Science.gov

Sample records for peeling wavelet denoising

  1. Birdsong Denoising Using Wavelets.

    PubMed

    Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal

    2016-01-01

    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391

  2. Birdsong Denoising Using Wavelets

    PubMed Central

    Priyadarshani, Nirosha; Marsland, Stephen; Castro, Isabel; Punchihewa, Amal

    2016-01-01

    Automatic recording of birdsong is becoming the preferred way to monitor and quantify bird populations worldwide. Programmable recorders allow recordings to be obtained at all times of day and year for extended periods of time. Consequently, there is a critical need for robust automated birdsong recognition. One prominent obstacle to achieving this is low signal to noise ratio in unattended recordings. Field recordings are often very noisy: birdsong is only one component in a recording, which also includes noise from the environment (such as wind and rain), other animals (including insects), and human-related activities, as well as noise from the recorder itself. We describe a method of denoising using a combination of the wavelet packet decomposition and band-pass or low-pass filtering, and present experiments that demonstrate an order of magnitude improvement in noise reduction over natural noisy bird recordings. PMID:26812391

  3. Parallel object-oriented, denoising system using wavelet multiresolution analysis

    DOEpatents

    Kamath, Chandrika; Baldwin, Chuck H.; Fodor, Imola K.; Tang, Nu A.

    2005-04-12

    The present invention provides a data de-noising system utilizing processors and wavelet denoising techniques. Data is read and displayed in different formats. The data is partitioned into regions and the regions are distributed onto the processors. Communication requirements are determined among the processors according to the wavelet denoising technique and the partitioning of the data. The data is transforming onto different multiresolution levels with the wavelet transform according to the wavelet denoising technique, the communication requirements, and the transformed data containing wavelet coefficients. The denoised data is then transformed into its original reading and displaying data format.

  4. Doppler ultrasound signal denoising based on wavelet frames.

    PubMed

    Zhang, Y; Wang, Y; Wang, W; Liu, B

    2001-05-01

    A novel approach was proposed to denoise the Doppler ultrasound signal. Using this method, wavelet coefficients of the Doppler signal at multiple scales were first obtained using the discrete wavelet frame analysis. Then, a soft thresholding-based denoising algorithm was employed to deal with these coefficients to get the denoised signal. In the simulation experiments, the SNR improvements and the maximum frequency estimation precision were studied for the denoised signal. From the simulation and clinical studies, it was concluded that the performance of this discrete wavelet frame (DWF) approach is higher than that of the standard (critically sampled) wavelet transform (DWT) for the Doppler ultrasound signal denoising. PMID:11381694

  5. Optimal wavelet denoising for smart biomonitor systems

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-03-01

    Future smart-systems promise many benefits for biomedical diagnostics. The ideal is for simple portable systems that display and interpret information from smart integrated probes or MEMS-based devices. In this paper, we will discuss a step towards this vision with a heart bio-monitor case study. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. In our example of heartbeat analysis, phonocardiograms (PCGs) have many advantages in that they may be replayed and analysed for spectral and frequency information. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. Wavelets can be employed to denoise the PCG. The signal is decomposed by a discrete wavelet transform. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert Transform to heart sound analysis are discussed.

  6. Experimental wavelet based denoising for indoor infrared wireless communications.

    PubMed

    Rajbhandari, Sujan; Ghassemlooy, Zabih; Angelova, Maia

    2013-06-01

    This paper reports the experimental wavelet denoising techniques carried out for the first time for a number of modulation schemes for indoor optical wireless communications in the presence of fluorescent light interference. The experimental results are verified using computer simulations, clearly illustrating the advantage of the wavelet denoising technique in comparison to the high pass filtering for all baseband modulation schemes. PMID:23736631

  7. Denoising solar radiation data using coiflet wavelets

    SciTech Connect

    Karim, Samsul Ariffin Abdul Janier, Josefina B. Muthuvalu, Mohana Sundaram; Hasan, Mohammad Khatim; Sulaiman, Jumat; Ismail, Mohd Tahir

    2014-10-24

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuates according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.

  8. Musculoskeletal ultrasound image denoising using Daubechies wavelets

    NASA Astrophysics Data System (ADS)

    Gupta, Rishu; Elamvazuthi, I.; Vasant, P.

    2012-11-01

    Among various existing medical imaging modalities Ultrasound is providing promising future because of its ease availability and use of non-ionizing radiations. In this paper we have attempted to denoise ultrasound image using daubechies wavelet and analyze the results with peak signal to noise ratio and coefficient of correlation as performance measurement index. The different daubechies from 1 to 6 is used on four different ultrasound bone fracture images with three different levels from 1 to 3. The images for visual inspection and PSNR, Coefficient of correlation values are graphically shown for quantitaive analysis of resultant images.

  9. Denoising time-domain induced polarisation data using wavelet techniques

    NASA Astrophysics Data System (ADS)

    Deo, Ravin N.; Cull, James P.

    2016-05-01

    Time-domain induced polarisation (TDIP) methods are routinely used for near-surface evaluations in quasi-urban environments harbouring networks of buried civil infrastructure. A conventional technique for improving signal to noise ratio in such environments is by using analogue or digital low-pass filtering followed by stacking and rectification. However, this induces large distortions in the processed data. In this study, we have conducted the first application of wavelet based denoising techniques for processing raw TDIP data. Our investigation included laboratory and field measurements to better understand the advantages and limitations of this technique. It was found that distortions arising from conventional filtering can be significantly avoided with the use of wavelet based denoising techniques. With recent advances in full-waveform acquisition and analysis, incorporation of wavelet denoising techniques can further enhance surveying capabilities. In this work, we present the rationale for utilising wavelet denoising methods and discuss some important implications, which can positively influence TDIP methods.

  10. Image denoising with the dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Yaseen, Alauldeen S.; Pavlova, Olga N.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-04-01

    The purpose of this study is to compare image denoising techniques based on real and complex wavelet-transforms. Possibilities provided by the classical discrete wavelet transform (DWT) with hard and soft thresholding are considered, and influences of the wavelet basis and image resizing are discussed. The quality of image denoising for the standard 2-D DWT and the dual-tree complex wavelet transform (DT-CWT) is studied. It is shown that DT-CWT outperforms 2-D DWT at the appropriate selection of the threshold level.

  11. Undecimated Wavelet Transforms for Image De-noising

    SciTech Connect

    Gyaourova, A; Kamath, C; Fodor, I K

    2002-11-19

    A few different approaches exist for computing undecimated wavelet transform. In this work we construct three undecimated schemes and evaluate their performance for image noise reduction. We use standard wavelet based de-noising techniques and compare the performance of our algorithms with the original undecimated wavelet transform, as well as with the decimated wavelet transform. The experiments we have made show that our algorithms have better noise removal/blurring ratio.

  12. Wavelet Denoising of Mobile Radiation Data

    SciTech Connect

    Campbell, D B

    2008-10-31

    The FY08 phase of this project investigated the merits of video fusion as a method for mitigating the false alarms encountered by vehicle borne detection systems in an effort to realize performance gains associated with wavelet denoising. The fusion strategy exploited the significant correlations which exist between data obtained from radiation detectors and video systems with coincident fields of view. The additional information provided by optical systems can greatly increase the capabilities of these detection systems by reducing the burden of false alarms and through the generation of actionable information. The investigation into the use of wavelet analysis techniques as a means of filtering the gross-counts signal obtained from moving radiation detectors showed promise for vehicle borne systems. However, the applicability of these techniques to man-portable systems is limited due to minimal gains in performance over the rapid feedback available to system operators under walking conditions. Furthermore, the fusion of video holds significant promise for systems operating from vehicles or systems organized into stationary arrays; however, the added complexity and hardware required by this technique renders it infeasible for man-portable systems.

  13. Comparative study of wavelet denoising in myoelectric control applications.

    PubMed

    Sharma, Tanu; Veer, Karan

    2016-04-01

    Here, the wavelet analysis has been investigated to improve the quality of myoelectric signal before use in prosthetic design. Effective Surface Electromyogram (SEMG) signals were estimated by first decomposing the obtained signal using wavelet transform and then analysing the decomposed coefficients by threshold methods. With the appropriate choice of wavelet, it is possible to reduce interference noise effectively in the SEMG signal. However, the most effective wavelet for SEMG denoising is chosen by calculating the root mean square value and signal power values. The combined results of root mean square value and signal power shows that wavelet db4 performs the best denoising among the wavelets. Furthermore, time domain and frequency domain methods were applied for SEMG signal analysis to investigate the effect of muscle-force contraction on the signal. It was found that, during sustained contractions, the mean frequency (MNF) and median frequency (MDF) increase as muscle force levels increase. PMID:26887581

  14. Multitaper Spectral Analysis and Wavelet Denoising Applied to Helioseismic Data

    NASA Technical Reports Server (NTRS)

    Komm, R. W.; Gu, Y.; Hill, F.; Stark, P. B.; Fodor, I. K.

    1999-01-01

    Estimates of solar normal mode frequencies from helioseismic observations can be improved by using Multitaper Spectral Analysis (MTSA) to estimate spectra from the time series, then using wavelet denoising of the log spectra. MTSA leads to a power spectrum estimate with reduced variance and better leakage properties than the conventional periodogram. Under the assumption of stationarity and mild regularity conditions, the log multitaper spectrum has a statistical distribution that is approximately Gaussian, so wavelet denoising is asymptotically an optimal method to reduce the noise in the estimated spectra. We find that a single m-upsilon spectrum benefits greatly from MTSA followed by wavelet denoising, and that wavelet denoising by itself can be used to improve m-averaged spectra. We compare estimates using two different 5-taper estimates (Stepian and sine tapers) and the periodogram estimate, for GONG time series at selected angular degrees l. We compare those three spectra with and without wavelet-denoising, both visually, and in terms of the mode parameters estimated from the pre-processed spectra using the GONG peak-fitting algorithm. The two multitaper estimates give equivalent results. The number of modes fitted well by the GONG algorithm is 20% to 60% larger (depending on l and the temporal frequency) when applied to the multitaper estimates than when applied to the periodogram. The estimated mode parameters (frequency, amplitude and width) are comparable for the three power spectrum estimates, except for modes with very small mode widths (a few frequency bins), where the multitaper spectra broadened the modest compared with the periodogram. We tested the influence of the number of tapers used and found that narrow modes at low n values are broadened to the extent that they can no longer be fit if the number of tapers is too large. For helioseismic time series of this length and temporal resolution, the optimal number of tapers is less than 10.

  15. A wavelet multiscale denoising algorithm for magnetic resonance (MR) images

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2011-02-01

    Based on the Radon transform, a wavelet multiscale denoising method is proposed for MR images. The approach explicitly accounts for the Rician nature of MR data. Based on noise statistics we apply the Radon transform to the original MR images and use the Gaussian noise model to process the MR sinogram image. A translation invariant wavelet transform is employed to decompose the MR 'sinogram' into multiscales in order to effectively denoise the images. Based on the nature of Rician noise we estimate noise variance in different scales. For the final denoised sinogram we apply the inverse Radon transform in order to reconstruct the original MR images. Phantom, simulation brain MR images, and human brain MR images were used to validate our method. The experiment results show the superiority of the proposed scheme over the traditional methods. Our method can reduce Rician noise while preserving the key image details and features. The wavelet denoising method can have wide applications in MRI as well as other imaging modalities.

  16. Examining Alternatives to Wavelet Denoising for Astronomical Source Finding

    NASA Astrophysics Data System (ADS)

    Jurek, R.; Brown, S.

    2012-08-01

    The Square Kilometre Array and its pathfinders ASKAP and MeerKAT will produce prodigious amounts of data that necessitate automated source finding. The performance of automated source finders can be improved by pre-processing a dataset. In preparation for the WALLABY and DINGO surveys, we have used a test HI datacube constructed from actual Westerbork Telescope noise and WHISP HI galaxies to test the real world improvement of linear smoothing, the Duchamp source finder's wavelet denoising, iterative median smoothing and mathematical morphology subtraction, on intensity threshold source finding of spectral line datasets. To compare these pre-processing methods we have generated completeness-reliability performance curves for each method and a range of input parameters. We find that iterative median smoothing produces the best source finding results for ASKAP HI spectral line observations, but wavelet denoising is a safer pre-processing technique. In this paper we also present our implementations of iterative median smoothing and mathematical morphology subtraction.

  17. Wavelet-based ultrasound image denoising: performance analysis and comparison.

    PubMed

    Rizi, F Yousefi; Noubari, H Ahmadi; Setarehdan, S K

    2011-01-01

    Ultrasound images are generally affected by multiplicative speckle noise, which is mainly due to the coherent nature of the scattering phenomenon. Speckle noise filtering is thus a critical pre-processing step in medical ultrasound imaging provided that the diagnostic features of interest are not lost. A comparative study of the performance of alternative wavelet based ultrasound image denoising methods is presented in this article. In particular, the contourlet and curvelet techniques with dual tree complex and real and double density wavelet transform denoising methods were applied to real ultrasound images and results were quantitatively compared. The results show that curvelet-based method performs superior as compared to other methods and can effectively reduce most of the speckle noise content of a given image. PMID:22255196

  18. Electrocardiogram signal denoising based on a new improved wavelet thresholding.

    PubMed

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method. PMID:27587134

  19. Electrocardiogram signal denoising based on a new improved wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Han, Guoqiang; Xu, Zhijun

    2016-08-01

    Good quality electrocardiogram (ECG) is utilized by physicians for the interpretation and identification of physiological and pathological phenomena. In general, ECG signals may mix various noises such as baseline wander, power line interference, and electromagnetic interference in gathering and recording process. As ECG signals are non-stationary physiological signals, wavelet transform is investigated to be an effective tool to discard noises from corrupted signals. A new compromising threshold function called sigmoid function-based thresholding scheme is adopted in processing ECG signals. Compared with other methods such as hard/soft thresholding or other existing thresholding functions, the new algorithm has many advantages in the noise reduction of ECG signals. It perfectly overcomes the discontinuity at ±T of hard thresholding and reduces the fixed deviation of soft thresholding. The improved wavelet thresholding denoising can be proved to be more efficient than existing algorithms in ECG signal denoising. The signal to noise ratio, mean square error, and percent root mean square difference are calculated to verify the denoising performance as quantitative tools. The experimental results reveal that the waves including P, Q, R, and S waves of ECG signals after denoising coincide with the original ECG signals by employing the new proposed method.

  20. [An improved wavelet threshold algorithm for ECG denoising].

    PubMed

    Liu, Xiuling; Qiao, Lei; Yang, Jianli; Dong, Bin; Wang, Hongrui

    2014-06-01

    Due to the characteristics and environmental factors, electrocardiogram (ECG) signals are usually interfered by noises in the course of signal acquisition, so it is crucial for ECG intelligent analysis to eliminate noises in ECG signals. On the basis of wavelet transform, threshold parameters were improved and a more appropriate threshold expression was proposed. The discrete wavelet coefficients were processed using the improved threshold parameters, the accurate wavelet coefficients without noises were gained through inverse discrete wavelet transform, and then more original signal coefficients could be preserved. MIT-BIH arrythmia database was used to validate the method. Simulation results showed that the improved method could achieve better denoising effect than the traditional ones. PMID:25219225

  1. Denoising portal images by means of wavelet techniques

    NASA Astrophysics Data System (ADS)

    Gonzalez Lopez, Antonio Francisco

    Portal images are used in radiotherapy for the verification of patient positioning. The distinguishing feature of this image type lies in its formation process: the same beam used for patient treatment is used for image formation. The high energy of the photons used in radiotherapy strongly limits the quality of portal images: Low contrast between tissues, low spatial resolution and low signal to noise ratio. This Thesis studies the enhancement of these images, in particular denoising of portal images. The statistical properties of portal images and noise are studied: power spectra, statistical dependencies between image and noise and marginal, joint and conditional distributions in the wavelet domain. Later, various denoising methods are applied to noisy portal images. Methods operating in the wavelet domain are the basis of this Thesis. In addition, the Wiener filter and the non local means filter (NLM), operating in the image domain, are used as a reference. Other topics studied in this Thesis are spatial resolution, wavelet processing and image processing in dosimetry in radiotherapy. In this regard, the spatial resolution of portal imaging systems is studied; a new method for determining the spatial resolution of the imaging equipments in digital radiology is presented; the calculation of the power spectrum in the wavelet domain is studied; reducing uncertainty in film dosimetry is investigated; a method for the dosimetry of small radiation fields with radiochromic film is presented; the optimal signal resolution is determined, as a function of the noise level and the quantization step, in the digitization process of films and the useful optical density range is set, as a function of the required uncertainty level, for a densitometric system. Marginal distributions of portal images are similar to those of natural images. This also applies to the statistical relationships between wavelet coefficients, intra-band and inter-band. These facts result in a better

  2. Wavelet Denoising of Mobile Radiation Data

    SciTech Connect

    Campbell, D; Lanier, R

    2007-10-29

    The investigation of wavelet analysis techniques as a means of filtering the gross-count signal obtained from radiation detectors has shown promise. These signals are contaminated with high frequency statistical noise and significantly varying background radiation levels. Wavelet transforms allow a signal to be split into its constituent frequency components without losing relative timing information. Initial simulations and an injection study have been performed. Additionally, acquisition and analysis software has been written which allowed the technique to be evaluated in real-time under more realistic operating conditions. The technique performed well when compared to more traditional triggering techniques with its performance primarily limited by false alarms due to prominent features in the signal. An initial investigation into the potential rejection and classification of these false alarms has also shown promise.

  3. The application study of wavelet packet transformation in the de-noising of dynamic EEG data.

    PubMed

    Li, Yifeng; Zhang, Lihui; Li, Baohui; Wei, Xiaoyang; Yan, Guiding; Geng, Xichen; Jin, Zhao; Xu, Yan; Wang, Haixia; Liu, Xiaoyan; Lin, Rong; Wang, Quan

    2015-01-01

    This paper briefly describes the basic principle of wavelet packet analysis, and on this basis introduces the general principle of wavelet packet transformation for signal den-noising. The dynamic EEG data under +Gz acceleration is made a de-noising treatment by using wavelet packet transformation, and the de-noising effects with different thresholds are made a comparison. The study verifies the validity and application value of wavelet packet threshold method for the de-noising of dynamic EEG data under +Gz acceleration. PMID:26405863

  4. Class of Fibonacci-Daubechies-4-Haar wavelets with applicability to ECG denoising

    NASA Astrophysics Data System (ADS)

    Smith, Christopher B.; Agaian, Sos S.

    2004-05-01

    The presented paper introduces a new class of wavelets that includes the simplest Haar wavelet (Daubechies-2) as well as the Daubechies-4 wavelet. This class is shown to have several properties similar to the Daubechies wavelets. In application, the new class of wavelets has been shown to effectively denoise ECG signals. In addition, the paper introduces a new polynomial soft threshold technique for denoising through wavelet shrinkage. The polynomial soft threshold technique is able to represent a wide class of polynomial behaviors, including classical soft thresholding.

  5. Wavelet denoising of multiframe optical coherence tomography data

    PubMed Central

    Mayer, Markus A.; Borsdorf, Anja; Wagner, Martin; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.

    2012-01-01

    We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise. PMID:22435103

  6. GPU-based cone-beam reconstruction using wavelet denoising

    NASA Astrophysics Data System (ADS)

    Jin, Kyungchan; Park, Jungbyung; Park, Jongchul

    2012-03-01

    The scattering noise artifact resulted in low-dose projection in repetitive cone-beam CT (CBCT) scans decreases the image quality and lessens the accuracy of the diagnosis. To improve the image quality of low-dose CT imaging, the statistical filtering is more effective in noise reduction. However, image filtering and enhancement during the entire reconstruction process exactly may be challenging due to high performance computing. The general reconstruction algorithm for CBCT data is the filtered back-projection, which for a volume of 512×512×512 takes up to a few minutes on a standard system. To speed up reconstruction, massively parallel architecture of current graphical processing unit (GPU) is a platform suitable for acceleration of mathematical calculation. In this paper, we focus on accelerating wavelet denoising and Feldkamp-Davis-Kress (FDK) back-projection using parallel processing on GPU, utilize compute unified device architecture (CUDA) platform and implement CBCT reconstruction based on CUDA technique. Finally, we evaluate our implementation on clinical tooth data sets. Resulting implementation of wavelet denoising is able to process a 1024×1024 image within 2 ms, except data loading process, and our GPU-based CBCT implementation reconstructs a 512×512×512 volume from 400 projection data in less than 1 minute.

  7. Determination of optimal wavelet denoising parameters for red edge feature extraction from hyperspectral data

    NASA Astrophysics Data System (ADS)

    Shafri, Helmi Z. M.; Yusof, Mohd R. M.

    2009-05-01

    A study of wavelet denoising on hyperspectral reflectance data, specifically the red edge position (REP) and its first derivative is presented in this paper. A synthetic data set was created using a sigmoid to simulate the red edge feature for this study. The sigmoid is injected with Gaussian white noise to simulate noisy reflectance data from handheld spectroradiometers. The use of synthetic data enables better quantification and statistical study of the effects of wavelet denoising on the features of hyperspectral data, specifically the REP. The simulation study will help to identify the most suitable wavelet parameters for denoising and represents the applicability of the wavelet-based denoising procedure in hyperspectral sensing for vegetation. The suitability of the thresholding rules and mother wavelets used in wavelet denoising is evaluated by comparing the denoised sigmoid function with the clean sigmoid, in terms of the shift in the inflection point meant to represent the REP, and also the overall change in the denoised signal compared with the clean one. The VisuShrink soft threshold was used with rescaling based on the noise estimate, in conjunction with wavelets of the Daubechies, Symlet and Coiflet families. It was found that for the VisuShrink threshold with single level noise estimate rescaling, the Daubechies 9 and Symlet 8 wavelets produced the least distortion in the location of sigmoid inflection point and the overall curve. The selected mother wavelets were used to denoise oil palm reflectance data to enable determination of the red edge position by locating the peak of the first derivative.

  8. Application of the dual-tree complex wavelet transform in biomedical signal denoising.

    PubMed

    Wang, Fang; Ji, Zhong

    2014-01-01

    In biomedical signal processing, Gibbs oscillation and severe frequency aliasing may occur when using the traditional discrete wavelet transform (DWT). Herein, a new denoising algorithm based on the dual-tree complex wavelet transform (DTCWT) is presented. Electrocardiogram (ECG) signals and heart sound signals are denoised based on the DTCWT. The results prove that the DTCWT is efficient. The signal-to-noise ratio (SNR) and the mean square error (MSE) are used to compare the denoising effect. Results of the paired samples t-test show that the new method can remove noise more thoroughly and better retain the boundary and texture of the signal. PMID:24211889

  9. ECG signals denoising using wavelet transform and independent component analysis

    NASA Astrophysics Data System (ADS)

    Liu, Manjin; Hui, Mei; Liu, Ming; Dong, Liquan; Zhao, Zhu; Zhao, Yuejin

    2015-08-01

    A method of two channel exercise electrocardiograms (ECG) signals denoising based on wavelet transform and independent component analysis is proposed in this paper. First of all, two channel exercise ECG signals are acquired. We decompose these two channel ECG signals into eight layers and add up the useful wavelet coefficients separately, getting two channel ECG signals with no baseline drift and other interference components. However, it still contains electrode movement noise, power frequency interference and other interferences. Secondly, we use these two channel ECG signals processed and one channel signal constructed manually to make further process with independent component analysis, getting the separated ECG signal. We can see the residual noises are removed effectively. Finally, comparative experiment is made with two same channel exercise ECG signals processed directly with independent component analysis and the method this paper proposed, which shows the indexes of signal to noise ratio (SNR) increases 21.916 and the root mean square error (MSE) decreases 2.522, proving the method this paper proposed has high reliability.

  10. Forecasting performance of denoising signal by Wavelet and Fourier Transforms using SARIMA model

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Mamat, Siti Salwana; Hamzah, Firdaus Mohamad; Karim, Samsul Ariffin Abdul

    2014-07-01

    The goal of this research is to determine the forecasting performance of denoising signal. Monthly rainfall and monthly number of raindays with duration of 20 years (1990-2009) from Bayan Lepas station are utilized as the case study. The Fast Fourier Transform (FFT) and Wavelet Transform (WT) are used in this research to find the denoise signal. The denoise data obtained by Fast Fourier Transform and Wavelet Transform are being analyze by seasonal ARIMA model. The best fitted model is determined by the minimum value of MSE. The result indicates that Wavelet Transform is an effective method in denoising the monthly rainfall and number of rain days signals compared to Fast Fourier Transform.

  11. [Ultrasound image de-noising based on nonlinear diffusion of complex wavelet transform].

    PubMed

    Hou, Wen; Wu, Yiquan

    2012-04-01

    Ultrasound images are easily corrupted by speckle noise, which limits its further application in medical diagnoses. An image de-noising method combining dual-tree complex wavelet transform (DT-CWT) with nonlinear diffusion is proposed in this paper. Firstly, an image is decomposed by DT-CWT. Then adaptive-contrast-factor diffusion and total variation diffusion are applied to high-frequency component and low-frequency component, respectively. Finally the image is synthesized. The experimental results are given. The comparisons of the image de-noising results are made with those of the image de-noising methods based on the combination of wavelet shrinkage with total variation diffusion, the combination of wavelet/multiwavelet with nonlinear diffusion. It is shown that the proposed image de-noising method based on DT-CWT and nonlinear diffusion can obtain superior results. It can both remove speckle noise and preserve the original edges and textural features more efficiently. PMID:22616185

  12. Biomedical image and signal de-noising using dual tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Rizi, F. Yousefi; Noubari, H. Ahmadi; Setarehdan, S. K.

    2011-10-01

    Dual tree complex wavelet transform(DTCWT) is a form of discrete wavelet transform, which generates complex coefficients by using a dual tree of wavelet filters to obtain their real and imaginary parts. The purposes of de-noising are reducing noise level and improving signal to noise ratio (SNR) without distorting the signal or image. This paper proposes a method for removing white Gaussian noise from ECG signals and biomedical images. The discrete wavelet transform (DWT) is very valuable in a large scope of de-noising problems. However, it has limitations such as oscillations of the coefficients at a singularity, lack of directional selectivity in higher dimensions, aliasing and consequent shift variance. The complex wavelet transform CWT strategy that we focus on in this paper is Kingsbury's and Selesnick's dual tree CWT (DTCWT) which outperforms the critically decimated DWT in a range of applications, such as de-noising. Each complex wavelet is oriented along one of six possible directions, and the magnitude of each complex wavelet has a smooth bell-shape. In the final part of this paper, we present biomedical image and signal de-noising by the means of thresholding magnitude of the wavelet coefficients.

  13. Random wavelet transforms, algebraic geometric coding, and their applications in signal compression and de-noising

    SciTech Connect

    Bieleck, T.; Song, L.M.; Yau, S.S.T.; Kwong, M.K.

    1995-07-01

    The concepts of random wavelet transforms and discrete random wavelet transforms are introduced. It is shown that these transforms can lead to simultaneous compression and de-noising of signals that have been corrupted with fractional noises. Potential applications of algebraic geometric coding theory to encode the ensuing data are also discussed.

  14. An NMR log echo data de-noising method based on the wavelet packet threshold algorithm

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Xie, Ranhong; Li, Changxi; Hu, Falong; Li, Chaoliu; Zhou, Cancan

    2015-12-01

    To improve the de-noising effects of low signal-to-noise ratio (SNR) nuclear magnetic resonance (NMR) log echo data, this paper applies the wavelet packet threshold algorithm to the data. The principle of the algorithm is elaborated in detail. By comparing the properties of a series of wavelet packet bases and the relevance between them and the NMR log echo train signal, ‘sym7’ is found to be the optimal wavelet packet basis of the wavelet packet threshold algorithm to de-noise the NMR log echo train signal. A new method is presented to determine the optimal wavelet packet decomposition scale; this is within the scope of its maximum, using the modulus maxima and the Shannon entropy minimum standards to determine the global and local optimal wavelet packet decomposition scales, respectively. The results of applying the method to the simulated and actual NMR log echo data indicate that compared with the wavelet threshold algorithm, the wavelet packet threshold algorithm, which shows higher decomposition accuracy and better de-noising effect, is much more suitable for de-noising low SNR-NMR log echo data.

  15. Denoising of PET images by combining wavelets and curvelets for improved preservation of resolution and quantitation.

    PubMed

    Le Pogam, A; Hanzouli, H; Hatt, M; Cheze Le Rest, C; Visvikis, D

    2013-12-01

    Denoising of Positron Emission Tomography (PET) images is a challenging task due to the inherent low signal-to-noise ratio (SNR) of the acquired data. A pre-processing denoising step may facilitate and improve the results of further steps such as segmentation, quantification or textural features characterization. Different recent denoising techniques have been introduced and most state-of-the-art methods are based on filtering in the wavelet domain. However, the wavelet transform suffers from some limitations due to its non-optimal processing of edge discontinuities. More recently, a new multi scale geometric approach has been proposed, namely the curvelet transform. It extends the wavelet transform to account for directional properties in the image. In order to address the issue of resolution loss associated with standard denoising, we considered a strategy combining the complementary wavelet and curvelet transforms. We compared different figures of merit (e.g. SNR increase, noise decrease in homogeneous regions, resolution loss, and intensity bias) on simulated and clinical datasets with the proposed combined approach and the wavelet-only and curvelet-only filtering techniques. The three methods led to an increase of the SNR. Regarding the quantitative accuracy however, the wavelet and curvelet only denoising approaches led to larger biases in the intensity and the contrast than the proposed combined algorithm. This approach could become an alternative solution to filters currently used after image reconstruction in clinical systems such as the Gaussian filter. PMID:23837964

  16. Autocorrelation based denoising of manatee vocalizations using the undecimated discrete wavelet transform.

    PubMed

    Gur, Berke M; Niezrecki, Christopher

    2007-07-01

    Recent interest in the West Indian manatee (Trichechus manatus latirostris) vocalizations has been primarily induced by an effort to reduce manatee mortality rates due to watercraft collisions. A warning system based on passive acoustic detection of manatee vocalizations is desired. The success and feasibility of such a system depends on effective denoising of the vocalizations in the presence of high levels of background noise. In the last decade, simple and effective wavelet domain nonlinear denoising methods have emerged as an alternative to linear estimation methods. However, the denoising performances of these methods degrades considerably with decreasing signal-to-noise ratio (SNR) and therefore are not suited for denoising manatee vocalizations in which the typical SNR is below 0 dB. Manatee vocalizations possess a strong harmonic content and a slow decaying autocorrelation function. In this paper, an efficient denoising scheme that exploits both the autocorrelation function of manatee vocalizations and effectiveness of the nonlinear wavelet transform based denoising algorithms is introduced. The suggested wavelet-based denoising algorithm is shown to outperform linear filtering methods, extending the detection range of vocalizations. PMID:17614478

  17. Study on an improved wavelet shift-invariant threshold denoising for pulsed laser induced glucose photoacoustic signals

    NASA Astrophysics Data System (ADS)

    Wang, Zhengzi; Ren, Zhong; Liu, Guodong

    2015-10-01

    Noninvasive measurement of blood glucose concentration has become a hotspot research in the world due to its characteristic of convenient, rapid and non-destructive etc. The blood glucose concentration monitoring based on photoacoustic technique has attracted many attentions because the detected signal is ultrasonic signals rather than the photo signals. But during the acquisition of the photoacoustic signals of glucose, the photoacoustic signals are not avoid to be polluted by some factors, such as the pulsed laser, electronic noises and circumstance noises etc. These disturbances will impact the measurement accuracy of the glucose concentration, So, the denoising of the glucose photoacoustic signals is a key work. In this paper, a wavelet shift-invariant threshold denoising method is improved, and a novel wavelet threshold function is proposed. For the novel wavelet threshold function, two threshold values and two different factors are set, and the novel function is high order derivative and continuous, which can be looked as the compromise between the wavelet soft threshold denoising and hard threshold denoising. Simulation experimental results illustrate that, compared with other wavelet threshold denoising, this improved wavelet shift-invariant threshold denoising has higher signal-to-noise ratio(SNR) and smaller root mean-square error (RMSE) value. And this improved denoising also has better denoising effect than others. Therefore, this improved denoising has a certain of potential value in the denoising of glucose photoacoustic signals.

  18. Optimization of wavelet- and curvelet-based denoising algorithms by multivariate SURE and GCV

    NASA Astrophysics Data System (ADS)

    Mortezanejad, R.; Gholami, A.

    2016-06-01

    One of the most crucial challenges in seismic data processing is the reduction of noise in the data or improving the signal-to-noise ratio (SNR). Wavelet- and curvelet-based denoising algorithms have become popular to address random noise attenuation for seismic sections. Wavelet basis, thresholding function, and threshold value are three key factors of such algorithms, having a profound effect on the quality of the denoised section. Therefore, given a signal, it is necessary to optimize the denoising operator over these factors to achieve the best performance. In this paper a general denoising algorithm is developed as a multi-variant (variable) filter which performs in multi-scale transform domains (e.g. wavelet and curvelet). In the wavelet domain this general filter is a function of the type of wavelet, characterized by its smoothness, thresholding rule, and threshold value, while in the curvelet domain it is only a function of thresholding rule and threshold value. Also, two methods, Stein’s unbiased risk estimate (SURE) and generalized cross validation (GCV), evaluated using a Monte Carlo technique, are utilized to optimize the algorithm in both wavelet and curvelet domains for a given seismic signal. The best wavelet function is selected from a family of fractional B-spline wavelets. The optimum thresholding rule is selected from general thresholding functions which contain the most well known thresholding functions, and the threshold value is chosen from a set of possible values. The results obtained from numerical tests show high performance of the proposed method in both wavelet and curvelet domains in comparison to conventional methods when denoising seismic data.

  19. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  20. The performance and reliability of wavelet denoising for Doppler ultrasound fetal heart rate signal preprocessing.

    PubMed

    Papadimitriou, S; Papadopoulos, V; Gatzounas, D; Tzigounis, V; Bezerianos, A

    1997-01-01

    The present paper deals with the performance and the reliability of a Wavelet Denoising method for Doppler ultrasound Fetal Heart Rate (FHR) recordings. It displays strong evidence that the denoising process extracts the actual noise components. The analysis is approached with three methods. First, the power spectrum of the denoised FHR displays more clearly an 1/fa scaling law, i.e. the characteristic of fractal time series. Second, the rescaled scale analysis technique reveals a Hurst exponent at the range of 0.7-0.8 that corresponds to a long memory persistent process. Moreover, the variance of the Hurst exponent across time scales is smaller at the denoised signal. Third, a chaotic attractor reconstructed with the embedding dimension technique becomes evident at the denoised signals, while it is completely obscured at the unfiltered ones. PMID:10179728

  1. Evaluation of Effectiveness of Wavelet Based Denoising Schemes Using ANN and SVM for Bearing Condition Classification

    PubMed Central

    G. S., Vijay; H. S., Kumar; Pai P., Srinivasa; N. S., Sriram; Rao, Raj B. K. N.

    2012-01-01

    The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher's Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal. PMID:23213323

  2. Evaluation of Wavelet Denoising Methods for Small-Scale Joint Roughness Estimation Using Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Bitenc, M.; Kieffer, D. S.; Khoshelham, K.

    2015-08-01

    The precision of Terrestrial Laser Scanning (TLS) data depends mainly on the inherent random range error, which hinders extraction of small details from TLS measurements. New post processing algorithms have been developed that reduce or eliminate the noise and therefore enable modelling details at a smaller scale than one would traditionally expect. The aim of this research is to find the optimum denoising method such that the corrected TLS data provides a reliable estimation of small-scale rock joint roughness. Two wavelet-based denoising methods are considered, namely Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), in combination with different thresholding procedures. The question is, which technique provides a more accurate roughness estimates considering (i) wavelet transform (SWT or DWT), (ii) thresholding method (fixed-form or penalised low) and (iii) thresholding mode (soft or hard). The performance of denoising methods is tested by two analyses, namely method noise and method sensitivity to noise. The reference data are precise Advanced TOpometric Sensor (ATOS) measurements obtained on 20 × 30 cm rock joint sample, which are for the second analysis corrupted by different levels of noise. With such a controlled noise level experiments it is possible to evaluate the methods' performance for different amounts of noise, which might be present in TLS data. Qualitative visual checks of denoised surfaces and quantitative parameters such as grid height and roughness are considered in a comparative analysis of denoising methods. Results indicate that the preferred method for realistic roughness estimation is DWT with penalised low hard thresholding.

  3. Parameters optimization for wavelet denoising based on normalized spectral angle and threshold constraint machine learning

    NASA Astrophysics Data System (ADS)

    Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui

    2012-01-01

    Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.

  4. Robust 4D Flow Denoising Using Divergence-Free Wavelet Transform

    PubMed Central

    Ong, Frank; Uecker, Martin; Tariq, Umar; Hsiao, Albert; Alley, Marcus T; Vasanawala, Shreyas S.; Lustig, Michael

    2014-01-01

    Purpose To investigate four-dimensional flow denoising using the divergence-free wavelet (DFW) transform and compare its performance with existing techniques. Theory and Methods DFW is a vector-wavelet that provides a sparse representation of flow in a generally divergence-free field and can be used to enforce “soft” divergence-free conditions when discretization and partial voluming result in numerical nondivergence-free components. Efficient denoising is achieved by appropriate shrinkage of divergence-free wavelet and nondivergence-free coefficients. SureShrink and cycle spinning are investigated to further improve denoising performance. Results DFW denoising was compared with existing methods on simulated and phantom data and was shown to yield better noise reduction overall while being robust to segmentation errors. The processing was applied to in vivo data and was demonstrated to improve visualization while preserving quantifications of flow data. Conclusion DFW denoising of four-dimensional flow data was shown to reduce noise levels in flow data both quantitatively and visually. PMID:24549830

  5. Improving wavelet denoising based on an in-depth analysis of the camera color processing

    NASA Astrophysics Data System (ADS)

    Seybold, Tamara; Plichta, Mathias; Stechele, Walter

    2015-02-01

    While Denoising is an extensively studied task in signal processing research, most denoising methods are designed and evaluated using readily processed image data, e.g. the well-known Kodak data set. The noise model is usually additive white Gaussian noise (AWGN). This kind of test data does not correspond to nowadays real-world image data taken with a digital camera. Using such unrealistic data to test, optimize and compare denoising algorithms may lead to incorrect parameter tuning or suboptimal choices in research on real-time camera denoising algorithms. In this paper we derive a precise analysis of the noise characteristics for the different steps in the color processing. Based on real camera noise measurements and simulation of the processing steps, we obtain a good approximation for the noise characteristics. We further show how this approximation can be used in standard wavelet denoising methods. We improve the wavelet hard thresholding and bivariate thresholding based on our noise analysis results. Both the visual quality and objective quality metrics show the advantage of the proposed method. As the method is implemented using look-up-tables that are calculated before the denoising step, our method can be implemented with very low computational complexity and can process HD video sequences real-time in an FPGA.

  6. Dual tree complex wavelet transform based denoising of optical microscopy images.

    PubMed

    Bal, Ufuk

    2012-12-01

    Photon shot noise is the main noise source of optical microscopy images and can be modeled by a Poisson process. Several discrete wavelet transform based methods have been proposed in the literature for denoising images corrupted by Poisson noise. However, the discrete wavelet transform (DWT) has disadvantages such as shift variance, aliasing, and lack of directional selectivity. To overcome these problems, a dual tree complex wavelet transform is used in our proposed denoising algorithm. Our denoising algorithm is based on the assumption that for the Poisson noise case threshold values for wavelet coefficients can be estimated from the approximation coefficients. Our proposed method was compared with one of the state of the art denoising algorithms. Better results were obtained by using the proposed algorithm in terms of image quality metrics. Furthermore, the contrast enhancement effect of the proposed method on collagen fıber images is examined. Our method allows fast and efficient enhancement of images obtained under low light intensity conditions. PMID:23243573

  7. Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing

    PubMed Central

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-01-01

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290

  8. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing.

    PubMed

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-01-01

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz. PMID:26501290

  9. Implemented Wavelet Packet Tree based Denoising Algorithm in Bus Signals of a Wearable Sensorarray

    NASA Astrophysics Data System (ADS)

    Schimmack, M.; Nguyen, S.; Mercorelli, P.

    2015-11-01

    This paper introduces a thermosensing embedded system with a sensor bus that uses wavelets for the purposes of noise location and denoising. From the principle of the filter bank the measured signal is separated in two bands, low and high frequency. The proposed algorithm identifies the defined noise in these two bands. With the Wavelet Packet Transform as a method of Discrete Wavelet Transform, it is able to decompose and reconstruct bus input signals of a sensor network. Using a seminorm, the noise of a sequence can be detected and located, so that the wavelet basis can be rearranged. This particularly allows for elimination of any incoherent parts that make up unavoidable measuring noise of bus signals. The proposed method was built based on wavelet algorithms from the WaveLab 850 library of the Stanford University (USA). This work gives an insight to the workings of Wavelet Transformation.

  10. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    PubMed

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells. PMID:23458301

  11. 2-D Continuous Wavelet Transform for ESPI phase-maps denoising

    NASA Astrophysics Data System (ADS)

    Escalante, Nivia; Villa, Jesús; de la Rosa, Ismael; de la Rosa, Enrique; González-Ramírez, Efrén; Gutiérrez, Osvaldo; Olvera, Carlos; Araiza, María

    2013-09-01

    In this work we introduce a 2-D Continuous Wavelet Transform (2-D CWT) method for denoising ESPI phase-maps. Multiresolution analysis with 2-D wavelets can provide high directional sensitivity and high anisotropy which are proper characteristics for this task. In particular, the 2-D CWT method using Gabor atoms (Gabor mother wavelets) which can naturally model phase fringes, has a good performance against noise and can preserve phase fringes. We describe the theoretical basis of the proposed technique and show some experimental results with real and simulated ESPI phase-maps. As can be verified the proposal is robust and effective.

  12. Image denoising with 2D scale-mixing complex wavelet transforms.

    PubMed

    Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani

    2014-12-01

    This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931

  13. The Application of Wavelet-Domain Hidden Markov Tree Model in Diabetic Retinal Image Denoising

    PubMed Central

    Cui, Dong; Liu, Minmin; Hu, Lei; Liu, Keju; Guo, Yongxin; Jiao, Qing

    2015-01-01

    The wavelet-domain Hidden Markov Tree Model can properly describe the dependence and correlation of fundus angiographic images’ wavelet coefficients among scales. Based on the construction of the fundus angiographic images Hidden Markov Tree Models and Gaussian Mixture Models, this paper applied expectation-maximum algorithm to estimate the wavelet coefficients of original fundus angiographic images and the Bayesian estimation to achieve the goal of fundus angiographic images denoising. As is shown in the experimental result, compared with the other algorithms as mean filter and median filter, this method effectively improved the peak signal to noise ratio of fundus angiographic images after denoising and preserved the details of vascular edge in fundus angiographic images. PMID:26628926

  14. Speech signal denoising with wavelet-transforms and the mean opinion score characterizing the filtering quality

    NASA Astrophysics Data System (ADS)

    Yaseen, Alauldeen S.; Pavlov, Alexey N.; Hramov, Alexander E.

    2016-03-01

    Speech signal processing is widely used to reduce noise impact in acquired data. During the last decades, wavelet-based filtering techniques are often applied in communication systems due to their advantages in signal denoising as compared with Fourier-based methods. In this study we consider applications of a 1-D double density complex wavelet transform (1D-DDCWT) and compare the results with the standard 1-D discrete wavelet-transform (1DDWT). The performances of the considered techniques are compared using the mean opinion score (MOS) being the primary metric for the quality of the processed signals. A two-dimensional extension of this approach can be used for effective image denoising.

  15. Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction.

    PubMed

    Holan, Scott H; Viator, John A

    2008-06-21

    Photoacoustic image reconstruction may involve hundreds of point measurements, each of which contributes unique information about the subsurface absorbing structures under study. For backprojection imaging, two or more point measurements of photoacoustic waves induced by irradiating a biological sample with laser light are used to produce an image of the acoustic source. Each of these measurements must undergo some signal processing, such as denoising or system deconvolution. In order to process the numerous signals, we have developed an automated wavelet algorithm for denoising signals. We appeal to the discrete wavelet transform for denoising photoacoustic signals generated in a dilute melanoma cell suspension and in thermally coagulated blood. We used 5, 9, 45 and 270 melanoma cells in the laser beam path as test concentrations. For the burn phantom, we used coagulated blood in 1.6 mm silicon tube submerged in Intralipid. Although these two targets were chosen as typical applications for photoacoustic detection and imaging, they are of independent interest. The denoising employs level-independent universal thresholding. In order to accommodate nonradix-2 signals, we considered a maximal overlap discrete wavelet transform (MODWT). For the lower melanoma cell concentrations, as the signal-to-noise ratio approached 1, denoising allowed better peak finding. For coagulated blood, the signals were denoised to yield a clean photoacoustic resulting in an improvement of 22% in the reconstructed image. The entire signal processing technique was automated so that minimal user intervention was needed to reconstruct the images. Such an algorithm may be used for image reconstruction and signal extraction for applications such as burn depth imaging, depth profiling of vascular lesions in skin and the detection of single cancer cells in blood samples. PMID:18495977

  16. Variable-order fractional numerical differentiation for noisy signals by wavelet denoising

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ming; Wei, Yan-Qiao; Liu, Da-Yan; Boutat, Driss; Chen, Xiu-Kai

    2016-04-01

    In this paper, a numerical method is proposed to estimate the variable-order fractional derivatives of an unknown signal in noisy environment. Firstly, the wavelet denoising process is adopted to reduce the noise effect for the signal. Secondly, polynomials are constructed to fit the denoised signal in a set of overlapped subintervals of a considered interval. Thirdly, the variable-order fractional derivatives of these fitting polynomials are used as the estimations of the unknown ones, where the values obtained near the boundaries of each subinterval are ignored in the overlapped parts. Finally, numerical examples are presented to demonstrate the efficiency and robustness of the proposed method.

  17. Wavelet-based denoising method for real phonocardiography signal recorded by mobile devices in noisy environment.

    PubMed

    Gradolewski, Dawid; Redlarski, Grzegorz

    2014-09-01

    The main obstacle in development of intelligent autodiagnosis medical systems based on the analysis of phonocardiography (PCG) signals is noise. The noise can be caused by digestive and respiration sounds, movements or even signals from the surrounding environment and it is characterized by wide frequency and intensity spectrum. This spectrum overlaps the heart tones spectrum, which makes the problem of PCG signal filtrating complex. The most common method for filtering such signals are wavelet denoising algorithms. In previous studies, in order to determine the optimum wavelet denoising parameters the disturbances were simulated by Gaussian white noise. However, this paper shows that this noise has a variable character. Therefore, the purpose of this paper is adaptation of a wavelet denoising algorithm for the filtration of real PCG signal disturbances from signals recorded by a mobile devices in a noisy environment. The best results were obtained for Coif 5 wavelet at the 10th decomposition level with the use of a minimaxi threshold selection algorithm and mln rescaling function. The performance of the algorithm was tested on four pathological heart sounds: early systolic murmur, ejection click, late systolic murmur and pansystolic murmur. PMID:25038586

  18. Noise reduction of time domain electromagnetic data: Application of a combined wavelet denoising method

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yuan, Guiyang; Lin, Jun; Du, Shangyu; Xie, Lijun; Wang, Yuan

    2016-06-01

    A denoising method based on wavelet analysis is presented for the removal of noise (background noise and random spike) from time domain electromagnetic (TEM) data. This method includes two signal processing technologies: wavelet threshold method and stationary wavelet transform. First, wavelet threshold method is used for the removal of background noise from TEM data. Then, the data are divided into a series of details and approximations by using stationary wavelet transform. The random spike in details is identified by zero reference data and adaptive energy detector. Next, the corresponding details are processed to suppress the random spike. The denoised TEM data are reconstructed via inverse stationary wavelet transform using the processed details at each level and the approximations at the highest level. The proposed method has been verified using a synthetic TEM data, the signal-to-noise ratio of synthetic TEM data is increased from 10.97 dB to 24.37 dB at last. This method is also applied to the noise suppression of the field data which were collected at Hengsha island, China. The section image results shown that the noise is suppressed effectively and the resolution of the deep anomaly is obviously improved.

  19. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains.

    PubMed

    Lahmiri, Salim

    2014-09-01

    Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared. The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the VMD-DWT approach outperforms the conventional EMD-DWT. In addition, a non-local means approach used as a reference technique provides better results than the VMD-DWT approach. PMID:26609387

  20. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains

    PubMed Central

    2014-01-01

    Hybrid denoising models based on combining empirical mode decomposition (EMD) and discrete wavelet transform (DWT) were found to be effective in removing additive Gaussian noise from electrocardiogram (ECG) signals. Recently, variational mode decomposition (VMD) has been proposed as a multiresolution technique that overcomes some of the limits of the EMD. Two ECG denoising approaches are compared. The first is based on denoising in the EMD domain by DWT thresholding, whereas the second is based on noise reduction in the VMD domain by DWT thresholding. Using signal-to-noise ratio and mean of squared errors as performance measures, simulation results show that the VMD-DWT approach outperforms the conventional EMD–DWT. In addition, a non-local means approach used as a reference technique provides better results than the VMD-DWT approach. PMID:26609387

  1. Application of Wavelet Based Denoising for T-Wave Alternans Analysis in High Resolution ECG Maps

    NASA Astrophysics Data System (ADS)

    Janusek, D.; Kania, M.; Zaczek, R.; Zavala-Fernandez, H.; Zbieć, A.; Opolski, G.; Maniewski, R.

    2011-01-01

    T-wave alternans (TWA) allows for identification of patients at an increased risk of ventricular arrhythmia. Stress test, which increases heart rate in controlled manner, is used for TWA measurement. However, the TWA detection and analysis are often disturbed by muscular interference. The evaluation of wavelet based denoising methods was performed to find optimal algorithm for TWA analysis. ECG signals recorded in twelve patients with cardiac disease were analyzed. In seven of them significant T-wave alternans magnitude was detected. The application of wavelet based denoising method in the pre-processing stage increases the T-wave alternans magnitude as well as the number of BSPM signals where TWA was detected.

  2. Fault Detection of a Roller-Bearing System through the EMD of a Wavelet Denoised Signal

    PubMed Central

    Ahn, Jong-Hyo; Kwak, Dae-Ho; Koh, Bong-Hwan

    2014-01-01

    This paper investigates fault detection of a roller bearing system using a wavelet denoising scheme and proper orthogonal value (POV) of an intrinsic mode function (IMF) covariance matrix. The IMF of the bearing vibration signal is obtained through empirical mode decomposition (EMD). The signal screening process in the wavelet domain eliminates noise-corrupted portions that may lead to inaccurate prognosis of bearing conditions. We segmented the denoised bearing signal into several intervals, and decomposed each of them into IMFs. The first IMF of each segment is collected to become a covariance matrix for calculating the POV. We show that covariance matrices from healthy and damaged bearings exhibit different POV profiles, which can be a damage-sensitive feature. We also illustrate the conventional approach of feature extraction, of observing the kurtosis value of the measured signal, to compare the functionality of the proposed technique. The study demonstrates the feasibility of wavelet-based de-noising, and shows through laboratory experiments that tracking the proper orthogonal values of the covariance matrix of the IMF can be an effective and reliable measure for monitoring bearing fault. PMID:25196008

  3. Wavelet-domain TI Wiener-like filtering for complex MR data denoising.

    PubMed

    Hu, Kai; Cheng, Qiaocui; Gao, Xieping

    2016-10-01

    Magnetic resonance (MR) images are affected by random noises, which degrade many image processing and analysis tasks. It has been shown that the noise in magnitude MR images follows a Rician distribution. Unlike additive Gaussian noise, the noise is signal-dependent, and consequently difficult to reduce, especially in low signal-to-noise ratio (SNR) images. Wirestam et al. in [20] proposed a Wiener-like filtering technique in wavelet-domain to reduce noise before construction of the magnitude MR image. Based on Wirestam's study, we propose a wavelet-domain translation-invariant (TI) Wiener-like filtering algorithm for noise reduction in complex MR data. The proposed denoising algorithm shows the following improvements compared with Wirestam's method: (1) we introduce TI property into the Wiener-like filtering in wavelet-domain to suppress artifacts caused by translations of the signal; (2) we integrate one Stein's Unbiased Risk Estimator (SURE) thresholding with two Wiener-like filters to make the hard-thresholding scale adaptive; and (3) the first Wiener-like filtering is used to filter the original noisy image in which the noise obeys Gaussian distribution and it provides more reasonable results. The proposed algorithm is applied to denoise the real and imaginary parts of complex MR images. To evaluate our proposed algorithm, we conduct extensive denoising experiments using T1-weighted simulated MR images, diffusion-weighted (DW) phantom and in vivo data. We compare our algorithm with other popular denoising methods. The results demonstrate that our algorithm outperforms others in term of both efficiency and robustness. PMID:27238055

  4. Localization and de-noising seismic signals on SASW measurement by wavelet transform

    NASA Astrophysics Data System (ADS)

    Golestani, Alireza; S. Kolbadi, S. Mahdi; Heshmati, Ali Akbar

    2013-11-01

    SASW method is a nondestructive in situ testing method that is used to determine the dynamic properties of soil sites and pavement systems. Phase information and dispersion characteristics of a wave propagating through these systems have a significant role in the processing of recorded data. Inversion of the dispersive phase data provides information on the variation of shear-wave velocity with depth. However, in the case of sanded residual soil, it is not easy to produce the reliable phase spectrum curve. Due to natural noises and other human intervention in surface wave date generation deal with to reliable phase spectrum curve for sanded residual soil turn into the complex issue for geological scientist. In this paper, a time-frequency analysis based on complex Gaussian Derivative wavelet was applied to detect and localize all the events that are not identifiable by conventional signal processing methods. Then, the performance of discrete wavelet transform (DWT) in noise reduction of these recorded seismic signals was evaluated. Furthermore, in particular the influence of the decomposition level choice was investigated on efficiency of this process. This method is developed by various wavelet thresholding techniques which provide many options for controllable de-noising at each level of signal decomposition. Also, it obviates the need for high computation time compare with continuous wavelet transform. According to the results, the proposed method is powerful to visualize the interested spectrum range of seismic signals and to de-noise at low level decomposition.

