shrinkage function for wavelet-based algorithm are conducted. The advantage of the proposed algorithm over these methods is illustrated. PMID:25364626
Self-adapting denoising, alignment and reconstruction in electron tomography in materials science.
Printemps, Tony; Mula, Guido; Sette, Daniele; Bleuet, Pierre; Delaye, Vincent; Bernier, Nicolas; Grenier, Adeline; Audoit, Guillaume; Gambacorti, Narciso; Hervé, Lionel
2016-01-01
An automatic procedure for electron tomography is presented. This procedure is adapted for specimens that can be fashioned into a needle-shaped sample and has been evaluated on inorganic samples. It consists of self-adapting denoising, automatic and accurate alignment including detection and correction of tilt axis, and 3D reconstruction. We propose the exploitation of a large amount of information of an electron tomography acquisition to achieve robust and automatic mixed Poisson-Gaussian noise parameter estimation and denoising using undecimated wavelet transforms. The alignment is made by mixing three techniques, namely (i) cross-correlations between neighboring projections, (ii) common line algorithm to get a precise shift correction in the direction of the tilt axis and (iii) intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis. Mixing alignment techniques turns out to be very efficient and fast. Significant improvements are highlighted in both simulations and real data reconstructions of porous silicon in high angle annular dark field mode and agglomerated silver nanoparticles in incoherent bright field mode. 3D reconstructions obtained with minimal user-intervention present fewer artefacts and less noise, which permits easier and more reliable segmentation and quantitative analysis. After careful sample preparation and data acquisition, the denoising procedure, alignment and reconstruction can be achieved within an hour for a 3D volume of about a hundred million voxels, which is a step toward a more routine use of electron tomography. PMID:26413937
Lahmiri, Salim
2016-03-01
Hybridisation of the bi-dimensional empirical mode decomposition (BEMD) with denoising techniques has been proposed in the literature as an effective approach for image denoising. In this Letter, the Student's probability density function is introduced in the computation of the mean envelope of the data during the BEMD sifting process to make it robust to values that are far from the mean. The resulting BEMD is denoted tBEMD. In order to show the effectiveness of the tBEMD, several image denoising techniques in tBEMD domain are employed; namely, fourth order partial differential equation (PDE), linear complex diffusion process (LCDP), non-linear complex diffusion process (NLCDP), and the discrete wavelet transform (DWT). Two biomedical images and a standard digital image were considered for experiments. The original images were corrupted with additive Gaussian noise with three different levels. Based on peak-signal-to-noise ratio, the experimental results show that PDE, LCDP, NLCDP, and DWT all perform better in the tBEMD than in the classical BEMD domain. It is also found that tBEMD is faster than classical BEMD when the noise level is low. When it is high, the computational cost in terms of processing time is similar. The effectiveness of the presented approach makes it promising for clinical applications. PMID:27222723
Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation
NASA Astrophysics Data System (ADS)
Lei, Sheau-Fang; Tung, Ying-Kai
Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.
[Medical image processing based on wavelet characteristics and edge blur detection].
Zhu, Baihui; Wan, Zhiping
2014-06-01
To solve the problems of noise interference and edge signal weakness for the existing medical image, we used two-dimensional wavelet transform to process medical images. Combined the directivity of the image edges and the correlation of the wavelet coefficients, we proposed a medical image processing algorithm based on wavelet characteristics and edge blur detection. This algorithm improved noise reduction capabilities and the edge effect due to wavelet transformation and edge blur detection. The experimental results showed that directional correlation improved edge based on wavelet transform fuzzy algorithm could effectively reduce the noise signal in the medical image and save the image edge signal. It has the advantage of the high-definition and de-noising ability. PMID:25219221
ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform
NASA Astrophysics Data System (ADS)
Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma
2016-06-01
Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.
Color graph based wavelet transform with perceptual information
NASA Astrophysics Data System (ADS)
Malek, Mohamed; Helbert, David; Carré, Philippe
2015-09-01
We propose a numerical strategy to define a multiscale analysis for color and multicomponent images based on the representation of data on a graph. Our approach consists of computing the graph of an image using the psychovisual information and analyzing it by using the spectral graph wavelet transform. We suggest introducing color dimension into the computation of the weights of the graph and using the geodesic distance as a mean of distance measurement. We thus have defined a wavelet transform based on a graph with perceptual information by using the CIELab color distance. This new representation is illustrated with denoising and inpainting applications. Overall, by introducing psychovisual information in the graph computation for the graph wavelet transform, we obtain very promising results. Thus, results in image restoration highlight the interest of the appropriate use of color information.
Wavelets, ridgelets, curvelets on the sphere, and applications
NASA Astrophysics Data System (ADS)
Moudden, Y.; Abrial, P.; Starck, J.-L.
2005-08-01
Analyzing data mapped to the sphere as may occur in a range of applications in geophysics, medical imaging or astrophysics, requires specific tools. This paper describes new multiscale decompositions for spherical images namely the isotropic undecimated wavelet transform, the ridgelet transform and the curvelet transform each of which is invertible. Several applications are described. We show how these transforms can be used in denoising and especially in a Combined Filtering Method, which uses both the wavelet and the curvelet transforms, thus benefiting from the advantages of both transforms. An application to component separation from multichannel data mapped to the sphere is also described where we take advantage of the spatiospectral localization on the sphere provided by the spherical wavelet functions.