  5. The EM Method in a Probabilistic Wavelet-Based MRI Denoising.

    PubMed

    Martin-Fernandez, Marcos; Villullas, Sergio

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  6. The EM Method in a Probabilistic Wavelet-Based MRI Denoising

    PubMed Central

    2015-01-01

    Human body heat emission and others external causes can interfere in magnetic resonance image acquisition and produce noise. In this kind of images, the noise, when no signal is present, is Rayleigh distributed and its wavelet coefficients can be approximately modeled by a Gaussian distribution. Noiseless magnetic resonance images can be modeled by a Laplacian distribution in the wavelet domain. This paper proposes a new magnetic resonance image denoising method to solve this fact. This method performs shrinkage of wavelet coefficients based on the conditioned probability of being noise or detail. The parameters involved in this filtering approach are calculated by means of the expectation maximization (EM) method, which avoids the need to use an estimator of noise variance. The efficiency of the proposed filter is studied and compared with other important filtering techniques, such as Nowak's, Donoho-Johnstone's, Awate-Whitaker's, and nonlocal means filters, in different 2D and 3D images. PMID:26089959

  7. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  8. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM.

    PubMed

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  9. Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM

    PubMed Central

    Zhang, Chaolong; He, Yigang; Yuan, Lifeng; Xiang, Sheng; Wang, Jinping

    2015-01-01

    Lithium-ion batteries are widely used in many electronic systems. Therefore, it is significantly important to estimate the lithium-ion battery's remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely and estimate the battery RUL accurately. PMID:26413090

  10. Radiation dose reduction in computed tomography (CT) using a new implementation of wavelet denoising in low tube current acquisitions

    NASA Astrophysics Data System (ADS)

    Tao, Yinghua; Brunner, Stephen; Tang, Jie; Speidel, Michael; Rowley, Howard; VanLysel, Michael; Chen, Guang-Hong

    2011-03-01

    Radiation dose reduction remains at the forefront of research in computed tomography. X-ray tube parameters such as tube current can be lowered to reduce dose; however, images become prohibitively noisy when the tube current is too low. Wavelet denoising is one of many noise reduction techniques. However, traditional wavelet techniques have the tendency to create an artificial noise texture, due to the nonuniform denoising across the image, which is undesirable from a diagnostic perspective. This work presents a new implementation of wavelet denoising that is able to achieve noise reduction, while still preserving spatial resolution. Further, the proposed method has the potential to improve those unnatural noise textures. The technique was tested on both phantom and animal datasets (Catphan phantom and timeresolved swine heart scan) acquired on a GE Discovery VCT scanner. A number of tube currents were used to investigate the potential for dose reduction.

  11. Denoising of X-ray pulsar observed profile in the undecimated wavelet domain

    NASA Astrophysics Data System (ADS)

    Xue, Meng-fan; Li, Xiao-ping; Fu, Ling-zhong; Liu, Xiu-ping; Sun, Hai-feng; Shen, Li-rong

    2016-01-01

    The low intensity of the X-ray pulsar signal and the strong X-ray background radiation lead to low signal-to-noise ratio (SNR) of the X-ray pulsar observed profile obtained through epoch folding, especially when the observation time is not long enough. This signifies the necessity of denoising of the observed profile. In this paper, the statistical characteristics of the X-ray pulsar signal are studied, and a signal-dependent noise model is established for the observed profile. Based on this, a profile noise reduction method by performing a local linear minimum mean square error filtering in the un-decimated wavelet domain is developed. The detail wavelet coefficients are rescaled by multiplying their amplitudes by a locally adaptive factor, which is the local variance ratio of the noiseless coefficients to the noisy ones. All the nonstationary statistics needed in the algorithm are calculated from the observed profile, without a priori information. The results of experim! ents, carried out on simulated data obtained by the ground-based simulation system and real data obtained by Rossi X-Ray Timing Explorer satellite, indicate that the proposed method is excellent in both noise suppression and preservation of peak sharpness, and it also clearly outperforms four widely accepted and used wavelet denoising methods, in terms of SNR, Pearson correlation coefficient and root mean square error.

  12. [Research on ECG de-noising method based on ensemble empirical mode decomposition and wavelet transform using improved threshold function].

    PubMed

    Ye, Linlin; Yang, Dan; Wang, Xu

    2014-06-01

    A de-noising method for electrocardiogram (ECG) based on ensemble empirical mode decomposition (EEMD) and wavelet threshold de-noising theory is proposed in our school. We decomposed noised ECG signals with the proposed method using the EEMD and calculated a series of intrinsic mode functions (IMFs). Then we selected IMFs and reconstructed them to realize the de-noising for ECG. The processed ECG signals were filtered again with wavelet transform using improved threshold function. In the experiments, MIT-BIH ECG database was used for evaluating the performance of the proposed method, contrasting with de-noising method based on EEMD and wavelet transform with improved threshold function alone in parameters of signal to noise ratio (SNR) and mean square error (MSE). The results showed that the ECG waveforms de-noised with the proposed method were smooth and the amplitudes of ECG features did not attenuate. In conclusion, the method discussed in this paper can realize the ECG denoising and meanwhile keep the characteristics of original ECG signal. PMID:25219236

  13. Experimental and theoretical analysis of wavelet-based denoising filter for echocardiographic images.

    PubMed

    Kang, S C; Hong, S H

    2001-01-01

    One of the most significant features of diagnostic echocardiographic images is to reduce speckle noise and make better image quality. In this paper we proposed a simple and effective filter design for image denoising and contrast enhancement based on multiscale wavelet denoising method. Wavelet threshold algorithms replace wavelet coefficients with small magnitude by zero and keep or shrink the other coefficients. This is basically a local procedure, since wavelet coefficients characterize the local regularity of a function. After we estimate distribution of noise within echocardiographic image, then apply to fitness Wavelet threshold algorithm. A common way of the estimating the speckle noise level in coherent imaging is to calculate the mean-to-standard-deviation ratio of the pixel intensity, often termed the Equivalent Number of Looks(ENL), over a uniform image area. Unfortunately, we found this measure not very robust mainly because of the difficulty to identify a uniform area in a real image. For this reason, we will only use here the S/MSE ratio and which corresponds to the standard SNR in case of additivie noise. We have simulated some echocardiographic images by specialized hardware for real-time application;processing of a 512*512 images takes about 1 min. Our experiments show that the optimal threshold level depends on the spectral content of the image. High spectral content tends to over-estimate the noise standard deviation estimation performed at the finest level of the DWT. As a result, a lower threshold parameter is required to get the optimal S/MSE. The standard WCS theory predicts a threshold that depends on the number of signal samples only. PMID:11604864

  14. A Method for Ventricular Late Potentials Detection Using Time-Frequency Representation and Wavelet Denoising

    PubMed Central

    Gadaleta, Matteo; Giorgio, Agostino

    2012-01-01

    This study proposes a method for ventricular late potentials (VLPs) detection using time-frequency representation and wavelet denoising in high-resolution electrocardiography (HRECG). The analysis is performed both with the signal averaged electrocardiography (SAECG) and in real time. A comparison between the temporal and the time-frequency analysis is also reported. In the first analysis the standard parameters QRSd, LAS40, and RMS40 were used; in the second normalized energy in time-frequency domain was calculated. The algorithm was tested adding artificial VLPs to real ECGs. PMID:22957271

  15. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  16. Three-dimensional object recognition using wavelets for feature denoising

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Soo; Kasparis, Takis; Schiavone, Guy A.

    1996-06-01

    Recognition of 3D objects independent of size, position, and rotation is an important and difficult subject in computer vision. A 3D feature extraction method referred to as the Open Ball Operator (OBO) is proposed as an approach to solving the 3D object recognition problem. The OBO feature extraction method has the three characteristics of invariance to rotation, scaling, and translation invariance. Additionally, the OBO is capable of distinguishing between convexities and concavities in the surface of 3D object. The OBO also exhibits a good robustness to noise and uncertainty caused by inaccuracies in 3D measurements. A wavelet de- noising method is used for filtering out noise contained in the feature vectors of 3D objects.

  17. Interferometric side-scan sonar signal denoised by wavelets

    NASA Astrophysics Data System (ADS)

    Sintes, Christophe R.; Legris, Michel; Solaiman, Basel

    2003-04-01

    This paper concerns the possibilities that side scan sonar have to determine the bathymetry. New side scan sonars, which are able to image the sea bottom with a high definition, estimate the relief with the same definition as conventional sonar images, using an interferometric multisensors system. Drawbacks concern the accuracy and errors of the numerical altitude model. Interferometric methods use a phase difference to determine a time delay between two sensors. The phase difference belongs to a finite interval (-π, +π), but the time delay between two sensors does not belong to a finite interval: the phase is 2π biased. The used sonar is designend for the use of the vernier technique, which allows to remove this bias. The difficulty comes from interferometric noise, which generates errors on the 2π bias estimation derived from the verier. The traditional way to reduce noise impact on the interferometric signal, is to average data. This method does not preserve the resolution of the bathymetric estimation. This paper presents an attempt to improve the accuracy and resolution of the interferometric signal through a wavelets based method of image despecklization. Traditionally, despecklization is processed on the logarithm of absolute value of the signal. But for this application, the proposed interferometric despecklizaiotn is achieved directly on the interferometric signal by integrating information, guided by the despeckled image. Finally, this multiscale analysis corresponds to an auto adaptive average filtering. A variant of this method is introduced and based on this assumption. This method used the identify function to reconstruct the signal. On the presented results, phase despecklization improves considerably the quality of the interferometric signal in terms of to noise ratio, without an important degradation of resolution.

  18. Real-time wavelet denoising with edge enhancement for medical x-ray imaging

    NASA Astrophysics Data System (ADS)

    Luo, Gaoyong; Osypiw, David; Hudson, Chris

    2006-02-01

    X-ray image visualized in real-time plays an important role in clinical applications. The real-time system design requires that images with the highest perceptual quality be acquired while minimizing the x-ray dose to the patient, which can result in severe noise that must be reduced. The approach based on the wavelet transform has been widely used for noise reduction. However, by removing noise, high frequency components belonging to edges that hold important structural information of an image are also removed, which leads to blurring the features. This paper presents a new method of x-ray image denoising based on fast lifting wavelet thresholding for general noise reduction and spatial filtering for further denoising by using a derivative model to preserve edges. General denoising is achieved by estimating the level of the contaminating noise and employing an adaptive thresholding scheme with variance analysis. The soft thresholding scheme is to remove the overall noise including that attached to edges. A new edge identification method of using approximation of spatial gradient at each pixel location is developed together with a spatial filter to smooth noise in the homogeneous areas but preserve important structures. Fine noise reduction is only applied to the non-edge parts, such that edges are preserved and enhanced. Experimental results demonstrate that the method performs well both visually and in terms of quantitative performance measures for clinical x-ray images contaminated by natural and artificial noise. The proposed algorithm with fast computation and low complexity provides a potential solution for real-time applications.

  19. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Chitchian, Shahab; Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-11-01

    Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained.

  20. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform

    PubMed Central

    Mayer, Markus A.; Boretsky, Adam R.; van Kuijk, Frederik J.; Motamedi, Massoud

    2012-01-01

    Abstract. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  1. Retinal optical coherence tomography image enhancement via shrinkage denoising using double-density dual-tree complex wavelet transform.

    PubMed

    Chitchian, Shahab; Mayer, Markus A; Boretsky, Adam R; van Kuijk, Frederik J; Motamedi, Massoud

    2012-11-01

    ABSTRACT. Image enhancement of retinal structures, in optical coherence tomography (OCT) scans through denoising, has the potential to aid in the diagnosis of several eye diseases. In this paper, a locally adaptive denoising algorithm using double-density dual-tree complex wavelet transform, a combination of the double-density wavelet transform and the dual-tree complex wavelet transform, is applied to reduce speckle noise in OCT images of the retina. The algorithm overcomes the limitations of commonly used multiple frame averaging technique, namely the limited number of frames that can be recorded due to eye movements, by providing a comparable image quality in significantly less acquisition time equal to an order of magnitude less time compared to the averaging method. In addition, improvements of image quality metrics and 5 dB increase in the signal-to-noise ratio are attained. PMID:23117804

  2. The application of wavelet shrinkage denoising to magnetic Barkhausen noise measurements

    SciTech Connect

    Thomas, James

    2014-02-18

    The application of Magnetic Barkhausen Noise (MBN) as a non-destructive method of defect detection has proliferated throughout the manufacturing community. Instrument technology and measurement methodology have matured commensurately as applications have moved from the R and D labs to the fully automated manufacturing environment. These new applications present a new set of challenges including a bevy of error sources. A significant obstacle in many industrial applications is a decrease in signal to noise ratio due to (i) environmental EMI and (II) compromises in sensor design for the purposes of automation. The stochastic nature of MBN presents a challenge to any method of noise reduction. An application of wavelet shrinkage denoising is proposed as a method of decreasing extraneous noise in MBN measurements. The method is tested and yields marked improvement on measurements subject to EMI, grounding noise, and even measurements in ideal conditions.

  3. A blind detection scheme based on modified wavelet denoising algorithm for wireless optical communications

    NASA Astrophysics Data System (ADS)

    Li, Ruijie; Dang, Anhong

    2015-10-01

    This paper investigates a detection scheme without channel state information for wireless optical communication (WOC) systems in turbulence induced fading channel. The proposed scheme can effectively diminish the additive noise caused by background radiation and photodetector, as well as the intensity scintillation caused by turbulence. The additive noise can be mitigated significantly using the modified wavelet threshold denoising algorithm, and then, the intensity scintillation can be attenuated by exploiting the temporal correlation of the WOC channel. Moreover, to improve the performance beyond that of the maximum likelihood decision, the maximum a posteriori probability (MAP) criterion is considered. Compared with conventional blind detection algorithm, simulation results show that the proposed detection scheme can improve the signal-to-noise ratio (SNR) performance about 4.38 dB while the bit error rate and scintillation index (SI) are 1×10-6 and 0.02, respectively.

  4. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time

    NASA Astrophysics Data System (ADS)

    Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain; Messaoudi, Cedric; Marco, Sergio

    2015-01-01

    The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the

  5. Non parametric denoising methods based on wavelets: Application to electron microscopy images in low exposure time

    SciTech Connect

    Soumia, Sid Ahmed; Messali, Zoubeida; Ouahabi, Abdeldjalil; Trepout, Sylvain E-mail: cedric.messaoudi@curie.fr Messaoudi, Cedric E-mail: cedric.messaoudi@curie.fr Marco, Sergio E-mail: cedric.messaoudi@curie.fr

    2015-01-13

    The 3D reconstruction of the Cryo-Transmission Electron Microscopy (Cryo-TEM) and Energy Filtering TEM images (EFTEM) hampered by the noisy nature of these images, so that their alignment becomes so difficult. This noise refers to the collision between the frozen hydrated biological samples and the electrons beam, where the specimen is exposed to the radiation with a high exposure time. This sensitivity to the electrons beam led specialists to obtain the specimen projection images at very low exposure time, which resulting the emergence of a new problem, an extremely low signal-to-noise ratio (SNR). This paper investigates the problem of TEM images denoising when they are acquired at very low exposure time. So, our main objective is to enhance the quality of TEM images to improve the alignment process which will in turn improve the three dimensional tomography reconstructions. We have done multiple tests on special TEM images acquired at different exposure time 0.5s, 0.2s, 0.1s and 1s (i.e. with different values of SNR)) and equipped by Golding beads for helping us in the assessment step. We herein, propose a structure to combine multiple noisy copies of the TEM images. The structure is based on four different denoising methods, to combine the multiple noisy TEM images copies. Namely, the four different methods are Soft, the Hard as Wavelet-Thresholding methods, Bilateral Filter as a non-linear technique able to maintain the edges neatly, and the Bayesian approach in the wavelet domain, in which context modeling is used to estimate the parameter for each coefficient. To ensure getting a high signal-to-noise ratio, we have guaranteed that we are using the appropriate wavelet family at the appropriate level. So we have chosen âĂIJsym8âĂİ wavelet at level 3 as the most appropriate parameter. Whereas, for the bilateral filtering many tests are done in order to determine the proper filter parameters represented by the size of the filter, the range parameter and the

  6. Enhancement of signal denoising and multiple fault signatures detecting in rotating machinery using dual-tree complex wavelet transform

    NASA Astrophysics Data System (ADS)

    Wang, Yanxue; He, Zhengjia; Zi, Yanyang

    2010-01-01

    In order to enhance the desired features related to some special type of machine fault, a technique based on the dual-tree complex wavelet transform (DTCWT) is proposed in this paper. It is demonstrated that DTCWT enjoys better shift invariance and reduced spectral aliasing than second-generation wavelet transform (SGWT) and empirical mode decomposition by means of numerical simulations. These advantages of the DTCWT arise from the relationship between the two dual-tree wavelet basis functions, instead of the matching of the used single wavelet basis function to the signal being analyzed. Since noise inevitably exists in the measured signals, an enhanced vibration signals denoising algorithm incorporating DTCWT with NeighCoeff shrinkage is also developed. Denoising results of vibration signals resulting from a crack gear indicate the proposed denoising method can effectively remove noise and retain the valuable information as much as possible compared to those DWT- and SGWT-based NeighCoeff shrinkage denoising methods. As is well known, excavation of comprehensive signatures embedded in the vibration signals is of practical importance to clearly clarify the roots of the fault, especially the combined faults. In the case of multiple features detection, diagnosis results of rolling element bearings with combined faults and an actual industrial equipment confirm that the proposed DTCWT-based method is a powerful and versatile tool and consistently outperforms SGWT and fast kurtogram, which are widely used recently. Moreover, it must be noted, the proposed method is completely suitable for on-line surveillance and diagnosis due to its good robustness and efficient algorithm.

  7. A hybrid fault diagnosis method based on second generation wavelet de-noising and local mean decomposition for rotating machinery.

    PubMed

    Liu, Zhiwen; He, Zhengjia; Guo, Wei; Tang, Zhangchun

    2016-03-01

    In order to extract fault features of large-scale power equipment from strong background noise, a hybrid fault diagnosis method based on the second generation wavelet de-noising (SGWD) and the local mean decomposition (LMD) is proposed in this paper. In this method, a de-noising algorithm of second generation wavelet transform (SGWT) using neighboring coefficients was employed as the pretreatment to remove noise in rotating machinery vibration signals by virtue of its good effect in enhancing the signal-noise ratio (SNR). Then, the LMD method is used to decompose the de-noised signals into several product functions (PFs). The PF corresponding to the faulty feature signal is selected according to the correlation coefficients criterion. Finally, the frequency spectrum is analyzed by applying the FFT to the selected PF. The proposed method is applied to analyze the vibration signals collected from an experimental gearbox and a real locomotive rolling bearing. The results demonstrate that the proposed method has better performances such as high SNR and fast convergence speed than the normal LMD method. PMID:26753616

  8. NIR fibre Bragg grating as dynamic sensor: an application of 1D digital wavelet analysis for signal denoising

    NASA Astrophysics Data System (ADS)

    Hafizi, Z. M.; Kahandawa, G. C.; Epaarachchi, J.; Lau, K. T.; Canning, J.; Cook, K.

    2013-08-01

    During the past decade, many successful studies have evidently shown remarkable capability of Fiber Bragg Gratings (FBG) sensor for dynamic sensing. Most of the research works utilized the 1550 nm wavelength range of FBG sensors. However near infra-red (NIR) FBG sensors can offer the lower cost of Structural health Monitoring (SHM) systems which uses cheaper silicon sources and detectors. Unfortunately, the excessive noise levels that experienced in NIR wavelengths have caused the rejection of sensor that operating in this range of wavelengths for SHM systems. However, with the appropriate use of signal processing tools, these noisy signals can be easily `cleaned'. Wavelet analysis is one of the powerful signal processing tools nowadays, not only for time-frequency analysis but also for signal denoising. This present study revealed that the NIR FBG range gave good response to impact signals. Furthermore, these `noisy' signals' response were successfully filtered using one dimensional wavelet analysis.

  9. Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models

    PubMed Central

    2016-01-01

    The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today’s increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong’s Hang Seng futures, Japan’s NIKKEI 225 futures, Singapore’s MSCI futures, South Korea’s KOSPI 200 futures, and Taiwan’s TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692

  10. Forecasting East Asian Indices Futures via a Novel Hybrid of Wavelet-PCA Denoising and Artificial Neural Network Models.

    PubMed

    Chan Phooi M'ng, Jacinta; Mehralizadeh, Mohammadali

    2016-01-01

    The motivation behind this research is to innovatively combine new methods like wavelet, principal component analysis (PCA), and artificial neural network (ANN) approaches to analyze trade in today's increasingly difficult and volatile financial futures markets. The main focus of this study is to facilitate forecasting by using an enhanced denoising process on market data, taken as a multivariate signal, in order to deduct the same noise from the open-high-low-close signal of a market. This research offers evidence on the predictive ability and the profitability of abnormal returns of a new hybrid forecasting model using Wavelet-PCA denoising and ANN (named WPCA-NN) on futures contracts of Hong Kong's Hang Seng futures, Japan's NIKKEI 225 futures, Singapore's MSCI futures, South Korea's KOSPI 200 futures, and Taiwan's TAIEX futures from 2005 to 2014. Using a host of technical analysis indicators consisting of RSI, MACD, MACD Signal, Stochastic Fast %K, Stochastic Slow %K, Stochastic %D, and Ultimate Oscillator, empirical results show that the annual mean returns of WPCA-NN are more than the threshold buy-and-hold for the validation, test, and evaluation periods; this is inconsistent with the traditional random walk hypothesis, which insists that mechanical rules cannot outperform the threshold buy-and-hold. The findings, however, are consistent with literature that advocates technical analysis. PMID:27248692

  11. A Neuro-Fuzzy Inference System Combining Wavelet Denoising, Principal Component Analysis, and Sequential Probability Ratio Test for Sensor Monitoring

    SciTech Connect

    Na, Man Gyun; Oh, Seungrohk

    2002-11-15

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.

  12. Analysis of hydrological trend for radioactivity content in bore-hole water samples using wavelet based denoising.

    PubMed

    Paul, Sabyasachi; Suman, V; Sarkar, P K; Ranade, A K; Pulhani, V; Dafauti, S; Datta, D

    2013-08-01

    A wavelet transform based denoising methodology has been applied to detect the presence of any discernable trend in (137)Cs and (90)Sr activity levels in bore-hole water samples collected four times a year over a period of eight years, from 2002 to 2009, in the vicinity of typical nuclear facilities inside the restricted access zones. The conventional non-parametric methods viz., Mann-Kendall and Spearman rho, along with linear regression when applied for detecting the linear trend in the time series data do not yield results conclusive for trend detection with a confidence of 95% for most of the samples. The stationary wavelet based hard thresholding data pruning method with Haar as the analyzing wavelet was applied to remove the noise present in the same data. Results indicate that confidence interval of the established trend has significantly improved after pre-processing to more than 98% compared to the conventional non-parametric methods when applied to direct measurements. PMID:23524202

  13. Enhanced Terahertz Imaging of Small Forced Delamination in Woven Glass Fibre-reinforced Composites with Wavelet De-noising

    NASA Astrophysics Data System (ADS)

    Dong, Junliang; Locquet, Alexandre; Citrin, D. S.

    2016-03-01

    Terahertz (THz) reflection imaging is applied to characterize a woven glass fibre-reinforced composite laminate with a small region of forced delamination. The forced delamination is created by inserting a disk of 25- μ m-thick Upilex film, which is below the THz axial resolution, resulting in one featured echo with small amplitude in the reflected THz pulses. Low-amplitude components of the temporal signal due to ambient water vapor produce features of comparable amplitude with features associated with the THz pulse reflected off the interfaces of the delamination and suppress the contrast of THz C- and B-scans. Wavelet shrinkage de-noising is performed to remove water-vapor features, leading to enhanced THz C- and B-scans to locate the delamination in three dimensions with high contrast.

  14. Classical low-pass filter and real-time wavelet-based denoising technique implemented on a DSP: a comparison study

    NASA Astrophysics Data System (ADS)

    Dolabdjian, Ch.; Fadili, J.; Huertas Leyva, E.

    2002-11-01

    We have implemented a real-time numerical denoising algorithm, using the Discrete Wavelet Transform (DWT), on a TMS320C3x Digital Signal Processor (DSP). We also compared from a theoretical and practical viewpoints this post-processing approach to a more classical low-pass filter. This comparison was carried out using an ECG-type signal (ElectroCardiogram). The denoising approach is an elegant and extremely fast alternative to the classical linear filters class. It is particularly adapted to non-stationary signals such as those encountered in biological applications. The denoising allows to substantially improve detection of such signals over Fourier-based techniques. This processing step is a vital element in our acquisition chain using high sensitivity magnetic sensors. It should enhance detection of cardiac-type magnetic signals or magnetic particles in movement.

  15. Wavelet-based denoising of the Fourier metric in real-time wavefront correction for single molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Tehrani, Kayvan Forouhesh; Mortensen, Luke J.; Kner, Peter

    2016-03-01

    Wavefront sensorless schemes for correction of aberrations induced by biological specimens require a time invariant property of an image as a measure of fitness. Image intensity cannot be used as a metric for Single Molecule Localization (SML) microscopy because the intensity of blinking fluorophores follows exponential statistics. Therefore a robust intensity-independent metric is required. We previously reported a Fourier Metric (FM) that is relatively intensity independent. The Fourier metric has been successfully tested on two machine learning algorithms, a Genetic Algorithm and Particle Swarm Optimization, for wavefront correction about 50 μm deep inside the Central Nervous System (CNS) of Drosophila. However, since the spatial frequencies that need to be optimized fall into regions of the Optical Transfer Function (OTF) that are more susceptible to noise, adding a level of denoising can improve performance. Here we present wavelet-based approaches to lower the noise level and produce a more consistent metric. We compare performance of different wavelets such as Daubechies, Bi-Orthogonal, and reverse Bi-orthogonal of different degrees and orders for pre-processing of images.

  16. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA.

    PubMed

    Mahajan, Ruhi; Morshed, Bashir I

    2015-01-01

    Brain activities commonly recorded using the electroencephalogram (EEG) are contaminated with ocular artifacts. These activities can be suppressed using a robust independent component analysis (ICA) tool, but its efficiency relies on manual intervention to accurately identify the independent artifactual components. In this paper, we present a new unsupervised, robust, and computationally fast statistical algorithm that uses modified multiscale sample entropy (mMSE) and Kurtosis to automatically identify the independent eye blink artifactual components, and subsequently denoise these components using biorthogonal wavelet decomposition. A 95% two-sided confidence interval of the mean is used to determine the threshold for Kurtosis and mMSE to identify the blink related components in the ICA decomposed data. The algorithm preserves the persistent neural activity in the independent components and removes only the artifactual activity. Results have shown improved performance in the reconstructed EEG signals using the proposed unsupervised algorithm in terms of mutual information, correlation coefficient, and spectral coherence in comparison with conventional zeroing-ICA and wavelet enhanced ICA artifact removal techniques. The algorithm achieves an average sensitivity of 90% and an average specificity of 98%, with average execution time for the datasets ( N = 7) of 0.06 s ( SD = 0.021) compared to the conventional wICA requiring 0.1078 s ( SD = 0.004). The proposed algorithm neither requires manual identification for artifactual components nor additional electrooculographic channel. The algorithm was tested for 12 channels, but might be useful for dense EEG systems. PMID:24968340

  17. De-Noising Ultrasound Images of Colon Tumors Using Daubechies Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Nicolae, Mariana Carmen

    2011-10-01

    In this paper, we present a new approach to analysis of the cancer of the colon in ultrasonography. A speckle suppression method was presented. Daubechies wavelet transform is used due to its approximate shift invariance property and extra information in imaginary plane of complex wavelet domain when compared to real wavelet domain. The methods that we propose have provided quite satisfactory results and show the usefulness of image processing techniques in the diagnosis by means of medical imaging. Local echogenicity variance of ROI is utilized so as to compare with local echogenicity distribution within entire acquired image. Also the image was analyzed using the histogram which interprets the gray-level of images. Such information is valuable for the discrimination of tumors. The aim of this work is not the substitution of the specialist, but the generation of a series of parameters which reduce the need of carrying out the biopsy.

  18. Application of a Multidimensional Wavelet Denoising Algorithm for the Detection and Characterization of Astrophysical Sources of Gamma Rays

    SciTech Connect

    Digel, S.W.; Zhang, B.; Chiang, J.; Fadili, J.M.; Starck, J.-L.; /Saclay /Stanford U., Statistics Dept.

    2005-12-02

    Zhang, Fadili, & Starck have recently developed a denoising procedure for Poisson data that offers advantages over other methods of intensity estimation in multiple dimensions. Their procedure, which is nonparametric, is based on thresholding wavelet coefficients. The restoration algorithm applied after thresholding provides good conservation of source flux. We present an investigation of the procedure of Zhang et al. for the detection and characterization of astrophysical sources of high-energy gamma rays, using realistic simulated observations with the Large Area Telescope (LAT). The LAT is to be launched in late 2007 on the Gamma-ray Large Area Space Telescope mission. Source detection in the LAT data is complicated by the low fluxes of point sources relative to the diffuse celestial background, the limited angular resolution, and the tremendous variation of that resolution with energy (from tens of degrees at {approx}30 MeV to 0.1{sup o} at 10 GeV). The algorithm is very fast relative to traditional likelihood model fitting, and permits immediate estimation of spectral properties. Astrophysical sources of gamma rays, especially active galaxies, are typically quite variable, and our current work may lead to a reliable method to quickly characterize the flaring properties of newly-detected sources.

  19. Fuzzy logic-based approach to wavelet denoising of 3D images produced by time-of-flight cameras.

    PubMed

    Jovanov, Ljubomir; Pižurica, Aleksandra; Philips, Wilfried

    2010-10-25

    In this paper we present a new denoising method for the depth images of a 3D imaging sensor, based on the time-of-flight principle. We propose novel ways to use luminance-like information produced by a time-of flight camera along with depth images. Firstly, we propose a wavelet-based method for estimating the noise level in depth images, using luminance information. The underlying idea is that luminance carries information about the power of the optical signal reflected from the scene and is hence related to the signal-to-noise ratio for every pixel within the depth image. In this way, we can efficiently solve the difficult problem of estimating the non-stationary noise within the depth images. Secondly, we use luminance information to better restore object boundaries masked with noise in the depth images. Information from luminance images is introduced into the estimation formula through the use of fuzzy membership functions. In particular, we take the correlation between the measured depth and luminance into account, and the fact that edges (object boundaries) present in the depth image are likely to occur in the luminance image as well. The results on real 3D images show a significant improvement over the state-of-the-art in the field. PMID:21164605

  20. Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate

    NASA Astrophysics Data System (ADS)

    Mishra, C.; Samantaray, A. K.; Chakraborty, G.

    2016-05-01

    Rolling element bearings are widely used in rotating machines and their faults can lead to excessive vibration levels and/or complete seizure of the machine. Under special operating conditions such as non-uniform or low speed shaft rotation, the available fault diagnosis methods cannot be applied for bearing fault diagnosis with full confidence. Fault symptoms in such operating conditions cannot be easily extracted through usual measurement and signal processing techniques. A typical example is a bearing in heavy rolling mill with variable load and disturbance from other sources. In extremely slow speed operation, variation in speed due to speed controller transients or external disturbances (e.g., varying load) can be relatively high. To account for speed variation, instantaneous angular position instead of time is used as the base variable of signals for signal processing purposes. Even with time synchronous averaging (TSA) and well-established methods like envelope order analysis, rolling element faults in rolling element bearings cannot be easily identified during such operating conditions. In this article we propose to use order tracking on the envelope of the wavelet de-noised estimate of the short-duration angle synchronous averaged signal to diagnose faults in rolling element bearing operating under the stated special conditions. The proposed four-stage sequential signal processing method eliminates uncorrelated content, avoids signal smearing and exposes only the fault frequencies and its harmonics in the spectrum. We use experimental data1

  1. Image enhancement and denoising by wavelet transform for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Raghuveer, M. R.

    1997-02-01

    Wavelet transform based techniques were developed and investigated for isolation and enhancement of objects in images. The primary motivation is the development of image processing algorithms as part of an automatic system for the detection of concealed weapons under a person's clothing; a problem of considerable potential utility to the military in certain common types of deployment in the post cold war environment such as small unit operations. The issue has potential for other dual use purposes such as law enforcement applications. Wavelet decompositions of the currently available images in the Rome Laboratory database, namely, noisy, low contrast, infrared images, were studied in space-scale-amplitude space. An isolation technique for separating potential suspicious regions/objects from surrounding clutter has been proposed. Based on the images available, the study indicates that the technique is promising in providing the image enhancement necessary for further pattern detection and classification.

  2. Evaluation of Wavelet and Non-Local Mean Denoising of Terrestrial Laser Scanning Data for Small-Scale Joint Roughness Estimation

    NASA Astrophysics Data System (ADS)

    Bitenc, M.; Kieffer, D. S.; Khoshelham, K.

    2016-06-01

    Terrestrial Laser Scanning (TLS) is a well-known remote sensing tool that enables precise 3D acquisition of surface morphology from distances of a few meters to a few kilometres. The morphological representations obtained are important in engineering geology and rock mechanics, where surface morphology details are of particular interest in rock stability problems and engineering construction. The actual size of the discernible surface detail depends on the instrument range error (noise effect) and effective data resolution (smoothing effect). Range error can be (partly) removed by applying a denoising method. Based on the positive results from previous studies, two denoising methods, namely 2D wavelet transform (WT) and non-local mean (NLM), are tested here, with the goal of obtaining roughness estimations that are suitable in the context of rock engineering practice. Both methods are applied in two variants: conventional Discrete WT (DWT) and Stationary WT (SWT), classic NLM (NLM) and probabilistic NLM (PNLM). The noise effect and denoising performance are studied in relation to the TLS effective data resolution. Analyses are performed on the reference data acquired by a highly precise Advanced TOpometric Sensor (ATOS) on a 20x30 cm rock joint sample. Roughness ratio is computed by comparing the noisy and denoised surfaces to the original ATOS surface. The roughness ratio indicates the success of all denoising methods. Besides, it shows that SWT oversmoothes the surface and the performance of the DWT, NLM and PNLM vary with the noise level and data resolution. The noise effect becomes less prominent when data resolution decreases.

  3. Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising

    PubMed Central

    Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108

  4. Performances of a specific denoising wavelet process for high-resolution gamma imaging

    NASA Astrophysics Data System (ADS)

    Pousse, Annie; Dornier, Christophe; Parmentier, Michel; Kastler, Bruno; Chavanelle, Jerome

    2004-02-01

    Due to its functional capabilities, gamma imaging is an interesting tool for medical diagnosis. Recent developments lead to improved intrinsic resolution. However this gain is impaired by the poor activity detected and the Poissonian feature of gamma ray emission. High resolution gamma images are grainy. This is a real nuisance for detecting cold nodules in an emitting organ. A specific translation wavelet filter which takes into account the Poissonian feature of noise, has been developed in order to improve the diagnostic capabilities of radioisotopic high resolution images. Monte Carlo simulations of a hot thyroid phantom in which cold spheres, 3-7 mm in diameter, could be included were performed. The loss of activity induced by cold nodules was determined on filtered images by using catchment basins determination. On the original images, only 5-7 mm cold spheres were clearly visible. On filtered images, 3 and 4 mm spheres were put in prominent. The limit of the developed filter is approximately the detection of 3 mm spherical cold nodule in acquisition and activity conditions which mimic a thyroid examination. Furthermore, no disturbing artifacts are generated. It is therefore a powerful tool for detecting small cold nodules in a gamma emitting medium.

  5. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  6. Wavelet denoising in voxel-based parametric estimation of small animal PET images: a systematic evaluation of spatial constraints and noise reduction algorithms

    NASA Astrophysics Data System (ADS)

    Su, Yi; Shoghi, Kooresh I.

    2008-11-01

    Voxel-based estimation of PET images, generally referred to as parametric imaging, can provide invaluable information about the heterogeneity of an imaging agent in a given tissue. Due to high level of noise in dynamic images, however, the estimated parametric image is often noisy and unreliable. Several approaches have been developed to address this challenge, including spatial noise reduction techniques, cluster analysis and spatial constrained weighted nonlinear least-square (SCWNLS) methods. In this study, we develop and test several noise reduction techniques combined with SCWNLS using simulated dynamic PET images. Both spatial smoothing filters and wavelet-based noise reduction techniques are investigated. In addition, 12 different parametric imaging methods are compared using simulated data. With the combination of noise reduction techniques and SCWNLS methods, more accurate parameter estimation can be achieved than with either of the two techniques alone. A less than 10% relative root-mean-square error is achieved with the combined approach in the simulation study. The wavelet denoising based approach is less sensitive to noise and provides more accurate parameter estimation at higher noise levels. Further evaluation of the proposed methods is performed using actual small animal PET datasets. We expect that the proposed method would be useful for cardiac, neurological and oncologic applications.

  7. An 8.12 μW wavelet denoising chip for PPG detection and portable heart rate monitoring in 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Zhang; Peng, Li; Xiaohui, Hu; Hongda, Chen

    2016-05-01

    A low power wavelet denoising chip for photoplethysmography (PPG) detection and portable heart rate monitoring is presented. To eliminate noise and improve detection accuracy, Harr wavelet (HWT) is chosen as the processing tool. An optimized finite impulse response structure is proposed to lower the computational complexity of proposed algorithm, which is benefit for reducing the power consumption of proposed chip. The modulus maxima pair location module is design to accurately locate the PPG peaks. A clock control unit is designed to further reduce the power consumption of the proposed chip. Fabricated with the 0.18 μm N-well CMOS 1P6M technology, the power consumption of proposed chip is only 8.12 μW in 1 V voltage supply. Validated with PPG signals in multiparameter intelligent monitoring in intensive care databases and signals acquired by the wrist photoelectric volume detection front end, the proposed chip can accurately detect PPG signals. The average sensitivity and positive prediction are 99.91% and 100%, respectively.

  8. Local thresholding de-noise speech signal

    NASA Astrophysics Data System (ADS)

    Luo, Haitao

    2013-07-01

    De-noise speech signal if it is noisy. Construct a wavelet according to Daubechies' method, and derive a wavelet packet from the constructed scaling and wavelet functions. Decompose the noisy speech signal by wavelet packet. Develop algorithms to detect beginning and ending point of speech. Construct polynomial function for local thresholding. Apply different strategies to de-noise and compress the decomposed terminal nodes coefficients. Reconstruct the wavelet packet tree. Re-build audio file using reconstructed data and compare the effectiveness of different strategies.

  9. A New Adaptive Image Denoising Method Based on Neighboring Coefficients

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    Many good techniques have been discussed for image denoising that include NeighShrink, improved adaptive wavelet denoising method based on neighboring coefficients (IAWDMBNC), improved wavelet shrinkage technique for image denoising (IWST), local adaptive wiener filter (LAWF), wavelet packet thresholding using median and wiener filters (WPTMWF), adaptive image denoising method based on thresholding (AIDMT). These techniques are based on local statistical description of the neighboring coefficients in a window. These methods however do not give good quality of the images since they cannot modify and remove too many small wavelet coefficients simultaneously due to the threshold. In this paper, a new image denoising method is proposed that shrinks the noisy coefficients using an adaptive threshold. Our method overcomes these drawbacks and it has better performance than the NeighShrink, IAWDMBNC, IWST, LAWF, WPTMWF, and AIDMT denoising methods.

  10. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    NASA Astrophysics Data System (ADS)

    Ochoa Domínguez, Humberto de Jesús; Máynez, Leticia O.; Vergara Villegas, Osslan O.; Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G.

    2015-06-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image.

  11. Comparison of automatic denoising methods for phonocardiograms with extraction of signal parameters via the Hilbert Transform

    NASA Astrophysics Data System (ADS)

    Messer, Sheila R.; Agzarian, John; Abbott, Derek

    2001-05-01

    Phonocardiograms (PCGs) have many advantages over traditional auscultation (listening to the heart) because they may be replayed, may be analyzed for spectral and frequency content, and frequencies inaudible to the human ear may be recorded. However, various sources of noise may pollute a PCG including lung sounds, environmental noise and noise generated from contact between the recording device and the skin. Because PCG signals are known to be nonlinear and it is often not possible to determine their noise content, traditional de-noising methods may not be effectively applied. However, other methods including wavelet de-noising, wavelet packet de-noising and averaging can be employed to de-noise the PCG. This study examines and compares these de-noising methods. This study answers such questions as to which de-noising method gives a better SNR, the magnitude of signal information that is lost as a result of the de-noising process, the appropriate uses of the different methods down to such specifics as to which wavelets and decomposition levels give best results in wavelet and wavelet packet de-noising. In general, the wavelet and wavelet packet de-noising performed roughly equally with optimal de-noising occurring at 3-5 levels of decomposition. Averaging also proved a highly useful de- noising technique; however, in some cases averaging is not appropriate. The Hilbert Transform is used to illustrate the results of the de-noising process and to extract instantaneous features including instantaneous amplitude, frequency, and phase.

  12. A wavelet phase filter for emission tomography

    SciTech Connect

    Olsen, E.T.; Lin, B.

    1995-07-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2{pi}). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods.

  13. Multiresolution Bilateral Filtering for Image Denoising

    PubMed Central

    Zhang, Ming; Gunturk, Bahadir K.

    2008-01-01

    The bilateral filter is a nonlinear filter that does spatial averaging without smoothing edges; it has shown to be an effective image denoising technique. An important issue with the application of the bilateral filter is the selection of the filter parameters, which affect the results significantly. There are two main contributions of this paper. The first contribution is an empirical study of the optimal bilateral filter parameter selection in image denoising applications. The second contribution is an extension of the bilateral filter: multiresolution bilateral filter, where bilateral filtering is applied to the approximation (low-frequency) subbands of a signal decomposed using a wavelet filter bank. The multiresolution bilateral filter is combined with wavelet thresholding to form a new image denoising framework, which turns out to be very effective in eliminating noise in real noisy images. Experimental results with both simulated and real data are provided. PMID:19004705

  14. Nonlocal means denoising of ECG signals.

    PubMed

    Tracey, Brian H; Miller, Eric L

    2012-09-01

    Patch-based methods have attracted significant attention in recent years within the field of image processing for a variety of problems including denoising, inpainting, and super-resolution interpolation. Despite their prevalence for processing 2-D signals, they have received little attention in the 1-D signal processing literature. In this letter, we explore application of one such method, the nonlocal means (NLM) approach, to the denoising of biomedical signals. Using ECG as an example, we demonstrate that a straightforward NLM-based denoising scheme provides signal-to-noise ratio improvements very similar to state of the art wavelet-based methods, while giving ~3 × or greater reduction in metrics measuring distortion of the denoised waveform. PMID:22829361

  15. An image denoising application using shearlets

    NASA Astrophysics Data System (ADS)

    Sevindir, Hulya Kodal; Yazici, Cuneyt

    2013-10-01

    Medical imaging is a multidisciplinary field related to computer science, electrical/electronic engineering, physics, mathematics and medicine. There has been dramatic increase in variety, availability and resolution of medical imaging devices for the last half century. For proper medical imaging highly trained technicians and clinicians are needed to pull out clinically pertinent information from medical data correctly. Artificial systems must be designed to analyze medical data sets either in a partially or even a fully automatic manner to fulfil the need. For this purpose there has been numerous ongoing research for finding optimal representations in image processing and computer vision [1, 18]. Medical images almost always contain artefacts and it is crucial to remove these artefacts to obtain healthy results. Out of many methods for denoising images, in this paper, two denoising methods, wavelets and shearlets, have been applied to mammography images. Comparing these two methods, shearlets give better results for denoising such data.

  16. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  17. Dynamic Denoising of Tracking Sequences

    PubMed Central

    Michailovich, Oleg; Tannenbaum, Allen

    2009-01-01

    In this paper, we describe an approach to the problem of simultaneously enhancing image sequences and tracking the objects of interest represented by the latter. The enhancement part of the algorithm is based on Bayesian wavelet denoising, which has been chosen due to its exceptional ability to incorporate diverse a priori information into the process of image recovery. In particular, we demonstrate that, in dynamic settings, useful statistical priors can come both from some reasonable assumptions on the properties of the image to be enhanced as well as from the images that have already been observed before the current scene. Using such priors forms the main contribution of the present paper which is the proposal of the dynamic denoising as a tool for simultaneously enhancing and tracking image sequences. Within the proposed framework, the previous observations of a dynamic scene are employed to enhance its present observation. The mechanism that allows the fusion of the information within successive image frames is Bayesian estimation, while transferring the useful information between the images is governed by a Kalman filter that is used for both prediction and estimation of the dynamics of tracked objects. Therefore, in this methodology, the processes of target tracking and image enhancement “collaborate” in an interlacing manner, rather than being applied separately. The dynamic denoising is demonstrated on several examples of SAR imagery. The results demonstrated in this paper indicate a number of advantages of the proposed dynamic denoising over “static” approaches, in which the tracking images are enhanced independently of each other. PMID:18482881

  18. Simultaneous denoising and compression of multispectral images

    NASA Astrophysics Data System (ADS)

    Hagag, Ahmed; Amin, Mohamed; Abd El-Samie, Fathi E.

    2013-01-01

    A new technique for denoising and compression of multispectral satellite images to remove the effect of noise on the compression process is presented. One type of multispectral images has been considered: Landsat Enhanced Thematic Mapper Plus. The discrete wavelet transform (DWT), the dual-tree DWT, and a simple Huffman coder are used in the compression process. Simulation results show that the proposed technique is more effective than other traditional compression-only techniques.

  19. Research and Implementation of Heart Sound Denoising

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wang, Yutai; Wang, Yanxiang

    Heart sound is one of the most important signals. However, the process of getting heart sound signal can be interfered with many factors outside. Heart sound is weak electric signal and even weak external noise may lead to the misjudgment of pathological and physiological information in this signal, thus causing the misjudgment of disease diagnosis. As a result, it is a key to remove the noise which is mixed with heart sound. In this paper, a more systematic research and analysis which is involved in heart sound denoising based on matlab has been made. The study of heart sound denoising based on matlab firstly use the powerful image processing function of matlab to transform heart sound signals with noise into the wavelet domain through wavelet transform and decomposition these signals in muli-level. Then for the detail coefficient, soft thresholding is made using wavelet transform thresholding to eliminate noise, so that a signal denoising is significantly improved. The reconstructed signals are gained with stepwise coefficient reconstruction for the processed detail coefficient. Lastly, 50HZ power frequency and 35 Hz mechanical and electrical interference signals are eliminated using a notch filter.

  20. Determination and Visualization of pH Values in Anaerobic Digestion of Water Hyacinth and Rice Straw Mixtures Using Hyperspectral Imaging with Wavelet Transform Denoising and Variable Selection

    PubMed Central

    Zhang, Chu; Ye, Hui; Liu, Fei; He, Yong; Kong, Wenwen; Sheng, Kuichuan

    2016-01-01

    Biomass energy represents a huge supplement for meeting current energy demands. A hyperspectral imaging system covering the spectral range of 874–1734 nm was used to determine the pH value of anaerobic digestion liquid produced by water hyacinth and rice straw mixtures used for methane production. Wavelet transform (WT) was used to reduce noises of the spectral data. Successive projections algorithm (SPA), random frog (RF) and variable importance in projection (VIP) were used to select 8, 15 and 20 optimal wavelengths for the pH value prediction, respectively. Partial least squares (PLS) and a back propagation neural network (BPNN) were used to build the calibration models on the full spectra and the optimal wavelengths. As a result, BPNN models performed better than the corresponding PLS models, and SPA-BPNN model gave the best performance with a correlation coefficient of prediction (rp) of 0.911 and root mean square error of prediction (RMSEP) of 0.0516. The results indicated the feasibility of using hyperspectral imaging to determine pH values during anaerobic digestion. Furthermore, a distribution map of the pH values was achieved by applying the SPA-BPNN model. The results in this study would help to develop an on-line monitoring system for biomass energy producing process by hyperspectral imaging. PMID:26901202

  1. Determination and Visualization of pH Values in Anaerobic Digestion of Water Hyacinth and Rice Straw Mixtures Using Hyperspectral Imaging with Wavelet Transform Denoising and Variable Selection.

    PubMed

    Zhang, Chu; Ye, Hui; Liu, Fei; He, Yong; Kong, Wenwen; Sheng, Kuichuan

    2016-01-01

    Biomass energy represents a huge supplement for meeting current energy demands. A hyperspectral imaging system covering the spectral range of 874-1734 nm was used to determine the pH value of anaerobic digestion liquid produced by water hyacinth and rice straw mixtures used for methane production. Wavelet transform (WT) was used to reduce noises of the spectral data. Successive projections algorithm (SPA), random frog (RF) and variable importance in projection (VIP) were used to select 8, 15 and 20 optimal wavelengths for the pH value prediction, respectively. Partial least squares (PLS) and a back propagation neural network (BPNN) were used to build the calibration models on the full spectra and the optimal wavelengths. As a result, BPNN models performed better than the corresponding PLS models, and SPA-BPNN model gave the best performance with a correlation coefficient of prediction (rp) of 0.911 and root mean square error of prediction (RMSEP) of 0.0516. The results indicated the feasibility of using hyperspectral imaging to determine pH values during anaerobic digestion. Furthermore, a distribution map of the pH values was achieved by applying the SPA-BPNN model. The results in this study would help to develop an on-line monitoring system for biomass energy producing process by hyperspectral imaging. PMID:26901202

  2. Chemical Peels

    MedlinePlus

    ... the complications or potential side effects of a chemical peel? Temporary or permanent change in skin color, particularly for women on birth control pills, who subsequently become pregnant or have a history of brownish facial ... after having a chemical peel? All peels require some follow-up care: ...

  3. Astronomical image denoising using dictionary learning

    NASA Astrophysics Data System (ADS)

    Beckouche, S.; Starck, J. L.; Fadili, J.

    2013-08-01

    Astronomical images suffer a constant presence of multiple defects that are consequences of the atmospheric conditions and of the intrinsic properties of the acquisition equipment. One of the most frequent defects in astronomical imaging is the presence of additive noise which makes a denoising step mandatory before processing data. During the last decade, a particular modeling scheme, based on sparse representations, has drawn the attention of an ever growing community of researchers. Sparse representations offer a promising framework to many image and signal processing tasks, especially denoising and restoration applications. At first, the harmonics, wavelets and similar bases, and overcomplete representations have been considered as candidate domains to seek the sparsest representation. A new generation of algorithms, based on data-driven dictionaries, evolved rapidly and compete now with the off-the-shelf fixed dictionaries. Although designing a dictionary relies on guessing the representative elementary forms and functions, the framework of dictionary learning offers the possibility of constructing the dictionary using the data themselves, which provides us with a more flexible setup to sparse modeling and allows us to build more sophisticated dictionaries. In this paper, we introduce the centered dictionary learning (CDL) method and we study its performance for astronomical image denoising. We show how CDL outperforms wavelet or classic dictionary learning denoising techniques on astronomical images, and we give a comparison of the effects of these different algorithms on the photometry of the denoised images. The current version of the code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/556/A132

  4. A comparison of de-noising methods for differential phase shift and associated rainfall estimation

    NASA Astrophysics Data System (ADS)

    Hu, Zhiqun; Liu, Liping; Wu, Linlin; Wei, Qing

    2015-04-01

    Measured differential phase shift UDP is known to be a noisy unstable polarimetric radar variable, such that the quality of UDP data has direct impact on specific differential phase shift KDP estimation, and subsequently, the KDP-based rainfall estimation. Over the past decades, many UDP de-noising methods have been developed; however, the de-noising effects in these methods and their impact on KDP-based rainfall estimation lack comprehensive comparative analysis. In this study, simulated noisy UDP data were generated and de-noised by using several methods such as finite-impulse response (FIR), Kalman, wavelet, traditional mean, and median filters. The biases were compared between KDP from simulated and observed UDP radial profiles after de-noising by these methods. The results suggest that the complicated FIR, Kalman, and wavelet methods have a better de-noising effect than the traditional methods. After UDP was de-noised, the accuracy of the KDP-based rainfall estimation increased significantly based on the analysis of three actual rainfall events. The improvement in estimation was more obvious when KDP was estimated with UDP de-noised by Kalman, FIR, and wavelet methods when the average rainfall was heavier than 5 mm h ≥1. However, the improved estimation was not significant when the precipitation intensity further increased to a rainfall rate beyond 10 mm h ≥1. The performance of wavelet analysis was found to be the most stable of these filters.

  5. Minimum entropy approach to denoising time-frequency distributions

    NASA Astrophysics Data System (ADS)

    Aviyente, Selin; Williams, William J.

    2001-11-01

    Signals used in time-frequency analysis are usually corrupted by noise. Therefore, denoising the time-frequency representation is a necessity for producing readable time-frequency images. Denoising is defined as the operation of smoothing a noisy signal or image for producing a noise free representation. Linear smoothing of time-frequency distributions (TFDs) suppresses noise at the expense of considerable smearing of the signal components. For this reason, nonlinear denoising has been preferred. A common example to nonlinear denoising methods is the wavelet thresholding. In this paper, we introduce an entropy based approach to denoising time-frequency distributions. This new approach uses the spectrogram decomposition of time-frequency kernels proposed by Cunningham and Williams.In order to denoise the time-frequency distribution, we combine those spectrograms with smallest entropy values, thus ensuring that each spectrogram is well concentrated on the time-frequency plane and contains as little noise as possible. Renyi entropy is used as the measure to quantify the complexity of each spectrogram. The threshold for the number of spectrograms to combine is chosen adaptively based on the tradeoff between entropy and variance. The denoised time-frequency distributions for several signals are shown to demonstrate the effectiveness of the method. The improvement in performance is quantitatively evaluated.

  6. Dermal peels.

    PubMed

    Coleman, W P

    2001-07-01

    Dermal chemical peeling is a very satisfying procedure for patients and physicians alike. Although not providing the ablation of deep wrinkles and scars that dermabrasion and laser procedures may accomplish, trichloroacetic acid peels usually result in few complications and rapid recovery. Patients can usually expect photographic improvement in their skin. The results are usually long lasting, and most patients do not need to repeat dermal peels for at least 2 years. Of all resurfacing procedures, dermal peeling provides the best benefit-to-risk ratio. PMID:11599397

  7. A multiscale products technique for denoising of DNA capillary electrophoresis signals

    NASA Astrophysics Data System (ADS)

    Gao, Qingwei; Lu, Yixiang; Sun, Dong; Zhang, Dexiang

    2013-06-01

    Since noise degrades the accuracy and precision of DNA capillary electrophoresis (CE) analysis, signal denoising is thus important to facilitate the postprocessing of CE data. In this paper, a new denoising algorithm based on dyadic wavelet transform using multiscale products is applied for the removal of the noise in the DNA CE signal. The adjacent scale wavelet coefficients are first multiplied to amplify the significant features of the CE signal while diluting noise. Then, noise is suppressed by applying a multiscale threshold to the multiscale products instead of directly to the wavelet coefficients. Finally, the noise-free CE signal is recovered from the thresholded coefficients by using inverse dyadic wavelet transform. We compare the performance of the proposed algorithm with other denoising methods applied to the synthetic CE and real CE signals. Experimental results show that the new scheme achieves better removal of noise while preserving the shape of peaks corresponding to the analytes in the sample.

  8. Image denoising via Bayesian estimation of local variance with Maxwell density prior

    NASA Astrophysics Data System (ADS)

    Kittisuwan, Pichid

    2015-10-01

    The need for efficient image denoising methods has grown with the massive production of digital images and movies of all kinds. The distortion of images by additive white Gaussian noise (AWGN) is common during its processing and transmission. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. Indeed, one of the cruxes of the Bayesian image denoising algorithms is to estimate the local variance of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with Maxwell density prior for local observed variance and Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by analytical and computational tractability. The experimental results show that the proposed method yields good denoising results.

  9. A new performance evaluation scheme for jet engine vibration signal denoising

    NASA Astrophysics Data System (ADS)

    Sadooghi, Mohammad Saleh; Esmaeilzadeh Khadem, Siamak

    2016-08-01

    Denoising of a cargo-plane jet engine compressor vibration signal is investigated in this article. Discrete wavelet transform and two families of Donoho-Johnston and parameter method thresholding, are applied to vibration signal. Eighty four combinations of wavelet thresholding and mother wavelet are evaluated. A new performance evaluation scheme for optimal selection of mother wavelet and thresholding method combination is proposed in this paper, which is make a trade off between four performance criteria of signal to noise ratio, percentage root mean square difference, Cross-correlation, and mean square error. Dmeyer mother wavelet (dmey) combined with Rigorous SURE thresholding has the maximum trade off value and was selected as the most appropriate combination for denoising of the signal. It was shown that inappropriate combination leads to data losing. Also higher performance of proposed trade off with respect to other criteria was proven graphically.

  10. Denoising of Multi-Modal Images with PCA Self-Cross Bilateral Filter

    NASA Astrophysics Data System (ADS)

    Qiu, Yu; Urahama, Kiichi

    We present the PCA self-cross bilateral filter for denoising multi-modal images. We firstly apply the principal component analysis for input multi-modal images. We next smooth the first principal component with a preliminary filter and use it as a supplementary image for cross bilateral filtering of input images. Among some preliminary filters, the undecimated wavelet transform is useful for effective denoising of various multi-modal images such as color, multi-lighting and medical images.

  11. Research on Medical Image Enhancement Algorithm Based on GSM Model for Wavelet Coefficients

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Jiang, Nian-de; Ning, Xing

    For the complexity and application diversity of medical CT image, this article presents a medical CT Image enhancing algorithm based on Gaussian Scale Mixture Model for wavelet coefficient in the study of wavelet multi-scale analysis. The noisy image is firstly denoised in auto-adapted Wiener filter. Secondly, through the qualitative analysis and classification of wavelet coefficients for the signal and noise, the wavelet's approximate distribution and statistical characteristics are described, combining GSM(Gaussian scale mixture) model for wavelet coefficient in this paper. It is shown that this algorithm can improve the denoised result and enhanced the medical CT image obviously.

  12. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India. PMID:26697285

  13. A new study on mammographic image denoising using multiresolution techniques

    NASA Astrophysics Data System (ADS)

    Dong, Min; Guo, Ya-Nan; Ma, Yi-De; Ma, Yu-run; Lu, Xiang-yu; Wang, Ke-ju

    2015-12-01

    Mammography is the most simple and effective technology for early detection of breast cancer. However, the lesion areas of breast are difficult to detect which due to mammograms are mixed with noise. This work focuses on discussing various multiresolution denoising techniques which include the classical methods based on wavelet and contourlet; moreover the emerging multiresolution methods are also researched. In this work, a new denoising method based on dual tree contourlet transform (DCT) is proposed, the DCT possess the advantage of approximate shift invariant, directionality and anisotropy. The proposed denoising method is implemented on the mammogram, the experimental results show that the emerging multiresolution method succeeded in maintaining the edges and texture details; and it can obtain better performance than the other methods both on visual effects and in terms of the Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR) and Structure Similarity (SSIM) values.

  14. [DR image denoising based on Laplace-Impact mixture model].

    PubMed

    Feng, Guo-Dong; He, Xiang-Bin; Zhou, He-Qin

    2009-07-01

    A novel DR image denoising algorithm based on Laplace-Impact mixture model in dual-tree complex wavelet domain is proposed in this paper. It uses local variance to build probability density function of Laplace-Impact model fitted to the distribution of high-frequency subband coefficients well. Within Laplace-Impact framework, this paper describes a novel method for image denoising based on designing minimum mean squared error (MMSE) estimators, which relies on strong correlation between amplitudes of nearby coefficients. The experimental results show that the algorithm proposed in this paper outperforms several state-of-art denoising methods such as Bayes least squared Gaussian scale mixture and Laplace prior. PMID:19938519

  15. Shearlet-based total variation diffusion for denoising.

    PubMed

    Easley, Glenn R; Labate, Demetrio; Colonna, Flavia

    2009-02-01

    We propose a shearlet formulation of the total variation (TV) method for denoising images. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. Common approaches in combining wavelet-like representations such as curvelets with TV or diffusion methods aim at reducing Gibbs-type artifacts after obtaining a nearly optimal estimate. We show that it is possible to obtain much better estimates from a shearlet representation by constraining the residual coefficients using a projected adaptive total variation scheme in the shearlet domain. We also analyze the performance of a shearlet-based diffusion method. Numerical examples demonstrate that these schemes are highly effective at denoising complex images and outperform a related method based on the use of the curvelet transform. Furthermore, the shearlet-TV scheme requires far fewer iterations than similar competitors. PMID:19095539

  16. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented. PMID:17440544

  17. Wavelets in medical imaging

    SciTech Connect

    Zahra, Noor e; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-17

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  18. Wavelets in medical imaging

    NASA Astrophysics Data System (ADS)

    Zahra, Noor e.; Sevindir, Huliya A.; Aslan, Zafar; Siddiqi, A. H.

    2012-07-01

    The aim of this study is to provide emerging applications of wavelet methods to medical signals and images, such as electrocardiogram, electroencephalogram, functional magnetic resonance imaging, computer tomography, X-ray and mammography. Interpretation of these signals and images are quite important. Nowadays wavelet methods have a significant impact on the science of medical imaging and the diagnosis of disease and screening protocols. Based on our initial investigations, future directions include neurosurgical planning and improved assessment of risk for individual patients, improved assessment and strategies for the treatment of chronic pain, improved seizure localization, and improved understanding of the physiology of neurological disorders. We look ahead to these and other emerging applications as the benefits of this technology become incorporated into current and future patient care. In this chapter by applying Fourier transform and wavelet transform, analysis and denoising of one of the important biomedical signals like EEG is carried out. The presence of rhythm, template matching, and correlation is discussed by various method. Energy of EEG signal is used to detect seizure in an epileptic patient. We have also performed denoising of EEG signals by SWT.

  19. Mining wavelet transformed boiler data sets

    NASA Astrophysics Data System (ADS)

    Letsche, Terry Lee

    Accurate combustion models provide information that allows increased boiler efficiency optimization, saving money and resources while reducing waste. Boiler combustion processes are noted for being complex, nonstationary and nonlinear. While numerous methods have been used to model boiler processes, data driven approaches reflect actual operating conditions within a particular boiler and do not depend on idealized, complex, or expensive empirical models. Boiler and combustion processes vary in time, requiring a denoising technique that preserves the temporal and frequency nature of the data. Moving average, a common technique, smoothes data---low frequency noise is not removed. This dissertation examines models built with wavelet denoising techniques that remove low and high frequency noise in both time and frequency domains. The denoising process has a number of parameters, including choice of wavelet, threshold value, level of wavelet decomposition, and disposition of attributes that appear to be significant at multiple thresholds. A process is developed to experimentally evaluate the predictive accuracy of these models and compares this result against two benchmarks. The first research hypothesis compares the performance of these wavelet denoised models to the model generated from the original data. The second research hypothesis compares the performance of the models generated with this denoising approach to the most effective model generated from a moving average process. In both experiments it was determined that the Daubechies 4 wavelet was a better choice than the more typically chosen Haar wavelet, wavelet packet decomposition outperforms other levels of wavelet decomposition, and discarding all but the lowest threshold repeating attributes produces superior results. The third research hypothesis examined using a two-dimensional wavelet transform on the data. Another parameter for handling the boundary condition was introduced. In the two-dimensional case

  20. Real-time image denoising algorithm in teleradiology systems

    NASA Astrophysics Data System (ADS)

    Gupta, Pradeep Kumar; Kanhirodan, Rajan

    2006-02-01

    Denoising of medical images in wavelet domain has potential application in transmission technologies such as teleradiology. This technique becomes all the more attractive when we consider the progressive transmission in a teleradiology system. The transmitted images are corrupted mainly due to noisy channels. In this paper, we present a new real time image denoising scheme based on limited restoration of bit-planes of wavelet coefficients. The proposed scheme exploits the fundamental property of wavelet transform - its ability to analyze the image at different resolution levels and the edge information associated with each sub-band. The desired bit-rate control is achieved by applying the restoration on a limited number of bit-planes subject to the optimal smoothing. The proposed method adapts itself to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The proposed scheme relies on the fact that noise commonly manifests itself as a fine-grained structure in image and wavelet transform allows the restoration strategy to adapt itself according to directional features of edges. The proposed approach shows promising results when compared with unrestored case, in context of error reduction. It also has capability to adapt to situations where noise level in the image varies and with the changing requirements of medical-experts. The applicability of the proposed approach has implications in restoration of medical images in teleradiology systems. The proposed scheme is computationally efficient.

  1. Empirical mode decomposition based background removal and de-noising in polarization interference imaging spectrometer.

    PubMed

    Zhang, Chunmin; Ren, Wenyi; Mu, Tingkui; Fu, Lili; Jia, Chenling

    2013-02-11

    Based on empirical mode decomposition (EMD), the background removal and de-noising procedures of the data taken by polarization interference imaging interferometer (PIIS) are implemented. Through numerical simulation, it is discovered that the data processing methods are effective. The assumption that the noise mostly exists in the first intrinsic mode function is verified, and the parameters in the EMD thresholding de-noising methods is determined. In comparison, the wavelet and windowed Fourier transform based thresholding de-noising methods are introduced. The de-noised results are evaluated by the SNR, spectral resolution and peak value of the de-noised spectrums. All the methods are used to suppress the effect from the Gaussian and Poisson noise. The de-noising efficiency is higher for the spectrum contaminated by Gaussian noise. The interferogram obtained by the PIIS is processed by the proposed methods. Both the interferogram without background and noise free spectrum are obtained effectively. The adaptive and robust EMD based methods are effective to the background removal and de-noising in PIIS. PMID:23481716

  2. A procedure for denoising dual-axis swallowing accelerometry signals.

    PubMed

    Sejdić, Ervin; Steele, Catriona M; Chau, Tom

    2010-01-01

    Dual-axis swallowing accelerometry is an emerging tool for the assessment of dysphagia (swallowing difficulties). These signals however can be very noisy as a result of physiological and motion artifacts. In this note, we propose a novel scheme for denoising those signals, i.e. a computationally efficient search for the optimal denoising threshold within a reduced wavelet subspace. To determine a viable subspace, the algorithm relies on the minimum value of the estimated upper bound for the reconstruction error. A numerical analysis of the proposed scheme using synthetic test signals demonstrated that the proposed scheme is computationally more efficient than minimum noiseless description length (MNDL)-based denoising. It also yields smaller reconstruction errors than MNDL, SURE and Donoho denoising methods. When applied to dual-axis swallowing accelerometry signals, the proposed scheme exhibits improved performance for dry, wet and wet chin tuck swallows. These results are important for the further development of medical devices based on dual-axis swallowing accelerometry signals. PMID:19940343

  3. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    PubMed Central

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  4. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra.

    PubMed

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis. PMID:25619991

  5. Adapting overcomplete wavelet models to natural images

    NASA Astrophysics Data System (ADS)

    Sallee, Phil; Olshausen, Bruno A.

    2003-11-01

    Overcomplete wavelet representations have become increasingly popular for their ability to provide highly sparse and robust descriptions of natural signals. We describe a method for incorporating an overcomplete wavelet representation as part of a statistical model of images which includes a sparse prior distribution over the wavelet coefficients. The wavelet basis functions are parameterized by a small set of 2-D functions. These functions are adapted to maximize the average log-likelihood of the model for a large database of natural images. When adapted to natural images, these functions become selective to different spatial orientations, and they achieve a superior degree of sparsity on natural images as compared with traditional wavelet bases. The learned basis is similar to the Steerable Pyramid basis, and yields slightly higher SNR for the same number of active coefficients. Inference with the learned model is demonstrated for applications such as denoising, with results that compare favorably with other methods.

  6. The use of ensemble empirical mode decomposition as a novel denoising technique

    NASA Astrophysics Data System (ADS)

    Gaci, Said; Hachay, Olga; Zaourar, Naima

    2016-04-01

    Denoising is of a high importance in geophysical data processing. This paper suggests a new denoising technique based on the Ensemble Empirical mode decomposition (EEMD). This technique has been compared with the discrete wavelet transform (DWT) thresholding. Firstly, both methods have been implemented on synthetic signals with diverse waveforms ('blocks', 'heavy sine', 'Doppler', and 'mishmash'). The EEMD denoising method is proved to be the most efficient for 'blocks', 'heavy sine' and 'mishmash' signals for all the considered signal-to-noise ratio (SNR) values. However, the results obtained using the DWT thresholding are the most reliable for 'Doppler' signal, and the difference between the calculated mean square error (MSE) values using the studied methods is slight and decreases as the SNR value gets smaller values. Secondly, the denoising methods have been applied on real seismic traces recorded in the Algerian Sahara. It is shown that the proposed technique outperforms the DWT thresholding. In conclusion, the EEMD technique can provide a powerful tool for denoising seismic signals. Keywords: Ensemble Empirical mode decomposition (EEMD), Discrete wavelet transform (DWT), seismic signal.

  7. Research of Gear Fault Detection in Morphological Wavelet Domain

    NASA Astrophysics Data System (ADS)

    Hong, Shi; Fang-jian, Shan; Bo, Cong; Wei, Qiu

    2016-02-01

    For extracting mutation information from gear fault signal and achieving a valid fault diagnosis, a gear fault diagnosis method based on morphological mean wavelet transform was designed. Morphological mean wavelet transform is a linear wavelet in the framework of morphological wavelet. Decomposing gear fault signal by this morphological mean wavelet transform could produce signal synthesis operators and detailed synthesis operators. For signal synthesis operators, it was just close to orginal signal, and for detailed synthesis operators, it contained fault impact signal or interference signal and could be catched. The simulation experiment result indicates that, compared with Fourier transform, the morphological mean wavelet transform method can do time-frequency analysis for original signal, effectively catch impact signal appears position; and compared with traditional linear wavelet transform, it has simple structure, easy realization, signal local extremum sensitivity and high denoising ability, so it is more adapted to gear fault real-time detection.

  8. A fast non-local image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Dauwe, A.; Goossens, B.; Luong, H. Q.; Philips, W.

    2008-02-01

    In this paper we propose several improvements to the original non-local means algorithm introduced by Buades et al. which obtains state-of-the-art denoising results. The strength of this algorithm is to exploit the repetitive character of the image in order to denoise the image unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Due to the enormous amount of weight computations, the original algorithm has a high computational cost. An improvement of image quality towards the original algorithm is to ignore the contributions from dissimilar windows. Even though their weights are very small at first sight, the new estimated pixel value can be severely biased due to the many small contributions. This bad influence of dissimilar windows can be eliminated by setting their corresponding weights to zero. Using the preclassification based on the first three statistical moments, only contributions from similar neighborhoods are computed. To decide whether a window is similar or dissimilar, we will derive thresholds for images corrupted with additive white Gaussian noise. Our accelerated approach is further optimized by taking advantage of the symmetry in the weights, which roughly halves the computation time, and by using a lookup table to speed up the weight computations. Compared to the original algorithm, our proposed method produces images with increased PSNR and better visual performance in less computation time. Our proposed method even outperforms state-of-the-art wavelet denoising techniques in both visual quality and PSNR values for images containing a lot of repetitive structures such as textures: the denoised images are much sharper and contain less artifacts. The proposed optimizations can also be applied in other image processing tasks which employ the concept of repetitive structures such as intra-frame super-resolution or detection of digital image forgery.

  9. Design Methodology of a New Wavelet Basis Function for Fetal Phonocardiographic Signals

    PubMed Central

    Chourasia, Vijay S.; Tiwari, Anil Kumar

    2013-01-01

    Fetal phonocardiography (fPCG) based antenatal care system is economical and has a potential to use for long-term monitoring due to noninvasive nature of the system. The main limitation of this technique is that noise gets superimposed on the useful signal during its acquisition and transmission. Conventional filtering may result into loss of valuable diagnostic information from these signals. This calls for a robust, versatile, and adaptable denoising method applicable in different operative circumstances. In this work, a novel algorithm based on wavelet transform has been developed for denoising of fPCG signals. Successful implementation of wavelet theory in denoising is heavily dependent on selection of suitable wavelet basis function. This work introduces a new mother wavelet basis function for denoising of fPCG signals. The performance of newly developed wavelet is found to be better when compared with the existing wavelets. For this purpose, a two-channel filter bank, based on characteristics of fPCG signal, is designed. The resultant denoised fPCG signals retain the important diagnostic information contained in the original fPCG signal. PMID:23766693

  10. Patch-based and multiresolution optimum bilateral filters for denoising images corrupted by Gaussian noise

    NASA Astrophysics Data System (ADS)

    Kishan, Harini; Seelamantula, Chandra Sekhar

    2015-09-01

    We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques.

  11. Empirical Mode Decomposition Technique with Conditional Mutual Information for Denoising Operational Sensor Data

    SciTech Connect

    Omitaomu, Olufemi A; Protopopescu, Vladimir A; Ganguly, Auroop R

    2011-01-01

    A new approach is developed for denoising signals using the Empirical Mode Decomposition (EMD) technique and the Information-theoretic method. The EMD technique is applied to decompose a noisy sensor signal into the so-called intrinsic mode functions (IMFs). These functions are of the same length and in the same time domain as the original signal. Therefore, the EMD technique preserves varying frequency in time. Assuming the given signal is corrupted by high-frequency Gaussian noise implies that most of the noise should be captured by the first few modes. Therefore, our proposition is to separate the modes into high-frequency and low-frequency groups. We applied an information-theoretic method, namely mutual information, to determine the cut-off for separating the modes. A denoising procedure is applied only to the high-frequency group using a shrinkage approach. Upon denoising, this group is combined with the original low-frequency group to obtain the overall denoised signal. We illustrate our approach with simulated and real-world data sets. The results are compared to two popular denoising techniques in the literature, namely discrete Fourier transform (DFT) and discrete wavelet transform (DWT). We found that our approach performs better than DWT and DFT in most cases, and comparatively to DWT in some cases in terms of: (i) mean square error, (ii) recomputed signal-to-noise ratio, and (iii) visual quality of the denoised signals.

  12. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  13. Comparison of de-noising techniques for FIRST images

    SciTech Connect

    Fodor, I K; Kamath, C

    2001-01-22

    Data obtained through scientific observations are often contaminated by noise and artifacts from various sources. As a result, a first step in mining these data is to isolate the signal of interest by minimizing the effects of the contaminations. Once the data has been cleaned or de-noised, data mining can proceed as usual. In this paper, we describe our work in denoising astronomical images from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. We are mining this survey to detect radio-emitting galaxies with a bent-double morphology. This task is made difficult by the noise in the images caused by the processing of the sensor data. We compare three different approaches to de-noising: thresholding of wavelet coefficients advocated in the statistical community, traditional Altering methods used in the image processing community, and a simple thresholding scheme proposed by FIRST astronomers. While each approach has its merits and pitfalls, we found that for our purpose, the simple thresholding scheme worked relatively well for the FIRST dataset.

  14. Spatio-Temporal Multiscale Denoising of Fluoroscopic Sequence.

    PubMed

    Amiot, Carole; Girard, Catherine; Chanussot, Jocelyn; Pescatore, Jeremie; Desvignes, Michel

    2016-06-01

    In the past 20 years, a wide range of complex fluoroscopically guided procedures have shown considerable growth. Biologic effects of the exposure (radiation induced burn, cancer) lead to reduce the dose during the intervention, for the safety of patients and medical staff. However, when the dose is reduced, image quality decreases, with a high level of noise and a very low contrast. Efficient restoration and denoising algorithms should overcome this drawback. We propose a spatio-temporal filter operating in a multi-scales space. This filter relies on a first order, motion compensated, recursive temporal denoising. Temporal high frequency content is first detected and then matched over time to allow for a strong denoising in the temporal axis. We study this filter in the curvelet domain and in the dual-tree complex wavelet domain, and compare those results to state of the art methods. Quantitative and qualitative analysis on both synthetic and real fluoroscopic sequences demonstrate that the proposed filter allows a great dose reduction. PMID:26812705

  15. Machinery vibration signal denoising based on learned dictionary and sparse representation

    NASA Astrophysics Data System (ADS)

    Guo, Liang; Gao, Hongli; Li, Jun; Huang, Haifeng; Zhang, Xiaochen

    2015-07-01

    Mechanical vibration signal denoising has been an import problem for machine damage assessment and health monitoring. Wavelet transfer and sparse reconstruction are the powerful and practical methods. However, those methods are based on the fixed basis functions or atoms. In this paper, a novel method is presented. The atoms used to represent signals are learned from the raw signal. And in order to satisfy the requirements of real-time signal processing, an online dictionary learning algorithm is adopted. Orthogonal matching pursuit is applied to extract the most pursuit column in the dictionary. At last, denoised signal is calculated with the sparse vector and learned dictionary. A simulation signal and real bearing fault signal are utilized to evaluate the improved performance of the proposed method through the comparison with kinds of denoising algorithms. Then Its computing efficiency is demonstrated by an illustrative runtime example. The results show that the proposed method outperforms current algorithms with efficiency calculation.

  16. The use of wavelet filters for reducing noise in posterior fossa Computed Tomography images

    SciTech Connect

    Pita-Machado, Reinado; Perez-Diaz, Marlen Lorenzo-Ginori, Juan V. Bravo-Pino, Rolando

    2014-11-07

    Wavelet transform based de-noising like wavelet shrinkage, gives the good results in CT. This procedure affects very little the spatial resolution. Some applications are reconstruction methods, while others are a posteriori de-noising methods. De-noising after reconstruction is very difficult because the noise is non-stationary and has unknown distribution. Therefore, methods which work on the sinogram-space don’t have this problem, because they always work over a known noise distribution at this point. On the other hand, the posterior fossa in a head CT is a very complex region for physicians, because it is commonly affected by artifacts and noise which are not eliminated during the reconstruction procedure. This can leads to some false positive evaluations. The purpose of our present work is to compare different wavelet shrinkage de-noising filters to reduce noise, particularly in images of the posterior fossa within CT scans in the sinogram-space. This work describes an experimental search for the best wavelets, to reduce Poisson noise in Computed Tomography (CT) scans. Results showed that de-noising with wavelet filters improved the quality of posterior fossa region in terms of an increased CNR, without noticeable structural distortions.

  17. Research on infrared-image denoising algorithm based on the noise analysis of the detector

    NASA Astrophysics Data System (ADS)

    Liu, Songtao; Zhou, Xiaodong; Shen, Tongsheng; Han, Yanli

    2005-01-01

    Since the conventional denoising algorithms have not considered the influence of certain concrete detector, they are not very effective to remove various noises contained in the low signal-to-noise ration infrared image. In this paper, a new thinking for infrared image denoising is proposed, which is based on the noise analyses of detector with an example of L model infrared multi-element detector. According to the noise analyses of this detector, the emphasis is placed on how to filter white noise and fractal noise in the preprocessing phase. Wavelet analysis is a good tool for analyzing 1/f process. 1/f process can be viewed as white noise approximately since its wavelet coefficients are stationary and uncorrelated. So if wavelet transform is adopted, the problem of removing white noise and fraction noise is simplified as the only one problem, i.e., removing white noise. To address this problem, a new wavelet domain adaptive wiener filtering algorithm is presented. From the viewpoint of quantitative and qualitative analyses, the filtering effect of our method is compared with those of traditional median filter, mean filter and wavelet thresholding algorithm in detail. The results show that our method can reduce various noises effectively and raise the ratio of signal-to-noise evidently.

  18. Iterative denoising of ghost imaging.

    PubMed

    Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie

    2014-10-01

    We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001

  19. Photogrammetric DSM denoising

    NASA Astrophysics Data System (ADS)

    Nex, F.; Gerke, M.

    2014-08-01

    Image matching techniques can nowadays provide very dense point clouds and they are often considered a valid alternative to LiDAR point cloud. However, photogrammetric point clouds are often characterized by a higher level of random noise compared to LiDAR data and by the presence of large outliers. These problems constitute a limitation in the practical use of photogrammetric data for many applications but an effective way to enhance the generated point cloud has still to be found. In this paper we concentrate on the restoration of Digital Surface Models (DSM), computed from dense image matching point clouds. A photogrammetric DSM, i.e. a 2.5D representation of the surface is still one of the major products derived from point clouds. Four different algorithms devoted to DSM denoising are presented: a standard median filter approach, a bilateral filter, a variational approach (TGV: Total Generalized Variation), as well as a newly developed algorithm, which is embedded into a Markov Random Field (MRF) framework and optimized through graph-cuts. The ability of each algorithm to recover the original DSM has been quantitatively evaluated. To do that, a synthetic DSM has been generated and different typologies of noise have been added to mimic the typical errors of photogrammetric DSMs. The evaluation reveals that standard filters like median and edge preserving smoothing through a bilateral filter approach cannot sufficiently remove typical errors occurring in a photogrammetric DSM. The TGV-based approach much better removes random noise, but large areas with outliers still remain. Our own method which explicitly models the degradation properties of those DSM outperforms the others in all aspects.

  20. Latest chemical peel innovations.

    PubMed

    Langsdon, Phillip R; Rodwell, David W; Velargo, Parker A; Langsdon, Carol H; Guydon, Amanda

    2012-05-01

    For decades, chemical peels have remained a trusted option for treatment of aging facial skin. However, emerging technologies are being adopted by many practitioners who may not have had sufficient opportunity to learn the art of chemical peeling. Properly performed peels can improve the condition of the skin, are less expensive than light-based machines, and exfoliate the skin without the thermal damage associated with light-based machines. This article presents a new variation of a trusted method, using a series of low-strength trichloroacetic acid peels and proper skin preparation that is cost-effective and produces excellent results in selected patients. PMID:22537780

  1. Periodized wavelets

    SciTech Connect

    Schlossnagle, G.; Restrepo, J.M.; Leaf, G.K.

    1993-12-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and contrasted against their counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrate by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and several tabulated values are included.

  2. A de-noising algorithm to improve SNR of segmented gamma scanner for spectrum analysis

    NASA Astrophysics Data System (ADS)

    Li, Huailiang; Tuo, Xianguo; Shi, Rui; Zhang, Jinzhao; Henderson, Mark Julian; Courtois, Jérémie; Yan, Minhao

    2016-05-01

    An improved threshold shift-invariant wavelet transform de-noising algorithm for high-resolution gamma-ray spectroscopy is proposed to optimize the threshold function of wavelet transforms and reduce signal resulting from pseudo-Gibbs artificial fluctuations. This algorithm was applied to a segmented gamma scanning system with large samples in which high continuum levels caused by Compton scattering are routinely encountered. De-noising data from the gamma ray spectrum measured by segmented gamma scanning system with improved, shift-invariant and traditional wavelet transform algorithms were all evaluated. The improved wavelet transform method generated significantly enhanced performance of the figure of merit, the root mean square error, the peak area, and the sample attenuation correction in the segmented gamma scanning system assays. We also found that the gamma energy spectrum can be viewed as a low frequency signal as well as high frequency noise superposition by the spectrum analysis. Moreover, a smoothed spectrum can be appropriate for straightforward automated quantitative analysis.

  3. Blind Deblurring and Denoising of Images Corrupted by Unidirectional Object Motion Blur and Sensor Noise.

    PubMed

    Zhang, Yi; Hirakawa, Keigo

    2016-09-01

    Low light photography suffers from blur and noise. In this paper, we propose a novel method to recover a dense estimate of spatially varying blur kernel as well as a denoised and deblurred image from a single noisy and object motion blurred image. A proposed method takes the advantage of the sparse representation of double discrete wavelet transform-a generative model of image blur that simplifies the wavelet analysis of a blurred image-and the Bayesian perspective of modeling the prior distribution of the latent sharp wavelet coefficient and the likelihood function that makes the noise handling explicit. We demonstrate the effectiveness of the proposed method on moderate noise and severely blurred images using simulated and real camera data. PMID:27337717

  4. [An analytic method of wavelet energy value to evaluate the contraction intensity of uterus].

    PubMed

    Yang, Jianping; Xiao, Kaixuan

    2012-02-01

    The data of uterine contraction pressure is the information source for extracting uterine contractions status. Because there is a variety of interference existing in contraction pressure data, commonly used methods such as uterine contraction intensity integration method can not obtain decent evaluation results. We used the bior 2.4 biorthogonal wavelet to decompose and reconstruct the pressure data in order to obtain the best denoising effect. Combining with the denoised results, we proposed an algorithm of the wavelet energy value. Based on the algorithm, we calculated the curve of wavelet energy value. It was proved that using the curve of wavelet energy value can better identify contractions waveform and evaluation contractions intensity. PMID:22404012

  5. Based on the wavelet neural network analysis and forecast of deformation monitoring data

    NASA Astrophysics Data System (ADS)

    Zhou, Conglin; Tang, Shihua; Tang, Changzeng; Huang, Qing; Liu, Yintao; Zhong, Xinying; Li, Feida; Xu, Hongwei

    2015-12-01

    Combines the wavelet analysis and neural network, this paper will be processed the data and the traditional BP neural network and kalman filter are analyzed and compared. First of all to obtain data of dam deformation wavelet denoising, excluding the contaminated data, obtain the optimal data set. Threshold denoising is generally adopted. Then based on the BP neural network, wavelet analysis to improve the traditional neural network model. Improve the underlying layer upon layer number and the number of nodes. Combined with the optimized dam deformation data, using the improved network model, the results to the regression model, ordinary kalman filter, this paper compares and analyzes the prediction effect evaluation.Comparison result is more ideal, which indicates that the combination of wavelet neural network model for deformation data processing has a good precision.

  6. A novel de-noising method for B ultrasound images

    NASA Astrophysics Data System (ADS)

    Tian, Da-Yong; Mo, Jia-qing; Yu, Yin-Feng; Lv, Xiao-Yi; Yu, Xiao; Jia, Zhen-Hong

    2015-12-01

    B ultrasound as a kind of ultrasonic imaging, which has become the indispensable diagnosis method in clinical medicine. However, the presence of speckle noise in ultrasound image greatly reduces the image quality and interferes with the accuracy of the diagnosis. Therefore, how to construct a method which can eliminate the speckle noise effectively, and at the same time keep the image details effectively is the research target of the current ultrasonic image de-noising. This paper is intended to remove the inherent speckle noise of B ultrasound image. The novel algorithm proposed is based on both wavelet transformation of B ultrasound images and data fusion of B ultrasound images, with a smaller mean squared error (MSE) and greater signal to noise ratio (SNR) compared with other algorithms. The results of this study can effectively remove speckle noise from B ultrasound images, and can well preserved the details and edge information which will produce better visual effects.

  7. Weak transient fault feature extraction based on an optimized Morlet wavelet and kurtosis

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Xing, Jianfeng; Mao, Yongfang

    2016-08-01

    Aimed at solving the key problem in weak transient detection, the present study proposes a new transient feature extraction approach using the optimized Morlet wavelet transform, kurtosis index and soft-thresholding. Firstly, a fast optimization algorithm based on the Shannon entropy is developed to obtain the optimized Morlet wavelet parameter. Compared to the existing Morlet wavelet parameter optimization algorithm, this algorithm has lower computation complexity. After performing the optimized Morlet wavelet transform on the analyzed signal, the kurtosis index is used to select the characteristic scales and obtain the corresponding wavelet coefficients. From the time-frequency distribution of the periodic impulsive signal, it is found that the transient signal can be reconstructed by the wavelet coefficients at several characteristic scales, rather than the wavelet coefficients at just one characteristic scale, so as to improve the accuracy of transient detection. Due to the noise influence on the characteristic wavelet coefficients, the adaptive soft-thresholding method is applied to denoise these coefficients. With the denoised wavelet coefficients, the transient signal can be reconstructed. The proposed method was applied to the analysis of two simulated signals, and the diagnosis of a rolling bearing fault and a gearbox fault. The superiority of the method over the fast kurtogram method was verified by the results of simulation analysis and real experiments. It is concluded that the proposed method is extremely suitable for extracting the periodic impulsive feature from strong background noise.

  8. Translation invariant directional framelet transform combined with Gabor filters for image denoising.

    PubMed

    Shi, Yan; Yang, Xiaoyuan; Guo, Yuhua

    2014-01-01

    This paper is devoted to the study of a directional lifting transform for wavelet frames. A nonsubsampled lifting structure is developed to maintain the translation invariance as it is an important property in image denoising. Then, the directionality of the lifting-based tight frame is explicitly discussed, followed by a specific translation invariant directional framelet transform (TIDFT). The TIDFT has two framelets ψ1, ψ2 with vanishing moments of order two and one respectively, which are able to detect singularities in a given direction set. It provides an efficient and sparse representation for images containing rich textures along with properties of fast implementation and perfect reconstruction. In addition, an adaptive block-wise orientation estimation method based on Gabor filters is presented instead of the conventional minimization of residuals. Furthermore, the TIDFT is utilized to exploit the capability of image denoising, incorporating the MAP estimator for multivariate exponential distribution. Consequently, the TIDFT is able to eliminate the noise effectively while preserving the textures simultaneously. Experimental results show that the TIDFT outperforms some other frame-based denoising methods, such as contourlet and shearlet, and is competitive to the state-of-the-art denoising approaches. PMID:24215934

  9. A novel partial volume effects correction technique integrating deconvolution associated with denoising within an iterative PET image reconstruction

    SciTech Connect

    Merlin, Thibaut; Visvikis, Dimitris; Fernandez, Philippe; Lamare, Frederic

    2015-02-15

    Purpose: Partial volume effect (PVE) plays an important role in both qualitative and quantitative PET image accuracy, especially for small structures. A previously proposed voxelwise PVE correction method applied on PET reconstructed images involves the use of Lucy–Richardson deconvolution incorporating wavelet-based denoising to limit the associated propagation of noise. The aim of this study is to incorporate the deconvolution, coupled with the denoising step, directly inside the iterative reconstruction process to further improve PVE correction. Methods: The list-mode ordered subset expectation maximization (OSEM) algorithm has been modified accordingly with the application of the Lucy–Richardson deconvolution algorithm to the current estimation of the image, at each reconstruction iteration. Acquisitions of the NEMA NU2-2001 IQ phantom were performed on a GE DRX PET/CT system to study the impact of incorporating the deconvolution inside the reconstruction [with and without the point spread function (PSF) model] in comparison to its application postreconstruction and to standard iterative reconstruction incorporating the PSF model. The impact of the denoising step was also evaluated. Images were semiquantitatively assessed by studying the trade-off between the intensity recovery and the noise level in the background estimated as relative standard deviation. Qualitative assessments of the developed methods were additionally performed on clinical cases. Results: Incorporating the deconvolution without denoising within the reconstruction achieved superior intensity recovery in comparison to both standard OSEM reconstruction integrating a PSF model and application of the deconvolution algorithm in a postreconstruction process. The addition of the denoising step permitted to limit the SNR degradation while preserving the intensity recovery. Conclusions: This study demonstrates the feasibility of incorporating the Lucy–Richardson deconvolution associated with a

  10. Chemistry with a Peel.

    ERIC Educational Resources Information Center

    Borer, Londa; Larsen, Eric

    1997-01-01

    Presents experiments that introduce natural product chemistry into high school classrooms. In the laboratory activities, students isolate and analyze the oil in orange peels. Students also perform a steam distillation and learn about terpenes. (DDR)

  11. Lifting wavelet method of target detection

    NASA Astrophysics Data System (ADS)

    Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin

    2009-11-01

    Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.

  12. Green Channel Guiding Denoising on Bayer Image

    PubMed Central

    Zhang, Maojun

    2014-01-01

    Denoising is an indispensable function for digital cameras. In respect that noise is diffused during the demosaicking, the denoising ought to work directly on bayer data. The difficulty of denoising on bayer image is the interlaced mosaic pattern of red, green, and blue. Guided filter is a novel time efficient explicit filter kernel which can incorporate additional information from the guidance image, but it is still not applied for bayer image. In this work, we observe that the green channel of bayer mode is higher in both sampling rate and Signal-to-Noise Ratio (SNR) than the red and blue ones. Therefore the green channel can be used to guide denoising. This kind of guidance integrates the different color channels together. Experiments on both actual and simulated bayer images indicate that green channel acts well as the guidance signal, and the proposed method is competitive with other popular filter kernel denoising methods. PMID:24741370

  13. R-L Method and BLS-GSM Denoising for Penumbra Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Li, Yang; Sheng, Liang; Li, Chunhua; Wei, Fuli; Peng, Bodong

    2013-12-01

    When neutron yield is very low, reconstruction of coding penumbra image is rather difficult. In this paper, low-yield (109) 14 MeV neutron penumbra imaging was simulated by Monte Carlo method. The Richardson Lucy (R-L) iteration method was proposed to incorporated with Bayesian least square-Gaussian scale mixture model (BLS-GSM) wavelet denoising for the simulated image. Optimal number of R-L iterations was gotten by a large number of tests. The results show that compared with Wiener method and median filter denoising, this method is better in restraining background noise, the correlation coefficient Rsr between the reconstructed and the real images is larger, and the reconstruction result is better.

  14. A study of infrared spectroscopy de-noising based on LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Mo, Jia-qing; Lv, Xiao-yi; Yu, Xiao

    2015-12-01

    Infrared spectroscopy has been widely used, but which often contains a lot of noise, so the spectral characteristic of the sample is seriously affected. Therefore the de-noising is very important in the spectrum analysis and processing. In the study of infrared spectroscopy, the least mean square (LMS) adaptive filter was applied in the field firstly. LMS adaptive filter algorithm can reserve the detail and envelope of the effective signal when the method was applied to infrared spectroscopy of breast cancer which signal-to-noise ratio (SNR) is lower than 10 dB, contrast and analysis the result with result of wavelet transform and ensemble empirical mode decomposition (EEMD). The three evaluation standards (SNR, root mean square error (RMSE) and the correlation coefficient (ρ)) fully proved de-noising advantages of LMS adaptive filter in infrared spectroscopy of breast cancer.

  15. Denoising preterm EEG by signal decomposition and adaptive filtering: a comparative study.

    PubMed

    Navarro, X; Porée, F; Beuchée, A; Carrault, G

    2015-03-01

    Electroencephalography (EEG) from preterm infant monitoring systems is usually contaminated by several sources of noise that have to be removed in order to correctly interpret signals and perform automated analysis reliably. Band-pass and adaptive filters (AF) continue to be systematically applied, but their efficacy may be decreased facing preterm EEG patterns such as the tracé alternant and slow delta-waves. In this paper, we propose the combination of EEG decomposition with AF to improve the overall denoising process. Using artificially contaminated signals from real EEGs, we compared the quality of filtered signals applying different decomposition techniques: the discrete wavelet transform, the empirical mode decomposition (EMD) and a recent improved version, the complete ensemble EMD with adaptive noise. Simulations demonstrate that introducing EMD-based techniques prior to AF can reduce up to 30% the root mean squared errors in denoised EEGs. PMID:25659233

  16. Adaptive redundant multiwavelet denoising with improved neighboring coefficients for gearbox fault detection

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Zi, Yanyang; He, Zhengjia; Wang, Xiaodong

    2013-07-01

    Gearbox fault detection under strong background noise is a challenging task. It is feasible to make the fault feature distinct through multiwavelet denoising. In addition to the advantage of multi-resolution analysis, multiwavelet with several scaling functions and wavelet functions can detect the different fault features effectively. However, the fixed basis functions not related to the given signal may lower the accuracy of fault detection. Moreover, the multiwavelet transform may result in Gibbs phenomena in the step of reconstruction. Furthermore, both traditional term-by-term threshold and neighboring coefficients do not consider the direct spatial dependency of wavelet coefficients at adjacent scale. To overcome these deficiencies, adaptive redundant multiwavelet (ARM) denoising with improved neighboring coefficients (NeighCoeff) is proposed. Based on symmetric multiwavelet lifting scheme (SMLS), taking kurtosis—partial envelope spectrum entropy as the evaluation objective and genetic algorithms as the optimization method, ARM is proposed. Considering the intra-scale and inter-scale dependency of wavelet coefficients, the improved NeighCoeff method is developed and incorporated into ARM. The proposed method is applied to both the simulated signal and the practical gearbox vibration signal under different conditions. The results show its effectiveness and reliance for gearbox fault detection.

  17. Wavelet analysis deformation monitoring data of high-speed railway bridge

    NASA Astrophysics Data System (ADS)

    Tang, ShiHua; Huang, Qing; Zhou, Conglin; Xu, HongWei; Liu, YinTao; Li, FeiDa

    2015-12-01

    Deformation monitoring data of high-speed railway bridges will inevitably be affected because of noise pollution, A deformation monitoring point of high-speed railway bridge was measurd by using sokkia SDL30 electronic level for a long time,which got a large number of deformation monitoring data. Based on the characteristics of the deformation monitoring data of high-speed railway bridge, which contain lots of noise. Based on the MATLAB software platform, 120 groups of deformation monitoring data were applied to analysis of wavelet denoising.sym6,db6 wavelet basis function were selected to analyze and remove the noise.The original signal was broken into three layers wavelet,which contain high frequency coefficients and low frequency coefficients.However, high frequency coefficient have plenty of noise.Adaptive method of soft and hard threshold were used to handle in the high frequency coefficient.Then,high frequency coefficient that was removed much of noise combined with low frequency coefficient to reconstitute and obtain reconstruction wavelet signal.Root Mean Square Error (RMSE) and Signal-To-Noise Ratio (SNR) were regarded as evaluation index of denoising,The smaller the root mean square error and the greater signal-to-noise ratio indicate that them have a good effect in denoising. We can surely draw some conclusions in the experimental analysis:the db6 wavelet basis function has a good effect in wavelet denoising by using a adaptive soft threshold method,which root mean square error is minimum and signal-to-noise ratio is maximum.Moreover,the reconstructed image are more smooth than original signal denoising after wavelet denoising, which removed noise and useful signal are obtained in the original signal.Compared to the other three methods, this method has a good effect in denoising, which not only retain useful signal in the original signal, but aiso reach the goal of removing noise. So, it has a strong practical value in a actual deformation monitoring

  18. Bandages of boiled potato peels.

    PubMed

    Patil, A R; Keswani, M H

    1985-08-01

    The use of potato peels as a dressing for burn wounds has been reported previously. A technique of preparing bandage rolls with boiled potato peels is now presented, which makes dressing of a burn wound more convenient. PMID:4041947

  19. Vector anisotropic filter for multispectral image denoising

    NASA Astrophysics Data System (ADS)

    Ben Said, Ahmed; Foufou, Sebti; Hadjidj, Rachid

    2015-04-01

    In this paper, we propose an approach to extend the application of anisotropic Gaussian filtering for multi- spectral image denoising. We study the case of images corrupted with additive Gaussian noise and use sparse matrix transform for noise covariance matrix estimation. Specifically we show that if an image has a low local variability, we can make the assumption that in the noisy image, the local variability originates from the noise variance only. We apply the proposed approach for the denoising of multispectral images corrupted by noise and compare the proposed method with some existing methods. Results demonstrate an improvement in the denoising performance.

  20. Denoising Medical Images using Calculus of Variations

    PubMed Central

    Kohan, Mahdi Nakhaie; Behnam, Hamid

    2011-01-01

    We propose a method for medical image denoising using calculus of variations and local variance estimation by shaped windows. This method reduces any additive noise and preserves small patterns and edges of images. A pyramid structure-texture decomposition of images is used to separate noise and texture components based on local variance measures. The experimental results show that the proposed method has visual improvement as well as a better SNR, RMSE and PSNR than common medical image denoising methods. Experimental results in denoising a sample Magnetic Resonance image show that SNR, PSNR and RMSE have been improved by 19, 9 and 21 percents respectively. PMID:22606674

  1. Complications of Macular Peeling.

    PubMed

    Asencio-Duran, Mónica; Manzano-Muñoz, Beatriz; Vallejo-García, José Luis; García-Martínez, Jesús

    2015-01-01

    Macular peeling refers to the surgical technique for the removal of preretinal tissue or the internal limiting membrane (ILM) in the macula for several retinal disorders, ranging from epiretinal membranes (primary or secondary to diabetic retinopathy, retinal detachment…) to full-thickness macular holes, macular edema, foveal retinoschisis, and others. The technique has evolved in the last two decades, and the different instrumentations and adjuncts have progressively advanced turning into a safer, easier, and more useful tool for the vitreoretinal surgeon. Here, we describe the main milestones of macular peeling, drawing attention to its associated complications. PMID:26425351

  2. Complications of Macular Peeling

    PubMed Central

    Asencio-Duran, Mónica; Manzano-Muñoz, Beatriz; Vallejo-García, José Luis; García-Martínez, Jesús

    2015-01-01

    Macular peeling refers to the surgical technique for the removal of preretinal tissue or the internal limiting membrane (ILM) in the macula for several retinal disorders, ranging from epiretinal membranes (primary or secondary to diabetic retinopathy, retinal detachment…) to full-thickness macular holes, macular edema, foveal retinoschisis, and others. The technique has evolved in the last two decades, and the different instrumentations and adjuncts have progressively advanced turning into a safer, easier, and more useful tool for the vitreoretinal surgeon. Here, we describe the main milestones of macular peeling, drawing attention to its associated complications. PMID:26425351

  3. Noise reduction of FBG sensor signal by using a wavelet transform

    NASA Astrophysics Data System (ADS)

    Cho, Yo-Han; Song, Minho

    2011-05-01

    We constructed a FBG (fiber Bragg grating) sensor system based on a fiber-optic Sagnac interferometer. A fiber-optic laser source is used as a strong light source to attain high signal-to-noise ratio. However the unstable output power and coherence noises of the fiber laser made it hard to separate the FBG signals from the interference signals of the fiber coils. To reduce noises and extract FBG sensor signals, we used a Gaussian curve-fitting and a wavelet transform. The wavelet transform is a useful tool for analyzing and denoising output signals. The feasibility of the wavelet transform denoising process is presented with the preliminary experimental results, which showed much better accuracy than the case with only the Gaussian curve-fitting algorithm.

  4. Chemical face peeling.

    PubMed

    Langsdon, Phillip R; Shires, Courtney B

    2012-02-01

    Chemexfoliation is an excellent method to reduce facial rhytids. For 25 years, we have used the traditional formula as described by T. J. Baker but with a moist healing technique rather than a tape mask. We have found the peel to be inexpensive and easy to perform, with results that are excellent and consistent, with minimal side effects. PMID:22418821

  5. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM.

    PubMed

    Guo, Qing; Sun, Shuifa; Dong, Fangmin; Gao, Bruce Z; Wang, Rui

    2012-01-01

    Optical Coherence Tomography(OCT) gradually becomes a very important imaging technology in the Biomedical field for its noninvasive, nondestructive and real-time properties. However, the interpretation and application of the OCT images are limited by the ubiquitous noise. In this paper, a denoising algorithm based on contourlet transform for the OCT heart tube image is proposed. A bivariate function is constructed to model the joint probability density function (pdf) of the coefficient and its cousin in contourlet domain. A bivariate shrinkage function is deduced to denoise the image by the maximum a posteriori (MAP) estimation. Three metrics, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and equivalent number of look (ENL), are used to evaluate the denoised image using the proposed algorithm. The results show that the signal-to-noise ratio is improved while the edges of object are preserved by the proposed algorithm. Systemic comparisons with other conventional algorithms, such as mean filter, median filter, RKT filter, Lee filter, as well as bivariate shrinkage function for wavelet-based algorithm are conducted. The advantage of the proposed algorithm over these methods is illustrated. PMID:25364626

  6. Self-adapting denoising, alignment and reconstruction in electron tomography in materials science.

    PubMed

    Printemps, Tony; Mula, Guido; Sette, Daniele; Bleuet, Pierre; Delaye, Vincent; Bernier, Nicolas; Grenier, Adeline; Audoit, Guillaume; Gambacorti, Narciso; Hervé, Lionel

    2016-01-01

    An automatic procedure for electron tomography is presented. This procedure is adapted for specimens that can be fashioned into a needle-shaped sample and has been evaluated on inorganic samples. It consists of self-adapting denoising, automatic and accurate alignment including detection and correction of tilt axis, and 3D reconstruction. We propose the exploitation of a large amount of information of an electron tomography acquisition to achieve robust and automatic mixed Poisson-Gaussian noise parameter estimation and denoising using undecimated wavelet transforms. The alignment is made by mixing three techniques, namely (i) cross-correlations between neighboring projections, (ii) common line algorithm to get a precise shift correction in the direction of the tilt axis and (iii) intermediate reconstructions to precisely determine the tilt axis and shift correction in the direction perpendicular to that axis. Mixing alignment techniques turns out to be very efficient and fast. Significant improvements are highlighted in both simulations and real data reconstructions of porous silicon in high angle annular dark field mode and agglomerated silver nanoparticles in incoherent bright field mode. 3D reconstructions obtained with minimal user-intervention present fewer artefacts and less noise, which permits easier and more reliable segmentation and quantitative analysis. After careful sample preparation and data acquisition, the denoising procedure, alignment and reconstruction can be achieved within an hour for a 3D volume of about a hundred million voxels, which is a step toward a more routine use of electron tomography. PMID:26413937

  7. Image denoising in bidimensional empirical mode decomposition domain: the role of Student's probability distribution function.

    PubMed

    Lahmiri, Salim

    2016-03-01

    Hybridisation of the bi-dimensional empirical mode decomposition (BEMD) with denoising techniques has been proposed in the literature as an effective approach for image denoising. In this Letter, the Student's probability density function is introduced in the computation of the mean envelope of the data during the BEMD sifting process to make it robust to values that are far from the mean. The resulting BEMD is denoted tBEMD. In order to show the effectiveness of the tBEMD, several image denoising techniques in tBEMD domain are employed; namely, fourth order partial differential equation (PDE), linear complex diffusion process (LCDP), non-linear complex diffusion process (NLCDP), and the discrete wavelet transform (DWT). Two biomedical images and a standard digital image were considered for experiments. The original images were corrupted with additive Gaussian noise with three different levels. Based on peak-signal-to-noise ratio, the experimental results show that PDE, LCDP, NLCDP, and DWT all perform better in the tBEMD than in the classical BEMD domain. It is also found that tBEMD is faster than classical BEMD when the noise level is low. When it is high, the computational cost in terms of processing time is similar. The effectiveness of the presented approach makes it promising for clinical applications. PMID:27222723

  8. Wavelet-Based Speech Enhancement Using Time-Adapted Noise Estimation

    NASA Astrophysics Data System (ADS)

    Lei, Sheau-Fang; Tung, Ying-Kai

    Spectral subtraction is commonly used for speech enhancement in a single channel system because of the simplicity of its implementation. However, this algorithm introduces perceptually musical noise while suppressing the background noise. We propose a wavelet-based approach in this paper for suppressing the background noise for speech enhancement in a single channel system. The wavelet packet transform, which emulates the human auditory system, is used to decompose the noisy signal into critical bands. Wavelet thresholding is then temporally adjusted with the noise power by time-adapted noise estimation. The proposed algorithm can efficiently suppress the noise while reducing speech distortion. Experimental results, including several objective measurements, show that the proposed wavelet-based algorithm outperforms spectral subtraction and other wavelet-based denoising approaches for speech enhancement for nonstationary noise environments.