NASA Astrophysics Data System (ADS)
Chen, Jinglong; Wan, Zhiguo; Pan, Jun; Zi, Yanyang; Wang, Yu; Chen, Binqiang; Sun, Hailiang; Yuan, Jing; He, Zhengjia
2016-02-01
Fault identification timely of rolling mill drivetrain is significant for guaranteeing product quality and realizing long-term safe operation. So, condition monitoring system of rolling mill drivetrain is designed and developed. However, because compound fault and weak fault feature information is usually sub-merged in heavy background noise, this task still faces challenge. This paper provides a possibility for fault identification of rolling mills drivetrain by proposing customized maximal-overlap multiwavelet denoising method. The effectiveness of wavelet denoising method mainly relies on the appropriate selections of wavelet base, transform strategy and threshold rule. First, in order to realize exact matching and accurate detection of fault feature, customized multiwavelet basis function is constructed via symmetric lifting scheme and then vibration signal is processed by maximal-overlap multiwavelet transform. Next, based on spatial dependency of multiwavelet transform coefficients, spatial neighboring coefficient data-driven group threshold shrinkage strategy is developed for denoising process by choosing the optimal group length and threshold via the minimum of Stein's Unbiased Risk Estimate. The effectiveness of proposed method is first demonstrated through compound fault identification of reduction gearbox on rolling mill. Then it is applied for weak fault identification of dedusting fan bearing on rolling mill and the results support its feasibility.
A 1D wavelet filtering for ultrasound images despeckling
NASA Astrophysics Data System (ADS)
Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel
2010-03-01
Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.
Discrete shearlet transform on GPU with applications in anomaly detection and denoising
NASA Astrophysics Data System (ADS)
Gibert, Xavier; Patel, Vishal M.; Labate, Demetrio; Chellappa, Rama
2014-12-01
Shearlets have emerged in recent years as one of the most successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets form a pyramid of well-localized functions defined not only over a range of scales and locations, but also over a range of orientations and with highly anisotropic supports. As a result, shearlets are much more effective than traditional wavelets in handling the geometry of multidimensional data, and this was exploited in a wide range of applications from image and signal processing. However, despite their desirable properties, the wider applicability of shearlets is limited by the computational complexity of current software implementations. For example, denoising a single 512 × 512 image using a current implementation of the shearlet-based shrinkage algorithm can take between 10 s and 2 min, depending on the number of CPU cores, and much longer processing times are required for video denoising. On the other hand, due to the parallel nature of the shearlet transform, it is possible to use graphics processing units (GPU) to accelerate its implementation. In this paper, we present an open source stand-alone implementation of the 2D discrete shearlet transform using CUDA C++ as well as GPU-accelerated MATLAB implementations of the 2D and 3D shearlet transforms. We have instrumented the code so that we can analyze the running time of each kernel under different GPU hardware. In addition to denoising, we describe a novel application of shearlets for detecting anomalies in textured images. In this application, computation times can be reduced by a factor of 50 or more, compared to multicore CPU implementations.
Geodesic denoising for optical coherence tomography images
NASA Astrophysics Data System (ADS)
Shahrian Varnousfaderani, Ehsan; Vogl, Wolf-Dieter; Wu, Jing; Gerendas, Bianca S.; Simader, Christian; Langs, Georg; Waldstein, Sebastian M.; Schmidt-Erfurth, Ursula
2016-03-01
Optical coherence tomography (OCT) is an optical signal acquisition method capturing micrometer resolution, cross-sectional three-dimensional images. OCT images are used widely in ophthalmology to diagnose and monitor retinal diseases such as age-related macular degeneration (AMD) and Glaucoma. While OCT allows the visualization of retinal structures such as vessels and retinal layers, image quality and contrast is reduced by speckle noise, obfuscating small, low intensity structures and structural boundaries. Existing denoising methods for OCT images may remove clinically significant image features such as texture and boundaries of anomalies. In this paper, we propose a novel patch based denoising method, Geodesic Denoising. The method reduces noise in OCT images while preserving clinically significant, although small, pathological structures, such as fluid-filled cysts in diseased retinas. Our method selects optimal image patch distribution representations based on geodesic patch similarity to noisy samples. Patch distributions are then randomly sampled to build a set of best matching candidates for every noisy sample, and the denoised value is computed based on a geodesic weighted average of the best candidate samples. Our method is evaluated qualitatively on real pathological OCT scans and quantitatively on a proposed set of ground truth, noise free synthetic OCT scans with artificially added noise and pathologies. Experimental results show that performance of our method is comparable with state of the art denoising methods while outperforming them in preserving the critical clinically relevant structures.
Li, Fang; Wang, Ji-hua; Lu, An-xiang; Han, Ping
2015-04-01
The concentration of Cr, Cu, Zn, As and Pb in soil was tested by portable X-ray fluorescence spectrometer. Each sample was tested for 3 times, then after using wavelet threshold noise filtering method for denoising and smoothing the spectra, a standard curve for each heavy metal was established according to the standard values of heavy metals in soil and the corresponding counts which was the average of the 3 processed spectra. The signal to noise ratio (SNR), mean square error (MSE) and information entropy (H) were taken to assess the effects of denoising when using wavelet threshold noise filtering method for determining the best wavelet basis and wavelet decomposition level. Some samples with different concentrations and H3 B03 (blank) were chosen to retest this instrument to verify its stability. The results show that: the best denoising result was obtained with the coif3 wavelet basis at the decomposition level of 3 when using the wavelet transform method. The determination coefficient (R2) range of the instrument is 0.990-0.996, indicating that a high degree of linearity was found between the contents of heavy metals in soil and each X-ray fluorescence spectral characteristic peak intensity with the instrument measurement within the range (0-1,500 mg · kg(-1)). After retesting and calculating, the results indicate that all the detection limits of the instrument are below the soil standards at national level. The accuracy of the model has been effectively improved, and the instrument also shows good precision with the practical application of wavelet transform to the establishment and improvement of X-ray fluorescence spectrometer detection model. Thus the instrument can be applied in on-site rapid screening of heavy metal in contaminated soil. PMID:26197612
Viscous peeling with capillary suction
NASA Astrophysics Data System (ADS)
Peng, Gunnar; Lister, John
2014-11-01
If an elastic tape is stuck to a rigid substrate by a thin film of viscous fluid and then peeled off by pulling at a small angle to the horizontal, then both viscous and capillary forces affect the peeling speed (McEwan and Taylor, 1966). If there is no capillary meniscus (e.g. if the peeling is due to viscous fluid being injected under the tape), then the peeling speed is given by a Cox-Voinov-like law, and is an increasing function of the peeling angle. We show that, with a meniscus present, the effect of the capillary forces is to suck down the tape, reducing the effective peeling angle and hence the peeling speed. When surface tension dominates and the peeling speed tends to zero, the system transitions to a new state whose time-evolution can be described by a system of coupled ordinary differential equations. These asymptotic results are confirmed by numerical calculations. Similar results hold for the peeling-by-bending of elastic beams, with ``angle'' replaced by ``curvature'' (i.e. bending moment).
Research of image enhancement of dental cast based on wavelet transformation
NASA Astrophysics Data System (ADS)
Zhao, Jing; Li, Zhongke; Liu, Xingmiao
2010-10-01
This paper describes a 3D laser scanner for dental cast that realize non-contact deepness measuring. The scanner and the control PC make up of a 3D scan system, accomplish the real time digital of dental cast. Owing to the complexity shape of the dental cast and the random nature of scanned points, the detected feature curves are generally not smooth or not accurate enough for subsequent application. The purpose of this p is to present an algorithm for enhancing the useful points and eliminating the noises. So an image enhancement algorithm based on wavelet transform and fuzzy set theory is presented. Firstly, the multi-scale wavelet transform is adopted to decompose the input image, which extracts the characteristic of multi-scale of the image. Secondly, wavelet threshold is used for image de-noising, and then the traditional fuzzy set theory is improved and applied to enhance the low frequency wavelet coefficients and the high frequency wavelet coefficients of different directions of each scale. Finally, the inverse wavelet transform is applied to synthesis image. A group of experimental results demonstrate that the proposed algorithm is effective for the dental cast image de-noising and enhancement, the edge of the enhanced image is distinct which is good for the subsequent image processing.
Image-Specific Prior Adaptation for Denoising.
Lu, Xin; Lin, Zhe; Jin, Hailin; Yang, Jianchao; Wang, James Z
2015-12-01
Image priors are essential to many image restoration applications, including denoising, deblurring, and inpainting. Existing methods use either priors from the given image (internal) or priors from a separate collection of images (external). We find through statistical analysis that unifying the internal and external patch priors may yield a better patch prior. We propose a novel prior learning algorithm that combines the strength of both internal and external priors. In particular, we first learn a generic Gaussian mixture model from a collection of training images and then adapt the model to the given image by simultaneously adding additional components and refining the component parameters. We apply this image-specific prior to image denoising. The experimental results show that our approach yields better or competitive denoising results in terms of both the peak signal-to-noise ratio and structural similarity. PMID:26316129
Echocardiogram enhancement using supervised manifold denoising.
Wu, Hui; Huynh, Toan T; Souvenir, Richard
2015-08-01
This paper presents data-driven methods for echocardiogram enhancement. Existing denoising algorithms typically rely on a single noise model, and do not generalize to the composite noise sources typically found in real-world echocardiograms. Our methods leverage the low-dimensional intrinsic structure of echocardiogram videos. We assume that echocardiogram images are noisy samples from an underlying manifold parametrized by cardiac motion and denoise images via back-projection onto a learned (non-linear) manifold. Our methods incorporate synchronized side information (e.g., electrocardiography), which is often collected alongside the visual data. We evaluate the proposed methods on a synthetic data set and real-world echocardiograms. Quantitative results show improved performance of our methods over recent image despeckling methods and video denoising methods, and a visual analysis of real-world data shows noticeable image enhancement, even in the challenging case of noise due to dropout artifacts. PMID:26072166
Computed tomography perfusion imaging denoising using Gaussian process regression
NASA Astrophysics Data System (ADS)
Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna
2012-06-01
Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.
Computed tomography perfusion imaging denoising using gaussian process regression.
Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna
2012-06-21
Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. PMID:22617159
MRA-based wavelet frames and applications: image segmentation and surface reconstruction
NASA Astrophysics Data System (ADS)
Dong, Bin; Shen, Zuowei
2012-06-01
Theory of wavelet frames and their applications to image restoration problems have been extensively studied for the past two decades. The success of wavelet frames in solving image restoration problems, which includes denoising, deblurring, inpainting, computed tomography, etc., is mainly due to their capability of sparsely approximating piecewise smooth functions such as images. However, in contrast to the wide applications of wavelet frame based approaches to image restoration problems, they are rarely used for some image/data analysis tasks, such as image segmentation, registration and surface reconstruction from unorganized point clouds. The main reason for this is the lack of geometric interpretations of wavelet frames and their associated transforms. Recently, geometric meanings of wavelet frames have been discovered and connections between the wavelet frame based approach and the differential operator based variational model were established.1 Such discovery enabled us to extend the wavelet frame based approach to some image/data analysis tasks that have not yet been studied before. In this paper, we will provide a unified survey of the wavelet frame based models for image segmentation and surface reconstruction from unorganized point clouds. Advantages of the wavelet frame based approach are illustrated by numerical experiments.
Magnetic resonance image denoising using multiple filters
NASA Astrophysics Data System (ADS)
Ai, Danni; Wang, Jinjuan; Miwa, Yuichi
2013-07-01
We introduced and compared ten denoisingfilters which are all proposed during last fifteen years. Especially, the state-of-art denoisingalgorithms, NLM and BM3D, have attracted much attention. Several expansions are proposed to improve the noise reduction based on these two algorithms. On the other hand, optimal dictionaries, sparse representations and appropriate shapes of the transform's support are also considered for the image denoising. The comparison among variousfiltersis implemented by measuring the SNR of a phantom image and denoising effectiveness of a clinical image. The computational time is finally evaluated.
Analysis the application of several denoising algorithm in the astronomical image denoising
NASA Astrophysics Data System (ADS)
Jiang, Chao; Geng, Ze-xun; Bao, Yong-qiang; Wei, Xiao-feng; Pan, Ying-feng
2014-02-01
Image denoising is an important method of preprocessing, it is one of the forelands in the field of Computer Graphic and Computer Vision. Astronomical target imaging are most vulnerable to atmospheric turbulence and noise interference, in order to reconstruct the high quality image of the target, we need to restore the high frequency signal of image, but noise also belongs to the high frequency signal, so there will be noise amplification in the reconstruction process. In order to avoid this phenomenon, join image denoising in the process of reconstruction is a feasible solution. This paper mainly research on the principle of four classic denoising algorithm, which are TV, BLS - GSM, NLM and BM3D, we use simulate data for image denoising to analysis the performance of the four algorithms, experiments demonstrate that the four algorithms can remove the noise, the BM3D algorithm not only have high quality of denosing, but also have the highest efficiency at the same time.