  9. [Medical image processing based on wavelet characteristics and edge blur detection].

    PubMed

    Zhu, Baihui; Wan, Zhiping

    2014-06-01

    To solve the problems of noise interference and edge signal weakness for the existing medical image, we used two-dimensional wavelet transform to process medical images. Combined the directivity of the image edges and the correlation of the wavelet coefficients, we proposed a medical image processing algorithm based on wavelet characteristics and edge blur detection. This algorithm improved noise reduction capabilities and the edge effect due to wavelet transformation and edge blur detection. The experimental results showed that directional correlation improved edge based on wavelet transform fuzzy algorithm could effectively reduce the noise signal in the medical image and save the image edge signal. It has the advantage of the high-definition and de-noising ability. PMID:25219221

  10. ECG Signal Analysis and Arrhythmia Detection using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Kaur, Inderbir; Rajni, Rajni; Marwaha, Anupma

    2016-06-01

    Electrocardiogram (ECG) is used to record the electrical activity of the heart. The ECG signal being non-stationary in nature, makes the analysis and interpretation of the signal very difficult. Hence accurate analysis of ECG signal with a powerful tool like discrete wavelet transform (DWT) becomes imperative. In this paper, ECG signal is denoised to remove the artifacts and analyzed using Wavelet Transform to detect the QRS complex and arrhythmia. This work is implemented in MATLAB software for MIT/BIH Arrhythmia database and yields the sensitivity of 99.85 %, positive predictivity of 99.92 % and detection error rate of 0.221 % with wavelet transform. It is also inferred that DWT outperforms principle component analysis technique in detection of ECG signal.

  11. Color graph based wavelet transform with perceptual information

    NASA Astrophysics Data System (ADS)

    Malek, Mohamed; Helbert, David; Carré, Philippe

    2015-09-01

    We propose a numerical strategy to define a multiscale analysis for color and multicomponent images based on the representation of data on a graph. Our approach consists of computing the graph of an image using the psychovisual information and analyzing it by using the spectral graph wavelet transform. We suggest introducing color dimension into the computation of the weights of the graph and using the geodesic distance as a mean of distance measurement. We thus have defined a wavelet transform based on a graph with perceptual information by using the CIELab color distance. This new representation is illustrated with denoising and inpainting applications. Overall, by introducing psychovisual information in the graph computation for the graph wavelet transform, we obtain very promising results. Thus, results in image restoration highlight the interest of the appropriate use of color information.

  12. Wavelets, ridgelets, curvelets on the sphere, and applications

    NASA Astrophysics Data System (ADS)

    Moudden, Y.; Abrial, P.; Starck, J.-L.

    2005-08-01

    Analyzing data mapped to the sphere as may occur in a range of applications in geophysics, medical imaging or astrophysics, requires specific tools. This paper describes new multiscale decompositions for spherical images namely the isotropic undecimated wavelet transform, the ridgelet transform and the curvelet transform each of which is invertible. Several applications are described. We show how these transforms can be used in denoising and especially in a Combined Filtering Method, which uses both the wavelet and the curvelet transforms, thus benefiting from the advantages of both transforms. An application to component separation from multichannel data mapped to the sphere is also described where we take advantage of the spatiospectral localization on the sphere provided by the spherical wavelet functions.

  13. Customized maximal-overlap multiwavelet denoising with data-driven group threshold for condition monitoring of rolling mill drivetrain

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Wan, Zhiguo; Pan, Jun; Zi, Yanyang; Wang, Yu; Chen, Binqiang; Sun, Hailiang; Yuan, Jing; He, Zhengjia

    2016-02-01

    Fault identification timely of rolling mill drivetrain is significant for guaranteeing product quality and realizing long-term safe operation. So, condition monitoring system of rolling mill drivetrain is designed and developed. However, because compound fault and weak fault feature information is usually sub-merged in heavy background noise, this task still faces challenge. This paper provides a possibility for fault identification of rolling mills drivetrain by proposing customized maximal-overlap multiwavelet denoising method. The effectiveness of wavelet denoising method mainly relies on the appropriate selections of wavelet base, transform strategy and threshold rule. First, in order to realize exact matching and accurate detection of fault feature, customized multiwavelet basis function is constructed via symmetric lifting scheme and then vibration signal is processed by maximal-overlap multiwavelet transform. Next, based on spatial dependency of multiwavelet transform coefficients, spatial neighboring coefficient data-driven group threshold shrinkage strategy is developed for denoising process by choosing the optimal group length and threshold via the minimum of Stein's Unbiased Risk Estimate. The effectiveness of proposed method is first demonstrated through compound fault identification of reduction gearbox on rolling mill. Then it is applied for weak fault identification of dedusting fan bearing on rolling mill and the results support its feasibility.

  14. A 1D wavelet filtering for ultrasound images despeckling

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Dubois, Mathieu; Frenoux, Emmanuelle; Osorio, Angel

    2010-03-01

    Ultrasound images appearance is characterized by speckle, shadows, signal dropout and low contrast which make them really difficult to process and leads to a very poor signal to noise ratio. Therefore, for main imaging applications, a denoising step is necessary to apply successfully medical imaging algorithms on such images. However, due to speckle statistics, denoising and enhancing edges on these images without inducing additional blurring is a real challenging problem on which usual filters often fail. To deal with such problems, a large number of papers are working on B-mode images considering that the noise is purely multiplicative. Making such an assertion could be misleading, because of internal pre-processing such as log compression which are done in the ultrasound device. To address those questions, we designed a novel filtering method based on 1D Radiofrequency signal. Indeed, since B-mode images are initially composed of 1D signals and since the log compression made by ultrasound devices modifies noise statistics, we decided to filter directly the 1D Radiofrequency signal envelope before log compression and image reconstitution, in order to conserve as much information as possible. A bi-orthogonal wavelet transform is applied to the log transform of each signal and an adaptive 1D split and merge like algorithm is used to denoise wavelet coefficients. Experiments were carried out on synthetic data sets simulated with Field II simulator and results show that our filter outperforms classical speckle filtering methods like Lee, non-linear means or SRAD filters.

  15. Discrete shearlet transform on GPU with applications in anomaly detection and denoising

    NASA Astrophysics Data System (ADS)

    Gibert, Xavier; Patel, Vishal M.; Labate, Demetrio; Chellappa, Rama

    2014-12-01

    Shearlets have emerged in recent years as one of the most successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets, shearlets form a pyramid of well-localized functions defined not only over a range of scales and locations, but also over a range of orientations and with highly anisotropic supports. As a result, shearlets are much more effective than traditional wavelets in handling the geometry of multidimensional data, and this was exploited in a wide range of applications from image and signal processing. However, despite their desirable properties, the wider applicability of shearlets is limited by the computational complexity of current software implementations. For example, denoising a single 512 × 512 image using a current implementation of the shearlet-based shrinkage algorithm can take between 10 s and 2 min, depending on the number of CPU cores, and much longer processing times are required for video denoising. On the other hand, due to the parallel nature of the shearlet transform, it is possible to use graphics processing units (GPU) to accelerate its implementation. In this paper, we present an open source stand-alone implementation of the 2D discrete shearlet transform using CUDA C++ as well as GPU-accelerated MATLAB implementations of the 2D and 3D shearlet transforms. We have instrumented the code so that we can analyze the running time of each kernel under different GPU hardware. In addition to denoising, we describe a novel application of shearlets for detecting anomalies in textured images. In this application, computation times can be reduced by a factor of 50 or more, compared to multicore CPU implementations.

  16. Geodesic denoising for optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Shahrian Varnousfaderani, Ehsan; Vogl, Wolf-Dieter; Wu, Jing; Gerendas, Bianca S.; Simader, Christian; Langs, Georg; Waldstein, Sebastian M.; Schmidt-Erfurth, Ursula

    2016-03-01

    Optical coherence tomography (OCT) is an optical signal acquisition method capturing micrometer resolution, cross-sectional three-dimensional images. OCT images are used widely in ophthalmology to diagnose and monitor retinal diseases such as age-related macular degeneration (AMD) and Glaucoma. While OCT allows the visualization of retinal structures such as vessels and retinal layers, image quality and contrast is reduced by speckle noise, obfuscating small, low intensity structures and structural boundaries. Existing denoising methods for OCT images may remove clinically significant image features such as texture and boundaries of anomalies. In this paper, we propose a novel patch based denoising method, Geodesic Denoising. The method reduces noise in OCT images while preserving clinically significant, although small, pathological structures, such as fluid-filled cysts in diseased retinas. Our method selects optimal image patch distribution representations based on geodesic patch similarity to noisy samples. Patch distributions are then randomly sampled to build a set of best matching candidates for every noisy sample, and the denoised value is computed based on a geodesic weighted average of the best candidate samples. Our method is evaluated qualitatively on real pathological OCT scans and quantitatively on a proposed set of ground truth, noise free synthetic OCT scans with artificially added noise and pathologies. Experimental results show that performance of our method is comparable with state of the art denoising methods while outperforming them in preserving the critical clinically relevant structures.

  17. [Establishment and Improvement of Portable X-Ray Fluorescence Spectrometer Detection Model Based on Wavelet Transform].

    PubMed

    Li, Fang; Wang, Ji-hua; Lu, An-xiang; Han, Ping

    2015-04-01

    The concentration of Cr, Cu, Zn, As and Pb in soil was tested by portable X-ray fluorescence spectrometer. Each sample was tested for 3 times, then after using wavelet threshold noise filtering method for denoising and smoothing the spectra, a standard curve for each heavy metal was established according to the standard values of heavy metals in soil and the corresponding counts which was the average of the 3 processed spectra. The signal to noise ratio (SNR), mean square error (MSE) and information entropy (H) were taken to assess the effects of denoising when using wavelet threshold noise filtering method for determining the best wavelet basis and wavelet decomposition level. Some samples with different concentrations and H3 B03 (blank) were chosen to retest this instrument to verify its stability. The results show that: the best denoising result was obtained with the coif3 wavelet basis at the decomposition level of 3 when using the wavelet transform method. The determination coefficient (R2) range of the instrument is 0.990-0.996, indicating that a high degree of linearity was found between the contents of heavy metals in soil and each X-ray fluorescence spectral characteristic peak intensity with the instrument measurement within the range (0-1,500 mg · kg(-1)). After retesting and calculating, the results indicate that all the detection limits of the instrument are below the soil standards at national level. The accuracy of the model has been effectively improved, and the instrument also shows good precision with the practical application of wavelet transform to the establishment and improvement of X-ray fluorescence spectrometer detection model. Thus the instrument can be applied in on-site rapid screening of heavy metal in contaminated soil. PMID:26197612

  18. Viscous peeling with capillary suction

    NASA Astrophysics Data System (ADS)

    Peng, Gunnar; Lister, John

    2014-11-01

    If an elastic tape is stuck to a rigid substrate by a thin film of viscous fluid and then peeled off by pulling at a small angle to the horizontal, then both viscous and capillary forces affect the peeling speed (McEwan and Taylor, 1966). If there is no capillary meniscus (e.g. if the peeling is due to viscous fluid being injected under the tape), then the peeling speed is given by a Cox-Voinov-like law, and is an increasing function of the peeling angle. We show that, with a meniscus present, the effect of the capillary forces is to suck down the tape, reducing the effective peeling angle and hence the peeling speed. When surface tension dominates and the peeling speed tends to zero, the system transitions to a new state whose time-evolution can be described by a system of coupled ordinary differential equations. These asymptotic results are confirmed by numerical calculations. Similar results hold for the peeling-by-bending of elastic beams, with ``angle'' replaced by ``curvature'' (i.e. bending moment).

  19. Research of image enhancement of dental cast based on wavelet transformation

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Zhongke; Liu, Xingmiao

    2010-10-01

    This paper describes a 3D laser scanner for dental cast that realize non-contact deepness measuring. The scanner and the control PC make up of a 3D scan system, accomplish the real time digital of dental cast. Owing to the complexity shape of the dental cast and the random nature of scanned points, the detected feature curves are generally not smooth or not accurate enough for subsequent application. The purpose of this p is to present an algorithm for enhancing the useful points and eliminating the noises. So an image enhancement algorithm based on wavelet transform and fuzzy set theory is presented. Firstly, the multi-scale wavelet transform is adopted to decompose the input image, which extracts the characteristic of multi-scale of the image. Secondly, wavelet threshold is used for image de-noising, and then the traditional fuzzy set theory is improved and applied to enhance the low frequency wavelet coefficients and the high frequency wavelet coefficients of different directions of each scale. Finally, the inverse wavelet transform is applied to synthesis image. A group of experimental results demonstrate that the proposed algorithm is effective for the dental cast image de-noising and enhancement, the edge of the enhanced image is distinct which is good for the subsequent image processing.

  20. Image-Specific Prior Adaptation for Denoising.

    PubMed

    Lu, Xin; Lin, Zhe; Jin, Hailin; Yang, Jianchao; Wang, James Z

    2015-12-01

    Image priors are essential to many image restoration applications, including denoising, deblurring, and inpainting. Existing methods use either priors from the given image (internal) or priors from a separate collection of images (external). We find through statistical analysis that unifying the internal and external patch priors may yield a better patch prior. We propose a novel prior learning algorithm that combines the strength of both internal and external priors. In particular, we first learn a generic Gaussian mixture model from a collection of training images and then adapt the model to the given image by simultaneously adding additional components and refining the component parameters. We apply this image-specific prior to image denoising. The experimental results show that our approach yields better or competitive denoising results in terms of both the peak signal-to-noise ratio and structural similarity. PMID:26316129

  1. Echocardiogram enhancement using supervised manifold denoising.

    PubMed

    Wu, Hui; Huynh, Toan T; Souvenir, Richard

    2015-08-01

    This paper presents data-driven methods for echocardiogram enhancement. Existing denoising algorithms typically rely on a single noise model, and do not generalize to the composite noise sources typically found in real-world echocardiograms. Our methods leverage the low-dimensional intrinsic structure of echocardiogram videos. We assume that echocardiogram images are noisy samples from an underlying manifold parametrized by cardiac motion and denoise images via back-projection onto a learned (non-linear) manifold. Our methods incorporate synchronized side information (e.g., electrocardiography), which is often collected alongside the visual data. We evaluate the proposed methods on a synthetic data set and real-world echocardiograms. Quantitative results show improved performance of our methods over recent image despeckling methods and video denoising methods, and a visual analysis of real-world data shows noticeable image enhancement, even in the challenging case of noise due to dropout artifacts. PMID:26072166

  2. Computed tomography perfusion imaging denoising using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-01

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using Gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study.

  3. Computed tomography perfusion imaging denoising using gaussian process regression.

    PubMed

    Zhu, Fan; Carpenter, Trevor; Rodriguez Gonzalez, David; Atkinson, Malcolm; Wardlaw, Joanna

    2012-06-21

    Brain perfusion weighted images acquired using dynamic contrast studies have an important clinical role in acute stroke diagnosis and treatment decisions. However, computed tomography (CT) images suffer from low contrast-to-noise ratios (CNR) as a consequence of the limitation of the exposure to radiation of the patient. As a consequence, the developments of methods for improving the CNR are valuable. The majority of existing approaches for denoising CT images are optimized for 3D (spatial) information, including spatial decimation (spatially weighted mean filters) and techniques based on wavelet and curvelet transforms. However, perfusion imaging data is 4D as it also contains temporal information. Our approach using gaussian process regression (GPR), which takes advantage of the temporal information, to reduce the noise level. Over the entire image, GPR gains a 99% CNR improvement over the raw images and also improves the quality of haemodynamic maps allowing a better identification of edges and detailed information. At the level of individual voxel, GPR provides a stable baseline, helps us to identify key parameters from tissue time-concentration curves and reduces the oscillations in the curve. GPR is superior to the comparable techniques used in this study. PMID:22617159

  4. MRA-based wavelet frames and applications: image segmentation and surface reconstruction

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Shen, Zuowei

    2012-06-01

    Theory of wavelet frames and their applications to image restoration problems have been extensively studied for the past two decades. The success of wavelet frames in solving image restoration problems, which includes denoising, deblurring, inpainting, computed tomography, etc., is mainly due to their capability of sparsely approximating piecewise smooth functions such as images. However, in contrast to the wide applications of wavelet frame based approaches to image restoration problems, they are rarely used for some image/data analysis tasks, such as image segmentation, registration and surface reconstruction from unorganized point clouds. The main reason for this is the lack of geometric interpretations of wavelet frames and their associated transforms. Recently, geometric meanings of wavelet frames have been discovered and connections between the wavelet frame based approach and the differential operator based variational model were established.1 Such discovery enabled us to extend the wavelet frame based approach to some image/data analysis tasks that have not yet been studied before. In this paper, we will provide a unified survey of the wavelet frame based models for image segmentation and surface reconstruction from unorganized point clouds. Advantages of the wavelet frame based approach are illustrated by numerical experiments.

  5. Magnetic resonance image denoising using multiple filters

    NASA Astrophysics Data System (ADS)

    Ai, Danni; Wang, Jinjuan; Miwa, Yuichi

    2013-07-01

    We introduced and compared ten denoisingfilters which are all proposed during last fifteen years. Especially, the state-of-art denoisingalgorithms, NLM and BM3D, have attracted much attention. Several expansions are proposed to improve the noise reduction based on these two algorithms. On the other hand, optimal dictionaries, sparse representations and appropriate shapes of the transform's support are also considered for the image denoising. The comparison among variousfiltersis implemented by measuring the SNR of a phantom image and denoising effectiveness of a clinical image. The computational time is finally evaluated.

  6. Analysis the application of several denoising algorithm in the astronomical image denoising

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Geng, Ze-xun; Bao, Yong-qiang; Wei, Xiao-feng; Pan, Ying-feng

    2014-02-01

    Image denoising is an important method of preprocessing, it is one of the forelands in the field of Computer Graphic and Computer Vision. Astronomical target imaging are most vulnerable to atmospheric turbulence and noise interference, in order to reconstruct the high quality image of the target, we need to restore the high frequency signal of image, but noise also belongs to the high frequency signal, so there will be noise amplification in the reconstruction process. In order to avoid this phenomenon, join image denoising in the process of reconstruction is a feasible solution. This paper mainly research on the principle of four classic denoising algorithm, which are TV, BLS - GSM, NLM and BM3D, we use simulate data for image denoising to analysis the performance of the four algorithms, experiments demonstrate that the four algorithms can remove the noise, the BM3D algorithm not only have high quality of denosing, but also have the highest efficiency at the same time.

  7. [Denoising and assessing method of additive noise in the ultraviolet spectrum of SO2 in flue gas].

    PubMed

    Zhou, Tao; Sun, Chang-Ku; Liu, Bin; Zhao, Yu-Mei

    2009-11-01

    The problem of denoising and assessing method of the spectrum of SO2 in flue gas was studied based on DOAS. The denoising procedure of the additive noise in the spectrum was divided into two parts: reducing the additive noise and enhancing the useful signal. When obtaining the absorption feature of measured gas, a multi-resolution preprocessing method of original spectrum was adopted for denoising by DWT (discrete wavelet transform). The signal energy operators in different scales were used to choose the denoising threshold and separate the useful signal from the noise. On the other hand, because there was no sudden change in the spectra of flue gas in time series, the useful signal component was enhanced according to the signal time dependence. And the standard absorption cross section was used to build the ideal absorption spectrum with the measured gas temperature and pressure. This ideal spectrum was used as the desired signal instead of the original spectrum in the assessing method to modify the SNR (signal-noise ratio). There were two different environments to do the proof test-in the lab and at the scene. In the lab, SO2 was measured several times with the system using this method mentioned above. The average deviation was less than 1.5%, while the repeatability was less than 1%. And the short range experiment data were better than the large range. In the scene of a power plant whose concentration of flue gas had a large variation range, the maximum deviation of this method was 2.31% in the 18 groups of contrast data. The experimental results show that the denoising effect of the scene spectrum was better than that of the lab spectrum. This means that this method can improve the SNR of the spectrum effectively, which is seriously polluted by additive noise. PMID:20101989

  8. Denoising PCR-amplified metagenome data

    PubMed Central

    2012-01-01

    Background PCR amplification and high-throughput sequencing theoretically enable the characterization of the finest-scale diversity in natural microbial and viral populations, but each of these methods introduces random errors that are difficult to distinguish from genuine biological diversity. Several approaches have been proposed to denoise these data but lack either speed or accuracy. Results We introduce a new denoising algorithm that we call DADA (Divisive Amplicon Denoising Algorithm). Without training data, DADA infers both the sample genotypes and error parameters that produced a metagenome data set. We demonstrate performance on control data sequenced on Roche’s 454 platform, and compare the results to the most accurate denoising software currently available, AmpliconNoise. Conclusions DADA is more accurate and over an order of magnitude faster than AmpliconNoise. It eliminates the need for training data to establish error parameters, fully utilizes sequence-abundance information, and enables inclusion of context-dependent PCR error rates. It should be readily extensible to other sequencing platforms such as Illumina. PMID:23113967

  9. Directional spherical multipole wavelets

    SciTech Connect

    Hayn, Michael; Holschneider, Matthias

    2009-07-15

    We construct a family of admissible analysis reconstruction pairs of wavelet families on the sphere. The construction is an extension of the isotropic Poisson wavelets. Similar to those, the directional wavelets allow a finite expansion in terms of off-center multipoles. Unlike the isotropic case, the directional wavelets are not a tight frame. However, at small scales, they almost behave like a tight frame. We give an explicit formula for the pseudodifferential operator given by the combination analysis-synthesis with respect to these wavelets. The Euclidean limit is shown to exist and an explicit formula is given. This allows us to quantify the asymptotic angular resolution of the wavelets.

  10. Hierarchical wavelet-based image model for pattern analysis and synthesis

    NASA Astrophysics Data System (ADS)

    Scott, Clayton D.; Nowak, Robert D.

    2000-12-01

    Despite their success in other areas of statistical signal processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown pattern transformations. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR, a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length complexity regularization to learn a template with a sparse representation in the wavelet domain. We illustrate template learning with examples, and discuss how TEMPLAR applies to pattern classification and denoising from multiple, unaligned observations.

  11. Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images.

    PubMed

    Yue, Yong; Croitoru, Mihai M; Bidani, Akhil; Zwischenberger, Joseph B; Clark, John W

    2006-03-01

    This paper introduces a novel nonlinear multiscale wavelet diffusion method for ultrasound speckle suppression and edge enhancement. This method is designed to utilize the favorable denoising properties of two frequently used techniques: the sparsity and multiresolution properties of the wavelet, and the iterative edge enhancement feature of nonlinear diffusion. With fully exploited knowledge of speckle image models, the edges of images are detected using normalized wavelet modulus. Relying on this feature, both the envelope-detected speckle image and the log-compressed ultrasonic image can be directly processed by the algorithm without need for additional preprocessing. Speckle is suppressed by employing the iterative multiscale diffusion on the wavelet coefficients. With a tuning diffusion threshold strategy, the proposed method can improve the image quality for both visualization and auto-segmentation applications. We validate our method using synthetic speckle images and real ultrasonic images. Performance improvement over other despeckling filters is quantified in terms of noise suppression and edge preservation indices. PMID:16524086

  12. On the explanation of Peele`s Pertinent Puzzle

    SciTech Connect

    Gai, E.V.

    1994-12-31

    Investigation of Peele`s Pertinent Puzzle (PPP) by analytical and numerical simulation shows that if covariations of experimental data are determined within frames of rigorous maximum likelihood method (MLM), then least-squares method (LSM) gives for PPP correct but unusually looking results. It is shown also that some restrictions and corrections outside rigorous MLM frame bring to incorrect results instead of improved ones.

  13. A wavelet-based data pre-processing analysis approach in mass spectrometry.

    PubMed

    Li, Xiaoli; Li, Jin; Yao, Xin

    2007-04-01

    Recently, mass spectrometry analysis has a become an effective and rapid approach in detecting early-stage cancer. To identify proteomic patterns in serum to discriminate cancer patients from normal individuals, machine-learning methods, such as feature selection and classification, have already been involved in the analysis of mass spectrometry (MS) data with some success. However, the performance of existing machine learning methods for MS data analysis still needs improving. The study in this paper proposes a wavelet-based pre-processing approach to MS data analysis. The approach applies wavelet-based transforms to MS data with the aim of de-noising the data that are potentially contaminated in acquisition. The effects of the selection of wavelet function and decomposition level on the de-noising performance have also been investigated in this study. Our comparative experimental results demonstrate that the proposed de-noising pre-processing approach has potentials to remove possible noise embedded in MS data, which can lead to improved performance for existing machine learning methods in cancer detection. PMID:16982045

  14. The Sea of Wavelets

    NASA Astrophysics Data System (ADS)

    Jones, B. J. T.

    Wavelet analysis has become a major tool in many aspects of data handling, whether it be statistical analysis, noise removal or image reconstruction. Wavelet analysis has worked its way into fields as diverse as economics, medicine, geophysics, music and cosmology.

  15. Medium-depth chemical peels.

    PubMed

    Monheit, G D

    2001-07-01

    The combination medium-depth chemical peel (Jessner's solution +35% TCA) has been accepted as a safe, reliable, and effective method for the treatment of moderate photoaging skin. This article discusses the procedure in detail, including postoperative considerations. PMID:11599398

  16. Data analysis using wavelets

    SciTech Connect

    Fryer, M.O.

    1997-05-01

    This paper describes the use of wavelet transform techniques to analyze typical data found in industrial applications. A way of detecting system changes using wavelet transforms is described. The results of applying this method are described for several typical applications. The wavelet technique is compared with the use of Fourier transform methods.

  17. Adaptive Wavelet Transforms

    SciTech Connect

    Szu, H.; Hsu, C.

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  18. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  19. Sonar target enhancement by shrinkage of incoherent wavelet coefficients.

    PubMed

    Hunter, Alan J; van Vossen, Robbert

    2014-01-01

    Background reverberation can obscure useful features of the target echo response in broadband low-frequency sonar images, adversely affecting detection and classification performance. This paper describes a resolution and phase-preserving means of separating the target response from the background reverberation noise using a coherence-based wavelet shrinkage method proposed recently for de-noising magnetic resonance images. The algorithm weights the image wavelet coefficients in proportion to their coherence between different looks under the assumption that the target response is more coherent than the background. The algorithm is demonstrated successfully on experimental synthetic aperture sonar data from a broadband low-frequency sonar developed for buried object detection. PMID:24437766

  20. Compression of Ultrasonic NDT Image by Wavelet Based Local Quantization

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Li, L. Q.; Tsukada, K.; Hanasaki, K.

    2004-02-01

    Compression on ultrasonic image that is always corrupted by noise will cause `over-smoothness' or much distortion. To solve this problem to meet the need of real time inspection and tele-inspection, a compression method based on Discrete Wavelet Transform (DWT) that can also suppress the noise without losing much flaw-relevant information, is presented in this work. Exploiting the multi-resolution and interscale correlation property of DWT, a simple way named DWCs classification, is introduced first to classify detail wavelet coefficients (DWCs) as dominated by noise, signal or bi-effected. A better denoising can be realized by selective thresholding DWCs. While in `Local quantization', different quantization strategies are applied to the DWCs according to their classification and the local image property. It allocates the bit rate more efficiently to the DWCs thus achieve a higher compression rate. Meanwhile, the decompressed image shows the effects of noise suppressed and flaw characters preserved.

  1. Performance comparison of denoising filters for source camera identification

    NASA Astrophysics Data System (ADS)

    Cortiana, A.; Conotter, V.; Boato, G.; De Natale, F. G. B.

    2011-02-01

    Source identification for digital content is one of the main branches of digital image forensics. It relies on the extraction of the photo-response non-uniformity (PRNU) noise as a unique intrinsic fingerprint that efficiently characterizes the digital device which generated the content. Such noise is estimated as the difference between the content and its de-noised version obtained via denoising filter processing. This paper proposes a performance comparison of different denoising filters for source identification purposes. In particular, results achieved with a sophisticated 3D filter are presented and discussed with respect to state-of-the-art denoising filters previously employed in such a context.

  2. Chemical peeling in ethnic/dark skin.

    PubMed

    Roberts, Wendy E

    2004-01-01

    Chemical peeling for skin of color arose in ancient Egypt, Mesopotamia, and other ancient cultures in and around Africa. Our current fund of medical knowledge regarding chemical peeling is a result of centuries of experience and research. The list of agents for chemical peeling is extensive. In ethnic skin, our efforts are focused on superficial and medium-depth peeling agents and techniques. Indications for chemical peeling in darker skin include acne vulgaris, postinflammatory hyperpigmentation, melasma, scarring, photodamage, and pseudofolliculitis barbae. Careful selection of patients for chemical peeling should involve not only identification of Fitzpatrick skin type, but also determining ethnicity. Different ethnicities may respond unpredictably to chemical peeling regardless of skin phenotype. Familiarity with the properties each peeling agent used is critical. New techniques discussed for chemical peeling include spot peeling for postinflammatory hyperpigmentation and combination peels for acne and photodamage. Single- or combination-agent chemical peels are shown to be efficacious and safe. In conclusion, chemical peeling is a treatment of choice for numerous pigmentary and scarring disorders arising in dark skin tones. Familiarity with new peeling agents and techniques will lead to successful outcomes. PMID:15113287

  3. Postprocessing of Compressed Images via Sequential Denoising.

    PubMed

    Dar, Yehuda; Bruckstein, Alfred M; Elad, Michael; Giryes, Raja

    2016-07-01

    In this paper, we propose a novel postprocessing technique for compression-artifact reduction. Our approach is based on posing this task as an inverse problem, with a regularization that leverages on existing state-of-the-art image denoising algorithms. We rely on the recently proposed Plug-and-Play Prior framework, suggesting the solution of general inverse problems via alternating direction method of multipliers, leading to a sequence of Gaussian denoising steps. A key feature in our scheme is a linearization of the compression-decompression process, so as to get a formulation that can be optimized. In addition, we supply a thorough analysis of this linear approximation for several basic compression procedures. The proposed method is suitable for diverse compression techniques that rely on transform coding. In particular, we demonstrate impressive gains in image quality for several leading compression methods-JPEG, JPEG2000, and HEVC. PMID:27214878

  4. A New Adaptive Image Denoising Method

    NASA Astrophysics Data System (ADS)

    Biswas, Mantosh; Om, Hari

    2016-03-01

    In this paper, a new adaptive image denoising method is proposed that follows the soft-thresholding technique. In our method, a new threshold function is also proposed, which is determined by taking the various combinations of noise level, noise-free signal variance, subband size, and decomposition level. It is simple and adaptive as it depends on the data-driven parameters estimation in each subband. The state-of-the-art denoising methods viz. VisuShrink, SureShrink, BayesShrink, WIDNTF and IDTVWT are not able to modify the coefficients in an efficient manner to provide the good quality of image. Our method removes the noise from the noisy image significantly and provides better visual quality of an image.

  5. Postprocessing of Compressed Images via Sequential Denoising

    NASA Astrophysics Data System (ADS)

    Dar, Yehuda; Bruckstein, Alfred M.; Elad, Michael; Giryes, Raja

    2016-07-01

    In this work we propose a novel postprocessing technique for compression-artifact reduction. Our approach is based on posing this task as an inverse problem, with a regularization that leverages on existing state-of-the-art image denoising algorithms. We rely on the recently proposed Plug-and-Play Prior framework, suggesting the solution of general inverse problems via Alternating Direction Method of Multipliers (ADMM), leading to a sequence of Gaussian denoising steps. A key feature in our scheme is a linearization of the compression-decompression process, so as to get a formulation that can be optimized. In addition, we supply a thorough analysis of this linear approximation for several basic compression procedures. The proposed method is suitable for diverse compression techniques that rely on transform coding. Specifically, we demonstrate impressive gains in image quality for several leading compression methods - JPEG, JPEG2000, and HEVC.

  6. CT reconstruction via denoising approximate message passing

    NASA Astrophysics Data System (ADS)

    Perelli, Alessandro; Lexa, Michael A.; Can, Ali; Davies, Mike E.

    2016-05-01

    In this paper, we adapt and apply a compressed sensing based reconstruction algorithm to the problem of computed tomography reconstruction for luggage inspection. Specifically, we propose a variant of the denoising generalized approximate message passing (D-GAMP) algorithm and compare its performance to the performance of traditional filtered back projection and to a penalized weighted least squares (PWLS) based reconstruction method. D-GAMP is an iterative algorithm that at each iteration estimates the conditional probability of the image given the measurements and employs a non-linear "denoising" function which implicitly imposes an image prior. Results on real baggage show that D-GAMP is well-suited to limited-view acquisitions.

  7. Nonlocal Markovian models for image denoising

    NASA Astrophysics Data System (ADS)

    Salvadeo, Denis H. P.; Mascarenhas, Nelson D. A.; Levada, Alexandre L. M.

    2016-01-01

    Currently, the state-of-the art methods for image denoising are patch-based approaches. Redundant information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy functions, the pairwise pixel interaction is weighted according to the similarities between the patches corresponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (β) for these models is presented here. For evaluating this proposal, these models are used as an a priori model in a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs.

  8. Adaptive Image Denoising by Mixture Adaptation.

    PubMed

    Luo, Enming; Chan, Stanley H; Nguyen, Truong Q

    2016-10-01

    We propose an adaptive learning procedure to learn patch-based image priors for image denoising. The new algorithm, called the expectation-maximization (EM) adaptation, takes a generic prior learned from a generic external database and adapts it to the noisy image to generate a specific prior. Different from existing methods that combine internal and external statistics in ad hoc ways, the proposed algorithm is rigorously derived from a Bayesian hyper-prior perspective. There are two contributions of this paper. First, we provide full derivation of the EM adaptation algorithm and demonstrate methods to improve the computational complexity. Second, in the absence of the latent clean image, we show how EM adaptation can be modified based on pre-filtering. The experimental results show that the proposed adaptation algorithm yields consistently better denoising results than the one without adaptation and is superior to several state-of-the-art algorithms. PMID:27416593

  9. The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal

    NASA Astrophysics Data System (ADS)

    Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis

    2016-05-01

    The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.

  10. The Hilbert-Huang Transform-Based Denoising Method for the TEM Response of a PRBS Source Signal

    NASA Astrophysics Data System (ADS)

    Hai, Li; Guo-qiang, Xue; Pan, Zhao; Hua-sen, Zhong; Khan, Muhammad Younis

    2016-08-01

    The denoising process is critical in processing transient electromagnetic (TEM) sounding data. For the full waveform pseudo-random binary sequences (PRBS) response, an inadequate noise estimation may result in an erroneous interpretation. We consider the Hilbert-Huang transform (HHT) and its application to suppress the noise in the PRBS response. The focus is on the thresholding scheme to suppress the noise and the analysis of the signal based on its Hilbert time-frequency representation. The method first decomposes the signal into the intrinsic mode function, and then, inspired by the thresholding scheme in wavelet analysis; an adaptive and interval thresholding is conducted to set to zero all the components in intrinsic mode function which are lower than a threshold related to the noise level. The algorithm is based on the characteristic of the PRBS response. The HHT-based denoising scheme is tested on the synthetic and field data with the different noise levels. The result shows that the proposed method has a good capability in denoising and detail preservation.

  11. Symplectic wavelet transformation.

    PubMed

    Fan, Hong-Yi; Lu, Hai-Liang

    2006-12-01

    Usually a wavelet transform is based on dilated-translated wavelets. We propose a symplectic-transformed-translated wavelet family psi(*)(r,s)(z-kappa) (r,s are the symplectic transform parameters, |s|(2)-|r|(2)=1, kappa is a translation parameter) generated from the mother wavelet psi and the corresponding wavelet transformation W(psi)f(r,s;kappa)=integral(infinity)(-infinity)(d(2)z/pi)f(z)psi(*)(r,s)(z-kappa). This new transform possesses well-behaved properties and is related to the optical Fresnel transform in quantum mechanical version. PMID:17099740

  12. Infrared image denoising by nonlocal means filtering

    NASA Astrophysics Data System (ADS)

    Dee-Noor, Barak; Stern, Adrian; Yitzhaky, Yitzhak; Kopeika, Natan

    2012-05-01

    The recently introduced non-local means (NLM) image denoising technique broke the traditional paradigm according to which image pixels are processed by their surroundings. Non-local means technique was demonstrated to outperform state-of-the art denoising techniques when applied to images in the visible. This technique is even more powerful when applied to low contrast images, which makes it tractable for denoising infrared (IR) images. In this work we investigate the performance of NLM applied to infrared images. We also present a new technique designed to speed-up the NLM filtering process. The main drawback of the NLM is the large computational time required by the process of searching similar patches. Several techniques were developed during the last years to reduce the computational burden. Here we present a new techniques designed to reduce computational cost and sustain optimal filtering results of NLM technique. We show that the new technique, which we call Multi-Resolution Search NLM (MRS-NLM), reduces significantly the computational cost of the filtering process and we present a study of its performance on IR images.

  13. Glycolic acid peel therapy - a current review.

    PubMed

    Sharad, Jaishree

    2013-01-01

    Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I-IV. All in all, it is a peel that is here to stay. PMID:24399880

  14. Discrete wavelet transform core for image processing applications

    NASA Astrophysics Data System (ADS)

    Savakis, Andreas E.; Carbone, Richard

    2005-02-01

    This paper presents a flexible hardware architecture for performing the Discrete Wavelet Transform (DWT) on a digital image. The proposed architecture uses a variation of the lifting scheme technique and provides advantages that include small memory requirements, fixed-point arithmetic implementation, and a small number of arithmetic computations. The DWT core may be used for image processing operations, such as denoising and image compression. For example, the JPEG2000 still image compression standard uses the Cohen-Daubechies-Favreau (CDF) 5/3 and CDF 9/7 DWT for lossless and lossy image compression respectively. Simple wavelet image denoising techniques resulted in improved images up to 27 dB PSNR. The DWT core is modeled using MATLAB and VHDL. The VHDL model is synthesized to a Xilinx FPGA to demonstrate hardware functionality. The CDF 5/3 and CDF 9/7 versions of the DWT are both modeled and used as comparisons. The execution time for performing both DWTs is nearly identical at approximately 14 clock cycles per image pixel for one level of DWT decomposition. The hardware area generated for the CDF 5/3 is around 15,000 gates using only 5% of the Xilinx FPGA hardware area, at 2.185 MHz max clock speed and 24 mW power consumption.

  15. Identification of formation interfaces by using wavelet and Fourier transforms

    NASA Astrophysics Data System (ADS)

    Mukherjee, Bappa; Srivardhan, V.; Roy, P. N. S.

    2016-05-01

    The identification of formation interfaces is of prime importance from well log data. The interfaces are not clearly discernible due to the presence of high and low frequency noise in the log response. Accurate bed boundary information is very crucial in hydrocarbon exploration and the problem has received considerable attention and many techniques have been proposed. Frequency spectrum based filtering techniques aids us in interpretation, but usually leads to inaccurate amplification of unwanted components of the log response. Wavelet transform is very effective in denoising the log response and can be carried out to filter low and high frequency components of signal. The use of Fourier and Wavelet transform in denoising the log data for obtaining formation interfaces is demonstrated in this work. The feasibility of the proposed technique is tested so that it can be used in the industry to decipher formation interfaces. The work flow is demonstrated by testing on wells belonging to the Upper Assam Basin, which are self-potential, gamma ray, and resistivity log responses.

  16. A wavelet packet adaptive filtering algorithm for enhancing manatee vocalizations.

    PubMed

    Gur, M Berke; Niezrecki, Christopher

    2011-04-01

    Approximately a quarter of all West Indian manatee (Trichechus manatus latirostris) mortalities are attributed to collisions with watercraft. A boater warning system based on the passive acoustic detection of manatee vocalizations is one possible solution to reduce manatee-watercraft collisions. The success of such a warning system depends on effective enhancement of the vocalization signals in the presence of high levels of background noise, in particular, noise emitted from watercraft. Recent research has indicated that wavelet domain pre-processing of the noisy vocalizations is capable of significantly improving the detection ranges of passive acoustic vocalization detectors. In this paper, an adaptive denoising procedure, implemented on the wavelet packet transform coefficients obtained from the noisy vocalization signals, is investigated. The proposed denoising algorithm is shown to improve the manatee detection ranges by a factor ranging from two (minimum) to sixteen (maximum) compared to high-pass filtering alone, when evaluated using real manatee vocalization and background noise signals of varying signal-to-noise ratios (SNR). Furthermore, the proposed method is also shown to outperform a previously suggested feedback adaptive line enhancer (FALE) filter on average 3.4 dB in terms of noise suppression and 0.6 dB in terms of waveform preservation. PMID:21476661

  17. Efficient fourier-wavelet super-resolution.

    PubMed

    Robinson, M Dirk; Toth, Cynthia A; Lo, Joseph Y; Farsiu, Sina

    2010-10-01

    Super-resolution (SR) is the process of combining multiple aliased low-quality images to produce a high-resolution high-quality image. Aside from registration and fusion of low-resolution images, a key process in SR is the restoration and denoising of the fused images. We present a novel extension of the combined Fourier-wavelet deconvolution and denoising algorithm ForWarD to the multiframe SR application. Our method first uses a fast Fourier-base multiframe image restoration to produce a sharp, yet noisy estimate of the high-resolution image. Our method then applies a space-variant nonlinear wavelet thresholding that addresses the nonstationarity inherent in resolution-enhanced fused images. We describe a computationally efficient method for implementing this space-variant processing that leverages the efficiency of the fast Fourier transform (FFT) to minimize complexity. Finally, we demonstrate the effectiveness of this algorithm for regular imagery as well as in digital mammography. PMID:20460208

  18. Speckle filtering of medical ultrasonic images using wavelet and guided filter.

    PubMed

    Zhang, Ju; Lin, Guangkuo; Wu, Lili; Cheng, Yun

    2016-02-01

    Speckle noise is an inherent yet ineffectual residual artifact in medical ultrasound images, which significantly degrades quality and restricts accuracy in automatic diagnostic techniques. Speckle reduction is therefore an important step prior to the analysis and processing of the ultrasound images. A new de-noising method based on an improved wavelet filter and guided filter is proposed in this paper. According to the characteristics of medical ultrasound images in the wavelet domain, an improved threshold function based on the universal wavelet threshold function is developed. The wavelet coefficients of speckle noise and noise-free signal are modeled as Rayleigh distribution and generalized Gaussian distribution respectively. The Bayesian maximum a posteriori estimation is applied to obtain a new wavelet shrinkage algorithm. The coefficients of the low frequency sub-band in the wavelet domain are filtered by guided filter. The filtered image is then obtained by using the inverse wavelet transformation. Experiments with the comparison of the other seven de-speckling filters are conducted. The results show that the proposed method not only has a strong de-speckling ability, but also keeps the image details, such as the edge of a lesion. PMID:26489484

  19. Higher-order graph wavelets and sparsity on circulant graphs

    NASA Astrophysics Data System (ADS)

    Kotzagiannidis, Madeleine S.; Dragotti, Pier Luigi

    2015-08-01

    The notion of a graph wavelet gives rise to more advanced processing of data on graphs due to its ability to operate in a localized manner, across newly arising data-dependency structures, with respect to the graph signal and underlying graph structure, thereby taking into consideration the inherent geometry of the data. In this work, we tackle the problem of creating graph wavelet filterbanks on circulant graphs for a sparse representation of certain classes of graph signals. The underlying graph can hereby be data-driven as well as fixed, for applications including image processing and social network theory, whereby clusters can be modelled as circulant graphs, respectively. We present a set of novel graph wavelet filter-bank constructions, which annihilate higher-order polynomial graph signals (up to a border effect) defined on the vertices of undirected, circulant graphs, and are localised in the vertex domain. We give preliminary results on their performance for non-linear graph signal approximation and denoising. Furthermore, we provide extensions to our previously developed segmentation-inspired graph wavelet framework for non-linear image approximation, by incorporating notions of smoothness and vanishing moments, which further improve performance compared to traditional methods.

  20. Noise reduction in ultrasonic NDT using undecimated wavelet transforms.

    PubMed

    Pardo, E; San Emeterio, J L; Rodriguez, M A; Ramos, A

    2006-12-22

    Translation-invariant wavelet processing is applied to grain noise reduction in ultrasonic non-destructive testing of materials. In particular, the undecimated wavelet transform (UWT), which is essentially a discrete wavelet transform (DWT) that avoids decimation, is used. Two different UWT processors have been specifically developed for that purpose, based on two UWT implementation schemes: the "à trous" algorithm and the cycle-spinning scheme. The performance of these two UWT processors is compared with that of a classical DWT processor, by using synthetic grain noise registers and experimental pulse-echo NDT traces. The synthetic ultrasonic traces have been generated by an own-developed frequency-domain model that includes frequency dependence in both material attenuation and scattering. The experimental ultrasonic traces have been obtained by inspecting a piece of carbon-fiber reinforced plastic composite in which we have mechanized artificial flaws. Decomposition level-dependent thresholds, which are suitable for correlated noise, are specifically determined in all cases. Soft thresholding, Daubechies db6 mother wavelet and the three well-known threshold selection rules, Universal, Minimax and SURE, are applied to the different decomposition levels. The performance of the different de-noising procedures for single echo detection has been comparatively evaluated in terms of signal-to-noise ratio enhancement. PMID:16797651

  1. Bleb Nucleation through Membrane Peeling

    NASA Astrophysics Data System (ADS)

    Alert, Ricard; Casademunt, Jaume

    2016-02-01

    We study the nucleation of blebs, i.e., protrusions arising from a local detachment of the membrane from the cortex of a cell. Based on a simple model of elastic linkers with force-dependent kinetics, we show that bleb nucleation is governed by membrane peeling. By this mechanism, the growth or shrinkage of a detached membrane patch is completely determined by the linker kinetics, regardless of the energetic cost of the detachment. We predict the critical nucleation radius for membrane peeling and the corresponding effective energy barrier. These may be typically smaller than those predicted by classical nucleation theory, implying a much faster nucleation. We also perform simulations of a continuum stochastic model of membrane-cortex adhesion to obtain the statistics of bleb nucleation times as a function of the stress on the membrane. The determinant role of membrane peeling changes our understanding of bleb nucleation and opens new directions in the study of blebs.

  2. Dual-domain denoising in three dimensional magnetic resonance imaging

    PubMed Central

    Peng, Jing; Zhou, Jiliu; Wu, Xi

    2016-01-01

    Denoising is a crucial preprocessing procedure for three dimensional magnetic resonance imaging (3D MRI). Existing denoising methods are predominantly implemented in a single domain, ignoring information in other domains. However, denoising methods are becoming increasingly complex, making analysis and implementation challenging. The present study aimed to develop a dual-domain image denoising (DDID) algorithm for 3D MRI that encapsulates information from the spatial and transform domains. In the present study, the DDID method was used to distinguish signal from noise in the spatial and frequency domains, after which robust accurate noise estimation was introduced for iterative filtering, which is simple and beneficial for computation. In addition, the proposed method was compared quantitatively and qualitatively with existing methods for synthetic and in vivo MRI datasets. The results of the present study suggested that the novel DDID algorithm performed well and provided competitive results, as compared with existing MRI denoising filters. PMID:27446257

  3. A connection between score matching and denoising autoencoders.

    PubMed

    Vincent, Pascal

    2011-07-01

    Denoising autoencoders have been previously shown to be competitive alternatives to restricted Boltzmann machines for unsupervised pretraining of each layer of a deep architecture. We show that a simple denoising autoencoder training criterion is equivalent to matching the score (with respect to the data) of a specific energy-based model to that of a nonparametric Parzen density estimator of the data. This yields several useful insights. It defines a proper probabilistic model for the denoising autoencoder technique, which makes it in principle possible to sample from them or rank examples by their energy. It suggests a different way to apply score matching that is related to learning to denoise and does not require computing second derivatives. It justifies the use of tied weights between the encoder and decoder and suggests ways to extend the success of denoising autoencoders to a larger family of energy-based models. PMID:21492012

  4. Combining interior and exterior characteristics for remote sensing image denoising

    NASA Astrophysics Data System (ADS)

    Peng, Ni; Sun, Shujin; Wang, Runsheng; Zhong, Ping

    2016-04-01

    Remote sensing image denoising faces many challenges since a remote sensing image usually covers a wide area and thus contains complex contents. Using the patch-based statistical characteristics is a flexible method to improve the denoising performance. There are usually two kinds of statistical characteristics available: interior and exterior characteristics. Different statistical characteristics have their own strengths to restore specific image contents. Combining different statistical characteristics to use their strengths together may have the potential to improve denoising results. This work proposes a method combining statistical characteristics to adaptively select statistical characteristics for different image contents. The proposed approach is implemented through a new characteristics selection criterion learned over training data. Moreover, with the proposed combination method, this work develops a denoising algorithm for remote sensing images. Experimental results show that our method can make full use of the advantages of interior and exterior characteristics for different image contents and thus improve the denoising performance.

  5. Mesotherapy, Microneedling, and Chemical Peels.

    PubMed

    Lee, Johnson C; Daniels, Mark A; Roth, Malcolm Z

    2016-07-01

    Mesotherapy, microneedling, and chemical peels are minimally invasive techniques used to combat facial aging. Chemical peeling is one of the oldest methods of facial rejuvenation. By using different chemicals in various combinations, strengths, and application techniques, plastic surgeons can tailor a patient's treatment for optimal, safe, and consistent results. Mesotherapy and microneedling have emerged in the plastic surgery literature with increasingly complex indications. Both techniques have increased in popularity although research into efficacy and long-term results is lagging. With a thorough understanding of patients and the modalities available, plastic surgeons can use the appropriate minimally invasive technique to provide patients with desired skin changes. PMID:27363773

  6. New classes of Wavelets

    SciTech Connect

    Manchanda, P.; Meenakshi

    2009-07-02

    Recently Manchanda, Meenakshi and Siddiqi have studied Haar-Vilenkin wavelet and a special type of non-uniform multiresolution analysis. Haar-Vilenkin wavelet is a generalization of Haar wavelet. Motivated by the paper of Gabardo and Nashed we have introduced a class of multiresolution analysis extending the concept of classical multiresolution analysis. We present here a resume of these results. We hope that applications of these concepts to some significant real world problems could be found.

  7. Peeling Back the Layers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit took this panoramic camera image of the rock target named 'Mazatzal' on sol 77 (March 22, 2004). It is a close-up look at the rock face and the targets that will be brushed and ground by the rock abrasion tool in upcoming sols.

    Mazatzal, like most rocks on Earth and Mars, has layers of material near its surface that provide clues about the history of the rock. Scientists believe that the top layer of Mazatzal is actually a coating of dust and possibly even salts. Under this light coating may be a more solid portion of the rock that has been chemically altered by weathering. Past this layer is the unaltered rock, which may give scientists the best information about how Mazatzal was formed.

    Because each layer reveals information about the formation and subsequent history of Mazatzal, it is important that scientists get a look at each of them. For this reason, they have developed a multi-part strategy to use the rock abrasion tool to systematically peel back Mazatzal's layers and analyze what's underneath with the rover's microscopic imager, and its Moessbauer and alpha particle X-ray spectrometers.

    The strategy began on sol 77 when scientists used the microscopic imager to get a closer look at targets on Mazatzal named 'New York,' 'Illinois' and 'Arizona.' These rock areas were targeted because they posed the best opportunity for successfully using the rock abrasion tool; Arizona also allowed for a close-up look at a range of tones. On sol 78, Spirit's rock abrasion tool will do a light brushing on the Illinois target to preserve some of the surface layers. Then, a brushing of the New York target should remove the top coating of any dust and salts and perhaps reveal the chemically altered rock underneath. Finally, on sol 79, the rock abrasion tool will be commanded to grind into the New York target, which will give scientists the best chance of observing Mazatzal's interior.

    The Mazatzal targets were named

  8. Evaluation of optical properties for real photonic crystal fiber based on total variation in wavelet domain

    NASA Astrophysics Data System (ADS)

    Shen, Yan; Wang, Xin; Lou, Shuqin; Lian, Zhenggang; Zhao, Tongtong

    2016-09-01

    An evaluation method based on the total variation model (TV) in wavelet domain is proposed for modeling optical properties of real photonic crystal fibers (PCFs). The TV model in wavelet domain is set up to suppress the noise of the original image effectively and rebuild the cross section images of real PCFs with high accuracy. The optical properties of three PCFs are evaluated, including two kinds of PCFs that supplied from the Crystal Fiber A/S and a homemade side-leakage PCF, by using the combination of the proposed model and finite element method. Numerical results demonstrate that the proposed method can obtain high noise suppression ratio and effectively reduce the noise of cross section images of PCFs, which leads to an accurate evaluation of optical properties of real PCFs. To the best of our knowledge, it is the first time to denoise the cross section images of PCFs with the TV model in the wavelet domain.

  9. [Application of kalman filtering based on wavelet transform in ICP-AES].