[Denoising and assessing method of additive noise in the ultraviolet spectrum of SO2 in flue gas].
Zhou, Tao; Sun, Chang-Ku; Liu, Bin; Zhao, Yu-Mei
2009-11-01
The problem of denoising and assessing method of the spectrum of SO2 in flue gas was studied based on DOAS. The denoising procedure of the additive noise in the spectrum was divided into two parts: reducing the additive noise and enhancing the useful signal. When obtaining the absorption feature of measured gas, a multi-resolution preprocessing method of original spectrum was adopted for denoising by DWT (discrete wavelet transform). The signal energy operators in different scales were used to choose the denoising threshold and separate the useful signal from the noise. On the other hand, because there was no sudden change in the spectra of flue gas in time series, the useful signal component was enhanced according to the signal time dependence. And the standard absorption cross section was used to build the ideal absorption spectrum with the measured gas temperature and pressure. This ideal spectrum was used as the desired signal instead of the original spectrum in the assessing method to modify the SNR (signal-noise ratio). There were two different environments to do the proof test-in the lab and at the scene. In the lab, SO2 was measured several times with the system using this method mentioned above. The average deviation was less than 1.5%, while the repeatability was less than 1%. And the short range experiment data were better than the large range. In the scene of a power plant whose concentration of flue gas had a large variation range, the maximum deviation of this method was 2.31% in the 18 groups of contrast data. The experimental results show that the denoising effect of the scene spectrum was better than that of the lab spectrum. This means that this method can improve the SNR of the spectrum effectively, which is seriously polluted by additive noise. PMID:20101989
Denoising PCR-amplified metagenome data
2012-01-01
Background PCR amplification and high-throughput sequencing theoretically enable the characterization of the finest-scale diversity in natural microbial and viral populations, but each of these methods introduces random errors that are difficult to distinguish from genuine biological diversity. Several approaches have been proposed to denoise these data but lack either speed or accuracy. Results We introduce a new denoising algorithm that we call DADA (Divisive Amplicon Denoising Algorithm). Without training data, DADA infers both the sample genotypes and error parameters that produced a metagenome data set. We demonstrate performance on control data sequenced on Roche’s 454 platform, and compare the results to the most accurate denoising software currently available, AmpliconNoise. Conclusions DADA is more accurate and over an order of magnitude faster than AmpliconNoise. It eliminates the need for training data to establish error parameters, fully utilizes sequence-abundance information, and enables inclusion of context-dependent PCR error rates. It should be readily extensible to other sequencing platforms such as Illumina. PMID:23113967
Directional spherical multipole wavelets
Hayn, Michael; Holschneider, Matthias
2009-07-15
We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.
Yue, Yong; Croitoru, Mihai M; Bidani, Akhil; Zwischenberger, Joseph B; Clark, John W
2006-03-01
This paper introduces a novel nonlinear multiscale wavelet diffusion method for ultrasound speckle suppression and edge enhancement. This method is designed to utilize the favorable denoising properties of two frequently used techniques: the sparsity and multiresolution properties of the wavelet, and the iterative edge enhancement feature of nonlinear diffusion. With fully exploited knowledge of speckle image models, the edges of images are detected using normalized wavelet modulus. Relying on this feature, both the envelope-detected speckle image and the log-compressed ultrasonic image can be directly processed by the algorithm without need for additional preprocessing. Speckle is suppressed by employing the iterative multiscale diffusion on the wavelet coefficients. With a tuning diffusion threshold strategy, the proposed method can improve the image quality for both visualization and auto-segmentation applications. We validate our method using synthetic speckle images and real ultrasonic images. Performance improvement over other despeckling filters is quantified in terms of noise suppression and edge preservation indices. PMID:16524086
Hierarchical wavelet-based image model for pattern analysis and synthesis
NASA Astrophysics Data System (ADS)
Scott, Clayton D.; Nowak, Robert D.
2000-12-01
Despite their success in other areas of statistical signal processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown pattern transformations. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR, a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length complexity regularization to learn a template with a sparse representation in the wavelet domain. We illustrate template learning with examples, and discuss how TEMPLAR applies to pattern classification and denoising from multiple, unaligned observations.
On the explanation of Peele`s Pertinent Puzzle
Gai, E.V.
1994-12-31
Investigation of Peele`s Pertinent Puzzle (PPP) by analytical and numerical simulation shows that if covariations of experimental data are determined within frames of rigorous maximum likelihood method (MLM), then least-squares method (LSM) gives for PPP correct but unusually looking results. It is shown also that some restrictions and corrections outside rigorous MLM frame bring to incorrect results instead of improved ones.
A wavelet-based data pre-processing analysis approach in mass spectrometry.
Li, Xiaoli; Li, Jin; Yao, Xin
2007-04-01
Recently, mass spectrometry analysis has a become an effective and rapid approach in detecting early-stage cancer. To identify proteomic patterns in serum to discriminate cancer patients from normal individuals, machine-learning methods, such as feature selection and classification, have already been involved in the analysis of mass spectrometry (MS) data with some success. However, the performance of existing machine learning methods for MS data analysis still needs improving. The study in this paper proposes a wavelet-based pre-processing approach to MS data analysis. The approach applies wavelet-based transforms to MS data with the aim of de-noising the data that are potentially contaminated in acquisition. The effects of the selection of wavelet function and decomposition level on the de-noising performance have also been investigated in this study. Our comparative experimental results demonstrate that the proposed de-noising pre-processing approach has potentials to remove possible noise embedded in MS data, which can lead to improved performance for existing machine learning methods in cancer detection. PMID:16982045
NASA Astrophysics Data System (ADS)
Jones, B. J. T.