    PubMed

    Qin, Xia; Shen, Lan-sun

    2002-12-01

    Kalman filtering is a recursive algorithm, which has been proposed as an attractive alternative to correct overlapping interferences in ICP-AES. However, the noise in ICP-AES contaminates the signal arising from the analyte and hence limits the accuracy of kalman filtering. Wavelet transform is a powerful technique in signal denoising due to its multi-resolution characteristics. In this paper, first, the effect of noise on kalman filtering is discussed. Then we apply the wavelet-transform-based soft-thresholding as the pre-processing of kalman filtering. The simulation results show that the kalman filtering based on wavelet transform can effectively reduce the noise and increase the accuracy of the analysis. PMID:12914186

  10. CW-THz image contrast enhancement using wavelet transform and Retinex

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Zhang, Min; Hu, Qi-fan; Huang, Ying-Xue; Liang, Hua-Wei

    2015-10-01

    To enhance continuous wave terahertz (CW-THz) scanning images contrast and denoising, a method based on wavelet transform and Retinex theory was proposed. In this paper, the factors affecting the quality of CW-THz images were analysed. Second, an approach of combination of the discrete wavelet transform (DWT) and a designed nonlinear function in wavelet domain for the purpose of contrast enhancing was applied. Then, we combine the Retinex algorithm for further contrast enhancement. To evaluate the effectiveness of the proposed method in qualitative and quantitative, it was compared with the adaptive histogram equalization method, the homomorphic filtering method and the SSR(Single-Scale-Retinex) method. Experimental results demonstrated that the presented algorithm can effectively enhance the contrast of CW-THZ image and obtain better visual effect.

  11. Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique.

    PubMed

    Yi, Ting-Hua; Li, Hong-Nan; Zhao, Xiao-Yan

    2012-01-01

    In structural vibration tests, one of the main factors which disturb the reliability and accuracy of the results are the noise signals encountered. To overcome this deficiency, this paper presents a discrete wavelet transform (DWT) approach to denoise the measured signals. The denoising performance of DWT is discussed by several processing parameters, including the type of wavelet, decomposition level, thresholding method, and threshold selection rules. To overcome the disadvantages of the traditional hard- and soft-thresholding methods, an improved thresholding technique called the sigmoid function-based thresholding scheme is presented. The procedure is validated by using four benchmarks signals with three degrees of degradation as well as a real measured signal obtained from a three-story reinforced concrete scale model shaking table experiment. The performance of the proposed method is evaluated by computing the signal-to-noise ratio (SNR) and the root-mean-square error (RMSE) after denoising. Results reveal that the proposed method offers superior performance than the traditional methods no matter whether the signals have heavy or light noises embedded. PMID:23112652

  12. Speckle noise reduction in ultrasound images using a discrete wavelet transform-based image fusion technique.

    PubMed

    Choi, Hyun Ho; Lee, Ju Hwan; Kim, Sung Min; Park, Sung Yun

    2015-01-01

    Here, the speckle noise in ultrasonic images is removed using an image fusion-based denoising method. To optimize the denoising performance, each discrete wavelet transform (DWT) and filtering technique was analyzed and compared. In addition, the performances were compared in order to derive the optimal input conditions. To evaluate the speckle noise removal performance, an image fusion algorithm was applied to the ultrasound images, and comparatively analyzed with the original image without the algorithm. As a result, applying DWT and filtering techniques caused information loss and noise characteristics, and did not represent the most significant noise reduction performance. Conversely, an image fusion method applying SRAD-original conditions preserved the key information in the original image, and the speckle noise was removed. Based on such characteristics, the input conditions of SRAD-original had the best denoising performance with the ultrasound images. From this study, the best denoising technique proposed based on the results was confirmed to have a high potential for clinical application. PMID:26405924

  13. Denoising-enhancing images on elastic manifolds.

    PubMed

    Ratner, Vadim; Zeevi, Yehoshua Y

    2011-08-01

    The conflicting demands for simultaneous low-pass and high-pass processing, required in image denoising and enhancement, still present an outstanding challenge, although a great deal of progress has been made by means of adaptive diffusion-type algorithms. To further advance such processing methods and algorithms, we introduce a family of second-order (in time) partial differential equations. These equations describe the motion of a thin elastic sheet in a damping environment. They are also derived by a variational approach in the context of image processing. The new operator enables better edge preservation in denoising applications by offering an adaptive lowpass filter, which preserves high-frequency components in the pass-band better than the adaptive diffusion filter, while offering slower error propagation across edges. We explore the action of this powerful operator in the context of image processing and exploit for this purpose the wealth of knowledge accumulated in physics and mathematics about the action and behavior of this operator. The resulting methods are further generalized for color and/or texture image processing, by embedding images in multidimensional manifolds. A specific application of the proposed new approach to superresolution is outlined. PMID:21342847

  14. Wavelet Analyses and Applications

    ERIC Educational Resources Information Center

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  15. A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy.

    PubMed

    Yuan, Tingbi; Wang, Zhe; Li, Zheng; Ni, Weidou; Liu, Jianmin

    2014-01-01

    A partial least squares (PLS) and wavelet transform hybrid model are proposed to analyze the carbon content of coal by using laser-induced breakdown spectroscopy (LIBS). The hybrid model is composed of two steps of wavelet analysis procedures, which include environmental denoising and background noise reduction, to pretreat the LIBS spectrum. The processed wavelet coefficients, which contain the discrete line information of the spectra, were taken as inputs for the PLS model for calibration and prediction of carbon element. A higher signal-to-noise ratio of carbon line was obtained after environmental denoising, and the best decomposition level was determined after background noise reduction. The hybrid model resulted in a significant improvement over the conventional PLS method under different ambient environments, which include air, argon, and helium. The average relative error of carbon decreased from 2.74 to 1.67% under an ambient helium environment, which indicated a significantly improved accuracy in the measurement of carbon in coal. The best results obtained under an ambient helium environment could be partly attributed to the smallest interference by noise after wavelet denoising. A similar improvement was observed in ambient air and argon environments, thereby proving the applicability of the hybrid model under different experimental conditions. PMID:24356217

  16. Portal imaging: Performance improvement in noise reduction by means of wavelet processing.

    PubMed

    González-López, Antonio; Morales-Sánchez, Juan; Larrey-Ruiz, Jorge; Bastida-Jumilla, María-Consuelo; Verdú-Monedero, Rafael

    2016-01-01

    This paper discusses the suitability, in terms of noise reduction, of various methods which can be applied to an image type often used in radiation therapy: the portal image. Among these methods, the analysis focuses on those operating in the wavelet domain. Wavelet-based methods tested on natural images--such as the thresholding of the wavelet coefficients, the minimization of the Stein unbiased risk estimator on a linear expansion of thresholds (SURE-LET), and the Bayes least-squares method using as a prior a Gaussian scale mixture (BLS-GSM method)--are compared with other methods that operate on the image domain--an adaptive Wiener filter and a nonlocal mean filter (NLM). For the assessment of the performance, the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), the Pearson correlation coefficient, and the Spearman rank correlation (ρ) coefficient are used. The performance of the wavelet filters and the NLM method are similar, but wavelet filters outperform the Wiener filter in terms of portal image denoising. It is shown how BLS-GSM and NLM filters produce the smoothest image, while keeping soft-tissue and bone contrast. As for the computational cost, filters using a decimated wavelet transform (decimated thresholding and SURE-LET) turn out to be the most efficient, with calculation times around 1 s. PMID:26602966

  17. Denoising ECG signal based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Zhi-dong, Zhao; Liu, Juan; Wang, Sheng-tao

    2011-10-01

    The electrocardiogram (ECG) has been used extensively for detection of heart disease. Frequently the signal is corrupted by various kinds of noise such as muscle noise, electromyogram (EMG) interference, instrument noise etc. In this paper, a new ECG denoising method is proposed based on the recently developed ensemble empirical mode decomposition (EEMD). Noisy ECG signal is decomposed into a series of intrinsic mode functions (IMFs). The statistically significant information content is build by the empirical energy model of IMFs. Noisy ECG signal collected from clinic recording is processed using the method. The results show that on contrast with traditional methods, the novel denoising method can achieve the optimal denoising of the ECG signal.

  18. Source Wavelet Phase Extraction

    NASA Astrophysics Data System (ADS)

    Naghadeh, Diako Hariri; Morley, Christopher Keith

    2016-06-01

    Extraction of propagation wavelet phase from seismic data can be conducted using first, second, third and fourth-order statistics. Three new methods are introduced, which are: (1) Combination of different moments, (2) Windowed continuous wavelet transform and (3) Maximum correlation with cosine function. To compare different methods synthetic data with and without noise were chosen. Results show that first, second and third order statistics are not able to preserve wavelet phase. Kurtosis can preserve propagation wavelet phase but signal-to-noise ratio can affect the extracted phase using this method. So for data set with low signal-to-noise ratio, it will be unstable. Using a combination of different moments to extract the phase is more robust than applying kurtosis. The improvement occurs because zero phase wavelets with reverse polarities have equal maximum kurtosis values hence the correct wavelet polarity cannot be identified. Zero-phase wavelets with reverse polarities have minimum and maximum values for a combination of different-moments method. These properties enable the technique to handle a finite data segment and to choose the correct wavelet polarity. Also, the existence of different moments can decrease sensitivity to outliers. A windowed continuous wavelet transform is more sensitive to signal-to-noise ratio than the combination of different-moments method, also if the scale for the wavelet is incorrect it will encounter with more problems to extract phase. When the effects of frequency bandwidth, signal-to-noise ratio and analyzing window length are considered, the results of extracting phase information from data without and with noise demonstrate that combination of different-moments is superior to the other methods introduced here.

  19. BOOK REVIEW: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance

    NASA Astrophysics Data System (ADS)

    Ng, J.; Kingsbury, N. G.

    2004-02-01

    wavelet. The second half of the chapter groups together miscellaneous points about the discrete wavelet transform, including coefficient manipulation for signal denoising and smoothing, a description of Daubechies’ wavelets, the properties of translation invariance and biorthogonality, the two-dimensional discrete wavelet transforms and wavelet packets. The fourth chapter is dedicated to wavelet transform methods in the author’s own specialty, fluid mechanics. Beginning with a definition of wavelet-based statistical measures for turbulence, the text proceeds to describe wavelet thresholding in the analysis of fluid flows. The remainder of the chapter describes wavelet analysis of engineering flows, in particular jets, wakes, turbulence and coherent structures, and geophysical flows, including atmospheric and oceanic processes. The fifth chapter describes the application of wavelet methods in various branches of engineering, including machining, materials, dynamics and information engineering. Unlike previous chapters, this (and subsequent) chapters are styled more as literature reviews that describe the findings of other authors. The areas addressed in this chapter include: the monitoring of machining processes, the monitoring of rotating machinery, dynamical systems, chaotic systems, non-destructive testing, surface characterization and data compression. The sixth chapter continues in this vein with the attention now turned to wavelets in the analysis of medical signals. Most of the chapter is devoted to the analysis of one-dimensional signals (electrocardiogram, neural waveforms, acoustic signals etc.), although there is a small section on the analysis of two-dimensional medical images. The seventh and final chapter of the book focuses on the application of wavelets in three seemingly unrelated application areas: fractals, finance and geophysics. The treatment on wavelet methods in fractals focuses on stochastic fractals with a short section on multifractals. The

  20. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942

  1. A new method for mobile phone image denoising

    NASA Astrophysics Data System (ADS)

    Jin, Lianghai; Jin, Min; Li, Xiang; Xu, Xiangyang

    2015-12-01

    Images captured by mobile phone cameras via pipeline processing usually contain various kinds of noises, especially granular noise with different shapes and sizes in both luminance and chrominance channels. In chrominance channels, noise is closely related to image brightness. To improve image quality, this paper presents a new method to denoise such mobile phone images. The proposed scheme converts the noisy RGB image to luminance and chrominance images, which are then denoised by a common filtering framework. The common filtering framework processes a noisy pixel by first excluding the neighborhood pixels that significantly deviate from the (vector) median and then utilizing the other neighborhood pixels to restore the current pixel. In the framework, the strength of chrominance image denoising is controlled by image brightness. The experimental results show that the proposed method obviously outperforms some other representative denoising methods in terms of both objective measure and visual evaluation.

  2. Improved Rotating Kernel Transformation Based Contourlet Domain Image Denoising Framework

    PubMed Central

    Guo, Qing; Dong, Fangmin; Ren, Xuhong; Feng, Shiyu; Gao, Bruce Zhi

    2016-01-01

    A contourlet domain image denoising framework based on a novel Improved Rotating Kernel Transformation is proposed, where the difference of subbands in contourlet domain is taken into account. In detail: (1). A novel Improved Rotating Kernel Transformation (IRKT) is proposed to calculate the direction statistic of the image; The validity of the IRKT is verified by the corresponding extracted edge information comparing with the state-of-the-art edge detection algorithm. (2). The direction statistic represents the difference between subbands and is introduced to the threshold function based contourlet domain denoising approaches in the form of weights to get the novel framework. The proposed framework is utilized to improve the contourlet soft-thresholding (CTSoft) and contourlet bivariate-thresholding (CTB) algorithms. The denoising results on the conventional testing images and the Optical Coherence Tomography (OCT) medical images show that the proposed methods improve the existing contourlet based thresholding denoising algorithm, especially for the medical images. PMID:27148597

  3. Image denoising filter based on patch-based difference refinement

    NASA Astrophysics Data System (ADS)

    Park, Sang Wook; Kang, Moon Gi

    2012-06-01

    In the denoising literature, research based on the nonlocal means (NLM) filter has been done and there have been many variations and improvements regarding weight function and parameter optimization. Here, a NLM filter with patch-based difference (PBD) refinement is presented. PBD refinement, which is the weighted average of the PBD values, is performed with respect to the difference images of all the locations in a refinement kernel. With refined and denoised PBD values, pattern adaptive smoothing threshold and noise suppressed NLM filter weights are calculated. Owing to the refinement of the PBD values, the patterns are divided into flat regions and texture regions by comparing the sorted values in the PBD domain to the threshold value including the noise standard deviation. Then, two different smoothing thresholds are utilized for each region denoising, respectively, and the NLM filter is applied finally. Experimental results of the proposed scheme are shown in comparison with several state-of-the-arts NLM based denoising methods.

  4. Denoising Two-Photon Calcium Imaging Data

    PubMed Central

    Malik, Wasim Q.; Schummers, James; Sur, Mriganka; Brown, Emery N.

    2011-01-01

    Two-photon calcium imaging is now an important tool for in vivo imaging of biological systems. By enabling neuronal population imaging with subcellular resolution, this modality offers an approach for gaining a fundamental understanding of brain anatomy and physiology. Proper analysis of calcium imaging data requires denoising, that is separating the signal from complex physiological noise. To analyze two-photon brain imaging data, we present a signal plus colored noise model in which the signal is represented as harmonic regression and the correlated noise is represented as an order autoregressive process. We provide an efficient cyclic descent algorithm to compute approximate maximum likelihood parameter estimates by combing a weighted least-squares procedure with the Burg algorithm. We use Akaike information criterion to guide selection of the harmonic regression and the autoregressive model orders. Our flexible yet parsimonious modeling approach reliably separates stimulus-evoked fluorescence response from background activity and noise, assesses goodness of fit, and estimates confidence intervals and signal-to-noise ratio. This refined separation leads to appreciably enhanced image contrast for individual cells including clear delineation of subcellular details and network activity. The application of our approach to in vivo imaging data recorded in the ferret primary visual cortex demonstrates that our method yields substantially denoised signal estimates. We also provide a general Volterra series framework for deriving this and other signal plus correlated noise models for imaging. This approach to analyzing two-photon calcium imaging data may be readily adapted to other computational biology problems which apply correlated noise models. PMID:21687727

  5. Field programmable gate arrays implementation of Dual Tree Complex Wavelet Transform.

    PubMed

    Canbay, Ferhat; Levent, Vecdi Emre; Serbes, Gorkem; Goren, Sezer; Aydin, Nizamettin

    2015-08-01

    Due to the inherent time-varying characteristics of physiological systems, most biomedical signals (BSs) are expected to have non-stationary character. Therefore, any appropriate analysis method for dealing with BSs should exhibit adjustable time-frequency (TF) resolution. The wavelet transform (WT) provides a TF representation of signals, which has good frequency resolution at low frequencies and good time resolution at high frequencies, resulting in an optimized TF resolution. Discrete wavelet transform (DWT), which is used in various medical signal processing applications such as denoising and feature extraction, is a fast and discretized algorithm for classical WT. However, the DWT has some very important drawbacks such as aliasing, lack of directionality, and shift-variance. To overcome these drawbacks, a new improved discrete transform named as Dual Tree Complex Wavelet Transform (DTCWT) can be used. Nowadays, with the improvements in embedded system technology, portable real-time medical devices are frequently used for rapid diagnosis in patients. In this study, in order to implement DTCWT algorithm in FPGAs, which can be used as real-time feature extraction or denoising operator for biomedical signals, a novel hardware architecture is proposed. In proposed architecture, DTCWT is implemented with only one adder and one multiplier. Additionally, considering the multi-channel outputs of biomedical data acquisition systems, this architecture is capable of running N channels in parallel. PMID:26737665

  6. Periodized Daubechies wavelets

    SciTech Connect

    Restrepo, J.M.; Leaf, G.K.; Schlossnagle, G.

    1996-03-01

    The properties of periodized Daubechies wavelets on [0,1] are detailed and counterparts which form a basis for L{sup 2}(R). Numerical examples illustrate the analytical estimates for convergence and demonstrated by comparison with Fourier spectral methods the superiority of wavelet projection methods for approximations. The analytical solution to inner products of periodized wavelets and their derivatives, which are known as connection coefficients, is presented, and their use ius illustrated in the approximation of two commonly used differential operators. The periodization of the connection coefficients in Galerkin schemes is presented in detail.

  7. Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models

    NASA Astrophysics Data System (ADS)

    Khalil, Bahaa; Broda, Stefan; Adamowski, Jan; Ozga-Zielinski, Bogdan; Donohoe, Amanda

    2015-02-01

    Several groundwater-level forecasting studies have shown that data-driven models are simpler, faster to develop, and provide more accurate and precise results than physical or numerical-based models. Five data-driven models were examined for the forecasting of groundwater levels as a result of recharge via tailings from an abandoned mine in Quebec, Canada, for lead times of 1 day, 1 week and 1 month. The five models are: a multiple linear regression (MLR); an artificial neural network (ANN); two models that are based on de-noising the model predictors using the wavelet-transform (W-MLR, W-ANN); and a W-ensemble ANN (W-ENN) model. The tailing recharge, total precipitation, and mean air temperature were used as predictors. The ANN models performed better than the MLR models, and both MLR and ANN models performed significantly better after de-noising the predictors using wavelet-transforms. Overall, the W-ENN model performed best for each of the three lead times. These results highlight the ability of wavelet-transforms to decompose non-stationary data into discrete wavelet-components, highlighting cyclic patterns and trends in the time-series at varying temporal scales, rendering the data readily usable in forecasting. The good performance of the W-ENN model highlights the usefulness of ensemble modeling, which ensures model robustness along with improved reliability by reducing variance.

  8. Wavelets and electromagnetics

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.

    1992-01-01

    Wavelets are an exciting new topic in applied mathematics and signal processing. This paper will provide a brief review of wavelets which are also known as families of functions with an emphasis on interpretation rather than rigor. We will derive an indirect use of wavelets for the solution of integral equations based techniques adapted from image processing. Examples for resistive strips will be given illustrating the effect of these techniques as well as their promise in reducing dramatically the requirement in order to solve an integral equation for large bodies. We also will present a direct implementation of wavelets to solve an integral equation. Both methods suggest future research topics and may hold promise for a variety of uses in computational electromagnetics.

  9. Entanglement Renormalization and Wavelets.

    PubMed

    Evenbly, Glen; White, Steven R

    2016-04-01

    We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems. PMID:27104687

  10. Entanglement Renormalization and Wavelets

    NASA Astrophysics Data System (ADS)

    Evenbly, Glen; White, Steven R.

    2016-04-01

    We establish a precise connection between discrete wavelet transforms and entanglement renormalization, a real-space renormalization group transformation for quantum systems on the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to build approximations to the ground state of the critical Ising model, then demonstrate that these states correspond to instances of the multiscale entanglement renormalization ansatz (MERA), producing the first known analytic MERA for critical systems.

  11. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry

    NASA Astrophysics Data System (ADS)

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-01

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.

  12. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry.

    PubMed

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-21

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications. PMID:24584079

  13. Lagrange wavelets for signal processing.

    PubMed

    Shi, Z; Wei, G W; Kouri, D J; Hoffman, D K; Bao, Z

    2001-01-01

    This paper deals with the design of interpolating wavelets based on a variety of Lagrange functions, combined with novel signal processing techniques for digital imaging. Halfband Lagrange wavelets, B-spline Lagrange wavelets and Gaussian Lagrange (Lagrange distributed approximating functional (DAF)) wavelets are presented as specific examples of the generalized Lagrange wavelets. Our approach combines the perceptually dependent visual group normalization (VGN) technique and a softer logic masking (SLM) method. These are utilized to rescale the wavelet coefficients, remove perceptual redundancy and obtain good visual performance for digital image processing. PMID:18255493

  14. Wavelet and multi-fractal based analysis on DIC images in epithelium region to detect and diagnose the cancer progress among different grades of tissues

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2014-05-01

    DIC (Differential Interference Contrast Image) images of cervical pre-cancer tissues are taken from epithelium region, on which wavelet transform and multi-fractal analysis are applied. Discrete wavelet transform (DWT) through Daubechies basis are done for identifying fluctuations over polynomial trends for clear characterization and differentiation of tissues. A systematic investigation of denoised images is carried out through the continuous Morlet wavelet. The scalogram reveals the changes in coefficient peak values from grade-I to grade-III. Wavelet normalized energy plots are computed in order to show the difference of periodicity among different grades of cancerous tissues. Using the multi-fractal de-trended fluctuation analysis (MFDFA), it is observed that the values of Hurst exponent and width of singularity spectrum decrease as cancer progresses from grade-I to grade-III tissue.

  15. A novel 3D wavelet based filter for visualizing features in noisy biological data

    SciTech Connect

    Moss, W C; Haase, S; Lyle, J M; Agard, D A; Sedat, J W

    2005-01-05

    We have developed a 3D wavelet-based filter for visualizing structural features in volumetric data. The only variable parameter is a characteristic linear size of the feature of interest. The filtered output contains only those regions that are correlated with the characteristic size, thus denoising the image. We demonstrate the use of the filter by applying it to 3D data from a variety of electron microscopy samples including low contrast vitreous ice cryogenic preparations, as well as 3D optical microscopy specimens.

  16. Coherent vortex extraction in 3D homogeneous turbulence: comparison between orthogonal and biorthogonal wavelet decompositions

    NASA Astrophysics Data System (ADS)

    Roussel, O.; Schneider, K.; Farge, M.

    A comparison between two different ways of extracting coherent vortices in three-dimensional (3D) homogeneous isotropic turbulence is performed, using either orthogonal or biorthogonal wavelets. The method is based on a wavelet decomposition of the vorticity field and a subsequent thresholding of the wavelet coefficients. The coherent vorticity is reconstructed from a few strong wavelet coefficients, while the incoherent vorticity is reconstructed from the remaining weak coefficients. The choice of the threshold, which has no adjustable parameters, is motivated for the orthogonal case from the denoising theory. Using only 3 % of the coefficients we show that both decompositions, that is orthogonal and biorthogonal, extract the coherent vortices. They contain most of the energy (around 99 % in both cases) and retain 74 % and 68 % of the enstrophy in the orthogonal and biorthogonal cases, respectively. The incoherent background flow for the orthogonal decomposition, which corresponds to 97 % of the wavelet coefficients, is structureless, decorrelated, and has a Gaussian velocity probability distribution function (PDF). In contrast, for the biorthogonal decomposition, the background flow exhibits quasi-two-dimensional (2D) structures and yields an exponential velocity PDF. Moreover, the biorthogonal decomposition loses 3.7% of both enstrophy and helicity, while they are conserved by the orthogonal decomposition.

  17. Coherent vortex extraction in homogeneous isotropic turbulence using wavelets: orthogonal versus biorthogonal decompositions

    NASA Astrophysics Data System (ADS)

    Farge, Marie; Roussel, Olivier; Schneider, Kai

    2004-11-01

    We compare the extraction of coherent vortices in 3D homogeneous isotropic turbulence computed by DNS using either orthogonal or biorthogonal wavelets. The method is based on a wavelet decomposition of the vorticity field and a subsequent thresholding of the wavelet coefficients (PRL, 87(5), 2001, Phys. Fluids 15(10), 2003). The coherent vorticity is reconstructed from few strong wavelet coefficients while the incoherent vorticity is reconstructed from the remaining weak coefficients. In the orthogonal case the choice of the threshold is motivated from statistical denoising theory and has no adjustable parameters. Using 3% of the coefficients we show that both decompositions extract the coherent vortices out of the turbulent flow. They contain 99.6% of the energy and retain 74% and 68% of the enstrophy in the orthogonal and biorthogonal case, respectively. Concerning the incoherent background flow, it is structureless and decorrelated for the orthogonal decomposition, with a Gaussian velocity PDF. In contrast, the biorthogonal decomposition yields a background flow which exhibits quasi-2D sheet-like structures with an exponetial velocity PDF instead. In conclusion, modeling the incoherent background flow might be more difficult using biorthogonal wavelets for the CVS (Coherent Vortex Simulation, cf. Flow, Turbulence and Combustion 66(4), 2001).

  18. Principal component analysis in the wavelet domain: new features for underwater object recognition

    NASA Astrophysics Data System (ADS)

    Okimoto, Gordon S.; Lemonds, David W.

    1999-08-01

    Principal component analysis (PCA) in the wavelet domain provides powerful features for underwater object recognition applications. The multiresolution analysis of the Morlet wavelet transform (MWT) is used to pre-process echo returns from targets ensonified by biologically motivated broadband signal. PCA is then used to compress and denoise the resulting time-scale signal representation for presentation to a hierarchical neural network for object classification. Wavelet/PCA features combined with multi-aspect data fusion and neural networks have resulted in impressive underwater object recognition performance using backscatter data generated by simulate dolphin echolocation clicks and bat- like linear frequency modulated upsweeps. For example, wavelet/PCA features extracted from LFM echo returns have resulted in correct classification rates of 98.6 percent over a six target suite, which includes two mine simulators and four clutter objects. For the same data, ROC analysis of the two-class mine-like versus non-mine-like problem resulted in a probability of detection of 0.981 and a probability of false alarm of 0.032 at the 'optimal' operating point. The wavelet/PCA feature extraction algorithm is currently being implemented in VLSI for use in small, unmanned underwater vehicles designed for mine- hunting operations in shallow water environments.

  19. Effect of denoising on supervised lung parenchymal clusters

    NASA Astrophysics Data System (ADS)

    Jayamani, Padmapriya; Raghunath, Sushravya; Rajagopalan, Srinivasan; Karwoski, Ronald A.; Bartholmai, Brian J.; Robb, Richard A.

    2012-03-01

    Denoising is a critical preconditioning step for quantitative analysis of medical images. Despite promises for more consistent diagnosis, denoising techniques are seldom explored in clinical settings. While this may be attributed to the esoteric nature of the parameter sensitve algorithms, lack of quantitative measures on their ecacy to enhance the clinical decision making is a primary cause of physician apathy. This paper addresses this issue by exploring the eect of denoising on the integrity of supervised lung parenchymal clusters. Multiple Volumes of Interests (VOIs) were selected across multiple high resolution CT scans to represent samples of dierent patterns (normal, emphysema, ground glass, honey combing and reticular). The VOIs were labeled through consensus of four radiologists. The original datasets were ltered by multiple denoising techniques (median ltering, anisotropic diusion, bilateral ltering and non-local means) and the corresponding ltered VOIs were extracted. Plurality of cluster indices based on multiple histogram-based pair-wise similarity measures were used to assess the quality of supervised clusters in the original and ltered space. The resultant rank orders were analyzed using the Borda criteria to nd the denoising-similarity measure combination that has the best cluster quality. Our exhaustive analyis reveals (a) for a number of similarity measures, the cluster quality is inferior in the ltered space; and (b) for measures that benet from denoising, a simple median ltering outperforms non-local means and bilateral ltering. Our study suggests the need to judiciously choose, if required, a denoising technique that does not deteriorate the integrity of supervised clusters.

  20. Computationally Efficient Locally Adaptive Demosaicing of Color Filter Array Images Using the Dual-Tree Complex Wavelet Packet Transform

    PubMed Central

    Aelterman, Jan; Goossens, Bart; De Vylder, Jonas; Pižurica, Aleksandra; Philips, Wilfried

    2013-01-01

    Most digital cameras use an array of alternating color filters to capture the varied colors in a scene with a single sensor chip. Reconstruction of a full color image from such a color mosaic is what constitutes demosaicing. In this paper, a technique is proposed that performs this demosaicing in a way that incurs a very low computational cost. This is done through a (dual-tree complex) wavelet interpretation of the demosaicing problem. By using a novel locally adaptive approach for demosaicing (complex) wavelet coefficients, we show that many of the common demosaicing artifacts can be avoided in an efficient way. Results demonstrate that the proposed method is competitive with respect to the current state of the art, but incurs a lower computational cost. The wavelet approach also allows for computationally effective denoising or deblurring approaches. PMID:23671575

  1. Wavelet analysis of atmospheric turbulence

    SciTech Connect

    Hudgins, L.H.

    1992-12-31

    After a brief review of the elementary properties of Fourier Transforms, the Wavelet Transform is defined in Part I. Basic results are given for admissable wavelets. The Multiresolution Analysis, or MRA (a mathematical structure which unifies a large class of wavelets with Quadrature Mirror Filters) is then introduced. Some fundamental aspects of wavelet design are then explored. The Discrete Wavelet Transform is discussed and, in the context of an MRA, is seen to supply a Fast Wavelet Transform which competes with the Fast Fourier Transform for efficiency. In Part II, the Wavelet Transform is developed in terms of the scale number variable s instead of the scale length variable a where a = 1/s. Basic results such as the admissibility condition, conservation of energy, and the reconstruction theorem are proven in this context. After reviewing some motivation for the usual Fourier power spectrum, a definition is given for the wavelet power spectrum. This `spectral density` is then intepreted in the context of spectral estimation theory. Parseval`s theorem for Wavelets then leads naturally to the Wavelet Cross Spectrum, Wavelet Cospectrum, and Wavelet Quadrature Spectrum. Wavelet Transforms are then applied in Part III to the analysis of atmospheric turbulence. Data collected over the ocean is examined in the wavelet transform domain for underlying structure. A brief overview of atmospheric turbulence is provided. Then the overall method of applying Wavelet Transform techniques to time series data is described. A trace study is included, showing some of the aspects of choosing the computational algorithm, and selection of a specific analyzing wavelet. A model for generating synthetic turbulence data is developed, and seen to yield useful results in comparing with real data for structural transitions. Results from the theory of Wavelet Spectral Estimation and Wavelength Cross-Transforms are applied to studying the momentum transport and the heat flux.

  2. Pomegranate peel and peel extracts: chemistry and food features.

    PubMed

    Akhtar, Saeed; Ismail, Tariq; Fraternale, Daniele; Sestili, Piero

    2015-05-01

    The present review focuses on the nutritional, functional and anti-infective properties of pomegranate (Punica granatum L.) peel (PoP) and peel extract (PoPx) and on their applications as food additives, functional food ingredients or biologically active components in nutraceutical preparations. Due to their well-known ethnomedical relevance and chemical features, the biomolecules available in PoP and PoPx have been proposed, for instance, as substitutes of synthetic food additives, as nutraceuticals and chemopreventive agents. However, because of their astringency and anti-nutritional properties, PoP and PoPx are not yet considered as ingredients of choice in food systems. Indeed, considering the prospects related to both their health promoting activity and chemical features, the nutritional and nutraceutical potential of PoP and PoPx seems to be still underestimated. The present review meticulously covers the wide range of actual and possible applications (food preservatives, stabilizers, supplements, prebiotics and quality enhancers) of PoP and PoPx components in various food products. Given the overall properties of PoP and PoPx, further investigations in toxicological and sensory aspects of PoP and PoPx should be encouraged to fully exploit the health promoting and technical/economic potential of these waste materials as food supplements. PMID:25529700

  3. Food Peeling: Conventional and new approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peeling is an important unit operation in food processing that prepares fruits and vegetables for subsequent processes through removal of inedible or undesirable rind or skin. This chapter covers an exhaustive discussion on advancement in peeling technologies of fruits and vegetables from different ...

  4. Current chemical peels and other resurfacing techniques.

    PubMed

    Mangat, Devinder S; Tansavatdi, Kristina; Garlich, Paul

    2011-02-01

    The currently available methods for resurfacing will be addressed in this article, which has been divided into three areas of focus: chemical peels, lasers, and dermabrasion. Emphasis will be placed on chemical peels, a technique with a long history that provides a very reliable method of resurfacing and that every facial plastic surgeon should be familiar with. PMID:21246455

  5. Prediction of processing tomato peeling outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peeling outcomes of processing tomatoes were predicted using multivariate analysis of Magnetic Resonance (MR) images. Tomatoes were obtained from a whole-peel production line. Each fruit was imaged using a 7 Tesla MR system, and a multivariate data set was created from 28 different images. After ...

  6. Chemical peeling in ethnic skin: an update.

    PubMed

    Salam, A; Dadzie, O E; Galadari, H

    2013-10-01

    With the growth of cosmetic dermatology worldwide, treatments that are effective against skin diseases and augment beauty without prolonged recovery periods, or exposing patients to the risks of surgery, are increasing in popularity. Chemical peels are a commonly used, fast, safe and effective clinic room treatment that may be used for cosmetic purposes, such as for fine lines and photoageing, but also as primary or adjunct therapies for acne, pigmentary disorders and scarring. Clinicians are faced with specific challenges when using peels on ethnic skin (skin of colour). The higher risk of postinflammatory dyschromias and abnormal scarring makes peels potentially disfiguring. Clinicians should therefore have a sound knowledge of the various peels available and their safety in ethnic skin. This article aims to review the background, classification, various preparations, indications, patient assessment and complications of using chemical peels in ethnic skin. PMID:24098904

  7. GPU-accelerated denoising of 3D magnetic resonance images

    SciTech Connect

    Howison, Mark; Wes Bethel, E.

    2014-05-29

    The raw computational power of GPU accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. In practice, applying these filtering operations requires setting multiple parameters. This study was designed to provide better guidance to practitioners for choosing the most appropriate parameters by answering two questions: what parameters yield the best denoising results in practice? And what tuning is necessary to achieve optimal performance on a modern GPU? To answer the first question, we use two different metrics, mean squared error (MSE) and mean structural similarity (MSSIM), to compare denoising quality against a reference image. Surprisingly, the best improvement in structural similarity with the bilateral filter is achieved with a small stencil size that lies within the range of real-time execution on an NVIDIA Tesla M2050 GPU. Moreover, inappropriate choices for parameters, especially scaling parameters, can yield very poor denoising performance. To answer the second question, we perform an autotuning study to empirically determine optimal memory tiling on the GPU. The variation in these results suggests that such tuning is an essential step in achieving real-time performance. These results have important implications for the real-time application of denoising to MR images in clinical settings that require fast turn-around times.

  8. Fractional domain varying-order differential denoising method

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Shan; Zhang, Feng; Li, Bing-Zhao; Tao, Ran

    2014-10-01

    Removal of noise is an important step in the image restoration process, and it remains a challenging problem in image processing. Denoising is a process used to remove the noise from the corrupted image, while retaining the edges and other detailed features as much as possible. Recently, denoising in the fractional domain is a hot research topic. The fractional-order anisotropic diffusion method can bring a less blocky effect and preserve edges in image denoising, a method that has received much interest in the literature. Based on this method, we propose a new method for image denoising, in which fractional-varying-order differential, rather than constant-order differential, is used. The theoretical analysis and experimental results show that compared with the state-of-the-art fractional-order anisotropic diffusion method, the proposed fractional-varying-order differential denoising model can preserve structure and texture well, while quickly removing noise, and yields good visual effects and better peak signal-to-noise ratio.

  9. Adaptively Tuned Iterative Low Dose CT Image Denoising

    PubMed Central

    Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.

    2015-01-01

    Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972

  10. Non-local MRI denoising using random sampling.

    PubMed

    Hu, Jinrong; Zhou, Jiliu; Wu, Xi

    2016-09-01

    In this paper, we propose a random sampling non-local mean (SNLM) algorithm to eliminate noise in 3D MRI datasets. Non-local means (NLM) algorithms have been implemented efficiently for MRI denoising, but are always limited by high computational complexity. Compared to conventional methods, which raster through the entire search window when computing similarity weights, the proposed SNLM algorithm randomly selects a small subset of voxels which dramatically decreases the computational burden, together with competitive denoising result. Moreover, structure tensor which encapsulates high-order information was introduced as an optimal sampling pattern for further improvement. Numerical experiments demonstrated that the proposed SNLM method can get a good balance between denoising quality and computation efficiency. At a relative sampling ratio (i.e. ξ=0.05), SNLM can remove noise as effectively as full NLM, meanwhile the running time can be reduced to 1/20 of NLM's. PMID:27114338

  11. Sinogram denoising via simultaneous sparse representation in learned dictionaries

    NASA Astrophysics Data System (ADS)

    Karimi, Davood; Ward, Rabab K.

    2016-05-01

    Reducing the radiation dose in computed tomography (CT) is highly desirable but it leads to excessive noise in the projection measurements. This can significantly reduce the diagnostic value of the reconstructed images. Removing the noise in the projection measurements is, therefore, essential for reconstructing high-quality images, especially in low-dose CT. In recent years, two new classes of patch-based denoising algorithms proved superior to other methods in various denoising applications. The first class is based on sparse representation of image patches in a learned dictionary. The second class is based on the non-local means method. Here, the image is searched for similar patches and the patches are processed together to find their denoised estimates. In this paper, we propose a novel denoising algorithm for cone-beam CT projections. The proposed method has similarities to both these algorithmic classes but is more effective and much faster. In order to exploit both the correlation between neighboring pixels within a projection and the correlation between pixels in neighboring projections, the proposed algorithm stacks noisy cone-beam projections together to form a 3D image and extracts small overlapping 3D blocks from this 3D image for processing. We propose a fast algorithm for clustering all extracted blocks. The central assumption in the proposed algorithm is that all blocks in a cluster have a joint-sparse representation in a well-designed dictionary. We describe algorithms for learning such a dictionary and for denoising a set of projections using this dictionary. We apply the proposed algorithm on simulated and real data and compare it with three other algorithms. Our results show that the proposed algorithm outperforms some of the best denoising algorithms, while also being much faster.

  12. Sinogram denoising via simultaneous sparse representation in learned dictionaries.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-05-01

    Reducing the radiation dose in computed tomography (CT) is highly desirable but it leads to excessive noise in the projection measurements. This can significantly reduce the diagnostic value of the reconstructed images. Removing the noise in the projection measurements is, therefore, essential for reconstructing high-quality images, especially in low-dose CT. In recent years, two new classes of patch-based denoising algorithms proved superior to other methods in various denoising applications. The first class is based on sparse representation of image patches in a learned dictionary. The second class is based on the non-local means method. Here, the image is searched for similar patches and the patches are processed together to find their denoised estimates. In this paper, we propose a novel denoising algorithm for cone-beam CT projections. The proposed method has similarities to both these algorithmic classes but is more effective and much faster. In order to exploit both the correlation between neighboring pixels within a projection and the correlation between pixels in neighboring projections, the proposed algorithm stacks noisy cone-beam projections together to form a 3D image and extracts small overlapping 3D blocks from this 3D image for processing. We propose a fast algorithm for clustering all extracted blocks. The central assumption in the proposed algorithm is that all blocks in a cluster have a joint-sparse representation in a well-designed dictionary. We describe algorithms for learning such a dictionary and for denoising a set of projections using this dictionary. We apply the proposed algorithm on simulated and real data and compare it with three other algorithms. Our results show that the proposed algorithm outperforms some of the best denoising algorithms, while also being much faster. PMID:27055224

  13. Patterning, Prestress, and Peeling Dynamics of Myocytes

    PubMed Central

    Griffin, Maureen A.; Engler, Adam J.; Barber, Thomas A.; Healy, Kevin E.; Sweeney, H. Lee; Discher, Dennis E.

    2004-01-01

    As typical anchorage-dependent cells myocytes must balance contractility against adequate adhesion. Skeletal myotubes grown as isolated strips from myoblasts on micropatterned glass exhibited spontaneous peeling after one end of the myotube was mechanically detached. Such results indicate the development of a prestress in the cells. To assess this prestress and study the dynamic adhesion strength of single myocytes, the shear stress of fluid aspirated into a large-bore micropipette was then used to forcibly peel myotubes. The velocity at which cells peeled from the surface, Vpeel, was measured as a continuously increasing function of the imposed tension, Tpeel, which ranges from ∼0 to 50 nN/μm. For each cell, peeling proved highly heterogeneous, with Vpeel fluctuating between 0 μm/s (∼80% of time) and ∼10 μm/s. Parallel studies of smooth muscle cells expressing GFP-paxillin also exhibited a discontinuous peeling in which focal adhesions fractured above sites of strong attachment (when pressure peeled using a small-bore pipette). The peeling approaches described here lend insight into the contractile-adhesion balance and can be used to study the real-time dynamics of stressed adhesions through both physical detection and the use of GFP markers; the methods should prove useful in comparing normal versus dystrophic muscle cells. PMID:14747355

  14. Wavelets on Planar Tesselations

    SciTech Connect

    Bertram, M.; Duchaineau, M.A.; Hamann, B.; Joy, K.I.

    2000-02-25

    We present a new technique for progressive approximation and compression of polygonal objects in images. Our technique uses local parameterizations defined by meshes of convex polygons in the plane. We generalize a tensor product wavelet transform to polygonal domains to perform multiresolution analysis and compression of image regions. The advantage of our technique over conventional wavelet methods is that the domain is an arbitrary tessellation rather than, for example, a uniform rectilinear grid. We expect that this technique has many applications image compression, progressive transmission, radiosity, virtual reality, and image morphing.

  15. Electromagnetic spatial coherence wavelets.

    PubMed

    Castaneda, Roman; Garcia-Sucerquia, Jorge

    2006-01-01

    The recently introduced concept of spatial coherence wavelets is generalized to describe the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows for the analysis of the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides further insight about the causal relationship between the polarization states at different planes along the propagation path. PMID:16478063

  16. Spherical wavelet transform: linking global seismic tomography and imaging

    NASA Astrophysics Data System (ADS)

    Pan, J.

    2001-12-01

    Each year, numerous seismic tomographic images are published based on either new parameterization, damping schemes or datasets. Though people agree generally on the longer- wavelength seismic structures, large discrepencies still exist among various models. Normally the data is noisy, thus the inverse problem is often ill-conditioned. Sampling rate may be enough to resolve for long-wavelength structures when we parameterize the earth to a low harmonic order. However, higher order signals (slabs, plume-like structures, and local seismic velocity anomalies (SVA)) on a global scale remain under-sampled. Finer discretization of the model space increases the problem size dramatically but does not alleviate the nature of the problem. The main challenge thus is to find an efficient representation of the model space to solve for the lower- and higher- degree SVAs simultaneously. Spherical wavelets are a good choice because of their compact support (locaized) in both spatial and frequency domains. If SVAs can be viewed as an image, they consist of smooth-varying signals superpositioned by small-scale local changes and can be compressed greatly and represented better using spherical wavelets. By mapping the model parameters into a nested multi-resolution analysis (MRA) space, the signals become comparable in size therefore stable solutions can be achieved at every level of the resolution without introducing subjective damping. The efficiency of using wavelets and MRA to denoise and compress signals can be used to reduce the problem size and eliminate effects of noisy data. This new algorithm can achieve better resolving power for 2D and 3D seismic tomography, by linking image processing with inverse theory. Advances in spherical wavelets enable the introduction of wavelet analysis and a new parameterization of MRA into global tomography studies. In this paper, we present the new inversion method based on spherical wavelet transform. An application to 2D surface wave

  17. GPU-Accelerated Denoising in 3D (GD3D)

    Energy Science and Technology Software Center (ESTSC)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  18. Simultaneous de-noising in phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Koehler, Thomas; Roessl, Ewald

    2012-07-01

    In this work, we investigate methods for de-noising of tomographic differential phase contrast and absorption contrast images. We exploit the fact that in grating-based differential phase contrast imaging (DPCI), first, several images are acquired simultaneously in exactly the same geometry, and second, these different images can show very different contrast-to-noise-ratios. These features of grating-based DPCI are used to generalize the conventional bilateral filter. Experiments using simulations show a superior de-noising performance of the generalized algorithm compared with the conventional one.

  19. Peeling, sliding, pulling and bending

    NASA Astrophysics Data System (ADS)

    Lister, John; Peng, Gunnar

    2015-11-01

    The peeling of an elastic sheet away from thin layer of viscous fluid is a simply-stated and generic problem, that involves complex interactions between the flow and elastic deformation on a range of length scales. Consider an analogue of capillary spreading, where a blister of injected viscous fluid spreads due to tension in the overlying elastic sheet. Here the tension is coupled to the deformation of the sheet, and thus varies in time and space. A key question is whether or not viscous shear stresses ahead of the blister are sufficient to prevent the sheet sliding inwards and relieving the tension. Our asymptotic analysis reveals a dichotomy between fast and slow spreading, and between two-dimensional and axisymmetric spreading. In combination with bending stresses and gravity, which may dominate parts of the flow but not others, there is a plethora of dynamical regimes.

  20. EMG classification using wavelet functions to determine muscle contraction.

    PubMed

    Sharma, Tanu; Veer, Karan

    2016-04-01

    Surface electromyogram (SEMG) is a complex signal and is influenced by several external factors/artifacts. The electromyogram signal from the stump of the subject is picked up through surface electrodes. It is amplified and artifacts are removed before digitising it in a controlled manner so that minimum signal loss occurs due to processing. As removing these artifacts is not easy, feature extraction to obtain useful information hidden inside the signal becomes a different process. This paper presents methods of analysing SEMG signals using discrete wavelet Transform (DWT) for extracting accurate patterns of the signals and the performance of the used algorithms is being analysed rigorously. The obtained results suggest a root mean square difference (RMSD) value for the denoising and quality of reconstruction of the SEMG signal. The result shows that the best mother wavelets for tolerance of noise are second order of symmlets and bior6.8. Results inferred that bior6.8 suitable for the classification and analysis of SEMG signals of different arm motions results in a classification accuracy of 88.90%. PMID:26942656

  1. Wavelet evolutionary network for complex-constrained portfolio rebalancing

    NASA Astrophysics Data System (ADS)

    Suganya, N. C.; Vijayalakshmi Pai, G. A.

    2012-07-01

    Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.

  2. Symmetrical modified dual tree complex wavelet transform for processing quadrature Doppler ultrasound signals.

    PubMed

    Serbes, G; Aydin, N

    2011-01-01

    Dual-tree complex wavelet transform (DTCWT), which is a shift invariant transform with limited redundancy, is an improved version of discrete wavelet transform. Complex quadrature signals are dual channel signals obtained from the systems employing quadrature demodulation. An example of such signals is quadrature Doppler signal obtained from blood flow analysis systems. Prior to processing Doppler signals using the DTCWT, directional flow signals must be obtained and then two separate DTCWT applied, increasing the computational complexity. In this study, in order to decrease computational complexity, a symmetrical modified DTCWT algorithm is proposed (SMDTCWT). A comparison between the new transform and the symmetrical phasing-filter technique is presented. Additionally denoising performance of SMDTCWT is compared with the DWT and the DTCWT using simulated signals. The results show that the proposed method gives the same output as the symmetrical phasing-filter method, the computational complexity for processing quadrature signals using DTCWT is greatly reduced and finally the SMDTCWT based denoising outperforms conventional DWT with same computational complexity. PMID:22255416

  3. A wavelet-based Markov random field segmentation model in segmenting microarray experiments.

    PubMed

    Athanasiadis, Emmanouil; Cavouras, Dionisis; Kostopoulos, Spyros; Glotsos, Dimitris; Kalatzis, Ioannis; Nikiforidis, George

    2011-12-01

    In the present study, an adaptation of the Markov Random Field (MRF) segmentation model, by means of the stationary wavelet transform (SWT), applied to complementary DNA (cDNA) microarray images is proposed (WMRF). A 3-level decomposition scheme of the initial microarray image was performed, followed by a soft thresholding filtering technique. With the inverse process, a Denoised image was created. In addition, by using the Amplitudes of the filtered wavelet Horizontal and Vertical images at each level, three different Magnitudes were formed. These images were combined with the Denoised one to create the proposed SMRF segmentation model. For numerical evaluation of the segmentation accuracy, the segmentation matching factor (SMF), the Coefficient of Determination (r(2)), and the concordance correlation (p(c)) were calculated on the simulated images. In addition, the SMRF performance was contrasted to the Fuzzy C Means (FCM), Gaussian Mixture Models (GMM), Fuzzy GMM (FGMM), and the conventional MRF techniques. Indirect accuracy performances were also tested on the experimental images by means of the Mean Absolute Error (MAE) and the Coefficient of Variation (CV). In the latter case, SPOT and SCANALYZE software results were also tested. In the former case, SMRF attained the best SMF, r(2), and p(c) (92.66%, 0.923, and 0.88, respectively) scores, whereas, in the latter case scored MAE and CV, 497 and 0.88, respectively. The results and support the performance superiority of the SMRF algorithm in segmenting cDNA images. PMID:21531035

  4. Interpreting honeycomb climbing-drum peel tests

    NASA Technical Reports Server (NTRS)

    Ferdie, R. D.

    1977-01-01

    Drum-peel tests are made more meaningful by use of approximations to derive analytical expressions relating failures due to bond flatwise tension, inplane tension, and shear, to adhesive weight and method of bond cure.

  5. The Peel Inlet-Harvey Estuary Study.

    ERIC Educational Resources Information Center

    Walker, Warren; Black, Ronald

    1979-01-01

    Describes how the department of physics of the Western Australian Institute of Technology (WAIT) has been involved in the Peel Inlet-Harvey Estuary study. An appendix which presents the departmental approach to curriculum matters is also included. (HM)

  6. Wavelet Based Analysis of Airborne Gravity Data For Interpretation of Geological Boundaries

    NASA Astrophysics Data System (ADS)

    Leblanc, George E.; Ferguson, Stephen

    Airborne gravimeters have only very recently been developed with the sensitivity necessary for useful exploration geophysics. In this study, an airborne gravimeter - an inertially-stabilized platform which converts accelerometer readings into gravity values - has been installed aboard the NRC's Convair 580 research aircraft and a survey performed over the Geological Survey of Canada's gravity test area. These data are used in a new wavelet transform methodology that quickly analyses and locates geological boundaries of various spatial extents within real aerogravity data. The raw aerogravity data were GPS corrected and then noise minimised - to reduce high frequency random noise - with a separate wavelet transform denoising algorithm. The multi-resolution nature of the wavelet transform was then used to investigate the presence of boundaries at various scales. Examination of each wavelet detail scale shows that there is a coherent and localizable signal that conforms to geological boundaries over the entire range of scales. However, the boundaries are more apparent in the lower wavelet scales (corresponding to higher frequencies). The location of the local maximum values of the wavelet coefficents on each wavelet level provides a means to quickly determine and evaluate regional and/or local boundaries. The boundaries that are determined as a function of wavelet scale are able to be well-localized with the wavelet transform, and provides a method to locate, in ground coordinates, the edges of the boundary. In this study it is clear that wavelet methodologies are very well suited to being used effectively with aerogravity data due to the non-stationary nature of these data. Using these same methods on the horizontal and vertical derivatives of the data can provide visually clearer boundary definition, however, thus far there has not been any new boundaries identified in the derivative data. It is also possible to draw potential structural information, such as general

  7. Mouse EEG spike detection based on the adapted continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.

    2016-04-01

    Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.

  8. Retrieval of chlorophyll content in maize from leaf reflectance spectra using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Lv, Jie; Yan, Zhenguo

    2014-11-01

    Chlorophyll plays an important role in crop photosynthesis, and it is an indicator of crop growth and stress state. Estimation of leaf chlorophyll content of maize from remote sensing data was investigated using radiative transfer model inversion and wavelet analysis. Hyperspectral data of maize were measured in two natural fields using ASD field spectrometer, chlorophyll content was collected with a SPAD-502 chlorophyll meter. The bands between 350-1300nm spectra region were selected for the preprocessing, 10 spectra of each sampling point measurements of maize were averaged for smoothing. PROSPECT was used to generate very large spectral data sets, with which spectra region was set to 350-1300nm. The original hyperspectral of maize were applied wavelet transform with wavelet function of Haar, DB9, sym6, coif3, bior4.4, dmey to get transform coefficients, spectral reflectance of maize were obtained after the de-noising processing. Support vector machine was trained the training data set, in order to establish hyperspectral estimation model of chlorophyll content. A validation data set was established based on hyperspectral data, and the leaf chlorophyll content estimation model was applied to the validation data set to estimate leaf chlorophyll content of maize. The hyperspectral estimation model yielded results with a coefficient of determination of 0.8712 and a mean square error (MSE) of 76.1786. The results indicated that by decomposing leaf spectra, the wavelet analysis can be used to a fast and accurate method for estimations of chlorophyll content.

  9. Denoising and dimensionality reduction of genomic data

    NASA Astrophysics Data System (ADS)

    Capobianco, Enrico

    2005-05-01

    Genomics represents a challenging research field for many quantitative scientists, and recently a vast variety of statistical techniques and machine learning algorithms have been proposed and inspired by cross-disciplinary work with computational and systems biologists. In genomic applications, the researcher deals with noisy and complex high-dimensional feature spaces; a wealth of genes whose expression levels are experimentally measured, can often be observed for just a few time points, thus limiting the available samples. This unbalanced combination suggests that it might be hard for standard statistical inference techniques to come up with good general solutions, likewise for machine learning algorithms to avoid heavy computational work. Thus, one naturally turns to two major aspects of the problem: sparsity and intrinsic dimensionality. These two aspects are studied in this paper, where for both denoising and dimensionality reduction, a very efficient technique, i.e., Independent Component Analysis, is used. The numerical results are very promising, and lead to a very good quality of gene feature selection, due to the signal separation power enabled by the decomposition technique. We investigate how the use of replicates can improve these results, and deal with noise through a stabilization strategy which combines the estimated components and extracts the most informative biological information from them. Exploiting the inherent level of sparsity is a key issue in genetic regulatory networks, where the connectivity matrix needs to account for the real links among genes and discard many redundancies. Most experimental evidence suggests that real gene-gene connections represent indeed a subset of what is usually mapped onto either a huge gene vector or a typically dense and highly structured network. Inferring gene network connectivity from the expression levels represents a challenging inverse problem that is at present stimulating key research in biomedical

  10. Dictionary-based image denoising for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Mechlem, Korbinian; Allner, Sebastian; Mei, Kai; Pfeiffer, Franz; Noël, Peter B.

    2016-03-01

    Compared to conventional computed tomography (CT), dual energy CT allows for improved material decomposition by conducting measurements at two distinct energy spectra. Since radiation exposure is a major concern in clinical CT, there is a need for tools to reduce the noise level in images while preserving diagnostic information. One way to achieve this goal is the application of image-based denoising algorithms after an analytical reconstruction has been performed. We have developed a modified dictionary denoising algorithm for dual energy CT aimed at exploiting the high spatial correlation between between images obtained from different energy spectra. Both the low-and high energy image are partitioned into small patches which are subsequently normalized. Combined patches with improved signal-to-noise ratio are formed by a weighted addition of corresponding normalized patches from both images. Assuming that corresponding low-and high energy image patches are related by a linear transformation, the signal in both patches is added coherently while noise is neglected. Conventional dictionary denoising is then performed on the combined patches. Compared to conventional dictionary denoising and bilateral filtering, our algorithm achieved superior performance in terms of qualitative and quantitative image quality measures. We demonstrate, in simulation studies, that this approach can produce 2d-histograms of the high- and low-energy reconstruction which are characterized by significantly improved material features and separation. Moreover, in comparison to other approaches that attempt denoising without simultaneously using both energy signals, superior similarity to the ground truth can be found with our proposed algorithm.

  11. Biosorption properties of citrus peel derived oligogalacturonides, enzyme-modified pectin and peel hydrolysis residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A citrus processing industry priority is obtaining added value from fruit peel. Approximately one-half of each processed fruit is added to the waste stream. Peel residue mainly is composed of water (~80%), the remaining 20% (solid fraction) consists of pectin, soluble sugars, cellulose, proteins, ph...

  12. Basis Selection for Wavelet Regression

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Lau, Sonie (Technical Monitor)

    1998-01-01

    A wavelet basis selection procedure is presented for wavelet regression. Both the basis and the threshold are selected using cross-validation. The method includes the capability of incorporating prior knowledge on the smoothness (or shape of the basis functions) into the basis selection procedure. The results of the method are demonstrated on sampled functions widely used in the wavelet regression literature. The results of the method are contrasted with other published methods.

  13. Discrete wavelet analysis of power system transients

    SciTech Connect

    Wilkinson, W.A.; Cox, M.D.

    1996-11-01

    Wavelet analysis is a new method for studying power system transients. Through wavelet analysis, transients are decomposed into a series of wavelet components, each of which is a time-domain signal that covers a specific octave frequency band. This paper presents the basic ideas of discrete wavelet analysis. A variety of actual and simulated transient signals are then analyzed using the discrete wavelet transform that help demonstrate the power of wavelet analysis.

  14. Effect of chemical peeling on photocarcinogenesis.

    PubMed

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photo-aged skin. We assessed the photo-chemopreventive effect of several clinically used chemical peeling agents on the ultraviolet-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, and 10% or 35% trichloroacetic acid in distilled water at the right back of ultraviolet-irradiated hairless mice every 2 weeks for glycolic acid, salicylic acid and 10% trichloroacetic acid, and every 4 weeks for 35% trichloroacetic acid for a total of 18 weeks after the establishment of photo-aged mice by irradiation with ultraviolet B range light three times a week for 14 weeks at a total dose of 6.66 J/cm(2) . Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of p53 expression and mRNA expression of cyclooxygenase-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also in the non-treated area. Peeling suppressed retention of p53-positive abnormal cells and reduced mRNA expression of cyclooxygenase-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid and trichloroacetic acid could serve tumor prevention by removing photo-damaged cells. PMID:20860736

  15. Perceptually Lossless Wavelet Compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John

    1996-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp -1), where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We propose a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a 'perceptually lossless' quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  16. Glycolic acid peel therapy – a current review

    PubMed Central

    Sharad, Jaishree

    2013-01-01

    Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist’s arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, postinflammatory hyperpigmentation, photoaging, and seborrhea. Combination therapies and treatment procedure are also discussed. Careful review of medical history, examination of the skin, and pre-peel priming of skin are important before every peel. Proper patient selection, peel timing, and neutralization on-time will ensure good results, with no side effects. Depth of the glycolic acid peel depends on the concentration of the acid used, the number of coats applied, and the time for which it is applied. Hence, it can be used as a very superficial peel, or even a medium depth peel. It has been found to be very safe with Fitzpatrick skin types I–IV. All in all, it is a peel that is here to stay. PMID:24399880

  17. Statistical denoising of signals in the S-transform domain

    NASA Astrophysics Data System (ADS)

    Weishi, Man; Jinghuai, Gao

    2009-06-01

    In this paper, the denoising of stochastic noise in the S-transform (ST) and generalized S-transform (GST) domains is discussed. First, the mean power spectrum (MPS) of white noise is derived in the ST and GST domains. The results show that the MPS varies linearly with the frequency in the ST and GST domains (with a Gaussian window). Second, the local power spectrum (LPS) of red noise is studied by employing the Monte Carlo method in the two domains. The results suggest that the LPS of Gaussian red noise can be transformed into a chi-square distribution with two degrees of freedom. On the basis of the difference between the LPS distribution of signals and noise, a denoising method is presented through hypothesis testing. The effectiveness of the method is confirmed by testing synthetic seismic data and a chirp signal.

  18. Point Set Denoising Using Bootstrap-Based Radial Basis Function

    PubMed Central

    Ramli, Ahmad; Abd. Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study. PMID:27315105

  19. Analysis and selection of the methods for fruit image denoise

    NASA Astrophysics Data System (ADS)

    Gui, Jiangsheng; Ma, Benxue; Rao, Xiuqin; Ying, Yibin

    2007-09-01

    Applications of machine vision in automated inspection and sorting of fruits have been widely studied by scientists and. Preprocess of the fruit image is needed when it contain much noise. There are many methods for image denoise in literatures and can acquire some nice results, but which will be selected from these methods is a trouble problem. In this research, total variation (TV) and shock filter with diffusion function were introduced, and together with other 6 common used denoise method s for different type noise type were tested. The result demonstrated that when the noise type was Gaussian or random, and SNR of original image was over 8,TV method can achieve the best resume result, when the SNR of original image was under 8, Winner filter can get the best resume result; when the noise type was salt pepper, median filter can achieve the best resume result

  20. Data compression by wavelet transforms

    NASA Technical Reports Server (NTRS)

    Shahshahani, M.

    1992-01-01

    A wavelet transform algorithm is applied to image compression. It is observed that the algorithm does not suffer from the blockiness characteristic of the DCT-based algorithms at compression ratios exceeding 25:1, but the edges do not appear as sharp as they do with the latter method. Some suggestions for the improved performance of the wavelet transform method are presented.

  1. Economic analysis of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus juice industry produces about 3-4 million tons of wet peel waste per year. In current industrial practices, waste peels are dried and sold as cattle feed to offset the waste disposal cost. Profitability could be greatly improved if this amount of peel can be used to produce high...

  2. Economic analysis of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus juice industry produces about 3.5 million tons of wet peel waste per year. In current industrial practice, waste peels are dried and sold as cattle feed to offset the waste disposal cost. Profitability would be greatly improved if peels could be used to produce higher value produ...

  3. Economic analysis of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus juice industry produces about 3.5 million tons of wet peel waste per year. In current industrial practice, waste peels are dried and sold as cattle feed to offset the waste disposal cost. Profitability would be greatly improved if peel could be used to produce higher value produ...

  4. Wavelet-Based Grid Generation

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1996-01-01

    Wavelets can provide a basis set in which the basis functions are constructed by dilating and translating a fixed function known as the mother wavelet. The mother wavelet can be seen as a high pass filter in the frequency domain. The process of dilating and expanding this high-pass filter can be seen as altering the frequency range that is 'passed' or detected. The process of translation moves this high-pass filter throughout the domain, thereby providing a mechanism to detect the frequencies or scales of information at every location. This is exactly the type of information that is needed for effective grid generation. This paper provides motivation to use wavelets for grid generation in addition to providing the final product: source code for wavelet-based grid generation.

  5. Wavelet compression of medical imagery.

    PubMed

    Reiter, E

    1996-01-01

    Wavelet compression is a transform-based compression technique recently shown to provide diagnostic-quality images at compression ratios as great as 30:1. Based on a recently developed field of applied mathematics, wavelet compression has found success in compression applications from digital fingerprints to seismic data. The underlying strength of the method is attributable in large part to the efficient representation of image data by the wavelet transform. This efficient or sparse representation forms the basis for high-quality image compression by providing subsequent steps of the compression scheme with data likely to result in long runs of zero. These long runs of zero in turn compress very efficiently, allowing wavelet compression to deliver substantially better performance than existing Fourier-based methods. Although the lack of standardization has historically been an impediment to widespread adoption of wavelet compression, this situation may begin to change as the operational benefits of the technology become better known. PMID:10165355

  6. A generalized wavelet extrema representation

    SciTech Connect

    Lu, Jian; Lades, M.

    1995-10-01

    The wavelet extrema representation originated by Stephane Mallat is a unique framework for low-level and intermediate-level (feature) processing. In this paper, we present a new form of wavelet extrema representation generalizing Mallat`s original work. The generalized wavelet extrema representation is a feature-based multiscale representation. For a particular choice of wavelet, our scheme can be interpreted as representing a signal or image by its edges, and peaks and valleys at multiple scales. Such a representation is shown to be stable -- the original signal or image can be reconstructed with very good quality. It is further shown that a signal or image can be modeled as piecewise monotonic, with all turning points between monotonic segments given by the wavelet extrema. A new projection operator is introduced to enforce piecewise inonotonicity of a signal in its reconstruction. This leads to an enhancement to previously developed algorithms in preventing artifacts in reconstructed signal.

  7. Image denoising in mixed Poisson-Gaussian noise.

    PubMed

    Luisier, Florian; Blu, Thierry; Unser, Michael

    2011-03-01

    We propose a general methodology (PURE-LET) to design and optimize a wide class of transform-domain thresholding algorithms for denoising images corrupted by mixed Poisson-Gaussian noise. We express the denoising process as a linear expansion of thresholds (LET) that we optimize by relying on a purely data-adaptive unbiased estimate of the mean-squared error (MSE), derived in a non-Bayesian framework (PURE: Poisson-Gaussian unbiased risk estimate). We provide a practical approximation of this theoretical MSE estimate for the tractable optimization of arbitrary transform-domain thresholding. We then propose a pointwise estimator for undecimated filterbank transforms, which consists of subband-adaptive thresholding functions with signal-dependent thresholds that are globally optimized in the image domain. We finally demonstrate the potential of the proposed approach through extensive comparisons with state-of-the-art techniques that are specifically tailored to the estimation of Poisson intensities. We also present denoising results obtained on real images of low-count fluorescence microscopy. PMID:20840902

  8. Denoising Sparse Images from GRAPPA using the Nullspace Method (DESIGN)

    PubMed Central

    Weller, Daniel S.; Polimeni, Jonathan R.; Grady, Leo; Wald, Lawrence L.; Adalsteinsson, Elfar; Goyal, Vivek K

    2011-01-01

    To accelerate magnetic resonance imaging using uniformly undersampled (nonrandom) parallel imaging beyond what is achievable with GRAPPA alone, the Denoising of Sparse Images from GRAPPA using the Nullspace method (DESIGN) is developed. The trade-off between denoising and smoothing the GRAPPA solution is studied for different levels of acceleration. Several brain images reconstructed from uniformly undersampled k-space data using DESIGN are compared against reconstructions using existing methods in terms of difference images (a qualitative measure), PSNR, and noise amplification (g-factors) as measured using the pseudo-multiple replica method. Effects of smoothing, including contrast loss, are studied in synthetic phantom data. In the experiments presented, the contrast loss and spatial resolution are competitive with existing methods. Results for several brain images demonstrate significant improvements over GRAPPA at high acceleration factors in denoising performance with limited blurring or smoothing artifacts. In addition, the measured g-factors suggest that DESIGN mitigates noise amplification better than both GRAPPA and L1 SPIR-iT (the latter limited here by uniform undersampling). PMID:22213069

  9. Mother wavelets for complex wavelet transform derived by Einstein-Podolsky-Rosen entangled state representation.

    PubMed

    Fan, Hong-Yi; Lu, Hai-Liang

    2007-03-01

    The Einstein-Podolsky-Rosen entangled state representation is applied to studying the admissibility condition of mother wavelets for complex wavelet transforms, which leads to a family of new mother wavelets. Mother wavelets thus are classified as the Hermite-Gaussian type for real wavelet transforms and the Laguerre-Gaussian type for the complex case. PMID:17392919

  10. Wavelet periodicity detection algorithms

    NASA Astrophysics Data System (ADS)

    Benedetto, John J.; Pfander, Goetz E.

    1998-10-01

    This paper deals with the analysis of time series with respect to certain known periodicities. In particular, we shall present a fast method aimed at detecting periodic behavior inherent in noise data. The method is composed of three steps: (1) Non-noisy data are analyzed through spectral and wavelet methods to extract specific periodic patterns of interest. (2) Using these patterns, we construct an optimal piecewise constant wavelet designed to detect the underlying periodicities. (3) We introduce a fast discretized version of the continuous wavelet transform, as well as waveletgram averaging techniques, to detect occurrence and period of these periodicities. The algorithm is formulated to provide real time implementation. Our procedure is generally applicable to detect locally periodic components in signals s which can be modeled as s(t) equals A(t)F(h(t)) + N(t) for t in I, where F is a periodic signal, A is a non-negative slowly varying function, and h is strictly increasing with h' slowly varying, N denotes background activity. For example, the method can be applied in the context of epileptic seizure detection. In this case, we try to detect seizure periodics in EEG and ECoG data. In the case of ECoG data, N is essentially 1/f noise. In the case of EEG data and for t in I,N includes noise due to cranial geometry and densities. In both cases N also includes standard low frequency rhythms. Periodicity detection has other applications including ocean wave prediction, cockpit motion sickness prediction, and minefield detection.

  11. Wavelets and spacetime squeeze

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.; Noz, Marilyn E.

    1993-01-01

    It is shown that the wavelet is the natural language for the Lorentz covariant description of localized light waves. A model for covariant superposition is constructed for light waves with different frequencies. It is therefore possible to construct a wave function for light waves carrying a covariant probability interpretation. It is shown that the time-energy uncertainty relation (Delta(t))(Delta(w)) is approximately 1 for light waves is a Lorentz-invariant relation. The connection between photons and localized light waves is examined critically.

  12. An Introduction to Wavelet Theory and Analysis

    SciTech Connect

    Miner, N.E.

    1998-10-01

    This report reviews the history, theory and mathematics of wavelet analysis. Examination of the Fourier Transform and Short-time Fourier Transform methods provides tiormation about the evolution of the wavelet analysis technique. This overview is intended to provide readers with a basic understanding of wavelet analysis, define common wavelet terminology and describe wavelet amdysis algorithms. The most common algorithms for performing efficient, discrete wavelet transforms for signal analysis and inverse discrete wavelet transforms for signal reconstruction are presented. This report is intended to be approachable by non- mathematicians, although a basic understanding of engineering mathematics is necessary.

  13. Denoised and texture enhanced MVCT to improve soft tissue conspicuity

    SciTech Connect

    Sheng, Ke Qi, Sharon X.; Gou, Shuiping; Wu, Jiaolong

    2014-10-15

    Purpose: MVCT images have been used in TomoTherapy treatment to align patients based on bony anatomies but its usefulness for soft tissue registration, delineation, and adaptive radiation therapy is limited due to insignificant photoelectric interaction components and the presence of noise resulting from low detector quantum efficiency of megavoltage x-rays. Algebraic reconstruction with sparsity regularizers as well as local denoising methods has not significantly improved the soft tissue conspicuity. The authors aim to utilize a nonlocal means denoising method and texture enhancement to recover the soft tissue information in MVCT (DeTECT). Methods: A block matching 3D (BM3D) algorithm was adapted to reduce the noise while keeping the texture information of the MVCT images. Following imaging denoising, a saliency map was created to further enhance visual conspicuity of low contrast structures. In this study, BM3D and saliency maps were applied to MVCT images of a CT imaging quality phantom, a head and neck, and four prostate patients. Following these steps, the contrast-to-noise ratios (CNRs) were quantified. Results: By applying BM3D denoising and saliency map, postprocessed MVCT images show remarkable improvements in imaging contrast without compromising resolution. For the head and neck patient, the difficult-to-see lymph nodes and vein in the carotid space in the original MVCT image became conspicuous in DeTECT. For the prostate patients, the ambiguous boundary between the bladder and the prostate in the original MVCT was clarified. The CNRs of phantom low contrast inserts were improved from 1.48 and 3.8 to 13.67 and 16.17, respectively. The CNRs of two regions-of-interest were improved from 1.5 and 3.17 to 3.14 and 15.76, respectively, for the head and neck patient. DeTECT also increased the CNR of prostate from 0.13 to 1.46 for the four prostate patients. The results are substantially better than a local denoising method using anisotropic diffusion

  14. Rejuvenation of the skin surface: chemical peel and dermabrasion.

    PubMed

    Branham, G H; Thomas, J R

    1996-04-01

    Chemical peel and dermabrasion are traditional, well-proven methods for the rejuvenation of the skin. The medium-depth trichloroacetic acid peel and the deep phenol peel offer distinct advantages and disadvantages and are discussed in detail in this article. The management of complications associated with both peel techniques is also discussed. Regional dermabrasion is an effective adjunct to facial rejuvenative surgery, such as face lift and blepharoplasty. Full-face dermabrasion and spot or local dermabrasion are most often used in the treatment of facial scarring. The technique of dermabrasion is discussed as well as its indications and postoperative care. Results are shown for both dermabrasion and peel. PMID:9220727

  15. Antioxidative activity of bound-form phenolics in potato peel.

    PubMed

    Nara, Kazuhiro; Miyoshi, Takayuki; Honma, Tamaki; Koga, Hidenori

    2006-06-01

    Free and bound-form phenolics were isolated from potato (cv. Toyoshiro) flesh and peel. The free and bound-form phenolics in the peel showed high DPPH radical scavenging activity, while those in the flesh showed low activity. The total amount of chlorogenic acid and caffeic acid in the free-form phenolics from the peel was highly correlated with the DPPH radical scavenging activity. Ferulic acid was identified as the active radical scavenging compound in the bound-form phenolics from the peel. The potato peel may therefore offer an effective source of an antioxidative. PMID:16794331

  16. Peeling Instability in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Fonck, R. J.; Redd, A. J.; Schlossberg, D. J.

    2011-10-01

    Ohmic plasmas in PEGASUS are often initially unstable to peeling modes, an instability underlying deleterious edge localized mode (ELM) activity in fusion-grade plasmas. These edge-localized instabilities are observed under conditions of high parallel edge current density (J∥ ~ 0 . 1 MA/m2) and low magnetic field (B ~ 0 . 1 T) present at near-unity aspect ratio, corresponding to high peeling instability drive (~J∥ / B) . They generate electromagnetic MHD activity with low toroidal mode numbers n <= 3 and ELM-like, field-aligned edge filaments with high poloidal coherence that detach from the plasma and propagate outward. The modest edge temperatures and short pulse lengths of PEGASUS discharges permit time-resolved measurements of the edge current density profile Jedge using an insertable Hall probe. Peeling MHD fluctuation amplitudes scale strongly with measured J∥ / B , consistent with theory. Ideal stability analysis of Hall-constrained equilibrium reconstructions with DCON finds instability to peeling modes. Filaments form from an initial Jedge ``current-hole'' perturbation and carry currents ~100-250 A. Their radial trajectories feature transient acceleration due to magnetostatic repulsion followed by constant-velocity motion, consistent with models of ELM dynamics. Work supported by US DOE Grant DE-FG02-96ER54375.

  17. An Ap"peel"ing Activity

    ERIC Educational Resources Information Center

    Urich, Joshua A.; Sasse, Elizabeth A.

    2011-01-01

    This article describes a hands-on mathematics activity wherein students peel oranges to explore the surface area and volume of a sphere. This activity encourages students to make conjectures and hold mathematical discussions with both their peers and their teacher. Moreover, students develop formulas for the surface area and volume of a sphere…

  18. Extraction of phenolics from pomegranate peels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of different solvents, temperature conditions, solvent-solid ratios and particle sizes on solid-solvent extraction of the total phenolics, proanthocyanidins and flavonoids herein also referred to as antioxidant from pomegranate marc peel (PMP) was studied. Water, methanol, ethanol, aceto...

  19. Wavelet networks for face processing

    NASA Astrophysics Data System (ADS)

    Krüger, V.; Sommer, G.

    2002-06-01

    Wavelet networks (WNs) were introduced in 1992 as a combination of artificial neural radial basis function (RBF) networks and wavelet decomposition. Since then, however, WNs have received only a little attention. We believe that the potential of WNs has been generally underestimated. WNs have the advantage that the wavelet coefficients are directly related to the image data through the wavelet transform. In addition, the parameters of the wavelets in the WNs are subject to optimization, which results in a direct relation between the represented function and the optimized wavelets, leading to considerable data reduction (thus making subsequent algorithms much more efficient) as well as to wavelets that can be used as an optimized filter bank. In our study we analyze some WN properties and highlight their advantages for object representation purposes. We then present a series of results of experiments in which we used WNs for face tracking. We exploit the efficiency that is due to data reduction for face recognition and face-pose estimation by applying the optimized-filter-bank principle of the WNs.

  20. Wavelet transform and Huffman coding based electrocardiogram compression algorithm: Application to telecardiology

    NASA Astrophysics Data System (ADS)

    Chouakri, S. A.; Djaafri, O.; Taleb-Ahmed, A.

    2013-08-01

    We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly.

  1. Improvement of wavelet threshold filtered back-projection image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-11-01

    Image reconstruction technique has been applied into many fields including some medical imaging, such as X ray computer tomography (X-CT), positron emission tomography (PET) and nuclear magnetic resonance imaging (MRI) etc, but the reconstructed effects are still not satisfied because original projection data are inevitably polluted by noises in process of image reconstruction. Although some traditional filters e.g., Shepp-Logan (SL) and Ram-Lak (RL) filter have the ability to filter some noises, Gibbs oscillation phenomenon are generated and artifacts leaded by back-projection are not greatly improved. Wavelet threshold denoising can overcome the noises interference to image reconstruction. Since some inherent defects exist in the traditional soft and hard threshold functions, an improved wavelet threshold function combined with filtered back-projection (FBP) algorithm was proposed in this paper. Four different reconstruction algorithms were compared in simulated experiments. Experimental results demonstrated that this improved algorithm greatly eliminated the shortcomings of un-continuity and large distortion of traditional threshold functions and the Gibbs oscillation. Finally, the availability of this improved algorithm was verified from the comparison of two evaluation criterions, i.e. mean square error (MSE), peak signal to noise ratio (PSNR) among four different algorithms, and the optimum dual threshold values of improved wavelet threshold function was gotten.

  2. Chemical Peels for Melasma in Dark-Skinned Patients

    PubMed Central

    Sarkar, Rashmi; Bansal, Shuchi; Garg, Vijay K

    2012-01-01

    Melasma is a common disorder of hyperpigmentation, which has a severe impact on the quality of life. Inspite of tremendous research, the treatment remains frustrating both to the patient and the treating physician. Dark skin types (Fitzpatrick types IV to VI) are especially difficult to treat owing to the increased risk of post-inflammatory hyperpigmentation (PIH). The treatment ranges from a variety of easily applied topical therapies to agents like lasers and chemical peels. Peels are a well-known modality of treatment for melasma, having shown promising results in many clinical trials. However, in darker races, the choice of the peeling agent becomes relatively limited; so, there is the need for priming agents and additional maintenance peels. Although a number of new agents have come up, there is little published evidence supporting their use in day-to -day practice. The traditional glycolic peels prove to be the best both in terms of safety as well as efficacy. Lactic acid peels being relatively inexpensive and having shown equally good results in a few studies, definitely need further experimentation. We also recommend the use of a new peeling agent, the easy phytic solution, which does not require neutralisation unlike the traditional alpha-hydroxy peels. The choice of peeling agent, the peel concentration as well as the frequency and duration of peels are all important to achieve optimum results. PMID:23378706

  3. Why are wavelets so effective

    SciTech Connect

    Resnikoff, H.L. )

    1993-01-01

    The theory of compactly supported wavelets is now 4 yr old. In that short period, it has stimulated significant research in pure mathematics; has been the source of new numerical methods for the solution of nonlinear partial differential equations, including Navier-Stokes; and has been applied to digital signal-processing problems, ranging from signal detection and classification to signal compression for speech, audio, images, seismic signals, and sonar. Wavelet channel coding has even been proposed for code division multiple access digital telephony. In each of these applications, prototype wavelet solutions have proved to be competitive with established methods, and in many cases they are already superior.

  4. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  5. Generalized orthogonal wavelet phase reconstruction.

    PubMed

    Axtell, Travis W; Cristi, Roberto

    2013-05-01

    Phase reconstruction is used for feedback control in adaptive optics systems. To achieve performance metrics for high actuator density or with limited processing capabilities on spacecraft, a wavelet signal processing technique is advantageous. Previous derivations of this technique have been limited to the Haar wavelet. This paper derives the relationship and algorithms to reconstruct phase with O(n) computational complexity for wavelets with the orthogonal property. This has additional benefits for performance with noise in the measurements. We also provide details on how to handle the boundary condition for telescope apertures. PMID:23695316

  6. A New Method for Nonlocal Means Image Denoising Using Multiple Images

    PubMed Central

    Wang, Xingzheng; Wang, Haoqian; Yang, Jiangfeng; Zhang, Yongbing

    2016-01-01

    The basic principle of nonlocal means is to denoise a pixel using the weighted average of the neighbourhood pixels, while the weight is decided by the similarity of these pixels. The key issue of the nonlocal means method is how to select similar patches and design the weight of them. There are two main contributions of this paper: The first contribution is that we use two images to denoise the pixel. These two noised images are with the same noise deviation. Instead of using only one image, we calculate the weight from two noised images. After the first denoising process, we get a pre-denoised image and a residual image. The second contribution is combining the nonlocal property between residual image and pre-denoised image. The improved nonlocal means method pays more attention on the similarity than the original one, which turns out to be very effective in eliminating gaussian noise. Experimental results with simulated data are provided. PMID:27459293

  7. Phase-aware candidate selection for time-of-flight depth map denoising

    NASA Astrophysics Data System (ADS)

    Hach, Thomas; Seybold, Tamara; Böttcher, Hendrik

    2015-03-01

    This paper presents a new pre-processing algorithm for Time-of-Flight (TOF) depth map denoising. Typically, denoising algorithms use the raw depth map as it comes from the sensor. Systematic artifacts due to the measurement principle are not taken into account which degrades the denoising results. For phase measurement TOF sensing, a major artifact is observed as salt-and-pepper noise caused by the measurement's ambiguity. Our pre-processing algorithm is able to isolate and unwrap affected pixels deploying the physical behavior of the capturing system yielding Gaussian noise. Using this pre-processing method before applying the denoising step clearly improves the parameter estimation for the denoising filter together with its final results.

  8. Blind source separation based x-ray image denoising from an image sequence

    NASA Astrophysics Data System (ADS)

    Yu, Chun-Yu; Li, Yan; Fei, Bin; Li, Wei-Liang

    2015-09-01

    Blind source separation (BSS) based x-ray image denoising from an image sequence is proposed. Without priori knowledge, the useful image signal can be separated from an x-ray image sequence, for original images are supposed as different combinations of stable image signal and random image noise. The BSS algorithms such as fixed-point independent component analysis and second-order statistics singular value decomposition are used and compared with multi-frame averaging which is a common algorithm for improving image's signal-to-noise ratio (SNR). Denoising performance is evaluated in SNR, standard deviation, entropy, and runtime. Analysis indicates that BSS is applicable to image denoising; the denoised image's quality will get better when more frames are included in an x-ray image sequence, but it will cost more time; there should be trade-off between denoising performance and runtime, which means that the number of frames included in an image sequence is enough.

  9. Nonlocal two dimensional denoising of frequency specific chirp evoked ABR single trials.

    PubMed

    Schubert, J Kristof; Teuber, Tanja; Steidl, Gabriele; Strauss, Daniel J; Corona-Strauss, Farah I

    2012-01-01

    Recently, we have shown that denoising evoked potential (EP) images is possible using two dimensional diffusion filtering methods. This restoration allows for an integration of regularities over multiple stimulations into the denoising process. In the present work we propose the nonlocal means (NLM) method for EP image denoising. The EP images were constructed using auditory brainstem responses (ABR) collected in young healthy subjects using frequency specific and broadband chirp stimulations. It is concluded that the NLM method is more efficient than conventional approaches in EP imaging denoising, specially in the case of ABRs, where the relevant information can be easily masked by the ongoing EEG activity, i.e., signals suffer from rather low signal-to-noise ratio SNR. The proposed approach is for the a posteriori denoising of single trials after the experiment and not for real time applications. PMID:23366439

  10. Wavelet theory and its applications

    SciTech Connect

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  11. A signal invariant wavelet function selection algorithm.

    PubMed

    Garg, Girisha

    2016-04-01

    This paper addresses the problem of mother wavelet selection for wavelet signal processing in feature extraction and pattern recognition. The problem is formulated as an optimization criterion, where a wavelet library is defined using a set of parameters to find the best mother wavelet function. For estimating the fitness function, adopted to evaluate the performance of the wavelet function, analysis of variance is used. Genetic algorithm is exploited to optimize the determination of the best mother wavelet function. For experimental evaluation, solutions for best mother wavelet selection are evaluated on various biomedical signal classification problems, where the solutions of the proposed algorithm are assessed and compared with manual hit-and-trial methods. The results show that the solutions of automated mother wavelet selection algorithm are consistent with the manual selection of wavelet functions. The algorithm is found to be invariant to the type of signals used for classification. PMID:26253283

  12. PDE-based Non-Linear Diffusion Techniques for Denoising Scientific and Industrial Images: An Empirical Study

    SciTech Connect

    Weeratunga, S K; Kamath, C

    2001-12-20

    Removing noise from data is often the first step in data analysis. Denoising techniques should not only reduce the noise, but do so without blurring or changing the location of the edges. Many approaches have been proposed to accomplish this; in this paper, they focus on one such approach, namely the use of non-linear diffusion operators. This approach has been studied extensively from a theoretical viewpoint ever since the 1987 work of Perona and Malik showed that non-linear filters outperformed the more traditional linear Canny edge detector. They complement this theoretical work by investigating the performance of several isotropic diffusion operators on test images from scientific domains. They explore the effects of various parameters such as the choice of diffusivity function, explicit and implicit methods for the discretization of the PDE, and approaches for the spatial discretization of the non-linear operator etc. They also compare these schemes with simple spatial filters and the more complex wavelet-based shrinkage techniques. The empirical results show that, with an appropriate choice of parameters, diffusion-based schemes can be as effective as competitive techniques.

  13. A novel method for image denoising of fluorescence molecular imaging based on fuzzy C-Means clustering

    NASA Astrophysics Data System (ADS)

    An, Yu; Liu, Jie; Ye, Jinzuo; Mao, Yamin; Yang, Xin; Jiang, Shixin; Chi, Chongwei; Tian, Jie

    2015-03-01

    As an important molecular imaging modality, fluorescence molecular imaging (FMI) has the advantages of high sensitivity, low cost and ease of use. By labeling the regions of interest with fluorophore, FMI can noninvasively obtain the distribution of fluorophore in-vivo. However, due to the fact that the spectrum of fluorescence is in the section of the visible light range, there are mass of autofluorescence on the surface of the bio-tissues, which is a major disturbing factor in FMI. Meanwhile, the high-level of dark current for charge-coupled device (CCD) camera and other influencing factor can also produce a lot of background noise. In this paper, a novel method for image denoising of FMI based on fuzzy C-Means clustering (FCM) is proposed, because the fluorescent signal is the major component of the fluorescence images, and the intensity of autofluorescence and other background signals is relatively lower than the fluorescence signal. First, the fluorescence image is smoothed by sliding-neighborhood operations to initially eliminate the noise. Then, the wavelet transform (WLT) is performed on the fluorescence images to obtain the major component of the fluorescent signals. After that, the FCM method is adopt to separate the major component and background of the fluorescence images. Finally, the proposed method was validated using the original data obtained by in vivo implanted fluorophore experiment, and the results show that our proposed method can effectively obtain the fluorescence signal while eliminate the background noise, which could increase the quality of fluorescence images.

  14. Heart Disease Detection Using Wavelets

    NASA Astrophysics Data System (ADS)

    González S., A.; Acosta P., J. L.; Sandoval M., M.

    2004-09-01

    We develop a wavelet based method to obtain standardized gray-scale chart of both healthy hearts and of hearts suffering left ventricular hypertrophy. The hypothesis that early bad functioning of heart can be detected must be tested by comparing the wavelet analysis of the corresponding ECD with the limit cases. Several important parameters shall be taken into account such as age, sex and electrolytic changes.

  15. Low-Oscillation Complex Wavelets

    NASA Astrophysics Data System (ADS)

    ADDISON, P. S.; WATSON, J. N.; FENG, T.

    2002-07-01

    In this paper we explore the use of two low-oscillation complex wavelets—Mexican hat and Morlet—as powerful feature detection tools for data analysis. These wavelets, which have been largely ignored to date in the scientific literature, allow for a decomposition which is more “temporal than spectral” in wavelet space. This is shown to be useful for the detection of small amplitude, short duration signal features which are masked by much larger fluctuations. Wavelet transform-based methods employing these wavelets (based on both wavelet ridges and modulus maxima) are developed and applied to sonic echo NDT signals used for the analysis of structural elements. A new mobility scalogram and associated reflectogram is defined for analysis of impulse response characteristics of structural elements and a novel signal compression technique is described in which the pertinent signal information is contained within a few modulus maxima coefficients. As an example of its usefulness, the signal compression method is employed as a pre-processor for a neural network classifier. The authors believe that low oscillation complex wavelets have wide applicability to other practical signal analysis problems. Their possible application to two such problems is discussed briefly—the interrogation of arrhythmic ECG signals and the detection and characterization of coherent structures in turbulent flow fields.

  16. Wavelet analysis in virtual colonoscopy

    NASA Astrophysics Data System (ADS)

    Greenblum, Sharon; Li, Jiang; Huang, Adam; Summers, Ronald M.

    2006-03-01

    The computed tomographic colonography (CTC) computer aided detection (CAD) program is a new method in development to detect colon polyps in virtual colonoscopy. While high sensitivity is consistently achieved, additional features are desired to increase specificity. In this paper, a wavelet analysis was applied to CTCCAD outputs in an attempt to filter out false positive detections. 52 CTCCAD detection images were obtained using a screen capture application. 26 of these images were real polyps, confirmed by optical colonoscopy and 26 were false positive detections. A discrete wavelet transform of each image was computed with the MATLAB wavelet toolbox using the Haar wavelet at levels 1-5 in the horizontal, vertical and diagonal directions. From the resulting wavelet coefficients at levels 1-3 for all directions, a 72 feature vector was obtained for each image, consisting of descriptive statistics such as mean, variance, skew, and kurtosis at each level and orientation, as well as error statistics based on a linear predictor of neighboring wavelet coefficients. The vectors for each of the 52 images were then run through a support vector machine (SVM) classifier using ten-fold cross-validation training to determine its efficiency in distinguishing polyps from false positives. The SVM results showed 100% sensitivity and 51% specificity in correctly identifying the status of detections. If this technique were added to the filtering process of the CTCCAD polyp detection scheme, the number of false positive results could be reduced significantly.

  17. Wavelet-based polarimetry analysis

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Harrity, Kyle; Farag, Waleed; Alford, Mark; Ferris, David; Blasch, Erik

    2014-06-01

    Wavelet transformation has become a cutting edge and promising approach in the field of image and signal processing. A wavelet is a waveform of effectively limited duration that has an average value of zero. Wavelet analysis is done by breaking up the signal into shifted and scaled versions of the original signal. The key advantage of a wavelet is that it is capable of revealing smaller changes, trends, and breakdown points that are not revealed by other techniques such as Fourier analysis. The phenomenon of polarization has been studied for quite some time and is a very useful tool for target detection and tracking. Long Wave Infrared (LWIR) polarization is beneficial for detecting camouflaged objects and is a useful approach when identifying and distinguishing manmade objects from natural clutter. In addition, the Stokes Polarization Parameters, which are calculated from 0°, 45°, 90°, 135° right circular, and left circular intensity measurements, provide spatial orientations of target features and suppress natural features. In this paper, we propose a wavelet-based polarimetry analysis (WPA) method to analyze Long Wave Infrared Polarimetry Imagery to discriminate targets such as dismounts and vehicles from background clutter. These parameters can be used for image thresholding and segmentation. Experimental results show the wavelet-based polarimetry analysis is efficient and can be used in a wide range of applications such as change detection, shape extraction, target recognition, and feature-aided tracking.

  18. Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting

    PubMed Central

    Yu, Zeyun

    2012-01-01

    We propose in this paper a robust surface mesh denoising method that can effectively remove mesh noise while faithfully preserving sharp features. This method utilizes surface fitting and projection techniques. Sharp features are preserved in the surface fitting algorithm by considering an anisotropic neighborhood of each vertex detected by the normal-weighted distance. In addition, to handle the mesh with a high level of noise, we perform a pre-filtering of surface normals prior to the neighborhood searching. A number of experimental results and comparisons demonstrate the excellent performance of our method in preserving important surface geometries while filtering mesh noise. PMID:22328806

  19. Singularity detection by wavelet approach: application to electrocardiogram signal

    NASA Astrophysics Data System (ADS)

    Jalil, Bushra; Beya, Ouadi; Fauvet, Eric; Laligant, Olivier

    2010-01-01

    In signal processing, the region of abrupt changes contains the most of the useful information about the nature of the signal. The region or the points where these changes occurred are often termed as singular point or singular region. The singularity is considered to be an important character of the signal, as it refers to the discontinuity and interruption present in the signal and the main purpose of the detection of such singular point is to identify the existence, location and size of those singularities. Electrocardiogram (ECG) signal is used to analyze the cardiovascular activity in the human body. However the presence of noise due to several reasons limits the doctor's decision and prevents accurate identification of different pathologies. In this work we attempt to analyze the ECG signal with energy based approach and some heuristic methods to segment and identify different signatures inside the signal. ECG signal has been initially denoised by empirical wavelet shrinkage approach based on Steins Unbiased Risk Estimate (SURE). At the second stage, the ECG signal has been analyzed by Mallat approach based on modulus maximas and Lipschitz exponent computation. The results from both approaches has been discussed and important aspects has been highlighted. In order to evaluate the algorithm, the analysis has been done on MIT-BIH Arrhythmia database; a set of ECG data records sampled at a rate of 360 Hz with 11 bit resolution over a 10mv range. The results have been examined and approved by medical doctors.

  20. Tests for Wavelets as a Basis Set

    NASA Astrophysics Data System (ADS)

    Baker, Thomas; Evenbly, Glen; White, Steven

    A wavelet transformation is a special type of filter usually reserved for image processing and other applications. We develop metrics to evaluate wavelets for general problems on test one-dimensional systems. The goal is to eventually use a wavelet basis in electronic structure calculations. We compare a variety of orthogonal wavelets such as coiflets, symlets, and daubechies wavelets. We also evaluate a new type of orthogonal wavelet with dilation factor three which is both symmetric and compact in real space. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #DE-SC008696.

  1. General inversion formulas for wavelet transforms

    NASA Astrophysics Data System (ADS)

    Holschneider, Matthias

    1993-09-01

    This article is the continuation of a series of articles about group theory and wavelet analysis [A. Grossmann, J. Morlet, and T. Paul, J. Math. Phys. 26, 2473 (1985)]. As is well-known in the case of the afine group, the reconstruction wavelet and the analyzing wavelet need not be identic. In this article it is shown that this holds for arbitrary groups. In addition it is shown that even for nonadmissible analyzing wavelets the wavelet transform may be inverted. Accordingly the image of the wavelet transform can be characterized by many different reproducing kernels.

  2. Research on power-law acoustic transient signal detection based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  3. Identification of weak ultrasonic signals in testing of metallic materials using wavelet transform

    NASA Astrophysics Data System (ADS)

    Fan, Xianfeng; Zuo, Ming J.; Wang, Xiaodong

    2006-12-01

    Non-destructive testing using ultrasonic signals has been widely employed to detect material damage and prevent accidents. A collected ultrasonic signal may be noisy and weak because of the grains in materials, incomplete contact between transducers and the mounting surface, and the long transmission path. Stationary wavelet transform has been applied together with kurtosis and universal de-noising to analyze ultrasonic signals in an attempt to identify the weak signals encountered in testing of metallic materials. The time-of-flight of signal in a metallic material is estimated by cross-correlation analysis. Application of the method is demonstrated through the ultrasonic testing of a thin steel plate with a slot.

  4. Classification of acoustic emission signals using wavelets and Random Forests : Application to localized corrosion

    NASA Astrophysics Data System (ADS)

    Morizet, N.; Godin, N.; Tang, J.; Maillet, E.; Fregonese, M.; Normand, B.

    2016-03-01

    This paper aims to propose a novel approach to classify acoustic emission (AE) signals deriving from corrosion experiments, even if embedded into a noisy environment. To validate this new methodology, synthetic data are first used throughout an in-depth analysis, comparing Random Forests (RF) to the k-Nearest Neighbor (k-NN) algorithm. Moreover, a new evaluation tool called the alter-class matrix (ACM) is introduced to simulate different degrees of uncertainty on labeled data for supervised classification. Then, tests on real cases involving noise and crevice corrosion are conducted, by preprocessing the waveforms including wavelet denoising and extracting a rich set of features as input of the RF algorithm. To this end, a software called RF-CAM has been developed. Results show that this approach is very efficient on ground truth data and is also very promising on real data, especially for its reliability, performance and speed, which are serious criteria for the chemical industry.

  5. A method for predicting DCT-based denoising efficiency for grayscale images corrupted by AWGN and additive spatially correlated noise

    NASA Astrophysics Data System (ADS)

    Rubel, Aleksey S.; Lukin, Vladimir V.; Egiazarian, Karen O.

    2015-03-01

    Results of denoising based on discrete cosine transform for a wide class of images corrupted by additive noise are obtained. Three types of noise are analyzed: additive white Gaussian noise and additive spatially correlated Gaussian noise with middle and high correlation levels. TID2013 image database and some additional images are taken as test images. Conventional DCT filter and BM3D are used as denoising techniques. Denoising efficiency is described by PSNR and PSNR-HVS-M metrics. Within hard-thresholding denoising mechanism, DCT-spectrum coefficient statistics are used to characterize images and, subsequently, denoising efficiency for them. Results of denoising efficiency are fitted for such statistics and efficient approximations are obtained. It is shown that the obtained approximations provide high accuracy of prediction of denoising efficiency.

  6. Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients

    NASA Astrophysics Data System (ADS)

    Krishnaveni, V.; Jayaraman, S.; Anitha, L.; Ramadoss, K.

    2006-12-01

    Electroencephalogram (EEG) gives researchers a non-invasive way to record cerebral activity. It is a valuable tool that helps clinicians to diagnose various neurological disorders and brain diseases. Blinking or moving the eyes produces large electrical potential around the eyes known as electrooculogram. It is a non-cortical activity which spreads across the scalp and contaminates the EEG recordings. These contaminating potentials are called ocular artifacts (OAs). Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the possible experimental designs and may affect the cognitive processes under investigation. In this paper, a nonlinear time-scale adaptive denoising system based on a wavelet shrinkage scheme has been used for removing OAs from EEG. The time-scale adaptive algorithm is based on Stein's unbiased risk estimate (SURE) and a soft-like thresholding function which searches for optimal thresholds using a gradient based adaptive algorithm is used. Denoising EEG with the proposed algorithm yields better results in terms of ocular artifact reduction and retention of background EEG activity compared to non-adaptive thresholding methods and the JADE algorithm.

  7. Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis).

    PubMed

    Dai, Qiong; Cheng, Jun-Hu; Sun, Da-Wen; Zhu, Zhiwei; Pu, Hongbin

    2016-04-15

    A visible/near-infrared hyperspectral imaging (HSI) system (400-1000 nm) coupled with wavelet analysis was used to determine the total volatile basic nitrogen (TVB-N) contents of prawns during cold storage. Spectral information was denoised by conducting wavelet analysis and uninformative variable elimination (UVE) algorithm, and then three wavelet features (energy, entropy and modulus maxima) were extracted. Quantitative models were established between the wavelet features and the reference TVB-N contents by using three regression algorithms. As a result, the LS-SVM model with modulus maxima features was considered as the best model for determining the TVB-N contents of prawns, with an excellent RP(2) of 0.9547, RMSEP=0.7213 mg N/100g and RPD=4.799. Finally, an image processing algorithm was developed for generating a TVB-N distribution map. This study demonstrated the possibility of applying the HSI imaging system in combination with wavelet analysis to the monitoring of TVB-N values in prawns. PMID:26616948

  8. Apparatus Tests Peeling Of Bonded Rubbery Material

    NASA Technical Reports Server (NTRS)

    Crook, Russell A.; Graham, Robert

    1996-01-01

    Instrumented hydraulic constrained blister-peel apparatus obtains data on degree of bonding between specimen of rubbery material and rigid plate. Growth of blister tracked by video camera, digital clock, pressure transducer, and piston-displacement sensor. Cylinder pressure controlled by hydraulic actuator system. Linear variable-differential transformer (LVDT) and float provide second, independent measure of change in blister volume used as more precise volume feedback in low-growth-rate test.

  9. Peeling of multilayer graphene creates complex interlayer sliding patterns

    NASA Astrophysics Data System (ADS)

    Korhonen, Topi; Koskinen, Pekka

    2015-09-01

    Peeling, shearing, and sliding are important mechanical phenomena in van der Waals solids. However, theoretically they have been studied mostly using minimal periodic cells and in the context of accurate quantum simulations. Here we investigate the peeling of large-scale multilayer graphene stacks with varying thicknesses, stackings, and peeling directions by using classical molecular dynamics simulations with a registry-dependent interlayer potential. Simulations show that, while at large scale the peeling proceeds smoothly, at small scale the registry shifts and sliding patterns of the layers are unexpectedly intricate and depend both on the initial stacking and on the peeling direction. These observations indicate that peeling and concomitant kink formations may well transform stacking order and thereby profoundly influence the electronic structures of such multilayer solids.

  10. Noise distribution and denoising of current density images

    PubMed Central

    Beheshti, Mohammadali; Foomany, Farbod H.; Magtibay, Karl; Jaffray, David A.; Krishnan, Sridhar; Nanthakumar, Kumaraswamy; Umapathy, Karthikeyan

    2015-01-01

    Abstract. Current density imaging (CDI) is a magnetic resonance (MR) imaging technique that could be used to study current pathways inside the tissue. The current distribution is measured indirectly as phase changes. The inherent noise in the MR imaging technique degrades the accuracy of phase measurements leading to imprecise current variations. The outcome can be affected significantly, especially at a low signal-to-noise ratio (SNR). We have shown the residual noise distribution of the phase to be Gaussian-like and the noise in CDI images approximated as a Gaussian. This finding matches experimental results. We further investigated this finding by performing comparative analysis with denoising techniques, using two CDI datasets with two different currents (20 and 45 mA). We found that the block-matching and three-dimensional (BM3D) technique outperforms other techniques when applied on current density (J). The minimum gain in noise power by BM3D applied to J compared with the next best technique in the analysis was found to be around 2 dB per pixel. We characterize the noise profile in CDI images and provide insights on the performance of different denoising techniques when applied at two different stages of current density reconstruction. PMID:26158100

  11. Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization

    PubMed Central

    Liao, Chien-Sheng; Choi, Joon Hee; Zhang, Delong; Chan, Stanley H.; Cheng, Ji-Xin

    2016-01-01

    High-speed coherent Raman scattering imaging is opening a new avenue to unveiling the cellular machinery by visualizing the spatio-temporal dynamics of target molecules or intracellular organelles. By extracting signals from the laser at MHz modulation frequency, current stimulated Raman scattering (SRS) microscopy has reached shot noise limited detection sensitivity. The laser-based local oscillator in SRS microscopy not only generates high levels of signal, but also delivers a large shot noise which degrades image quality and spectral fidelity. Here, we demonstrate a denoising algorithm that removes the noise in both spatial and spectral domains by total variation minimization. The signal-to-noise ratio of SRS spectroscopic images was improved by up to 57 times for diluted dimethyl sulfoxide solutions and by 15 times for biological tissues. Weak Raman peaks of target molecules originally buried in the noise were unraveled. Coupling the denoising algorithm with multivariate curve resolution allowed discrimination of fat stores from protein-rich organelles in C. elegans. Together, our method significantly improved detection sensitivity without frame averaging, which can be useful for in vivo spectroscopic imaging. PMID:26955400

  12. A total variation denoising algorithm for hyperspectral data

    NASA Astrophysics Data System (ADS)

    Li, Ting; Chen, Xiao-mei; Xue, Bo; Li, Qian-qian; Ni, Guo-qiang

    2010-11-01

    Since noise can undermine the effectiveness of information extracted from hyperspectral imagery, noise reduction is a prerequisite for many classification-based applications of hyperspectral imagery. In this paper, an effective three dimensional total variation denoising algorithm for hyperspectral imagery is introduced. First, a three dimensional objective function of total variation denoising model is derived from the classical two dimensional TV algorithms. For the consideration of the fact that the noise of hyperspectral imagery shows different characteristics in spatial and spectral domain, the objective function is further improved by utilizing two terms (spatial term and spectral term) and separate regularization parameters respectively which can adjust the trade-off between the two terms. Then, the improved objective function is discretized by approximating gradients with local differences, optimized by a quadratic convex function and finally solved by a majorization-minimization based iteration algorithm. The performance of the new algorithm is experimented on a set of Hyperion imageries acquired in a desert-dominated area in 2007. Experimental results show that, properly choosing the values of parameters, the new approach removes the indention and restores the spectral absorption peaks more effectively while having a similar improvement of signal-to-noise-ratio as minimum noise fraction (MNF) method.

  13. Efficient bias correction for magnetic resonance image denoising.

    PubMed

    Mukherjee, Partha Sarathi; Qiu, Peihua

    2013-05-30

    Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation from received frequency signals of a magnetic resonance scanner system. Previous research has demonstrated that random noise involved in the observed MRI images can be described adequately by the so-called Rician noise model. Under that model, the observed image intensity at a given pixel is a nonlinear function of the true image intensity and of two independent zero-mean random variables with the same normal distribution. Because of such a complicated noise structure in the observed MRI images, denoised images by conventional denoising methods are usually biased, and the bias could reduce image contrast and negatively affect subsequent image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias-correction procedures have been proposed in the literature. In this paper, we study the Rician noise model and the corresponding bias-correction problem systematically and propose a new and more effective bias-correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show that our proposed method works well in various applications. PMID:23074149

  14. Ladar range image denoising by a nonlocal probability statistics algorithm

    NASA Astrophysics Data System (ADS)

    Xia, Zhi-Wei; Li, Qi; Xiong, Zhi-Peng; Wang, Qi

    2013-01-01

    According to the characteristic of range images of coherent ladar and the basis of nonlocal means (NLM), a nonlocal probability statistics (NLPS) algorithm is proposed in this paper. The difference is that NLM performs denoising using the mean of the conditional probability distribution function (PDF) while NLPS using the maximum of the marginal PDF. In the algorithm, similar blocks are found out by the operation of block matching and form a group. Pixels in the group are analyzed by probability statistics and the gray value with maximum probability is used as the estimated value of the current pixel. The simulated range images of coherent ladar with different carrier-to-noise ratio and real range image of coherent ladar with 8 gray-scales are denoised by this algorithm, and the results are compared with those of median filter, multitemplate order mean filter, NLM, median nonlocal mean filter and its incorporation of anatomical side information, and unsupervised information-theoretic adaptive filter. The range abnormality noise and Gaussian noise in range image of coherent ladar are effectively suppressed by NLPS.