Wavelet analysis has become a major tool in many aspects of data handling, whether it be statistical analysis, noise removal or image reconstruction. Wavelet analysis has worked its way into fields as diverse as economics, medicine, geophysics, music and cosmology.
Monheit, G D
2001-07-01
The combination medium-depth chemical peel (Jessner's solution +35% TCA) has been accepted as a safe, reliable, and effective method for the treatment of moderate photoaging skin. This article discusses the procedure in detail, including postoperative considerations. PMID:11599398
Szu, H.; Hsu, C.
1996-12-31
Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.
Fryer, M.O.
1997-05-01
This paper describes the use of wavelet transform techniques to analyze typical data found in industrial applications. A way of detecting system changes using wavelet transforms is described. The results of applying this method are described for several typical applications. The wavelet technique is compared with the use of Fourier transform methods.
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats
2000-05-01
Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.
Compression of Ultrasonic NDT Image by Wavelet Based Local Quantization
NASA Astrophysics Data System (ADS)
Cheng, W.; Li, L. Q.; Tsukada, K.; Hanasaki, K.
2004-02-01
Compression on ultrasonic image that is always corrupted by noise will cause `over-smoothness' or much distortion. To solve this problem to meet the need of real time inspection and tele-inspection, a compression method based on Discrete Wavelet Transform (DWT) that can also suppress the noise without losing much flaw-relevant information, is presented in this work. Exploiting the multi-resolution and interscale correlation property of DWT, a simple way named DWCs classification, is introduced first to classify detail wavelet coefficients (DWCs) as dominated by noise, signal or bi-effected. A better denoising can be realized by selective thresholding DWCs. While in `Local quantization', different quantization strategies are applied to the DWCs according to their classification and the local image property. It allocates the bit rate more efficiently to the DWCs thus achieve a higher compression rate. Meanwhile, the decompressed image shows the effects of noise suppressed and flaw characters preserved.
Sonar target enhancement by shrinkage of incoherent wavelet coefficients.
Hunter, Alan J; van Vossen, Robbert
2014-01-01
Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection. PMID:24437766
Performance comparison of denoising filters for source camera identification
NASA Astrophysics Data System (ADS)
Cortiana, A.; Conotter, V.; Boato, G.; De Natale, F. G. B.
2011-02-01
Source identification for digital content is one of the main branches of digital image forensics. It relies on the extraction of the photo-response non-uniformity (PRNU) noise as a unique intrinsic fingerprint that efficiently characterizes the digital device which generated the content. Such noise is estimated as the difference between the content and its de-noised version obtained via denoising filter processing. This paper proposes a performance comparison of different denoising filters for source identification purposes. In particular, results achieved with a sophisticated 3D filter are presented and discussed with respect to state-of-the-art denoising filters previously employed in such a context.
Chemical peeling in ethnic/dark skin.
Roberts, Wendy E
2004-01-01
Chemical peeling for skin of color arose in ancient Egypt, Mesopotamia, and other ancient cultures in and around Africa. Our current fund of medical knowledge regarding chemical peeling is a result of centuries of experience and research. The list of agents for chemical peeling is extensive. In ethnic skin, our efforts are focused on superficial and medium-depth peeling agents and techniques. Indications for chemical peeling in darker skin include acne vulgaris, postinflammatory hyperpigmentation, melasma, scarring, photodamage, and pseudofolliculitis barbae. Careful selection of patients for chemical peeling should involve not only identification of Fitzpatrick skin type, but also determining ethnicity. Different ethnicities may respond unpredictably to chemical peeling regardless of skin phenotype. Familiarity with the properties each peeling agent used is critical. New techniques discussed for chemical peeling include spot peeling for postinflammatory hyperpigmentation and combination peels for acne and photodamage. Single- or combination-agent chemical peels are shown to be efficacious and safe. In conclusion, chemical peeling is a treatment of choice for numerous pigmentary and scarring disorders arising in dark skin tones. Familiarity with new peeling agents and techniques will lead to successful outcomes. PMID:15113287
Postprocessing of Compressed Images via Sequential Denoising
NASA Astrophysics Data System (ADS)
Dar, Yehuda; Bruckstein, Alfred M.; Elad, Michael; Giryes, Raja
2016-07-01
In this work we propose a novel postprocessing technique for compression-artifact reduction. Our approach is based on posing this task as an inverse problem, with a regularization that leverages on existing state-of-the-art image denoising algorithms. We rely on the recently proposed Plug-and-Play Prior framework, suggesting the solution of general inverse problems via Alternating Direction Method of Multipliers (ADMM), leading to a sequence of Gaussian denoising steps. A key feature in our scheme is a linearization of the compression-decompression process, so as to get a formulation that can be optimized. In addition, we supply a thorough analysis of this linear approximation for several basic compression procedures. The proposed method is suitable for diverse compression techniques that rely on transform coding. Specifically, we demonstrate impressive gains in image quality for several leading compression methods - JPEG, JPEG2000, and HEVC.
CT reconstruction via denoising approximate message passing
NASA Astrophysics Data System (ADS)
Perelli, Alessandro; Lexa, Michael A.; Can, Ali; Davies, Mike E.
2016-05-01
In this paper, we adapt and apply a compressed sensing based reconstruction algorithm to the problem of computed tomography reconstruction for luggage inspection. Specifically, we propose a variant of the denoising generalized approximate message passing (D-GAMP) algorithm and compare its performance to the performance of traditional filtered back projection and to a penalized weighted least squares (PWLS) based reconstruction method. D-GAMP is an iterative algorithm that at each iteration estimates the conditional probability of the image given the measurements and employs a non-linear "denoising" function which implicitly imposes an image prior. Results on real baggage show that D-GAMP is well-suited to limited-view acquisitions.
Postprocessing of Compressed Images via Sequential Denoising.