  15. Multiresolution generalized N dimension PCA for ultrasound image denoising

    PubMed Central

    2014-01-01

    Background Ultrasound images are usually affected by speckle noise, which is a type of random multiplicative noise. Thus, reducing speckle and improving image visual quality are vital to obtaining better diagnosis. Method In this paper, a novel noise reduction method for medical ultrasound images, called multiresolution generalized N dimension PCA (MR-GND-PCA), is presented. In this method, the Gaussian pyramid and multiscale image stacks on each level are built first. GND-PCA as a multilinear subspace learning method is used for denoising. Each level is combined to achieve the final denoised image based on Laplacian pyramids. Results The proposed method is tested with synthetically speckled and real ultrasound images, and quality evaluation metrics, including MSE, SNR and PSNR, are used to evaluate its performance. Conclusion Experimental results show that the proposed method achieved the lowest noise interference and improved image quality by reducing noise and preserving the structure. Our method is also robust for the image with a much higher level of speckle noise. For clinical images, the results show that MR-GND-PCA can reduce speckle and preserve resolvable details. PMID:25096917

  16. HARDI denoising using nonlocal means on S2

    NASA Astrophysics Data System (ADS)

    Kuurstra, Alan; Dolui, Sudipto; Michailovich, Oleg

    2012-02-01

    Diffusion MRI (dMRI) is a unique imaging modality for in vivo delineation of the anatomical structure of white matter in the brain. In particular, high angular resolution diffusion imaging (HARDI) is a specific instance of dMRI which is known to excel in detection of multiple neural fibers within a single voxel. Unfortunately, the angular resolution of HARDI is known to be inversely proportional to SNR, which makes the problem of denoising of HARDI data be of particular practical importance. Since HARDI signals are effectively band-limited, denoising can be accomplished by means of linear filtering. However, the spatial dependency of diffusivity in brain tissue makes it impossible to find a single set of linear filter parameters which is optimal for all types of diffusion signals. Hence, adaptive filtering is required. In this paper, we propose a new type of non-local means (NLM) filtering which possesses the required adaptivity property. As opposed to similar methods in the field, however, the proposed NLM filtering is applied in the spherical domain of spatial orientations. Moreover, the filter uses an original definition of adaptive weights, which are designed to be invariant to both spatial rotations as well as to a particular sampling scheme in use. As well, we provide a detailed description of the proposed filtering procedure, its efficient implementation, as well as experimental results with synthetic data. We demonstrate that our filter has substantially better adaptivity as compared to a number of alternative methods.

  17. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  18. Evaluation of boiled potato peel as a wound dressing.

    PubMed

    Dattatreya, R M; Nuijen, S; van Swaaij, A C; Klopper, P J

    1991-08-01

    In a series of experiments full thickness skin defects in 68 rats were covered with dressings made of boiled potato peels according to the method developed in Bombay. The wounds closed within 14 days and histologically complete repair of epidermis was found. The cork layer of the potato peel prevents dehydration of the wound and protects against exogenous agents. Experiments with homogenates revealed that a complete structure of the peel is necessary. Steroidal glycosides may have contributed to the favourable results. PMID:1930669

  19. [Application of a modified method of wavelet noise removing to noisy ICP-AES spectra].

    PubMed

    Ma, Xiao-guo; Zhang, Zhan-xia

    2003-06-01

    A new method for noise removal from signal by the wavelet transform was developed. Compared with analytical signal, noise has higher frequency and smaller amplitude. By the new wavelet filtering method, the high frequency components were first removed, and then the small ones in the remaining transformed vectors were discarded. The proposed approach was evaluated by the processing of simulated and experimental noisy ICP-AES spectra. Different amounts of noise were added to a Gaussian peak to obtain a series of noisy ICP spectra. The simulated noisy spectra with R (signal to noise ratio) = 6 and N (data number) = 51, and with R = 6 and N = 17 were used to illustrate the feasibility of the proposed method. The performances of noise removal by the wavelet smoothing, the wavelet denoising and the proposed technique were compared. It was found that using the new approach, the relative errors of peak height would be no more than 5% for spectra with normal sampling points and R > or = 2. Moreover, the baseline could be easily defined, which was helpful to the accurate measurement of peak height. Experimental spectra of Al and V at low concentrations were processed by the proposed method. Intense noises were efficiently removed and the spectra became smoother without underestimating the analytical signal. The distortion of V 303.310 nm line was substantially rectified. The linear correlation coefficients between the peak heights in the reconstructed spectra and the concentrations were found to be 0.9953 for Al and 0.9836 for V, respectively. PMID:12953539

  20. Group-normalized wavelet packet signal processing

    NASA Astrophysics Data System (ADS)

    Shi, Zhuoer; Bao, Zheng

    1997-04-01

    Since the traditional wavelet and wavelet packet coefficients do not exactly represent the strength of signal components at the very time(space)-frequency tilling, group- normalized wavelet packet transform (GNWPT), is presented for nonlinear signal filtering and extraction from the clutter or noise, together with the space(time)-frequency masking technique. The extended F-entropy improves the performance of GNWPT. For perception-based image, soft-logic masking is emphasized to remove the aliasing with edge preserved. Lawton's method for complex valued wavelets construction is extended to generate the complex valued compactly supported wavelet packets for radar signal extraction. This kind of wavelet packets are symmetry and unitary orthogonal. Well-defined wavelet packets are chosen by the analysis remarks on their time-frequency characteristics. For real valued signal processing, such as images and ECG signal, the compactly supported spline or bi- orthogonal wavelet packets are preferred for perfect de- noising and filtering qualities.

  1. A Mellin transform approach to wavelet analysis

    NASA Astrophysics Data System (ADS)

    Alotta, Gioacchino; Di Paola, Mario; Failla, Giuseppe

    2015-11-01

    The paper proposes a fractional calculus approach to continuous wavelet analysis. Upon introducing a Mellin transform expression of the mother wavelet, it is shown that the wavelet transform of an arbitrary function f(t) can be given a fractional representation involving a suitable number of Riesz integrals of f(t), and corresponding fractional moments of the mother wavelet. This result serves as a basis for an original approach to wavelet analysis of linear systems under arbitrary excitations. In particular, using the proposed fractional representation for the wavelet transform of the excitation, it is found that the wavelet transform of the response can readily be computed by a Mellin transform expression, with fractional moments obtained from a set of algebraic equations whose coefficient matrix applies for any scale a of the wavelet transform. Robustness and computationally efficiency of the proposed approach are shown in the paper.

  2. In vitro antioxidant properties of mangosteen peel extract.

    PubMed

    Suttirak, Weerayuth; Manurakchinakorn, Supranee

    2014-12-01

    The growing interest in the replacement of synthetic food antioxidants by natural ones has fostered research on the screening of plant-derived raw materials for identifying new antioxidants. The special attention of research today is focused on inexpensive or residual sources from agricultural industries. Fruit peels as sources of powerful natural antioxidants are often the waste parts of various fruits from consumption and food industry. Among the fruit peels, mangosteen peel is an important source of natural phenolic antioxidants. The mangosteen peel contains various bioactive substances, i.e., phenolic acids and flavonoids, which possess biological and medicinal properties, especially antioxidant properties. The aim of this review, after presenting analytical techniques for determining in vitro antioxidant activity of mangosteen peel extract, is to summarize available data on the factors affecting antioxidant activity of mangosteen peel extract. In addition, the potential antioxidant activity of mangosteen peel extract, the bioactive compounds identified from mangosteen peel extract and their antioxidant activity are presented. Potential applications of the mangosteen peel extract in food, pharmaceutical and cosmetic products are also discussed. PMID:25477623

  3. Wavelet correlations in the [ital p] model

    SciTech Connect

    Greiner, M. Institut fuer Theoretische Physik, Justus Liebig Universitaet, 35392 Geien ); Lipa, P.; Carruthers, P. )

    1995-03-01

    We suggest applying the concept of wavelet transforms to the study of correlations in multiparticle physics. Both the usual correlation functions as well as the wavelet transformed ones are calculated for the [ital p] model, which is a simple but tractable random cascade model. For this model, the wavelet transform decouples correlations between fluctuations defined on different scales. The advantageous properties of factorial moments are also shared by properly defined factorial wavelet correlations.

  4. Adaptive Multilinear Tensor Product Wavelets.

    PubMed

    Weiss, Kenneth; Lindstrom, Peter

    2016-01-01

    Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how to generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. We focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells. PMID:26529742

  5. Wavelet approach to accelerator problems. 2: Metaplectic wavelets

    SciTech Connect

    Fedorova, A.; Zeitlin, M.; Parsa, Z.

    1997-05-01

    This is the second part of a series of talks in which the authors present applications of wavelet analysis to polynomial approximations for a number of accelerator physics problems. According to the orbit method and by using construction from the geometric quantization theory they construct the symplectic and Poisson structures associated with generalized wavelets by using metaplectic structure and corresponding polarization. The key point is a consideration of semidirect product of Heisenberg group and metaplectic group as subgroup of automorphisms group of dual to symplectic space, which consists of elements acting by affine transformations.

  6. Efficacy of Modified Jessner's Peel and 20% TCA Versus 20% TCA Peel Alone for the Treatment of Acne Scars

    PubMed Central

    Puri, Neerja

    2015-01-01

    Introduction: There is a paucity of studies on the use of chemical peels for acne scars among the Asian population. A trichloroacetic acid (TCA) and Jessner's combination chemical peel, originally described by Monheit, is said to be better than a TCA peel alone. Aims: The aim of the study was to compare the efficacy of 20% TCA and Jessner's solution versus 20% TCA alone for the treatment of acne scars. Materials and Methods : The patients were divided into two groups of 25 patients each. Chemical peeling was done in both the groups. In Group I, chemical peeling with Jessner's peel followed by 20% TCA was done and in Group II patients chemical peeling with 20% TCA peel alone was done. Results: In Group I (Jessner's peel and 20% TCA), mild improvement of acne scars was seen in 8% cases, moderate improvement in 32% cases and marked improvement of acne scars was seen in 60% patients. In Group II (20% TCA), mild improvement of acne scars was seen in 32% cases, moderate improvement in 40% cases and marked improvement of acne scars was seen in 28% patients. But, the difference in improvement of acne scars was not statistically significant in both the groups (P value > 0.05). PMID:25949022

  7. Wavelet Representation of Contour Sets

    SciTech Connect

    Bertram, M; Laney, D E; Duchaineau, M A; Hansen, C D; Hamann, B; Joy, K I

    2001-07-19

    We present a new wavelet compression and multiresolution modeling approach for sets of contours (level sets). In contrast to previous wavelet schemes, our algorithm creates a parametrization of a scalar field induced by its contoum and compactly stores this parametrization rather than function values sampled on a regular grid. Our representation is based on hierarchical polygon meshes with subdivision connectivity whose vertices are transformed into wavelet coefficients. From this sparse set of coefficients, every set of contours can be efficiently reconstructed at multiple levels of resolution. When applying lossy compression, introducing high quantization errors, our method preserves contour topology, in contrast to compression methods applied to the corresponding field function. We provide numerical results for scalar fields defined on planar domains. Our approach generalizes to volumetric domains, time-varying contours, and level sets of vector fields.

  8. In vitro interactions with repeated grapefruit juice administration--to peel or not to peel?

    PubMed

    Brill, Shlomo; Zimmermann, Christian; Berger, Karin; Drewe, Juergen; Gutmann, Heike

    2009-03-01

    Interactions of acutely administered grapefruit juice (GFJ) with cytochrome P450 isoform 3A4 (CYP3A4) and P-glycoprotein (Pgp) function are well established. In this study, we investigated in vitro the effect of repeated administration of GFJ and its major constituents (the flavonoid naringin, its aglycone naringenin and the furanocoumarin bergamottin) on mRNA expression of MDR1 and CYP3A4 in LS180 cells. Since the bergamottin content is higher in the peel than in the fruit, we compared GFJ containing peel (GFJP+) with juice without any peel extract (GFJP-). GFJP- (1%) showed no significant effect on MDR1 and CYP3A4 mRNA expression, whereas 1% GFJP+ increased expression of MDR1 3.7-fold (P<0.01) and CYP3A4 2.3-fold (P<0.05). Of the tested constituents, only 10 microM bergamottin and 200 microM naringenin induced MDR1 mRNA levels 2.9- and 4.0-fold, respectively (P<0.01 for both), and CYP3A4 mRNA levels 3.2- and 15.6-fold (P<0.01 for both), respectively. Western blot analysis and rhodamine 123 uptake experiments partly confirmed these findings on the protein and the functional level. In summary, GFJ containing no peel extract may have a lower potential for interactions with CYP3A4 or P-glycoprotein. PMID:19148864

  9. Recent advances in wavelet technology

    NASA Technical Reports Server (NTRS)

    Wells, R. O., Jr.

    1994-01-01

    Wavelet research has been developing rapidly over the past five years, and in particular in the academic world there has been significant activity at numerous universities. In the industrial world, there has been developments at Aware, Inc., Lockheed, Martin-Marietta, TRW, Kodak, Exxon, and many others. The government agencies supporting wavelet research and development include ARPA, ONR, AFOSR, NASA, and many other agencies. The recent literature in the past five years includes a recent book which is an index of citations in the past decade on this subject, and it contains over 1,000 references and abstracts.

  10. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  11. Locally Based Kernel PLS Regression De-noising with Application to Event-Related Potentials

    NASA Technical Reports Server (NTRS)

    Rosipal, Roman; Trejo, Leonard J.; Wheeler, Kevin; Tino, Peter

    2002-01-01

    The close relation of signal de-noising and regression problems dealing with the estimation of functions reflecting dependency between a set of inputs and dependent outputs corrupted with some level of noise have been employed in our approach.

  12. On high-order denoising models and fast algorithms for vector-valued images.

    PubMed

    Brito-Loeza, Carlos; Chen, Ke

    2010-06-01

    Variational techniques for gray-scale image denoising have been deeply investigated for many years; however, little research has been done for the vector-valued denoising case and the very few existent works are all based on total-variation regularization. It is known that total-variation models for denoising gray-scaled images suffer from staircasing effect and there is no reason to suggest this effect is not transported into the vector-valued models. High-order models, on the contrary, do not present staircasing. In this paper, we introduce three high-order and curvature-based denoising models for vector-valued images. Their properties are analyzed and a fast multigrid algorithm for the numerical solution is provided. AMS subject classifications: 68U10, 65F10, 65K10. PMID:20172828

  13. Microwave extraction of citrus peel to release pectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    After removal of soluble sugars and other compounds by washing, citrus peel is largely composed of pectin, cellulose and hemicellulose. In order to utilize the greatest amount of citrus peel product, it would appear reasonable that one or all three of these polysaccharides be converted to a useful m...

  14. Thermal stability of liquid antioxidative extracts from pomegranate peel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was carried out to assess the potential of using the natural antioxidants in pomegranate peel extracts as replacement for synthetic antioxidants. As a result the thermal stability of pomegranate peel extract products during sterilization and storage, and its effect on industrial, color...

  15. Feasibility of Jujube peeling using novel infrared radiation heating technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared (IR) radiation heating has a promising potential to be used as a sustainable and effective method to eliminate the use of water and chemicals in the jujube-peeling process and enhance the quality of peeled products. The objective of this study was to investigate the feasibility of use IR he...

  16. Developments in ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each year, the Florida citrus juice industry produces about 3.5~5.0 million tons of wet peel waste, which are currently dried and sold as cattle feed, often at a loss, to dispose of the waste residual. Profitability would be greatly improved if the peel waste could be used to produce higher value pr...

  17. DRY CAUSTIC PEELING OF CLINGSTONE PEACHES. CAPSULE REPORT

    EPA Science Inventory

    The Capsule Report discusses the modified dry caustic process which uses rapidly rotating rubber discs to mechanically wipe the caustic treated peel from clingstone peaches. This report covers two-seasons of evaluation during which the dry caustic peeling system was operated in p...

  18. The research and application of double mean weighting denoising algorithm

    NASA Astrophysics Data System (ADS)

    Fang, Hao; Xiong, Feng

    2015-12-01

    In the application of image processing and pattern recognition, the precision of image preprocessing has a great influence on the image after-processing and analysis. This paper describes a novel local double mean weighted algorithm (hereinafter referred to as D-M algorithm) for image denoising. Firstly, the pixel difference and the absolute value are taken for the current pixels and the pixels in the neighborhood; then the absolute values are sorted again, the means of such pixels are taken in an half-to-half way; finally the weighting coefficient of the mean is taken. According to a large number of experiments, such algorithm not only introduces a certain robustness, but also improves increment significantly.

  19. Denoising and deblurring of Fourier transform infrared spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew; Popescu, Gabriel; Do, Minh N.; Bhargava, Rohit

    2012-03-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a powerful tool to obtain chemical information from images of heterogeneous, chemically diverse samples. Significant advances in instrumentation and data processing in the recent past have led to improved instrument design and relatively widespread use of FT-IR imaging, in a variety of systems ranging from biomedical tissue to polymer composites. Various techniques for improving signal to noise ratio (SNR), data collection time and spatial resolution have been proposed previously. In this paper we present an integrated framework that addresses all these factors comprehensively. We utilize the low-rank nature of the data and model the instrument point spread function to denoise data, and then simultaneously deblurr and estimate unknown information from images, using a Bayesian variational approach. We show that more spatial detail and improved image quality can be obtained using the proposed framework. The proposed technique is validated through experiments on a standard USAF target and on prostate tissue specimens.

  20. Denoised Wigner distribution deconvolution via low-rank matrix completion.

    PubMed

    Lee, Justin; Barbastathis, George

    2016-09-01

    Wigner distribution deconvolution (WDD) is a decades-old method for recovering phase from intensity measurements. Although the technique offers an elegant linear solution to the quadratic phase retrieval problem, it has seen limited adoption due to its high computational/memory requirements and the fact that the technique often exhibits high noise sensitivity. Here, we propose a method for noise suppression in WDD via low-rank noisy matrix completion. Our technique exploits the redundancy of an object's phase space to denoise its WDD reconstruction. We show in model calculations that our technique outperforms other WDD algorithms as well as modern iterative methods for phase retrieval such as ptychography. Our results suggest that a class of phase retrieval techniques relying on regularized direct inversion of ptychographic datasets (instead of iterative reconstruction techniques) can provide accurate quantitative phase information in the presence of high levels of noise. PMID:27607616

  1. Exploiting the self-similarity in ERP images by nonlocal means for single-trial denoising.

    PubMed

    Strauss, Daniel J; Teuber, Tanja; Steidl, Gabriele; Corona-Strauss, Farah I

    2013-07-01

    Event related potentials (ERPs) represent a noninvasive and widely available means to analyze neural correlates of sensory and cognitive processing. Recent developments in neural and cognitive engineering proposed completely new application fields of this well-established measurement technique when using an advanced single-trial processing. We have recently shown that 2-D diffusion filtering methods from image processing can be used for the denoising of ERP single-trials in matrix representations, also called ERP images. In contrast to conventional 1-D transient ERP denoising techniques, the 2-D restoration of ERP images allows for an integration of regularities over multiple stimulations into the denoising process. Advanced anisotropic image restoration methods may require directional information for the ERP denoising process. This is especially true if there is a lack of a priori knowledge about possible traces in ERP images. However due to the use of event related experimental paradigms, ERP images are characterized by a high degree of self-similarity over the individual trials. In this paper, we propose the simple and easy to apply nonlocal means method for ERP image denoising in order to exploit this self-similarity rather than focusing on the edge-based extraction of directional information. Using measured and simulated ERP data, we compare our method to conventional approaches in ERP denoising. It is concluded that the self-similarity in ERP images can be exploited for single-trial ERP denoising by the proposed approach. This method might be promising for a variety of evoked and event-related potential applications, including nonstationary paradigms such as changing exogeneous stimulus characteristics or endogenous states during the experiment. As presented, the proposed approach is for the a posteriori denoising of single-trial sequences. PMID:23060344

  2. Wavelets based on Hermite cubic splines

    NASA Astrophysics Data System (ADS)

    Cvejnová, Daniela; Černá, Dana; Finěk, Václav

    2016-06-01

    In 2000, W. Dahmen et al. designed biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. We focus here on wavelet bases with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in any column is bounded by a constant. Then, a matrix-vector multiplication in adaptive wavelet methods can be performed exactly with linear complexity for any second order differential equation with constant coefficients. In this contribution, we shortly review these constructions and propose a new wavelet which leads to improved Riesz constants. Wavelets have four vanishing wavelet moments.

  3. Microcontact Peeling as a New Method for Cell Micropatterning

    PubMed Central

    Yokoyama, Sho; Matsui, Tsubasa S.; Deguchi, Shinji

    2014-01-01

    Micropatterning is becoming a powerful tool for studying morphogenetic and differentiation processes of cells. Here we describe a new micropatterning technique, which we refer to as microcontact peeling. Polydimethylsiloxane (PDMS) substrates were treated with oxygen plasma, and the resulting hydrophilic layer of the surface was locally peeled off through direct contact with a peeling stamp made of aluminum, copper, or silicon. A hydrophobic layer of PDMS could be selectively exposed only at the places of the physical contact as revealed by water contact angle measurements and angle-resolved X-ray photoelectron spectroscopy, which thus enabled successful micropatterning of cells with micro-featured peeling stamps. This new micropatterning technique needs no procedure for directly adsorbing proteins to bare PDMS in contrast to conventional techniques using a microcontact printing stamp. Given the several unique characteristics, the present technique based on the peel-off of inorganic materials may become a useful option for performing cell micropatterning. PMID:25062030

  4. A Wavelet Perspective on the Allan Variance.

    PubMed

    Percival, Donald B

    2016-04-01

    The origins of the Allan variance trace back 50 years ago to two seminal papers, one by Allan (1966) and the other by Barnes (1966). Since then, the Allan variance has played a leading role in the characterization of high-performance time and frequency standards. Wavelets first arose in the early 1980s in the geophysical literature, and the discrete wavelet transform (DWT) became prominent in the late 1980s in the signal processing literature. Flandrin (1992) briefly documented a connection between the Allan variance and a wavelet transform based upon the Haar wavelet. Percival and Guttorp (1994) noted that one popular estimator of the Allan variance-the maximal overlap estimator-can be interpreted in terms of a version of the DWT now widely referred to as the maximal overlap DWT (MODWT). In particular, when the MODWT is based on the Haar wavelet, the variance of the resulting wavelet coefficients-the wavelet variance-is identical to the Allan variance when the latter is multiplied by one-half. The theory behind the wavelet variance can thus deepen our understanding of the Allan variance. In this paper, we review basic wavelet variance theory with an emphasis on the Haar-based wavelet variance and its connection to the Allan variance. We then note that estimation theory for the wavelet variance offers a means of constructing asymptotically correct confidence intervals (CIs) for the Allan variance without reverting to the common practice of specifying a power-law noise type a priori. We also review recent work on specialized estimators of the wavelet variance that are of interest when some observations are missing (gappy data) or in the presence of contamination (rogue observations or outliers). It is a simple matter to adapt these estimators to become estimators of the Allan variance. Finally we note that wavelet variances based upon wavelets other than the Haar offer interesting generalizations of the Allan variance. PMID:26529757

  5. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA)

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui

    2015-02-01

    NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T2) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T2 decay data perfectly.

  6. Ocean Wave Separation Using CEEMD-Wavelet in GPS Wave Measurement

    PubMed Central

    Wang, Junjie; He, Xiufeng; Ferreira, Vagner G.

    2015-01-01

    Monitoring ocean waves plays a crucial role in, for example, coastal environmental and protection studies. Traditional methods for measuring ocean waves are based on ultrasonic sensors and accelerometers. However, the Global Positioning System (GPS) has been introduced recently and has the advantage of being smaller, less expensive, and not requiring calibration in comparison with the traditional methods. Therefore, for accurately measuring ocean waves using GPS, further research on the separation of the wave signals from the vertical GPS-mounted carrier displacements is still necessary. In order to contribute to this topic, we present a novel method that combines complementary ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less residual noise and without losing useful information. Compared with the wave parameters derived from the moving average skill, high pass filter and wave gauge, the results show that the accuracy of the wave parameters for the proposed method was improved with errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, verifying the validity of the proposed method. PMID:26262620

  7. Application of wavelet-based neural network on DNA microarray data.

    PubMed

    Lee, Jack; Zee, Benny

    2008-01-01

    The advantage of using DNA microarray data when investigating human cancer gene expressions is its ability to generate enormous amount of information from a single assay in order to speed up the scientific evaluation process. The number of variables from the gene expression data coupled with comparably much less number of samples creates new challenges to scientists and statisticians. In particular, the problems include enormous degree of collinearity among genes expressions, likely violation of model assumptions as well as high level of noise with potential outliers. To deal with these problems, we propose a block wavelet shrinkage principal component (BWSPCA) analysis method to optimize the information during the noise reduction process. This paper firstly uses the National Cancer Institute database (NC160) as an illustration and shows a significant improvement in dimension reduction. Secondly we combine BWSPCA with an artificial neural network-based gene minimization strategy to establish a Block Wavelet-based Neural Network model in a robust and accurate cancer classification process (BWNN). Our extensive experiments on six public cancer datasets have shown that the method of BWNN for tumor classification performed well, especially on some difficult instances with large-class (more than two) expression data. This proposed method is extremely useful for data denoising and is competitiveness with respect to other methods such as BagBoost, RandomForest (RanFor), Support Vector Machines (SVM), K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN). PMID:19255638

  8. Segmentation of complementary DNA microarray images by wavelet-based Markov random field model.

    PubMed

    Athanasiadis, Emmanouil I; Cavouras, Dionisis A; Glotsos, Dimitris Th; Georgiadis, Pantelis V; Kalatzis, Ioannis K; Nikiforidis, George C

    2009-11-01

    A wavelet-based modification of the Markov random field (WMRF) model is proposed for segmenting complementary DNA (cDNA) microarray images. For evaluation purposes, five simulated and a set of five real microarray images were used. The one-level stationary wavelet transform (SWT) of each microarray image was used to form two images, a denoised image, using hard thresholding filter, and a magnitude image, from the amplitudes of the horizontal and vertical components of SWT. Elements from these two images were suitably combined to form the WMRF model for segmenting spots from their background. The WMRF was compared against the conventional MRF and the Fuzzy C means (FCM) algorithms on simulated and real microarray images and their performances were evaluated by means of the segmentation matching factor (SMF) and the coefficient of determination (r2). Additionally, the WMRF was compared against the SPOT and SCANALYZE, and performances were evaluated by the mean absolute error (MAE) and the coefficient of variation (CV). The WMRF performed more accurately than the MRF and FCM (SMF: 92.66, 92.15, and 89.22, r2 : 0.92, 0.90, and 0.84, respectively) and achieved higher reproducibility than the MRF, SPOT, and SCANALYZE (MAE: 497, 1215, 1180, and 503, CV: 0.88, 1.15, 0.93, and 0.90, respectively). PMID:19783509

  9. Visibility of wavelet quantization noise

    NASA Technical Reports Server (NTRS)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  10. Wavelet Approximation in Data Assimilation

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.

  11. Foveated wavelet image quality index

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Bovik, Alan C.; Lu, Ligang; Kouloheris, Jack L.

    2001-12-01

    The human visual system (HVS) is highly non-uniform in sampling, coding, processing and understanding. The spatial resolution of the HVS is highest around the point of fixation (foveation point) and decreases rapidly with increasing eccentricity. Currently, most image quality measurement methods are designed for uniform resolution images. These methods do not correlate well with the perceived foveated image quality. Wavelet analysis delivers a convenient way to simultaneously examine localized spatial as well as frequency information. We developed a new image quality metric called foveated wavelet image quality index (FWQI) in the wavelet transform domain. FWQI considers multiple factors of the HVS, including the spatial variance of the contrast sensitivity function, the spatial variance of the local visual cut-off frequency, the variance of human visual sensitivity in different wavelet subbands, and the influence of the viewing distance on the display resolution and the HVS features. FWQI can be employed for foveated region of interest (ROI) image coding and quality enhancement. We show its effectiveness by using it as a guide for optimal bit assignment of an embedded foveated image coding system. The coding system demonstrates very good coding performance and scalability in terms of foveated objective as well as subjective quality measurement.

  12. Uncertainty Principle and Elementary Wavelet

    NASA Astrophysics Data System (ADS)

    Bliznetsov, M.

    This paper is aimed to define time-and-spectrum characteristics of elementary wavelet. An uncertainty relation between the width of a pulse amplitude spectrum and its time duration and extension in space is investigated in the paper. Analysis of uncertainty relation is carried out for the causal pulses with minimum-phase spectrum. Amplitude spectra of elementary pulses are calculated using modified Fourier spectral analysis. Modification of Fourier analysis is justified by the necessity of solving zero frequency paradox in amplitude spectra that are calculated with the help of standard Fourier anal- ysis. Modified Fourier spectral analysis has the same resolution along the frequency axis and excludes physically unobservable values from time-and-spectral presenta- tions and determines that Heaviside unit step function has infinitely wide spectrum equal to 1 along the whole frequency range. Dirac delta function has the infinitely wide spectrum in the infinitely high frequency scope. Difference in propagation of wave and quasi-wave forms of energy motion is established from the analysis of un- certainty relation. Unidirectional pulse velocity depends on the relative width of the pulse spectra. Oscillating pulse velocity is constant in given nondispersive medium. Elementary wavelet has the maximum relative spectrum width and minimum time du- ration among all the oscillating pulses whose velocity is equal to the velocity of casual harmonic components of the pulse spectra. Relative width of elementary wavelet spec- trum in regard to resonance frequency is square root of 4/3 and approximately equal to 1.1547.... Relative width of this wavelet spectrum in regard to the center frequency is equal to 1. The more relative width of unidirectional pulse spectrum exceeds rela- tive width of elementary wavelet spectrum the higher velocity of unidirectional pulse propagation. The concept of velocity exceeding coefficient is introduced for pulses presenting quasi-wave form of energy

  13. Ethanol production from potato peel waste (PPW).

    PubMed

    Arapoglou, D; Varzakas, Th; Vlyssides, A; Israilides, C

    2010-10-01

    Considerable concern is caused by the problem of potato peel waste (PPW) to potato industries in Europe. An integrated, environmentally-friendly solution is yet to be found and is currently undergoing investigation. Potato peel is a zero value waste produced by potato processing plants. However, bio-ethanol produced from potato wastes has a large potential market. If Federal Government regulations are adopted in light of the Kyoto agreement, the mandatory blending of bio-ethanol with traditional gasoline in amounts up to 10% will result in a demand for large quantities of bio-ethanol. PPW contain sufficient quantities of starch, cellulose, hemicellulose and fermentable sugars to warrant use as an ethanol feedstock. In the present study, a number of batches of PPW were hydrolyzed with various enzymes and/or acid, and fermented by Saccharomyces cerevisae var. bayanus to determine fermentability and ethanol production. Enzymatic hydrolysis with a combination of three enzymes, released 18.5 g L(-1) reducing sugar and produced 7.6 g L(-1) of ethanol after fermentation. The results demonstrate that PPW, a by-product of the potato industry features a high potential for ethanol production. PMID:20471817

  14. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.

    PubMed

    Shao, Yu; Chang, Chip-Hong

    2007-08-01

    We present a new speech enhancement scheme for a single-microphone system to meet the demand for quality noise reduction algorithms capable of operating at a very low signal-to-noise ratio. A psychoacoustic model is incorporated into the generalized perceptual wavelet denoising method to reduce the residual noise and improve the intelligibility of speech. The proposed method is a generalized time-frequency subtraction algorithm, which advantageously exploits the wavelet multirate signal representation to preserve the critical transient information. Simultaneous masking and temporal masking of the human auditory system are modeled by the perceptual wavelet packet transform via the frequency and temporal localization of speech components. The wavelet coefficients are used to calculate the Bark spreading energy and temporal spreading energy, from which a time-frequency masking threshold is deduced to adaptively adjust the subtraction parameters of the proposed method. An unvoiced speech enhancement algorithm is also integrated into the system to improve the intelligibility of speech. Through rigorous objective and subjective evaluations, it is shown that the proposed speech enhancement system is capable of reducing noise with little speech degradation in adverse noise environments and the overall performance is superior to several competitive methods. PMID:17702286

  15. Optical wavelet transform for fingerprint identification

    NASA Astrophysics Data System (ADS)

    MacDonald, Robert P.; Rogers, Steven K.; Burns, Thomas J.; Fielding, Kenneth H.; Warhola, Gregory T.; Ruck, Dennis W.

    1994-03-01

    The Federal Bureau of Investigation (FBI) has recently sanctioned a wavelet fingerprint image compression algorithm developed for reducing storage requirements of digitized fingerprints. This research implements an optical wavelet transform of a fingerprint image, as the first step in an optical fingerprint identification process. Wavelet filters are created from computer- generated holograms of biorthogonal wavelets, the same wavelets implemented in the FBI algorithm. Using a detour phase holographic technique, a complex binary filter mask is created with both symmetry and linear phase. The wavelet transform is implemented with continuous shift using an optical correlation between binarized fingerprints written on a Magneto-Optic Spatial Light Modulator and the biorthogonal wavelet filters. A telescopic lens combination scales the transformed fingerprint onto the filters, providing a means of adjusting the biorthogonal wavelet filter dilation continuously. The wavelet transformed fingerprint is then applied to an optical fingerprint identification process. Comparison between normal fingerprints and wavelet transformed fingerprints shows improvement in the optical identification process, in terms of rotational invariance.

  16. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre. PMID:20725857

  17. GLMdenoise: a fast, automated technique for denoising task-based fMRI data.

    PubMed

    Kay, Kendrick N; Rokem, Ariel; Winawer, Jonathan; Dougherty, Robert F; Wandell, Brian A

    2013-01-01

    In task-based functional magnetic resonance imaging (fMRI), researchers seek to measure fMRI signals related to a given task or condition. In many circumstances, measuring this signal of interest is limited by noise. In this study, we present GLMdenoise, a technique that improves signal-to-noise ratio (SNR) by entering noise regressors into a general linear model (GLM) analysis of fMRI data. The noise regressors are derived by conducting an initial model fit to determine voxels unrelated to the experimental paradigm, performing principal components analysis (PCA) on the time-series of these voxels, and using cross-validation to select the optimal number of principal components to use as noise regressors. Due to the use of data resampling, GLMdenoise requires and is best suited for datasets involving multiple runs (where conditions repeat across runs). We show that GLMdenoise consistently improves cross-validation accuracy of GLM estimates on a variety of event-related experimental datasets and is accompanied by substantial gains in SNR. To promote practical application of methods, we provide MATLAB code implementing GLMdenoise. Furthermore, to help compare GLMdenoise to other denoising methods, we present the Denoise Benchmark (DNB), a public database and architecture for evaluating denoising methods. The DNB consists of the datasets described in this paper, a code framework that enables automatic evaluation of a denoising method, and implementations of several denoising methods, including GLMdenoise, the use of motion parameters as noise regressors, ICA-based denoising, and RETROICOR/RVHRCOR. Using the DNB, we find that GLMdenoise performs best out of all of the denoising methods we tested. PMID:24381539

  18. Strong dynamical effects during stick-slip adhesive peeling

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Santucci, Stephane; Vanel, Loic; Cortet, Pierre-Philippe

    2014-03-01

    We consider the classical problem of the stick-slip dynamics observed when peeling an adhesive tape at a constant velocity. From fast imaging recordings, we extract the dependencies of the stick and slip phases durations with the imposed peeling velocity and peeled ribbon length. Predictions of Maugis and Barquins [in Adhesion 12, edited by K.W. Allen, Elsevier ASP, London, 1988, pp. 205-222] based on a quasistatic assumption succeed to describe quantitatively our measurements of the stick phase duration. Such model however fails to predict the full stick-slip cycle duration, revealing strong dynamical effects during the slip phase.

  19. Wavelet analysis of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Warn-Varnas, A.; Chin-Bing, S.; King, D.; Smolarkiewicsz, P.

    2005-05-01

    A series of model studies of internal gravity waves (igw) have been conducted for several regions of interest. Dispersion relations from the results have been computed using wavelet analysis as described by Meyers (1993). The wavelet transform is repeatedly applied over time and the components are evaluated with respect to their amplitude and peak position (Torrence and Compo, 1998). In this sense we have been able to compute dispersion relations from model results and from measured data. Qualitative agreement has been obtained in some cases. The results from wavelet analysis must be carefully interpreted because the igw models are fully nonlinear and wavelet analysis is fundamentally a linear technique. Nevertheless, a great deal of information describing igw propagation can be obtained from the wavelet transform. We address the domains over which wavelet analysis techniques can be applied and discuss the limits of their applicability.

  20. On the wavelet optimized finite difference method

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1994-01-01

    When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.

  1. Peeling the onion: understanding others' lived experience.

    PubMed

    Miles, Maureen; Chapman, Ysanne; Francis, Karen

    2015-01-01

    Society and some healthcare professionals often marginalise pregnant women who take illicit substances. Midwives who care for these women are often viewed as working on the edge of society. This research aimed to examine the lived experiences of midwives who care for pregnant women who take illicit drugs. A phenomenological study informed by Heidegger, Gadamer and Merleau-Ponty was chosen to frame these lived experiences. Using face-to-face interviews, data were collected from 12 midwives making a difference, establishing partnerships and letting go and refining practice. Lived experiences are unique and can be difficult, intangible and couched in metaphor and difficult to grasp. This paper aims to discuss lived experience and suggests that like an onion, several layers have to be peeled away before meaning can be exposed; each cover reveals another layer beneath that is different from before and different from the next. The study provides exemplars that explain lived experiences. PMID:26169515

  2. Wavelet analysis in two-dimensional tomography

    NASA Astrophysics Data System (ADS)

    Burkovets, Dimitry N.

    2002-02-01

    The diagnostic possibilities of wavelet-analysis of coherent images of connective tissue in its pathological changes diagnostics. The effectiveness of polarization selection in obtaining wavelet-coefficients' images is also shown. The wavelet structures, characterizing the process of skin psoriasis, bone-tissue osteoporosis have been analyzed. The histological sections of physiological normal and pathologically changed samples of connective tissue of human skin and spongy bone tissue have been analyzed.

  3. Banana peel: an effective biosorbent for aflatoxins.

    PubMed

    Shar, Zahid Hussain; Fletcher, Mary T; Sumbal, Gul Amer; Sherazi, Syed Tufail Hussain; Giles, Cindy; Bhanger, Muhammad Iqbal; Nizamani, Shafi Muhammad

    2016-05-01

    This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins' adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6-8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg(-1) for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets. PMID:27052947

  4. Wavelet analysis of epileptic spikes

    NASA Astrophysics Data System (ADS)

    Latka, Miroslaw; Was, Ziemowit; Kozik, Andrzej; West, Bruce J.

    2003-05-01

    Interictal spikes and sharp waves in human EEG are characteristic signatures of epilepsy. These potentials originate as a result of synchronous pathological discharge of many neurons. The reliable detection of such potentials has been the long standing problem in EEG analysis, especially after long-term monitoring became common in investigation of epileptic patients. The traditional definition of a spike is based on its amplitude, duration, sharpness, and emergence from its background. However, spike detection systems built solely around this definition are not reliable due to the presence of numerous transients and artifacts. We use wavelet transform to analyze the properties of EEG manifestations of epilepsy. We demonstrate that the behavior of wavelet transform of epileptic spikes across scales can constitute the foundation of a relatively simple yet effective detection algorithm.

  5. Wavelet transforms for optical pulse analysis.

    PubMed

    Vázquez, Javier Molina; Mazilu, Michael; Miller, Alan; Galbraith, Ian

    2005-12-01

    An exploration of wavelet transforms for ultrashort optical pulse characterization is given. Some of the most common wavelets are examined to determine the advantages of using the causal quasi-wavelet suggested in Proceedings of the LEOS 15th Annual Meeting (IEEE, 2002), Vol. 2, p. 592, in terms of pulse analysis and, in particular, chirp extraction. Owing to its ability to distinguish between past and future pulse information, the causal quasi-wavelet is found to be highly suitable for optical pulse characterization. PMID:16396051

  6. Entangled Husimi Distribution and Complex Wavelet Transformation

    NASA Astrophysics Data System (ADS)

    Hu, Li-Yun; Fan, Hong-Yi

    2010-05-01

    Similar in spirit to the preceding work (Int. J. Theor. Phys. 48:1539, 2009) where the relationship between wavelet transformation and Husimi distribution function is revealed, we study this kind of relationship to the entangled case. We find that the optical complex wavelet transformation can be used to study the entangled Husimi distribution function in phase space theory of quantum optics. We prove that, up to a Gaussian function, the entangled Husimi distribution function of a two-mode quantum state | ψ> is just the modulus square of the complex wavelet transform of e^{-\\vert η \\vert 2/2} with ψ( η) being the mother wavelet.

  7. Integrated wavelets for medical image analysis

    NASA Astrophysics Data System (ADS)

    Heinlein, Peter; Schneider, Wilfried

    2003-11-01

    Integrated wavelets are a new method for discretizing the continuous wavelet transform (CWT). Independent of the choice of discrete scale and orientation parameters they yield tight families of convolution operators. Thus these families can easily be adapted to specific problems. After presenting the fundamental ideas, we focus primarily on the construction of directional integrated wavelets and their application to medical images. We state an exact algorithm for implementing this transform and present applications from the field of digital mammography. The first application covers the enhancement of microcalcifications in digital mammograms. Further, we exploit the directional information provided by integrated wavelets for better separation of microcalcifications from similar structures.

  8. Enhancing cosmetic outcomes by combining superficial glycolic acid (alpha-hydroxy acid) peels with nonablative lasers, intense pulsed light, and trichloroacetic acid peels.

    PubMed

    Effron, Cheryl; Briden, M Elizabeth; Green, Barbara A

    2007-01-01

    Nonablative lasers, intense pulsed light (IPL), and trichloroacetic acid (TCA) peels are cosmetic rejuvenation techniques used to remodel skin and provide improved skin texture, firmness, and even pigmentation. Glycolic acid is an alpha-hydroxy acid that can be used as a topical skin peel to provide important complementary benefits to nonablative lasers, IPL, and TCA peels. Superficial glycolic acid peels provide both epidermal and dermal antiaging benefits, can be used to smooth the stratum corneum to reduce light scattering, and can enable the use of lower concentrations of TCA during a peel procedure. When used with these procedures, glycolic acid peels can enhance skin benefits and perceived patient outcomes. Methods of combining nonablative lasers, IPL, and TCA peels with glycolic acid peels were discussed at a dermatologist roundtable event and are summarized in this article. PMID:17455887

  9. Visibility of Wavelet Quantization Noise

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Yang, Gloria Y.; Solomon, Joshua A.; Villasenor, John; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    The Discrete Wavelet Transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter, which we call DWT uniform quantization noise. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2(exp)-L , where r is display visual resolution in pixels/degree, and L is the wavelet level. Amplitude thresholds increase rapidly with spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from low-pass to horizontal/vertical to diagonal. We describe a mathematical model to predict DWT noise detection thresholds as a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  10. Wavelet Sparse Approximate Inverse Preconditioners

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.; Tang, W.-P.; Wan, W. L.

    1996-01-01

    There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.

  11. Segmentation based denoising of PET images: an iterative approach via regional means and affinity propagation.

    PubMed

    Xu, Ziyue; Bagci, Ulas; Seidel, Jurgen; Thomasson, David; Solomon, Jeff; Mollura, Daniel J

    2014-01-01

    Delineation and noise removal play a significant role in clinical quantification of PET images. Conventionally, these two tasks are considered independent, however, denoising can improve the performance of boundary delineation by enhancing SNR while preserving the structural continuity of local regions. On the other hand, we postulate that segmentation can help denoising process by constraining the smoothing criteria locally. Herein, we present a novel iterative approach for simultaneous PET image denoising and segmentation. The proposed algorithm uses generalized Anscombe transformation priori to non-local means based noise removal scheme and affinity propagation based delineation. For nonlocal means denoising, we propose a new regional means approach where we automatically and efficiently extract the appropriate subset of the image voxels by incorporating the class information from affinity propagation based segmentation. PET images after denoising are further utilized for refinement of the segmentation in an iterative manner. Qualitative and quantitative results demonstrate that the proposed framework successfully removes the noise from PET images while preserving the structures, and improves the segmentation accuracy. PMID:25333180

  12. Total variation-regularized weighted nuclear norm minimization for hyperspectral image mixed denoising

    NASA Astrophysics Data System (ADS)

    Wu, Zhaojun; Wang, Qiang; Wu, Zhenghua; Shen, Yi

    2016-01-01

    Many nuclear norm minimization (NNM)-based methods have been proposed for hyperspectral image (HSI) mixed denoising due to the low-rank (LR) characteristics of clean HSI. However, the NNM-based methods regularize each eigenvalue equally, which is unsuitable for the denoising problem, where each eigenvalue stands for special physical meaning and should be regularized differently. However, the NNM-based methods only exploit the high spectral correlation, while ignoring the local structure of HSI and resulting in spatial distortions. To address these problems, a total variation (TV)-regularized weighted nuclear norm minimization (TWNNM) method is proposed. To obtain the desired denoising performance, two issues are included. First, to exploit the high spectral correlation, the HSI is restricted to be LR, and different eigenvalues are minimized with different weights based on the WNNM. Second, to preserve the local structure of HSI, the TV regularization is incorporated, and the alternating direction method of multipliers is used to solve the resulting optimization problem. Both simulated and real data experiments demonstrate that the proposed TWNNM approach produces superior denoising results for the mixed noise case in comparison with several state-of-the-art denoising methods.

  13. Edge-preserving image denoising via group coordinate descent on the GPU

    PubMed Central

    McGaffin, Madison G.; Fessler, Jeffrey A.

    2015-01-01

    Image denoising is a fundamental operation in image processing, and its applications range from the direct (photographic enhancement) to the technical (as a subproblem in image reconstruction algorithms). In many applications, the number of pixels has continued to grow, while the serial execution speed of computational hardware has begun to stall. New image processing algorithms must exploit the power offered by massively parallel architectures like graphics processing units (GPUs). This paper describes a family of image denoising algorithms well-suited to the GPU. The algorithms iteratively perform a set of independent, parallel one-dimensional pixel-update subproblems. To match GPU memory limitations, they perform these pixel updates inplace and only store the noisy data, denoised image and problem parameters. The algorithms can handle a wide range of edge-preserving roughness penalties, including differentiable convex penalties and anisotropic total variation (TV). Both algorithms use the majorize-minimize (MM) framework to solve the one-dimensional pixel update subproblem. Results from a large 2D image denoising problem and a 3D medical imaging denoising problem demonstrate that the proposed algorithms converge rapidly in terms of both iteration and run-time. PMID:25675454

  14. Load identification approach based on basis pursuit denoising algorithm

    NASA Astrophysics Data System (ADS)

    Ginsberg, D.; Ruby, M.; Fritzen, C. P.

    2015-07-01

    The information of the external loads is of great interest in many fields of structural analysis, such as structural health monitoring (SHM) systems or assessment of damage after extreme events. However, in most cases it is not possible to measure the external forces directly, so they need to be reconstructed. Load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response functions are usually the knowns. Generally, this leads to a so called ill-posed inverse problem, which involves solving an underdetermined linear system of equations. For most practical applications it can be assumed that the applied loads are not arbitrarily distributed in time and space, at least some specific characteristics about the external excitation are known a priori. In this contribution this knowledge was used to develop a more suitable force reconstruction method, which allows identifying the time history and the force location simultaneously by employing significantly fewer sensors compared to other reconstruction approaches. The properties of the external force are used to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The possibility of reconstructing loads based on noisy structural measurement signals will be demonstrated by considering two frequently occurring loading conditions: harmonic excitation and impact events, separately and combined. First a simulation study of a simple plate structure is carried out and thereafter an experimental investigation of a real beam is performed.

  15. Bayesian Inference for Neighborhood Filters With Application in Denoising.

    PubMed

    Huang, Chao-Tsung

    2015-11-01

    Range-weighted neighborhood filters are useful and popular for their edge-preserving property and simplicity, but they are originally proposed as intuitive tools. Previous works needed to connect them to other tools or models for indirect property reasoning or parameter estimation. In this paper, we introduce a unified empirical Bayesian framework to do both directly. A neighborhood noise model is proposed to reason and infer the Yaroslavsky, bilateral, and modified non-local means filters by joint maximum a posteriori and maximum likelihood estimation. Then, the essential parameter, range variance, can be estimated via model fitting to the empirical distribution of an observable chi scale mixture variable. An algorithm based on expectation-maximization and quasi-Newton optimization is devised to perform the model fitting efficiently. Finally, we apply this framework to the problem of color-image denoising. A recursive fitting and filtering scheme is proposed to improve the image quality. Extensive experiments are performed for a variety of configurations, including different kernel functions, filter types and support sizes, color channel numbers, and noise types. The results show that the proposed framework can fit noisy images well and the range variance can be estimated successfully and efficiently. PMID:26259244

  16. Hybrid regularizers-based adaptive anisotropic diffusion for image denoising.

    PubMed

    Liu, Kui; Tan, Jieqing; Ai, Liefu

    2016-01-01

    To eliminate the staircasing effect for total variation filter and synchronously avoid the edges blurring for fourth-order PDE filter, a hybrid regularizers-based adaptive anisotropic diffusion is proposed for image denoising. In the proposed model, the [Formula: see text]-norm is considered as the fidelity term and the regularization term is composed of a total variation regularization and a fourth-order filter. The two filters can be adaptively selected according to the diffusion function. When the pixels locate at the edges, the total variation filter is selected to filter the image, which can preserve the edges. When the pixels belong to the flat regions, the fourth-order filter is adopted to smooth the image, which can eliminate the staircase artifacts. In addition, the split Bregman and relaxation approach are employed in our numerical algorithm to speed up the computation. Experimental results demonstrate that our proposed model outperforms the state-of-the-art models cited in the paper in both the qualitative and quantitative evaluations. PMID:27047730

  17. A fast-convergence POCS seismic denoising and reconstruction method

    NASA Astrophysics Data System (ADS)

    Ge, Zi-Jian; Li, Jing-Ye; Pan, Shu-Lin; Chen, Xiao-Hong

    2015-06-01

    The efficiency, precision, and denoising capabilities of reconstruction algorithms are critical to seismic data processing. Based on the Fourier-domain projection onto convex sets (POCS) algorithm, we propose an inversely proportional threshold model that defines the optimum threshold, in which the descent rate is larger than in the exponential threshold in the large-coefficient section and slower than in the exponential threshold in the small-coefficient section. Thus, the computation efficiency of the POCS seismic reconstruction greatly improves without affecting the reconstructed precision of weak reflections. To improve the flexibility of the inversely proportional threshold, we obtain the optimal threshold by using an adjustable dependent variable in the denominator of the inversely proportional threshold model. For random noise attenuation by completing the missing traces in seismic data reconstruction, we present a weighted reinsertion strategy based on the data-driven model that can be obtained by using the percentage of the data-driven threshold in each iteration in the threshold section. We apply the proposed POCS reconstruction method to 3D synthetic and field data. The results suggest that the inversely proportional threshold model improves the computational efficiency and precision compared with the traditional threshold models; furthermore, the proposed reinserting weight strategy increases the SNR of the reconstructed data.

  18. Generalized non-local means filtering for image denoising

    NASA Astrophysics Data System (ADS)

    Dolui, Sudipto; Salgado Patarroyo, Iván. C.; Michailovich, Oleg V.

    2014-02-01

    Non-local means (NLM) filtering has been shown to outperform alternative denoising methodologies under the model of additive white Gaussian noise contamination. Recently, several theoretical frameworks have been developed to extend this class of algorithms to more general types of noise statistics. However, many of these frameworks are specifically designed for a single noise contamination model, and are far from optimal across varying noise statistics. The NLM filtering techniques rely on the definition of a similarity measure, which quantifies the similarity of two neighbourhoods along with their respective centroids. The key to the unification of the NLM filter for different noise statistics lies in the definition of a universal similarity measure which is guaranteed to provide favourable performance irrespective of the statistics of the noise. Accordingly, the main contribution of this work is to provide a rigorous statistical framework to derive such a universal similarity measure, while highlighting some of its theoretical and practical favourable characteristics. Additionally, the closed form expressions of the proposed similarity measure are provided for a number of important noise scenarios and the practical utility of the proposed similarity measure is demonstrated through numerical experiments.

  19. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    PubMed

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www.brainwavelet.org. PMID

  20. Ultrasound Contrast Plane Wave Imaging Based on Bubble Wavelet Transform: In Vitro and In Vivo Validations.

    PubMed

    Wang, Diya; Zong, Yujin; Yang, Xuan; Hu, Hong; Wan, Jinjin; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi

    2016-07-01

    The aim of the study described here was to develop an ultrasound contrast plane wave imaging (PWI) method based on pulse-inversion bubble wavelet transform imaging (PIWI) to improve the contrast-to-tissue ratio of contrast images. A pair of inverted "bubble wavelets" with plane waves was constructed according to the modified Herring equation. The original echoes were replaced by the maximum wavelet correlation coefficients obtained from bubble wavelet correlation analysis. The echoes were then summed to distinguish microbubbles from tissues. In in vivo experiments on rabbit kidney, PIWI improved the contrast-to-tissue ratio of contrast images up to 4.5 ± 1.5 dB, compared with that obtained in B-mode (p < 0.05), through use of a pair of inverted plane waves. The disruption rate and infusion time of microbubbles in PIWI-based PWI were then quantified using two perfusion parameters, area under the curve and half transmit time estimated from time-intensity curves, respectively. After time-intensity curves were denoised by detrended fluctuation analysis, the average area under the curve and half transit time of PIWI-based PWI were 55.94% (p < 0.05) and 20.51% (p < 0.05) higher than those of conventional focused imaging, respectively. Because of its high contrast-to-tissue ratio and low disruption of microbubbles, PIWI-based PWI has a long infusion time and is therefore beneficial for transient monitoring and perfusion assessment of microbubbles circulating in vessels. PMID:27067280

  1. Characterization of peeling modes in a low aspect ratio tokamak

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.

    2014-11-01

    Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.

  2. Salicylic acid as a peeling agent: a comprehensive review

    PubMed Central

    Arif, Tasleem

    2015-01-01

    Salicylic acid has been used to treat various skin disorders for more than 2,000 years. The ability of salicylic acid to exfoliate the stratum corneum makes it a good agent for peeling. In particular, the comedolytic property of salicylic acid makes it a useful peeling agent for patients with acne. Once considered as a keratolytic agent, the role of salicylic acid as a desmolytic agent, because of its ability to disrupt cellular junctions rather than breaking or lysing intercellular keratin filaments, is now recognized and is discussed here. Salicylic acid as a peeling agent has a number of indications, including acne vulgaris, melasma, photodamage, freckles, and lentigines. The efficacy and safety of salicylic acid peeling in Fitzpatrick skin types I–III as well as in skin types V and VI have been well documented in the literature. This paper reviews the available data and literature on salicylic acid as a peeling agent and its possible indications. Its properties, efficacy and safety, the peeling procedure, and possible side effects are discussed in detail. An account of salicylism is also included. PMID:26347269

  3. Improved extreme value weighted sparse representational image denoising with random perturbation

    NASA Astrophysics Data System (ADS)

    Xuan, Shibin; Han, Yulan

    2015-11-01

    Research into the removal of mixed noise is a hot topic in the field of image denoising. Currently, weighted encoding with sparse nonlocal regularization represents an excellent mixed noise removal method. To make the fitting function closer to the requirements of a robust estimation technique, an extreme value technique is used that allows the fitting function to satisfy three conditions of robust estimation on a larger interval. Moreover, a random disturbance sequence is integrated into the denoising model to prevent the iterative solving process from falling into local optima. A radon transform-based noise detection algorithm and an adaptive median filter are used to obtain a high-quality initial solution for the iterative procedure of the image denoising model. Experimental results indicate that this improved method efficiently enhances the weighted encoding with a sparse nonlocal regularization model. The proposed method can effectively remove mixed noise from corrupted images, while better preserving the edges and details of the processed image.

  4. Raman spectroscopy de-noising based on EEMD combined with VS-LMS algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Xiao; Xu, Liang; Mo, Jia-qing; Lü, Xiao-yi

    2016-01-01

    This paper proposes a novel de-noising algorithm based on ensemble empirical mode decomposition (EEMD) and the variable step size least mean square (VS-LMS) adaptive filter. The noise of the high frequency part of spectrum will be removed through EEMD, and then the VS-LMS algorithm is utilized for overall de-noising. The EEMD combined with VS-LMS algorithm can not only preserve the detail and envelope of the effective signal, but also improve the system stability. When the method is used on pure R6G, the signal-to-noise ratio ( SNR) of Raman spectrum is lower than 10 dB. The de-noising superiority of the proposed method in Raman spectrum can be verified by three evaluation standards of SNR, root mean square error ( RMSE) and the correlation coefficient ρ.

  5. Wavelet analysis and high quality JPEG2000 compression using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Khalid, Azra; Afsheen, Uzma; Umer Baig, Saad

    2011-10-01

    Wavelet analysis and its application has found much attention in recent times. It is vastly applied in many applications such as involving transient signal analysis, image processing, signal processing and data compression. It has gained popularity because of its multiresolution, subband coding and feature extraction features. The paper describes efficient application of wavelet analysis for image compression, exploring Daubechies wavelet as the basis function. Wavelets have scaling properties. They are localized in time and frequency. Wavelets separate the image into different scales on the basis of frequency content. The resulting compressed image can then be easily stored or transmitted saving crucial communication bandwidth. Wavelet analysis because of its high quality compression is one of the feature blocks in the new JPEG2000 image compression standard. The paper proposes Daubechies wavelet analysis, quantization and Huffman encoding scheme which results in high compression and good quality reconstruction.

  6. Evidence and considerations in the application of chemical peels in skin disorders and aesthetic resurfacing.

    PubMed

    Rendon, Marta I; Berson, Diane S; Cohen, Joel L; Roberts, Wendy E; Starker, Isaac; Wang, Beatrice

    2010-07-01

    Chemical peeling is a popular, relatively inexpensive, and generally safe method for treatment of some skin disorders and to refresh and rejuvenate skin. This article focuses on chemical peels and their use in routine clinical practice. Chemical peels are classified by the depth of action into superficial, medium, and deep peels. The depth of the peel is correlated with clinical changes, with the greatest change achieved by deep peels. However, the depth is also associated with longer healing times and the potential for complications. A wide variety of peels are available, utilizing various topical agents and concentrations, including a recent salicylic acid derivative, beta-lipohydroxy acid, which has properties that may expand the clinical use of peels. Superficial peels, penetrating only the epidermis, can be used to enhance treatment for a variety of conditions, including acne, melasma, dyschromias, photodamage, and actinic keratoses. Medium-depth peels, penetrating to the papillary dermis, may be used for dyschromia, multiple solar keratoses, superficial scars, and pigmentary disorders. Deep peels, affecting reticular dermis, may be used for severe photoaging, deep wrinkles, or scars. Peels can be combined with other in-office facial resurfacing techniques to optimize outcomes and enhance patient satisfaction and allow clinicians to tailor the treatment to individual patient needs. Successful outcomes are based on a careful patient selection as well as appropriate use of specific peeling agents. Used properly, the chemical peel has the potential to fill an important therapeutic need in the dermatologist's and plastic surgeon's armamentarium. PMID:20725555

  7. Evidence and Considerations in the Application of Chemical Peels in Skin Disorders and Aesthetic Resurfacing

    PubMed Central

    Berson, Diane S.; Cohen, Joel L.; Roberts, Wendy E.; Starker, Isaac; Wang, Beatrice

    2010-01-01

    Chemical peeling is a popular, relatively inexpensive, and generally safe method for treatment of some skin disorders and to refresh and rejuvenate skin. This article focuses on chemical peels and their use in routine clinical practice. Chemical peels are classified by the depth of action into superficial, medium, and deep peels. The depth of the peel is correlated with clinical changes, with the greatest change achieved by deep peels. However, the depth is also associated with longer healing times and the potential for complications. A wide variety of peels are available, utilizing various topical agents and concentrations, including a recent salicylic acid derivative, β-lipohydroxy acid, which has properties that may expand the clinical use of peels. Superficial peels, penetrating only the epidermis, can be used to enhance treatment for a variety of conditions, including acne, melasma, dyschromias, photodamage, and actinic keratoses. Medium-depth peels, penetrating to the papillary dermis, may be used for dyschromia, multiple solar keratoses, superficial scars, and pigmentary disorders. Deep peels, affecting reticular dermis, may be used for severe photoaging, deep wrinkles, or scars. Peels can be combined with other in-office facial resurfacing techniques to optimize outcomes and enhance patient satisfaction and allow clinicians to tailor the treatment to individual patient needs. Successful outcomes are based on a careful patient selection as well as appropriate use of specific peeling agents. Used properly, the chemical peel has the potential to fill an important therapeutic need in the dermatologist's and plastic surgeon's armamentarium. PMID:20725555

  8. Deformation of nanotubes in peeling contact with flat substrate: An in situ electron microscopy nanomechanical study

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoming; Zheng, Meng; Wei, Qing; Signetti, Stefano; Pugno, Nicola M.; Ke, Changhong

    2016-04-01

    Peeling of one-dimensional (1D) nanostructures from flat substrates is an essential technique in studying their adhesion properties. The mechanical deformation of the nanostructure in the peeling experiment is critical to the understanding of the peeling process and the interpretation of the peeling measurements, but it is challenging to measure directly and quantitatively at the nanoscale. Here, we investigate the peeling deformation of a bundled carbon nanotube (CNT) fiber by using an in situ scanning electron microscopy nanomechanical peeling technique. A pre-calibrated atomic force microscopy cantilever is utilized as the peeling force sensor, and its back surface acts as the peeling contact substrate. The nanomechanical peeling scheme enables a quantitative characterization of the deformational behaviors of the CNT fiber in both positive and negative peeling configurations with sub-10 nm spatial and sub-nN force resolutions. Nonlinear continuum mechanics models and finite element simulations are employed to interpret the peeling measurements. The measurements and analysis reveal that the structural imperfections in the CNT fiber may have a substantial influence on its peeling deformations and the corresponding peeling forces. The research findings reported in this work are useful to the study of mechanical and adhesion properties of 1D nanostructures by using nanomechanical peeling techniques.

  9. 3D steerable wavelets in practice.

    PubMed

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems. PMID:22752138

  10. Image registration using redundant wavelet transforms

    NASA Astrophysics Data System (ADS)

    Brown, Richard K.; Claypoole, Roger L., Jr.

    2001-12-01

    Imagery is collected much faster and in significantly greater quantities today compared to a few years ago. Accurate registration of this imagery is vital for comparing the similarities and differences between multiple images. Image registration is a significant component in computer vision and other pattern recognition problems, medical applications such as Medical Resonance Images (MRI) and Positron Emission Tomography (PET), remotely sensed data for target location and identification, and super-resolution algorithms. Since human analysis is tedious and error prone for large data sets, we require an automatic, efficient, robust, and accurate method to register images. Wavelet transforms have proven useful for a variety of signal and image processing tasks. In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency. The shift-invariant wavelet transform is applied in translation estimation and a new rotation-invariant polar wavelet transform is effectively utilized in rotation estimation. We demonstrate the robustness of these redundant wavelet transforms for the registration of two images (i.e., translating or rotating an input image to a reference image), but extensions to larger data sets are feasible. We compare the registration accuracy of our redundant wavelet transforms to the critically sampled discrete wavelet transform using the Daubechies wavelet to illustrate the power of our algorithm in the presence of significant additive white Gaussian noise and strongly translated or rotated images.

  11. 2-D wavelet with position controlled resolution

    NASA Astrophysics Data System (ADS)

    Walczak, Andrzej; Puzio, Leszek

    2005-09-01

    Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.

  12. MR images denoising using DCT-based unbiased nonlocal means filter

    NASA Astrophysics Data System (ADS)

    Zheng, Xiuqing; Hu, Jinrong; Zhou, Jiuliu

    2013-03-01

    The non-local means (NLM) filter has been proven to be an efficient feature-preserved denoising method and can be applied to remove noise in the magnetic resonance (MR) images. To suppress noise more efficiently, we present a novel NLM filter by using a low-pass filtered and low dimensional version of neighborhood for calculating the similarity weights. The discrete cosine transform (DCT) is used as a smoothing kernel, allowing both improvements in similarity estimation and computational speed-up. Experimental results show that the proposed filter achieves better denoising performance in MR Images compared to others filters, such as recently proposed NLM filter and unbiased NLM (UNLM) filter.

  13. Using wavelets to learn pattern templates

    NASA Astrophysics Data System (ADS)

    Scott, Clayton D.; Nowak, Robert D.

    2002-07-01

    Despite the success of wavelet decompositions in other areas of statistical signal and image processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations (e.g., translation, rotation, location of lighting source) inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown translation and rotation. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR (Template Learning from Atomic Representations), a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length (MDL) complexity regularization to learn a template with a sparse representation in the wavelet domain. We discuss several applications, including template learning, pattern classification, and image registration.

  14. Critically sampled wavelets with composite dilations.

    PubMed

    Easley, Glenn R; Labate, Demetrio

    2012-02-01

    Wavelets with composite dilations provide a general framework for the construction of waveforms defined not only at various scales and locations, as traditional wavelets, but also at various orientations and with different scaling factors in each coordinate. As a result, they are useful to analyze the geometric information that often dominate multidimensional data much more efficiently than traditional wavelets. The shearlet system, for example, is a particular well-known realization of this framework, which provides optimally sparse representations of images with edges. In this paper, we further investigate the constructions derived from this approach to develop critically sampled wavelets with composite dilations for the purpose of image coding. Not only do we show that many nonredundant directional constructions recently introduced in the literature can be derived within this setting, but we also introduce new critically sampled discrete transforms that achieve much better nonlinear approximation rates than traditional discrete wavelet transforms and outperform the other critically sampled multiscale transforms recently proposed. PMID:21843993

  15. Wavelet Analysis of Umbral Oscillations

    NASA Astrophysics Data System (ADS)

    Christopoulou, E. B.; Skodras, A.; Georgakilas, A. A.; Koutchmy, S.

    2003-07-01

    We study the temporal behavior of the intensity and velocity chromospheric umbral oscillations, applying wavelet analysis techniques to four sets of observations in the Hα line and one set of simultaneous observations in the Hα and the nonmagnetic Fe I (5576.099 Å) line. The wavelet and Fourier power spectra of the intensity and the velocity at chromospheric levels show both 3 and 5 minute oscillations. Oscillations in the 5 minute band are prominent in the intensity power spectra; they are significantly reduced in the velocity power spectra. We observe multiple peaks of closely spaced cospatial frequencies in the 3 minute band (5-8 mHz). Typically, there are three oscillating modes present: (1) a major one near 5.5 mHz, (2) a secondary near 6.3 mHz, and (3) oscillations with time-varying frequencies around 7.5 mHz that are present for limited time intervals. In the frame of current theories, the oscillating mode near 5.5 mHz should be considered as a fingerprint of the photospheric resonator, while the other two modes can be better explained by the chromospheric resonator. The wavelet spectra show a dynamic temporal behavior of the 3 minute oscillations. We observed (1) frequency drifts, (2) modes that are stable over a long time and then fade away or split up into two oscillation modes, and (3) suppression of frequencies for short time intervals. This behavior can be explained by the coupling between modes closely spaced in frequency or/and by long-term variations of the driving source of the resonators. Based on observations performed on the National Solar Observatory/Sacramento Peak Observatory Richard B. Dunn Solar Telescope (DST) and on the Big Bear Solar Observatory Harold Zirin Telescope.

  16. Wavelet Algorithms for Illumination Computations

    NASA Astrophysics Data System (ADS)

    Schroder, Peter

    One of the core problems of computer graphics is the computation of the equilibrium distribution of light in a scene. This distribution is given as the solution to a Fredholm integral equation of the second kind involving an integral over all surfaces in the scene. In the general case such solutions can only be numerically approximated, and are generally costly to compute, due to the geometric complexity of typical computer graphics scenes. For this computation both Monte Carlo and finite element techniques (or hybrid approaches) are typically used. A simplified version of the illumination problem is known as radiosity, which assumes that all surfaces are diffuse reflectors. For this case hierarchical techniques, first introduced by Hanrahan et al. (32), have recently gained prominence. The hierarchical approaches lead to an asymptotic improvement when only finite precision is required. The resulting algorithms have cost proportional to O(k^2 + n) versus the usual O(n^2) (k is the number of input surfaces, n the number of finite elements into which the input surfaces are meshed). Similarly a hierarchical technique has been introduced for the more general radiance problem (which allows glossy reflectors) by Aupperle et al. (6). In this dissertation we show the equivalence of these hierarchical techniques to the use of a Haar wavelet basis in a general Galerkin framework. By so doing, we come to a deeper understanding of the properties of the numerical approximations used and are able to extend the hierarchical techniques to higher orders. In particular, we show the correspondence of the geometric arguments underlying hierarchical methods to the theory of Calderon-Zygmund operators and their sparse realization in wavelet bases. The resulting wavelet algorithms for radiosity and radiance are analyzed and numerical results achieved with our implementation are reported. We find that the resulting algorithms achieve smaller and smoother errors at equivalent work.

  17. Reservoir characterization using wavelet transforms

    NASA Astrophysics Data System (ADS)

    Rivera Vega, Nestor

    Automated detection of geological boundaries and determination of cyclic events controlling deposition can facilitate stratigraphic analysis and reservoir characterization. This study applies the wavelet transformation, a recent advance in signal analysis techniques, to interpret cyclicity, determine its controlling factors, and detect zone boundaries. We tested the cyclostratigraphic assessments using well log and core data from a well in a fluvio-eolian sequence in the Ormskirk Sandstone, Irish Sea. The boundary detection technique was tested using log data from 10 wells in the Apiay field, Colombia. We processed the wavelet coefficients for each zone of the Ormskirk Formation and determined the wavelengths of the strongest cyclicities. Comparing these periodicities with Milankovitch cycles, we found a strong correspondence of the two. This suggests that climate exercised an important control on depositional cyclicity, as had been concluded in previous studies of the Ormskirk Sandstone. The wavelet coefficients from the log data in the Apiay field were combined to form features. These vectors were used in conjunction with pattern recognition techniques to perform detection in 7 boundaries. For the upper two units, the boundary was detected within 10 feet of their actual depth, in 90% of the wells. The mean detection performance in the Apiay field is 50%. We compared our method with other traditional techniques which do not focus on selecting optimal features for boundary identification. Those methods resulted in detection performances of 40% for the uppermost boundary, which lag behind the 90% performance of our method. Automated determination of geologic boundaries will expedite studies, and knowledge of the controlling deposition factors will enhance stratigraphic and reservoir characterization models. We expect that automated boundary detection and cyclicity analysis will prove to be valuable and time-saving methods for establishing correlations and their

  18. Wavelet Regularization Per Nullspace Shuttle

    NASA Astrophysics Data System (ADS)

    Charléty, J.; Nolet, G.; Sigloch, K.; Voronin, S.; Loris, I.; Simons, F. J.; Daubechies, I.; Judd, S.

    2010-12-01

    Wavelet decomposition of models in an over-parameterized Earth and L1-norm minimization in wavelet space is a promising strategy to deal with the very heterogeneous data coverage in the Earth without sacrificing detail in the solution where this is resolved (see Loris et al., abstract this session). However, L1-norm minimizations are nonlinear, and pose problems of convergence speed when applied to large data sets. In an effort to speed up computations we investigate the application of the nullspace shuttle (Deal and Nolet, GJI 1996). The nullspace shuttle is a filter that adds components from the nullspace to the minimum norm solution so as to have the model satisfy additional conditions not imposed by the data. In our case, the nullspace shuttle projects the model on a truncated basis of wavelets. The convergence of this strategy is unproven, in contrast to algorithms using Landweber iteration or one of its variants, but initial computations using a very large data base give reason for optimism. We invert 430,554 P delay times measured by cross-correlation in different frequency windows. The data are dominated by observations with US Array, leading to a major discrepancy in the resolution beneath North America and the rest of the world. This is a subset of the data set inverted by Sigloch et al (Nature Geosci, 2008), excluding only a small number of ISC delays at short distance and all amplitude data. The model is a cubed Earth model with 3,637,248 voxels spanning mantle and crust, with a resolution everywhere better than 70 km, to which 1912 event corrections are added. In each iteration we determine the optimal solution by a least squares inversion with minimal damping, after which we regularize the model in wavelet space. We then compute the residual data vector (after an intermediate scaling step), and solve for a model correction until a satisfactory chi-square fit for the truncated model is obtained. We present our final results on convergence as well as a

  19. Seamless multiresolution isosurfaces using wavelets

    SciTech Connect

    Udeshi, T.; Hudson, R.; Papka, M. E.

    2000-04-11

    Data sets that are being produced by today's simulations, such as the ones generated by DOE's ASCI program, are too large for real-time exploration and visualization. Therefore, new methods of visualizing these data sets need to be investigated. The authors present a method that combines isosurface representations of different resolutions into a seamless solution, virtually free of cracks and overlaps. The solution combines existing isosurface generation algorithms and wavelet theory to produce a real-time solution to multiple-resolution isosurfaces.

  20. Photoprotective effects of apple peel nanoparticles

    PubMed Central

    Bennet, Devasier; Kang, Se Chan; Gang, Jongback; Kim, Sanghyo

    2014-01-01

    Plants contain enriched bioactive molecules that can protect against skin diseases. Bioactive molecules become unstable and ineffective due to unfavorable conditions. In the present study, to improve the therapeutic efficacy of phytodrugs and enhance photoprotective capability, we used poly(D,L-lactide-co-glycolide) as a carrier of apple peel ethanolic extract (APETE) on permeation-enhanced nanoparticles (nano-APETE). The in vitro toxicity of nano-APETE-treated dermal fibroblast cells were studied in a bioimpedance system, and the results coincided with the viability assay. In addition, the continuous real-time evaluations of photodamage and photoprotective effect of nano-APETE on cells were studied. Among three different preparations of nano-APETE, the lowest concentration provided small, spherical, monodispersed, uniform particles which show high encapsulation, enhanced uptake, effective scavenging, and sustained intracellular delivery. Also, the nano-APETE is more flexible, allowing it to permeate through skin lipid membrane and release the drug in a sustained manner, thus confirming its ability as a sustained transdermal delivery. In summary, 50 μM nano-APETE shows strong synergistic photoprotective effects, thus demonstrating its higher activity on target sites for the treatment of skin damage, and would be of broad interest in the field of skin therapeutics. PMID:24379668

  1. Volumetric depth peeling for medical image display

    NASA Astrophysics Data System (ADS)

    Borland, David; Clarke, John P.; Fielding, Julia R.; TaylorII, Russell M.

    2006-01-01

    Volumetric depth peeling (VDP) is an extension to volume rendering that enables display of otherwise occluded features in volume data sets. VDP decouples occlusion calculation from the volume rendering transfer function, enabling independent optimization of settings for rendering and occlusion. The algorithm is flexible enough to handle multiple regions occluding the object of interest, as well as object self-occlusion, and requires no pre-segmentation of the data set. VDP was developed as an improvement for virtual arthroscopy for the diagnosis of shoulder-joint trauma, and has been generalized for use in other simple and complex joints, and to enable non-invasive urology studies. In virtual arthroscopy, the surfaces in the joints often occlude each other, allowing limited viewpoints from which to evaluate these surfaces. In urology studies, the physician would like to position the virtual camera outside the kidney collecting system and see inside it. By rendering invisible all voxels between the observer's point of view and objects of interest, VDP enables viewing from unconstrained positions. In essence, VDP can be viewed as a technique for automatically defining an optimal data- and task-dependent clipping surface. Radiologists using VDP display have been able to perform evaluations of pathologies more easily and more rapidly than with clinical arthroscopy, standard volume rendering, or standard MRI/CT slice viewing.

  2. Peel testing behavior of mushroom-top terminated structured adhesives

    NASA Astrophysics Data System (ADS)

    Hossfeld, Craig Kenneth

    Synthetic structured surfaces have been created based on the extraordinary adhesive ability exhibited by insects, spiders, and geckos. The adhesion of synthetic and natural structured adhesives is attributed to the cumulative addition of van der Waals forces acting on the structures of the surface. It has been shown that for synthetic surfaces a "mushroom top" or "flanged" terminating structure exhibits the highest adhesion. Unfortunately, due to the variety of testing and fabrication techniques and the small scale of previous studies, the detachment behavior of these structures is not well understood. This research systematically investigated the effect of peel angle, pillar diameter, flange diameter, and pillar aspect ratio on the force required for peeling. Explicit emphasis was placed on relatively large pillar structures to allow for in situ optical visualization in order to gain insights into fundamental mechanisms which dictate peeling. Traditional molding techniques were used to fabricate optical-scale mushroom terminated structures with pillar diameters of 1mm and 400microm and aspect ratios of 1, 3, and 5. Results were quantitatively compared to peel testing theory for conventional adhesives. It was convincingly demonstrated that the adhesive energy of a patterned surface changes as function of angle, and cannot be treated as a constant. The variability in the energy was linked to mechanistic differences in detachment through in situ observations and finite element analysis. Experimental results show that smaller pillars do not necessarily lead to higher adhesion during peeling, aspect ratio plays little role in peeling adhesive behavior, and pillar flange size is critical to adhesion. The conclusions from this study outline design parameters for mushroom topped dry adhesives in peeling applications.

  3. Wavelet Neural Network Using Multiple Wavelet Functions in Target Threat Assessment

    PubMed Central

    Guo, Lihong; Duan, Hong

    2013-01-01

    Target threat assessment is a key issue in the collaborative attack. To improve the accuracy and usefulness of target threat assessment in the aerial combat, we propose a variant of wavelet neural networks, MWFWNN network, to solve threat assessment. How to select the appropriate wavelet function is difficult when constructing wavelet neural network. This paper proposes a wavelet mother function selection algorithm with minimum mean squared error and then constructs MWFWNN network using the above algorithm. Firstly, it needs to establish wavelet function library; secondly, wavelet neural network is constructed with each wavelet mother function in the library and wavelet function parameters and the network weights are updated according to the relevant modifying formula. The constructed wavelet neural network is detected with training set, and then optimal wavelet function with minimum mean squared error is chosen to build MWFWNN network. Experimental results show that the mean squared error is 1.23 × 10−3, which is better than WNN, BP, and PSO_SVM. Target threat assessment model based on the MWFWNN has a good predictive ability, so it can quickly and accurately complete target threat assessment. PMID:23509436

  4. Extracts of black bean peel and pomegranate peel ameliorate oxidative stress-induced hyperglycemia in mice.

    PubMed

    Wang, Jian-Yun; Zhu, Chuang; Qian, Tian-Wei; Guo, Hao; Wang, Dong-Dong; Zhang, Fan; Yin, Xiaoxing

    2015-01-01

    Oxidative stress has a central role in the progression of diabetes mellitus (DM), which can directly result in the injury of islet β cells and consequent hyperglycemia. The aim of the present study was to evaluate the possible protective effects of black bean peel extract (BBPE), pomegranate peel extract (PPE) and a combination of the two (PPE + BBPE) on streptozotocin-induced DM mice. Oxidative stress was assessed by the levels of total antioxidative capability and glutathione in the serum. Fasting blood glucose and insulin levels, as well as the pancreas weight index and the histological changes in the pancreas, were also determined. The results showed that, after fours weeks of treatment with PPE, BBPE or PPE + BBPE, DM mice showed, to different degrees, a decrease in blood glucose, increases in insulin secretion and the pancreas weight index, and an increase in antioxidative activity. These changes were particularly evident in the DM mice subjected to the combined intervention strategy of PPE + BBPE. The histological findings indicated that the injury to the pancreatic islets in DM mice was also ameliorated following treatment. In conclusion, PPE and BBPE, particularly the combination of the two, have the ability to ameliorate hyperglycemia by inhibiting oxidative stress-induced pancreatic damage; this finding may be useful in the prevention and treatment of DM. PMID:25452774

  5. 2D wavelet transform with different adaptive wavelet bases for texture defect inspection based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Mo, Yu L.

    1998-08-01

    There are many textures such as woven fabrics having repeating Textron. In order to handle the textural characteristics of images with defects, this paper proposes a new method based on 2D wavelet transform. In the method, a new concept of different adaptive wavelet bases is used to match the texture pattern. The 2D wavelet transform has two different adaptive orthonormal wavelet bases for rows and columns which differ from Daubechies wavelet bases. The orthonormal wavelet bases for rows and columns are generated by genetic algorithm. The experiment result demonstrate the ability of the different adaptive wavelet bases to characterize the texture and locate the defects in the texture.

  6. Wavelet analysis of electron-density maps.

    PubMed

    Main, P; Wilson, J

    2000-05-01

    The wavelet transform is a powerful technique in signal processing and image analysis and it is shown here that wavelet analysis of low-resolution electron-density maps has the potential to increase their resolution. Like Fourier analysis, wavelet analysis expresses the image (electron density) in terms of a set of orthogonal functions. In the case of the Fourier transform, these functions are sines and cosines and each one contributes to the whole of the image. In contrast, the wavelet functions (simply called wavelets) can be quite localized and may only contribute to a small part of the image. This gives control over the amount of detail added to the map as the resolution increases. The mathematical details are outlined and an algorithm which achieves a resolution increase from 10 to 7 A using a knowledge of the wavelet-coefficient histograms, electron-density histogram and the observed structure amplitudes is described. These histograms are calculated from the electron density of known structures, but it seems likely that the histograms can be predicted, just as electron-density histograms are at high resolution. The results show that the wavelet coefficients contain the information necessary to increase the resolution of electron-density maps. PMID:10771431

  7. Application of wavelets to automatic target recognition

    NASA Astrophysics Data System (ADS)

    Stirman, Charles

    1995-03-01

    'Application of Wavelets to Automatic Target Recognition,' is the second phase of multiphase project to insert compactly supported wavelets into an existing or near-term Department of Defense system such as the Longbow fire control radar for the Apache Attack Helicopter. In this contract, we have concentrated mainly on the classifier function. During the first phase of the program ('Application of Wavelets to Radar Data Processing'), the feasibility of using wavelets to process high range resolution profile (HRRP) amplitude returns from a wide bandwidth radar system was demonstrated. This phase obtained fully polarized wide bandwidth radar HRRP amplitude returns and processed, them with wavelet and wavelet packet or (best basis) transforms. Then, by mathematically defined nonlinear feature selection, we showed that significant improvements in the probability of correct classification are possible, up to 14 percentage points maximum (4 percentage points average) improvement when compared to the current classifier performance. In addition, we addressed the feasibility of using wavelet packets' best basis to address target registration, man made object rejection, clutter discriminations, and synthetic aperture radar scene speckle removal and object registration.

  8. [Hyper spectral estimation method for soil alkali hydrolysable nitrogen content based on discrete wavelet transform and genetic algorithm in combining with partial least squares DWT-GA-PLS)].

    PubMed

    Chen, Hong-Yan; Zhao, Geng-Xing; Li, Xi-Can; Wang, Xiang-Feng; Li, Yu-Ling

    2013-11-01

    Taking the Qihe County in Shandong Province of East China as the study area, soil samples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and compressed by discrete wavelet transform (DWT), the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation models for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model variables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen content. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrum variables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2 being 0.85, the RMSE being 8.11 mg x kg(-1), and RPD being 2.53, indicating the effectiveness of DWT-GA-PLS method in estimating soil alkali hydrolysable nitrogen content. PMID:24564148

  9. Push-Broom-Type Very High-Resolution Satellite Sensor Data Correction Using Combined Wavelet-Fourier and Multiscale Non-Local Means Filtering

    PubMed Central

    Kang, Wonseok; Yu, Soohwan; Seo, Doochun; Jeong, Jaeheon; Paik, Joonki

    2015-01-01

    In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments. PMID:26378532

  10. Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task

    PubMed Central

    Al-Qazzaz, Noor Kamal; Hamid Bin Mohd Ali, Sawal; Ahmad, Siti Anom; Islam, Mohd Shabiul; Escudero, Javier

    2015-01-01

    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10–20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1–db20), Symlets (sym1–sym20), and Coiflets (coif1–coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using “sym9” across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions. PMID:26593918

  11. Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising

    PubMed Central

    Ai, Danni; Yang, Jian; Fan, Jingfan; Cong, Weijian; Wang, Yongtian

    2015-01-01

    Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated to find similar patches as training groups for further processing. Tensor-based PCA is used to obtain transformation matrices, and coefficients are sequentially shrunk by the linear minimum mean square error. Reconstructed patches are obtained, and a denoised image is finally achieved by aggregating all of these patches. The experimental results of the standard test image show that the best results are obtained with two denoising rounds according to six quantitative measures. For the experiment on the clinical images, the proposed AT-PCA method can suppress the noise, enhance the edge, and improve the image quality more effectively than NLM and KSVD denoising methods. PMID:25993566

  12. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    NASA Astrophysics Data System (ADS)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  13. Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.

    PubMed

    Günther, David; Jacobson, Alec; Reininghaus, Jan; Seidel, Hans-Peter; Sorkine-Hornung, Olga; Weinkauf, Tino

    2014-12-01

    Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. PMID:26356972

  14. A multi-scale non-local means algorithm for image de-noising

    NASA Astrophysics Data System (ADS)

    Nercessian, Shahan; Panetta, Karen A.; Agaian, Sos S.

    2012-06-01

    A highly studied problem in image processing and the field of electrical engineering in general is the recovery of a true signal from its noisy version. Images can be corrupted by noise during their acquisition or transmission stages. As noisy images are visually very poor in quality, and complicate further processing stages of computer vision systems, it is imperative to develop algorithms which effectively remove noise in images. In practice, it is a difficult task to effectively remove the noise while simultaneously retaining the edge structures within the image. Accordingly, many de-noising algorithms have been considered attempt to intelligent smooth the image while still preserving its details. Recently, a non-local means (NLM) de-noising algorithm was introduced, which exploited the redundant nature of images to achieve image de-noising. The algorithm was shown to outperform current de-noising standards, including Gaussian filtering, anisotropic diffusion, total variation minimization, and multi-scale transform coefficient thresholding. However, the NLM algorithm was developed in the spatial domain, and therefore, does not leverage the benefit that multi-scale transforms provide a framework in which signals can be better distinguished by noise. Accordingly, in this paper, a multi-scale NLM (MS-NLM) algorithm is proposed, which combines the advantage of the NLM algorithm and multi-scale image processing techniques. Experimental results via computer simulations illustrate that the MS-NLM algorithm outperforms the NLM, both visually and quantitatively.

  15. Texture preservation in de-noising UAV surveillance video through multi-frame sampling

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Fevig, Ronald A.; Schultz, Richard R.

    2009-02-01

    Image de-noising is a widely-used technology in modern real-world surveillance systems. Methods can seldom do both de-noising and texture preservation very well without a direct knowledge of the noise model. Most of the neighborhood fusion-based de-noising methods tend to over-smooth the images, which causes a significant loss of detail. Recently, a new non-local means method has been developed, which is based on the similarities among the different pixels. This technique results in good preservation of the textures; however, it also causes some artifacts. In this paper, we utilize the scale-invariant feature transform (SIFT) [1] method to find the corresponding region between different images, and then reconstruct the de-noised images by a weighted sum of these corresponding regions. Both hard and soft criteria are chosen in order to minimize the artifacts. Experiments applied to real unmanned aerial vehicle thermal infrared surveillance video show that our method is superior to popular methods in the literature.

  16. Denoising of hyperspectral images by best multilinear rank approximation of a tensor

    NASA Astrophysics Data System (ADS)

    Marin-McGee, Maider; Velez-Reyes, Miguel

    2010-04-01

    The hyperspectral image cube can be modeled as a three dimensional array. Tensors and the tools of multilinear algebra provide a natural framework to deal with this type of mathematical object. Singular value decomposition (SVD) and its variants have been used by the HSI community for denoising of hyperspectral imagery. Denoising of HSI using SVD is achieved by finding a low rank approximation of a matrix representation of the hyperspectral image cube. This paper investigates similar concepts in hyperspectral denoising by using a low multilinear rank approximation the given HSI tensor representation. The Best Multilinear Rank Approximation (BMRA) of a given tensor A is to find a lower multilinear rank tensor B that is as close as possible to A in the Frobenius norm. Different numerical methods to compute the BMRA using Alternating Least Square (ALS) method and Newton's Methods over product of Grassmann manifolds are presented. The effect of the multilinear rank, the numerical method used to compute the BMRA, and different parameter choices in those methods are studied. Results show that comparable results are achievable with both ALS and Newton type methods. Also, classification results using the filtered tensor are better than those obtained either with denoising using SVD or MNF.

  17. Subject-specific patch-based denoising for contrast-enhanced cardiac MR images

    NASA Astrophysics Data System (ADS)

    Ma, Lorraine; Ebrahimi, Mehran; Pop, Mihaela

    2016-03-01

    Many patch-based techniques in imaging, e.g., Non-local means denoising, require tuning parameters to yield optimal results. In real-world applications, e.g., denoising of MR images, ground truth is not generally available and the process of choosing an appropriate set of parameters is a challenge. Recently, Zhu et al. proposed a method to define an image quality measure, called Q, that does not require ground truth. In this manuscript, we evaluate the effect of various parameters of the NL-means denoising on this quality metric Q. Our experiments are based on the late-gadolinium enhancement (LGE) cardiac MR images that are inherently noisy. Our described exhaustive evaluation approach can be used in tuning parameters of patch-based schemes. Even in the case that an estimation of optimal parameters is provided using another existing approach, our described method can be used as a secondary validation step. Our preliminary results suggest that denoising parameters should be case-specific rather than generic.

  18. Applications of a fast, continuous wavelet transform

    SciTech Connect

    Dress, W.B.

    1997-02-01

    A fast, continuous, wavelet transform, based on Shannon`s sampling theorem in frequency space, has been developed for use with continuous mother wavelets and sampled data sets. The method differs from the usual discrete-wavelet approach and the continuous-wavelet transform in that, here, the wavelet is sampled in the frequency domain. Since Shannon`s sampling theorem lets us view the Fourier transform of the data set as a continuous function in frequency space, the continuous nature of the functions is kept up to the point of sampling the scale-translation lattice, so the scale-translation grid used to represent the wavelet transform is independent of the time- domain sampling of the signal under analysis. Computational cost and nonorthogonality aside, the inherent flexibility and shift invariance of the frequency-space wavelets has advantages. The method has been applied to forensic audio reconstruction speaker recognition/identification, and the detection of micromotions of heavy vehicles associated with ballistocardiac impulses originating from occupants` heart beats. Audio reconstruction is aided by selection of desired regions in the 2-D representation of the magnitude of the transformed signal. The inverse transform is applied to ridges and selected regions to reconstruct areas of interest, unencumbered by noise interference lying outside these regions. To separate micromotions imparted to a mass-spring system (e.g., a vehicle) by an occupants beating heart from gross mechanical motions due to wind and traffic vibrations, a continuous frequency-space wavelet, modeled on the frequency content of a canonical ballistocardiogram, was used to analyze time series taken from geophone measurements of vehicle micromotions. By using a family of mother wavelets, such as a set of Gaussian derivatives of various orders, features such as the glottal closing rate and word and phrase segmentation may be extracted from voice data.

  19. Recovery of Ga(III) by Raw and Alkali Treated Citrus limetta Peels

    PubMed Central

    2014-01-01

    Alkali treated Citrus limetta peels were used for recovery of Ga(III) from its aqueous solution. The raw and alkali treated peels were characterized for functional groups. The efficiency of adsorption increased from 47.62 mg/g for raw peels to 83.33 mg/g for alkali treated peels. Between pH 1 and 3, the adsorption increased and thereafter decreased drastically. The adsorption followed pseudosecond order kinetics and Langmuir isotherm gave the best fit for the experimental data. Desorption studies showed 95.28% desorption after 3 cycles for raw peels while it was 89.51% for alkali treated peels. Simulated Bayer liquor showed 39.57% adsorption for gallium ions on raw peels which was enhanced to 41.13% for alkali treated peels.

  20. Denoising Algorithm for the Pixel-Response Non-Uniformity Correction of a Scientific CMOS Under Low Light Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Changmiao; Bai, Yang; Tang, Ping

    2016-06-01

    We present a denoising algorithm for the pixel-response non-uniformity correction of a scientific complementary metal-oxide-semiconductor (CMOS) image sensor, which captures images under extremely low-light conditions. By analyzing the integrating sphere experimental data, we present a pixel-by-pixel flat-field denoising algorithm to remove this fixed pattern noise, which occur in low-light conditions and high pixel response readouts. The response of the CMOS image sensor imaging system to the uniform radiance field shows a high level of spatial uniformity after the denoising algorithm has been applied.

  1. On alternative wavelet reconstruction formula: a case study of approximate wavelets.

    PubMed

    Lebedeva, Elena A; Postnikov, Eugene B

    2014-10-01

    The application of the continuous wavelet transform to the study of a wide class of physical processes with oscillatory dynamics is restricted by large central frequencies owing to the admissibility condition. We propose an alternative reconstruction formula for the continuous wavelet transform, which is applicable even if the admissibility condition is violated. The case of the transform with the standard reduced Morlet wavelet, which is an important example of such analysing functions, is discussed. PMID:26064533

  2. Wavelet Applications for Flight Flutter Testing

    NASA Technical Reports Server (NTRS)

    Lind, Rick; Brenner, Marty; Freudinger, Lawrence C.

    1999-01-01

    Wavelets present a method for signal processing that may be useful for analyzing responses of dynamical systems. This paper describes several wavelet-based tools that have been developed to improve the efficiency of flight flutter testing. One of the tools uses correlation filtering to identify properties of several modes throughout a flight test for envelope expansion. Another tool uses features in time-frequency representations of responses to characterize nonlinearities in the system dynamics. A third tool uses modulus and phase information from a wavelet transform to estimate modal parameters that can be used to update a linear model and reduce conservatism in robust stability margins.

  3. FOPEN ultrawideband SAR imaging by wavelet interpolation

    NASA Astrophysics Data System (ADS)

    Guo, Hanwei; Liang, Diannong; Wang, Yan; Huang, Xiaotao; Dong, Zhen

    2003-09-01

    Wave number Domain Imaging algorithm can deal with the problem of foliage-penetrating ultra-wide band synthesis aperture radar (FOPEN UWB SAR) imaging. Stolt interpolation is a key role in Imaging Algorithm and is unevenly interpolation problem. There is no fast computation algorithm on Stolt interpolation. In this paper, A novel 4-4 tap of integer wavelet filters is used as Stolt interpolation base function. A fast interpolation algorithm is put forwards to. There is only plus and shift operation in wavelet interpolation that is easy to realize by hardware. The real data are processed to prove the wavelet interpolation valid for FOPEN UWB SAR imaging.

  4. Wavelet frames and admissibility in higher dimensions

    SciTech Connect

    Fuehr, H.

    1996-12-01

    This paper is concerned with the relations between discrete and continuous wavelet transforms on {ital k}-dimensional Euclidean space. We start with the construction of continuous wavelet transforms with the help of square-integrable representations of certain semidirect products, thereby generalizing results of Bernier and Taylor. We then turn to frames of L{sup 2}({bold R}{sup {ital k}}) and to the question, when the functions occurring in a given frame are admissible for a given continuous wavelet transform. For certain frames we give a characterization which generalizes a result of Daubechies to higher dimensions. {copyright} {ital 1996 American Institute of Physics.}

  5. Transionospheric signal detection with chirped wavelets

    SciTech Connect

    Doser, A.B.; Dunham, M.E.

    1997-11-01

    Chirped wavelets are utilized to detect dispersed signals in the joint time scale domain. Specifically, pulses that become dispersed by transmission through the ionosphere and are received by satellites as nonlinear chirps are investigated. Since the dispersion greatly lowers the signal to noise ratios, it is difficult to isolate the signals in the time domain. Satellite data are examined with discrete wavelet expansions. Detection is accomplished via a template matching threshold scheme. Quantitative experimental results demonstrate that the chirped wavelet detection scheme is successful in detecting the transionospheric pulses at very low signal to noise ratios.

  6. Generation of ultra-sound during tape peeling

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy O.; Riker, Paul W.; Thoroddsen, Sigurdur T.

    2014-03-01

    We investigate the generation of the screeching sound commonly heard during tape peeling using synchronised high-speed video and audio acquisition. We determine the peak frequencies in the audio spectrum and, in addition to a peak frequency at the upper end of the audible range (around 20 kHz), we find an unexpected strong sound with a high-frequency far above the audible range, typically around 50 kHz. Using the corresponding video data, the origins of the key frequencies are confirmed as being due to the substructure ``fracture'' bands, which we herein observe in both high-speed continuous peeling motions and in the slip phases for stick-slip peeling motions.

  7. Generation of ultra-sound during tape peeling.

    PubMed

    Marston, Jeremy O; Riker, Paul W; Thoroddsen, Sigurdur T

    2014-01-01

    We investigate the generation of the screeching sound commonly heard during tape peeling using synchronised high-speed video and audio acquisition. We determine the peak frequencies in the audio spectrum and, in addition to a peak frequency at the upper end of the audible range (around 20 kHz), we find an unexpected strong sound with a high-frequency far above the audible range, typically around 50 kHz. Using the corresponding video data, the origins of the key frequencies are confirmed as being due to the substructure "fracture" bands, which we herein observe in both high-speed continuous peeling motions and in the slip phases for stick-slip peeling motions. PMID:24651648

  8. Inhibition of microbial pathogens using fruit and vegetable peel extracts.

    PubMed

    Rakholiya, Kalpna; Kaneria, Mital; Chanda, Sumitra

    2014-09-01

    The aim of the present work is to evaluate the antimicrobial potency of some vegetable and fruit peels. The extraction was done by individual cold percolation method using various solvents with increasing polarity (Hexane, ethyl acetate, acetone, methanol and aqueous). The antimicrobial activity was done by agar well diffusion assay against five Gram positive bacteria, five Gram negative bacteria and four fungi. All extracts demonstrated varied level of antimicrobial activity. The peel extracts showed highest zone of inhibition against Gram negative bacteria as compared to Gram positive bacteria and fungi. Amongst studied peel extracts Citrus limon followed by Manilkara zapota and Carica papaya showed good antimicrobial activity indicating its potency as a promising source of natural antimicrobics. The results confirm the belief that agro waste can be therapeutically used. PMID:24725235

  9. Partial identification of antifungal compounds from Punica granatum peel extracts.

    PubMed

    Glazer, Ira; Masaphy, Segula; Marciano, Prosper; Bar-Ilan, Igal; Holland, Doron; Kerem, Zohar; Amir, Rachel

    2012-05-16

    Aqueous extracts of pomegranate peels were assayed in vitro for their antifungal activity against six rot fungi that cause fruit and vegetable decay during storage. The growth rates of Alternaria alternata , Stemphylium botryosum , and Fusarium spp. were significantly inhibited by the extracts. The growth rates were negatively correlated with the levels of total polyphenolic compounds in the extract and particularly with punicalagins, the major ellagitannins in pomegranate peels. Ellagitannins were also found to be the main compounds in the bioactive fractions using bioautograms, and punicalagins were identified as the main bioactive compounds using chromatographic separation. These results suggest that ellagitannins, and more specifically punicalagins, which are the dominant compounds in pomegranate peels, may be used as a control agent of storage diseases and to reduce the use of synthetic fungicides. PMID:22533815

  10. Peeled film GaAs solar cell development

    NASA Technical Reports Server (NTRS)

    Wilt, D. M.; Thomas, R. D.; Bailey, S. G.; Brinker, D. J.; Deangelo, F. L.

    1990-01-01

    Thin-film, single-crystal gallium arsenide (GaAs) solar cells could exhibit a specific power approaching 700 W/kg including coverglass. A simple process has been described whereby epitaxial GaAs layers are peeled from a reusable substrate. This process takes advantage of the extreme selectivity of the etching rate of aluminum arsenide (AlAs) over GaAs in dilute hydrofluoric acid. The feasibility of using the peeled film technique to fabricate high-efficiency, low-mass GaAs solar cells is presently demonstrated. A peeled film GaAs solar cell was successfully produced. The device, although fractured and missing the aluminum gallium arsenide window and antireflective coating, had a Voc of 874 mV and a fill factor of 68 percent under AM0 illumination.

  11. Pomegranate peel pectin films as affected by montmorillonite.

    PubMed

    Oliveira, Túlio Ítalo S; Zea-Redondo, Luna; Moates, Graham K; Wellner, Nikolaus; Cross, Kathryn; Waldron, Keith W; Azeredo, Henriette M C

    2016-05-01

    The industrial production of pomegranate juice has been favored by its alleged health benefits derived from its antioxidant properties. The processing of pomegranate juice involves squeezing juice from the fruit with the seeds and the peels together, leaving a pomace consisting of approximately 73 wt% peels. In this study, pectin was extracted from pomegranate peels, and used to produce films with different contents of montmorillonite (MMT) as a nanoreinforcement material. The nanoreinforcement improved the tensile strength and modulus of films when added at up to 6 wt%, while the further addition of MMT (to 8 wt%) reduced the reinforcement effect, probably because of dispersion problems. The elongation was decreased with increasing MMT concentrations. The water vapor permeability decreased with increasing MMT contents up to 8 wt% MMT, indicating that the increased tortuosity of the permeant path was effective on barrier properties of the film. PMID:26769511

  12. Lemon peel and Limoncello liqueur: a proteomic duet.

    PubMed

    Fasoli, Elisa; Colzani, Mara; Aldini, Giancarlo; Citterio, Attilio; Righetti, Pier Giorgio

    2013-08-01

    Combinatorial peptide ligand libraries (CPLLs) have been adopted for investigating the proteomes of lemon peels and pulp, of a home-made alcoholic infusion of peels and of a very popular Italian liqueur called "Limoncello", stated to be an infusion of the flavedo (the outer, yellow skin of lemons). The aim of this study was not only to perform the deepest investigation so far of the lemon peel proteome but also to assess the genuineness of the commercial liqueur via a three-pronged attack. First, different extraction techniques have been used for the characterization of the peel (and additionally of the pulp) proteome, secondly a home-made infusion has been analysed and finally the proteome of the commercial drink was checked. The peel (the flavedo, not the underlying layer called albedo) proteome has been evaluated via prior capture with CPLLs at different pH values (2.2 and 7.2). Via mass spectrometry analysis of the recovered fractions, after elution of the captured populations in 4% boiling SDS, we could identify a total of 1011 unique gene products in the peel extracts and 674 in the pulp, 264 proteins in the home-made infusion and just 8 proteins (and protein fragments), together with 12 peptides, in one Italian Limoncello produced in the Sorrento Region, thus proving the genuineness of this product. On the contrary, cheaper Limoncellos were devoid of any protein/peptide, casting doubts on their production from vegetable extracts. This could be the starting point for investigating the genuineness and natural origin of commercial drinks in order to protect consumers from adulterated products. PMID:23681105

  13. Demonstration tests of infrared peeling system with electrical emitters for tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared (IR) dry-peeling is an emerging technology that could avoid the drawbacks of steam and lye peeling of tomatoes. The objectives of this research was to evaluate the performance of an IR peeling system at two tomato processing plants located in California and to compare product quality, peela...

  14. Analysis of the phenolic compounds in longan (Dimocarpus longan lour.) peel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan fruit are susceptible to chilling injury, where the injured peel exhibits discoloration due to water-soaking and enzymatic browning. This peel discoloration is dependent to a large degree on the composition of the phenolic compounds. Yet, the main classes of phenols in longan peel remain la...

  15. HPLC-MS ANALYSIS OF PHENOLS IN LONGAN (DIMOCARPUS LONGAN LOUR.) PEEL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan fruit are susceptible to chilling injury, where the peel exhibits discoloration (water-soaking and/or browning area on the peel). Two varieties of longan (Daw and Biew Kiew) were subjected to abusive cold storage to evaluate the changes in the phenolic compounds that occurred in peel exhibit...

  16. Multidimensional gray-wavelet processing in interferometric fiber-optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Wang, Zinan; Peng, Chao; Li, Zhengbin

    2013-11-01

    A multidimensional signal processing method for a single interferometric fiber-optic gyroscope (IFOG) is proposed, to the best of our knowledge, for the first time. The proposed method, based on a novel IFOG structure with quadrature demodulation, combines a multidimensional gray model (GM) and a wavelet compression technique for noise suppression and sensitivity enhancement. In the IFOG, two series of measured rotation rates are obtained simultaneously: an in-phase component and a quadrature component. Together with the traditionally measured rate, the three measured rates are processed by the combined gray-wavelet method. Simulations show that the intensity noise and non-reciprocal phase fluctuations are effectively suppressed by this method. Experimental comparisons with a one-dimensional GM(1, 1) model show that the proposed three-dimensional method achieves much better denoising performance. This advantage is validated by the Allan variance analysis: in a low-SNR (signal-to-noise ratio) experiment, our method reduces the angle random walk (ARW) and the bias instability (BI) from 1 × 10-2 deg h-1/2 and 3 × 10-2 deg h-1 to 1 × 10-3 deg h-1/2 and 3 × 10-3 deg h-1, respectively; in a high-SNR experiment, our method reduces the ARW and the BI from 9 × 10-4 deg h-1/2 and 5 × 10-3 deg h-1 to 4 × 10-4 deg h-1/2 and 3 × 10-3 deg h-1, respectively. Further, our method increases the dimension of the state-of-the-art IFOG technique from one to three, thus obtaining higher IFOG sensitivity and stability by exploiting the increase in available information.

  17. Wavelet differential neural network observer.

    PubMed

    Chairez, Isaac

    2009-09-01

    State estimation for uncertain systems affected by external noises is an important problem in control theory. This paper deals with a state observation problem when the dynamic model of a plant contains uncertainties or it is completely unknown. Differential neural network (NN) approach is applied in this uninformative situation but with activation functions described by wavelets. A new learning law, containing an adaptive adjustment rate, is suggested to imply the stability condition for the free parameters of the observer. Nominal weights are adjusted during the preliminary training process using the least mean square (LMS) method. Lyapunov theory is used to obtain the upper bounds for the weights dynamics as well as for the mean squared estimation error. Two numeric examples illustrate this approach: first, a nonlinear electric system, governed by the Chua's equation and second the Lorentz oscillator. Both systems are assumed to be affected by external perturbations and their parameters are unknown. PMID:19674951

  18. Wavelets: the Key to Intermittent Information?

    NASA Astrophysics Data System (ADS)

    Silverman, B. W.; Vassilicos, J. C.

    2000-08-01

    In recent years there has been an explosion of interest in wavelets, in a wide range of fields in science and engineering and beyond. This book brings together contributions from researchers from disparate fields, both in order to demonstrate to a wide readership the current breadth of work in wavelets, and to encourage cross-fertilization of ideas. It demonstrates the genuinely interdisplinary nature of wavelet research and applications. Particular areas covered include turbulence, statistics, time series analysis, signal and image processing, the physiology of vision, astronomy, economics and acoustics. Some of the work uses standard wavelet approaches and in other cases new methodology is developed. The papers were originally presented at a Royal Society Discussion Meeting, to a large and enthusiastic audience of specialists and non-specialists.

  19. Wavelet based recognition for pulsar signals

    NASA Astrophysics Data System (ADS)

    Shan, H.; Wang, X.; Chen, X.; Yuan, J.; Nie, J.; Zhang, H.; Liu, N.; Wang, N.

    2015-06-01

    A signal from a pulsar can be decomposed into a set of features. This set is a unique signature for a given pulsar. It can be used to decide whether a pulsar is newly discovered or not. Features can be constructed from coefficients of a wavelet decomposition. Two types of wavelet based pulsar features are proposed. The energy based features reflect the multiscale distribution of the energy of coefficients. The singularity based features first classify the signals into a class with one peak and a class with two peaks by exploring the number of the straight wavelet modulus maxima lines perpendicular to the abscissa, and then implement further classification according to the features of skewness and kurtosis. Experimental results show that the wavelet based features can gain comparatively better performance over the shape parameter based features not only in the clustering and classification, but also in the error rates of the recognition tasks.

  20. Wavelet Analysis for Acoustic Phased Array

    NASA Astrophysics Data System (ADS)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.