Dar, Yehuda; Bruckstein, Alfred M; Elad, Michael; Giryes, Raja
2016-07-01
In this paper, we propose a novel postprocessing technique for compression-artifact reduction. Our approach is based on posing this task as an inverse problem, with a regularization that leverages on existing state-of-the-art image denoising algorithms. We rely on the recently proposed Plug-and-Play Prior framework, suggesting the solution of general inverse problems via alternating direction method of multipliers, leading to a sequence of Gaussian denoising steps. A key feature in our scheme is a linearization of the compression-decompression process, so as to get a formulation that can be optimized. In addition, we supply a thorough analysis of this linear approximation for several basic compression procedures. The proposed method is suitable for diverse compression techniques that rely on transform coding. In particular, we demonstrate impressive gains in image quality for several leading compression methods-JPEG, JPEG2000, and HEVC. PMID:27214878
A New Adaptive Image Denoising Method
NASA Astrophysics Data System (ADS)
Biswas, Mantosh; Om, Hari
2016-03-01
In this paper, a new adaptive image denoising method is proposed that follows the soft-thresholding technique. In our method, a new threshold function is also proposed, which is determined by taking the various combinations of noise level, noise-free signal variance, subband size, and decomposition level. It is simple and adaptive as it depends on the data-driven parameters estimation in each subband. The state-of-the-art denoising methods viz. VisuShrink, SureShrink, BayesShrink, WIDNTF and IDTVWT are not able to modify the coefficients in an efficient manner to provide the good quality of image. Our method removes the noise from the noisy image significantly and provides better visual quality of an image.
Nonlocal Markovian models for image denoising
NASA Astrophysics Data System (ADS)
Salvadeo, Denis H. P.; Mascarenhas, Nelson D. A.; Levada, Alexandre L. M.
2016-01-01
Currently, the state-of-the art methods for image denoising are patch-based approaches. Redundant information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy functions, the pairwise pixel interaction is weighted according to the similarities between the patches corresponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (β) for these models is presented here. For evaluating this proposal, these models are used as an a priori model in a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs.
Adaptive Image Denoising by Mixture Adaptation.
Luo, Enming; Chan, Stanley H; Nguyen, Truong Q
2016-10-01
We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the expectation-maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper. First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. The experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms. PMID:27416593
The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal
NASA Astrophysics Data System (ADS)
Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis
2016-05-01
The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.
The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal
NASA Astrophysics Data System (ADS)
Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis
2016-08-01
The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.
Symplectic wavelet transformation.
Fan, Hong-Yi; Lu, Hai-Liang
2006-12-01
Usually a wavelet transform is based on dilated-translated wavelets. We propose a symplectic-transformed-translated wavelet family psi(*)(r,s)(z-kappa) (r,s are the symplectic transform parameters, |s|(2)-|r|(2)=1, kappa is a translation parameter) generated from the mother wavelet psi and the corresponding wavelet transformation W(psi)f(r,s;kappa)=integral(infinity)(-infinity)(d(2)z/pi)f(z)psi(*)(r,s)(z-kappa). This new transform possesses well-behaved properties and is related to the optical Fresnel transform in quantum mechanical version. PMID:17099740
Infrared image denoising by nonlocal means filtering
NASA Astrophysics Data System (ADS)
Dee-Noor, Barak; Stern, Adrian; Yitzhaky, Yitzhak; Kopeika, Natan
2012-05-01
The recently introduced non-local means (NLM) image denoising technique broke the traditional paradigm according to which image pixels are processed by their surroundings. Non-local means technique was demonstrated to outperform state-of-the art denoising techniques when applied to images in the visible. This technique is even more powerful when applied to low contrast images, which makes it tractable for denoising infrared (IR) images. In this work we investigate the performance of NLM applied to infrared images. We also present a new technique designed to speed-up the NLM filtering process. The main drawback of the NLM is the large computational time required by the process of searching similar patches. Several techniques were developed during the last years to reduce the computational burden. Here we present a new techniques designed to reduce computational cost and sustain optimal filtering results of NLM technique. We show that the new technique, which we call Multi-Resolution Search NLM (MRS-NLM), reduces significantly the computational cost of the filtering process and we present a study of its performance on IR images.
Glycolic acid peel therapy - a current review.
Sharad, Jaishree
2013-01-01
Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I-IV. All in all, it is a peel that is here to stay. PMID:24399880
Efﬁcient fourier-wavelet super-resolution.
Robinson, M Dirk; Toth, Cynthia A; Lo, Joseph Y; Farsiu, Sina
2010-10-01
Super-resolution (SR) is the process of combining multiple aliased low-quality images to produce a high-resolution high-quality image. Aside from registration and fusion of low-resolution images, a key process in SR is the restoration and denoising of the fused images. We present a novel extension of the combined Fourier-wavelet deconvolution and denoising algorithm ForWarD to the multiframe SR application. Our method first uses a fast Fourier-base multiframe image restoration to produce a sharp, yet noisy estimate of the high-resolution image. Our method then applies a space-variant nonlinear wavelet thresholding that addresses the nonstationarity inherent in resolution-enhanced fused images. We describe a computationally efficient method for implementing this space-variant processing that leverages the efficiency of the fast Fourier transform (FFT) to minimize complexity. Finally, we demonstrate the effectiveness of this algorithm for regular imagery as well as in digital mammography. PMID:20460208
A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.
Gur, M Berke; Niezrecki, Christopher
2011-04-01
Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661
Identification of formation interfaces by using wavelet and Fourier transforms
NASA Astrophysics Data System (ADS)
Mukherjee, Bappa; Srivardhan, V.; Roy, P. N. S.
2016-05-01
The identification of formation interfaces is of prime importance from well log data. The interfaces are not clearly discernible due to the presence of high and low frequency noise in the log response. Accurate bed boundary information is very crucial in hydrocarbon exploration and the problem has received considerable attention and many techniques have been proposed. Frequency spectrum based filtering techniques aids us in interpretation, but usually leads to inaccurate amplification of unwanted components of the log response. Wavelet transform is very effective in denoising the log response and can be carried out to filter low and high frequency components of signal. The use of Fourier and Wavelet transform in denoising the log data for obtaining formation interfaces is demonstrated in this work. The feasibility of the proposed technique is tested so that it can be used in the industry to decipher formation interfaces. The work flow is demonstrated by testing on wells belonging to the Upper Assam Basin, which are self-potential, gamma ray, and resistivity log responses.
Discrete wavelet transform core for image processing applications
NASA Astrophysics Data System (ADS)
Savakis, Andreas E.; Carbone, Richard
2005-02-01
This paper presents a flexible hardware architecture for performing the Discrete Wavelet Transform (DWT) on a digital image. The proposed architecture uses a variation of the lifting scheme technique and provides advantages that include small memory requirements, fixed-point arithmetic implementation, and a small number of arithmetic computations. The DWT core may be used for image processing operations, such as denoising and image compression. For example, the JPEG2000 still image compression standard uses the Cohen-Daubechies-Favreau (CDF) 5/3 and CDF 9/7 DWT for lossless and lossy image compression respectively. Simple wavelet image denoising techniques resulted in improved images up to 27 dB PSNR. The DWT core is modeled using MATLAB and VHDL. The VHDL model is synthesized to a Xilinx FPGA to demonstrate hardware functionality. The CDF 5/3 and CDF 9/7 versions of the DWT are both modeled and used as comparisons. The execution time for performing both DWTs is nearly identical at approximately 14 clock cycles per image pixel for one level of DWT decomposition. The hardware area generated for the CDF 5/3 is around 15,000 gates using only 5% of the Xilinx FPGA hardware area, at 2.185 MHz max clock speed and 24 mW power consumption.
Speckle filtering of medical ultrasonic images using wavelet and guided filter.
Zhang, Ju; Lin, Guangkuo; Wu, Lili; Cheng, Yun
2016-02-01
Speckle noise is an inherent yet ineffectual residual artifact in medical ultrasound images, which significantly degrades quality and restricts accuracy in automatic diagnostic techniques. Speckle reduction is therefore an important step prior to the analysis and processing of the ultrasound images. A new de-noising method based on an improved wavelet filter and guided filter is proposed in this paper. According to the characteristics of medical ultrasound images in the wavelet domain, an improved threshold function based on the universal wavelet threshold function is developed. The wavelet coefficients of speckle noise and noise-free signal are modeled as Rayleigh distribution and generalized Gaussian distribution respectively. The Bayesian maximum a posteriori estimation is applied to obtain a new wavelet shrinkage algorithm. The coefficients of the low frequency sub-band in the wavelet domain are filtered by guided filter. The filtered image is then obtained by using the inverse wavelet transformation. Experiments with the comparison of the other seven de-speckling filters are conducted. The results show that the proposed method not only has a strong de-speckling ability, but also keeps the image details, such as the edge of a lesion. PMID:26489484
Higher-order graph wavelets and sparsity on circulant graphs
NASA Astrophysics Data System (ADS)
Kotzagiannidis, Madeleine S.; Dragotti, Pier Luigi
2015-08-01
The notion of a graph wavelet gives rise to more advanced processing of data on graphs due to its ability to operate in a localized manner, across newly arising data-dependency structures, with respect to the graph signal and underlying graph structure, thereby taking into consideration the inherent geometry of the data. In this work, we tackle the problem of creating graph wavelet filterbanks on circulant graphs for a sparse representation of certain classes of graph signals. The underlying graph can hereby be data-driven as well as fixed, for applications including image processing and social network theory, whereby clusters can be modelled as circulant graphs, respectively. We present a set of novel graph wavelet filter-bank constructions, which annihilate higher-order polynomial graph signals (up to a border effect) defined on the vertices of undirected, circulant graphs, and are localised in the vertex domain. We give preliminary results on their performance for non-linear graph signal approximation and denoising. Furthermore, we provide extensions to our previously developed segmentation-inspired graph wavelet framework for non-linear image approximation, by incorporating notions of smoothness and vanishing moments, which further improve performance compared to traditional methods.
Noise reduction in ultrasonic NDT using undecimated wavelet transforms.
Pardo, E; San Emeterio, J L; Rodriguez, M A; Ramos, A
2006-12-22
Translation-invariant wavelet processing is applied to grain noise reduction in ultrasonic non-destructive testing of materials. In particular, the undecimated wavelet transform (UWT), which is essentially a discrete wavelet transform (DWT) that avoids decimation, is used. Two different UWT processors have been specifically developed for that purpose, based on two UWT implementation schemes: the "à trous" algorithm and the cycle-spinning scheme. The performance of these two UWT processors is compared with that of a classical DWT processor, by using synthetic grain noise registers and experimental pulse-echo NDT traces. The synthetic ultrasonic traces have been generated by an own-developed frequency-domain model that includes frequency dependence in both material attenuation and scattering. The experimental ultrasonic traces have been obtained by inspecting a piece of carbon-fiber reinforced plastic composite in which we have mechanized artificial flaws. Decomposition level-dependent thresholds, which are suitable for correlated noise, are specifically determined in all cases. Soft thresholding, Daubechies db6 mother wavelet and the three well-known threshold selection rules, Universal, Minimax and SURE, are applied to the different decomposition levels. The performance of the different de-noising procedures for single echo detection has been comparatively evaluated in terms of signal-to-noise ratio enhancement. PMID:16797651
Bleb Nucleation through Membrane Peeling
NASA Astrophysics Data System (ADS)
Alert, Ricard; Casademunt, Jaume
2016-02-01
We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.
A connection between score matching and denoising autoencoders.
Vincent, Pascal
2011-07-01
Denoising autoencoders have been previously shown to be competitive alternatives to restricted Boltzmann machines for unsupervised pretraining of each layer of a deep architecture. We show that a simple denoising autoencoder training criterion is equivalent to matching the score (with respect to the data) of a specific energy-based model to that of a nonparametric Parzen density estimator of the data. This yields several useful insights. It defines a proper probabilistic model for the denoising autoencoder technique, which makes it in principle possible to sample from them or rank examples by their energy. It suggests a different way to apply score matching that is related to learning to denoise and does not require computing second derivatives. It justifies the use of tied weights between the encoder and decoder and suggests ways to extend the success of denoising autoencoders to a larger family of energy-based models. PMID:21492012
Dual-domain denoising in three dimensional magnetic resonance imaging
Peng, Jing; Zhou, Jiliu; Wu, Xi
2016-01-01
Denoising is a crucial preprocessing procedure for three dimensional magnetic resonance imaging (3D MRI). Existing denoising methods are predominantly implemented in a single domain, ignoring information in other domains. However, denoising methods are becoming increasingly complex, making analysis and implementation challenging. The present study aimed to develop a dual-domain image denoising (DDID) algorithm for 3D MRI that encapsulates information from the spatial and transform domains. In the present study, the DDID method was used to distinguish signal from noise in the spatial and frequency domains, after which robust accurate noise estimation was introduced for iterative filtering, which is simple and beneficial for computation. In addition, the proposed method was compared quantitatively and qualitatively with existing methods for synthetic and in vivo MRI datasets. The results of the present study suggested that the novel DDID algorithm performed well and provided competitive results, as compared with existing MRI denoising filters. PMID:27446257
Combining interior and exterior characteristics for remote sensing image denoising
NASA Astrophysics Data System (ADS)
Peng, Ni; Sun, Shujin; Wang, Runsheng; Zhong, Ping
2016-04-01
Remote sensing image denoising faces many challenges since a remote sensing image usually covers a wide area and thus contains complex contents. Using the patch-based statistical characteristics is a flexible method to improve the denoising performance. There are usually two kinds of statistical characteristics available: interior and exterior characteristics. Different statistical characteristics have their own strengths to restore specific image contents. Combining different statistical characteristics to use their strengths together may have the potential to improve denoising results. This work proposes a method combining statistical characteristics to adaptively select statistical characteristics for different image contents. The proposed approach is implemented through a new characteristics selection criterion learned over training data. Moreover, with the proposed combination method, this work develops a denoising algorithm for remote sensing images. Experimental results show that our method can make full use of the advantages of interior and exterior characteristics for different image contents and thus improve the denoising performance.
Mesotherapy, Microneedling, and Chemical Peels.
Lee, Johnson C; Daniels, Mark A; Roth, Malcolm Z
2016-07-01
Mesotherapy, microneedling, and chemical peels are minimally invasive techniques used to combat facial aging. Chemical peeling is one of the oldest methods of facial rejuvenation. By using different chemicals in various combinations, strengths, and application techniques, plastic surgeons can tailor a patient's treatment for optimal, safe, and consistent results. Mesotherapy and microneedling have emerged in the plastic surgery literature with increasingly complex indications. Both techniques have increased in popularity although research into efficacy and long-term results is lagging. With a thorough understanding of patients and the modalities available, plastic surgeons can use the appropriate minimally invasive technique to provide patients with desired skin changes. PMID:27363773
Manchanda, P.; Meenakshi
2009-07-02
Recently Manchanda, Meenakshi and Siddiqi have studied Haar-Vilenkin wavelet and a special type of non-uniform multiresolution analysis. Haar-Vilenkin wavelet is a generalization of Haar wavelet. Motivated by the paper of Gabardo and Nashed we have introduced a class of multiresolution analysis extending the concept of classical multiresolution analysis. We present here a resume of these results. We hope that applications of these concepts to some significant real world problems could be found.
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Mars Exploration Rover Spirit took this panoramic camera image of the rock target named 'Mazatzal' on sol 77 (March 22, 2004). It is a close-up look at the rock face and the targets that will be brushed and ground by the rock abrasion tool in upcoming sols.
Mazatzal, like most rocks on Earth and Mars, has layers of material near its surface that provide clues about the history of the rock. Scientists believe that the top layer of Mazatzal is actually a coating of dust and possibly even salts. Under this light coating may be a more solid portion of the rock that has been chemically altered by weathering. Past this layer is the unaltered rock, which may give scientists the best information about how Mazatzal was formed.
Because each layer reveals information about the formation and subsequent history of Mazatzal, it is important that scientists get a look at each of them. For this reason, they have developed a multi-part strategy to use the rock abrasion tool to systematically peel back Mazatzal's layers and analyze what's underneath with the rover's microscopic imager, and its Moessbauer and alpha particle X-ray spectrometers.
The strategy began on sol 77 when scientists used the microscopic imager to get a closer look at targets on Mazatzal named 'New York,' 'Illinois' and 'Arizona.' These rock areas were targeted because they posed the best opportunity for successfully using the rock abrasion tool; Arizona also allowed for a close-up look at a range of tones. On sol 78, Spirit's rock abrasion tool will do a light brushing on the Illinois target to preserve some of the surface layers. Then, a brushing of the New York target should remove the top coating of any dust and salts and perhaps reveal the chemically altered rock underneath. Finally, on sol 79, the rock abrasion tool will be commanded to grind into the New York target, which will give scientists the best chance of observing Mazatzal's interior.
The Mazatzal targets were named
NASA Astrophysics Data System (ADS)
Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong
2016-09-01
An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.
CW-THz image contrast enhancement using wavelet transform and Retinex
NASA Astrophysics Data System (ADS)
Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei
2015-10-01
To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.
[Application of kalman filtering based on wavelet transform in ICP-AES].
Qin, Xia; Shen, Lan-sun
2002-12-01
Kalman filtering is a recursive algorithm, which has been proposed as an attractive alternative to correct overlapping interferences in ICP-AES. However, the noise in ICP-AES contaminates the signal arising from the analyte and hence limits the accuracy of kalman filtering. Wavelet transform is a powerful technique in signal denoising due to its multi-resolution characteristics. In this paper, first, the effect of noise on kalman filtering is discussed. Then we apply the wavelet-transform-based soft-thresholding as the pre-processing of kalman filtering. The simulation results show that the kalman filtering based on wavelet transform can effectively reduce the noise and increase the accuracy of the analysis. PMID:12914186